Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v3.1
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
   9
  10#include <linux/module.h>
  11#include <linux/vmalloc.h>
  12#include <linux/blkdev.h>
  13#include <linux/namei.h>
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/atomic.h>
 
 
  21
  22#define DM_MSG_PREFIX "table"
  23
  24#define MAX_DEPTH 16
  25#define NODE_SIZE L1_CACHE_BYTES
  26#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  27#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  28
  29/*
  30 * The table has always exactly one reference from either mapped_device->map
  31 * or hash_cell->new_map. This reference is not counted in table->holders.
  32 * A pair of dm_create_table/dm_destroy_table functions is used for table
  33 * creation/destruction.
  34 *
  35 * Temporary references from the other code increase table->holders. A pair
  36 * of dm_table_get/dm_table_put functions is used to manipulate it.
  37 *
  38 * When the table is about to be destroyed, we wait for table->holders to
  39 * drop to zero.
  40 */
  41
  42struct dm_table {
  43	struct mapped_device *md;
  44	atomic_t holders;
  45	unsigned type;
  46
  47	/* btree table */
  48	unsigned int depth;
  49	unsigned int counts[MAX_DEPTH];	/* in nodes */
  50	sector_t *index[MAX_DEPTH];
  51
  52	unsigned int num_targets;
  53	unsigned int num_allocated;
  54	sector_t *highs;
  55	struct dm_target *targets;
  56
  57	unsigned integrity_supported:1;
 
 
 
 
  58
  59	/*
  60	 * Indicates the rw permissions for the new logical
  61	 * device.  This should be a combination of FMODE_READ
  62	 * and FMODE_WRITE.
  63	 */
  64	fmode_t mode;
  65
  66	/* a list of devices used by this table */
  67	struct list_head devices;
  68
  69	/* events get handed up using this callback */
  70	void (*event_fn)(void *);
  71	void *event_context;
  72
  73	struct dm_md_mempools *mempools;
  74
  75	struct list_head target_callbacks;
  76};
  77
  78/*
  79 * Similar to ceiling(log_size(n))
  80 */
  81static unsigned int int_log(unsigned int n, unsigned int base)
  82{
  83	int result = 0;
  84
  85	while (n > 1) {
  86		n = dm_div_up(n, base);
  87		result++;
  88	}
  89
  90	return result;
  91}
  92
  93/*
  94 * Calculate the index of the child node of the n'th node k'th key.
  95 */
  96static inline unsigned int get_child(unsigned int n, unsigned int k)
  97{
  98	return (n * CHILDREN_PER_NODE) + k;
  99}
 100
 101/*
 102 * Return the n'th node of level l from table t.
 103 */
 104static inline sector_t *get_node(struct dm_table *t,
 105				 unsigned int l, unsigned int n)
 106{
 107	return t->index[l] + (n * KEYS_PER_NODE);
 108}
 109
 110/*
 111 * Return the highest key that you could lookup from the n'th
 112 * node on level l of the btree.
 113 */
 114static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 115{
 116	for (; l < t->depth - 1; l++)
 117		n = get_child(n, CHILDREN_PER_NODE - 1);
 118
 119	if (n >= t->counts[l])
 120		return (sector_t) - 1;
 121
 122	return get_node(t, l, n)[KEYS_PER_NODE - 1];
 123}
 124
 125/*
 126 * Fills in a level of the btree based on the highs of the level
 127 * below it.
 128 */
 129static int setup_btree_index(unsigned int l, struct dm_table *t)
 130{
 131	unsigned int n, k;
 132	sector_t *node;
 133
 134	for (n = 0U; n < t->counts[l]; n++) {
 135		node = get_node(t, l, n);
 136
 137		for (k = 0U; k < KEYS_PER_NODE; k++)
 138			node[k] = high(t, l + 1, get_child(n, k));
 139	}
 140
 141	return 0;
 142}
 143
 144void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
 145{
 146	unsigned long size;
 147	void *addr;
 148
 149	/*
 150	 * Check that we're not going to overflow.
 151	 */
 152	if (nmemb > (ULONG_MAX / elem_size))
 153		return NULL;
 154
 155	size = nmemb * elem_size;
 156	addr = vzalloc(size);
 157
 158	return addr;
 159}
 160EXPORT_SYMBOL(dm_vcalloc);
 161
 162/*
 163 * highs, and targets are managed as dynamic arrays during a
 164 * table load.
 165 */
 166static int alloc_targets(struct dm_table *t, unsigned int num)
 167{
 168	sector_t *n_highs;
 169	struct dm_target *n_targets;
 170	int n = t->num_targets;
 171
 172	/*
 173	 * Allocate both the target array and offset array at once.
 174	 * Append an empty entry to catch sectors beyond the end of
 175	 * the device.
 176	 */
 177	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
 178					  sizeof(sector_t));
 179	if (!n_highs)
 180		return -ENOMEM;
 181
 182	n_targets = (struct dm_target *) (n_highs + num);
 183
 184	if (n) {
 185		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
 186		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
 187	}
 188
 189	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
 190	vfree(t->highs);
 191
 192	t->num_allocated = num;
 193	t->highs = n_highs;
 194	t->targets = n_targets;
 195
 196	return 0;
 197}
 198
 199int dm_table_create(struct dm_table **result, fmode_t mode,
 200		    unsigned num_targets, struct mapped_device *md)
 201{
 202	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 203
 204	if (!t)
 205		return -ENOMEM;
 206
 207	INIT_LIST_HEAD(&t->devices);
 208	INIT_LIST_HEAD(&t->target_callbacks);
 209	atomic_set(&t->holders, 0);
 210
 211	if (!num_targets)
 212		num_targets = KEYS_PER_NODE;
 213
 214	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 215
 
 
 
 
 
 216	if (alloc_targets(t, num_targets)) {
 217		kfree(t);
 218		t = NULL;
 219		return -ENOMEM;
 220	}
 221
 
 222	t->mode = mode;
 223	t->md = md;
 224	*result = t;
 225	return 0;
 226}
 227
 228static void free_devices(struct list_head *devices)
 229{
 230	struct list_head *tmp, *next;
 231
 232	list_for_each_safe(tmp, next, devices) {
 233		struct dm_dev_internal *dd =
 234		    list_entry(tmp, struct dm_dev_internal, list);
 235		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
 236		       dd->dm_dev.name);
 
 237		kfree(dd);
 238	}
 239}
 240
 241void dm_table_destroy(struct dm_table *t)
 242{
 243	unsigned int i;
 244
 245	if (!t)
 246		return;
 247
 248	while (atomic_read(&t->holders))
 249		msleep(1);
 250	smp_mb();
 251
 252	/* free the indexes */
 253	if (t->depth >= 2)
 254		vfree(t->index[t->depth - 2]);
 255
 256	/* free the targets */
 257	for (i = 0; i < t->num_targets; i++) {
 258		struct dm_target *tgt = t->targets + i;
 259
 260		if (tgt->type->dtr)
 261			tgt->type->dtr(tgt);
 262
 263		dm_put_target_type(tgt->type);
 264	}
 265
 266	vfree(t->highs);
 267
 268	/* free the device list */
 269	if (t->devices.next != &t->devices)
 270		free_devices(&t->devices);
 271
 272	dm_free_md_mempools(t->mempools);
 273
 274	kfree(t);
 275}
 276
 277void dm_table_get(struct dm_table *t)
 278{
 279	atomic_inc(&t->holders);
 280}
 281EXPORT_SYMBOL(dm_table_get);
 282
 283void dm_table_put(struct dm_table *t)
 284{
 285	if (!t)
 286		return;
 287
 288	smp_mb__before_atomic_dec();
 289	atomic_dec(&t->holders);
 290}
 291EXPORT_SYMBOL(dm_table_put);
 292
 293/*
 294 * Checks to see if we need to extend highs or targets.
 295 */
 296static inline int check_space(struct dm_table *t)
 297{
 298	if (t->num_targets >= t->num_allocated)
 299		return alloc_targets(t, t->num_allocated * 2);
 300
 301	return 0;
 302}
 303
 304/*
 305 * See if we've already got a device in the list.
 306 */
 307static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 308{
 309	struct dm_dev_internal *dd;
 310
 311	list_for_each_entry (dd, l, list)
 312		if (dd->dm_dev.bdev->bd_dev == dev)
 313			return dd;
 314
 315	return NULL;
 316}
 317
 318/*
 319 * Open a device so we can use it as a map destination.
 320 */
 321static int open_dev(struct dm_dev_internal *d, dev_t dev,
 322		    struct mapped_device *md)
 323{
 324	static char *_claim_ptr = "I belong to device-mapper";
 325	struct block_device *bdev;
 326
 327	int r;
 328
 329	BUG_ON(d->dm_dev.bdev);
 330
 331	bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
 332	if (IS_ERR(bdev))
 333		return PTR_ERR(bdev);
 334
 335	r = bd_link_disk_holder(bdev, dm_disk(md));
 336	if (r) {
 337		blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
 338		return r;
 339	}
 340
 341	d->dm_dev.bdev = bdev;
 342	return 0;
 343}
 344
 345/*
 346 * Close a device that we've been using.
 347 */
 348static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
 349{
 350	if (!d->dm_dev.bdev)
 351		return;
 352
 353	bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
 354	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
 355	d->dm_dev.bdev = NULL;
 356}
 357
 358/*
 359 * If possible, this checks an area of a destination device is invalid.
 360 */
 361static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 362				  sector_t start, sector_t len, void *data)
 363{
 364	struct request_queue *q;
 365	struct queue_limits *limits = data;
 366	struct block_device *bdev = dev->bdev;
 367	sector_t dev_size =
 368		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 369	unsigned short logical_block_size_sectors =
 370		limits->logical_block_size >> SECTOR_SHIFT;
 371	char b[BDEVNAME_SIZE];
 372
 373	/*
 374	 * Some devices exist without request functions,
 375	 * such as loop devices not yet bound to backing files.
 376	 * Forbid the use of such devices.
 377	 */
 378	q = bdev_get_queue(bdev);
 379	if (!q || !q->make_request_fn) {
 380		DMWARN("%s: %s is not yet initialised: "
 381		       "start=%llu, len=%llu, dev_size=%llu",
 382		       dm_device_name(ti->table->md), bdevname(bdev, b),
 383		       (unsigned long long)start,
 384		       (unsigned long long)len,
 385		       (unsigned long long)dev_size);
 386		return 1;
 387	}
 388
 389	if (!dev_size)
 390		return 0;
 391
 392	if ((start >= dev_size) || (start + len > dev_size)) {
 393		DMWARN("%s: %s too small for target: "
 394		       "start=%llu, len=%llu, dev_size=%llu",
 395		       dm_device_name(ti->table->md), bdevname(bdev, b),
 396		       (unsigned long long)start,
 397		       (unsigned long long)len,
 398		       (unsigned long long)dev_size);
 399		return 1;
 400	}
 401
 402	if (logical_block_size_sectors <= 1)
 403		return 0;
 404
 405	if (start & (logical_block_size_sectors - 1)) {
 406		DMWARN("%s: start=%llu not aligned to h/w "
 407		       "logical block size %u of %s",
 408		       dm_device_name(ti->table->md),
 409		       (unsigned long long)start,
 410		       limits->logical_block_size, bdevname(bdev, b));
 411		return 1;
 412	}
 413
 414	if (len & (logical_block_size_sectors - 1)) {
 415		DMWARN("%s: len=%llu not aligned to h/w "
 416		       "logical block size %u of %s",
 417		       dm_device_name(ti->table->md),
 418		       (unsigned long long)len,
 419		       limits->logical_block_size, bdevname(bdev, b));
 420		return 1;
 421	}
 422
 423	return 0;
 424}
 425
 426/*
 427 * This upgrades the mode on an already open dm_dev, being
 428 * careful to leave things as they were if we fail to reopen the
 429 * device and not to touch the existing bdev field in case
 430 * it is accessed concurrently inside dm_table_any_congested().
 431 */
 432static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 433			struct mapped_device *md)
 434{
 435	int r;
 436	struct dm_dev_internal dd_new, dd_old;
 437
 438	dd_new = dd_old = *dd;
 439
 440	dd_new.dm_dev.mode |= new_mode;
 441	dd_new.dm_dev.bdev = NULL;
 442
 443	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
 
 444	if (r)
 445		return r;
 446
 447	dd->dm_dev.mode |= new_mode;
 448	close_dev(&dd_old, md);
 449
 450	return 0;
 451}
 452
 453/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454 * Add a device to the list, or just increment the usage count if
 455 * it's already present.
 456 */
 457int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 458		  struct dm_dev **result)
 459{
 460	int r;
 461	dev_t uninitialized_var(dev);
 462	struct dm_dev_internal *dd;
 463	unsigned int major, minor;
 464	struct dm_table *t = ti->table;
 465
 466	BUG_ON(!t);
 467
 468	if (sscanf(path, "%u:%u", &major, &minor) == 2) {
 469		/* Extract the major/minor numbers */
 470		dev = MKDEV(major, minor);
 471		if (MAJOR(dev) != major || MINOR(dev) != minor)
 472			return -EOVERFLOW;
 473	} else {
 474		/* convert the path to a device */
 475		struct block_device *bdev = lookup_bdev(path);
 476
 477		if (IS_ERR(bdev))
 478			return PTR_ERR(bdev);
 479		dev = bdev->bd_dev;
 480		bdput(bdev);
 481	}
 482
 483	dd = find_device(&t->devices, dev);
 484	if (!dd) {
 485		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 486		if (!dd)
 487			return -ENOMEM;
 488
 489		dd->dm_dev.mode = mode;
 490		dd->dm_dev.bdev = NULL;
 491
 492		if ((r = open_dev(dd, dev, t->md))) {
 493			kfree(dd);
 494			return r;
 495		}
 496
 497		format_dev_t(dd->dm_dev.name, dev);
 498
 499		atomic_set(&dd->count, 0);
 500		list_add(&dd->list, &t->devices);
 501
 502	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
 503		r = upgrade_mode(dd, mode, t->md);
 504		if (r)
 505			return r;
 506	}
 507	atomic_inc(&dd->count);
 508
 509	*result = &dd->dm_dev;
 510	return 0;
 511}
 512EXPORT_SYMBOL(dm_get_device);
 513
 514int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 515			 sector_t start, sector_t len, void *data)
 516{
 517	struct queue_limits *limits = data;
 518	struct block_device *bdev = dev->bdev;
 519	struct request_queue *q = bdev_get_queue(bdev);
 520	char b[BDEVNAME_SIZE];
 521
 522	if (unlikely(!q)) {
 523		DMWARN("%s: Cannot set limits for nonexistent device %s",
 524		       dm_device_name(ti->table->md), bdevname(bdev, b));
 525		return 0;
 526	}
 527
 528	if (bdev_stack_limits(limits, bdev, start) < 0)
 529		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 530		       "physical_block_size=%u, logical_block_size=%u, "
 531		       "alignment_offset=%u, start=%llu",
 532		       dm_device_name(ti->table->md), bdevname(bdev, b),
 533		       q->limits.physical_block_size,
 534		       q->limits.logical_block_size,
 535		       q->limits.alignment_offset,
 536		       (unsigned long long) start << SECTOR_SHIFT);
 537
 538	/*
 539	 * Check if merge fn is supported.
 540	 * If not we'll force DM to use PAGE_SIZE or
 541	 * smaller I/O, just to be safe.
 542	 */
 543	if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
 544		blk_limits_max_hw_sectors(limits,
 545					  (unsigned int) (PAGE_SIZE >> 9));
 546	return 0;
 547}
 548EXPORT_SYMBOL_GPL(dm_set_device_limits);
 549
 550/*
 551 * Decrement a device's use count and remove it if necessary.
 552 */
 553void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 554{
 555	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
 556						  dm_dev);
 
 557
 
 
 
 
 
 
 
 
 
 
 
 558	if (atomic_dec_and_test(&dd->count)) {
 559		close_dev(dd, ti->table->md);
 560		list_del(&dd->list);
 561		kfree(dd);
 562	}
 563}
 564EXPORT_SYMBOL(dm_put_device);
 565
 566/*
 567 * Checks to see if the target joins onto the end of the table.
 568 */
 569static int adjoin(struct dm_table *table, struct dm_target *ti)
 570{
 571	struct dm_target *prev;
 572
 573	if (!table->num_targets)
 574		return !ti->begin;
 575
 576	prev = &table->targets[table->num_targets - 1];
 577	return (ti->begin == (prev->begin + prev->len));
 578}
 579
 580/*
 581 * Used to dynamically allocate the arg array.
 
 
 
 
 
 
 
 582 */
 583static char **realloc_argv(unsigned *array_size, char **old_argv)
 584{
 585	char **argv;
 586	unsigned new_size;
 
 587
 588	new_size = *array_size ? *array_size * 2 : 64;
 589	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
 
 
 
 
 
 
 590	if (argv) {
 591		memcpy(argv, old_argv, *array_size * sizeof(*argv));
 592		*array_size = new_size;
 593	}
 594
 595	kfree(old_argv);
 596	return argv;
 597}
 598
 599/*
 600 * Destructively splits up the argument list to pass to ctr.
 601 */
 602int dm_split_args(int *argc, char ***argvp, char *input)
 603{
 604	char *start, *end = input, *out, **argv = NULL;
 605	unsigned array_size = 0;
 606
 607	*argc = 0;
 608
 609	if (!input) {
 610		*argvp = NULL;
 611		return 0;
 612	}
 613
 614	argv = realloc_argv(&array_size, argv);
 615	if (!argv)
 616		return -ENOMEM;
 617
 618	while (1) {
 619		/* Skip whitespace */
 620		start = skip_spaces(end);
 621
 622		if (!*start)
 623			break;	/* success, we hit the end */
 624
 625		/* 'out' is used to remove any back-quotes */
 626		end = out = start;
 627		while (*end) {
 628			/* Everything apart from '\0' can be quoted */
 629			if (*end == '\\' && *(end + 1)) {
 630				*out++ = *(end + 1);
 631				end += 2;
 632				continue;
 633			}
 634
 635			if (isspace(*end))
 636				break;	/* end of token */
 637
 638			*out++ = *end++;
 639		}
 640
 641		/* have we already filled the array ? */
 642		if ((*argc + 1) > array_size) {
 643			argv = realloc_argv(&array_size, argv);
 644			if (!argv)
 645				return -ENOMEM;
 646		}
 647
 648		/* we know this is whitespace */
 649		if (*end)
 650			end++;
 651
 652		/* terminate the string and put it in the array */
 653		*out = '\0';
 654		argv[*argc] = start;
 655		(*argc)++;
 656	}
 657
 658	*argvp = argv;
 659	return 0;
 660}
 661
 662/*
 663 * Impose necessary and sufficient conditions on a devices's table such
 664 * that any incoming bio which respects its logical_block_size can be
 665 * processed successfully.  If it falls across the boundary between
 666 * two or more targets, the size of each piece it gets split into must
 667 * be compatible with the logical_block_size of the target processing it.
 668 */
 669static int validate_hardware_logical_block_alignment(struct dm_table *table,
 670						 struct queue_limits *limits)
 671{
 672	/*
 673	 * This function uses arithmetic modulo the logical_block_size
 674	 * (in units of 512-byte sectors).
 675	 */
 676	unsigned short device_logical_block_size_sects =
 677		limits->logical_block_size >> SECTOR_SHIFT;
 678
 679	/*
 680	 * Offset of the start of the next table entry, mod logical_block_size.
 681	 */
 682	unsigned short next_target_start = 0;
 683
 684	/*
 685	 * Given an aligned bio that extends beyond the end of a
 686	 * target, how many sectors must the next target handle?
 687	 */
 688	unsigned short remaining = 0;
 689
 690	struct dm_target *uninitialized_var(ti);
 691	struct queue_limits ti_limits;
 692	unsigned i = 0;
 693
 694	/*
 695	 * Check each entry in the table in turn.
 696	 */
 697	while (i < dm_table_get_num_targets(table)) {
 698		ti = dm_table_get_target(table, i++);
 699
 700		blk_set_default_limits(&ti_limits);
 701
 702		/* combine all target devices' limits */
 703		if (ti->type->iterate_devices)
 704			ti->type->iterate_devices(ti, dm_set_device_limits,
 705						  &ti_limits);
 706
 707		/*
 708		 * If the remaining sectors fall entirely within this
 709		 * table entry are they compatible with its logical_block_size?
 710		 */
 711		if (remaining < ti->len &&
 712		    remaining & ((ti_limits.logical_block_size >>
 713				  SECTOR_SHIFT) - 1))
 714			break;	/* Error */
 715
 716		next_target_start =
 717		    (unsigned short) ((next_target_start + ti->len) &
 718				      (device_logical_block_size_sects - 1));
 719		remaining = next_target_start ?
 720		    device_logical_block_size_sects - next_target_start : 0;
 721	}
 722
 723	if (remaining) {
 724		DMWARN("%s: table line %u (start sect %llu len %llu) "
 725		       "not aligned to h/w logical block size %u",
 726		       dm_device_name(table->md), i,
 727		       (unsigned long long) ti->begin,
 728		       (unsigned long long) ti->len,
 729		       limits->logical_block_size);
 730		return -EINVAL;
 731	}
 732
 733	return 0;
 734}
 735
 736int dm_table_add_target(struct dm_table *t, const char *type,
 737			sector_t start, sector_t len, char *params)
 738{
 739	int r = -EINVAL, argc;
 740	char **argv;
 741	struct dm_target *tgt;
 742
 743	if ((r = check_space(t)))
 744		return r;
 
 
 
 
 
 745
 746	tgt = t->targets + t->num_targets;
 747	memset(tgt, 0, sizeof(*tgt));
 748
 749	if (!len) {
 750		DMERR("%s: zero-length target", dm_device_name(t->md));
 751		return -EINVAL;
 752	}
 753
 754	tgt->type = dm_get_target_type(type);
 755	if (!tgt->type) {
 756		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
 757		      type);
 758		return -EINVAL;
 759	}
 760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761	tgt->table = t;
 762	tgt->begin = start;
 763	tgt->len = len;
 764	tgt->error = "Unknown error";
 765
 766	/*
 767	 * Does this target adjoin the previous one ?
 768	 */
 769	if (!adjoin(t, tgt)) {
 770		tgt->error = "Gap in table";
 771		r = -EINVAL;
 772		goto bad;
 773	}
 774
 775	r = dm_split_args(&argc, &argv, params);
 776	if (r) {
 777		tgt->error = "couldn't split parameters (insufficient memory)";
 778		goto bad;
 779	}
 780
 781	r = tgt->type->ctr(tgt, argc, argv);
 782	kfree(argv);
 783	if (r)
 784		goto bad;
 785
 786	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 787
 788	if (!tgt->num_discard_requests && tgt->discards_supported)
 789		DMWARN("%s: %s: ignoring discards_supported because num_discard_requests is zero.",
 790		       dm_device_name(t->md), type);
 791
 792	return 0;
 793
 794 bad:
 795	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 796	dm_put_target_type(tgt->type);
 797	return r;
 798}
 799
 800/*
 801 * Target argument parsing helpers.
 802 */
 803static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 804			     unsigned *value, char **error, unsigned grouped)
 805{
 806	const char *arg_str = dm_shift_arg(arg_set);
 
 807
 808	if (!arg_str ||
 809	    (sscanf(arg_str, "%u", value) != 1) ||
 810	    (*value < arg->min) ||
 811	    (*value > arg->max) ||
 812	    (grouped && arg_set->argc < *value)) {
 813		*error = arg->error;
 814		return -EINVAL;
 815	}
 816
 817	return 0;
 818}
 819
 820int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 821		unsigned *value, char **error)
 822{
 823	return validate_next_arg(arg, arg_set, value, error, 0);
 824}
 825EXPORT_SYMBOL(dm_read_arg);
 826
 827int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
 828		      unsigned *value, char **error)
 829{
 830	return validate_next_arg(arg, arg_set, value, error, 1);
 831}
 832EXPORT_SYMBOL(dm_read_arg_group);
 833
 834const char *dm_shift_arg(struct dm_arg_set *as)
 835{
 836	char *r;
 837
 838	if (as->argc) {
 839		as->argc--;
 840		r = *as->argv;
 841		as->argv++;
 842		return r;
 843	}
 844
 845	return NULL;
 846}
 847EXPORT_SYMBOL(dm_shift_arg);
 848
 849void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 850{
 851	BUG_ON(as->argc < num_args);
 852	as->argc -= num_args;
 853	as->argv += num_args;
 854}
 855EXPORT_SYMBOL(dm_consume_args);
 856
 857static int dm_table_set_type(struct dm_table *t)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858{
 859	unsigned i;
 860	unsigned bio_based = 0, request_based = 0;
 
 861	struct dm_target *tgt;
 862	struct dm_dev_internal *dd;
 863	struct list_head *devices;
 
 
 
 
 
 
 
 
 
 864
 865	for (i = 0; i < t->num_targets; i++) {
 866		tgt = t->targets + i;
 867		if (dm_target_request_based(tgt))
 
 
 868			request_based = 1;
 869		else
 870			bio_based = 1;
 871
 872		if (bio_based && request_based) {
 873			DMWARN("Inconsistent table: different target types"
 874			       " can't be mixed up");
 875			return -EINVAL;
 876		}
 877	}
 878
 
 
 
 
 
 
 
 
 
 
 
 
 879	if (bio_based) {
 880		/* We must use this table as bio-based */
 881		t->type = DM_TYPE_BIO_BASED;
 
 
 
 882		return 0;
 883	}
 884
 885	BUG_ON(!request_based); /* No targets in this table */
 886
 887	/* Non-request-stackable devices can't be used for request-based dm */
 888	devices = dm_table_get_devices(t);
 889	list_for_each_entry(dd, devices, list) {
 890		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
 891			DMWARN("table load rejected: including"
 892			       " non-request-stackable devices");
 893			return -EINVAL;
 894		}
 895	}
 896
 
 897	/*
 898	 * Request-based dm supports only tables that have a single target now.
 899	 * To support multiple targets, request splitting support is needed,
 900	 * and that needs lots of changes in the block-layer.
 901	 * (e.g. request completion process for partial completion.)
 902	 */
 903	if (t->num_targets > 1) {
 904		DMWARN("Request-based dm doesn't support multiple targets yet");
 905		return -EINVAL;
 906	}
 907
 908	t->type = DM_TYPE_REQUEST_BASED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909
 910	return 0;
 911}
 912
 913unsigned dm_table_get_type(struct dm_table *t)
 914{
 915	return t->type;
 916}
 917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918bool dm_table_request_based(struct dm_table *t)
 919{
 920	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
 
 
 
 
 
 921}
 922
 923int dm_table_alloc_md_mempools(struct dm_table *t)
 924{
 925	unsigned type = dm_table_get_type(t);
 
 
 
 926
 927	if (unlikely(type == DM_TYPE_NONE)) {
 928		DMWARN("no table type is set, can't allocate mempools");
 929		return -EINVAL;
 930	}
 931
 932	t->mempools = dm_alloc_md_mempools(type, t->integrity_supported);
 
 
 
 
 
 
 933	if (!t->mempools)
 934		return -ENOMEM;
 935
 936	return 0;
 937}
 938
 939void dm_table_free_md_mempools(struct dm_table *t)
 940{
 941	dm_free_md_mempools(t->mempools);
 942	t->mempools = NULL;
 943}
 944
 945struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
 946{
 947	return t->mempools;
 948}
 949
 950static int setup_indexes(struct dm_table *t)
 951{
 952	int i;
 953	unsigned int total = 0;
 954	sector_t *indexes;
 955
 956	/* allocate the space for *all* the indexes */
 957	for (i = t->depth - 2; i >= 0; i--) {
 958		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
 959		total += t->counts[i];
 960	}
 961
 962	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
 963	if (!indexes)
 964		return -ENOMEM;
 965
 966	/* set up internal nodes, bottom-up */
 967	for (i = t->depth - 2; i >= 0; i--) {
 968		t->index[i] = indexes;
 969		indexes += (KEYS_PER_NODE * t->counts[i]);
 970		setup_btree_index(i, t);
 971	}
 972
 973	return 0;
 974}
 975
 976/*
 977 * Builds the btree to index the map.
 978 */
 979static int dm_table_build_index(struct dm_table *t)
 980{
 981	int r = 0;
 982	unsigned int leaf_nodes;
 983
 984	/* how many indexes will the btree have ? */
 985	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
 986	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
 987
 988	/* leaf layer has already been set up */
 989	t->counts[t->depth - 1] = leaf_nodes;
 990	t->index[t->depth - 1] = t->highs;
 991
 992	if (t->depth >= 2)
 993		r = setup_indexes(t);
 994
 995	return r;
 996}
 997
 
 
 
 
 
 998/*
 999 * Get a disk whose integrity profile reflects the table's profile.
1000 * If %match_all is true, all devices' profiles must match.
1001 * If %match_all is false, all devices must at least have an
1002 * allocated integrity profile; but uninitialized is ok.
1003 * Returns NULL if integrity support was inconsistent or unavailable.
1004 */
1005static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1006						    bool match_all)
1007{
1008	struct list_head *devices = dm_table_get_devices(t);
1009	struct dm_dev_internal *dd = NULL;
1010	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1011
1012	list_for_each_entry(dd, devices, list) {
1013		template_disk = dd->dm_dev.bdev->bd_disk;
1014		if (!blk_get_integrity(template_disk))
1015			goto no_integrity;
1016		if (!match_all && !blk_integrity_is_initialized(template_disk))
1017			continue; /* skip uninitialized profiles */
1018		else if (prev_disk &&
1019			 blk_integrity_compare(prev_disk, template_disk) < 0)
1020			goto no_integrity;
1021		prev_disk = template_disk;
1022	}
1023
1024	return template_disk;
1025
1026no_integrity:
1027	if (prev_disk)
1028		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1029		       dm_device_name(t->md),
1030		       prev_disk->disk_name,
1031		       template_disk->disk_name);
1032	return NULL;
1033}
1034
1035/*
1036 * Register the mapped device for blk_integrity support if
1037 * the underlying devices have an integrity profile.  But all devices
1038 * may not have matching profiles (checking all devices isn't reliable
1039 * during table load because this table may use other DM device(s) which
1040 * must be resumed before they will have an initialized integity profile).
1041 * Stacked DM devices force a 2 stage integrity profile validation:
1042 * 1 - during load, validate all initialized integrity profiles match
1043 * 2 - during resume, validate all integrity profiles match
1044 */
1045static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1046{
 
1047	struct gendisk *template_disk = NULL;
1048
1049	template_disk = dm_table_get_integrity_disk(t, false);
1050	if (!template_disk)
1051		return 0;
1052
1053	if (!blk_integrity_is_initialized(dm_disk(md))) {
1054		t->integrity_supported = 1;
1055		return blk_integrity_register(dm_disk(md), NULL);
 
 
 
 
 
 
1056	}
1057
1058	/*
1059	 * If DM device already has an initalized integrity
1060	 * profile the new profile should not conflict.
1061	 */
1062	if (blk_integrity_is_initialized(template_disk) &&
1063	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1064		DMWARN("%s: conflict with existing integrity profile: "
1065		       "%s profile mismatch",
1066		       dm_device_name(t->md),
1067		       template_disk->disk_name);
1068		return 1;
1069	}
1070
1071	/* Preserve existing initialized integrity profile */
1072	t->integrity_supported = 1;
1073	return 0;
1074}
1075
1076/*
1077 * Prepares the table for use by building the indices,
1078 * setting the type, and allocating mempools.
1079 */
1080int dm_table_complete(struct dm_table *t)
1081{
1082	int r;
1083
1084	r = dm_table_set_type(t);
1085	if (r) {
1086		DMERR("unable to set table type");
1087		return r;
1088	}
1089
1090	r = dm_table_build_index(t);
1091	if (r) {
1092		DMERR("unable to build btrees");
1093		return r;
1094	}
1095
1096	r = dm_table_prealloc_integrity(t, t->md);
1097	if (r) {
1098		DMERR("could not register integrity profile.");
1099		return r;
1100	}
1101
1102	r = dm_table_alloc_md_mempools(t);
1103	if (r)
1104		DMERR("unable to allocate mempools");
1105
1106	return r;
1107}
1108
1109static DEFINE_MUTEX(_event_lock);
1110void dm_table_event_callback(struct dm_table *t,
1111			     void (*fn)(void *), void *context)
1112{
1113	mutex_lock(&_event_lock);
1114	t->event_fn = fn;
1115	t->event_context = context;
1116	mutex_unlock(&_event_lock);
1117}
1118
1119void dm_table_event(struct dm_table *t)
1120{
1121	/*
1122	 * You can no longer call dm_table_event() from interrupt
1123	 * context, use a bottom half instead.
1124	 */
1125	BUG_ON(in_interrupt());
1126
1127	mutex_lock(&_event_lock);
1128	if (t->event_fn)
1129		t->event_fn(t->event_context);
1130	mutex_unlock(&_event_lock);
1131}
1132EXPORT_SYMBOL(dm_table_event);
1133
1134sector_t dm_table_get_size(struct dm_table *t)
1135{
1136	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1137}
1138EXPORT_SYMBOL(dm_table_get_size);
1139
1140struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1141{
1142	if (index >= t->num_targets)
1143		return NULL;
1144
1145	return t->targets + index;
1146}
1147
1148/*
1149 * Search the btree for the correct target.
1150 *
1151 * Caller should check returned pointer with dm_target_is_valid()
1152 * to trap I/O beyond end of device.
1153 */
1154struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1155{
1156	unsigned int l, n = 0, k = 0;
1157	sector_t *node;
1158
1159	for (l = 0; l < t->depth; l++) {
1160		n = get_child(n, k);
1161		node = get_node(t, l, n);
1162
1163		for (k = 0; k < KEYS_PER_NODE; k++)
1164			if (node[k] >= sector)
1165				break;
1166	}
1167
1168	return &t->targets[(KEYS_PER_NODE * n) + k];
1169}
1170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1171/*
1172 * Establish the new table's queue_limits and validate them.
1173 */
1174int dm_calculate_queue_limits(struct dm_table *table,
1175			      struct queue_limits *limits)
1176{
1177	struct dm_target *uninitialized_var(ti);
1178	struct queue_limits ti_limits;
1179	unsigned i = 0;
1180
1181	blk_set_default_limits(limits);
1182
1183	while (i < dm_table_get_num_targets(table)) {
1184		blk_set_default_limits(&ti_limits);
1185
1186		ti = dm_table_get_target(table, i++);
1187
1188		if (!ti->type->iterate_devices)
1189			goto combine_limits;
1190
1191		/*
1192		 * Combine queue limits of all the devices this target uses.
1193		 */
1194		ti->type->iterate_devices(ti, dm_set_device_limits,
1195					  &ti_limits);
1196
1197		/* Set I/O hints portion of queue limits */
1198		if (ti->type->io_hints)
1199			ti->type->io_hints(ti, &ti_limits);
1200
1201		/*
1202		 * Check each device area is consistent with the target's
1203		 * overall queue limits.
1204		 */
1205		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1206					      &ti_limits))
1207			return -EINVAL;
1208
1209combine_limits:
1210		/*
1211		 * Merge this target's queue limits into the overall limits
1212		 * for the table.
1213		 */
1214		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1215			DMWARN("%s: adding target device "
1216			       "(start sect %llu len %llu) "
1217			       "caused an alignment inconsistency",
1218			       dm_device_name(table->md),
1219			       (unsigned long long) ti->begin,
1220			       (unsigned long long) ti->len);
1221	}
1222
1223	return validate_hardware_logical_block_alignment(table, limits);
1224}
1225
1226/*
1227 * Set the integrity profile for this device if all devices used have
1228 * matching profiles.  We're quite deep in the resume path but still
1229 * don't know if all devices (particularly DM devices this device
1230 * may be stacked on) have matching profiles.  Even if the profiles
1231 * don't match we have no way to fail (to resume) at this point.
1232 */
1233static void dm_table_set_integrity(struct dm_table *t)
1234{
1235	struct gendisk *template_disk = NULL;
1236
1237	if (!blk_get_integrity(dm_disk(t->md)))
1238		return;
 
 
 
 
 
 
 
 
1239
1240	template_disk = dm_table_get_integrity_disk(t, true);
1241	if (template_disk)
1242		blk_integrity_register(dm_disk(t->md),
1243				       blk_get_integrity(template_disk));
1244	else if (blk_integrity_is_initialized(dm_disk(t->md)))
1245		DMWARN("%s: device no longer has a valid integrity profile",
1246		       dm_device_name(t->md));
1247	else
1248		DMWARN("%s: unable to establish an integrity profile",
1249		       dm_device_name(t->md));
 
 
1250}
1251
1252static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1253				sector_t start, sector_t len, void *data)
1254{
1255	unsigned flush = (*(unsigned *)data);
1256	struct request_queue *q = bdev_get_queue(dev->bdev);
1257
1258	return q && (q->flush_flags & flush);
1259}
1260
1261static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1262{
1263	struct dm_target *ti;
1264	unsigned i = 0;
1265
1266	/*
1267	 * Require at least one underlying device to support flushes.
1268	 * t->devices includes internal dm devices such as mirror logs
1269	 * so we need to use iterate_devices here, which targets
1270	 * supporting flushes must provide.
1271	 */
1272	while (i < dm_table_get_num_targets(t)) {
1273		ti = dm_table_get_target(t, i++);
1274
1275		if (!ti->num_flush_requests)
1276			continue;
1277
 
 
 
1278		if (ti->type->iterate_devices &&
1279		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1280			return 1;
1281	}
1282
1283	return 0;
1284}
1285
1286static bool dm_table_discard_zeroes_data(struct dm_table *t)
1287{
1288	struct dm_target *ti;
1289	unsigned i = 0;
1290
1291	/* Ensure that all targets supports discard_zeroes_data. */
1292	while (i < dm_table_get_num_targets(t)) {
1293		ti = dm_table_get_target(t, i++);
1294
1295		if (ti->discard_zeroes_data_unsupported)
1296			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1297	}
1298
1299	return 1;
1300}
1301
1302void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1303			       struct queue_limits *limits)
1304{
1305	unsigned flush = 0;
1306
1307	/*
1308	 * Copy table's limits to the DM device's request_queue
1309	 */
1310	q->limits = *limits;
1311
1312	if (!dm_table_supports_discards(t))
1313		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1314	else
1315		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1316
1317	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1318		flush |= REQ_FLUSH;
1319		if (dm_table_supports_flush(t, REQ_FUA))
1320			flush |= REQ_FUA;
1321	}
1322	blk_queue_flush(q, flush);
1323
1324	if (!dm_table_discard_zeroes_data(t))
1325		q->limits.discard_zeroes_data = 0;
1326
1327	dm_table_set_integrity(t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1328
1329	/*
1330	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1331	 * visible to other CPUs because, once the flag is set, incoming bios
1332	 * are processed by request-based dm, which refers to the queue
1333	 * settings.
1334	 * Until the flag set, bios are passed to bio-based dm and queued to
1335	 * md->deferred where queue settings are not needed yet.
1336	 * Those bios are passed to request-based dm at the resume time.
1337	 */
1338	smp_mb();
1339	if (dm_table_request_based(t))
1340		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1341}
1342
1343unsigned int dm_table_get_num_targets(struct dm_table *t)
1344{
1345	return t->num_targets;
1346}
1347
1348struct list_head *dm_table_get_devices(struct dm_table *t)
1349{
1350	return &t->devices;
1351}
1352
1353fmode_t dm_table_get_mode(struct dm_table *t)
1354{
1355	return t->mode;
1356}
1357EXPORT_SYMBOL(dm_table_get_mode);
1358
1359static void suspend_targets(struct dm_table *t, unsigned postsuspend)
 
 
 
 
 
 
1360{
1361	int i = t->num_targets;
1362	struct dm_target *ti = t->targets;
1363
1364	while (i--) {
1365		if (postsuspend) {
 
 
 
 
 
 
 
 
 
1366			if (ti->type->postsuspend)
1367				ti->type->postsuspend(ti);
1368		} else if (ti->type->presuspend)
1369			ti->type->presuspend(ti);
1370
1371		ti++;
1372	}
1373}
1374
1375void dm_table_presuspend_targets(struct dm_table *t)
1376{
1377	if (!t)
1378		return;
1379
1380	suspend_targets(t, 0);
 
 
 
 
 
 
 
 
1381}
1382
1383void dm_table_postsuspend_targets(struct dm_table *t)
1384{
1385	if (!t)
1386		return;
1387
1388	suspend_targets(t, 1);
1389}
1390
1391int dm_table_resume_targets(struct dm_table *t)
1392{
1393	int i, r = 0;
1394
1395	for (i = 0; i < t->num_targets; i++) {
1396		struct dm_target *ti = t->targets + i;
1397
1398		if (!ti->type->preresume)
1399			continue;
1400
1401		r = ti->type->preresume(ti);
1402		if (r)
 
 
1403			return r;
 
1404	}
1405
1406	for (i = 0; i < t->num_targets; i++) {
1407		struct dm_target *ti = t->targets + i;
1408
1409		if (ti->type->resume)
1410			ti->type->resume(ti);
1411	}
1412
1413	return 0;
1414}
1415
1416void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1417{
1418	list_add(&cb->list, &t->target_callbacks);
1419}
1420EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1421
1422int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1423{
1424	struct dm_dev_internal *dd;
1425	struct list_head *devices = dm_table_get_devices(t);
1426	struct dm_target_callbacks *cb;
1427	int r = 0;
1428
1429	list_for_each_entry(dd, devices, list) {
1430		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1431		char b[BDEVNAME_SIZE];
1432
1433		if (likely(q))
1434			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1435		else
1436			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1437				     dm_device_name(t->md),
1438				     bdevname(dd->dm_dev.bdev, b));
1439	}
1440
1441	list_for_each_entry(cb, &t->target_callbacks, list)
1442		if (cb->congested_fn)
1443			r |= cb->congested_fn(cb, bdi_bits);
1444
1445	return r;
1446}
1447
1448int dm_table_any_busy_target(struct dm_table *t)
1449{
1450	unsigned i;
1451	struct dm_target *ti;
1452
1453	for (i = 0; i < t->num_targets; i++) {
1454		ti = t->targets + i;
1455		if (ti->type->busy && ti->type->busy(ti))
1456			return 1;
1457	}
1458
1459	return 0;
1460}
1461
1462struct mapped_device *dm_table_get_md(struct dm_table *t)
1463{
1464	return t->md;
1465}
1466EXPORT_SYMBOL(dm_table_get_md);
1467
1468static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1469				  sector_t start, sector_t len, void *data)
1470{
1471	struct request_queue *q = bdev_get_queue(dev->bdev);
1472
1473	return q && blk_queue_discard(q);
1474}
1475
1476bool dm_table_supports_discards(struct dm_table *t)
1477{
1478	struct dm_target *ti;
1479	unsigned i = 0;
1480
1481	/*
1482	 * Unless any target used by the table set discards_supported,
1483	 * require at least one underlying device to support discards.
1484	 * t->devices includes internal dm devices such as mirror logs
1485	 * so we need to use iterate_devices here, which targets
1486	 * supporting discard selectively must provide.
1487	 */
1488	while (i < dm_table_get_num_targets(t)) {
1489		ti = dm_table_get_target(t, i++);
1490
1491		if (!ti->num_discard_requests)
1492			continue;
1493
1494		if (ti->discards_supported)
1495			return 1;
1496
1497		if (ti->type->iterate_devices &&
1498		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1499			return 1;
 
 
 
 
 
 
 
1500	}
1501
1502	return 0;
1503}
v4.10.11
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9
  10#include <linux/module.h>
  11#include <linux/vmalloc.h>
  12#include <linux/blkdev.h>
  13#include <linux/namei.h>
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/atomic.h>
  21#include <linux/blk-mq.h>
  22#include <linux/mount.h>
  23
  24#define DM_MSG_PREFIX "table"
  25
  26#define MAX_DEPTH 16
  27#define NODE_SIZE L1_CACHE_BYTES
  28#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  29#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  30
 
 
 
 
 
 
 
 
 
 
 
 
 
  31struct dm_table {
  32	struct mapped_device *md;
 
  33	unsigned type;
  34
  35	/* btree table */
  36	unsigned int depth;
  37	unsigned int counts[MAX_DEPTH];	/* in nodes */
  38	sector_t *index[MAX_DEPTH];
  39
  40	unsigned int num_targets;
  41	unsigned int num_allocated;
  42	sector_t *highs;
  43	struct dm_target *targets;
  44
  45	struct target_type *immutable_target_type;
  46
  47	bool integrity_supported:1;
  48	bool singleton:1;
  49	bool all_blk_mq:1;
  50
  51	/*
  52	 * Indicates the rw permissions for the new logical
  53	 * device.  This should be a combination of FMODE_READ
  54	 * and FMODE_WRITE.
  55	 */
  56	fmode_t mode;
  57
  58	/* a list of devices used by this table */
  59	struct list_head devices;
  60
  61	/* events get handed up using this callback */
  62	void (*event_fn)(void *);
  63	void *event_context;
  64
  65	struct dm_md_mempools *mempools;
  66
  67	struct list_head target_callbacks;
  68};
  69
  70/*
  71 * Similar to ceiling(log_size(n))
  72 */
  73static unsigned int int_log(unsigned int n, unsigned int base)
  74{
  75	int result = 0;
  76
  77	while (n > 1) {
  78		n = dm_div_up(n, base);
  79		result++;
  80	}
  81
  82	return result;
  83}
  84
  85/*
  86 * Calculate the index of the child node of the n'th node k'th key.
  87 */
  88static inline unsigned int get_child(unsigned int n, unsigned int k)
  89{
  90	return (n * CHILDREN_PER_NODE) + k;
  91}
  92
  93/*
  94 * Return the n'th node of level l from table t.
  95 */
  96static inline sector_t *get_node(struct dm_table *t,
  97				 unsigned int l, unsigned int n)
  98{
  99	return t->index[l] + (n * KEYS_PER_NODE);
 100}
 101
 102/*
 103 * Return the highest key that you could lookup from the n'th
 104 * node on level l of the btree.
 105 */
 106static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 107{
 108	for (; l < t->depth - 1; l++)
 109		n = get_child(n, CHILDREN_PER_NODE - 1);
 110
 111	if (n >= t->counts[l])
 112		return (sector_t) - 1;
 113
 114	return get_node(t, l, n)[KEYS_PER_NODE - 1];
 115}
 116
 117/*
 118 * Fills in a level of the btree based on the highs of the level
 119 * below it.
 120 */
 121static int setup_btree_index(unsigned int l, struct dm_table *t)
 122{
 123	unsigned int n, k;
 124	sector_t *node;
 125
 126	for (n = 0U; n < t->counts[l]; n++) {
 127		node = get_node(t, l, n);
 128
 129		for (k = 0U; k < KEYS_PER_NODE; k++)
 130			node[k] = high(t, l + 1, get_child(n, k));
 131	}
 132
 133	return 0;
 134}
 135
 136void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
 137{
 138	unsigned long size;
 139	void *addr;
 140
 141	/*
 142	 * Check that we're not going to overflow.
 143	 */
 144	if (nmemb > (ULONG_MAX / elem_size))
 145		return NULL;
 146
 147	size = nmemb * elem_size;
 148	addr = vzalloc(size);
 149
 150	return addr;
 151}
 152EXPORT_SYMBOL(dm_vcalloc);
 153
 154/*
 155 * highs, and targets are managed as dynamic arrays during a
 156 * table load.
 157 */
 158static int alloc_targets(struct dm_table *t, unsigned int num)
 159{
 160	sector_t *n_highs;
 161	struct dm_target *n_targets;
 
 162
 163	/*
 164	 * Allocate both the target array and offset array at once.
 165	 * Append an empty entry to catch sectors beyond the end of
 166	 * the device.
 167	 */
 168	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
 169					  sizeof(sector_t));
 170	if (!n_highs)
 171		return -ENOMEM;
 172
 173	n_targets = (struct dm_target *) (n_highs + num);
 174
 175	memset(n_highs, -1, sizeof(*n_highs) * num);
 
 
 
 
 
 176	vfree(t->highs);
 177
 178	t->num_allocated = num;
 179	t->highs = n_highs;
 180	t->targets = n_targets;
 181
 182	return 0;
 183}
 184
 185int dm_table_create(struct dm_table **result, fmode_t mode,
 186		    unsigned num_targets, struct mapped_device *md)
 187{
 188	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 189
 190	if (!t)
 191		return -ENOMEM;
 192
 193	INIT_LIST_HEAD(&t->devices);
 194	INIT_LIST_HEAD(&t->target_callbacks);
 
 195
 196	if (!num_targets)
 197		num_targets = KEYS_PER_NODE;
 198
 199	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 200
 201	if (!num_targets) {
 202		kfree(t);
 203		return -ENOMEM;
 204	}
 205
 206	if (alloc_targets(t, num_targets)) {
 207		kfree(t);
 
 208		return -ENOMEM;
 209	}
 210
 211	t->type = DM_TYPE_NONE;
 212	t->mode = mode;
 213	t->md = md;
 214	*result = t;
 215	return 0;
 216}
 217
 218static void free_devices(struct list_head *devices, struct mapped_device *md)
 219{
 220	struct list_head *tmp, *next;
 221
 222	list_for_each_safe(tmp, next, devices) {
 223		struct dm_dev_internal *dd =
 224		    list_entry(tmp, struct dm_dev_internal, list);
 225		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
 226		       dm_device_name(md), dd->dm_dev->name);
 227		dm_put_table_device(md, dd->dm_dev);
 228		kfree(dd);
 229	}
 230}
 231
 232void dm_table_destroy(struct dm_table *t)
 233{
 234	unsigned int i;
 235
 236	if (!t)
 237		return;
 238
 
 
 
 
 239	/* free the indexes */
 240	if (t->depth >= 2)
 241		vfree(t->index[t->depth - 2]);
 242
 243	/* free the targets */
 244	for (i = 0; i < t->num_targets; i++) {
 245		struct dm_target *tgt = t->targets + i;
 246
 247		if (tgt->type->dtr)
 248			tgt->type->dtr(tgt);
 249
 250		dm_put_target_type(tgt->type);
 251	}
 252
 253	vfree(t->highs);
 254
 255	/* free the device list */
 256	free_devices(&t->devices, t->md);
 
 257
 258	dm_free_md_mempools(t->mempools);
 259
 260	kfree(t);
 261}
 262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 263/*
 264 * See if we've already got a device in the list.
 265 */
 266static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 267{
 268	struct dm_dev_internal *dd;
 269
 270	list_for_each_entry (dd, l, list)
 271		if (dd->dm_dev->bdev->bd_dev == dev)
 272			return dd;
 273
 274	return NULL;
 275}
 276
 277/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278 * If possible, this checks an area of a destination device is invalid.
 279 */
 280static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 281				  sector_t start, sector_t len, void *data)
 282{
 283	struct request_queue *q;
 284	struct queue_limits *limits = data;
 285	struct block_device *bdev = dev->bdev;
 286	sector_t dev_size =
 287		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 288	unsigned short logical_block_size_sectors =
 289		limits->logical_block_size >> SECTOR_SHIFT;
 290	char b[BDEVNAME_SIZE];
 291
 292	/*
 293	 * Some devices exist without request functions,
 294	 * such as loop devices not yet bound to backing files.
 295	 * Forbid the use of such devices.
 296	 */
 297	q = bdev_get_queue(bdev);
 298	if (!q || !q->make_request_fn) {
 299		DMWARN("%s: %s is not yet initialised: "
 300		       "start=%llu, len=%llu, dev_size=%llu",
 301		       dm_device_name(ti->table->md), bdevname(bdev, b),
 302		       (unsigned long long)start,
 303		       (unsigned long long)len,
 304		       (unsigned long long)dev_size);
 305		return 1;
 306	}
 307
 308	if (!dev_size)
 309		return 0;
 310
 311	if ((start >= dev_size) || (start + len > dev_size)) {
 312		DMWARN("%s: %s too small for target: "
 313		       "start=%llu, len=%llu, dev_size=%llu",
 314		       dm_device_name(ti->table->md), bdevname(bdev, b),
 315		       (unsigned long long)start,
 316		       (unsigned long long)len,
 317		       (unsigned long long)dev_size);
 318		return 1;
 319	}
 320
 321	if (logical_block_size_sectors <= 1)
 322		return 0;
 323
 324	if (start & (logical_block_size_sectors - 1)) {
 325		DMWARN("%s: start=%llu not aligned to h/w "
 326		       "logical block size %u of %s",
 327		       dm_device_name(ti->table->md),
 328		       (unsigned long long)start,
 329		       limits->logical_block_size, bdevname(bdev, b));
 330		return 1;
 331	}
 332
 333	if (len & (logical_block_size_sectors - 1)) {
 334		DMWARN("%s: len=%llu not aligned to h/w "
 335		       "logical block size %u of %s",
 336		       dm_device_name(ti->table->md),
 337		       (unsigned long long)len,
 338		       limits->logical_block_size, bdevname(bdev, b));
 339		return 1;
 340	}
 341
 342	return 0;
 343}
 344
 345/*
 346 * This upgrades the mode on an already open dm_dev, being
 347 * careful to leave things as they were if we fail to reopen the
 348 * device and not to touch the existing bdev field in case
 349 * it is accessed concurrently inside dm_table_any_congested().
 350 */
 351static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 352			struct mapped_device *md)
 353{
 354	int r;
 355	struct dm_dev *old_dev, *new_dev;
 
 
 356
 357	old_dev = dd->dm_dev;
 
 358
 359	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
 360				dd->dm_dev->mode | new_mode, &new_dev);
 361	if (r)
 362		return r;
 363
 364	dd->dm_dev = new_dev;
 365	dm_put_table_device(md, old_dev);
 366
 367	return 0;
 368}
 369
 370/*
 371 * Convert the path to a device
 372 */
 373dev_t dm_get_dev_t(const char *path)
 374{
 375	dev_t uninitialized_var(dev);
 376	struct block_device *bdev;
 377
 378	bdev = lookup_bdev(path);
 379	if (IS_ERR(bdev))
 380		dev = name_to_dev_t(path);
 381	else {
 382		dev = bdev->bd_dev;
 383		bdput(bdev);
 384	}
 385
 386	return dev;
 387}
 388EXPORT_SYMBOL_GPL(dm_get_dev_t);
 389
 390/*
 391 * Add a device to the list, or just increment the usage count if
 392 * it's already present.
 393 */
 394int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 395		  struct dm_dev **result)
 396{
 397	int r;
 398	dev_t dev;
 399	struct dm_dev_internal *dd;
 
 400	struct dm_table *t = ti->table;
 401
 402	BUG_ON(!t);
 403
 404	dev = dm_get_dev_t(path);
 405	if (!dev)
 406		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 407
 408	dd = find_device(&t->devices, dev);
 409	if (!dd) {
 410		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 411		if (!dd)
 412			return -ENOMEM;
 413
 414		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
 
 
 
 415			kfree(dd);
 416			return r;
 417		}
 418
 
 
 419		atomic_set(&dd->count, 0);
 420		list_add(&dd->list, &t->devices);
 421
 422	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
 423		r = upgrade_mode(dd, mode, t->md);
 424		if (r)
 425			return r;
 426	}
 427	atomic_inc(&dd->count);
 428
 429	*result = dd->dm_dev;
 430	return 0;
 431}
 432EXPORT_SYMBOL(dm_get_device);
 433
 434static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 435				sector_t start, sector_t len, void *data)
 436{
 437	struct queue_limits *limits = data;
 438	struct block_device *bdev = dev->bdev;
 439	struct request_queue *q = bdev_get_queue(bdev);
 440	char b[BDEVNAME_SIZE];
 441
 442	if (unlikely(!q)) {
 443		DMWARN("%s: Cannot set limits for nonexistent device %s",
 444		       dm_device_name(ti->table->md), bdevname(bdev, b));
 445		return 0;
 446	}
 447
 448	if (bdev_stack_limits(limits, bdev, start) < 0)
 449		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 450		       "physical_block_size=%u, logical_block_size=%u, "
 451		       "alignment_offset=%u, start=%llu",
 452		       dm_device_name(ti->table->md), bdevname(bdev, b),
 453		       q->limits.physical_block_size,
 454		       q->limits.logical_block_size,
 455		       q->limits.alignment_offset,
 456		       (unsigned long long) start << SECTOR_SHIFT);
 457
 
 
 
 
 
 
 
 
 458	return 0;
 459}
 
 460
 461/*
 462 * Decrement a device's use count and remove it if necessary.
 463 */
 464void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 465{
 466	int found = 0;
 467	struct list_head *devices = &ti->table->devices;
 468	struct dm_dev_internal *dd;
 469
 470	list_for_each_entry(dd, devices, list) {
 471		if (dd->dm_dev == d) {
 472			found = 1;
 473			break;
 474		}
 475	}
 476	if (!found) {
 477		DMWARN("%s: device %s not in table devices list",
 478		       dm_device_name(ti->table->md), d->name);
 479		return;
 480	}
 481	if (atomic_dec_and_test(&dd->count)) {
 482		dm_put_table_device(ti->table->md, d);
 483		list_del(&dd->list);
 484		kfree(dd);
 485	}
 486}
 487EXPORT_SYMBOL(dm_put_device);
 488
 489/*
 490 * Checks to see if the target joins onto the end of the table.
 491 */
 492static int adjoin(struct dm_table *table, struct dm_target *ti)
 493{
 494	struct dm_target *prev;
 495
 496	if (!table->num_targets)
 497		return !ti->begin;
 498
 499	prev = &table->targets[table->num_targets - 1];
 500	return (ti->begin == (prev->begin + prev->len));
 501}
 502
 503/*
 504 * Used to dynamically allocate the arg array.
 505 *
 506 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 507 * process messages even if some device is suspended. These messages have a
 508 * small fixed number of arguments.
 509 *
 510 * On the other hand, dm-switch needs to process bulk data using messages and
 511 * excessive use of GFP_NOIO could cause trouble.
 512 */
 513static char **realloc_argv(unsigned *array_size, char **old_argv)
 514{
 515	char **argv;
 516	unsigned new_size;
 517	gfp_t gfp;
 518
 519	if (*array_size) {
 520		new_size = *array_size * 2;
 521		gfp = GFP_KERNEL;
 522	} else {
 523		new_size = 8;
 524		gfp = GFP_NOIO;
 525	}
 526	argv = kmalloc(new_size * sizeof(*argv), gfp);
 527	if (argv) {
 528		memcpy(argv, old_argv, *array_size * sizeof(*argv));
 529		*array_size = new_size;
 530	}
 531
 532	kfree(old_argv);
 533	return argv;
 534}
 535
 536/*
 537 * Destructively splits up the argument list to pass to ctr.
 538 */
 539int dm_split_args(int *argc, char ***argvp, char *input)
 540{
 541	char *start, *end = input, *out, **argv = NULL;
 542	unsigned array_size = 0;
 543
 544	*argc = 0;
 545
 546	if (!input) {
 547		*argvp = NULL;
 548		return 0;
 549	}
 550
 551	argv = realloc_argv(&array_size, argv);
 552	if (!argv)
 553		return -ENOMEM;
 554
 555	while (1) {
 556		/* Skip whitespace */
 557		start = skip_spaces(end);
 558
 559		if (!*start)
 560			break;	/* success, we hit the end */
 561
 562		/* 'out' is used to remove any back-quotes */
 563		end = out = start;
 564		while (*end) {
 565			/* Everything apart from '\0' can be quoted */
 566			if (*end == '\\' && *(end + 1)) {
 567				*out++ = *(end + 1);
 568				end += 2;
 569				continue;
 570			}
 571
 572			if (isspace(*end))
 573				break;	/* end of token */
 574
 575			*out++ = *end++;
 576		}
 577
 578		/* have we already filled the array ? */
 579		if ((*argc + 1) > array_size) {
 580			argv = realloc_argv(&array_size, argv);
 581			if (!argv)
 582				return -ENOMEM;
 583		}
 584
 585		/* we know this is whitespace */
 586		if (*end)
 587			end++;
 588
 589		/* terminate the string and put it in the array */
 590		*out = '\0';
 591		argv[*argc] = start;
 592		(*argc)++;
 593	}
 594
 595	*argvp = argv;
 596	return 0;
 597}
 598
 599/*
 600 * Impose necessary and sufficient conditions on a devices's table such
 601 * that any incoming bio which respects its logical_block_size can be
 602 * processed successfully.  If it falls across the boundary between
 603 * two or more targets, the size of each piece it gets split into must
 604 * be compatible with the logical_block_size of the target processing it.
 605 */
 606static int validate_hardware_logical_block_alignment(struct dm_table *table,
 607						 struct queue_limits *limits)
 608{
 609	/*
 610	 * This function uses arithmetic modulo the logical_block_size
 611	 * (in units of 512-byte sectors).
 612	 */
 613	unsigned short device_logical_block_size_sects =
 614		limits->logical_block_size >> SECTOR_SHIFT;
 615
 616	/*
 617	 * Offset of the start of the next table entry, mod logical_block_size.
 618	 */
 619	unsigned short next_target_start = 0;
 620
 621	/*
 622	 * Given an aligned bio that extends beyond the end of a
 623	 * target, how many sectors must the next target handle?
 624	 */
 625	unsigned short remaining = 0;
 626
 627	struct dm_target *uninitialized_var(ti);
 628	struct queue_limits ti_limits;
 629	unsigned i = 0;
 630
 631	/*
 632	 * Check each entry in the table in turn.
 633	 */
 634	while (i < dm_table_get_num_targets(table)) {
 635		ti = dm_table_get_target(table, i++);
 636
 637		blk_set_stacking_limits(&ti_limits);
 638
 639		/* combine all target devices' limits */
 640		if (ti->type->iterate_devices)
 641			ti->type->iterate_devices(ti, dm_set_device_limits,
 642						  &ti_limits);
 643
 644		/*
 645		 * If the remaining sectors fall entirely within this
 646		 * table entry are they compatible with its logical_block_size?
 647		 */
 648		if (remaining < ti->len &&
 649		    remaining & ((ti_limits.logical_block_size >>
 650				  SECTOR_SHIFT) - 1))
 651			break;	/* Error */
 652
 653		next_target_start =
 654		    (unsigned short) ((next_target_start + ti->len) &
 655				      (device_logical_block_size_sects - 1));
 656		remaining = next_target_start ?
 657		    device_logical_block_size_sects - next_target_start : 0;
 658	}
 659
 660	if (remaining) {
 661		DMWARN("%s: table line %u (start sect %llu len %llu) "
 662		       "not aligned to h/w logical block size %u",
 663		       dm_device_name(table->md), i,
 664		       (unsigned long long) ti->begin,
 665		       (unsigned long long) ti->len,
 666		       limits->logical_block_size);
 667		return -EINVAL;
 668	}
 669
 670	return 0;
 671}
 672
 673int dm_table_add_target(struct dm_table *t, const char *type,
 674			sector_t start, sector_t len, char *params)
 675{
 676	int r = -EINVAL, argc;
 677	char **argv;
 678	struct dm_target *tgt;
 679
 680	if (t->singleton) {
 681		DMERR("%s: target type %s must appear alone in table",
 682		      dm_device_name(t->md), t->targets->type->name);
 683		return -EINVAL;
 684	}
 685
 686	BUG_ON(t->num_targets >= t->num_allocated);
 687
 688	tgt = t->targets + t->num_targets;
 689	memset(tgt, 0, sizeof(*tgt));
 690
 691	if (!len) {
 692		DMERR("%s: zero-length target", dm_device_name(t->md));
 693		return -EINVAL;
 694	}
 695
 696	tgt->type = dm_get_target_type(type);
 697	if (!tgt->type) {
 698		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
 
 699		return -EINVAL;
 700	}
 701
 702	if (dm_target_needs_singleton(tgt->type)) {
 703		if (t->num_targets) {
 704			tgt->error = "singleton target type must appear alone in table";
 705			goto bad;
 706		}
 707		t->singleton = true;
 708	}
 709
 710	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
 711		tgt->error = "target type may not be included in a read-only table";
 712		goto bad;
 713	}
 714
 715	if (t->immutable_target_type) {
 716		if (t->immutable_target_type != tgt->type) {
 717			tgt->error = "immutable target type cannot be mixed with other target types";
 718			goto bad;
 719		}
 720	} else if (dm_target_is_immutable(tgt->type)) {
 721		if (t->num_targets) {
 722			tgt->error = "immutable target type cannot be mixed with other target types";
 723			goto bad;
 724		}
 725		t->immutable_target_type = tgt->type;
 726	}
 727
 728	tgt->table = t;
 729	tgt->begin = start;
 730	tgt->len = len;
 731	tgt->error = "Unknown error";
 732
 733	/*
 734	 * Does this target adjoin the previous one ?
 735	 */
 736	if (!adjoin(t, tgt)) {
 737		tgt->error = "Gap in table";
 
 738		goto bad;
 739	}
 740
 741	r = dm_split_args(&argc, &argv, params);
 742	if (r) {
 743		tgt->error = "couldn't split parameters (insufficient memory)";
 744		goto bad;
 745	}
 746
 747	r = tgt->type->ctr(tgt, argc, argv);
 748	kfree(argv);
 749	if (r)
 750		goto bad;
 751
 752	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 753
 754	if (!tgt->num_discard_bios && tgt->discards_supported)
 755		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 756		       dm_device_name(t->md), type);
 757
 758	return 0;
 759
 760 bad:
 761	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 762	dm_put_target_type(tgt->type);
 763	return r;
 764}
 765
 766/*
 767 * Target argument parsing helpers.
 768 */
 769static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 770			     unsigned *value, char **error, unsigned grouped)
 771{
 772	const char *arg_str = dm_shift_arg(arg_set);
 773	char dummy;
 774
 775	if (!arg_str ||
 776	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 777	    (*value < arg->min) ||
 778	    (*value > arg->max) ||
 779	    (grouped && arg_set->argc < *value)) {
 780		*error = arg->error;
 781		return -EINVAL;
 782	}
 783
 784	return 0;
 785}
 786
 787int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 788		unsigned *value, char **error)
 789{
 790	return validate_next_arg(arg, arg_set, value, error, 0);
 791}
 792EXPORT_SYMBOL(dm_read_arg);
 793
 794int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
 795		      unsigned *value, char **error)
 796{
 797	return validate_next_arg(arg, arg_set, value, error, 1);
 798}
 799EXPORT_SYMBOL(dm_read_arg_group);
 800
 801const char *dm_shift_arg(struct dm_arg_set *as)
 802{
 803	char *r;
 804
 805	if (as->argc) {
 806		as->argc--;
 807		r = *as->argv;
 808		as->argv++;
 809		return r;
 810	}
 811
 812	return NULL;
 813}
 814EXPORT_SYMBOL(dm_shift_arg);
 815
 816void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 817{
 818	BUG_ON(as->argc < num_args);
 819	as->argc -= num_args;
 820	as->argv += num_args;
 821}
 822EXPORT_SYMBOL(dm_consume_args);
 823
 824static bool __table_type_bio_based(unsigned table_type)
 825{
 826	return (table_type == DM_TYPE_BIO_BASED ||
 827		table_type == DM_TYPE_DAX_BIO_BASED);
 828}
 829
 830static bool __table_type_request_based(unsigned table_type)
 831{
 832	return (table_type == DM_TYPE_REQUEST_BASED ||
 833		table_type == DM_TYPE_MQ_REQUEST_BASED);
 834}
 835
 836void dm_table_set_type(struct dm_table *t, unsigned type)
 837{
 838	t->type = type;
 839}
 840EXPORT_SYMBOL_GPL(dm_table_set_type);
 841
 842static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
 843			       sector_t start, sector_t len, void *data)
 844{
 845	struct request_queue *q = bdev_get_queue(dev->bdev);
 846
 847	return q && blk_queue_dax(q);
 848}
 849
 850static bool dm_table_supports_dax(struct dm_table *t)
 851{
 852	struct dm_target *ti;
 853	unsigned i = 0;
 854
 855	/* Ensure that all targets support DAX. */
 856	while (i < dm_table_get_num_targets(t)) {
 857		ti = dm_table_get_target(t, i++);
 858
 859		if (!ti->type->direct_access)
 860			return false;
 861
 862		if (!ti->type->iterate_devices ||
 863		    !ti->type->iterate_devices(ti, device_supports_dax, NULL))
 864			return false;
 865	}
 866
 867	return true;
 868}
 869
 870static int dm_table_determine_type(struct dm_table *t)
 871{
 872	unsigned i;
 873	unsigned bio_based = 0, request_based = 0, hybrid = 0;
 874	unsigned sq_count = 0, mq_count = 0;
 875	struct dm_target *tgt;
 876	struct dm_dev_internal *dd;
 877	struct list_head *devices = dm_table_get_devices(t);
 878	unsigned live_md_type = dm_get_md_type(t->md);
 879
 880	if (t->type != DM_TYPE_NONE) {
 881		/* target already set the table's type */
 882		if (t->type == DM_TYPE_BIO_BASED)
 883			return 0;
 884		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
 885		goto verify_rq_based;
 886	}
 887
 888	for (i = 0; i < t->num_targets; i++) {
 889		tgt = t->targets + i;
 890		if (dm_target_hybrid(tgt))
 891			hybrid = 1;
 892		else if (dm_target_request_based(tgt))
 893			request_based = 1;
 894		else
 895			bio_based = 1;
 896
 897		if (bio_based && request_based) {
 898			DMWARN("Inconsistent table: different target types"
 899			       " can't be mixed up");
 900			return -EINVAL;
 901		}
 902	}
 903
 904	if (hybrid && !bio_based && !request_based) {
 905		/*
 906		 * The targets can work either way.
 907		 * Determine the type from the live device.
 908		 * Default to bio-based if device is new.
 909		 */
 910		if (__table_type_request_based(live_md_type))
 911			request_based = 1;
 912		else
 913			bio_based = 1;
 914	}
 915
 916	if (bio_based) {
 917		/* We must use this table as bio-based */
 918		t->type = DM_TYPE_BIO_BASED;
 919		if (dm_table_supports_dax(t) ||
 920		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
 921			t->type = DM_TYPE_DAX_BIO_BASED;
 922		return 0;
 923	}
 924
 925	BUG_ON(!request_based); /* No targets in this table */
 926
 927	/*
 928	 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
 929	 * having a compatible target use dm_table_set_type.
 930	 */
 931	t->type = DM_TYPE_REQUEST_BASED;
 
 
 
 
 932
 933verify_rq_based:
 934	/*
 935	 * Request-based dm supports only tables that have a single target now.
 936	 * To support multiple targets, request splitting support is needed,
 937	 * and that needs lots of changes in the block-layer.
 938	 * (e.g. request completion process for partial completion.)
 939	 */
 940	if (t->num_targets > 1) {
 941		DMWARN("Request-based dm doesn't support multiple targets yet");
 942		return -EINVAL;
 943	}
 944
 945	if (list_empty(devices)) {
 946		int srcu_idx;
 947		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
 948
 949		/* inherit live table's type and all_blk_mq */
 950		if (live_table) {
 951			t->type = live_table->type;
 952			t->all_blk_mq = live_table->all_blk_mq;
 953		}
 954		dm_put_live_table(t->md, srcu_idx);
 955		return 0;
 956	}
 957
 958	/* Non-request-stackable devices can't be used for request-based dm */
 959	list_for_each_entry(dd, devices, list) {
 960		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
 961
 962		if (!blk_queue_stackable(q)) {
 963			DMERR("table load rejected: including"
 964			      " non-request-stackable devices");
 965			return -EINVAL;
 966		}
 967
 968		if (q->mq_ops)
 969			mq_count++;
 970		else
 971			sq_count++;
 972	}
 973	if (sq_count && mq_count) {
 974		DMERR("table load rejected: not all devices are blk-mq request-stackable");
 975		return -EINVAL;
 976	}
 977	t->all_blk_mq = mq_count > 0;
 978
 979	if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) {
 980		DMERR("table load rejected: all devices are not blk-mq request-stackable");
 981		return -EINVAL;
 982	}
 983
 984	return 0;
 985}
 986
 987unsigned dm_table_get_type(struct dm_table *t)
 988{
 989	return t->type;
 990}
 991
 992struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
 993{
 994	return t->immutable_target_type;
 995}
 996
 997struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
 998{
 999	/* Immutable target is implicitly a singleton */
1000	if (t->num_targets > 1 ||
1001	    !dm_target_is_immutable(t->targets[0].type))
1002		return NULL;
1003
1004	return t->targets;
1005}
1006
1007struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1008{
1009	struct dm_target *uninitialized_var(ti);
1010	unsigned i = 0;
1011
1012	while (i < dm_table_get_num_targets(t)) {
1013		ti = dm_table_get_target(t, i++);
1014		if (dm_target_is_wildcard(ti->type))
1015			return ti;
1016	}
1017
1018	return NULL;
1019}
1020
1021bool dm_table_bio_based(struct dm_table *t)
1022{
1023	return __table_type_bio_based(dm_table_get_type(t));
1024}
1025
1026bool dm_table_request_based(struct dm_table *t)
1027{
1028	return __table_type_request_based(dm_table_get_type(t));
1029}
1030
1031bool dm_table_all_blk_mq_devices(struct dm_table *t)
1032{
1033	return t->all_blk_mq;
1034}
1035
1036static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1037{
1038	unsigned type = dm_table_get_type(t);
1039	unsigned per_io_data_size = 0;
1040	struct dm_target *tgt;
1041	unsigned i;
1042
1043	if (unlikely(type == DM_TYPE_NONE)) {
1044		DMWARN("no table type is set, can't allocate mempools");
1045		return -EINVAL;
1046	}
1047
1048	if (__table_type_bio_based(type))
1049		for (i = 0; i < t->num_targets; i++) {
1050			tgt = t->targets + i;
1051			per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1052		}
1053
1054	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1055	if (!t->mempools)
1056		return -ENOMEM;
1057
1058	return 0;
1059}
1060
1061void dm_table_free_md_mempools(struct dm_table *t)
1062{
1063	dm_free_md_mempools(t->mempools);
1064	t->mempools = NULL;
1065}
1066
1067struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1068{
1069	return t->mempools;
1070}
1071
1072static int setup_indexes(struct dm_table *t)
1073{
1074	int i;
1075	unsigned int total = 0;
1076	sector_t *indexes;
1077
1078	/* allocate the space for *all* the indexes */
1079	for (i = t->depth - 2; i >= 0; i--) {
1080		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1081		total += t->counts[i];
1082	}
1083
1084	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1085	if (!indexes)
1086		return -ENOMEM;
1087
1088	/* set up internal nodes, bottom-up */
1089	for (i = t->depth - 2; i >= 0; i--) {
1090		t->index[i] = indexes;
1091		indexes += (KEYS_PER_NODE * t->counts[i]);
1092		setup_btree_index(i, t);
1093	}
1094
1095	return 0;
1096}
1097
1098/*
1099 * Builds the btree to index the map.
1100 */
1101static int dm_table_build_index(struct dm_table *t)
1102{
1103	int r = 0;
1104	unsigned int leaf_nodes;
1105
1106	/* how many indexes will the btree have ? */
1107	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1108	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1109
1110	/* leaf layer has already been set up */
1111	t->counts[t->depth - 1] = leaf_nodes;
1112	t->index[t->depth - 1] = t->highs;
1113
1114	if (t->depth >= 2)
1115		r = setup_indexes(t);
1116
1117	return r;
1118}
1119
1120static bool integrity_profile_exists(struct gendisk *disk)
1121{
1122	return !!blk_get_integrity(disk);
1123}
1124
1125/*
1126 * Get a disk whose integrity profile reflects the table's profile.
 
 
 
1127 * Returns NULL if integrity support was inconsistent or unavailable.
1128 */
1129static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
 
1130{
1131	struct list_head *devices = dm_table_get_devices(t);
1132	struct dm_dev_internal *dd = NULL;
1133	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1134
1135	list_for_each_entry(dd, devices, list) {
1136		template_disk = dd->dm_dev->bdev->bd_disk;
1137		if (!integrity_profile_exists(template_disk))
1138			goto no_integrity;
 
 
1139		else if (prev_disk &&
1140			 blk_integrity_compare(prev_disk, template_disk) < 0)
1141			goto no_integrity;
1142		prev_disk = template_disk;
1143	}
1144
1145	return template_disk;
1146
1147no_integrity:
1148	if (prev_disk)
1149		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1150		       dm_device_name(t->md),
1151		       prev_disk->disk_name,
1152		       template_disk->disk_name);
1153	return NULL;
1154}
1155
1156/*
1157 * Register the mapped device for blk_integrity support if the
1158 * underlying devices have an integrity profile.  But all devices may
1159 * not have matching profiles (checking all devices isn't reliable
1160 * during table load because this table may use other DM device(s) which
1161 * must be resumed before they will have an initialized integity
1162 * profile).  Consequently, stacked DM devices force a 2 stage integrity
1163 * profile validation: First pass during table load, final pass during
1164 * resume.
1165 */
1166static int dm_table_register_integrity(struct dm_table *t)
1167{
1168	struct mapped_device *md = t->md;
1169	struct gendisk *template_disk = NULL;
1170
1171	template_disk = dm_table_get_integrity_disk(t);
1172	if (!template_disk)
1173		return 0;
1174
1175	if (!integrity_profile_exists(dm_disk(md))) {
1176		t->integrity_supported = true;
1177		/*
1178		 * Register integrity profile during table load; we can do
1179		 * this because the final profile must match during resume.
1180		 */
1181		blk_integrity_register(dm_disk(md),
1182				       blk_get_integrity(template_disk));
1183		return 0;
1184	}
1185
1186	/*
1187	 * If DM device already has an initialized integrity
1188	 * profile the new profile should not conflict.
1189	 */
1190	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
 
1191		DMWARN("%s: conflict with existing integrity profile: "
1192		       "%s profile mismatch",
1193		       dm_device_name(t->md),
1194		       template_disk->disk_name);
1195		return 1;
1196	}
1197
1198	/* Preserve existing integrity profile */
1199	t->integrity_supported = true;
1200	return 0;
1201}
1202
1203/*
1204 * Prepares the table for use by building the indices,
1205 * setting the type, and allocating mempools.
1206 */
1207int dm_table_complete(struct dm_table *t)
1208{
1209	int r;
1210
1211	r = dm_table_determine_type(t);
1212	if (r) {
1213		DMERR("unable to determine table type");
1214		return r;
1215	}
1216
1217	r = dm_table_build_index(t);
1218	if (r) {
1219		DMERR("unable to build btrees");
1220		return r;
1221	}
1222
1223	r = dm_table_register_integrity(t);
1224	if (r) {
1225		DMERR("could not register integrity profile.");
1226		return r;
1227	}
1228
1229	r = dm_table_alloc_md_mempools(t, t->md);
1230	if (r)
1231		DMERR("unable to allocate mempools");
1232
1233	return r;
1234}
1235
1236static DEFINE_MUTEX(_event_lock);
1237void dm_table_event_callback(struct dm_table *t,
1238			     void (*fn)(void *), void *context)
1239{
1240	mutex_lock(&_event_lock);
1241	t->event_fn = fn;
1242	t->event_context = context;
1243	mutex_unlock(&_event_lock);
1244}
1245
1246void dm_table_event(struct dm_table *t)
1247{
1248	/*
1249	 * You can no longer call dm_table_event() from interrupt
1250	 * context, use a bottom half instead.
1251	 */
1252	BUG_ON(in_interrupt());
1253
1254	mutex_lock(&_event_lock);
1255	if (t->event_fn)
1256		t->event_fn(t->event_context);
1257	mutex_unlock(&_event_lock);
1258}
1259EXPORT_SYMBOL(dm_table_event);
1260
1261sector_t dm_table_get_size(struct dm_table *t)
1262{
1263	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1264}
1265EXPORT_SYMBOL(dm_table_get_size);
1266
1267struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1268{
1269	if (index >= t->num_targets)
1270		return NULL;
1271
1272	return t->targets + index;
1273}
1274
1275/*
1276 * Search the btree for the correct target.
1277 *
1278 * Caller should check returned pointer with dm_target_is_valid()
1279 * to trap I/O beyond end of device.
1280 */
1281struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1282{
1283	unsigned int l, n = 0, k = 0;
1284	sector_t *node;
1285
1286	for (l = 0; l < t->depth; l++) {
1287		n = get_child(n, k);
1288		node = get_node(t, l, n);
1289
1290		for (k = 0; k < KEYS_PER_NODE; k++)
1291			if (node[k] >= sector)
1292				break;
1293	}
1294
1295	return &t->targets[(KEYS_PER_NODE * n) + k];
1296}
1297
1298static int count_device(struct dm_target *ti, struct dm_dev *dev,
1299			sector_t start, sector_t len, void *data)
1300{
1301	unsigned *num_devices = data;
1302
1303	(*num_devices)++;
1304
1305	return 0;
1306}
1307
1308/*
1309 * Check whether a table has no data devices attached using each
1310 * target's iterate_devices method.
1311 * Returns false if the result is unknown because a target doesn't
1312 * support iterate_devices.
1313 */
1314bool dm_table_has_no_data_devices(struct dm_table *table)
1315{
1316	struct dm_target *uninitialized_var(ti);
1317	unsigned i = 0, num_devices = 0;
1318
1319	while (i < dm_table_get_num_targets(table)) {
1320		ti = dm_table_get_target(table, i++);
1321
1322		if (!ti->type->iterate_devices)
1323			return false;
1324
1325		ti->type->iterate_devices(ti, count_device, &num_devices);
1326		if (num_devices)
1327			return false;
1328	}
1329
1330	return true;
1331}
1332
1333/*
1334 * Establish the new table's queue_limits and validate them.
1335 */
1336int dm_calculate_queue_limits(struct dm_table *table,
1337			      struct queue_limits *limits)
1338{
1339	struct dm_target *uninitialized_var(ti);
1340	struct queue_limits ti_limits;
1341	unsigned i = 0;
1342
1343	blk_set_stacking_limits(limits);
1344
1345	while (i < dm_table_get_num_targets(table)) {
1346		blk_set_stacking_limits(&ti_limits);
1347
1348		ti = dm_table_get_target(table, i++);
1349
1350		if (!ti->type->iterate_devices)
1351			goto combine_limits;
1352
1353		/*
1354		 * Combine queue limits of all the devices this target uses.
1355		 */
1356		ti->type->iterate_devices(ti, dm_set_device_limits,
1357					  &ti_limits);
1358
1359		/* Set I/O hints portion of queue limits */
1360		if (ti->type->io_hints)
1361			ti->type->io_hints(ti, &ti_limits);
1362
1363		/*
1364		 * Check each device area is consistent with the target's
1365		 * overall queue limits.
1366		 */
1367		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1368					      &ti_limits))
1369			return -EINVAL;
1370
1371combine_limits:
1372		/*
1373		 * Merge this target's queue limits into the overall limits
1374		 * for the table.
1375		 */
1376		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1377			DMWARN("%s: adding target device "
1378			       "(start sect %llu len %llu) "
1379			       "caused an alignment inconsistency",
1380			       dm_device_name(table->md),
1381			       (unsigned long long) ti->begin,
1382			       (unsigned long long) ti->len);
1383	}
1384
1385	return validate_hardware_logical_block_alignment(table, limits);
1386}
1387
1388/*
1389 * Verify that all devices have an integrity profile that matches the
1390 * DM device's registered integrity profile.  If the profiles don't
1391 * match then unregister the DM device's integrity profile.
 
 
1392 */
1393static void dm_table_verify_integrity(struct dm_table *t)
1394{
1395	struct gendisk *template_disk = NULL;
1396
1397	if (t->integrity_supported) {
1398		/*
1399		 * Verify that the original integrity profile
1400		 * matches all the devices in this table.
1401		 */
1402		template_disk = dm_table_get_integrity_disk(t);
1403		if (template_disk &&
1404		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1405			return;
1406	}
1407
1408	if (integrity_profile_exists(dm_disk(t->md))) {
 
 
 
 
 
 
 
1409		DMWARN("%s: unable to establish an integrity profile",
1410		       dm_device_name(t->md));
1411		blk_integrity_unregister(dm_disk(t->md));
1412	}
1413}
1414
1415static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1416				sector_t start, sector_t len, void *data)
1417{
1418	unsigned long flush = (unsigned long) data;
1419	struct request_queue *q = bdev_get_queue(dev->bdev);
1420
1421	return q && (q->queue_flags & flush);
1422}
1423
1424static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1425{
1426	struct dm_target *ti;
1427	unsigned i = 0;
1428
1429	/*
1430	 * Require at least one underlying device to support flushes.
1431	 * t->devices includes internal dm devices such as mirror logs
1432	 * so we need to use iterate_devices here, which targets
1433	 * supporting flushes must provide.
1434	 */
1435	while (i < dm_table_get_num_targets(t)) {
1436		ti = dm_table_get_target(t, i++);
1437
1438		if (!ti->num_flush_bios)
1439			continue;
1440
1441		if (ti->flush_supported)
1442			return true;
1443
1444		if (ti->type->iterate_devices &&
1445		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1446			return true;
1447	}
1448
1449	return false;
1450}
1451
1452static bool dm_table_discard_zeroes_data(struct dm_table *t)
1453{
1454	struct dm_target *ti;
1455	unsigned i = 0;
1456
1457	/* Ensure that all targets supports discard_zeroes_data. */
1458	while (i < dm_table_get_num_targets(t)) {
1459		ti = dm_table_get_target(t, i++);
1460
1461		if (ti->discard_zeroes_data_unsupported)
1462			return false;
1463	}
1464
1465	return true;
1466}
1467
1468static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1469			    sector_t start, sector_t len, void *data)
1470{
1471	struct request_queue *q = bdev_get_queue(dev->bdev);
1472
1473	return q && blk_queue_nonrot(q);
1474}
1475
1476static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1477			     sector_t start, sector_t len, void *data)
1478{
1479	struct request_queue *q = bdev_get_queue(dev->bdev);
1480
1481	return q && !blk_queue_add_random(q);
1482}
1483
1484static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1485				   sector_t start, sector_t len, void *data)
1486{
1487	struct request_queue *q = bdev_get_queue(dev->bdev);
1488
1489	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1490}
1491
1492static bool dm_table_all_devices_attribute(struct dm_table *t,
1493					   iterate_devices_callout_fn func)
1494{
1495	struct dm_target *ti;
1496	unsigned i = 0;
1497
1498	while (i < dm_table_get_num_targets(t)) {
1499		ti = dm_table_get_target(t, i++);
1500
1501		if (!ti->type->iterate_devices ||
1502		    !ti->type->iterate_devices(ti, func, NULL))
1503			return false;
1504	}
1505
1506	return true;
1507}
1508
1509static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1510					 sector_t start, sector_t len, void *data)
1511{
1512	struct request_queue *q = bdev_get_queue(dev->bdev);
1513
1514	return q && !q->limits.max_write_same_sectors;
1515}
1516
1517static bool dm_table_supports_write_same(struct dm_table *t)
1518{
1519	struct dm_target *ti;
1520	unsigned i = 0;
1521
1522	while (i < dm_table_get_num_targets(t)) {
1523		ti = dm_table_get_target(t, i++);
1524
1525		if (!ti->num_write_same_bios)
1526			return false;
1527
1528		if (!ti->type->iterate_devices ||
1529		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1530			return false;
1531	}
1532
1533	return true;
1534}
1535
1536static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1537				  sector_t start, sector_t len, void *data)
1538{
1539	struct request_queue *q = bdev_get_queue(dev->bdev);
1540
1541	return q && blk_queue_discard(q);
1542}
1543
1544static bool dm_table_supports_discards(struct dm_table *t)
1545{
1546	struct dm_target *ti;
1547	unsigned i = 0;
1548
1549	/*
1550	 * Unless any target used by the table set discards_supported,
1551	 * require at least one underlying device to support discards.
1552	 * t->devices includes internal dm devices such as mirror logs
1553	 * so we need to use iterate_devices here, which targets
1554	 * supporting discard selectively must provide.
1555	 */
1556	while (i < dm_table_get_num_targets(t)) {
1557		ti = dm_table_get_target(t, i++);
1558
1559		if (!ti->num_discard_bios)
1560			continue;
1561
1562		if (ti->discards_supported)
1563			return true;
1564
1565		if (ti->type->iterate_devices &&
1566		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1567			return true;
1568	}
1569
1570	return false;
1571}
1572
1573void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1574			       struct queue_limits *limits)
1575{
1576	bool wc = false, fua = false;
1577
1578	/*
1579	 * Copy table's limits to the DM device's request_queue
1580	 */
1581	q->limits = *limits;
1582
1583	if (!dm_table_supports_discards(t))
1584		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1585	else
1586		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1587
1588	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1589		wc = true;
1590		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1591			fua = true;
1592	}
1593	blk_queue_write_cache(q, wc, fua);
1594
1595	if (!dm_table_discard_zeroes_data(t))
1596		q->limits.discard_zeroes_data = 0;
1597
1598	/* Ensure that all underlying devices are non-rotational. */
1599	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1600		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1601	else
1602		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1603
1604	if (!dm_table_supports_write_same(t))
1605		q->limits.max_write_same_sectors = 0;
1606
1607	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1608		queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1609	else
1610		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1611
1612	dm_table_verify_integrity(t);
1613
1614	/*
1615	 * Determine whether or not this queue's I/O timings contribute
1616	 * to the entropy pool, Only request-based targets use this.
1617	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1618	 * have it set.
1619	 */
1620	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1621		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1622
1623	/*
1624	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1625	 * visible to other CPUs because, once the flag is set, incoming bios
1626	 * are processed by request-based dm, which refers to the queue
1627	 * settings.
1628	 * Until the flag set, bios are passed to bio-based dm and queued to
1629	 * md->deferred where queue settings are not needed yet.
1630	 * Those bios are passed to request-based dm at the resume time.
1631	 */
1632	smp_mb();
1633	if (dm_table_request_based(t))
1634		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1635}
1636
1637unsigned int dm_table_get_num_targets(struct dm_table *t)
1638{
1639	return t->num_targets;
1640}
1641
1642struct list_head *dm_table_get_devices(struct dm_table *t)
1643{
1644	return &t->devices;
1645}
1646
1647fmode_t dm_table_get_mode(struct dm_table *t)
1648{
1649	return t->mode;
1650}
1651EXPORT_SYMBOL(dm_table_get_mode);
1652
1653enum suspend_mode {
1654	PRESUSPEND,
1655	PRESUSPEND_UNDO,
1656	POSTSUSPEND,
1657};
1658
1659static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1660{
1661	int i = t->num_targets;
1662	struct dm_target *ti = t->targets;
1663
1664	while (i--) {
1665		switch (mode) {
1666		case PRESUSPEND:
1667			if (ti->type->presuspend)
1668				ti->type->presuspend(ti);
1669			break;
1670		case PRESUSPEND_UNDO:
1671			if (ti->type->presuspend_undo)
1672				ti->type->presuspend_undo(ti);
1673			break;
1674		case POSTSUSPEND:
1675			if (ti->type->postsuspend)
1676				ti->type->postsuspend(ti);
1677			break;
1678		}
 
1679		ti++;
1680	}
1681}
1682
1683void dm_table_presuspend_targets(struct dm_table *t)
1684{
1685	if (!t)
1686		return;
1687
1688	suspend_targets(t, PRESUSPEND);
1689}
1690
1691void dm_table_presuspend_undo_targets(struct dm_table *t)
1692{
1693	if (!t)
1694		return;
1695
1696	suspend_targets(t, PRESUSPEND_UNDO);
1697}
1698
1699void dm_table_postsuspend_targets(struct dm_table *t)
1700{
1701	if (!t)
1702		return;
1703
1704	suspend_targets(t, POSTSUSPEND);
1705}
1706
1707int dm_table_resume_targets(struct dm_table *t)
1708{
1709	int i, r = 0;
1710
1711	for (i = 0; i < t->num_targets; i++) {
1712		struct dm_target *ti = t->targets + i;
1713
1714		if (!ti->type->preresume)
1715			continue;
1716
1717		r = ti->type->preresume(ti);
1718		if (r) {
1719			DMERR("%s: %s: preresume failed, error = %d",
1720			      dm_device_name(t->md), ti->type->name, r);
1721			return r;
1722		}
1723	}
1724
1725	for (i = 0; i < t->num_targets; i++) {
1726		struct dm_target *ti = t->targets + i;
1727
1728		if (ti->type->resume)
1729			ti->type->resume(ti);
1730	}
1731
1732	return 0;
1733}
1734
1735void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1736{
1737	list_add(&cb->list, &t->target_callbacks);
1738}
1739EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1740
1741int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1742{
1743	struct dm_dev_internal *dd;
1744	struct list_head *devices = dm_table_get_devices(t);
1745	struct dm_target_callbacks *cb;
1746	int r = 0;
1747
1748	list_for_each_entry(dd, devices, list) {
1749		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1750		char b[BDEVNAME_SIZE];
1751
1752		if (likely(q))
1753			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1754		else
1755			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1756				     dm_device_name(t->md),
1757				     bdevname(dd->dm_dev->bdev, b));
1758	}
1759
1760	list_for_each_entry(cb, &t->target_callbacks, list)
1761		if (cb->congested_fn)
1762			r |= cb->congested_fn(cb, bdi_bits);
1763
1764	return r;
1765}
1766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1767struct mapped_device *dm_table_get_md(struct dm_table *t)
1768{
1769	return t->md;
1770}
1771EXPORT_SYMBOL(dm_table_get_md);
1772
1773void dm_table_run_md_queue_async(struct dm_table *t)
 
 
 
 
 
 
 
 
1774{
1775	struct mapped_device *md;
1776	struct request_queue *queue;
1777	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
1778
1779	if (!dm_table_request_based(t))
1780		return;
1781
1782	md = dm_table_get_md(t);
1783	queue = dm_get_md_queue(md);
1784	if (queue) {
1785		if (queue->mq_ops)
1786			blk_mq_run_hw_queues(queue, true);
1787		else {
1788			spin_lock_irqsave(queue->queue_lock, flags);
1789			blk_run_queue_async(queue);
1790			spin_unlock_irqrestore(queue->queue_lock, flags);
1791		}
1792	}
 
 
1793}
1794EXPORT_SYMBOL(dm_table_run_md_queue_async);
1795