Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (c) 2006 ARM Ltd.
   3 * Copyright (c) 2010 ST-Ericsson SA
   4 *
   5 * Author: Peter Pearse <peter.pearse@arm.com>
   6 * Author: Linus Walleij <linus.walleij@stericsson.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify it
   9 * under the terms of the GNU General Public License as published by the Free
  10 * Software Foundation; either version 2 of the License, or (at your option)
  11 * any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful, but WITHOUT
  14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  16 * more details.
  17 *
  18 * You should have received a copy of the GNU General Public License along with
  19 * this program; if not, write to the Free Software Foundation, Inc., 59
  20 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  21 *
  22 * The full GNU General Public License is in this distribution in the file
  23 * called COPYING.
  24 *
  25 * Documentation: ARM DDI 0196G == PL080
  26 * Documentation: ARM DDI 0218E == PL081
 
  27 *
  28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
  29 * channel.
  30 *
  31 * The PL080 has 8 channels available for simultaneous use, and the PL081
  32 * has only two channels. So on these DMA controllers the number of channels
  33 * and the number of incoming DMA signals are two totally different things.
  34 * It is usually not possible to theoretically handle all physical signals,
  35 * so a multiplexing scheme with possible denial of use is necessary.
  36 *
  37 * The PL080 has a dual bus master, PL081 has a single master.
  38 *
 
 
 
 
 
 
 
 
  39 * Memory to peripheral transfer may be visualized as
  40 *	Get data from memory to DMAC
  41 *	Until no data left
  42 *		On burst request from peripheral
  43 *			Destination burst from DMAC to peripheral
  44 *			Clear burst request
  45 *	Raise terminal count interrupt
  46 *
  47 * For peripherals with a FIFO:
  48 * Source      burst size == half the depth of the peripheral FIFO
  49 * Destination burst size == the depth of the peripheral FIFO
  50 *
  51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
  52 * signals, the DMA controller will simply facilitate its AHB master.)
  53 *
  54 * ASSUMES default (little) endianness for DMA transfers
  55 *
  56 * The PL08x has two flow control settings:
  57 *  - DMAC flow control: the transfer size defines the number of transfers
  58 *    which occur for the current LLI entry, and the DMAC raises TC at the
  59 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
  60 *    to both the BREQ and SREQ signals (contrary to documented),
  61 *    transferring data if either is active.  The LBREQ and LSREQ signals
  62 *    are ignored.
  63 *
  64 *  - Peripheral flow control: the transfer size is ignored (and should be
  65 *    zero).  The data is transferred from the current LLI entry, until
  66 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
  67 *    will then move to the next LLI entry.
  68 *
  69 * Only the former works sanely with scatter lists, so we only implement
  70 * the DMAC flow control method.  However, peripherals which use the LBREQ
  71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
  72 * these hardware restrictions prevents them from using scatter DMA.
  73 *
  74 * Global TODO:
  75 * - Break out common code from arch/arm/mach-s3c64xx and share
  76 */
  77#include <linux/device.h>
  78#include <linux/init.h>
  79#include <linux/module.h>
  80#include <linux/interrupt.h>
  81#include <linux/slab.h>
  82#include <linux/delay.h>
  83#include <linux/dma-mapping.h>
  84#include <linux/dmapool.h>
  85#include <linux/dmaengine.h>
  86#include <linux/amba/bus.h>
  87#include <linux/amba/pl08x.h>
  88#include <linux/debugfs.h>
 
 
 
 
 
 
 
 
 
 
 
 
  89#include <linux/seq_file.h>
 
 
  90
  91#include <asm/hardware/pl080.h>
 
  92
  93#define DRIVER_NAME	"pl08xdmac"
  94
 
 
 
 
 
 
 
 
 
  95/**
  96 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
  97 * @channels: the number of channels available in this variant
  98 * @dualmaster: whether this version supports dual AHB masters or not.
 
 
 
 
 
  99 */
 100struct vendor_data {
 
 101	u8 channels;
 102	bool dualmaster;
 
 
 
 103};
 104
 105/*
 106 * PL08X private data structures
 107 * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
 108 * start & end do not - their bus bit info is in cctl.  Also note that these
 109 * are fixed 32-bit quantities.
 110 */
 111struct pl08x_lli {
 112	u32 src;
 113	u32 dst;
 114	u32 lli;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115	u32 cctl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 116};
 117
 118/**
 119 * struct pl08x_driver_data - the local state holder for the PL08x
 120 * @slave: slave engine for this instance
 121 * @memcpy: memcpy engine for this instance
 122 * @base: virtual memory base (remapped) for the PL08x
 123 * @adev: the corresponding AMBA (PrimeCell) bus entry
 124 * @vd: vendor data for this PL08x variant
 125 * @pd: platform data passed in from the platform/machine
 126 * @phy_chans: array of data for the physical channels
 127 * @pool: a pool for the LLI descriptors
 128 * @pool_ctr: counter of LLIs in the pool
 129 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
 130 * @mem_buses: set to indicate memory transfers on AHB2.
 131 * @lock: a spinlock for this struct
 132 */
 133struct pl08x_driver_data {
 134	struct dma_device slave;
 135	struct dma_device memcpy;
 136	void __iomem *base;
 137	struct amba_device *adev;
 138	const struct vendor_data *vd;
 139	struct pl08x_platform_data *pd;
 140	struct pl08x_phy_chan *phy_chans;
 141	struct dma_pool *pool;
 142	int pool_ctr;
 143	u8 lli_buses;
 144	u8 mem_buses;
 145	spinlock_t lock;
 146};
 147
 148/*
 149 * PL08X specific defines
 150 */
 151
 
 
 
 
 
 
 
 
 
 
 
 152/*
 153 * Memory boundaries: the manual for PL08x says that the controller
 154 * cannot read past a 1KiB boundary, so these defines are used to
 155 * create transfer LLIs that do not cross such boundaries.
 156 */
 157#define PL08X_BOUNDARY_SHIFT		(10)	/* 1KB 0x400 */
 158#define PL08X_BOUNDARY_SIZE		(1 << PL08X_BOUNDARY_SHIFT)
 159
 160/* Size (bytes) of each LLI buffer allocated for one transfer */
 161# define PL08X_LLI_TSFR_SIZE	0x2000
 162
 163/* Maximum times we call dma_pool_alloc on this pool without freeing */
 164#define MAX_NUM_TSFR_LLIS	(PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
 165#define PL08X_ALIGN		8
 166
 167static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
 168{
 169	return container_of(chan, struct pl08x_dma_chan, chan);
 170}
 171
 172static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
 173{
 174	return container_of(tx, struct pl08x_txd, tx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175}
 176
 177/*
 178 * Physical channel handling
 179 */
 180
 181/* Whether a certain channel is busy or not */
 182static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
 183{
 184	unsigned int val;
 185
 186	val = readl(ch->base + PL080_CH_CONFIG);
 187	return val & PL080_CONFIG_ACTIVE;
 188}
 189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190/*
 191 * Set the initial DMA register values i.e. those for the first LLI
 192 * The next LLI pointer and the configuration interrupt bit have
 193 * been set when the LLIs were constructed.  Poke them into the hardware
 194 * and start the transfer.
 195 */
 196static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
 197	struct pl08x_txd *txd)
 198{
 199	struct pl08x_driver_data *pl08x = plchan->host;
 200	struct pl08x_phy_chan *phychan = plchan->phychan;
 201	struct pl08x_lli *lli = &txd->llis_va[0];
 
 202	u32 val;
 203
 
 
 204	plchan->at = txd;
 205
 206	/* Wait for channel inactive */
 207	while (pl08x_phy_channel_busy(phychan))
 208		cpu_relax();
 209
 210	dev_vdbg(&pl08x->adev->dev,
 211		"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 212		"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
 213		phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
 214		txd->ccfg);
 215
 216	writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
 217	writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
 218	writel(lli->lli, phychan->base + PL080_CH_LLI);
 219	writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
 220	writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
 221
 222	/* Enable the DMA channel */
 223	/* Do not access config register until channel shows as disabled */
 224	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
 225		cpu_relax();
 226
 227	/* Do not access config register until channel shows as inactive */
 228	val = readl(phychan->base + PL080_CH_CONFIG);
 229	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
 230		val = readl(phychan->base + PL080_CH_CONFIG);
 231
 232	writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
 233}
 234
 235/*
 236 * Pause the channel by setting the HALT bit.
 237 *
 238 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 239 * the FIFO can only drain if the peripheral is still requesting data.
 240 * (note: this can still timeout if the DMAC FIFO never drains of data.)
 241 *
 242 * For P->M transfers, disable the peripheral first to stop it filling
 243 * the DMAC FIFO, and then pause the DMAC.
 244 */
 245static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
 246{
 247	u32 val;
 248	int timeout;
 249
 250	/* Set the HALT bit and wait for the FIFO to drain */
 251	val = readl(ch->base + PL080_CH_CONFIG);
 252	val |= PL080_CONFIG_HALT;
 253	writel(val, ch->base + PL080_CH_CONFIG);
 254
 255	/* Wait for channel inactive */
 256	for (timeout = 1000; timeout; timeout--) {
 257		if (!pl08x_phy_channel_busy(ch))
 258			break;
 259		udelay(1);
 260	}
 261	if (pl08x_phy_channel_busy(ch))
 262		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
 263}
 264
 265static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
 266{
 267	u32 val;
 268
 269	/* Clear the HALT bit */
 270	val = readl(ch->base + PL080_CH_CONFIG);
 271	val &= ~PL080_CONFIG_HALT;
 272	writel(val, ch->base + PL080_CH_CONFIG);
 273}
 274
 275
 276/*
 277 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 278 * clears any pending interrupt status.  This should not be used for
 279 * an on-going transfer, but as a method of shutting down a channel
 280 * (eg, when it's no longer used) or terminating a transfer.
 281 */
 282static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
 283	struct pl08x_phy_chan *ch)
 284{
 285	u32 val = readl(ch->base + PL080_CH_CONFIG);
 286
 287	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
 288	         PL080_CONFIG_TC_IRQ_MASK);
 289
 290	writel(val, ch->base + PL080_CH_CONFIG);
 291
 292	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
 293	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
 294}
 295
 296static inline u32 get_bytes_in_cctl(u32 cctl)
 297{
 298	/* The source width defines the number of bytes */
 299	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
 300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 301	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
 302	case PL080_WIDTH_8BIT:
 303		break;
 304	case PL080_WIDTH_16BIT:
 305		bytes *= 2;
 306		break;
 307	case PL080_WIDTH_32BIT:
 308		bytes *= 4;
 309		break;
 310	}
 311	return bytes;
 312}
 313
 314/* The channel should be paused when calling this */
 315static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
 316{
 
 
 317	struct pl08x_phy_chan *ch;
 
 318	struct pl08x_txd *txd;
 319	unsigned long flags;
 320	size_t bytes = 0;
 
 321
 322	spin_lock_irqsave(&plchan->lock, flags);
 323	ch = plchan->phychan;
 324	txd = plchan->at;
 325
 
 
 
 326	/*
 327	 * Follow the LLIs to get the number of remaining
 328	 * bytes in the currently active transaction.
 329	 */
 330	if (ch && txd) {
 331		u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
 332
 333		/* First get the remaining bytes in the active transfer */
 
 
 
 
 
 334		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
 335
 336		if (clli) {
 337			struct pl08x_lli *llis_va = txd->llis_va;
 338			dma_addr_t llis_bus = txd->llis_bus;
 339			int index;
 340
 341			BUG_ON(clli < llis_bus || clli >= llis_bus +
 342				sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
 343
 344			/*
 345			 * Locate the next LLI - as this is an array,
 346			 * it's simple maths to find.
 347			 */
 348			index = (clli - llis_bus) / sizeof(struct pl08x_lli);
 349
 350			for (; index < MAX_NUM_TSFR_LLIS; index++) {
 351				bytes += get_bytes_in_cctl(llis_va[index].cctl);
 
 
 
 352
 353				/*
 354				 * A LLI pointer of 0 terminates the LLI list
 355				 */
 356				if (!llis_va[index].lli)
 357					break;
 358			}
 359		}
 360	}
 361
 362	/* Sum up all queued transactions */
 363	if (!list_empty(&plchan->pend_list)) {
 364		struct pl08x_txd *txdi;
 365		list_for_each_entry(txdi, &plchan->pend_list, node) {
 366			bytes += txdi->len;
 367		}
 368	}
 369
 370	spin_unlock_irqrestore(&plchan->lock, flags);
 
 
 
 
 
 371
 372	return bytes;
 373}
 374
 375/*
 376 * Allocate a physical channel for a virtual channel
 377 *
 378 * Try to locate a physical channel to be used for this transfer. If all
 379 * are taken return NULL and the requester will have to cope by using
 380 * some fallback PIO mode or retrying later.
 381 */
 382static struct pl08x_phy_chan *
 383pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
 384		      struct pl08x_dma_chan *virt_chan)
 385{
 386	struct pl08x_phy_chan *ch = NULL;
 387	unsigned long flags;
 388	int i;
 389
 390	for (i = 0; i < pl08x->vd->channels; i++) {
 391		ch = &pl08x->phy_chans[i];
 392
 393		spin_lock_irqsave(&ch->lock, flags);
 394
 395		if (!ch->serving) {
 396			ch->serving = virt_chan;
 397			ch->signal = -1;
 398			spin_unlock_irqrestore(&ch->lock, flags);
 399			break;
 400		}
 401
 402		spin_unlock_irqrestore(&ch->lock, flags);
 403	}
 404
 405	if (i == pl08x->vd->channels) {
 406		/* No physical channel available, cope with it */
 407		return NULL;
 408	}
 409
 410	return ch;
 411}
 412
 
 413static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
 414					 struct pl08x_phy_chan *ch)
 415{
 416	unsigned long flags;
 
 417
 418	spin_lock_irqsave(&ch->lock, flags);
 
 
 
 
 
 
 
 
 419
 420	/* Stop the channel and clear its interrupts */
 421	pl08x_terminate_phy_chan(pl08x, ch);
 
 
 
 
 422
 423	/* Mark it as free */
 424	ch->serving = NULL;
 425	spin_unlock_irqrestore(&ch->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 426}
 427
 428/*
 429 * LLI handling
 430 */
 431
 432static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
 433{
 434	switch (coded) {
 435	case PL080_WIDTH_8BIT:
 436		return 1;
 437	case PL080_WIDTH_16BIT:
 438		return 2;
 439	case PL080_WIDTH_32BIT:
 440		return 4;
 441	default:
 442		break;
 443	}
 444	BUG();
 445	return 0;
 446}
 447
 448static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
 449				  size_t tsize)
 450{
 451	u32 retbits = cctl;
 452
 453	/* Remove all src, dst and transfer size bits */
 454	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
 455	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
 456	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
 457
 458	/* Then set the bits according to the parameters */
 459	switch (srcwidth) {
 460	case 1:
 461		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
 462		break;
 463	case 2:
 464		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
 465		break;
 466	case 4:
 467		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
 468		break;
 469	default:
 470		BUG();
 471		break;
 472	}
 473
 474	switch (dstwidth) {
 475	case 1:
 476		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
 477		break;
 478	case 2:
 479		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
 480		break;
 481	case 4:
 482		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
 483		break;
 484	default:
 485		BUG();
 486		break;
 487	}
 488
 
 489	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
 490	return retbits;
 491}
 492
 493struct pl08x_lli_build_data {
 494	struct pl08x_txd *txd;
 495	struct pl08x_bus_data srcbus;
 496	struct pl08x_bus_data dstbus;
 497	size_t remainder;
 498	u32 lli_bus;
 499};
 500
 501/*
 502 * Autoselect a master bus to use for the transfer this prefers the
 503 * destination bus if both available if fixed address on one bus the
 504 * other will be chosen
 
 
 
 
 505 */
 506static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
 507	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
 508{
 509	if (!(cctl & PL080_CONTROL_DST_INCR)) {
 510		*mbus = &bd->srcbus;
 511		*sbus = &bd->dstbus;
 512	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
 513		*mbus = &bd->dstbus;
 514		*sbus = &bd->srcbus;
 
 
 
 515	} else {
 516		if (bd->dstbus.buswidth == 4) {
 517			*mbus = &bd->dstbus;
 518			*sbus = &bd->srcbus;
 519		} else if (bd->srcbus.buswidth == 4) {
 520			*mbus = &bd->srcbus;
 521			*sbus = &bd->dstbus;
 522		} else if (bd->dstbus.buswidth == 2) {
 523			*mbus = &bd->dstbus;
 524			*sbus = &bd->srcbus;
 525		} else if (bd->srcbus.buswidth == 2) {
 526			*mbus = &bd->srcbus;
 527			*sbus = &bd->dstbus;
 528		} else {
 529			/* bd->srcbus.buswidth == 1 */
 530			*mbus = &bd->dstbus;
 531			*sbus = &bd->srcbus;
 532		}
 533	}
 534}
 535
 536/*
 537 * Fills in one LLI for a certain transfer descriptor and advance the counter
 538 */
 539static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
 540	int num_llis, int len, u32 cctl)
 
 541{
 542	struct pl08x_lli *llis_va = bd->txd->llis_va;
 
 543	dma_addr_t llis_bus = bd->txd->llis_bus;
 544
 545	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
 546
 547	llis_va[num_llis].cctl = cctl;
 548	llis_va[num_llis].src = bd->srcbus.addr;
 549	llis_va[num_llis].dst = bd->dstbus.addr;
 550	llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
 551	llis_va[num_llis].lli |= bd->lli_bus;
 
 
 
 
 
 552
 553	if (cctl & PL080_CONTROL_SRC_INCR)
 554		bd->srcbus.addr += len;
 555	if (cctl & PL080_CONTROL_DST_INCR)
 556		bd->dstbus.addr += len;
 557
 558	BUG_ON(bd->remainder < len);
 559
 560	bd->remainder -= len;
 561}
 562
 563/*
 564 * Return number of bytes to fill to boundary, or len.
 565 * This calculation works for any value of addr.
 566 */
 567static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
 
 
 
 
 
 
 
 568{
 569	size_t boundary_len = PL08X_BOUNDARY_SIZE -
 570			(addr & (PL08X_BOUNDARY_SIZE - 1));
 571
 572	return min(boundary_len, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 573}
 
 
 
 
 574
 575/*
 576 * This fills in the table of LLIs for the transfer descriptor
 577 * Note that we assume we never have to change the burst sizes
 578 * Return 0 for error
 579 */
 580static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
 581			      struct pl08x_txd *txd)
 582{
 583	struct pl08x_bus_data *mbus, *sbus;
 584	struct pl08x_lli_build_data bd;
 585	int num_llis = 0;
 586	u32 cctl;
 587	size_t max_bytes_per_lli;
 588	size_t total_bytes = 0;
 589	struct pl08x_lli *llis_va;
 590
 591	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
 592				      &txd->llis_bus);
 593	if (!txd->llis_va) {
 594		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
 595		return 0;
 596	}
 597
 598	pl08x->pool_ctr++;
 599
 600	/* Get the default CCTL */
 601	cctl = txd->cctl;
 602
 603	bd.txd = txd;
 604	bd.srcbus.addr = txd->src_addr;
 605	bd.dstbus.addr = txd->dst_addr;
 606	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
 
 607
 608	/* Find maximum width of the source bus */
 609	bd.srcbus.maxwidth =
 610		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
 611				       PL080_CONTROL_SWIDTH_SHIFT);
 612
 613	/* Find maximum width of the destination bus */
 614	bd.dstbus.maxwidth =
 615		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
 616				       PL080_CONTROL_DWIDTH_SHIFT);
 617
 618	/* Set up the bus widths to the maximum */
 619	bd.srcbus.buswidth = bd.srcbus.maxwidth;
 620	bd.dstbus.buswidth = bd.dstbus.maxwidth;
 621
 622	/*
 623	 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
 624	 */
 625	max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) *
 626		PL080_CONTROL_TRANSFER_SIZE_MASK;
 627
 628	/* We need to count this down to zero */
 629	bd.remainder = txd->len;
 630
 631	/*
 632	 * Choose bus to align to
 633	 * - prefers destination bus if both available
 634	 * - if fixed address on one bus chooses other
 635	 */
 636	pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
 637
 638	dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu llimax=%zu\n",
 639		 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
 640		 bd.srcbus.buswidth,
 641		 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
 642		 bd.dstbus.buswidth,
 643		 bd.remainder, max_bytes_per_lli);
 644	dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
 645		 mbus == &bd.srcbus ? "src" : "dst",
 646		 sbus == &bd.srcbus ? "src" : "dst");
 647
 648	if (txd->len < mbus->buswidth) {
 649		/* Less than a bus width available - send as single bytes */
 650		while (bd.remainder) {
 651			dev_vdbg(&pl08x->adev->dev,
 652				 "%s single byte LLIs for a transfer of "
 653				 "less than a bus width (remain 0x%08x)\n",
 654				 __func__, bd.remainder);
 655			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
 656			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
 657			total_bytes++;
 658		}
 659	} else {
 660		/* Make one byte LLIs until master bus is aligned */
 661		while ((mbus->addr) % (mbus->buswidth)) {
 662			dev_vdbg(&pl08x->adev->dev,
 663				"%s adjustment lli for less than bus width "
 664				 "(remain 0x%08x)\n",
 665				 __func__, bd.remainder);
 666			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
 667			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
 668			total_bytes++;
 669		}
 670
 671		/*
 672		 * Master now aligned
 673		 * - if slave is not then we must set its width down
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 674		 */
 675		if (sbus->addr % sbus->buswidth) {
 676			dev_dbg(&pl08x->adev->dev,
 677				"%s set down bus width to one byte\n",
 678				 __func__);
 
 
 
 
 
 679
 680			sbus->buswidth = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 681		}
 682
 683		/*
 684		 * Make largest possible LLIs until less than one bus
 685		 * width left
 
 686		 */
 687		while (bd.remainder > (mbus->buswidth - 1)) {
 688			size_t lli_len, target_len, tsize, odd_bytes;
 
 
 
 
 
 
 689
 
 
 
 
 
 
 
 
 
 690			/*
 691			 * If enough left try to send max possible,
 692			 * otherwise try to send the remainder
 693			 */
 694			target_len = min(bd.remainder, max_bytes_per_lli);
 
 
 
 
 
 
 695
 696			/*
 697			 * Set bus lengths for incrementing buses to the
 698			 * number of bytes which fill to next memory boundary,
 699			 * limiting on the target length calculated above.
 700			 */
 701			if (cctl & PL080_CONTROL_SRC_INCR)
 702				bd.srcbus.fill_bytes =
 703					pl08x_pre_boundary(bd.srcbus.addr,
 704						target_len);
 705			else
 706				bd.srcbus.fill_bytes = target_len;
 707
 708			if (cctl & PL080_CONTROL_DST_INCR)
 709				bd.dstbus.fill_bytes =
 710					pl08x_pre_boundary(bd.dstbus.addr,
 711						target_len);
 712			else
 713				bd.dstbus.fill_bytes = target_len;
 714
 715			/* Find the nearest */
 716			lli_len	= min(bd.srcbus.fill_bytes,
 717				      bd.dstbus.fill_bytes);
 718
 719			BUG_ON(lli_len > bd.remainder);
 720
 721			if (lli_len <= 0) {
 722				dev_err(&pl08x->adev->dev,
 723					"%s lli_len is %zu, <= 0\n",
 724						__func__, lli_len);
 725				return 0;
 726			}
 727
 728			if (lli_len == target_len) {
 729				/*
 730				 * Can send what we wanted.
 731				 * Maintain alignment
 732				 */
 733				lli_len	= (lli_len/mbus->buswidth) *
 734							mbus->buswidth;
 735				odd_bytes = 0;
 736			} else {
 737				/*
 738				 * So now we know how many bytes to transfer
 739				 * to get to the nearest boundary.  The next
 740				 * LLI will past the boundary.  However, we
 741				 * may be working to a boundary on the slave
 742				 * bus.  We need to ensure the master stays
 743				 * aligned, and that we are working in
 744				 * multiples of the bus widths.
 745				 */
 746				odd_bytes = lli_len % mbus->buswidth;
 747				lli_len -= odd_bytes;
 748
 749			}
 750
 751			if (lli_len) {
 752				/*
 753				 * Check against minimum bus alignment:
 754				 * Calculate actual transfer size in relation
 755				 * to bus width an get a maximum remainder of
 756				 * the smallest bus width - 1
 757				 */
 758				/* FIXME: use round_down()? */
 759				tsize = lli_len / min(mbus->buswidth,
 760						      sbus->buswidth);
 761				lli_len	= tsize * min(mbus->buswidth,
 762						      sbus->buswidth);
 763
 764				if (target_len != lli_len) {
 765					dev_vdbg(&pl08x->adev->dev,
 766					"%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
 767					__func__, target_len, lli_len, txd->len);
 768				}
 769
 770				cctl = pl08x_cctl_bits(cctl,
 771						       bd.srcbus.buswidth,
 772						       bd.dstbus.buswidth,
 773						       tsize);
 774
 775				dev_vdbg(&pl08x->adev->dev,
 776					"%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
 
 777					__func__, lli_len, bd.remainder);
 778				pl08x_fill_lli_for_desc(&bd, num_llis++,
 779					lli_len, cctl);
 
 
 
 780				total_bytes += lli_len;
 781			}
 782
 783
 784			if (odd_bytes) {
 785				/*
 786				 * Creep past the boundary, maintaining
 787				 * master alignment
 788				 */
 789				int j;
 790				for (j = 0; (j < mbus->buswidth)
 791						&& (bd.remainder); j++) {
 792					cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
 793					dev_vdbg(&pl08x->adev->dev,
 794						"%s align with boundary, single byte (remain 0x%08zx)\n",
 795						__func__, bd.remainder);
 796					pl08x_fill_lli_for_desc(&bd,
 797						num_llis++, 1, cctl);
 798					total_bytes++;
 799				}
 800			}
 801		}
 802
 803		/*
 804		 * Send any odd bytes
 805		 */
 806		while (bd.remainder) {
 807			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
 808			dev_vdbg(&pl08x->adev->dev,
 809				"%s align with boundary, single odd byte (remain %zu)\n",
 810				__func__, bd.remainder);
 811			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
 812			total_bytes++;
 813		}
 814	}
 815	if (total_bytes != txd->len) {
 816		dev_err(&pl08x->adev->dev,
 817			"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
 818			__func__, total_bytes, txd->len);
 819		return 0;
 820	}
 821
 822	if (num_llis >= MAX_NUM_TSFR_LLIS) {
 823		dev_err(&pl08x->adev->dev,
 824			"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
 825			__func__, (u32) MAX_NUM_TSFR_LLIS);
 826		return 0;
 
 827	}
 828
 829	llis_va = txd->llis_va;
 830	/* The final LLI terminates the LLI. */
 831	llis_va[num_llis - 1].lli = 0;
 832	/* The final LLI element shall also fire an interrupt. */
 833	llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
 834
 835#ifdef VERBOSE_DEBUG
 836	{
 837		int i;
 838
 839		dev_vdbg(&pl08x->adev->dev,
 840			 "%-3s %-9s  %-10s %-10s %-10s %s\n",
 841			 "lli", "", "csrc", "cdst", "clli", "cctl");
 842		for (i = 0; i < num_llis; i++) {
 843			dev_vdbg(&pl08x->adev->dev,
 844				 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
 845				 i, &llis_va[i], llis_va[i].src,
 846				 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
 847				);
 848		}
 849	}
 850#endif
 
 851
 852	return num_llis;
 853}
 854
 855/* You should call this with the struct pl08x lock held */
 856static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
 857			   struct pl08x_txd *txd)
 858{
 859	/* Free the LLI */
 860	dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
 861
 862	pl08x->pool_ctr--;
 863
 864	kfree(txd);
 865}
 866
 867static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
 868				struct pl08x_dma_chan *plchan)
 869{
 870	struct pl08x_txd *txdi = NULL;
 871	struct pl08x_txd *next;
 872
 873	if (!list_empty(&plchan->pend_list)) {
 874		list_for_each_entry_safe(txdi,
 875					 next, &plchan->pend_list, node) {
 876			list_del(&txdi->node);
 877			pl08x_free_txd(pl08x, txdi);
 878		}
 879	}
 880}
 881
 882/*
 883 * The DMA ENGINE API
 884 */
 885static int pl08x_alloc_chan_resources(struct dma_chan *chan)
 886{
 887	return 0;
 888}
 889
 890static void pl08x_free_chan_resources(struct dma_chan *chan)
 891{
 892}
 893
 894/*
 895 * This should be called with the channel plchan->lock held
 896 */
 897static int prep_phy_channel(struct pl08x_dma_chan *plchan,
 898			    struct pl08x_txd *txd)
 899{
 900	struct pl08x_driver_data *pl08x = plchan->host;
 901	struct pl08x_phy_chan *ch;
 902	int ret;
 903
 904	/* Check if we already have a channel */
 905	if (plchan->phychan)
 906		return 0;
 907
 908	ch = pl08x_get_phy_channel(pl08x, plchan);
 909	if (!ch) {
 910		/* No physical channel available, cope with it */
 911		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
 912		return -EBUSY;
 913	}
 914
 915	/*
 916	 * OK we have a physical channel: for memcpy() this is all we
 917	 * need, but for slaves the physical signals may be muxed!
 918	 * Can the platform allow us to use this channel?
 919	 */
 920	if (plchan->slave &&
 921	    ch->signal < 0 &&
 922	    pl08x->pd->get_signal) {
 923		ret = pl08x->pd->get_signal(plchan);
 924		if (ret < 0) {
 925			dev_dbg(&pl08x->adev->dev,
 926				"unable to use physical channel %d for transfer on %s due to platform restrictions\n",
 927				ch->id, plchan->name);
 928			/* Release physical channel & return */
 929			pl08x_put_phy_channel(pl08x, ch);
 930			return -EBUSY;
 931		}
 932		ch->signal = ret;
 933
 934		/* Assign the flow control signal to this channel */
 935		if (txd->direction == DMA_TO_DEVICE)
 936			txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
 937		else if (txd->direction == DMA_FROM_DEVICE)
 938			txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
 939	}
 940
 941	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
 942		 ch->id,
 943		 ch->signal,
 944		 plchan->name);
 945
 946	plchan->phychan_hold++;
 947	plchan->phychan = ch;
 948
 949	return 0;
 950}
 951
 952static void release_phy_channel(struct pl08x_dma_chan *plchan)
 
 953{
 954	struct pl08x_driver_data *pl08x = plchan->host;
 955
 956	if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
 957		pl08x->pd->put_signal(plchan);
 958		plchan->phychan->signal = -1;
 959	}
 960	pl08x_put_phy_channel(pl08x, plchan->phychan);
 961	plchan->phychan = NULL;
 962}
 963
 964static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
 
 
 
 965{
 966	struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
 967	struct pl08x_txd *txd = to_pl08x_txd(tx);
 968	unsigned long flags;
 969
 970	spin_lock_irqsave(&plchan->lock, flags);
 971
 972	plchan->chan.cookie += 1;
 973	if (plchan->chan.cookie < 0)
 974		plchan->chan.cookie = 1;
 975	tx->cookie = plchan->chan.cookie;
 976
 977	/* Put this onto the pending list */
 978	list_add_tail(&txd->node, &plchan->pend_list);
 979
 980	/*
 981	 * If there was no physical channel available for this memcpy,
 982	 * stack the request up and indicate that the channel is waiting
 983	 * for a free physical channel.
 984	 */
 985	if (!plchan->slave && !plchan->phychan) {
 986		/* Do this memcpy whenever there is a channel ready */
 987		plchan->state = PL08X_CHAN_WAITING;
 988		plchan->waiting = txd;
 989	} else {
 990		plchan->phychan_hold--;
 991	}
 992
 993	spin_unlock_irqrestore(&plchan->lock, flags);
 994
 995	return tx->cookie;
 996}
 997
 998static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
 999		struct dma_chan *chan, unsigned long flags)
1000{
1001	struct dma_async_tx_descriptor *retval = NULL;
1002
1003	return retval;
1004}
1005
1006/*
1007 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1008 * If slaves are relying on interrupts to signal completion this function
1009 * must not be called with interrupts disabled.
1010 */
1011static enum dma_status
1012pl08x_dma_tx_status(struct dma_chan *chan,
1013		    dma_cookie_t cookie,
1014		    struct dma_tx_state *txstate)
1015{
1016	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1017	dma_cookie_t last_used;
1018	dma_cookie_t last_complete;
1019	enum dma_status ret;
1020	u32 bytesleft = 0;
1021
1022	last_used = plchan->chan.cookie;
1023	last_complete = plchan->lc;
 
1024
1025	ret = dma_async_is_complete(cookie, last_complete, last_used);
1026	if (ret == DMA_SUCCESS) {
1027		dma_set_tx_state(txstate, last_complete, last_used, 0);
 
 
 
 
1028		return ret;
1029	}
1030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1031	/*
1032	 * This cookie not complete yet
 
1033	 */
1034	last_used = plchan->chan.cookie;
1035	last_complete = plchan->lc;
1036
1037	/* Get number of bytes left in the active transactions and queue */
1038	bytesleft = pl08x_getbytes_chan(plchan);
1039
1040	dma_set_tx_state(txstate, last_complete, last_used,
1041			 bytesleft);
1042
1043	if (plchan->state == PL08X_CHAN_PAUSED)
1044		return DMA_PAUSED;
1045
1046	/* Whether waiting or running, we're in progress */
1047	return DMA_IN_PROGRESS;
1048}
1049
1050/* PrimeCell DMA extension */
1051struct burst_table {
1052	u32 burstwords;
1053	u32 reg;
1054};
1055
1056static const struct burst_table burst_sizes[] = {
1057	{
1058		.burstwords = 256,
1059		.reg = PL080_BSIZE_256,
1060	},
1061	{
1062		.burstwords = 128,
1063		.reg = PL080_BSIZE_128,
1064	},
1065	{
1066		.burstwords = 64,
1067		.reg = PL080_BSIZE_64,
1068	},
1069	{
1070		.burstwords = 32,
1071		.reg = PL080_BSIZE_32,
1072	},
1073	{
1074		.burstwords = 16,
1075		.reg = PL080_BSIZE_16,
1076	},
1077	{
1078		.burstwords = 8,
1079		.reg = PL080_BSIZE_8,
1080	},
1081	{
1082		.burstwords = 4,
1083		.reg = PL080_BSIZE_4,
1084	},
1085	{
1086		.burstwords = 0,
1087		.reg = PL080_BSIZE_1,
1088	},
1089};
1090
1091/*
1092 * Given the source and destination available bus masks, select which
1093 * will be routed to each port.  We try to have source and destination
1094 * on separate ports, but always respect the allowable settings.
1095 */
1096static u32 pl08x_select_bus(u8 src, u8 dst)
1097{
1098	u32 cctl = 0;
1099
1100	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1101		cctl |= PL080_CONTROL_DST_AHB2;
1102	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1103		cctl |= PL080_CONTROL_SRC_AHB2;
1104
1105	return cctl;
1106}
1107
1108static u32 pl08x_cctl(u32 cctl)
1109{
1110	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1111		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1112		  PL080_CONTROL_PROT_MASK);
1113
1114	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
1115	return cctl | PL080_CONTROL_PROT_SYS;
1116}
1117
1118static u32 pl08x_width(enum dma_slave_buswidth width)
1119{
1120	switch (width) {
1121	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1122		return PL080_WIDTH_8BIT;
1123	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1124		return PL080_WIDTH_16BIT;
1125	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1126		return PL080_WIDTH_32BIT;
1127	default:
1128		return ~0;
1129	}
1130}
1131
1132static u32 pl08x_burst(u32 maxburst)
1133{
1134	int i;
1135
1136	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1137		if (burst_sizes[i].burstwords <= maxburst)
1138			break;
1139
1140	return burst_sizes[i].reg;
1141}
1142
1143static int dma_set_runtime_config(struct dma_chan *chan,
1144				  struct dma_slave_config *config)
1145{
1146	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1147	struct pl08x_driver_data *pl08x = plchan->host;
1148	enum dma_slave_buswidth addr_width;
1149	u32 width, burst, maxburst;
1150	u32 cctl = 0;
1151
1152	if (!plchan->slave)
1153		return -EINVAL;
1154
1155	/* Transfer direction */
1156	plchan->runtime_direction = config->direction;
1157	if (config->direction == DMA_TO_DEVICE) {
1158		addr_width = config->dst_addr_width;
1159		maxburst = config->dst_maxburst;
1160	} else if (config->direction == DMA_FROM_DEVICE) {
1161		addr_width = config->src_addr_width;
1162		maxburst = config->src_maxburst;
1163	} else {
1164		dev_err(&pl08x->adev->dev,
1165			"bad runtime_config: alien transfer direction\n");
1166		return -EINVAL;
1167	}
1168
1169	width = pl08x_width(addr_width);
1170	if (width == ~0) {
1171		dev_err(&pl08x->adev->dev,
1172			"bad runtime_config: alien address width\n");
1173		return -EINVAL;
1174	}
1175
1176	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1177	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1178
1179	/*
1180	 * If this channel will only request single transfers, set this
1181	 * down to ONE element.  Also select one element if no maxburst
1182	 * is specified.
1183	 */
1184	if (plchan->cd->single)
1185		maxburst = 1;
1186
1187	burst = pl08x_burst(maxburst);
1188	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1189	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1190
1191	if (plchan->runtime_direction == DMA_FROM_DEVICE) {
1192		plchan->src_addr = config->src_addr;
1193		plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
1194			pl08x_select_bus(plchan->cd->periph_buses,
1195					 pl08x->mem_buses);
1196	} else {
1197		plchan->dst_addr = config->dst_addr;
1198		plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
1199			pl08x_select_bus(pl08x->mem_buses,
1200					 plchan->cd->periph_buses);
1201	}
1202
1203	dev_dbg(&pl08x->adev->dev,
1204		"configured channel %s (%s) for %s, data width %d, "
1205		"maxburst %d words, LE, CCTL=0x%08x\n",
1206		dma_chan_name(chan), plchan->name,
1207		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1208		addr_width,
1209		maxburst,
1210		cctl);
1211
1212	return 0;
1213}
1214
1215/*
1216 * Slave transactions callback to the slave device to allow
1217 * synchronization of slave DMA signals with the DMAC enable
1218 */
1219static void pl08x_issue_pending(struct dma_chan *chan)
1220{
1221	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1222	unsigned long flags;
1223
1224	spin_lock_irqsave(&plchan->lock, flags);
1225	/* Something is already active, or we're waiting for a channel... */
1226	if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1227		spin_unlock_irqrestore(&plchan->lock, flags);
1228		return;
1229	}
1230
1231	/* Take the first element in the queue and execute it */
1232	if (!list_empty(&plchan->pend_list)) {
1233		struct pl08x_txd *next;
1234
1235		next = list_first_entry(&plchan->pend_list,
1236					struct pl08x_txd,
1237					node);
1238		list_del(&next->node);
1239		plchan->state = PL08X_CHAN_RUNNING;
1240
1241		pl08x_start_txd(plchan, next);
1242	}
1243
1244	spin_unlock_irqrestore(&plchan->lock, flags);
1245}
1246
1247static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1248					struct pl08x_txd *txd)
1249{
1250	struct pl08x_driver_data *pl08x = plchan->host;
1251	unsigned long flags;
1252	int num_llis, ret;
1253
1254	num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1255	if (!num_llis) {
1256		kfree(txd);
1257		return -EINVAL;
1258	}
1259
1260	spin_lock_irqsave(&plchan->lock, flags);
1261
1262	/*
1263	 * See if we already have a physical channel allocated,
1264	 * else this is the time to try to get one.
1265	 */
1266	ret = prep_phy_channel(plchan, txd);
1267	if (ret) {
1268		/*
1269		 * No physical channel was available.
1270		 *
1271		 * memcpy transfers can be sorted out at submission time.
1272		 *
1273		 * Slave transfers may have been denied due to platform
1274		 * channel muxing restrictions.  Since there is no guarantee
1275		 * that this will ever be resolved, and the signal must be
1276		 * acquired AFTER acquiring the physical channel, we will let
1277		 * them be NACK:ed with -EBUSY here. The drivers can retry
1278		 * the prep() call if they are eager on doing this using DMA.
1279		 */
1280		if (plchan->slave) {
1281			pl08x_free_txd_list(pl08x, plchan);
1282			pl08x_free_txd(pl08x, txd);
1283			spin_unlock_irqrestore(&plchan->lock, flags);
1284			return -EBUSY;
1285		}
1286	} else
1287		/*
1288		 * Else we're all set, paused and ready to roll, status
1289		 * will switch to PL08X_CHAN_RUNNING when we call
1290		 * issue_pending(). If there is something running on the
1291		 * channel already we don't change its state.
1292		 */
1293		if (plchan->state == PL08X_CHAN_IDLE)
1294			plchan->state = PL08X_CHAN_PAUSED;
1295
1296	spin_unlock_irqrestore(&plchan->lock, flags);
1297
1298	return 0;
1299}
1300
1301static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1302	unsigned long flags)
1303{
1304	struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1305
1306	if (txd) {
1307		dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1308		txd->tx.flags = flags;
1309		txd->tx.tx_submit = pl08x_tx_submit;
1310		INIT_LIST_HEAD(&txd->node);
1311
1312		/* Always enable error and terminal interrupts */
1313		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1314			    PL080_CONFIG_TC_IRQ_MASK;
1315	}
1316	return txd;
1317}
1318
1319/*
1320 * Initialize a descriptor to be used by memcpy submit
1321 */
1322static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1323		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1324		size_t len, unsigned long flags)
1325{
1326	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1327	struct pl08x_driver_data *pl08x = plchan->host;
1328	struct pl08x_txd *txd;
 
1329	int ret;
1330
1331	txd = pl08x_get_txd(plchan, flags);
1332	if (!txd) {
1333		dev_err(&pl08x->adev->dev,
1334			"%s no memory for descriptor\n", __func__);
1335		return NULL;
1336	}
1337
1338	txd->direction = DMA_NONE;
1339	txd->src_addr = src;
1340	txd->dst_addr = dest;
1341	txd->len = len;
 
 
 
 
 
 
 
 
1342
1343	/* Set platform data for m2m */
1344	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1345	txd->cctl = pl08x->pd->memcpy_channel.cctl &
1346			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1347
1348	/* Both to be incremented or the code will break */
1349	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1350
1351	if (pl08x->vd->dualmaster)
1352		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1353					      pl08x->mem_buses);
1354
1355	ret = pl08x_prep_channel_resources(plchan, txd);
1356	if (ret)
 
1357		return NULL;
 
1358
1359	return &txd->tx;
1360}
1361
1362static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1363		struct dma_chan *chan, struct scatterlist *sgl,
1364		unsigned int sg_len, enum dma_data_direction direction,
1365		unsigned long flags)
1366{
1367	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1368	struct pl08x_driver_data *pl08x = plchan->host;
1369	struct pl08x_txd *txd;
1370	int ret;
1371
1372	/*
1373	 * Current implementation ASSUMES only one sg
1374	 */
1375	if (sg_len != 1) {
1376		dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1377			__func__);
1378		BUG();
1379	}
1380
1381	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1382		__func__, sgl->length, plchan->name);
1383
1384	txd = pl08x_get_txd(plchan, flags);
1385	if (!txd) {
1386		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1387		return NULL;
1388	}
1389
1390	if (direction != plchan->runtime_direction)
1391		dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1392			"the direction configured for the PrimeCell\n",
1393			__func__);
1394
1395	/*
1396	 * Set up addresses, the PrimeCell configured address
1397	 * will take precedence since this may configure the
1398	 * channel target address dynamically at runtime.
1399	 */
1400	txd->direction = direction;
1401	txd->len = sgl->length;
1402
1403	if (direction == DMA_TO_DEVICE) {
1404		txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1405		txd->cctl = plchan->dst_cctl;
1406		txd->src_addr = sgl->dma_address;
1407		txd->dst_addr = plchan->dst_addr;
1408	} else if (direction == DMA_FROM_DEVICE) {
1409		txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1410		txd->cctl = plchan->src_cctl;
1411		txd->src_addr = plchan->src_addr;
1412		txd->dst_addr = sgl->dma_address;
 
1413	} else {
 
1414		dev_err(&pl08x->adev->dev,
1415			"%s direction unsupported\n", __func__);
1416		return NULL;
1417	}
1418
1419	ret = pl08x_prep_channel_resources(plchan, txd);
1420	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1421		return NULL;
 
 
 
 
 
 
 
 
 
 
1422
1423	return &txd->tx;
1424}
1425
1426static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1427			 unsigned long arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1428{
1429	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1430	struct pl08x_driver_data *pl08x = plchan->host;
1431	unsigned long flags;
1432	int ret = 0;
 
 
 
 
 
1433
1434	/* Controls applicable to inactive channels */
1435	if (cmd == DMA_SLAVE_CONFIG) {
1436		return dma_set_runtime_config(chan,
1437					      (struct dma_slave_config *)arg);
 
 
 
 
 
 
 
 
 
 
 
1438	}
1439
1440	/*
1441	 * Anything succeeds on channels with no physical allocation and
1442	 * no queued transfers.
1443	 */
1444	spin_lock_irqsave(&plchan->lock, flags);
1445	if (!plchan->phychan && !plchan->at) {
1446		spin_unlock_irqrestore(&plchan->lock, flags);
1447		return 0;
1448	}
1449
1450	switch (cmd) {
1451	case DMA_TERMINATE_ALL:
1452		plchan->state = PL08X_CHAN_IDLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453
1454		if (plchan->phychan) {
1455			pl08x_terminate_phy_chan(pl08x, plchan->phychan);
 
1456
1457			/*
1458			 * Mark physical channel as free and free any slave
1459			 * signal
1460			 */
1461			release_phy_channel(plchan);
 
 
 
 
1462		}
1463		/* Dequeue jobs and free LLIs */
1464		if (plchan->at) {
1465			pl08x_free_txd(pl08x, plchan->at);
1466			plchan->at = NULL;
1467		}
1468		/* Dequeue jobs not yet fired as well */
1469		pl08x_free_txd_list(pl08x, plchan);
1470		break;
1471	case DMA_PAUSE:
1472		pl08x_pause_phy_chan(plchan->phychan);
1473		plchan->state = PL08X_CHAN_PAUSED;
1474		break;
1475	case DMA_RESUME:
1476		pl08x_resume_phy_chan(plchan->phychan);
1477		plchan->state = PL08X_CHAN_RUNNING;
1478		break;
1479	default:
1480		/* Unknown command */
1481		ret = -ENXIO;
1482		break;
1483	}
1484
1485	spin_unlock_irqrestore(&plchan->lock, flags);
 
 
 
 
 
1486
1487	return ret;
1488}
1489
1490bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
 
1491{
1492	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1493	char *name = chan_id;
1494
1495	/* Check that the channel is not taken! */
1496	if (!strcmp(plchan->name, name))
1497		return true;
1498
1499	return false;
1500}
 
 
1501
1502/*
1503 * Just check that the device is there and active
1504 * TODO: turn this bit on/off depending on the number of physical channels
1505 * actually used, if it is zero... well shut it off. That will save some
1506 * power. Cut the clock at the same time.
1507 */
1508static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1509{
1510	u32 val;
1511
1512	val = readl(pl08x->base + PL080_CONFIG);
1513	val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1514	/* We implicitly clear bit 1 and that means little-endian mode */
1515	val |= PL080_CONFIG_ENABLE;
1516	writel(val, pl08x->base + PL080_CONFIG);
1517}
1518
1519static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1520{
1521	struct device *dev = txd->tx.chan->device->dev;
 
 
1522
1523	if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1524		if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1525			dma_unmap_single(dev, txd->src_addr, txd->len,
1526				DMA_TO_DEVICE);
1527		else
1528			dma_unmap_page(dev, txd->src_addr, txd->len,
1529				DMA_TO_DEVICE);
1530	}
1531	if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1532		if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1533			dma_unmap_single(dev, txd->dst_addr, txd->len,
1534				DMA_FROM_DEVICE);
1535		else
1536			dma_unmap_page(dev, txd->dst_addr, txd->len,
1537				DMA_FROM_DEVICE);
 
 
 
 
 
 
 
1538	}
 
 
 
 
 
 
1539}
1540
1541static void pl08x_tasklet(unsigned long data)
1542{
1543	struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1544	struct pl08x_driver_data *pl08x = plchan->host;
1545	struct pl08x_txd *txd;
1546	unsigned long flags;
1547
1548	spin_lock_irqsave(&plchan->lock, flags);
1549
1550	txd = plchan->at;
1551	plchan->at = NULL;
1552
1553	if (txd) {
1554		/* Update last completed */
1555		plchan->lc = txd->tx.cookie;
1556	}
1557
1558	/* If a new descriptor is queued, set it up plchan->at is NULL here */
1559	if (!list_empty(&plchan->pend_list)) {
1560		struct pl08x_txd *next;
1561
1562		next = list_first_entry(&plchan->pend_list,
1563					struct pl08x_txd,
1564					node);
1565		list_del(&next->node);
1566
1567		pl08x_start_txd(plchan, next);
1568	} else if (plchan->phychan_hold) {
1569		/*
1570		 * This channel is still in use - we have a new txd being
1571		 * prepared and will soon be queued.  Don't give up the
1572		 * physical channel.
1573		 */
1574	} else {
1575		struct pl08x_dma_chan *waiting = NULL;
1576
1577		/*
1578		 * No more jobs, so free up the physical channel
1579		 * Free any allocated signal on slave transfers too
1580		 */
1581		release_phy_channel(plchan);
1582		plchan->state = PL08X_CHAN_IDLE;
1583
1584		/*
1585		 * And NOW before anyone else can grab that free:d up
1586		 * physical channel, see if there is some memcpy pending
1587		 * that seriously needs to start because of being stacked
1588		 * up while we were choking the physical channels with data.
1589		 */
1590		list_for_each_entry(waiting, &pl08x->memcpy.channels,
1591				    chan.device_node) {
1592		  if (waiting->state == PL08X_CHAN_WAITING &&
1593			    waiting->waiting != NULL) {
1594				int ret;
1595
1596				/* This should REALLY not fail now */
1597				ret = prep_phy_channel(waiting,
1598						       waiting->waiting);
1599				BUG_ON(ret);
1600				waiting->phychan_hold--;
1601				waiting->state = PL08X_CHAN_RUNNING;
1602				waiting->waiting = NULL;
1603				pl08x_issue_pending(&waiting->chan);
1604				break;
1605			}
1606		}
1607	}
1608
1609	spin_unlock_irqrestore(&plchan->lock, flags);
 
1610
1611	if (txd) {
1612		dma_async_tx_callback callback = txd->tx.callback;
1613		void *callback_param = txd->tx.callback_param;
1614
1615		/* Don't try to unmap buffers on slave channels */
1616		if (!plchan->slave)
1617			pl08x_unmap_buffers(txd);
1618
1619		/* Free the descriptor */
1620		spin_lock_irqsave(&plchan->lock, flags);
1621		pl08x_free_txd(pl08x, txd);
1622		spin_unlock_irqrestore(&plchan->lock, flags);
1623
1624		/* Callback to signal completion */
1625		if (callback)
1626			callback(callback_param);
1627	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1628}
1629
1630static irqreturn_t pl08x_irq(int irq, void *dev)
1631{
1632	struct pl08x_driver_data *pl08x = dev;
1633	u32 mask = 0;
1634	u32 val;
1635	int i;
 
 
 
 
 
 
 
 
 
 
 
 
1636
1637	val = readl(pl08x->base + PL080_ERR_STATUS);
1638	if (val) {
1639		/* An error interrupt (on one or more channels) */
1640		dev_err(&pl08x->adev->dev,
1641			"%s error interrupt, register value 0x%08x\n",
1642				__func__, val);
1643		/*
1644		 * Simply clear ALL PL08X error interrupts,
1645		 * regardless of channel and cause
1646		 * FIXME: should be 0x00000003 on PL081 really.
1647		 */
1648		writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1649	}
1650	val = readl(pl08x->base + PL080_INT_STATUS);
1651	for (i = 0; i < pl08x->vd->channels; i++) {
1652		if ((1 << i) & val) {
1653			/* Locate physical channel */
1654			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1655			struct pl08x_dma_chan *plchan = phychan->serving;
 
1656
1657			/* Schedule tasklet on this channel */
1658			tasklet_schedule(&plchan->tasklet);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1659
1660			mask |= (1 << i);
1661		}
1662	}
1663	/* Clear only the terminal interrupts on channels we processed */
1664	writel(mask, pl08x->base + PL080_TC_CLEAR);
1665
1666	return mask ? IRQ_HANDLED : IRQ_NONE;
1667}
1668
1669static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1670{
1671	u32 cctl = pl08x_cctl(chan->cd->cctl);
1672
1673	chan->slave = true;
1674	chan->name = chan->cd->bus_id;
1675	chan->src_addr = chan->cd->addr;
1676	chan->dst_addr = chan->cd->addr;
1677	chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
1678		pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
1679	chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
1680		pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
1681}
1682
1683/*
1684 * Initialise the DMAC memcpy/slave channels.
1685 * Make a local wrapper to hold required data
1686 */
1687static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1688					   struct dma_device *dmadev,
1689					   unsigned int channels,
1690					   bool slave)
1691{
1692	struct pl08x_dma_chan *chan;
1693	int i;
1694
1695	INIT_LIST_HEAD(&dmadev->channels);
1696
1697	/*
1698	 * Register as many many memcpy as we have physical channels,
1699	 * we won't always be able to use all but the code will have
1700	 * to cope with that situation.
1701	 */
1702	for (i = 0; i < channels; i++) {
1703		chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1704		if (!chan) {
1705			dev_err(&pl08x->adev->dev,
1706				"%s no memory for channel\n", __func__);
1707			return -ENOMEM;
1708		}
1709
1710		chan->host = pl08x;
1711		chan->state = PL08X_CHAN_IDLE;
 
1712
1713		if (slave) {
1714			chan->cd = &pl08x->pd->slave_channels[i];
1715			pl08x_dma_slave_init(chan);
1716		} else {
1717			chan->cd = &pl08x->pd->memcpy_channel;
1718			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1719			if (!chan->name) {
1720				kfree(chan);
1721				return -ENOMEM;
1722			}
1723		}
1724		if (chan->cd->circular_buffer) {
1725			dev_err(&pl08x->adev->dev,
1726				"channel %s: circular buffers not supported\n",
1727				chan->name);
1728			kfree(chan);
1729			continue;
1730		}
1731		dev_info(&pl08x->adev->dev,
1732			 "initialize virtual channel \"%s\"\n",
1733			 chan->name);
1734
1735		chan->chan.device = dmadev;
1736		chan->chan.cookie = 0;
1737		chan->lc = 0;
1738
1739		spin_lock_init(&chan->lock);
1740		INIT_LIST_HEAD(&chan->pend_list);
1741		tasklet_init(&chan->tasklet, pl08x_tasklet,
1742			     (unsigned long) chan);
1743
1744		list_add_tail(&chan->chan.device_node, &dmadev->channels);
1745	}
1746	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1747		 i, slave ? "slave" : "memcpy");
1748	return i;
1749}
1750
1751static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1752{
1753	struct pl08x_dma_chan *chan = NULL;
1754	struct pl08x_dma_chan *next;
1755
1756	list_for_each_entry_safe(chan,
1757				 next, &dmadev->channels, chan.device_node) {
1758		list_del(&chan->chan.device_node);
1759		kfree(chan);
1760	}
1761}
1762
1763#ifdef CONFIG_DEBUG_FS
1764static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1765{
1766	switch (state) {
1767	case PL08X_CHAN_IDLE:
1768		return "idle";
1769	case PL08X_CHAN_RUNNING:
1770		return "running";
1771	case PL08X_CHAN_PAUSED:
1772		return "paused";
1773	case PL08X_CHAN_WAITING:
1774		return "waiting";
1775	default:
1776		break;
1777	}
1778	return "UNKNOWN STATE";
1779}
1780
1781static int pl08x_debugfs_show(struct seq_file *s, void *data)
1782{
1783	struct pl08x_driver_data *pl08x = s->private;
1784	struct pl08x_dma_chan *chan;
1785	struct pl08x_phy_chan *ch;
1786	unsigned long flags;
1787	int i;
1788
1789	seq_printf(s, "PL08x physical channels:\n");
1790	seq_printf(s, "CHANNEL:\tUSER:\n");
1791	seq_printf(s, "--------\t-----\n");
1792	for (i = 0; i < pl08x->vd->channels; i++) {
1793		struct pl08x_dma_chan *virt_chan;
1794
1795		ch = &pl08x->phy_chans[i];
1796
1797		spin_lock_irqsave(&ch->lock, flags);
1798		virt_chan = ch->serving;
1799
1800		seq_printf(s, "%d\t\t%s\n",
1801			   ch->id, virt_chan ? virt_chan->name : "(none)");
 
 
1802
1803		spin_unlock_irqrestore(&ch->lock, flags);
1804	}
1805
1806	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1807	seq_printf(s, "CHANNEL:\tSTATE:\n");
1808	seq_printf(s, "--------\t------\n");
1809	list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1810		seq_printf(s, "%s\t\t%s\n", chan->name,
1811			   pl08x_state_str(chan->state));
1812	}
1813
1814	seq_printf(s, "\nPL08x virtual slave channels:\n");
1815	seq_printf(s, "CHANNEL:\tSTATE:\n");
1816	seq_printf(s, "--------\t------\n");
1817	list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1818		seq_printf(s, "%s\t\t%s\n", chan->name,
1819			   pl08x_state_str(chan->state));
1820	}
1821
1822	return 0;
1823}
1824
1825static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1826{
1827	return single_open(file, pl08x_debugfs_show, inode->i_private);
1828}
1829
1830static const struct file_operations pl08x_debugfs_operations = {
1831	.open		= pl08x_debugfs_open,
1832	.read		= seq_read,
1833	.llseek		= seq_lseek,
1834	.release	= single_release,
1835};
1836
1837static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1838{
1839	/* Expose a simple debugfs interface to view all clocks */
1840	(void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1841				   NULL, pl08x,
1842				   &pl08x_debugfs_operations);
1843}
1844
1845#else
1846static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1847{
1848}
1849#endif
1850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1851static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1852{
1853	struct pl08x_driver_data *pl08x;
1854	const struct vendor_data *vd = id->data;
 
 
1855	int ret = 0;
1856	int i;
1857
1858	ret = amba_request_regions(adev, NULL);
1859	if (ret)
1860		return ret;
1861
 
 
 
 
 
1862	/* Create the driver state holder */
1863	pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1864	if (!pl08x) {
1865		ret = -ENOMEM;
1866		goto out_no_pl08x;
1867	}
1868
1869	/* Initialize memcpy engine */
1870	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1871	pl08x->memcpy.dev = &adev->dev;
1872	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1873	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1874	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1875	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1876	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1877	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1878	pl08x->memcpy.device_control = pl08x_control;
 
 
 
 
 
 
 
1879
1880	/* Initialize slave engine */
1881	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
 
1882	pl08x->slave.dev = &adev->dev;
1883	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1884	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1885	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1886	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1887	pl08x->slave.device_issue_pending = pl08x_issue_pending;
1888	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1889	pl08x->slave.device_control = pl08x_control;
 
 
 
 
 
 
 
 
1890
1891	/* Get the platform data */
1892	pl08x->pd = dev_get_platdata(&adev->dev);
1893	if (!pl08x->pd) {
1894		dev_err(&adev->dev, "no platform data supplied\n");
1895		goto out_no_platdata;
 
 
 
 
 
 
 
1896	}
1897
1898	/* Assign useful pointers to the driver state */
1899	pl08x->adev = adev;
1900	pl08x->vd = vd;
1901
1902	/* By default, AHB1 only.  If dualmaster, from platform */
1903	pl08x->lli_buses = PL08X_AHB1;
1904	pl08x->mem_buses = PL08X_AHB1;
1905	if (pl08x->vd->dualmaster) {
1906		pl08x->lli_buses = pl08x->pd->lli_buses;
1907		pl08x->mem_buses = pl08x->pd->mem_buses;
1908	}
1909
 
 
 
 
 
 
1910	/* A DMA memory pool for LLIs, align on 1-byte boundary */
1911	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1912			PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1913	if (!pl08x->pool) {
1914		ret = -ENOMEM;
1915		goto out_no_lli_pool;
1916	}
1917
1918	spin_lock_init(&pl08x->lock);
1919
1920	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1921	if (!pl08x->base) {
1922		ret = -ENOMEM;
1923		goto out_no_ioremap;
1924	}
1925
1926	/* Turn on the PL08x */
1927	pl08x_ensure_on(pl08x);
1928
1929	/* Attach the interrupt handler */
1930	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1931	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1932
1933	ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1934			  DRIVER_NAME, pl08x);
1935	if (ret) {
1936		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1937			__func__, adev->irq[0]);
1938		goto out_no_irq;
1939	}
1940
1941	/* Initialize physical channels */
1942	pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
1943			GFP_KERNEL);
1944	if (!pl08x->phy_chans) {
1945		dev_err(&adev->dev, "%s failed to allocate "
1946			"physical channel holders\n",
1947			__func__);
 
1948		goto out_no_phychans;
1949	}
1950
1951	for (i = 0; i < vd->channels; i++) {
1952		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1953
1954		ch->id = i;
1955		ch->base = pl08x->base + PL080_Cx_BASE(i);
 
1956		spin_lock_init(&ch->lock);
1957		ch->serving = NULL;
1958		ch->signal = -1;
1959		dev_info(&adev->dev,
1960			 "physical channel %d is %s\n", i,
1961			 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
 
 
 
 
 
 
 
 
 
 
 
 
 
1962	}
1963
1964	/* Register as many memcpy channels as there are physical channels */
1965	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1966					      pl08x->vd->channels, false);
1967	if (ret <= 0) {
1968		dev_warn(&pl08x->adev->dev,
1969			 "%s failed to enumerate memcpy channels - %d\n",
1970			 __func__, ret);
1971		goto out_no_memcpy;
1972	}
1973	pl08x->memcpy.chancnt = ret;
1974
1975	/* Register slave channels */
1976	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1977					      pl08x->pd->num_slave_channels,
1978					      true);
1979	if (ret <= 0) {
1980		dev_warn(&pl08x->adev->dev,
1981			"%s failed to enumerate slave channels - %d\n",
1982				__func__, ret);
1983		goto out_no_slave;
1984	}
1985	pl08x->slave.chancnt = ret;
1986
1987	ret = dma_async_device_register(&pl08x->memcpy);
1988	if (ret) {
1989		dev_warn(&pl08x->adev->dev,
1990			"%s failed to register memcpy as an async device - %d\n",
1991			__func__, ret);
1992		goto out_no_memcpy_reg;
1993	}
1994
1995	ret = dma_async_device_register(&pl08x->slave);
1996	if (ret) {
1997		dev_warn(&pl08x->adev->dev,
1998			"%s failed to register slave as an async device - %d\n",
1999			__func__, ret);
2000		goto out_no_slave_reg;
2001	}
2002
2003	amba_set_drvdata(adev, pl08x);
2004	init_pl08x_debugfs(pl08x);
2005	dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2006		 amba_part(adev), amba_rev(adev),
2007		 (unsigned long long)adev->res.start, adev->irq[0]);
 
2008	return 0;
2009
2010out_no_slave_reg:
2011	dma_async_device_unregister(&pl08x->memcpy);
2012out_no_memcpy_reg:
2013	pl08x_free_virtual_channels(&pl08x->slave);
2014out_no_slave:
2015	pl08x_free_virtual_channels(&pl08x->memcpy);
2016out_no_memcpy:
2017	kfree(pl08x->phy_chans);
2018out_no_phychans:
2019	free_irq(adev->irq[0], pl08x);
2020out_no_irq:
2021	iounmap(pl08x->base);
2022out_no_ioremap:
2023	dma_pool_destroy(pl08x->pool);
2024out_no_lli_pool:
2025out_no_platdata:
2026	kfree(pl08x);
2027out_no_pl08x:
2028	amba_release_regions(adev);
2029	return ret;
2030}
2031
2032/* PL080 has 8 channels and the PL080 have just 2 */
2033static struct vendor_data vendor_pl080 = {
 
2034	.channels = 8,
2035	.dualmaster = true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2036};
2037
2038static struct vendor_data vendor_pl081 = {
 
2039	.channels = 2,
2040	.dualmaster = false,
 
2041};
2042
2043static struct amba_id pl08x_ids[] = {
 
 
 
 
 
 
2044	/* PL080 */
2045	{
2046		.id	= 0x00041080,
2047		.mask	= 0x000fffff,
2048		.data	= &vendor_pl080,
2049	},
2050	/* PL081 */
2051	{
2052		.id	= 0x00041081,
2053		.mask	= 0x000fffff,
2054		.data	= &vendor_pl081,
2055	},
2056	/* Nomadik 8815 PL080 variant */
2057	{
2058		.id	= 0x00280880,
2059		.mask	= 0x00ffffff,
2060		.data	= &vendor_pl080,
2061	},
2062	{ 0, 0 },
2063};
 
 
2064
2065static struct amba_driver pl08x_amba_driver = {
2066	.drv.name	= DRIVER_NAME,
2067	.id_table	= pl08x_ids,
2068	.probe		= pl08x_probe,
2069};
2070
2071static int __init pl08x_init(void)
2072{
2073	int retval;
2074	retval = amba_driver_register(&pl08x_amba_driver);
2075	if (retval)
2076		printk(KERN_WARNING DRIVER_NAME
2077		       "failed to register as an AMBA device (%d)\n",
2078		       retval);
2079	return retval;
2080}
2081subsys_initcall(pl08x_init);
v4.6
   1/*
   2 * Copyright (c) 2006 ARM Ltd.
   3 * Copyright (c) 2010 ST-Ericsson SA
   4 *
   5 * Author: Peter Pearse <peter.pearse@arm.com>
   6 * Author: Linus Walleij <linus.walleij@stericsson.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify it
   9 * under the terms of the GNU General Public License as published by the Free
  10 * Software Foundation; either version 2 of the License, or (at your option)
  11 * any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful, but WITHOUT
  14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  16 * more details.
  17 *
 
 
 
 
  18 * The full GNU General Public License is in this distribution in the file
  19 * called COPYING.
  20 *
  21 * Documentation: ARM DDI 0196G == PL080
  22 * Documentation: ARM DDI 0218E == PL081
  23 * Documentation: S3C6410 User's Manual == PL080S
  24 *
  25 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
  26 * channel.
  27 *
  28 * The PL080 has 8 channels available for simultaneous use, and the PL081
  29 * has only two channels. So on these DMA controllers the number of channels
  30 * and the number of incoming DMA signals are two totally different things.
  31 * It is usually not possible to theoretically handle all physical signals,
  32 * so a multiplexing scheme with possible denial of use is necessary.
  33 *
  34 * The PL080 has a dual bus master, PL081 has a single master.
  35 *
  36 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
  37 * It differs in following aspects:
  38 * - CH_CONFIG register at different offset,
  39 * - separate CH_CONTROL2 register for transfer size,
  40 * - bigger maximum transfer size,
  41 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
  42 * - no support for peripheral flow control.
  43 *
  44 * Memory to peripheral transfer may be visualized as
  45 *	Get data from memory to DMAC
  46 *	Until no data left
  47 *		On burst request from peripheral
  48 *			Destination burst from DMAC to peripheral
  49 *			Clear burst request
  50 *	Raise terminal count interrupt
  51 *
  52 * For peripherals with a FIFO:
  53 * Source      burst size == half the depth of the peripheral FIFO
  54 * Destination burst size == the depth of the peripheral FIFO
  55 *
  56 * (Bursts are irrelevant for mem to mem transfers - there are no burst
  57 * signals, the DMA controller will simply facilitate its AHB master.)
  58 *
  59 * ASSUMES default (little) endianness for DMA transfers
  60 *
  61 * The PL08x has two flow control settings:
  62 *  - DMAC flow control: the transfer size defines the number of transfers
  63 *    which occur for the current LLI entry, and the DMAC raises TC at the
  64 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
  65 *    to both the BREQ and SREQ signals (contrary to documented),
  66 *    transferring data if either is active.  The LBREQ and LSREQ signals
  67 *    are ignored.
  68 *
  69 *  - Peripheral flow control: the transfer size is ignored (and should be
  70 *    zero).  The data is transferred from the current LLI entry, until
  71 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
  72 *    will then move to the next LLI entry. Unsupported by PL080S.
 
 
 
 
 
 
 
 
  73 */
 
 
 
 
 
 
 
 
 
  74#include <linux/amba/bus.h>
  75#include <linux/amba/pl08x.h>
  76#include <linux/debugfs.h>
  77#include <linux/delay.h>
  78#include <linux/device.h>
  79#include <linux/dmaengine.h>
  80#include <linux/dmapool.h>
  81#include <linux/dma-mapping.h>
  82#include <linux/export.h>
  83#include <linux/init.h>
  84#include <linux/interrupt.h>
  85#include <linux/module.h>
  86#include <linux/of.h>
  87#include <linux/of_dma.h>
  88#include <linux/pm_runtime.h>
  89#include <linux/seq_file.h>
  90#include <linux/slab.h>
  91#include <linux/amba/pl080.h>
  92
  93#include "dmaengine.h"
  94#include "virt-dma.h"
  95
  96#define DRIVER_NAME	"pl08xdmac"
  97
  98#define PL80X_DMA_BUSWIDTHS \
  99	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
 100	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
 101	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
 102	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
 103
 104static struct amba_driver pl08x_amba_driver;
 105struct pl08x_driver_data;
 106
 107/**
 108 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
 109 * @channels: the number of channels available in this variant
 110 * @dualmaster: whether this version supports dual AHB masters or not.
 111 * @nomadik: whether the channels have Nomadik security extension bits
 112 *	that need to be checked for permission before use and some registers are
 113 *	missing
 114 * @pl080s: whether this version is a PL080S, which has separate register and
 115 *	LLI word for transfer size.
 116 */
 117struct vendor_data {
 118	u8 config_offset;
 119	u8 channels;
 120	bool dualmaster;
 121	bool nomadik;
 122	bool pl080s;
 123	u32 max_transfer_size;
 124};
 125
 126/**
 127 * struct pl08x_bus_data - information of source or destination
 128 * busses for a transfer
 129 * @addr: current address
 130 * @maxwidth: the maximum width of a transfer on this bus
 131 * @buswidth: the width of this bus in bytes: 1, 2 or 4
 132 */
 133struct pl08x_bus_data {
 134	dma_addr_t addr;
 135	u8 maxwidth;
 136	u8 buswidth;
 137};
 138
 139#define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
 140
 141/**
 142 * struct pl08x_phy_chan - holder for the physical channels
 143 * @id: physical index to this channel
 144 * @lock: a lock to use when altering an instance of this struct
 145 * @serving: the virtual channel currently being served by this physical
 146 * channel
 147 * @locked: channel unavailable for the system, e.g. dedicated to secure
 148 * world
 149 */
 150struct pl08x_phy_chan {
 151	unsigned int id;
 152	void __iomem *base;
 153	void __iomem *reg_config;
 154	spinlock_t lock;
 155	struct pl08x_dma_chan *serving;
 156	bool locked;
 157};
 158
 159/**
 160 * struct pl08x_sg - structure containing data per sg
 161 * @src_addr: src address of sg
 162 * @dst_addr: dst address of sg
 163 * @len: transfer len in bytes
 164 * @node: node for txd's dsg_list
 165 */
 166struct pl08x_sg {
 167	dma_addr_t src_addr;
 168	dma_addr_t dst_addr;
 169	size_t len;
 170	struct list_head node;
 171};
 172
 173/**
 174 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
 175 * @vd: virtual DMA descriptor
 176 * @dsg_list: list of children sg's
 177 * @llis_bus: DMA memory address (physical) start for the LLIs
 178 * @llis_va: virtual memory address start for the LLIs
 179 * @cctl: control reg values for current txd
 180 * @ccfg: config reg values for current txd
 181 * @done: this marks completed descriptors, which should not have their
 182 *   mux released.
 183 * @cyclic: indicate cyclic transfers
 184 */
 185struct pl08x_txd {
 186	struct virt_dma_desc vd;
 187	struct list_head dsg_list;
 188	dma_addr_t llis_bus;
 189	u32 *llis_va;
 190	/* Default cctl value for LLIs */
 191	u32 cctl;
 192	/*
 193	 * Settings to be put into the physical channel when we
 194	 * trigger this txd.  Other registers are in llis_va[0].
 195	 */
 196	u32 ccfg;
 197	bool done;
 198	bool cyclic;
 199};
 200
 201/**
 202 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
 203 * states
 204 * @PL08X_CHAN_IDLE: the channel is idle
 205 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
 206 * channel and is running a transfer on it
 207 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
 208 * channel, but the transfer is currently paused
 209 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
 210 * channel to become available (only pertains to memcpy channels)
 211 */
 212enum pl08x_dma_chan_state {
 213	PL08X_CHAN_IDLE,
 214	PL08X_CHAN_RUNNING,
 215	PL08X_CHAN_PAUSED,
 216	PL08X_CHAN_WAITING,
 217};
 218
 219/**
 220 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
 221 * @vc: wrappped virtual channel
 222 * @phychan: the physical channel utilized by this channel, if there is one
 223 * @name: name of channel
 224 * @cd: channel platform data
 225 * @runtime_addr: address for RX/TX according to the runtime config
 226 * @at: active transaction on this channel
 227 * @lock: a lock for this channel data
 228 * @host: a pointer to the host (internal use)
 229 * @state: whether the channel is idle, paused, running etc
 230 * @slave: whether this channel is a device (slave) or for memcpy
 231 * @signal: the physical DMA request signal which this channel is using
 232 * @mux_use: count of descriptors using this DMA request signal setting
 233 */
 234struct pl08x_dma_chan {
 235	struct virt_dma_chan vc;
 236	struct pl08x_phy_chan *phychan;
 237	const char *name;
 238	const struct pl08x_channel_data *cd;
 239	struct dma_slave_config cfg;
 240	struct pl08x_txd *at;
 241	struct pl08x_driver_data *host;
 242	enum pl08x_dma_chan_state state;
 243	bool slave;
 244	int signal;
 245	unsigned mux_use;
 246};
 247
 248/**
 249 * struct pl08x_driver_data - the local state holder for the PL08x
 250 * @slave: slave engine for this instance
 251 * @memcpy: memcpy engine for this instance
 252 * @base: virtual memory base (remapped) for the PL08x
 253 * @adev: the corresponding AMBA (PrimeCell) bus entry
 254 * @vd: vendor data for this PL08x variant
 255 * @pd: platform data passed in from the platform/machine
 256 * @phy_chans: array of data for the physical channels
 257 * @pool: a pool for the LLI descriptors
 258 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 259 * fetches
 260 * @mem_buses: set to indicate memory transfers on AHB2.
 261 * @lock: a spinlock for this struct
 262 */
 263struct pl08x_driver_data {
 264	struct dma_device slave;
 265	struct dma_device memcpy;
 266	void __iomem *base;
 267	struct amba_device *adev;
 268	const struct vendor_data *vd;
 269	struct pl08x_platform_data *pd;
 270	struct pl08x_phy_chan *phy_chans;
 271	struct dma_pool *pool;
 
 272	u8 lli_buses;
 273	u8 mem_buses;
 274	u8 lli_words;
 275};
 276
 277/*
 278 * PL08X specific defines
 279 */
 280
 281/* The order of words in an LLI. */
 282#define PL080_LLI_SRC		0
 283#define PL080_LLI_DST		1
 284#define PL080_LLI_LLI		2
 285#define PL080_LLI_CCTL		3
 286#define PL080S_LLI_CCTL2	4
 287
 288/* Total words in an LLI. */
 289#define PL080_LLI_WORDS		4
 290#define PL080S_LLI_WORDS	8
 291
 292/*
 293 * Number of LLIs in each LLI buffer allocated for one transfer
 294 * (maximum times we call dma_pool_alloc on this pool without freeing)
 
 295 */
 296#define MAX_NUM_TSFR_LLIS	512
 
 
 
 
 
 
 
 297#define PL08X_ALIGN		8
 298
 299static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
 300{
 301	return container_of(chan, struct pl08x_dma_chan, vc.chan);
 302}
 303
 304static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
 305{
 306	return container_of(tx, struct pl08x_txd, vd.tx);
 307}
 308
 309/*
 310 * Mux handling.
 311 *
 312 * This gives us the DMA request input to the PL08x primecell which the
 313 * peripheral described by the channel data will be routed to, possibly
 314 * via a board/SoC specific external MUX.  One important point to note
 315 * here is that this does not depend on the physical channel.
 316 */
 317static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
 318{
 319	const struct pl08x_platform_data *pd = plchan->host->pd;
 320	int ret;
 321
 322	if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
 323		ret = pd->get_xfer_signal(plchan->cd);
 324		if (ret < 0) {
 325			plchan->mux_use = 0;
 326			return ret;
 327		}
 328
 329		plchan->signal = ret;
 330	}
 331	return 0;
 332}
 333
 334static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
 335{
 336	const struct pl08x_platform_data *pd = plchan->host->pd;
 337
 338	if (plchan->signal >= 0) {
 339		WARN_ON(plchan->mux_use == 0);
 340
 341		if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
 342			pd->put_xfer_signal(plchan->cd, plchan->signal);
 343			plchan->signal = -1;
 344		}
 345	}
 346}
 347
 348/*
 349 * Physical channel handling
 350 */
 351
 352/* Whether a certain channel is busy or not */
 353static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
 354{
 355	unsigned int val;
 356
 357	val = readl(ch->reg_config);
 358	return val & PL080_CONFIG_ACTIVE;
 359}
 360
 361static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
 362		struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
 363{
 364	if (pl08x->vd->pl080s)
 365		dev_vdbg(&pl08x->adev->dev,
 366			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 367			"clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
 368			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 369			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
 370			lli[PL080S_LLI_CCTL2], ccfg);
 371	else
 372		dev_vdbg(&pl08x->adev->dev,
 373			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 374			"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
 375			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 376			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
 377
 378	writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
 379	writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
 380	writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
 381	writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);
 382
 383	if (pl08x->vd->pl080s)
 384		writel_relaxed(lli[PL080S_LLI_CCTL2],
 385				phychan->base + PL080S_CH_CONTROL2);
 386
 387	writel(ccfg, phychan->reg_config);
 388}
 389
 390/*
 391 * Set the initial DMA register values i.e. those for the first LLI
 392 * The next LLI pointer and the configuration interrupt bit have
 393 * been set when the LLIs were constructed.  Poke them into the hardware
 394 * and start the transfer.
 395 */
 396static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
 
 397{
 398	struct pl08x_driver_data *pl08x = plchan->host;
 399	struct pl08x_phy_chan *phychan = plchan->phychan;
 400	struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
 401	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
 402	u32 val;
 403
 404	list_del(&txd->vd.node);
 405
 406	plchan->at = txd;
 407
 408	/* Wait for channel inactive */
 409	while (pl08x_phy_channel_busy(phychan))
 410		cpu_relax();
 411
 412	pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
 
 
 
 
 
 
 
 
 
 
 413
 414	/* Enable the DMA channel */
 415	/* Do not access config register until channel shows as disabled */
 416	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
 417		cpu_relax();
 418
 419	/* Do not access config register until channel shows as inactive */
 420	val = readl(phychan->reg_config);
 421	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
 422		val = readl(phychan->reg_config);
 423
 424	writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
 425}
 426
 427/*
 428 * Pause the channel by setting the HALT bit.
 429 *
 430 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 431 * the FIFO can only drain if the peripheral is still requesting data.
 432 * (note: this can still timeout if the DMAC FIFO never drains of data.)
 433 *
 434 * For P->M transfers, disable the peripheral first to stop it filling
 435 * the DMAC FIFO, and then pause the DMAC.
 436 */
 437static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
 438{
 439	u32 val;
 440	int timeout;
 441
 442	/* Set the HALT bit and wait for the FIFO to drain */
 443	val = readl(ch->reg_config);
 444	val |= PL080_CONFIG_HALT;
 445	writel(val, ch->reg_config);
 446
 447	/* Wait for channel inactive */
 448	for (timeout = 1000; timeout; timeout--) {
 449		if (!pl08x_phy_channel_busy(ch))
 450			break;
 451		udelay(1);
 452	}
 453	if (pl08x_phy_channel_busy(ch))
 454		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
 455}
 456
 457static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
 458{
 459	u32 val;
 460
 461	/* Clear the HALT bit */
 462	val = readl(ch->reg_config);
 463	val &= ~PL080_CONFIG_HALT;
 464	writel(val, ch->reg_config);
 465}
 466
 
 467/*
 468 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 469 * clears any pending interrupt status.  This should not be used for
 470 * an on-going transfer, but as a method of shutting down a channel
 471 * (eg, when it's no longer used) or terminating a transfer.
 472 */
 473static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
 474	struct pl08x_phy_chan *ch)
 475{
 476	u32 val = readl(ch->reg_config);
 477
 478	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
 479		 PL080_CONFIG_TC_IRQ_MASK);
 480
 481	writel(val, ch->reg_config);
 482
 483	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
 484	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
 485}
 486
 487static inline u32 get_bytes_in_cctl(u32 cctl)
 488{
 489	/* The source width defines the number of bytes */
 490	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
 491
 492	cctl &= PL080_CONTROL_SWIDTH_MASK;
 493
 494	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
 495	case PL080_WIDTH_8BIT:
 496		break;
 497	case PL080_WIDTH_16BIT:
 498		bytes *= 2;
 499		break;
 500	case PL080_WIDTH_32BIT:
 501		bytes *= 4;
 502		break;
 503	}
 504	return bytes;
 505}
 506
 507static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
 508{
 509	/* The source width defines the number of bytes */
 510	u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;
 511
 512	cctl &= PL080_CONTROL_SWIDTH_MASK;
 513
 514	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
 515	case PL080_WIDTH_8BIT:
 516		break;
 517	case PL080_WIDTH_16BIT:
 518		bytes *= 2;
 519		break;
 520	case PL080_WIDTH_32BIT:
 521		bytes *= 4;
 522		break;
 523	}
 524	return bytes;
 525}
 526
 527/* The channel should be paused when calling this */
 528static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
 529{
 530	struct pl08x_driver_data *pl08x = plchan->host;
 531	const u32 *llis_va, *llis_va_limit;
 532	struct pl08x_phy_chan *ch;
 533	dma_addr_t llis_bus;
 534	struct pl08x_txd *txd;
 535	u32 llis_max_words;
 536	size_t bytes;
 537	u32 clli;
 538
 
 539	ch = plchan->phychan;
 540	txd = plchan->at;
 541
 542	if (!ch || !txd)
 543		return 0;
 544
 545	/*
 546	 * Follow the LLIs to get the number of remaining
 547	 * bytes in the currently active transaction.
 548	 */
 549	clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
 
 550
 551	/* First get the remaining bytes in the active transfer */
 552	if (pl08x->vd->pl080s)
 553		bytes = get_bytes_in_cctl_pl080s(
 554				readl(ch->base + PL080_CH_CONTROL),
 555				readl(ch->base + PL080S_CH_CONTROL2));
 556	else
 557		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
 558
 559	if (!clli)
 560		return bytes;
 
 
 561
 562	llis_va = txd->llis_va;
 563	llis_bus = txd->llis_bus;
 564
 565	llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
 566	BUG_ON(clli < llis_bus || clli >= llis_bus +
 567						sizeof(u32) * llis_max_words);
 
 
 568
 569	/*
 570	 * Locate the next LLI - as this is an array,
 571	 * it's simple maths to find.
 572	 */
 573	llis_va += (clli - llis_bus) / sizeof(u32);
 574
 575	llis_va_limit = llis_va + llis_max_words;
 
 
 
 
 
 
 
 576
 577	for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
 578		if (pl08x->vd->pl080s)
 579			bytes += get_bytes_in_cctl_pl080s(
 580						llis_va[PL080_LLI_CCTL],
 581						llis_va[PL080S_LLI_CCTL2]);
 582		else
 583			bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
 584
 585		/*
 586		 * A LLI pointer going backward terminates the LLI list
 587		 */
 588		if (llis_va[PL080_LLI_LLI] <= clli)
 589			break;
 590	}
 591
 592	return bytes;
 593}
 594
 595/*
 596 * Allocate a physical channel for a virtual channel
 597 *
 598 * Try to locate a physical channel to be used for this transfer. If all
 599 * are taken return NULL and the requester will have to cope by using
 600 * some fallback PIO mode or retrying later.
 601 */
 602static struct pl08x_phy_chan *
 603pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
 604		      struct pl08x_dma_chan *virt_chan)
 605{
 606	struct pl08x_phy_chan *ch = NULL;
 607	unsigned long flags;
 608	int i;
 609
 610	for (i = 0; i < pl08x->vd->channels; i++) {
 611		ch = &pl08x->phy_chans[i];
 612
 613		spin_lock_irqsave(&ch->lock, flags);
 614
 615		if (!ch->locked && !ch->serving) {
 616			ch->serving = virt_chan;
 
 617			spin_unlock_irqrestore(&ch->lock, flags);
 618			break;
 619		}
 620
 621		spin_unlock_irqrestore(&ch->lock, flags);
 622	}
 623
 624	if (i == pl08x->vd->channels) {
 625		/* No physical channel available, cope with it */
 626		return NULL;
 627	}
 628
 629	return ch;
 630}
 631
 632/* Mark the physical channel as free.  Note, this write is atomic. */
 633static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
 634					 struct pl08x_phy_chan *ch)
 635{
 636	ch->serving = NULL;
 637}
 638
 639/*
 640 * Try to allocate a physical channel.  When successful, assign it to
 641 * this virtual channel, and initiate the next descriptor.  The
 642 * virtual channel lock must be held at this point.
 643 */
 644static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
 645{
 646	struct pl08x_driver_data *pl08x = plchan->host;
 647	struct pl08x_phy_chan *ch;
 648
 649	ch = pl08x_get_phy_channel(pl08x, plchan);
 650	if (!ch) {
 651		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
 652		plchan->state = PL08X_CHAN_WAITING;
 653		return;
 654	}
 655
 656	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
 657		ch->id, plchan->name);
 658
 659	plchan->phychan = ch;
 660	plchan->state = PL08X_CHAN_RUNNING;
 661	pl08x_start_next_txd(plchan);
 662}
 663
 664static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
 665	struct pl08x_dma_chan *plchan)
 666{
 667	struct pl08x_driver_data *pl08x = plchan->host;
 668
 669	dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
 670		ch->id, plchan->name);
 671
 672	/*
 673	 * We do this without taking the lock; we're really only concerned
 674	 * about whether this pointer is NULL or not, and we're guaranteed
 675	 * that this will only be called when it _already_ is non-NULL.
 676	 */
 677	ch->serving = plchan;
 678	plchan->phychan = ch;
 679	plchan->state = PL08X_CHAN_RUNNING;
 680	pl08x_start_next_txd(plchan);
 681}
 682
 683/*
 684 * Free a physical DMA channel, potentially reallocating it to another
 685 * virtual channel if we have any pending.
 686 */
 687static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
 688{
 689	struct pl08x_driver_data *pl08x = plchan->host;
 690	struct pl08x_dma_chan *p, *next;
 691
 692 retry:
 693	next = NULL;
 694
 695	/* Find a waiting virtual channel for the next transfer. */
 696	list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
 697		if (p->state == PL08X_CHAN_WAITING) {
 698			next = p;
 699			break;
 700		}
 701
 702	if (!next) {
 703		list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
 704			if (p->state == PL08X_CHAN_WAITING) {
 705				next = p;
 706				break;
 707			}
 708	}
 709
 710	/* Ensure that the physical channel is stopped */
 711	pl08x_terminate_phy_chan(pl08x, plchan->phychan);
 712
 713	if (next) {
 714		bool success;
 715
 716		/*
 717		 * Eww.  We know this isn't going to deadlock
 718		 * but lockdep probably doesn't.
 719		 */
 720		spin_lock(&next->vc.lock);
 721		/* Re-check the state now that we have the lock */
 722		success = next->state == PL08X_CHAN_WAITING;
 723		if (success)
 724			pl08x_phy_reassign_start(plchan->phychan, next);
 725		spin_unlock(&next->vc.lock);
 726
 727		/* If the state changed, try to find another channel */
 728		if (!success)
 729			goto retry;
 730	} else {
 731		/* No more jobs, so free up the physical channel */
 732		pl08x_put_phy_channel(pl08x, plchan->phychan);
 733	}
 734
 735	plchan->phychan = NULL;
 736	plchan->state = PL08X_CHAN_IDLE;
 737}
 738
 739/*
 740 * LLI handling
 741 */
 742
 743static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
 744{
 745	switch (coded) {
 746	case PL080_WIDTH_8BIT:
 747		return 1;
 748	case PL080_WIDTH_16BIT:
 749		return 2;
 750	case PL080_WIDTH_32BIT:
 751		return 4;
 752	default:
 753		break;
 754	}
 755	BUG();
 756	return 0;
 757}
 758
 759static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
 760				  size_t tsize)
 761{
 762	u32 retbits = cctl;
 763
 764	/* Remove all src, dst and transfer size bits */
 765	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
 766	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
 767	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
 768
 769	/* Then set the bits according to the parameters */
 770	switch (srcwidth) {
 771	case 1:
 772		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
 773		break;
 774	case 2:
 775		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
 776		break;
 777	case 4:
 778		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
 779		break;
 780	default:
 781		BUG();
 782		break;
 783	}
 784
 785	switch (dstwidth) {
 786	case 1:
 787		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
 788		break;
 789	case 2:
 790		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
 791		break;
 792	case 4:
 793		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
 794		break;
 795	default:
 796		BUG();
 797		break;
 798	}
 799
 800	tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
 801	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
 802	return retbits;
 803}
 804
 805struct pl08x_lli_build_data {
 806	struct pl08x_txd *txd;
 807	struct pl08x_bus_data srcbus;
 808	struct pl08x_bus_data dstbus;
 809	size_t remainder;
 810	u32 lli_bus;
 811};
 812
 813/*
 814 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
 815 * victim in case src & dest are not similarly aligned. i.e. If after aligning
 816 * masters address with width requirements of transfer (by sending few byte by
 817 * byte data), slave is still not aligned, then its width will be reduced to
 818 * BYTE.
 819 * - prefers the destination bus if both available
 820 * - prefers bus with fixed address (i.e. peripheral)
 821 */
 822static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
 823	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
 824{
 825	if (!(cctl & PL080_CONTROL_DST_INCR)) {
 
 
 
 826		*mbus = &bd->dstbus;
 827		*sbus = &bd->srcbus;
 828	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
 829		*mbus = &bd->srcbus;
 830		*sbus = &bd->dstbus;
 831	} else {
 832		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
 833			*mbus = &bd->dstbus;
 834			*sbus = &bd->srcbus;
 835		} else {
 
 
 
 
 
 
 836			*mbus = &bd->srcbus;
 837			*sbus = &bd->dstbus;
 
 
 
 
 838		}
 839	}
 840}
 841
 842/*
 843 * Fills in one LLI for a certain transfer descriptor and advance the counter
 844 */
 845static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
 846				    struct pl08x_lli_build_data *bd,
 847				    int num_llis, int len, u32 cctl, u32 cctl2)
 848{
 849	u32 offset = num_llis * pl08x->lli_words;
 850	u32 *llis_va = bd->txd->llis_va + offset;
 851	dma_addr_t llis_bus = bd->txd->llis_bus;
 852
 853	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
 854
 855	/* Advance the offset to next LLI. */
 856	offset += pl08x->lli_words;
 857
 858	llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
 859	llis_va[PL080_LLI_DST] = bd->dstbus.addr;
 860	llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
 861	llis_va[PL080_LLI_LLI] |= bd->lli_bus;
 862	llis_va[PL080_LLI_CCTL] = cctl;
 863	if (pl08x->vd->pl080s)
 864		llis_va[PL080S_LLI_CCTL2] = cctl2;
 865
 866	if (cctl & PL080_CONTROL_SRC_INCR)
 867		bd->srcbus.addr += len;
 868	if (cctl & PL080_CONTROL_DST_INCR)
 869		bd->dstbus.addr += len;
 870
 871	BUG_ON(bd->remainder < len);
 872
 873	bd->remainder -= len;
 874}
 875
 876static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
 877			struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
 878			int num_llis, size_t *total_bytes)
 879{
 880	*cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
 881	pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
 882	(*total_bytes) += len;
 883}
 884
 885#ifdef VERBOSE_DEBUG
 886static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
 887			   const u32 *llis_va, int num_llis)
 888{
 889	int i;
 
 890
 891	if (pl08x->vd->pl080s) {
 892		dev_vdbg(&pl08x->adev->dev,
 893			"%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
 894			"lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
 895		for (i = 0; i < num_llis; i++) {
 896			dev_vdbg(&pl08x->adev->dev,
 897				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
 898				i, llis_va, llis_va[PL080_LLI_SRC],
 899				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
 900				llis_va[PL080_LLI_CCTL],
 901				llis_va[PL080S_LLI_CCTL2]);
 902			llis_va += pl08x->lli_words;
 903		}
 904	} else {
 905		dev_vdbg(&pl08x->adev->dev,
 906			"%-3s %-9s  %-10s %-10s %-10s %s\n",
 907			"lli", "", "csrc", "cdst", "clli", "cctl");
 908		for (i = 0; i < num_llis; i++) {
 909			dev_vdbg(&pl08x->adev->dev,
 910				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
 911				i, llis_va, llis_va[PL080_LLI_SRC],
 912				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
 913				llis_va[PL080_LLI_CCTL]);
 914			llis_va += pl08x->lli_words;
 915		}
 916	}
 917}
 918#else
 919static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
 920				  const u32 *llis_va, int num_llis) {}
 921#endif
 922
 923/*
 924 * This fills in the table of LLIs for the transfer descriptor
 925 * Note that we assume we never have to change the burst sizes
 926 * Return 0 for error
 927 */
 928static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
 929			      struct pl08x_txd *txd)
 930{
 931	struct pl08x_bus_data *mbus, *sbus;
 932	struct pl08x_lli_build_data bd;
 933	int num_llis = 0;
 934	u32 cctl, early_bytes = 0;
 935	size_t max_bytes_per_lli, total_bytes;
 936	u32 *llis_va, *last_lli;
 937	struct pl08x_sg *dsg;
 938
 939	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
 
 940	if (!txd->llis_va) {
 941		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
 942		return 0;
 943	}
 944
 
 
 
 
 
 945	bd.txd = txd;
 
 
 946	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
 947	cctl = txd->cctl;
 948
 949	/* Find maximum width of the source bus */
 950	bd.srcbus.maxwidth =
 951		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
 952				       PL080_CONTROL_SWIDTH_SHIFT);
 953
 954	/* Find maximum width of the destination bus */
 955	bd.dstbus.maxwidth =
 956		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
 957				       PL080_CONTROL_DWIDTH_SHIFT);
 958
 959	list_for_each_entry(dsg, &txd->dsg_list, node) {
 960		total_bytes = 0;
 961		cctl = txd->cctl;
 962
 963		bd.srcbus.addr = dsg->src_addr;
 964		bd.dstbus.addr = dsg->dst_addr;
 965		bd.remainder = dsg->len;
 966		bd.srcbus.buswidth = bd.srcbus.maxwidth;
 967		bd.dstbus.buswidth = bd.dstbus.maxwidth;
 
 
 
 968
 969		pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
 
 
 
 
 
 970
 971		dev_vdbg(&pl08x->adev->dev,
 972			"src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
 973			(u64)bd.srcbus.addr,
 974			cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
 975			bd.srcbus.buswidth,
 976			(u64)bd.dstbus.addr,
 977			cctl & PL080_CONTROL_DST_INCR ? "+" : "",
 978			bd.dstbus.buswidth,
 979			bd.remainder);
 980		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
 981			mbus == &bd.srcbus ? "src" : "dst",
 982			sbus == &bd.srcbus ? "src" : "dst");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983
 984		/*
 985		 * Zero length is only allowed if all these requirements are
 986		 * met:
 987		 * - flow controller is peripheral.
 988		 * - src.addr is aligned to src.width
 989		 * - dst.addr is aligned to dst.width
 990		 *
 991		 * sg_len == 1 should be true, as there can be two cases here:
 992		 *
 993		 * - Memory addresses are contiguous and are not scattered.
 994		 *   Here, Only one sg will be passed by user driver, with
 995		 *   memory address and zero length. We pass this to controller
 996		 *   and after the transfer it will receive the last burst
 997		 *   request from peripheral and so transfer finishes.
 998		 *
 999		 * - Memory addresses are scattered and are not contiguous.
1000		 *   Here, Obviously as DMA controller doesn't know when a lli's
1001		 *   transfer gets over, it can't load next lli. So in this
1002		 *   case, there has to be an assumption that only one lli is
1003		 *   supported. Thus, we can't have scattered addresses.
1004		 */
1005		if (!bd.remainder) {
1006			u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1007				PL080_CONFIG_FLOW_CONTROL_SHIFT;
1008			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1009					(fc <= PL080_FLOW_SRC2DST_SRC))) {
1010				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1011					__func__);
1012				return 0;
1013			}
1014
1015			if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1016				!IS_BUS_ALIGNED(&bd.dstbus)) {
1017				dev_err(&pl08x->adev->dev,
1018					"%s src & dst address must be aligned to src"
1019					" & dst width if peripheral is flow controller",
1020					__func__);
1021				return 0;
1022			}
1023
1024			cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1025					bd.dstbus.buswidth, 0);
1026			pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1027					0, cctl, 0);
1028			break;
1029		}
1030
1031		/*
1032		 * Send byte by byte for following cases
1033		 * - Less than a bus width available
1034		 * - until master bus is aligned
1035		 */
1036		if (bd.remainder < mbus->buswidth)
1037			early_bytes = bd.remainder;
1038		else if (!IS_BUS_ALIGNED(mbus)) {
1039			early_bytes = mbus->buswidth -
1040				(mbus->addr & (mbus->buswidth - 1));
1041			if ((bd.remainder - early_bytes) < mbus->buswidth)
1042				early_bytes = bd.remainder;
1043		}
1044
1045		if (early_bytes) {
1046			dev_vdbg(&pl08x->adev->dev,
1047				"%s byte width LLIs (remain 0x%08zx)\n",
1048				__func__, bd.remainder);
1049			prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1050				num_llis++, &total_bytes);
1051		}
1052
1053		if (bd.remainder) {
1054			/*
1055			 * Master now aligned
1056			 * - if slave is not then we must set its width down
1057			 */
1058			if (!IS_BUS_ALIGNED(sbus)) {
1059				dev_dbg(&pl08x->adev->dev,
1060					"%s set down bus width to one byte\n",
1061					__func__);
1062
1063				sbus->buswidth = 1;
1064			}
1065
1066			/*
1067			 * Bytes transferred = tsize * src width, not
1068			 * MIN(buswidths)
 
1069			 */
1070			max_bytes_per_lli = bd.srcbus.buswidth *
1071						pl08x->vd->max_transfer_size;
1072			dev_vdbg(&pl08x->adev->dev,
1073				"%s max bytes per lli = %zu\n",
1074				__func__, max_bytes_per_lli);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075
1076			/*
1077			 * Make largest possible LLIs until less than one bus
1078			 * width left
1079			 */
1080			while (bd.remainder > (mbus->buswidth - 1)) {
1081				size_t lli_len, tsize, width;
1082
 
 
 
 
 
 
 
 
 
1083				/*
1084				 * If enough left try to send max possible,
1085				 * otherwise try to send the remainder
 
 
 
 
 
1086				 */
1087				lli_len = min(bd.remainder, max_bytes_per_lli);
 
 
 
1088
 
1089				/*
1090				 * Check against maximum bus alignment:
1091				 * Calculate actual transfer size in relation to
1092				 * bus width an get a maximum remainder of the
1093				 * highest bus width - 1
1094				 */
1095				width = max(mbus->buswidth, sbus->buswidth);
1096				lli_len = (lli_len / width) * width;
1097				tsize = lli_len / bd.srcbus.buswidth;
 
 
 
 
 
 
 
 
 
 
 
 
 
1098
1099				dev_vdbg(&pl08x->adev->dev,
1100					"%s fill lli with single lli chunk of "
1101					"size 0x%08zx (remainder 0x%08zx)\n",
1102					__func__, lli_len, bd.remainder);
1103
1104				cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1105					bd.dstbus.buswidth, tsize);
1106				pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1107						lli_len, cctl, tsize);
1108				total_bytes += lli_len;
1109			}
1110
1111			/*
1112			 * Send any odd bytes
1113			 */
1114			if (bd.remainder) {
1115				dev_vdbg(&pl08x->adev->dev,
1116					"%s align with boundary, send odd bytes (remain %zu)\n",
1117					__func__, bd.remainder);
1118				prep_byte_width_lli(pl08x, &bd, &cctl,
1119					bd.remainder, num_llis++, &total_bytes);
 
 
 
 
 
 
 
 
1120			}
1121		}
1122
1123		if (total_bytes != dsg->len) {
1124			dev_err(&pl08x->adev->dev,
1125				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1126				__func__, total_bytes, dsg->len);
1127			return 0;
 
 
 
 
 
1128		}
 
 
 
 
 
 
 
1129
1130		if (num_llis >= MAX_NUM_TSFR_LLIS) {
1131			dev_err(&pl08x->adev->dev,
1132				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1133				__func__, MAX_NUM_TSFR_LLIS);
1134			return 0;
1135		}
1136	}
1137
1138	llis_va = txd->llis_va;
1139	last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
 
 
 
1140
1141	if (txd->cyclic) {
1142		/* Link back to the first LLI. */
1143		last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1144	} else {
1145		/* The final LLI terminates the LLI. */
1146		last_lli[PL080_LLI_LLI] = 0;
1147		/* The final LLI element shall also fire an interrupt. */
1148		last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
 
 
 
 
 
 
1149	}
1150
1151	pl08x_dump_lli(pl08x, llis_va, num_llis);
1152
1153	return num_llis;
1154}
1155
 
1156static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1157			   struct pl08x_txd *txd)
1158{
1159	struct pl08x_sg *dsg, *_dsg;
 
 
 
1160
1161	if (txd->llis_va)
1162		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
 
 
 
 
 
 
1163
1164	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1165		list_del(&dsg->node);
1166		kfree(dsg);
 
 
 
1167	}
 
1168
1169	kfree(txd);
 
 
 
 
 
 
 
 
 
1170}
1171
1172static void pl08x_desc_free(struct virt_dma_desc *vd)
 
 
 
 
1173{
1174	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1175	struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
 
 
 
 
 
 
 
 
 
 
 
 
1176
1177	dma_descriptor_unmap(&vd->tx);
1178	if (!txd->done)
1179		pl08x_release_mux(plchan);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180
1181	pl08x_free_txd(plchan->host, txd);
1182}
1183
1184static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1185				struct pl08x_dma_chan *plchan)
1186{
1187	LIST_HEAD(head);
1188
1189	vchan_get_all_descriptors(&plchan->vc, &head);
1190	vchan_dma_desc_free_list(&plchan->vc, &head);
 
 
 
 
1191}
1192
1193/*
1194 * The DMA ENGINE API
1195 */
1196static void pl08x_free_chan_resources(struct dma_chan *chan)
1197{
1198	/* Ensure all queued descriptors are freed */
1199	vchan_free_chan_resources(to_virt_chan(chan));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1200}
1201
1202static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1203		struct dma_chan *chan, unsigned long flags)
1204{
1205	struct dma_async_tx_descriptor *retval = NULL;
1206
1207	return retval;
1208}
1209
1210/*
1211 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1212 * If slaves are relying on interrupts to signal completion this function
1213 * must not be called with interrupts disabled.
1214 */
1215static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1216		dma_cookie_t cookie, struct dma_tx_state *txstate)
 
 
1217{
1218	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1219	struct virt_dma_desc *vd;
1220	unsigned long flags;
1221	enum dma_status ret;
1222	size_t bytes = 0;
1223
1224	ret = dma_cookie_status(chan, cookie, txstate);
1225	if (ret == DMA_COMPLETE)
1226		return ret;
1227
1228	/*
1229	 * There's no point calculating the residue if there's
1230	 * no txstate to store the value.
1231	 */
1232	if (!txstate) {
1233		if (plchan->state == PL08X_CHAN_PAUSED)
1234			ret = DMA_PAUSED;
1235		return ret;
1236	}
1237
1238	spin_lock_irqsave(&plchan->vc.lock, flags);
1239	ret = dma_cookie_status(chan, cookie, txstate);
1240	if (ret != DMA_COMPLETE) {
1241		vd = vchan_find_desc(&plchan->vc, cookie);
1242		if (vd) {
1243			/* On the issued list, so hasn't been processed yet */
1244			struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1245			struct pl08x_sg *dsg;
1246
1247			list_for_each_entry(dsg, &txd->dsg_list, node)
1248				bytes += dsg->len;
1249		} else {
1250			bytes = pl08x_getbytes_chan(plchan);
1251		}
1252	}
1253	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1254
1255	/*
1256	 * This cookie not complete yet
1257	 * Get number of bytes left in the active transactions and queue
1258	 */
1259	dma_set_residue(txstate, bytes);
 
 
 
 
 
 
 
1260
1261	if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1262		ret = DMA_PAUSED;
1263
1264	/* Whether waiting or running, we're in progress */
1265	return ret;
1266}
1267
1268/* PrimeCell DMA extension */
1269struct burst_table {
1270	u32 burstwords;
1271	u32 reg;
1272};
1273
1274static const struct burst_table burst_sizes[] = {
1275	{
1276		.burstwords = 256,
1277		.reg = PL080_BSIZE_256,
1278	},
1279	{
1280		.burstwords = 128,
1281		.reg = PL080_BSIZE_128,
1282	},
1283	{
1284		.burstwords = 64,
1285		.reg = PL080_BSIZE_64,
1286	},
1287	{
1288		.burstwords = 32,
1289		.reg = PL080_BSIZE_32,
1290	},
1291	{
1292		.burstwords = 16,
1293		.reg = PL080_BSIZE_16,
1294	},
1295	{
1296		.burstwords = 8,
1297		.reg = PL080_BSIZE_8,
1298	},
1299	{
1300		.burstwords = 4,
1301		.reg = PL080_BSIZE_4,
1302	},
1303	{
1304		.burstwords = 0,
1305		.reg = PL080_BSIZE_1,
1306	},
1307};
1308
1309/*
1310 * Given the source and destination available bus masks, select which
1311 * will be routed to each port.  We try to have source and destination
1312 * on separate ports, but always respect the allowable settings.
1313 */
1314static u32 pl08x_select_bus(u8 src, u8 dst)
1315{
1316	u32 cctl = 0;
1317
1318	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1319		cctl |= PL080_CONTROL_DST_AHB2;
1320	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1321		cctl |= PL080_CONTROL_SRC_AHB2;
1322
1323	return cctl;
1324}
1325
1326static u32 pl08x_cctl(u32 cctl)
1327{
1328	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1329		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1330		  PL080_CONTROL_PROT_MASK);
1331
1332	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
1333	return cctl | PL080_CONTROL_PROT_SYS;
1334}
1335
1336static u32 pl08x_width(enum dma_slave_buswidth width)
1337{
1338	switch (width) {
1339	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1340		return PL080_WIDTH_8BIT;
1341	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1342		return PL080_WIDTH_16BIT;
1343	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1344		return PL080_WIDTH_32BIT;
1345	default:
1346		return ~0;
1347	}
1348}
1349
1350static u32 pl08x_burst(u32 maxburst)
1351{
1352	int i;
1353
1354	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1355		if (burst_sizes[i].burstwords <= maxburst)
1356			break;
1357
1358	return burst_sizes[i].reg;
1359}
1360
1361static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1362	enum dma_slave_buswidth addr_width, u32 maxburst)
1363{
1364	u32 width, burst, cctl = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1365
1366	width = pl08x_width(addr_width);
1367	if (width == ~0)
1368		return ~0;
 
 
 
1369
1370	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1371	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1372
1373	/*
1374	 * If this channel will only request single transfers, set this
1375	 * down to ONE element.  Also select one element if no maxburst
1376	 * is specified.
1377	 */
1378	if (plchan->cd->single)
1379		maxburst = 1;
1380
1381	burst = pl08x_burst(maxburst);
1382	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1383	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1384
1385	return pl08x_cctl(cctl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1386}
1387
1388/*
1389 * Slave transactions callback to the slave device to allow
1390 * synchronization of slave DMA signals with the DMAC enable
1391 */
1392static void pl08x_issue_pending(struct dma_chan *chan)
1393{
1394	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1395	unsigned long flags;
1396
1397	spin_lock_irqsave(&plchan->vc.lock, flags);
1398	if (vchan_issue_pending(&plchan->vc)) {
1399		if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1400			pl08x_phy_alloc_and_start(plchan);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1401	}
1402	spin_unlock_irqrestore(&plchan->vc.lock, flags);
 
1403}
1404
1405static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
 
1406{
1407	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408
1409	if (txd) {
1410		INIT_LIST_HEAD(&txd->dsg_list);
 
 
 
1411
1412		/* Always enable error and terminal interrupts */
1413		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1414			    PL080_CONFIG_TC_IRQ_MASK;
1415	}
1416	return txd;
1417}
1418
1419/*
1420 * Initialize a descriptor to be used by memcpy submit
1421 */
1422static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1423		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1424		size_t len, unsigned long flags)
1425{
1426	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1427	struct pl08x_driver_data *pl08x = plchan->host;
1428	struct pl08x_txd *txd;
1429	struct pl08x_sg *dsg;
1430	int ret;
1431
1432	txd = pl08x_get_txd(plchan);
1433	if (!txd) {
1434		dev_err(&pl08x->adev->dev,
1435			"%s no memory for descriptor\n", __func__);
1436		return NULL;
1437	}
1438
1439	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1440	if (!dsg) {
1441		pl08x_free_txd(pl08x, txd);
1442		dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1443				__func__);
1444		return NULL;
1445	}
1446	list_add_tail(&dsg->node, &txd->dsg_list);
1447
1448	dsg->src_addr = src;
1449	dsg->dst_addr = dest;
1450	dsg->len = len;
1451
1452	/* Set platform data for m2m */
1453	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1454	txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1455			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1456
1457	/* Both to be incremented or the code will break */
1458	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1459
1460	if (pl08x->vd->dualmaster)
1461		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1462					      pl08x->mem_buses);
1463
1464	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1465	if (!ret) {
1466		pl08x_free_txd(pl08x, txd);
1467		return NULL;
1468	}
1469
1470	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1471}
1472
1473static struct pl08x_txd *pl08x_init_txd(
1474		struct dma_chan *chan,
1475		enum dma_transfer_direction direction,
1476		dma_addr_t *slave_addr)
1477{
1478	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1479	struct pl08x_driver_data *pl08x = plchan->host;
1480	struct pl08x_txd *txd;
1481	enum dma_slave_buswidth addr_width;
1482	int ret, tmp;
1483	u8 src_buses, dst_buses;
1484	u32 maxburst, cctl;
 
 
 
 
 
 
 
 
 
1485
1486	txd = pl08x_get_txd(plchan);
1487	if (!txd) {
1488		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1489		return NULL;
1490	}
1491
 
 
 
 
 
1492	/*
1493	 * Set up addresses, the PrimeCell configured address
1494	 * will take precedence since this may configure the
1495	 * channel target address dynamically at runtime.
1496	 */
1497	if (direction == DMA_MEM_TO_DEV) {
1498		cctl = PL080_CONTROL_SRC_INCR;
1499		*slave_addr = plchan->cfg.dst_addr;
1500		addr_width = plchan->cfg.dst_addr_width;
1501		maxburst = plchan->cfg.dst_maxburst;
1502		src_buses = pl08x->mem_buses;
1503		dst_buses = plchan->cd->periph_buses;
1504	} else if (direction == DMA_DEV_TO_MEM) {
1505		cctl = PL080_CONTROL_DST_INCR;
1506		*slave_addr = plchan->cfg.src_addr;
1507		addr_width = plchan->cfg.src_addr_width;
1508		maxburst = plchan->cfg.src_maxburst;
1509		src_buses = plchan->cd->periph_buses;
1510		dst_buses = pl08x->mem_buses;
1511	} else {
1512		pl08x_free_txd(pl08x, txd);
1513		dev_err(&pl08x->adev->dev,
1514			"%s direction unsupported\n", __func__);
1515		return NULL;
1516	}
1517
1518	cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1519	if (cctl == ~0) {
1520		pl08x_free_txd(pl08x, txd);
1521		dev_err(&pl08x->adev->dev,
1522			"DMA slave configuration botched?\n");
1523		return NULL;
1524	}
1525
1526	txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1527
1528	if (plchan->cfg.device_fc)
1529		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1530			PL080_FLOW_PER2MEM_PER;
1531	else
1532		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1533			PL080_FLOW_PER2MEM;
1534
1535	txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1536
1537	ret = pl08x_request_mux(plchan);
1538	if (ret < 0) {
1539		pl08x_free_txd(pl08x, txd);
1540		dev_dbg(&pl08x->adev->dev,
1541			"unable to mux for transfer on %s due to platform restrictions\n",
1542			plchan->name);
1543		return NULL;
1544	}
1545
1546	dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1547		 plchan->signal, plchan->name);
1548
1549	/* Assign the flow control signal to this channel */
1550	if (direction == DMA_MEM_TO_DEV)
1551		txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1552	else
1553		txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1554
1555	return txd;
1556}
1557
1558static int pl08x_tx_add_sg(struct pl08x_txd *txd,
1559			   enum dma_transfer_direction direction,
1560			   dma_addr_t slave_addr,
1561			   dma_addr_t buf_addr,
1562			   unsigned int len)
1563{
1564	struct pl08x_sg *dsg;
1565
1566	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1567	if (!dsg)
1568		return -ENOMEM;
1569
1570	list_add_tail(&dsg->node, &txd->dsg_list);
1571
1572	dsg->len = len;
1573	if (direction == DMA_MEM_TO_DEV) {
1574		dsg->src_addr = buf_addr;
1575		dsg->dst_addr = slave_addr;
1576	} else {
1577		dsg->src_addr = slave_addr;
1578		dsg->dst_addr = buf_addr;
1579	}
1580
1581	return 0;
1582}
1583
1584static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1585		struct dma_chan *chan, struct scatterlist *sgl,
1586		unsigned int sg_len, enum dma_transfer_direction direction,
1587		unsigned long flags, void *context)
1588{
1589	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1590	struct pl08x_driver_data *pl08x = plchan->host;
1591	struct pl08x_txd *txd;
1592	struct scatterlist *sg;
1593	int ret, tmp;
1594	dma_addr_t slave_addr;
1595
1596	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1597			__func__, sg_dma_len(sgl), plchan->name);
1598
1599	txd = pl08x_init_txd(chan, direction, &slave_addr);
1600	if (!txd)
1601		return NULL;
1602
1603	for_each_sg(sgl, sg, sg_len, tmp) {
1604		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1605				      sg_dma_address(sg),
1606				      sg_dma_len(sg));
1607		if (ret) {
1608			pl08x_release_mux(plchan);
1609			pl08x_free_txd(pl08x, txd);
1610			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1611					__func__);
1612			return NULL;
1613		}
1614	}
1615
1616	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1617	if (!ret) {
1618		pl08x_release_mux(plchan);
1619		pl08x_free_txd(pl08x, txd);
1620		return NULL;
 
 
 
1621	}
1622
1623	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1624}
1625
1626static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
1627		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1628		size_t period_len, enum dma_transfer_direction direction,
1629		unsigned long flags)
1630{
1631	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1632	struct pl08x_driver_data *pl08x = plchan->host;
1633	struct pl08x_txd *txd;
1634	int ret, tmp;
1635	dma_addr_t slave_addr;
1636
1637	dev_dbg(&pl08x->adev->dev,
1638		"%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
1639		__func__, period_len, buf_len,
1640		direction == DMA_MEM_TO_DEV ? "to" : "from",
1641		plchan->name);
1642
1643	txd = pl08x_init_txd(chan, direction, &slave_addr);
1644	if (!txd)
1645		return NULL;
1646
1647	txd->cyclic = true;
1648	txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
1649	for (tmp = 0; tmp < buf_len; tmp += period_len) {
1650		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1651				      buf_addr + tmp, period_len);
1652		if (ret) {
1653			pl08x_release_mux(plchan);
1654			pl08x_free_txd(pl08x, txd);
1655			return NULL;
1656		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1657	}
1658
1659	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1660	if (!ret) {
1661		pl08x_release_mux(plchan);
1662		pl08x_free_txd(pl08x, txd);
1663		return NULL;
1664	}
1665
1666	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1667}
1668
1669static int pl08x_config(struct dma_chan *chan,
1670			struct dma_slave_config *config)
1671{
1672	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1673	struct pl08x_driver_data *pl08x = plchan->host;
1674
1675	if (!plchan->slave)
1676		return -EINVAL;
 
1677
1678	/* Reject definitely invalid configurations */
1679	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1680	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1681		return -EINVAL;
1682
1683	if (config->device_fc && pl08x->vd->pl080s) {
1684		dev_err(&pl08x->adev->dev,
1685			"%s: PL080S does not support peripheral flow control\n",
1686			__func__);
1687		return -EINVAL;
1688	}
1689
1690	plchan->cfg = *config;
 
1691
1692	return 0;
 
 
 
 
1693}
1694
1695static int pl08x_terminate_all(struct dma_chan *chan)
1696{
1697	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1698	struct pl08x_driver_data *pl08x = plchan->host;
1699	unsigned long flags;
1700
1701	spin_lock_irqsave(&plchan->vc.lock, flags);
1702	if (!plchan->phychan && !plchan->at) {
1703		spin_unlock_irqrestore(&plchan->vc.lock, flags);
1704		return 0;
 
 
 
1705	}
1706
1707	plchan->state = PL08X_CHAN_IDLE;
1708
1709	if (plchan->phychan) {
1710		/*
1711		 * Mark physical channel as free and free any slave
1712		 * signal
1713		 */
1714		pl08x_phy_free(plchan);
1715	}
1716	/* Dequeue jobs and free LLIs */
1717	if (plchan->at) {
1718		pl08x_desc_free(&plchan->at->vd);
1719		plchan->at = NULL;
1720	}
1721	/* Dequeue jobs not yet fired as well */
1722	pl08x_free_txd_list(pl08x, plchan);
1723
1724	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1725
1726	return 0;
1727}
1728
1729static int pl08x_pause(struct dma_chan *chan)
1730{
1731	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
 
 
1732	unsigned long flags;
1733
1734	/*
1735	 * Anything succeeds on channels with no physical allocation and
1736	 * no queued transfers.
1737	 */
1738	spin_lock_irqsave(&plchan->vc.lock, flags);
1739	if (!plchan->phychan && !plchan->at) {
1740		spin_unlock_irqrestore(&plchan->vc.lock, flags);
1741		return 0;
1742	}
1743
1744	pl08x_pause_phy_chan(plchan->phychan);
1745	plchan->state = PL08X_CHAN_PAUSED;
 
1746
1747	spin_unlock_irqrestore(&plchan->vc.lock, flags);
 
 
 
1748
1749	return 0;
1750}
 
 
 
 
 
 
 
1751
1752static int pl08x_resume(struct dma_chan *chan)
1753{
1754	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1755	unsigned long flags;
 
 
1756
1757	/*
1758	 * Anything succeeds on channels with no physical allocation and
1759	 * no queued transfers.
1760	 */
1761	spin_lock_irqsave(&plchan->vc.lock, flags);
1762	if (!plchan->phychan && !plchan->at) {
1763		spin_unlock_irqrestore(&plchan->vc.lock, flags);
1764		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765	}
1766
1767	pl08x_resume_phy_chan(plchan->phychan);
1768	plchan->state = PL08X_CHAN_RUNNING;
1769
1770	spin_unlock_irqrestore(&plchan->vc.lock, flags);
 
 
1771
1772	return 0;
1773}
 
1774
1775bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1776{
1777	struct pl08x_dma_chan *plchan;
1778	char *name = chan_id;
1779
1780	/* Reject channels for devices not bound to this driver */
1781	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1782		return false;
1783
1784	plchan = to_pl08x_chan(chan);
1785
1786	/* Check that the channel is not taken! */
1787	if (!strcmp(plchan->name, name))
1788		return true;
1789
1790	return false;
1791}
1792EXPORT_SYMBOL_GPL(pl08x_filter_id);
1793
1794/*
1795 * Just check that the device is there and active
1796 * TODO: turn this bit on/off depending on the number of physical channels
1797 * actually used, if it is zero... well shut it off. That will save some
1798 * power. Cut the clock at the same time.
1799 */
1800static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1801{
1802	/* The Nomadik variant does not have the config register */
1803	if (pl08x->vd->nomadik)
1804		return;
1805	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1806}
1807
1808static irqreturn_t pl08x_irq(int irq, void *dev)
1809{
1810	struct pl08x_driver_data *pl08x = dev;
1811	u32 mask = 0, err, tc, i;
1812
1813	/* check & clear - ERR & TC interrupts */
1814	err = readl(pl08x->base + PL080_ERR_STATUS);
1815	if (err) {
1816		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1817			__func__, err);
1818		writel(err, pl08x->base + PL080_ERR_CLEAR);
1819	}
1820	tc = readl(pl08x->base + PL080_TC_STATUS);
1821	if (tc)
1822		writel(tc, pl08x->base + PL080_TC_CLEAR);
1823
1824	if (!err && !tc)
1825		return IRQ_NONE;
1826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1827	for (i = 0; i < pl08x->vd->channels; i++) {
1828		if (((1 << i) & err) || ((1 << i) & tc)) {
1829			/* Locate physical channel */
1830			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1831			struct pl08x_dma_chan *plchan = phychan->serving;
1832			struct pl08x_txd *tx;
1833
1834			if (!plchan) {
1835				dev_err(&pl08x->adev->dev,
1836					"%s Error TC interrupt on unused channel: 0x%08x\n",
1837					__func__, i);
1838				continue;
1839			}
1840
1841			spin_lock(&plchan->vc.lock);
1842			tx = plchan->at;
1843			if (tx && tx->cyclic) {
1844				vchan_cyclic_callback(&tx->vd);
1845			} else if (tx) {
1846				plchan->at = NULL;
1847				/*
1848				 * This descriptor is done, release its mux
1849				 * reservation.
1850				 */
1851				pl08x_release_mux(plchan);
1852				tx->done = true;
1853				vchan_cookie_complete(&tx->vd);
1854
1855				/*
1856				 * And start the next descriptor (if any),
1857				 * otherwise free this channel.
1858				 */
1859				if (vchan_next_desc(&plchan->vc))
1860					pl08x_start_next_txd(plchan);
1861				else
1862					pl08x_phy_free(plchan);
1863			}
1864			spin_unlock(&plchan->vc.lock);
1865
1866			mask |= (1 << i);
1867		}
1868	}
 
 
1869
1870	return mask ? IRQ_HANDLED : IRQ_NONE;
1871}
1872
1873static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1874{
 
 
1875	chan->slave = true;
1876	chan->name = chan->cd->bus_id;
1877	chan->cfg.src_addr = chan->cd->addr;
1878	chan->cfg.dst_addr = chan->cd->addr;
 
 
 
 
1879}
1880
1881/*
1882 * Initialise the DMAC memcpy/slave channels.
1883 * Make a local wrapper to hold required data
1884 */
1885static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1886		struct dma_device *dmadev, unsigned int channels, bool slave)
 
 
1887{
1888	struct pl08x_dma_chan *chan;
1889	int i;
1890
1891	INIT_LIST_HEAD(&dmadev->channels);
1892
1893	/*
1894	 * Register as many many memcpy as we have physical channels,
1895	 * we won't always be able to use all but the code will have
1896	 * to cope with that situation.
1897	 */
1898	for (i = 0; i < channels; i++) {
1899		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1900		if (!chan) {
1901			dev_err(&pl08x->adev->dev,
1902				"%s no memory for channel\n", __func__);
1903			return -ENOMEM;
1904		}
1905
1906		chan->host = pl08x;
1907		chan->state = PL08X_CHAN_IDLE;
1908		chan->signal = -1;
1909
1910		if (slave) {
1911			chan->cd = &pl08x->pd->slave_channels[i];
1912			pl08x_dma_slave_init(chan);
1913		} else {
1914			chan->cd = &pl08x->pd->memcpy_channel;
1915			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1916			if (!chan->name) {
1917				kfree(chan);
1918				return -ENOMEM;
1919			}
1920		}
1921		dev_dbg(&pl08x->adev->dev,
 
 
 
 
 
 
 
1922			 "initialize virtual channel \"%s\"\n",
1923			 chan->name);
1924
1925		chan->vc.desc_free = pl08x_desc_free;
1926		vchan_init(&chan->vc, dmadev);
 
 
 
 
 
 
 
 
1927	}
1928	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1929		 i, slave ? "slave" : "memcpy");
1930	return i;
1931}
1932
1933static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1934{
1935	struct pl08x_dma_chan *chan = NULL;
1936	struct pl08x_dma_chan *next;
1937
1938	list_for_each_entry_safe(chan,
1939				 next, &dmadev->channels, vc.chan.device_node) {
1940		list_del(&chan->vc.chan.device_node);
1941		kfree(chan);
1942	}
1943}
1944
1945#ifdef CONFIG_DEBUG_FS
1946static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1947{
1948	switch (state) {
1949	case PL08X_CHAN_IDLE:
1950		return "idle";
1951	case PL08X_CHAN_RUNNING:
1952		return "running";
1953	case PL08X_CHAN_PAUSED:
1954		return "paused";
1955	case PL08X_CHAN_WAITING:
1956		return "waiting";
1957	default:
1958		break;
1959	}
1960	return "UNKNOWN STATE";
1961}
1962
1963static int pl08x_debugfs_show(struct seq_file *s, void *data)
1964{
1965	struct pl08x_driver_data *pl08x = s->private;
1966	struct pl08x_dma_chan *chan;
1967	struct pl08x_phy_chan *ch;
1968	unsigned long flags;
1969	int i;
1970
1971	seq_printf(s, "PL08x physical channels:\n");
1972	seq_printf(s, "CHANNEL:\tUSER:\n");
1973	seq_printf(s, "--------\t-----\n");
1974	for (i = 0; i < pl08x->vd->channels; i++) {
1975		struct pl08x_dma_chan *virt_chan;
1976
1977		ch = &pl08x->phy_chans[i];
1978
1979		spin_lock_irqsave(&ch->lock, flags);
1980		virt_chan = ch->serving;
1981
1982		seq_printf(s, "%d\t\t%s%s\n",
1983			   ch->id,
1984			   virt_chan ? virt_chan->name : "(none)",
1985			   ch->locked ? " LOCKED" : "");
1986
1987		spin_unlock_irqrestore(&ch->lock, flags);
1988	}
1989
1990	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1991	seq_printf(s, "CHANNEL:\tSTATE:\n");
1992	seq_printf(s, "--------\t------\n");
1993	list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
1994		seq_printf(s, "%s\t\t%s\n", chan->name,
1995			   pl08x_state_str(chan->state));
1996	}
1997
1998	seq_printf(s, "\nPL08x virtual slave channels:\n");
1999	seq_printf(s, "CHANNEL:\tSTATE:\n");
2000	seq_printf(s, "--------\t------\n");
2001	list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2002		seq_printf(s, "%s\t\t%s\n", chan->name,
2003			   pl08x_state_str(chan->state));
2004	}
2005
2006	return 0;
2007}
2008
2009static int pl08x_debugfs_open(struct inode *inode, struct file *file)
2010{
2011	return single_open(file, pl08x_debugfs_show, inode->i_private);
2012}
2013
2014static const struct file_operations pl08x_debugfs_operations = {
2015	.open		= pl08x_debugfs_open,
2016	.read		= seq_read,
2017	.llseek		= seq_lseek,
2018	.release	= single_release,
2019};
2020
2021static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2022{
2023	/* Expose a simple debugfs interface to view all clocks */
2024	(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2025			S_IFREG | S_IRUGO, NULL, pl08x,
2026			&pl08x_debugfs_operations);
2027}
2028
2029#else
2030static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2031{
2032}
2033#endif
2034
2035#ifdef CONFIG_OF
2036static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2037					 u32 id)
2038{
2039	struct pl08x_dma_chan *chan;
2040
2041	list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2042		if (chan->signal == id)
2043			return &chan->vc.chan;
2044	}
2045
2046	return NULL;
2047}
2048
2049static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2050				       struct of_dma *ofdma)
2051{
2052	struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2053	struct pl08x_channel_data *data;
2054	struct pl08x_dma_chan *chan;
2055	struct dma_chan *dma_chan;
2056
2057	if (!pl08x)
2058		return NULL;
2059
2060	if (dma_spec->args_count != 2)
2061		return NULL;
2062
2063	dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2064	if (dma_chan)
2065		return dma_get_slave_channel(dma_chan);
2066
2067	chan = devm_kzalloc(pl08x->slave.dev, sizeof(*chan) + sizeof(*data),
2068			    GFP_KERNEL);
2069	if (!chan)
2070		return NULL;
2071
2072	data = (void *)&chan[1];
2073	data->bus_id = "(none)";
2074	data->periph_buses = dma_spec->args[1];
2075
2076	chan->cd = data;
2077	chan->host = pl08x;
2078	chan->slave = true;
2079	chan->name = data->bus_id;
2080	chan->state = PL08X_CHAN_IDLE;
2081	chan->signal = dma_spec->args[0];
2082	chan->vc.desc_free = pl08x_desc_free;
2083
2084	vchan_init(&chan->vc, &pl08x->slave);
2085
2086	return dma_get_slave_channel(&chan->vc.chan);
2087}
2088
2089static int pl08x_of_probe(struct amba_device *adev,
2090			  struct pl08x_driver_data *pl08x,
2091			  struct device_node *np)
2092{
2093	struct pl08x_platform_data *pd;
2094	u32 cctl_memcpy = 0;
2095	u32 val;
2096	int ret;
2097
2098	pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2099	if (!pd)
2100		return -ENOMEM;
2101
2102	/* Eligible bus masters for fetching LLIs */
2103	if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2104		pd->lli_buses |= PL08X_AHB1;
2105	if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2106		pd->lli_buses |= PL08X_AHB2;
2107	if (!pd->lli_buses) {
2108		dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2109		pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2110	}
2111
2112	/* Eligible bus masters for memory access */
2113	if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2114		pd->mem_buses |= PL08X_AHB1;
2115	if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2116		pd->mem_buses |= PL08X_AHB2;
2117	if (!pd->mem_buses) {
2118		dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2119		pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2120	}
2121
2122	/* Parse the memcpy channel properties */
2123	ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2124	if (ret) {
2125		dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2126		val = 1;
2127	}
2128	switch (val) {
2129	default:
2130		dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2131		/* Fall through */
2132	case 1:
2133		cctl_memcpy |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
2134			       PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
2135		break;
2136	case 4:
2137		cctl_memcpy |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
2138			       PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
2139		break;
2140	case 8:
2141		cctl_memcpy |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
2142			       PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
2143		break;
2144	case 16:
2145		cctl_memcpy |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
2146			       PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
2147		break;
2148	case 32:
2149		cctl_memcpy |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
2150			       PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
2151		break;
2152	case 64:
2153		cctl_memcpy |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
2154			       PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
2155		break;
2156	case 128:
2157		cctl_memcpy |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
2158			       PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
2159		break;
2160	case 256:
2161		cctl_memcpy |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
2162			       PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
2163		break;
2164	}
2165
2166	ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2167	if (ret) {
2168		dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2169		val = 8;
2170	}
2171	switch (val) {
2172	default:
2173		dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2174		/* Fall through */
2175	case 8:
2176		cctl_memcpy |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
2177			       PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
2178		break;
2179	case 16:
2180		cctl_memcpy |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
2181			       PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
2182		break;
2183	case 32:
2184		cctl_memcpy |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
2185			       PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
2186		break;
2187	}
2188
2189	/* This is currently the only thing making sense */
2190	cctl_memcpy |= PL080_CONTROL_PROT_SYS;
2191
2192	/* Set up memcpy channel */
2193	pd->memcpy_channel.bus_id = "memcpy";
2194	pd->memcpy_channel.cctl_memcpy = cctl_memcpy;
2195	/* Use the buses that can access memory, obviously */
2196	pd->memcpy_channel.periph_buses = pd->mem_buses;
2197
2198	pl08x->pd = pd;
2199
2200	return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2201					  pl08x);
2202}
2203#else
2204static inline int pl08x_of_probe(struct amba_device *adev,
2205				 struct pl08x_driver_data *pl08x,
2206				 struct device_node *np)
2207{
2208	return -EINVAL;
2209}
2210#endif
2211
2212static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2213{
2214	struct pl08x_driver_data *pl08x;
2215	const struct vendor_data *vd = id->data;
2216	struct device_node *np = adev->dev.of_node;
2217	u32 tsfr_size;
2218	int ret = 0;
2219	int i;
2220
2221	ret = amba_request_regions(adev, NULL);
2222	if (ret)
2223		return ret;
2224
2225	/* Ensure that we can do DMA */
2226	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2227	if (ret)
2228		goto out_no_pl08x;
2229
2230	/* Create the driver state holder */
2231	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2232	if (!pl08x) {
2233		ret = -ENOMEM;
2234		goto out_no_pl08x;
2235	}
2236
2237	/* Initialize memcpy engine */
2238	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2239	pl08x->memcpy.dev = &adev->dev;
 
2240	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2241	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2242	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2243	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2244	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2245	pl08x->memcpy.device_config = pl08x_config;
2246	pl08x->memcpy.device_pause = pl08x_pause;
2247	pl08x->memcpy.device_resume = pl08x_resume;
2248	pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2249	pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2250	pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2251	pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2252	pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2253
2254	/* Initialize slave engine */
2255	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2256	dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2257	pl08x->slave.dev = &adev->dev;
 
2258	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
2259	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2260	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2261	pl08x->slave.device_issue_pending = pl08x_issue_pending;
2262	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2263	pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2264	pl08x->slave.device_config = pl08x_config;
2265	pl08x->slave.device_pause = pl08x_pause;
2266	pl08x->slave.device_resume = pl08x_resume;
2267	pl08x->slave.device_terminate_all = pl08x_terminate_all;
2268	pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2269	pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2270	pl08x->slave.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2271	pl08x->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2272
2273	/* Get the platform data */
2274	pl08x->pd = dev_get_platdata(&adev->dev);
2275	if (!pl08x->pd) {
2276		if (np) {
2277			ret = pl08x_of_probe(adev, pl08x, np);
2278			if (ret)
2279				goto out_no_platdata;
2280		} else {
2281			dev_err(&adev->dev, "no platform data supplied\n");
2282			ret = -EINVAL;
2283			goto out_no_platdata;
2284		}
2285	}
2286
2287	/* Assign useful pointers to the driver state */
2288	pl08x->adev = adev;
2289	pl08x->vd = vd;
2290
2291	/* By default, AHB1 only.  If dualmaster, from platform */
2292	pl08x->lli_buses = PL08X_AHB1;
2293	pl08x->mem_buses = PL08X_AHB1;
2294	if (pl08x->vd->dualmaster) {
2295		pl08x->lli_buses = pl08x->pd->lli_buses;
2296		pl08x->mem_buses = pl08x->pd->mem_buses;
2297	}
2298
2299	if (vd->pl080s)
2300		pl08x->lli_words = PL080S_LLI_WORDS;
2301	else
2302		pl08x->lli_words = PL080_LLI_WORDS;
2303	tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2304
2305	/* A DMA memory pool for LLIs, align on 1-byte boundary */
2306	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2307						tsfr_size, PL08X_ALIGN, 0);
2308	if (!pl08x->pool) {
2309		ret = -ENOMEM;
2310		goto out_no_lli_pool;
2311	}
2312
 
 
2313	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2314	if (!pl08x->base) {
2315		ret = -ENOMEM;
2316		goto out_no_ioremap;
2317	}
2318
2319	/* Turn on the PL08x */
2320	pl08x_ensure_on(pl08x);
2321
2322	/* Attach the interrupt handler */
2323	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2324	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2325
2326	ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
 
2327	if (ret) {
2328		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2329			__func__, adev->irq[0]);
2330		goto out_no_irq;
2331	}
2332
2333	/* Initialize physical channels */
2334	pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2335			GFP_KERNEL);
2336	if (!pl08x->phy_chans) {
2337		dev_err(&adev->dev, "%s failed to allocate "
2338			"physical channel holders\n",
2339			__func__);
2340		ret = -ENOMEM;
2341		goto out_no_phychans;
2342	}
2343
2344	for (i = 0; i < vd->channels; i++) {
2345		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2346
2347		ch->id = i;
2348		ch->base = pl08x->base + PL080_Cx_BASE(i);
2349		ch->reg_config = ch->base + vd->config_offset;
2350		spin_lock_init(&ch->lock);
2351
2352		/*
2353		 * Nomadik variants can have channels that are locked
2354		 * down for the secure world only. Lock up these channels
2355		 * by perpetually serving a dummy virtual channel.
2356		 */
2357		if (vd->nomadik) {
2358			u32 val;
2359
2360			val = readl(ch->reg_config);
2361			if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2362				dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2363				ch->locked = true;
2364			}
2365		}
2366
2367		dev_dbg(&adev->dev, "physical channel %d is %s\n",
2368			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2369	}
2370
2371	/* Register as many memcpy channels as there are physical channels */
2372	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2373					      pl08x->vd->channels, false);
2374	if (ret <= 0) {
2375		dev_warn(&pl08x->adev->dev,
2376			 "%s failed to enumerate memcpy channels - %d\n",
2377			 __func__, ret);
2378		goto out_no_memcpy;
2379	}
 
2380
2381	/* Register slave channels */
2382	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2383			pl08x->pd->num_slave_channels, true);
2384	if (ret < 0) {
 
2385		dev_warn(&pl08x->adev->dev,
2386			"%s failed to enumerate slave channels - %d\n",
2387				__func__, ret);
2388		goto out_no_slave;
2389	}
 
2390
2391	ret = dma_async_device_register(&pl08x->memcpy);
2392	if (ret) {
2393		dev_warn(&pl08x->adev->dev,
2394			"%s failed to register memcpy as an async device - %d\n",
2395			__func__, ret);
2396		goto out_no_memcpy_reg;
2397	}
2398
2399	ret = dma_async_device_register(&pl08x->slave);
2400	if (ret) {
2401		dev_warn(&pl08x->adev->dev,
2402			"%s failed to register slave as an async device - %d\n",
2403			__func__, ret);
2404		goto out_no_slave_reg;
2405	}
2406
2407	amba_set_drvdata(adev, pl08x);
2408	init_pl08x_debugfs(pl08x);
2409	dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2410		 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2411		 (unsigned long long)adev->res.start, adev->irq[0]);
2412
2413	return 0;
2414
2415out_no_slave_reg:
2416	dma_async_device_unregister(&pl08x->memcpy);
2417out_no_memcpy_reg:
2418	pl08x_free_virtual_channels(&pl08x->slave);
2419out_no_slave:
2420	pl08x_free_virtual_channels(&pl08x->memcpy);
2421out_no_memcpy:
2422	kfree(pl08x->phy_chans);
2423out_no_phychans:
2424	free_irq(adev->irq[0], pl08x);
2425out_no_irq:
2426	iounmap(pl08x->base);
2427out_no_ioremap:
2428	dma_pool_destroy(pl08x->pool);
2429out_no_lli_pool:
2430out_no_platdata:
2431	kfree(pl08x);
2432out_no_pl08x:
2433	amba_release_regions(adev);
2434	return ret;
2435}
2436
2437/* PL080 has 8 channels and the PL080 have just 2 */
2438static struct vendor_data vendor_pl080 = {
2439	.config_offset = PL080_CH_CONFIG,
2440	.channels = 8,
2441	.dualmaster = true,
2442	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2443};
2444
2445static struct vendor_data vendor_nomadik = {
2446	.config_offset = PL080_CH_CONFIG,
2447	.channels = 8,
2448	.dualmaster = true,
2449	.nomadik = true,
2450	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2451};
2452
2453static struct vendor_data vendor_pl080s = {
2454	.config_offset = PL080S_CH_CONFIG,
2455	.channels = 8,
2456	.pl080s = true,
2457	.max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
2458};
2459
2460static struct vendor_data vendor_pl081 = {
2461	.config_offset = PL080_CH_CONFIG,
2462	.channels = 2,
2463	.dualmaster = false,
2464	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2465};
2466
2467static struct amba_id pl08x_ids[] = {
2468	/* Samsung PL080S variant */
2469	{
2470		.id	= 0x0a141080,
2471		.mask	= 0xffffffff,
2472		.data	= &vendor_pl080s,
2473	},
2474	/* PL080 */
2475	{
2476		.id	= 0x00041080,
2477		.mask	= 0x000fffff,
2478		.data	= &vendor_pl080,
2479	},
2480	/* PL081 */
2481	{
2482		.id	= 0x00041081,
2483		.mask	= 0x000fffff,
2484		.data	= &vendor_pl081,
2485	},
2486	/* Nomadik 8815 PL080 variant */
2487	{
2488		.id	= 0x00280080,
2489		.mask	= 0x00ffffff,
2490		.data	= &vendor_nomadik,
2491	},
2492	{ 0, 0 },
2493};
2494
2495MODULE_DEVICE_TABLE(amba, pl08x_ids);
2496
2497static struct amba_driver pl08x_amba_driver = {
2498	.drv.name	= DRIVER_NAME,
2499	.id_table	= pl08x_ids,
2500	.probe		= pl08x_probe,
2501};
2502
2503static int __init pl08x_init(void)
2504{
2505	int retval;
2506	retval = amba_driver_register(&pl08x_amba_driver);
2507	if (retval)
2508		printk(KERN_WARNING DRIVER_NAME
2509		       "failed to register as an AMBA device (%d)\n",
2510		       retval);
2511	return retval;
2512}
2513subsys_initcall(pl08x_init);