Loading...
1/*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 *
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29 * channel.
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
63 *
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
68 *
69 * Only the former works sanely with scatter lists, so we only implement
70 * the DMAC flow control method. However, peripherals which use the LBREQ
71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
72 * these hardware restrictions prevents them from using scatter DMA.
73 *
74 * Global TODO:
75 * - Break out common code from arch/arm/mach-s3c64xx and share
76 */
77#include <linux/device.h>
78#include <linux/init.h>
79#include <linux/module.h>
80#include <linux/interrupt.h>
81#include <linux/slab.h>
82#include <linux/delay.h>
83#include <linux/dma-mapping.h>
84#include <linux/dmapool.h>
85#include <linux/dmaengine.h>
86#include <linux/amba/bus.h>
87#include <linux/amba/pl08x.h>
88#include <linux/debugfs.h>
89#include <linux/seq_file.h>
90
91#include <asm/hardware/pl080.h>
92
93#define DRIVER_NAME "pl08xdmac"
94
95/**
96 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
97 * @channels: the number of channels available in this variant
98 * @dualmaster: whether this version supports dual AHB masters or not.
99 */
100struct vendor_data {
101 u8 channels;
102 bool dualmaster;
103};
104
105/*
106 * PL08X private data structures
107 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
108 * start & end do not - their bus bit info is in cctl. Also note that these
109 * are fixed 32-bit quantities.
110 */
111struct pl08x_lli {
112 u32 src;
113 u32 dst;
114 u32 lli;
115 u32 cctl;
116};
117
118/**
119 * struct pl08x_driver_data - the local state holder for the PL08x
120 * @slave: slave engine for this instance
121 * @memcpy: memcpy engine for this instance
122 * @base: virtual memory base (remapped) for the PL08x
123 * @adev: the corresponding AMBA (PrimeCell) bus entry
124 * @vd: vendor data for this PL08x variant
125 * @pd: platform data passed in from the platform/machine
126 * @phy_chans: array of data for the physical channels
127 * @pool: a pool for the LLI descriptors
128 * @pool_ctr: counter of LLIs in the pool
129 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
130 * @mem_buses: set to indicate memory transfers on AHB2.
131 * @lock: a spinlock for this struct
132 */
133struct pl08x_driver_data {
134 struct dma_device slave;
135 struct dma_device memcpy;
136 void __iomem *base;
137 struct amba_device *adev;
138 const struct vendor_data *vd;
139 struct pl08x_platform_data *pd;
140 struct pl08x_phy_chan *phy_chans;
141 struct dma_pool *pool;
142 int pool_ctr;
143 u8 lli_buses;
144 u8 mem_buses;
145 spinlock_t lock;
146};
147
148/*
149 * PL08X specific defines
150 */
151
152/*
153 * Memory boundaries: the manual for PL08x says that the controller
154 * cannot read past a 1KiB boundary, so these defines are used to
155 * create transfer LLIs that do not cross such boundaries.
156 */
157#define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
158#define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
159
160/* Size (bytes) of each LLI buffer allocated for one transfer */
161# define PL08X_LLI_TSFR_SIZE 0x2000
162
163/* Maximum times we call dma_pool_alloc on this pool without freeing */
164#define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
165#define PL08X_ALIGN 8
166
167static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
168{
169 return container_of(chan, struct pl08x_dma_chan, chan);
170}
171
172static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
173{
174 return container_of(tx, struct pl08x_txd, tx);
175}
176
177/*
178 * Physical channel handling
179 */
180
181/* Whether a certain channel is busy or not */
182static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
183{
184 unsigned int val;
185
186 val = readl(ch->base + PL080_CH_CONFIG);
187 return val & PL080_CONFIG_ACTIVE;
188}
189
190/*
191 * Set the initial DMA register values i.e. those for the first LLI
192 * The next LLI pointer and the configuration interrupt bit have
193 * been set when the LLIs were constructed. Poke them into the hardware
194 * and start the transfer.
195 */
196static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
197 struct pl08x_txd *txd)
198{
199 struct pl08x_driver_data *pl08x = plchan->host;
200 struct pl08x_phy_chan *phychan = plchan->phychan;
201 struct pl08x_lli *lli = &txd->llis_va[0];
202 u32 val;
203
204 plchan->at = txd;
205
206 /* Wait for channel inactive */
207 while (pl08x_phy_channel_busy(phychan))
208 cpu_relax();
209
210 dev_vdbg(&pl08x->adev->dev,
211 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
212 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
213 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
214 txd->ccfg);
215
216 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
217 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
218 writel(lli->lli, phychan->base + PL080_CH_LLI);
219 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
220 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
221
222 /* Enable the DMA channel */
223 /* Do not access config register until channel shows as disabled */
224 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
225 cpu_relax();
226
227 /* Do not access config register until channel shows as inactive */
228 val = readl(phychan->base + PL080_CH_CONFIG);
229 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
230 val = readl(phychan->base + PL080_CH_CONFIG);
231
232 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
233}
234
235/*
236 * Pause the channel by setting the HALT bit.
237 *
238 * For M->P transfers, pause the DMAC first and then stop the peripheral -
239 * the FIFO can only drain if the peripheral is still requesting data.
240 * (note: this can still timeout if the DMAC FIFO never drains of data.)
241 *
242 * For P->M transfers, disable the peripheral first to stop it filling
243 * the DMAC FIFO, and then pause the DMAC.
244 */
245static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
246{
247 u32 val;
248 int timeout;
249
250 /* Set the HALT bit and wait for the FIFO to drain */
251 val = readl(ch->base + PL080_CH_CONFIG);
252 val |= PL080_CONFIG_HALT;
253 writel(val, ch->base + PL080_CH_CONFIG);
254
255 /* Wait for channel inactive */
256 for (timeout = 1000; timeout; timeout--) {
257 if (!pl08x_phy_channel_busy(ch))
258 break;
259 udelay(1);
260 }
261 if (pl08x_phy_channel_busy(ch))
262 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
263}
264
265static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
266{
267 u32 val;
268
269 /* Clear the HALT bit */
270 val = readl(ch->base + PL080_CH_CONFIG);
271 val &= ~PL080_CONFIG_HALT;
272 writel(val, ch->base + PL080_CH_CONFIG);
273}
274
275
276/*
277 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
278 * clears any pending interrupt status. This should not be used for
279 * an on-going transfer, but as a method of shutting down a channel
280 * (eg, when it's no longer used) or terminating a transfer.
281 */
282static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
283 struct pl08x_phy_chan *ch)
284{
285 u32 val = readl(ch->base + PL080_CH_CONFIG);
286
287 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
288 PL080_CONFIG_TC_IRQ_MASK);
289
290 writel(val, ch->base + PL080_CH_CONFIG);
291
292 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
293 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
294}
295
296static inline u32 get_bytes_in_cctl(u32 cctl)
297{
298 /* The source width defines the number of bytes */
299 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
300
301 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
302 case PL080_WIDTH_8BIT:
303 break;
304 case PL080_WIDTH_16BIT:
305 bytes *= 2;
306 break;
307 case PL080_WIDTH_32BIT:
308 bytes *= 4;
309 break;
310 }
311 return bytes;
312}
313
314/* The channel should be paused when calling this */
315static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
316{
317 struct pl08x_phy_chan *ch;
318 struct pl08x_txd *txd;
319 unsigned long flags;
320 size_t bytes = 0;
321
322 spin_lock_irqsave(&plchan->lock, flags);
323 ch = plchan->phychan;
324 txd = plchan->at;
325
326 /*
327 * Follow the LLIs to get the number of remaining
328 * bytes in the currently active transaction.
329 */
330 if (ch && txd) {
331 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
332
333 /* First get the remaining bytes in the active transfer */
334 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
335
336 if (clli) {
337 struct pl08x_lli *llis_va = txd->llis_va;
338 dma_addr_t llis_bus = txd->llis_bus;
339 int index;
340
341 BUG_ON(clli < llis_bus || clli >= llis_bus +
342 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
343
344 /*
345 * Locate the next LLI - as this is an array,
346 * it's simple maths to find.
347 */
348 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
349
350 for (; index < MAX_NUM_TSFR_LLIS; index++) {
351 bytes += get_bytes_in_cctl(llis_va[index].cctl);
352
353 /*
354 * A LLI pointer of 0 terminates the LLI list
355 */
356 if (!llis_va[index].lli)
357 break;
358 }
359 }
360 }
361
362 /* Sum up all queued transactions */
363 if (!list_empty(&plchan->pend_list)) {
364 struct pl08x_txd *txdi;
365 list_for_each_entry(txdi, &plchan->pend_list, node) {
366 bytes += txdi->len;
367 }
368 }
369
370 spin_unlock_irqrestore(&plchan->lock, flags);
371
372 return bytes;
373}
374
375/*
376 * Allocate a physical channel for a virtual channel
377 *
378 * Try to locate a physical channel to be used for this transfer. If all
379 * are taken return NULL and the requester will have to cope by using
380 * some fallback PIO mode or retrying later.
381 */
382static struct pl08x_phy_chan *
383pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
384 struct pl08x_dma_chan *virt_chan)
385{
386 struct pl08x_phy_chan *ch = NULL;
387 unsigned long flags;
388 int i;
389
390 for (i = 0; i < pl08x->vd->channels; i++) {
391 ch = &pl08x->phy_chans[i];
392
393 spin_lock_irqsave(&ch->lock, flags);
394
395 if (!ch->serving) {
396 ch->serving = virt_chan;
397 ch->signal = -1;
398 spin_unlock_irqrestore(&ch->lock, flags);
399 break;
400 }
401
402 spin_unlock_irqrestore(&ch->lock, flags);
403 }
404
405 if (i == pl08x->vd->channels) {
406 /* No physical channel available, cope with it */
407 return NULL;
408 }
409
410 return ch;
411}
412
413static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
414 struct pl08x_phy_chan *ch)
415{
416 unsigned long flags;
417
418 spin_lock_irqsave(&ch->lock, flags);
419
420 /* Stop the channel and clear its interrupts */
421 pl08x_terminate_phy_chan(pl08x, ch);
422
423 /* Mark it as free */
424 ch->serving = NULL;
425 spin_unlock_irqrestore(&ch->lock, flags);
426}
427
428/*
429 * LLI handling
430 */
431
432static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
433{
434 switch (coded) {
435 case PL080_WIDTH_8BIT:
436 return 1;
437 case PL080_WIDTH_16BIT:
438 return 2;
439 case PL080_WIDTH_32BIT:
440 return 4;
441 default:
442 break;
443 }
444 BUG();
445 return 0;
446}
447
448static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
449 size_t tsize)
450{
451 u32 retbits = cctl;
452
453 /* Remove all src, dst and transfer size bits */
454 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
455 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
456 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
457
458 /* Then set the bits according to the parameters */
459 switch (srcwidth) {
460 case 1:
461 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
462 break;
463 case 2:
464 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
465 break;
466 case 4:
467 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
468 break;
469 default:
470 BUG();
471 break;
472 }
473
474 switch (dstwidth) {
475 case 1:
476 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
477 break;
478 case 2:
479 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
480 break;
481 case 4:
482 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
483 break;
484 default:
485 BUG();
486 break;
487 }
488
489 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
490 return retbits;
491}
492
493struct pl08x_lli_build_data {
494 struct pl08x_txd *txd;
495 struct pl08x_bus_data srcbus;
496 struct pl08x_bus_data dstbus;
497 size_t remainder;
498 u32 lli_bus;
499};
500
501/*
502 * Autoselect a master bus to use for the transfer this prefers the
503 * destination bus if both available if fixed address on one bus the
504 * other will be chosen
505 */
506static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
507 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
508{
509 if (!(cctl & PL080_CONTROL_DST_INCR)) {
510 *mbus = &bd->srcbus;
511 *sbus = &bd->dstbus;
512 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
513 *mbus = &bd->dstbus;
514 *sbus = &bd->srcbus;
515 } else {
516 if (bd->dstbus.buswidth == 4) {
517 *mbus = &bd->dstbus;
518 *sbus = &bd->srcbus;
519 } else if (bd->srcbus.buswidth == 4) {
520 *mbus = &bd->srcbus;
521 *sbus = &bd->dstbus;
522 } else if (bd->dstbus.buswidth == 2) {
523 *mbus = &bd->dstbus;
524 *sbus = &bd->srcbus;
525 } else if (bd->srcbus.buswidth == 2) {
526 *mbus = &bd->srcbus;
527 *sbus = &bd->dstbus;
528 } else {
529 /* bd->srcbus.buswidth == 1 */
530 *mbus = &bd->dstbus;
531 *sbus = &bd->srcbus;
532 }
533 }
534}
535
536/*
537 * Fills in one LLI for a certain transfer descriptor and advance the counter
538 */
539static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
540 int num_llis, int len, u32 cctl)
541{
542 struct pl08x_lli *llis_va = bd->txd->llis_va;
543 dma_addr_t llis_bus = bd->txd->llis_bus;
544
545 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
546
547 llis_va[num_llis].cctl = cctl;
548 llis_va[num_llis].src = bd->srcbus.addr;
549 llis_va[num_llis].dst = bd->dstbus.addr;
550 llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
551 llis_va[num_llis].lli |= bd->lli_bus;
552
553 if (cctl & PL080_CONTROL_SRC_INCR)
554 bd->srcbus.addr += len;
555 if (cctl & PL080_CONTROL_DST_INCR)
556 bd->dstbus.addr += len;
557
558 BUG_ON(bd->remainder < len);
559
560 bd->remainder -= len;
561}
562
563/*
564 * Return number of bytes to fill to boundary, or len.
565 * This calculation works for any value of addr.
566 */
567static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
568{
569 size_t boundary_len = PL08X_BOUNDARY_SIZE -
570 (addr & (PL08X_BOUNDARY_SIZE - 1));
571
572 return min(boundary_len, len);
573}
574
575/*
576 * This fills in the table of LLIs for the transfer descriptor
577 * Note that we assume we never have to change the burst sizes
578 * Return 0 for error
579 */
580static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
581 struct pl08x_txd *txd)
582{
583 struct pl08x_bus_data *mbus, *sbus;
584 struct pl08x_lli_build_data bd;
585 int num_llis = 0;
586 u32 cctl;
587 size_t max_bytes_per_lli;
588 size_t total_bytes = 0;
589 struct pl08x_lli *llis_va;
590
591 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
592 &txd->llis_bus);
593 if (!txd->llis_va) {
594 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
595 return 0;
596 }
597
598 pl08x->pool_ctr++;
599
600 /* Get the default CCTL */
601 cctl = txd->cctl;
602
603 bd.txd = txd;
604 bd.srcbus.addr = txd->src_addr;
605 bd.dstbus.addr = txd->dst_addr;
606 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
607
608 /* Find maximum width of the source bus */
609 bd.srcbus.maxwidth =
610 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
611 PL080_CONTROL_SWIDTH_SHIFT);
612
613 /* Find maximum width of the destination bus */
614 bd.dstbus.maxwidth =
615 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
616 PL080_CONTROL_DWIDTH_SHIFT);
617
618 /* Set up the bus widths to the maximum */
619 bd.srcbus.buswidth = bd.srcbus.maxwidth;
620 bd.dstbus.buswidth = bd.dstbus.maxwidth;
621
622 /*
623 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
624 */
625 max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) *
626 PL080_CONTROL_TRANSFER_SIZE_MASK;
627
628 /* We need to count this down to zero */
629 bd.remainder = txd->len;
630
631 /*
632 * Choose bus to align to
633 * - prefers destination bus if both available
634 * - if fixed address on one bus chooses other
635 */
636 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
637
638 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu llimax=%zu\n",
639 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
640 bd.srcbus.buswidth,
641 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
642 bd.dstbus.buswidth,
643 bd.remainder, max_bytes_per_lli);
644 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
645 mbus == &bd.srcbus ? "src" : "dst",
646 sbus == &bd.srcbus ? "src" : "dst");
647
648 if (txd->len < mbus->buswidth) {
649 /* Less than a bus width available - send as single bytes */
650 while (bd.remainder) {
651 dev_vdbg(&pl08x->adev->dev,
652 "%s single byte LLIs for a transfer of "
653 "less than a bus width (remain 0x%08x)\n",
654 __func__, bd.remainder);
655 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
656 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
657 total_bytes++;
658 }
659 } else {
660 /* Make one byte LLIs until master bus is aligned */
661 while ((mbus->addr) % (mbus->buswidth)) {
662 dev_vdbg(&pl08x->adev->dev,
663 "%s adjustment lli for less than bus width "
664 "(remain 0x%08x)\n",
665 __func__, bd.remainder);
666 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
667 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
668 total_bytes++;
669 }
670
671 /*
672 * Master now aligned
673 * - if slave is not then we must set its width down
674 */
675 if (sbus->addr % sbus->buswidth) {
676 dev_dbg(&pl08x->adev->dev,
677 "%s set down bus width to one byte\n",
678 __func__);
679
680 sbus->buswidth = 1;
681 }
682
683 /*
684 * Make largest possible LLIs until less than one bus
685 * width left
686 */
687 while (bd.remainder > (mbus->buswidth - 1)) {
688 size_t lli_len, target_len, tsize, odd_bytes;
689
690 /*
691 * If enough left try to send max possible,
692 * otherwise try to send the remainder
693 */
694 target_len = min(bd.remainder, max_bytes_per_lli);
695
696 /*
697 * Set bus lengths for incrementing buses to the
698 * number of bytes which fill to next memory boundary,
699 * limiting on the target length calculated above.
700 */
701 if (cctl & PL080_CONTROL_SRC_INCR)
702 bd.srcbus.fill_bytes =
703 pl08x_pre_boundary(bd.srcbus.addr,
704 target_len);
705 else
706 bd.srcbus.fill_bytes = target_len;
707
708 if (cctl & PL080_CONTROL_DST_INCR)
709 bd.dstbus.fill_bytes =
710 pl08x_pre_boundary(bd.dstbus.addr,
711 target_len);
712 else
713 bd.dstbus.fill_bytes = target_len;
714
715 /* Find the nearest */
716 lli_len = min(bd.srcbus.fill_bytes,
717 bd.dstbus.fill_bytes);
718
719 BUG_ON(lli_len > bd.remainder);
720
721 if (lli_len <= 0) {
722 dev_err(&pl08x->adev->dev,
723 "%s lli_len is %zu, <= 0\n",
724 __func__, lli_len);
725 return 0;
726 }
727
728 if (lli_len == target_len) {
729 /*
730 * Can send what we wanted.
731 * Maintain alignment
732 */
733 lli_len = (lli_len/mbus->buswidth) *
734 mbus->buswidth;
735 odd_bytes = 0;
736 } else {
737 /*
738 * So now we know how many bytes to transfer
739 * to get to the nearest boundary. The next
740 * LLI will past the boundary. However, we
741 * may be working to a boundary on the slave
742 * bus. We need to ensure the master stays
743 * aligned, and that we are working in
744 * multiples of the bus widths.
745 */
746 odd_bytes = lli_len % mbus->buswidth;
747 lli_len -= odd_bytes;
748
749 }
750
751 if (lli_len) {
752 /*
753 * Check against minimum bus alignment:
754 * Calculate actual transfer size in relation
755 * to bus width an get a maximum remainder of
756 * the smallest bus width - 1
757 */
758 /* FIXME: use round_down()? */
759 tsize = lli_len / min(mbus->buswidth,
760 sbus->buswidth);
761 lli_len = tsize * min(mbus->buswidth,
762 sbus->buswidth);
763
764 if (target_len != lli_len) {
765 dev_vdbg(&pl08x->adev->dev,
766 "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
767 __func__, target_len, lli_len, txd->len);
768 }
769
770 cctl = pl08x_cctl_bits(cctl,
771 bd.srcbus.buswidth,
772 bd.dstbus.buswidth,
773 tsize);
774
775 dev_vdbg(&pl08x->adev->dev,
776 "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
777 __func__, lli_len, bd.remainder);
778 pl08x_fill_lli_for_desc(&bd, num_llis++,
779 lli_len, cctl);
780 total_bytes += lli_len;
781 }
782
783
784 if (odd_bytes) {
785 /*
786 * Creep past the boundary, maintaining
787 * master alignment
788 */
789 int j;
790 for (j = 0; (j < mbus->buswidth)
791 && (bd.remainder); j++) {
792 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
793 dev_vdbg(&pl08x->adev->dev,
794 "%s align with boundary, single byte (remain 0x%08zx)\n",
795 __func__, bd.remainder);
796 pl08x_fill_lli_for_desc(&bd,
797 num_llis++, 1, cctl);
798 total_bytes++;
799 }
800 }
801 }
802
803 /*
804 * Send any odd bytes
805 */
806 while (bd.remainder) {
807 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
808 dev_vdbg(&pl08x->adev->dev,
809 "%s align with boundary, single odd byte (remain %zu)\n",
810 __func__, bd.remainder);
811 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
812 total_bytes++;
813 }
814 }
815 if (total_bytes != txd->len) {
816 dev_err(&pl08x->adev->dev,
817 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
818 __func__, total_bytes, txd->len);
819 return 0;
820 }
821
822 if (num_llis >= MAX_NUM_TSFR_LLIS) {
823 dev_err(&pl08x->adev->dev,
824 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
825 __func__, (u32) MAX_NUM_TSFR_LLIS);
826 return 0;
827 }
828
829 llis_va = txd->llis_va;
830 /* The final LLI terminates the LLI. */
831 llis_va[num_llis - 1].lli = 0;
832 /* The final LLI element shall also fire an interrupt. */
833 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
834
835#ifdef VERBOSE_DEBUG
836 {
837 int i;
838
839 dev_vdbg(&pl08x->adev->dev,
840 "%-3s %-9s %-10s %-10s %-10s %s\n",
841 "lli", "", "csrc", "cdst", "clli", "cctl");
842 for (i = 0; i < num_llis; i++) {
843 dev_vdbg(&pl08x->adev->dev,
844 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
845 i, &llis_va[i], llis_va[i].src,
846 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
847 );
848 }
849 }
850#endif
851
852 return num_llis;
853}
854
855/* You should call this with the struct pl08x lock held */
856static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
857 struct pl08x_txd *txd)
858{
859 /* Free the LLI */
860 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
861
862 pl08x->pool_ctr--;
863
864 kfree(txd);
865}
866
867static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
868 struct pl08x_dma_chan *plchan)
869{
870 struct pl08x_txd *txdi = NULL;
871 struct pl08x_txd *next;
872
873 if (!list_empty(&plchan->pend_list)) {
874 list_for_each_entry_safe(txdi,
875 next, &plchan->pend_list, node) {
876 list_del(&txdi->node);
877 pl08x_free_txd(pl08x, txdi);
878 }
879 }
880}
881
882/*
883 * The DMA ENGINE API
884 */
885static int pl08x_alloc_chan_resources(struct dma_chan *chan)
886{
887 return 0;
888}
889
890static void pl08x_free_chan_resources(struct dma_chan *chan)
891{
892}
893
894/*
895 * This should be called with the channel plchan->lock held
896 */
897static int prep_phy_channel(struct pl08x_dma_chan *plchan,
898 struct pl08x_txd *txd)
899{
900 struct pl08x_driver_data *pl08x = plchan->host;
901 struct pl08x_phy_chan *ch;
902 int ret;
903
904 /* Check if we already have a channel */
905 if (plchan->phychan)
906 return 0;
907
908 ch = pl08x_get_phy_channel(pl08x, plchan);
909 if (!ch) {
910 /* No physical channel available, cope with it */
911 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
912 return -EBUSY;
913 }
914
915 /*
916 * OK we have a physical channel: for memcpy() this is all we
917 * need, but for slaves the physical signals may be muxed!
918 * Can the platform allow us to use this channel?
919 */
920 if (plchan->slave &&
921 ch->signal < 0 &&
922 pl08x->pd->get_signal) {
923 ret = pl08x->pd->get_signal(plchan);
924 if (ret < 0) {
925 dev_dbg(&pl08x->adev->dev,
926 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
927 ch->id, plchan->name);
928 /* Release physical channel & return */
929 pl08x_put_phy_channel(pl08x, ch);
930 return -EBUSY;
931 }
932 ch->signal = ret;
933
934 /* Assign the flow control signal to this channel */
935 if (txd->direction == DMA_TO_DEVICE)
936 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
937 else if (txd->direction == DMA_FROM_DEVICE)
938 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
939 }
940
941 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
942 ch->id,
943 ch->signal,
944 plchan->name);
945
946 plchan->phychan_hold++;
947 plchan->phychan = ch;
948
949 return 0;
950}
951
952static void release_phy_channel(struct pl08x_dma_chan *plchan)
953{
954 struct pl08x_driver_data *pl08x = plchan->host;
955
956 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
957 pl08x->pd->put_signal(plchan);
958 plchan->phychan->signal = -1;
959 }
960 pl08x_put_phy_channel(pl08x, plchan->phychan);
961 plchan->phychan = NULL;
962}
963
964static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
965{
966 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
967 struct pl08x_txd *txd = to_pl08x_txd(tx);
968 unsigned long flags;
969
970 spin_lock_irqsave(&plchan->lock, flags);
971
972 plchan->chan.cookie += 1;
973 if (plchan->chan.cookie < 0)
974 plchan->chan.cookie = 1;
975 tx->cookie = plchan->chan.cookie;
976
977 /* Put this onto the pending list */
978 list_add_tail(&txd->node, &plchan->pend_list);
979
980 /*
981 * If there was no physical channel available for this memcpy,
982 * stack the request up and indicate that the channel is waiting
983 * for a free physical channel.
984 */
985 if (!plchan->slave && !plchan->phychan) {
986 /* Do this memcpy whenever there is a channel ready */
987 plchan->state = PL08X_CHAN_WAITING;
988 plchan->waiting = txd;
989 } else {
990 plchan->phychan_hold--;
991 }
992
993 spin_unlock_irqrestore(&plchan->lock, flags);
994
995 return tx->cookie;
996}
997
998static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
999 struct dma_chan *chan, unsigned long flags)
1000{
1001 struct dma_async_tx_descriptor *retval = NULL;
1002
1003 return retval;
1004}
1005
1006/*
1007 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1008 * If slaves are relying on interrupts to signal completion this function
1009 * must not be called with interrupts disabled.
1010 */
1011static enum dma_status
1012pl08x_dma_tx_status(struct dma_chan *chan,
1013 dma_cookie_t cookie,
1014 struct dma_tx_state *txstate)
1015{
1016 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1017 dma_cookie_t last_used;
1018 dma_cookie_t last_complete;
1019 enum dma_status ret;
1020 u32 bytesleft = 0;
1021
1022 last_used = plchan->chan.cookie;
1023 last_complete = plchan->lc;
1024
1025 ret = dma_async_is_complete(cookie, last_complete, last_used);
1026 if (ret == DMA_SUCCESS) {
1027 dma_set_tx_state(txstate, last_complete, last_used, 0);
1028 return ret;
1029 }
1030
1031 /*
1032 * This cookie not complete yet
1033 */
1034 last_used = plchan->chan.cookie;
1035 last_complete = plchan->lc;
1036
1037 /* Get number of bytes left in the active transactions and queue */
1038 bytesleft = pl08x_getbytes_chan(plchan);
1039
1040 dma_set_tx_state(txstate, last_complete, last_used,
1041 bytesleft);
1042
1043 if (plchan->state == PL08X_CHAN_PAUSED)
1044 return DMA_PAUSED;
1045
1046 /* Whether waiting or running, we're in progress */
1047 return DMA_IN_PROGRESS;
1048}
1049
1050/* PrimeCell DMA extension */
1051struct burst_table {
1052 u32 burstwords;
1053 u32 reg;
1054};
1055
1056static const struct burst_table burst_sizes[] = {
1057 {
1058 .burstwords = 256,
1059 .reg = PL080_BSIZE_256,
1060 },
1061 {
1062 .burstwords = 128,
1063 .reg = PL080_BSIZE_128,
1064 },
1065 {
1066 .burstwords = 64,
1067 .reg = PL080_BSIZE_64,
1068 },
1069 {
1070 .burstwords = 32,
1071 .reg = PL080_BSIZE_32,
1072 },
1073 {
1074 .burstwords = 16,
1075 .reg = PL080_BSIZE_16,
1076 },
1077 {
1078 .burstwords = 8,
1079 .reg = PL080_BSIZE_8,
1080 },
1081 {
1082 .burstwords = 4,
1083 .reg = PL080_BSIZE_4,
1084 },
1085 {
1086 .burstwords = 0,
1087 .reg = PL080_BSIZE_1,
1088 },
1089};
1090
1091/*
1092 * Given the source and destination available bus masks, select which
1093 * will be routed to each port. We try to have source and destination
1094 * on separate ports, but always respect the allowable settings.
1095 */
1096static u32 pl08x_select_bus(u8 src, u8 dst)
1097{
1098 u32 cctl = 0;
1099
1100 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1101 cctl |= PL080_CONTROL_DST_AHB2;
1102 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1103 cctl |= PL080_CONTROL_SRC_AHB2;
1104
1105 return cctl;
1106}
1107
1108static u32 pl08x_cctl(u32 cctl)
1109{
1110 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1111 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1112 PL080_CONTROL_PROT_MASK);
1113
1114 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1115 return cctl | PL080_CONTROL_PROT_SYS;
1116}
1117
1118static u32 pl08x_width(enum dma_slave_buswidth width)
1119{
1120 switch (width) {
1121 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1122 return PL080_WIDTH_8BIT;
1123 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1124 return PL080_WIDTH_16BIT;
1125 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1126 return PL080_WIDTH_32BIT;
1127 default:
1128 return ~0;
1129 }
1130}
1131
1132static u32 pl08x_burst(u32 maxburst)
1133{
1134 int i;
1135
1136 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1137 if (burst_sizes[i].burstwords <= maxburst)
1138 break;
1139
1140 return burst_sizes[i].reg;
1141}
1142
1143static int dma_set_runtime_config(struct dma_chan *chan,
1144 struct dma_slave_config *config)
1145{
1146 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1147 struct pl08x_driver_data *pl08x = plchan->host;
1148 enum dma_slave_buswidth addr_width;
1149 u32 width, burst, maxburst;
1150 u32 cctl = 0;
1151
1152 if (!plchan->slave)
1153 return -EINVAL;
1154
1155 /* Transfer direction */
1156 plchan->runtime_direction = config->direction;
1157 if (config->direction == DMA_TO_DEVICE) {
1158 addr_width = config->dst_addr_width;
1159 maxburst = config->dst_maxburst;
1160 } else if (config->direction == DMA_FROM_DEVICE) {
1161 addr_width = config->src_addr_width;
1162 maxburst = config->src_maxburst;
1163 } else {
1164 dev_err(&pl08x->adev->dev,
1165 "bad runtime_config: alien transfer direction\n");
1166 return -EINVAL;
1167 }
1168
1169 width = pl08x_width(addr_width);
1170 if (width == ~0) {
1171 dev_err(&pl08x->adev->dev,
1172 "bad runtime_config: alien address width\n");
1173 return -EINVAL;
1174 }
1175
1176 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1177 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1178
1179 /*
1180 * If this channel will only request single transfers, set this
1181 * down to ONE element. Also select one element if no maxburst
1182 * is specified.
1183 */
1184 if (plchan->cd->single)
1185 maxburst = 1;
1186
1187 burst = pl08x_burst(maxburst);
1188 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1189 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1190
1191 if (plchan->runtime_direction == DMA_FROM_DEVICE) {
1192 plchan->src_addr = config->src_addr;
1193 plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
1194 pl08x_select_bus(plchan->cd->periph_buses,
1195 pl08x->mem_buses);
1196 } else {
1197 plchan->dst_addr = config->dst_addr;
1198 plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
1199 pl08x_select_bus(pl08x->mem_buses,
1200 plchan->cd->periph_buses);
1201 }
1202
1203 dev_dbg(&pl08x->adev->dev,
1204 "configured channel %s (%s) for %s, data width %d, "
1205 "maxburst %d words, LE, CCTL=0x%08x\n",
1206 dma_chan_name(chan), plchan->name,
1207 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1208 addr_width,
1209 maxburst,
1210 cctl);
1211
1212 return 0;
1213}
1214
1215/*
1216 * Slave transactions callback to the slave device to allow
1217 * synchronization of slave DMA signals with the DMAC enable
1218 */
1219static void pl08x_issue_pending(struct dma_chan *chan)
1220{
1221 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1222 unsigned long flags;
1223
1224 spin_lock_irqsave(&plchan->lock, flags);
1225 /* Something is already active, or we're waiting for a channel... */
1226 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1227 spin_unlock_irqrestore(&plchan->lock, flags);
1228 return;
1229 }
1230
1231 /* Take the first element in the queue and execute it */
1232 if (!list_empty(&plchan->pend_list)) {
1233 struct pl08x_txd *next;
1234
1235 next = list_first_entry(&plchan->pend_list,
1236 struct pl08x_txd,
1237 node);
1238 list_del(&next->node);
1239 plchan->state = PL08X_CHAN_RUNNING;
1240
1241 pl08x_start_txd(plchan, next);
1242 }
1243
1244 spin_unlock_irqrestore(&plchan->lock, flags);
1245}
1246
1247static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1248 struct pl08x_txd *txd)
1249{
1250 struct pl08x_driver_data *pl08x = plchan->host;
1251 unsigned long flags;
1252 int num_llis, ret;
1253
1254 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1255 if (!num_llis) {
1256 kfree(txd);
1257 return -EINVAL;
1258 }
1259
1260 spin_lock_irqsave(&plchan->lock, flags);
1261
1262 /*
1263 * See if we already have a physical channel allocated,
1264 * else this is the time to try to get one.
1265 */
1266 ret = prep_phy_channel(plchan, txd);
1267 if (ret) {
1268 /*
1269 * No physical channel was available.
1270 *
1271 * memcpy transfers can be sorted out at submission time.
1272 *
1273 * Slave transfers may have been denied due to platform
1274 * channel muxing restrictions. Since there is no guarantee
1275 * that this will ever be resolved, and the signal must be
1276 * acquired AFTER acquiring the physical channel, we will let
1277 * them be NACK:ed with -EBUSY here. The drivers can retry
1278 * the prep() call if they are eager on doing this using DMA.
1279 */
1280 if (plchan->slave) {
1281 pl08x_free_txd_list(pl08x, plchan);
1282 pl08x_free_txd(pl08x, txd);
1283 spin_unlock_irqrestore(&plchan->lock, flags);
1284 return -EBUSY;
1285 }
1286 } else
1287 /*
1288 * Else we're all set, paused and ready to roll, status
1289 * will switch to PL08X_CHAN_RUNNING when we call
1290 * issue_pending(). If there is something running on the
1291 * channel already we don't change its state.
1292 */
1293 if (plchan->state == PL08X_CHAN_IDLE)
1294 plchan->state = PL08X_CHAN_PAUSED;
1295
1296 spin_unlock_irqrestore(&plchan->lock, flags);
1297
1298 return 0;
1299}
1300
1301static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1302 unsigned long flags)
1303{
1304 struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1305
1306 if (txd) {
1307 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1308 txd->tx.flags = flags;
1309 txd->tx.tx_submit = pl08x_tx_submit;
1310 INIT_LIST_HEAD(&txd->node);
1311
1312 /* Always enable error and terminal interrupts */
1313 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1314 PL080_CONFIG_TC_IRQ_MASK;
1315 }
1316 return txd;
1317}
1318
1319/*
1320 * Initialize a descriptor to be used by memcpy submit
1321 */
1322static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1323 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1324 size_t len, unsigned long flags)
1325{
1326 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1327 struct pl08x_driver_data *pl08x = plchan->host;
1328 struct pl08x_txd *txd;
1329 int ret;
1330
1331 txd = pl08x_get_txd(plchan, flags);
1332 if (!txd) {
1333 dev_err(&pl08x->adev->dev,
1334 "%s no memory for descriptor\n", __func__);
1335 return NULL;
1336 }
1337
1338 txd->direction = DMA_NONE;
1339 txd->src_addr = src;
1340 txd->dst_addr = dest;
1341 txd->len = len;
1342
1343 /* Set platform data for m2m */
1344 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1345 txd->cctl = pl08x->pd->memcpy_channel.cctl &
1346 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1347
1348 /* Both to be incremented or the code will break */
1349 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1350
1351 if (pl08x->vd->dualmaster)
1352 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1353 pl08x->mem_buses);
1354
1355 ret = pl08x_prep_channel_resources(plchan, txd);
1356 if (ret)
1357 return NULL;
1358
1359 return &txd->tx;
1360}
1361
1362static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1363 struct dma_chan *chan, struct scatterlist *sgl,
1364 unsigned int sg_len, enum dma_data_direction direction,
1365 unsigned long flags)
1366{
1367 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1368 struct pl08x_driver_data *pl08x = plchan->host;
1369 struct pl08x_txd *txd;
1370 int ret;
1371
1372 /*
1373 * Current implementation ASSUMES only one sg
1374 */
1375 if (sg_len != 1) {
1376 dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1377 __func__);
1378 BUG();
1379 }
1380
1381 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1382 __func__, sgl->length, plchan->name);
1383
1384 txd = pl08x_get_txd(plchan, flags);
1385 if (!txd) {
1386 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1387 return NULL;
1388 }
1389
1390 if (direction != plchan->runtime_direction)
1391 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1392 "the direction configured for the PrimeCell\n",
1393 __func__);
1394
1395 /*
1396 * Set up addresses, the PrimeCell configured address
1397 * will take precedence since this may configure the
1398 * channel target address dynamically at runtime.
1399 */
1400 txd->direction = direction;
1401 txd->len = sgl->length;
1402
1403 if (direction == DMA_TO_DEVICE) {
1404 txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1405 txd->cctl = plchan->dst_cctl;
1406 txd->src_addr = sgl->dma_address;
1407 txd->dst_addr = plchan->dst_addr;
1408 } else if (direction == DMA_FROM_DEVICE) {
1409 txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1410 txd->cctl = plchan->src_cctl;
1411 txd->src_addr = plchan->src_addr;
1412 txd->dst_addr = sgl->dma_address;
1413 } else {
1414 dev_err(&pl08x->adev->dev,
1415 "%s direction unsupported\n", __func__);
1416 return NULL;
1417 }
1418
1419 ret = pl08x_prep_channel_resources(plchan, txd);
1420 if (ret)
1421 return NULL;
1422
1423 return &txd->tx;
1424}
1425
1426static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1427 unsigned long arg)
1428{
1429 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1430 struct pl08x_driver_data *pl08x = plchan->host;
1431 unsigned long flags;
1432 int ret = 0;
1433
1434 /* Controls applicable to inactive channels */
1435 if (cmd == DMA_SLAVE_CONFIG) {
1436 return dma_set_runtime_config(chan,
1437 (struct dma_slave_config *)arg);
1438 }
1439
1440 /*
1441 * Anything succeeds on channels with no physical allocation and
1442 * no queued transfers.
1443 */
1444 spin_lock_irqsave(&plchan->lock, flags);
1445 if (!plchan->phychan && !plchan->at) {
1446 spin_unlock_irqrestore(&plchan->lock, flags);
1447 return 0;
1448 }
1449
1450 switch (cmd) {
1451 case DMA_TERMINATE_ALL:
1452 plchan->state = PL08X_CHAN_IDLE;
1453
1454 if (plchan->phychan) {
1455 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1456
1457 /*
1458 * Mark physical channel as free and free any slave
1459 * signal
1460 */
1461 release_phy_channel(plchan);
1462 }
1463 /* Dequeue jobs and free LLIs */
1464 if (plchan->at) {
1465 pl08x_free_txd(pl08x, plchan->at);
1466 plchan->at = NULL;
1467 }
1468 /* Dequeue jobs not yet fired as well */
1469 pl08x_free_txd_list(pl08x, plchan);
1470 break;
1471 case DMA_PAUSE:
1472 pl08x_pause_phy_chan(plchan->phychan);
1473 plchan->state = PL08X_CHAN_PAUSED;
1474 break;
1475 case DMA_RESUME:
1476 pl08x_resume_phy_chan(plchan->phychan);
1477 plchan->state = PL08X_CHAN_RUNNING;
1478 break;
1479 default:
1480 /* Unknown command */
1481 ret = -ENXIO;
1482 break;
1483 }
1484
1485 spin_unlock_irqrestore(&plchan->lock, flags);
1486
1487 return ret;
1488}
1489
1490bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1491{
1492 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1493 char *name = chan_id;
1494
1495 /* Check that the channel is not taken! */
1496 if (!strcmp(plchan->name, name))
1497 return true;
1498
1499 return false;
1500}
1501
1502/*
1503 * Just check that the device is there and active
1504 * TODO: turn this bit on/off depending on the number of physical channels
1505 * actually used, if it is zero... well shut it off. That will save some
1506 * power. Cut the clock at the same time.
1507 */
1508static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1509{
1510 u32 val;
1511
1512 val = readl(pl08x->base + PL080_CONFIG);
1513 val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1514 /* We implicitly clear bit 1 and that means little-endian mode */
1515 val |= PL080_CONFIG_ENABLE;
1516 writel(val, pl08x->base + PL080_CONFIG);
1517}
1518
1519static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1520{
1521 struct device *dev = txd->tx.chan->device->dev;
1522
1523 if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1524 if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1525 dma_unmap_single(dev, txd->src_addr, txd->len,
1526 DMA_TO_DEVICE);
1527 else
1528 dma_unmap_page(dev, txd->src_addr, txd->len,
1529 DMA_TO_DEVICE);
1530 }
1531 if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1532 if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1533 dma_unmap_single(dev, txd->dst_addr, txd->len,
1534 DMA_FROM_DEVICE);
1535 else
1536 dma_unmap_page(dev, txd->dst_addr, txd->len,
1537 DMA_FROM_DEVICE);
1538 }
1539}
1540
1541static void pl08x_tasklet(unsigned long data)
1542{
1543 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1544 struct pl08x_driver_data *pl08x = plchan->host;
1545 struct pl08x_txd *txd;
1546 unsigned long flags;
1547
1548 spin_lock_irqsave(&plchan->lock, flags);
1549
1550 txd = plchan->at;
1551 plchan->at = NULL;
1552
1553 if (txd) {
1554 /* Update last completed */
1555 plchan->lc = txd->tx.cookie;
1556 }
1557
1558 /* If a new descriptor is queued, set it up plchan->at is NULL here */
1559 if (!list_empty(&plchan->pend_list)) {
1560 struct pl08x_txd *next;
1561
1562 next = list_first_entry(&plchan->pend_list,
1563 struct pl08x_txd,
1564 node);
1565 list_del(&next->node);
1566
1567 pl08x_start_txd(plchan, next);
1568 } else if (plchan->phychan_hold) {
1569 /*
1570 * This channel is still in use - we have a new txd being
1571 * prepared and will soon be queued. Don't give up the
1572 * physical channel.
1573 */
1574 } else {
1575 struct pl08x_dma_chan *waiting = NULL;
1576
1577 /*
1578 * No more jobs, so free up the physical channel
1579 * Free any allocated signal on slave transfers too
1580 */
1581 release_phy_channel(plchan);
1582 plchan->state = PL08X_CHAN_IDLE;
1583
1584 /*
1585 * And NOW before anyone else can grab that free:d up
1586 * physical channel, see if there is some memcpy pending
1587 * that seriously needs to start because of being stacked
1588 * up while we were choking the physical channels with data.
1589 */
1590 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1591 chan.device_node) {
1592 if (waiting->state == PL08X_CHAN_WAITING &&
1593 waiting->waiting != NULL) {
1594 int ret;
1595
1596 /* This should REALLY not fail now */
1597 ret = prep_phy_channel(waiting,
1598 waiting->waiting);
1599 BUG_ON(ret);
1600 waiting->phychan_hold--;
1601 waiting->state = PL08X_CHAN_RUNNING;
1602 waiting->waiting = NULL;
1603 pl08x_issue_pending(&waiting->chan);
1604 break;
1605 }
1606 }
1607 }
1608
1609 spin_unlock_irqrestore(&plchan->lock, flags);
1610
1611 if (txd) {
1612 dma_async_tx_callback callback = txd->tx.callback;
1613 void *callback_param = txd->tx.callback_param;
1614
1615 /* Don't try to unmap buffers on slave channels */
1616 if (!plchan->slave)
1617 pl08x_unmap_buffers(txd);
1618
1619 /* Free the descriptor */
1620 spin_lock_irqsave(&plchan->lock, flags);
1621 pl08x_free_txd(pl08x, txd);
1622 spin_unlock_irqrestore(&plchan->lock, flags);
1623
1624 /* Callback to signal completion */
1625 if (callback)
1626 callback(callback_param);
1627 }
1628}
1629
1630static irqreturn_t pl08x_irq(int irq, void *dev)
1631{
1632 struct pl08x_driver_data *pl08x = dev;
1633 u32 mask = 0;
1634 u32 val;
1635 int i;
1636
1637 val = readl(pl08x->base + PL080_ERR_STATUS);
1638 if (val) {
1639 /* An error interrupt (on one or more channels) */
1640 dev_err(&pl08x->adev->dev,
1641 "%s error interrupt, register value 0x%08x\n",
1642 __func__, val);
1643 /*
1644 * Simply clear ALL PL08X error interrupts,
1645 * regardless of channel and cause
1646 * FIXME: should be 0x00000003 on PL081 really.
1647 */
1648 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1649 }
1650 val = readl(pl08x->base + PL080_INT_STATUS);
1651 for (i = 0; i < pl08x->vd->channels; i++) {
1652 if ((1 << i) & val) {
1653 /* Locate physical channel */
1654 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1655 struct pl08x_dma_chan *plchan = phychan->serving;
1656
1657 /* Schedule tasklet on this channel */
1658 tasklet_schedule(&plchan->tasklet);
1659
1660 mask |= (1 << i);
1661 }
1662 }
1663 /* Clear only the terminal interrupts on channels we processed */
1664 writel(mask, pl08x->base + PL080_TC_CLEAR);
1665
1666 return mask ? IRQ_HANDLED : IRQ_NONE;
1667}
1668
1669static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1670{
1671 u32 cctl = pl08x_cctl(chan->cd->cctl);
1672
1673 chan->slave = true;
1674 chan->name = chan->cd->bus_id;
1675 chan->src_addr = chan->cd->addr;
1676 chan->dst_addr = chan->cd->addr;
1677 chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
1678 pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
1679 chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
1680 pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
1681}
1682
1683/*
1684 * Initialise the DMAC memcpy/slave channels.
1685 * Make a local wrapper to hold required data
1686 */
1687static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1688 struct dma_device *dmadev,
1689 unsigned int channels,
1690 bool slave)
1691{
1692 struct pl08x_dma_chan *chan;
1693 int i;
1694
1695 INIT_LIST_HEAD(&dmadev->channels);
1696
1697 /*
1698 * Register as many many memcpy as we have physical channels,
1699 * we won't always be able to use all but the code will have
1700 * to cope with that situation.
1701 */
1702 for (i = 0; i < channels; i++) {
1703 chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1704 if (!chan) {
1705 dev_err(&pl08x->adev->dev,
1706 "%s no memory for channel\n", __func__);
1707 return -ENOMEM;
1708 }
1709
1710 chan->host = pl08x;
1711 chan->state = PL08X_CHAN_IDLE;
1712
1713 if (slave) {
1714 chan->cd = &pl08x->pd->slave_channels[i];
1715 pl08x_dma_slave_init(chan);
1716 } else {
1717 chan->cd = &pl08x->pd->memcpy_channel;
1718 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1719 if (!chan->name) {
1720 kfree(chan);
1721 return -ENOMEM;
1722 }
1723 }
1724 if (chan->cd->circular_buffer) {
1725 dev_err(&pl08x->adev->dev,
1726 "channel %s: circular buffers not supported\n",
1727 chan->name);
1728 kfree(chan);
1729 continue;
1730 }
1731 dev_info(&pl08x->adev->dev,
1732 "initialize virtual channel \"%s\"\n",
1733 chan->name);
1734
1735 chan->chan.device = dmadev;
1736 chan->chan.cookie = 0;
1737 chan->lc = 0;
1738
1739 spin_lock_init(&chan->lock);
1740 INIT_LIST_HEAD(&chan->pend_list);
1741 tasklet_init(&chan->tasklet, pl08x_tasklet,
1742 (unsigned long) chan);
1743
1744 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1745 }
1746 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1747 i, slave ? "slave" : "memcpy");
1748 return i;
1749}
1750
1751static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1752{
1753 struct pl08x_dma_chan *chan = NULL;
1754 struct pl08x_dma_chan *next;
1755
1756 list_for_each_entry_safe(chan,
1757 next, &dmadev->channels, chan.device_node) {
1758 list_del(&chan->chan.device_node);
1759 kfree(chan);
1760 }
1761}
1762
1763#ifdef CONFIG_DEBUG_FS
1764static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1765{
1766 switch (state) {
1767 case PL08X_CHAN_IDLE:
1768 return "idle";
1769 case PL08X_CHAN_RUNNING:
1770 return "running";
1771 case PL08X_CHAN_PAUSED:
1772 return "paused";
1773 case PL08X_CHAN_WAITING:
1774 return "waiting";
1775 default:
1776 break;
1777 }
1778 return "UNKNOWN STATE";
1779}
1780
1781static int pl08x_debugfs_show(struct seq_file *s, void *data)
1782{
1783 struct pl08x_driver_data *pl08x = s->private;
1784 struct pl08x_dma_chan *chan;
1785 struct pl08x_phy_chan *ch;
1786 unsigned long flags;
1787 int i;
1788
1789 seq_printf(s, "PL08x physical channels:\n");
1790 seq_printf(s, "CHANNEL:\tUSER:\n");
1791 seq_printf(s, "--------\t-----\n");
1792 for (i = 0; i < pl08x->vd->channels; i++) {
1793 struct pl08x_dma_chan *virt_chan;
1794
1795 ch = &pl08x->phy_chans[i];
1796
1797 spin_lock_irqsave(&ch->lock, flags);
1798 virt_chan = ch->serving;
1799
1800 seq_printf(s, "%d\t\t%s\n",
1801 ch->id, virt_chan ? virt_chan->name : "(none)");
1802
1803 spin_unlock_irqrestore(&ch->lock, flags);
1804 }
1805
1806 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1807 seq_printf(s, "CHANNEL:\tSTATE:\n");
1808 seq_printf(s, "--------\t------\n");
1809 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1810 seq_printf(s, "%s\t\t%s\n", chan->name,
1811 pl08x_state_str(chan->state));
1812 }
1813
1814 seq_printf(s, "\nPL08x virtual slave channels:\n");
1815 seq_printf(s, "CHANNEL:\tSTATE:\n");
1816 seq_printf(s, "--------\t------\n");
1817 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1818 seq_printf(s, "%s\t\t%s\n", chan->name,
1819 pl08x_state_str(chan->state));
1820 }
1821
1822 return 0;
1823}
1824
1825static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1826{
1827 return single_open(file, pl08x_debugfs_show, inode->i_private);
1828}
1829
1830static const struct file_operations pl08x_debugfs_operations = {
1831 .open = pl08x_debugfs_open,
1832 .read = seq_read,
1833 .llseek = seq_lseek,
1834 .release = single_release,
1835};
1836
1837static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1838{
1839 /* Expose a simple debugfs interface to view all clocks */
1840 (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1841 NULL, pl08x,
1842 &pl08x_debugfs_operations);
1843}
1844
1845#else
1846static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1847{
1848}
1849#endif
1850
1851static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1852{
1853 struct pl08x_driver_data *pl08x;
1854 const struct vendor_data *vd = id->data;
1855 int ret = 0;
1856 int i;
1857
1858 ret = amba_request_regions(adev, NULL);
1859 if (ret)
1860 return ret;
1861
1862 /* Create the driver state holder */
1863 pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1864 if (!pl08x) {
1865 ret = -ENOMEM;
1866 goto out_no_pl08x;
1867 }
1868
1869 /* Initialize memcpy engine */
1870 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1871 pl08x->memcpy.dev = &adev->dev;
1872 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1873 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1874 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1875 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1876 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1877 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1878 pl08x->memcpy.device_control = pl08x_control;
1879
1880 /* Initialize slave engine */
1881 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1882 pl08x->slave.dev = &adev->dev;
1883 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1884 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1885 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1886 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1887 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1888 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1889 pl08x->slave.device_control = pl08x_control;
1890
1891 /* Get the platform data */
1892 pl08x->pd = dev_get_platdata(&adev->dev);
1893 if (!pl08x->pd) {
1894 dev_err(&adev->dev, "no platform data supplied\n");
1895 goto out_no_platdata;
1896 }
1897
1898 /* Assign useful pointers to the driver state */
1899 pl08x->adev = adev;
1900 pl08x->vd = vd;
1901
1902 /* By default, AHB1 only. If dualmaster, from platform */
1903 pl08x->lli_buses = PL08X_AHB1;
1904 pl08x->mem_buses = PL08X_AHB1;
1905 if (pl08x->vd->dualmaster) {
1906 pl08x->lli_buses = pl08x->pd->lli_buses;
1907 pl08x->mem_buses = pl08x->pd->mem_buses;
1908 }
1909
1910 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1911 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1912 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1913 if (!pl08x->pool) {
1914 ret = -ENOMEM;
1915 goto out_no_lli_pool;
1916 }
1917
1918 spin_lock_init(&pl08x->lock);
1919
1920 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1921 if (!pl08x->base) {
1922 ret = -ENOMEM;
1923 goto out_no_ioremap;
1924 }
1925
1926 /* Turn on the PL08x */
1927 pl08x_ensure_on(pl08x);
1928
1929 /* Attach the interrupt handler */
1930 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1931 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1932
1933 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1934 DRIVER_NAME, pl08x);
1935 if (ret) {
1936 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1937 __func__, adev->irq[0]);
1938 goto out_no_irq;
1939 }
1940
1941 /* Initialize physical channels */
1942 pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
1943 GFP_KERNEL);
1944 if (!pl08x->phy_chans) {
1945 dev_err(&adev->dev, "%s failed to allocate "
1946 "physical channel holders\n",
1947 __func__);
1948 goto out_no_phychans;
1949 }
1950
1951 for (i = 0; i < vd->channels; i++) {
1952 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1953
1954 ch->id = i;
1955 ch->base = pl08x->base + PL080_Cx_BASE(i);
1956 spin_lock_init(&ch->lock);
1957 ch->serving = NULL;
1958 ch->signal = -1;
1959 dev_info(&adev->dev,
1960 "physical channel %d is %s\n", i,
1961 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1962 }
1963
1964 /* Register as many memcpy channels as there are physical channels */
1965 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1966 pl08x->vd->channels, false);
1967 if (ret <= 0) {
1968 dev_warn(&pl08x->adev->dev,
1969 "%s failed to enumerate memcpy channels - %d\n",
1970 __func__, ret);
1971 goto out_no_memcpy;
1972 }
1973 pl08x->memcpy.chancnt = ret;
1974
1975 /* Register slave channels */
1976 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1977 pl08x->pd->num_slave_channels,
1978 true);
1979 if (ret <= 0) {
1980 dev_warn(&pl08x->adev->dev,
1981 "%s failed to enumerate slave channels - %d\n",
1982 __func__, ret);
1983 goto out_no_slave;
1984 }
1985 pl08x->slave.chancnt = ret;
1986
1987 ret = dma_async_device_register(&pl08x->memcpy);
1988 if (ret) {
1989 dev_warn(&pl08x->adev->dev,
1990 "%s failed to register memcpy as an async device - %d\n",
1991 __func__, ret);
1992 goto out_no_memcpy_reg;
1993 }
1994
1995 ret = dma_async_device_register(&pl08x->slave);
1996 if (ret) {
1997 dev_warn(&pl08x->adev->dev,
1998 "%s failed to register slave as an async device - %d\n",
1999 __func__, ret);
2000 goto out_no_slave_reg;
2001 }
2002
2003 amba_set_drvdata(adev, pl08x);
2004 init_pl08x_debugfs(pl08x);
2005 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2006 amba_part(adev), amba_rev(adev),
2007 (unsigned long long)adev->res.start, adev->irq[0]);
2008 return 0;
2009
2010out_no_slave_reg:
2011 dma_async_device_unregister(&pl08x->memcpy);
2012out_no_memcpy_reg:
2013 pl08x_free_virtual_channels(&pl08x->slave);
2014out_no_slave:
2015 pl08x_free_virtual_channels(&pl08x->memcpy);
2016out_no_memcpy:
2017 kfree(pl08x->phy_chans);
2018out_no_phychans:
2019 free_irq(adev->irq[0], pl08x);
2020out_no_irq:
2021 iounmap(pl08x->base);
2022out_no_ioremap:
2023 dma_pool_destroy(pl08x->pool);
2024out_no_lli_pool:
2025out_no_platdata:
2026 kfree(pl08x);
2027out_no_pl08x:
2028 amba_release_regions(adev);
2029 return ret;
2030}
2031
2032/* PL080 has 8 channels and the PL080 have just 2 */
2033static struct vendor_data vendor_pl080 = {
2034 .channels = 8,
2035 .dualmaster = true,
2036};
2037
2038static struct vendor_data vendor_pl081 = {
2039 .channels = 2,
2040 .dualmaster = false,
2041};
2042
2043static struct amba_id pl08x_ids[] = {
2044 /* PL080 */
2045 {
2046 .id = 0x00041080,
2047 .mask = 0x000fffff,
2048 .data = &vendor_pl080,
2049 },
2050 /* PL081 */
2051 {
2052 .id = 0x00041081,
2053 .mask = 0x000fffff,
2054 .data = &vendor_pl081,
2055 },
2056 /* Nomadik 8815 PL080 variant */
2057 {
2058 .id = 0x00280880,
2059 .mask = 0x00ffffff,
2060 .data = &vendor_pl080,
2061 },
2062 { 0, 0 },
2063};
2064
2065static struct amba_driver pl08x_amba_driver = {
2066 .drv.name = DRIVER_NAME,
2067 .id_table = pl08x_ids,
2068 .probe = pl08x_probe,
2069};
2070
2071static int __init pl08x_init(void)
2072{
2073 int retval;
2074 retval = amba_driver_register(&pl08x_amba_driver);
2075 if (retval)
2076 printk(KERN_WARNING DRIVER_NAME
2077 "failed to register as an AMBA device (%d)\n",
2078 retval);
2079 return retval;
2080}
2081subsys_initcall(pl08x_init);
1/*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 * Documentation: S3C6410 User's Manual == PL080S
28 *
29 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
30 * channel.
31 *
32 * The PL080 has 8 channels available for simultaneous use, and the PL081
33 * has only two channels. So on these DMA controllers the number of channels
34 * and the number of incoming DMA signals are two totally different things.
35 * It is usually not possible to theoretically handle all physical signals,
36 * so a multiplexing scheme with possible denial of use is necessary.
37 *
38 * The PL080 has a dual bus master, PL081 has a single master.
39 *
40 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
41 * It differs in following aspects:
42 * - CH_CONFIG register at different offset,
43 * - separate CH_CONTROL2 register for transfer size,
44 * - bigger maximum transfer size,
45 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
46 * - no support for peripheral flow control.
47 *
48 * Memory to peripheral transfer may be visualized as
49 * Get data from memory to DMAC
50 * Until no data left
51 * On burst request from peripheral
52 * Destination burst from DMAC to peripheral
53 * Clear burst request
54 * Raise terminal count interrupt
55 *
56 * For peripherals with a FIFO:
57 * Source burst size == half the depth of the peripheral FIFO
58 * Destination burst size == the depth of the peripheral FIFO
59 *
60 * (Bursts are irrelevant for mem to mem transfers - there are no burst
61 * signals, the DMA controller will simply facilitate its AHB master.)
62 *
63 * ASSUMES default (little) endianness for DMA transfers
64 *
65 * The PL08x has two flow control settings:
66 * - DMAC flow control: the transfer size defines the number of transfers
67 * which occur for the current LLI entry, and the DMAC raises TC at the
68 * end of every LLI entry. Observed behaviour shows the DMAC listening
69 * to both the BREQ and SREQ signals (contrary to documented),
70 * transferring data if either is active. The LBREQ and LSREQ signals
71 * are ignored.
72 *
73 * - Peripheral flow control: the transfer size is ignored (and should be
74 * zero). The data is transferred from the current LLI entry, until
75 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
76 * will then move to the next LLI entry. Unsupported by PL080S.
77 */
78#include <linux/amba/bus.h>
79#include <linux/amba/pl08x.h>
80#include <linux/debugfs.h>
81#include <linux/delay.h>
82#include <linux/device.h>
83#include <linux/dmaengine.h>
84#include <linux/dmapool.h>
85#include <linux/dma-mapping.h>
86#include <linux/export.h>
87#include <linux/init.h>
88#include <linux/interrupt.h>
89#include <linux/module.h>
90#include <linux/pm_runtime.h>
91#include <linux/seq_file.h>
92#include <linux/slab.h>
93#include <linux/amba/pl080.h>
94
95#include "dmaengine.h"
96#include "virt-dma.h"
97
98#define DRIVER_NAME "pl08xdmac"
99
100static struct amba_driver pl08x_amba_driver;
101struct pl08x_driver_data;
102
103/**
104 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
105 * @channels: the number of channels available in this variant
106 * @dualmaster: whether this version supports dual AHB masters or not.
107 * @nomadik: whether the channels have Nomadik security extension bits
108 * that need to be checked for permission before use and some registers are
109 * missing
110 * @pl080s: whether this version is a PL080S, which has separate register and
111 * LLI word for transfer size.
112 */
113struct vendor_data {
114 u8 config_offset;
115 u8 channels;
116 bool dualmaster;
117 bool nomadik;
118 bool pl080s;
119 u32 max_transfer_size;
120};
121
122/**
123 * struct pl08x_bus_data - information of source or destination
124 * busses for a transfer
125 * @addr: current address
126 * @maxwidth: the maximum width of a transfer on this bus
127 * @buswidth: the width of this bus in bytes: 1, 2 or 4
128 */
129struct pl08x_bus_data {
130 dma_addr_t addr;
131 u8 maxwidth;
132 u8 buswidth;
133};
134
135#define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
136
137/**
138 * struct pl08x_phy_chan - holder for the physical channels
139 * @id: physical index to this channel
140 * @lock: a lock to use when altering an instance of this struct
141 * @serving: the virtual channel currently being served by this physical
142 * channel
143 * @locked: channel unavailable for the system, e.g. dedicated to secure
144 * world
145 */
146struct pl08x_phy_chan {
147 unsigned int id;
148 void __iomem *base;
149 void __iomem *reg_config;
150 spinlock_t lock;
151 struct pl08x_dma_chan *serving;
152 bool locked;
153};
154
155/**
156 * struct pl08x_sg - structure containing data per sg
157 * @src_addr: src address of sg
158 * @dst_addr: dst address of sg
159 * @len: transfer len in bytes
160 * @node: node for txd's dsg_list
161 */
162struct pl08x_sg {
163 dma_addr_t src_addr;
164 dma_addr_t dst_addr;
165 size_t len;
166 struct list_head node;
167};
168
169/**
170 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
171 * @vd: virtual DMA descriptor
172 * @dsg_list: list of children sg's
173 * @llis_bus: DMA memory address (physical) start for the LLIs
174 * @llis_va: virtual memory address start for the LLIs
175 * @cctl: control reg values for current txd
176 * @ccfg: config reg values for current txd
177 * @done: this marks completed descriptors, which should not have their
178 * mux released.
179 * @cyclic: indicate cyclic transfers
180 */
181struct pl08x_txd {
182 struct virt_dma_desc vd;
183 struct list_head dsg_list;
184 dma_addr_t llis_bus;
185 u32 *llis_va;
186 /* Default cctl value for LLIs */
187 u32 cctl;
188 /*
189 * Settings to be put into the physical channel when we
190 * trigger this txd. Other registers are in llis_va[0].
191 */
192 u32 ccfg;
193 bool done;
194 bool cyclic;
195};
196
197/**
198 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
199 * states
200 * @PL08X_CHAN_IDLE: the channel is idle
201 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
202 * channel and is running a transfer on it
203 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
204 * channel, but the transfer is currently paused
205 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
206 * channel to become available (only pertains to memcpy channels)
207 */
208enum pl08x_dma_chan_state {
209 PL08X_CHAN_IDLE,
210 PL08X_CHAN_RUNNING,
211 PL08X_CHAN_PAUSED,
212 PL08X_CHAN_WAITING,
213};
214
215/**
216 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
217 * @vc: wrappped virtual channel
218 * @phychan: the physical channel utilized by this channel, if there is one
219 * @name: name of channel
220 * @cd: channel platform data
221 * @runtime_addr: address for RX/TX according to the runtime config
222 * @at: active transaction on this channel
223 * @lock: a lock for this channel data
224 * @host: a pointer to the host (internal use)
225 * @state: whether the channel is idle, paused, running etc
226 * @slave: whether this channel is a device (slave) or for memcpy
227 * @signal: the physical DMA request signal which this channel is using
228 * @mux_use: count of descriptors using this DMA request signal setting
229 */
230struct pl08x_dma_chan {
231 struct virt_dma_chan vc;
232 struct pl08x_phy_chan *phychan;
233 const char *name;
234 const struct pl08x_channel_data *cd;
235 struct dma_slave_config cfg;
236 struct pl08x_txd *at;
237 struct pl08x_driver_data *host;
238 enum pl08x_dma_chan_state state;
239 bool slave;
240 int signal;
241 unsigned mux_use;
242};
243
244/**
245 * struct pl08x_driver_data - the local state holder for the PL08x
246 * @slave: slave engine for this instance
247 * @memcpy: memcpy engine for this instance
248 * @base: virtual memory base (remapped) for the PL08x
249 * @adev: the corresponding AMBA (PrimeCell) bus entry
250 * @vd: vendor data for this PL08x variant
251 * @pd: platform data passed in from the platform/machine
252 * @phy_chans: array of data for the physical channels
253 * @pool: a pool for the LLI descriptors
254 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
255 * fetches
256 * @mem_buses: set to indicate memory transfers on AHB2.
257 * @lock: a spinlock for this struct
258 */
259struct pl08x_driver_data {
260 struct dma_device slave;
261 struct dma_device memcpy;
262 void __iomem *base;
263 struct amba_device *adev;
264 const struct vendor_data *vd;
265 struct pl08x_platform_data *pd;
266 struct pl08x_phy_chan *phy_chans;
267 struct dma_pool *pool;
268 u8 lli_buses;
269 u8 mem_buses;
270 u8 lli_words;
271};
272
273/*
274 * PL08X specific defines
275 */
276
277/* The order of words in an LLI. */
278#define PL080_LLI_SRC 0
279#define PL080_LLI_DST 1
280#define PL080_LLI_LLI 2
281#define PL080_LLI_CCTL 3
282#define PL080S_LLI_CCTL2 4
283
284/* Total words in an LLI. */
285#define PL080_LLI_WORDS 4
286#define PL080S_LLI_WORDS 8
287
288/*
289 * Number of LLIs in each LLI buffer allocated for one transfer
290 * (maximum times we call dma_pool_alloc on this pool without freeing)
291 */
292#define MAX_NUM_TSFR_LLIS 512
293#define PL08X_ALIGN 8
294
295static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
296{
297 return container_of(chan, struct pl08x_dma_chan, vc.chan);
298}
299
300static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
301{
302 return container_of(tx, struct pl08x_txd, vd.tx);
303}
304
305/*
306 * Mux handling.
307 *
308 * This gives us the DMA request input to the PL08x primecell which the
309 * peripheral described by the channel data will be routed to, possibly
310 * via a board/SoC specific external MUX. One important point to note
311 * here is that this does not depend on the physical channel.
312 */
313static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
314{
315 const struct pl08x_platform_data *pd = plchan->host->pd;
316 int ret;
317
318 if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
319 ret = pd->get_xfer_signal(plchan->cd);
320 if (ret < 0) {
321 plchan->mux_use = 0;
322 return ret;
323 }
324
325 plchan->signal = ret;
326 }
327 return 0;
328}
329
330static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
331{
332 const struct pl08x_platform_data *pd = plchan->host->pd;
333
334 if (plchan->signal >= 0) {
335 WARN_ON(plchan->mux_use == 0);
336
337 if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
338 pd->put_xfer_signal(plchan->cd, plchan->signal);
339 plchan->signal = -1;
340 }
341 }
342}
343
344/*
345 * Physical channel handling
346 */
347
348/* Whether a certain channel is busy or not */
349static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
350{
351 unsigned int val;
352
353 val = readl(ch->reg_config);
354 return val & PL080_CONFIG_ACTIVE;
355}
356
357static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
358 struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
359{
360 if (pl08x->vd->pl080s)
361 dev_vdbg(&pl08x->adev->dev,
362 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
363 "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
364 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
365 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
366 lli[PL080S_LLI_CCTL2], ccfg);
367 else
368 dev_vdbg(&pl08x->adev->dev,
369 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
370 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
371 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
372 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
373
374 writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
375 writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
376 writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
377 writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);
378
379 if (pl08x->vd->pl080s)
380 writel_relaxed(lli[PL080S_LLI_CCTL2],
381 phychan->base + PL080S_CH_CONTROL2);
382
383 writel(ccfg, phychan->reg_config);
384}
385
386/*
387 * Set the initial DMA register values i.e. those for the first LLI
388 * The next LLI pointer and the configuration interrupt bit have
389 * been set when the LLIs were constructed. Poke them into the hardware
390 * and start the transfer.
391 */
392static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
393{
394 struct pl08x_driver_data *pl08x = plchan->host;
395 struct pl08x_phy_chan *phychan = plchan->phychan;
396 struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
397 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
398 u32 val;
399
400 list_del(&txd->vd.node);
401
402 plchan->at = txd;
403
404 /* Wait for channel inactive */
405 while (pl08x_phy_channel_busy(phychan))
406 cpu_relax();
407
408 pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
409
410 /* Enable the DMA channel */
411 /* Do not access config register until channel shows as disabled */
412 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
413 cpu_relax();
414
415 /* Do not access config register until channel shows as inactive */
416 val = readl(phychan->reg_config);
417 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
418 val = readl(phychan->reg_config);
419
420 writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
421}
422
423/*
424 * Pause the channel by setting the HALT bit.
425 *
426 * For M->P transfers, pause the DMAC first and then stop the peripheral -
427 * the FIFO can only drain if the peripheral is still requesting data.
428 * (note: this can still timeout if the DMAC FIFO never drains of data.)
429 *
430 * For P->M transfers, disable the peripheral first to stop it filling
431 * the DMAC FIFO, and then pause the DMAC.
432 */
433static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
434{
435 u32 val;
436 int timeout;
437
438 /* Set the HALT bit and wait for the FIFO to drain */
439 val = readl(ch->reg_config);
440 val |= PL080_CONFIG_HALT;
441 writel(val, ch->reg_config);
442
443 /* Wait for channel inactive */
444 for (timeout = 1000; timeout; timeout--) {
445 if (!pl08x_phy_channel_busy(ch))
446 break;
447 udelay(1);
448 }
449 if (pl08x_phy_channel_busy(ch))
450 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
451}
452
453static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
454{
455 u32 val;
456
457 /* Clear the HALT bit */
458 val = readl(ch->reg_config);
459 val &= ~PL080_CONFIG_HALT;
460 writel(val, ch->reg_config);
461}
462
463/*
464 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
465 * clears any pending interrupt status. This should not be used for
466 * an on-going transfer, but as a method of shutting down a channel
467 * (eg, when it's no longer used) or terminating a transfer.
468 */
469static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
470 struct pl08x_phy_chan *ch)
471{
472 u32 val = readl(ch->reg_config);
473
474 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
475 PL080_CONFIG_TC_IRQ_MASK);
476
477 writel(val, ch->reg_config);
478
479 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
480 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
481}
482
483static inline u32 get_bytes_in_cctl(u32 cctl)
484{
485 /* The source width defines the number of bytes */
486 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
487
488 cctl &= PL080_CONTROL_SWIDTH_MASK;
489
490 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
491 case PL080_WIDTH_8BIT:
492 break;
493 case PL080_WIDTH_16BIT:
494 bytes *= 2;
495 break;
496 case PL080_WIDTH_32BIT:
497 bytes *= 4;
498 break;
499 }
500 return bytes;
501}
502
503static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
504{
505 /* The source width defines the number of bytes */
506 u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;
507
508 cctl &= PL080_CONTROL_SWIDTH_MASK;
509
510 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
511 case PL080_WIDTH_8BIT:
512 break;
513 case PL080_WIDTH_16BIT:
514 bytes *= 2;
515 break;
516 case PL080_WIDTH_32BIT:
517 bytes *= 4;
518 break;
519 }
520 return bytes;
521}
522
523/* The channel should be paused when calling this */
524static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
525{
526 struct pl08x_driver_data *pl08x = plchan->host;
527 const u32 *llis_va, *llis_va_limit;
528 struct pl08x_phy_chan *ch;
529 dma_addr_t llis_bus;
530 struct pl08x_txd *txd;
531 u32 llis_max_words;
532 size_t bytes;
533 u32 clli;
534
535 ch = plchan->phychan;
536 txd = plchan->at;
537
538 if (!ch || !txd)
539 return 0;
540
541 /*
542 * Follow the LLIs to get the number of remaining
543 * bytes in the currently active transaction.
544 */
545 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
546
547 /* First get the remaining bytes in the active transfer */
548 if (pl08x->vd->pl080s)
549 bytes = get_bytes_in_cctl_pl080s(
550 readl(ch->base + PL080_CH_CONTROL),
551 readl(ch->base + PL080S_CH_CONTROL2));
552 else
553 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
554
555 if (!clli)
556 return bytes;
557
558 llis_va = txd->llis_va;
559 llis_bus = txd->llis_bus;
560
561 llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
562 BUG_ON(clli < llis_bus || clli >= llis_bus +
563 sizeof(u32) * llis_max_words);
564
565 /*
566 * Locate the next LLI - as this is an array,
567 * it's simple maths to find.
568 */
569 llis_va += (clli - llis_bus) / sizeof(u32);
570
571 llis_va_limit = llis_va + llis_max_words;
572
573 for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
574 if (pl08x->vd->pl080s)
575 bytes += get_bytes_in_cctl_pl080s(
576 llis_va[PL080_LLI_CCTL],
577 llis_va[PL080S_LLI_CCTL2]);
578 else
579 bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
580
581 /*
582 * A LLI pointer going backward terminates the LLI list
583 */
584 if (llis_va[PL080_LLI_LLI] <= clli)
585 break;
586 }
587
588 return bytes;
589}
590
591/*
592 * Allocate a physical channel for a virtual channel
593 *
594 * Try to locate a physical channel to be used for this transfer. If all
595 * are taken return NULL and the requester will have to cope by using
596 * some fallback PIO mode or retrying later.
597 */
598static struct pl08x_phy_chan *
599pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
600 struct pl08x_dma_chan *virt_chan)
601{
602 struct pl08x_phy_chan *ch = NULL;
603 unsigned long flags;
604 int i;
605
606 for (i = 0; i < pl08x->vd->channels; i++) {
607 ch = &pl08x->phy_chans[i];
608
609 spin_lock_irqsave(&ch->lock, flags);
610
611 if (!ch->locked && !ch->serving) {
612 ch->serving = virt_chan;
613 spin_unlock_irqrestore(&ch->lock, flags);
614 break;
615 }
616
617 spin_unlock_irqrestore(&ch->lock, flags);
618 }
619
620 if (i == pl08x->vd->channels) {
621 /* No physical channel available, cope with it */
622 return NULL;
623 }
624
625 return ch;
626}
627
628/* Mark the physical channel as free. Note, this write is atomic. */
629static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
630 struct pl08x_phy_chan *ch)
631{
632 ch->serving = NULL;
633}
634
635/*
636 * Try to allocate a physical channel. When successful, assign it to
637 * this virtual channel, and initiate the next descriptor. The
638 * virtual channel lock must be held at this point.
639 */
640static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
641{
642 struct pl08x_driver_data *pl08x = plchan->host;
643 struct pl08x_phy_chan *ch;
644
645 ch = pl08x_get_phy_channel(pl08x, plchan);
646 if (!ch) {
647 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
648 plchan->state = PL08X_CHAN_WAITING;
649 return;
650 }
651
652 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
653 ch->id, plchan->name);
654
655 plchan->phychan = ch;
656 plchan->state = PL08X_CHAN_RUNNING;
657 pl08x_start_next_txd(plchan);
658}
659
660static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
661 struct pl08x_dma_chan *plchan)
662{
663 struct pl08x_driver_data *pl08x = plchan->host;
664
665 dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
666 ch->id, plchan->name);
667
668 /*
669 * We do this without taking the lock; we're really only concerned
670 * about whether this pointer is NULL or not, and we're guaranteed
671 * that this will only be called when it _already_ is non-NULL.
672 */
673 ch->serving = plchan;
674 plchan->phychan = ch;
675 plchan->state = PL08X_CHAN_RUNNING;
676 pl08x_start_next_txd(plchan);
677}
678
679/*
680 * Free a physical DMA channel, potentially reallocating it to another
681 * virtual channel if we have any pending.
682 */
683static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
684{
685 struct pl08x_driver_data *pl08x = plchan->host;
686 struct pl08x_dma_chan *p, *next;
687
688 retry:
689 next = NULL;
690
691 /* Find a waiting virtual channel for the next transfer. */
692 list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
693 if (p->state == PL08X_CHAN_WAITING) {
694 next = p;
695 break;
696 }
697
698 if (!next) {
699 list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
700 if (p->state == PL08X_CHAN_WAITING) {
701 next = p;
702 break;
703 }
704 }
705
706 /* Ensure that the physical channel is stopped */
707 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
708
709 if (next) {
710 bool success;
711
712 /*
713 * Eww. We know this isn't going to deadlock
714 * but lockdep probably doesn't.
715 */
716 spin_lock(&next->vc.lock);
717 /* Re-check the state now that we have the lock */
718 success = next->state == PL08X_CHAN_WAITING;
719 if (success)
720 pl08x_phy_reassign_start(plchan->phychan, next);
721 spin_unlock(&next->vc.lock);
722
723 /* If the state changed, try to find another channel */
724 if (!success)
725 goto retry;
726 } else {
727 /* No more jobs, so free up the physical channel */
728 pl08x_put_phy_channel(pl08x, plchan->phychan);
729 }
730
731 plchan->phychan = NULL;
732 plchan->state = PL08X_CHAN_IDLE;
733}
734
735/*
736 * LLI handling
737 */
738
739static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
740{
741 switch (coded) {
742 case PL080_WIDTH_8BIT:
743 return 1;
744 case PL080_WIDTH_16BIT:
745 return 2;
746 case PL080_WIDTH_32BIT:
747 return 4;
748 default:
749 break;
750 }
751 BUG();
752 return 0;
753}
754
755static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
756 size_t tsize)
757{
758 u32 retbits = cctl;
759
760 /* Remove all src, dst and transfer size bits */
761 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
762 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
763 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
764
765 /* Then set the bits according to the parameters */
766 switch (srcwidth) {
767 case 1:
768 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
769 break;
770 case 2:
771 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
772 break;
773 case 4:
774 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
775 break;
776 default:
777 BUG();
778 break;
779 }
780
781 switch (dstwidth) {
782 case 1:
783 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
784 break;
785 case 2:
786 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
787 break;
788 case 4:
789 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
790 break;
791 default:
792 BUG();
793 break;
794 }
795
796 tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
797 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
798 return retbits;
799}
800
801struct pl08x_lli_build_data {
802 struct pl08x_txd *txd;
803 struct pl08x_bus_data srcbus;
804 struct pl08x_bus_data dstbus;
805 size_t remainder;
806 u32 lli_bus;
807};
808
809/*
810 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
811 * victim in case src & dest are not similarly aligned. i.e. If after aligning
812 * masters address with width requirements of transfer (by sending few byte by
813 * byte data), slave is still not aligned, then its width will be reduced to
814 * BYTE.
815 * - prefers the destination bus if both available
816 * - prefers bus with fixed address (i.e. peripheral)
817 */
818static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
819 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
820{
821 if (!(cctl & PL080_CONTROL_DST_INCR)) {
822 *mbus = &bd->dstbus;
823 *sbus = &bd->srcbus;
824 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
825 *mbus = &bd->srcbus;
826 *sbus = &bd->dstbus;
827 } else {
828 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
829 *mbus = &bd->dstbus;
830 *sbus = &bd->srcbus;
831 } else {
832 *mbus = &bd->srcbus;
833 *sbus = &bd->dstbus;
834 }
835 }
836}
837
838/*
839 * Fills in one LLI for a certain transfer descriptor and advance the counter
840 */
841static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
842 struct pl08x_lli_build_data *bd,
843 int num_llis, int len, u32 cctl, u32 cctl2)
844{
845 u32 offset = num_llis * pl08x->lli_words;
846 u32 *llis_va = bd->txd->llis_va + offset;
847 dma_addr_t llis_bus = bd->txd->llis_bus;
848
849 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
850
851 /* Advance the offset to next LLI. */
852 offset += pl08x->lli_words;
853
854 llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
855 llis_va[PL080_LLI_DST] = bd->dstbus.addr;
856 llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
857 llis_va[PL080_LLI_LLI] |= bd->lli_bus;
858 llis_va[PL080_LLI_CCTL] = cctl;
859 if (pl08x->vd->pl080s)
860 llis_va[PL080S_LLI_CCTL2] = cctl2;
861
862 if (cctl & PL080_CONTROL_SRC_INCR)
863 bd->srcbus.addr += len;
864 if (cctl & PL080_CONTROL_DST_INCR)
865 bd->dstbus.addr += len;
866
867 BUG_ON(bd->remainder < len);
868
869 bd->remainder -= len;
870}
871
872static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
873 struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
874 int num_llis, size_t *total_bytes)
875{
876 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
877 pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
878 (*total_bytes) += len;
879}
880
881#ifdef VERBOSE_DEBUG
882static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
883 const u32 *llis_va, int num_llis)
884{
885 int i;
886
887 if (pl08x->vd->pl080s) {
888 dev_vdbg(&pl08x->adev->dev,
889 "%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
890 "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
891 for (i = 0; i < num_llis; i++) {
892 dev_vdbg(&pl08x->adev->dev,
893 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
894 i, llis_va, llis_va[PL080_LLI_SRC],
895 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
896 llis_va[PL080_LLI_CCTL],
897 llis_va[PL080S_LLI_CCTL2]);
898 llis_va += pl08x->lli_words;
899 }
900 } else {
901 dev_vdbg(&pl08x->adev->dev,
902 "%-3s %-9s %-10s %-10s %-10s %s\n",
903 "lli", "", "csrc", "cdst", "clli", "cctl");
904 for (i = 0; i < num_llis; i++) {
905 dev_vdbg(&pl08x->adev->dev,
906 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
907 i, llis_va, llis_va[PL080_LLI_SRC],
908 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
909 llis_va[PL080_LLI_CCTL]);
910 llis_va += pl08x->lli_words;
911 }
912 }
913}
914#else
915static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
916 const u32 *llis_va, int num_llis) {}
917#endif
918
919/*
920 * This fills in the table of LLIs for the transfer descriptor
921 * Note that we assume we never have to change the burst sizes
922 * Return 0 for error
923 */
924static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
925 struct pl08x_txd *txd)
926{
927 struct pl08x_bus_data *mbus, *sbus;
928 struct pl08x_lli_build_data bd;
929 int num_llis = 0;
930 u32 cctl, early_bytes = 0;
931 size_t max_bytes_per_lli, total_bytes;
932 u32 *llis_va, *last_lli;
933 struct pl08x_sg *dsg;
934
935 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
936 if (!txd->llis_va) {
937 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
938 return 0;
939 }
940
941 bd.txd = txd;
942 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
943 cctl = txd->cctl;
944
945 /* Find maximum width of the source bus */
946 bd.srcbus.maxwidth =
947 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
948 PL080_CONTROL_SWIDTH_SHIFT);
949
950 /* Find maximum width of the destination bus */
951 bd.dstbus.maxwidth =
952 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
953 PL080_CONTROL_DWIDTH_SHIFT);
954
955 list_for_each_entry(dsg, &txd->dsg_list, node) {
956 total_bytes = 0;
957 cctl = txd->cctl;
958
959 bd.srcbus.addr = dsg->src_addr;
960 bd.dstbus.addr = dsg->dst_addr;
961 bd.remainder = dsg->len;
962 bd.srcbus.buswidth = bd.srcbus.maxwidth;
963 bd.dstbus.buswidth = bd.dstbus.maxwidth;
964
965 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
966
967 dev_vdbg(&pl08x->adev->dev,
968 "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
969 (u64)bd.srcbus.addr,
970 cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
971 bd.srcbus.buswidth,
972 (u64)bd.dstbus.addr,
973 cctl & PL080_CONTROL_DST_INCR ? "+" : "",
974 bd.dstbus.buswidth,
975 bd.remainder);
976 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
977 mbus == &bd.srcbus ? "src" : "dst",
978 sbus == &bd.srcbus ? "src" : "dst");
979
980 /*
981 * Zero length is only allowed if all these requirements are
982 * met:
983 * - flow controller is peripheral.
984 * - src.addr is aligned to src.width
985 * - dst.addr is aligned to dst.width
986 *
987 * sg_len == 1 should be true, as there can be two cases here:
988 *
989 * - Memory addresses are contiguous and are not scattered.
990 * Here, Only one sg will be passed by user driver, with
991 * memory address and zero length. We pass this to controller
992 * and after the transfer it will receive the last burst
993 * request from peripheral and so transfer finishes.
994 *
995 * - Memory addresses are scattered and are not contiguous.
996 * Here, Obviously as DMA controller doesn't know when a lli's
997 * transfer gets over, it can't load next lli. So in this
998 * case, there has to be an assumption that only one lli is
999 * supported. Thus, we can't have scattered addresses.
1000 */
1001 if (!bd.remainder) {
1002 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1003 PL080_CONFIG_FLOW_CONTROL_SHIFT;
1004 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1005 (fc <= PL080_FLOW_SRC2DST_SRC))) {
1006 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1007 __func__);
1008 return 0;
1009 }
1010
1011 if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1012 !IS_BUS_ALIGNED(&bd.dstbus)) {
1013 dev_err(&pl08x->adev->dev,
1014 "%s src & dst address must be aligned to src"
1015 " & dst width if peripheral is flow controller",
1016 __func__);
1017 return 0;
1018 }
1019
1020 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1021 bd.dstbus.buswidth, 0);
1022 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1023 0, cctl, 0);
1024 break;
1025 }
1026
1027 /*
1028 * Send byte by byte for following cases
1029 * - Less than a bus width available
1030 * - until master bus is aligned
1031 */
1032 if (bd.remainder < mbus->buswidth)
1033 early_bytes = bd.remainder;
1034 else if (!IS_BUS_ALIGNED(mbus)) {
1035 early_bytes = mbus->buswidth -
1036 (mbus->addr & (mbus->buswidth - 1));
1037 if ((bd.remainder - early_bytes) < mbus->buswidth)
1038 early_bytes = bd.remainder;
1039 }
1040
1041 if (early_bytes) {
1042 dev_vdbg(&pl08x->adev->dev,
1043 "%s byte width LLIs (remain 0x%08x)\n",
1044 __func__, bd.remainder);
1045 prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1046 num_llis++, &total_bytes);
1047 }
1048
1049 if (bd.remainder) {
1050 /*
1051 * Master now aligned
1052 * - if slave is not then we must set its width down
1053 */
1054 if (!IS_BUS_ALIGNED(sbus)) {
1055 dev_dbg(&pl08x->adev->dev,
1056 "%s set down bus width to one byte\n",
1057 __func__);
1058
1059 sbus->buswidth = 1;
1060 }
1061
1062 /*
1063 * Bytes transferred = tsize * src width, not
1064 * MIN(buswidths)
1065 */
1066 max_bytes_per_lli = bd.srcbus.buswidth *
1067 pl08x->vd->max_transfer_size;
1068 dev_vdbg(&pl08x->adev->dev,
1069 "%s max bytes per lli = %zu\n",
1070 __func__, max_bytes_per_lli);
1071
1072 /*
1073 * Make largest possible LLIs until less than one bus
1074 * width left
1075 */
1076 while (bd.remainder > (mbus->buswidth - 1)) {
1077 size_t lli_len, tsize, width;
1078
1079 /*
1080 * If enough left try to send max possible,
1081 * otherwise try to send the remainder
1082 */
1083 lli_len = min(bd.remainder, max_bytes_per_lli);
1084
1085 /*
1086 * Check against maximum bus alignment:
1087 * Calculate actual transfer size in relation to
1088 * bus width an get a maximum remainder of the
1089 * highest bus width - 1
1090 */
1091 width = max(mbus->buswidth, sbus->buswidth);
1092 lli_len = (lli_len / width) * width;
1093 tsize = lli_len / bd.srcbus.buswidth;
1094
1095 dev_vdbg(&pl08x->adev->dev,
1096 "%s fill lli with single lli chunk of "
1097 "size 0x%08zx (remainder 0x%08zx)\n",
1098 __func__, lli_len, bd.remainder);
1099
1100 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1101 bd.dstbus.buswidth, tsize);
1102 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1103 lli_len, cctl, tsize);
1104 total_bytes += lli_len;
1105 }
1106
1107 /*
1108 * Send any odd bytes
1109 */
1110 if (bd.remainder) {
1111 dev_vdbg(&pl08x->adev->dev,
1112 "%s align with boundary, send odd bytes (remain %zu)\n",
1113 __func__, bd.remainder);
1114 prep_byte_width_lli(pl08x, &bd, &cctl,
1115 bd.remainder, num_llis++, &total_bytes);
1116 }
1117 }
1118
1119 if (total_bytes != dsg->len) {
1120 dev_err(&pl08x->adev->dev,
1121 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1122 __func__, total_bytes, dsg->len);
1123 return 0;
1124 }
1125
1126 if (num_llis >= MAX_NUM_TSFR_LLIS) {
1127 dev_err(&pl08x->adev->dev,
1128 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1129 __func__, MAX_NUM_TSFR_LLIS);
1130 return 0;
1131 }
1132 }
1133
1134 llis_va = txd->llis_va;
1135 last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1136
1137 if (txd->cyclic) {
1138 /* Link back to the first LLI. */
1139 last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1140 } else {
1141 /* The final LLI terminates the LLI. */
1142 last_lli[PL080_LLI_LLI] = 0;
1143 /* The final LLI element shall also fire an interrupt. */
1144 last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1145 }
1146
1147 pl08x_dump_lli(pl08x, llis_va, num_llis);
1148
1149 return num_llis;
1150}
1151
1152static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1153 struct pl08x_txd *txd)
1154{
1155 struct pl08x_sg *dsg, *_dsg;
1156
1157 if (txd->llis_va)
1158 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1159
1160 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1161 list_del(&dsg->node);
1162 kfree(dsg);
1163 }
1164
1165 kfree(txd);
1166}
1167
1168static void pl08x_desc_free(struct virt_dma_desc *vd)
1169{
1170 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1171 struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1172
1173 dma_descriptor_unmap(&vd->tx);
1174 if (!txd->done)
1175 pl08x_release_mux(plchan);
1176
1177 pl08x_free_txd(plchan->host, txd);
1178}
1179
1180static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1181 struct pl08x_dma_chan *plchan)
1182{
1183 LIST_HEAD(head);
1184
1185 vchan_get_all_descriptors(&plchan->vc, &head);
1186 vchan_dma_desc_free_list(&plchan->vc, &head);
1187}
1188
1189/*
1190 * The DMA ENGINE API
1191 */
1192static int pl08x_alloc_chan_resources(struct dma_chan *chan)
1193{
1194 return 0;
1195}
1196
1197static void pl08x_free_chan_resources(struct dma_chan *chan)
1198{
1199 /* Ensure all queued descriptors are freed */
1200 vchan_free_chan_resources(to_virt_chan(chan));
1201}
1202
1203static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1204 struct dma_chan *chan, unsigned long flags)
1205{
1206 struct dma_async_tx_descriptor *retval = NULL;
1207
1208 return retval;
1209}
1210
1211/*
1212 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1213 * If slaves are relying on interrupts to signal completion this function
1214 * must not be called with interrupts disabled.
1215 */
1216static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1217 dma_cookie_t cookie, struct dma_tx_state *txstate)
1218{
1219 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1220 struct virt_dma_desc *vd;
1221 unsigned long flags;
1222 enum dma_status ret;
1223 size_t bytes = 0;
1224
1225 ret = dma_cookie_status(chan, cookie, txstate);
1226 if (ret == DMA_COMPLETE)
1227 return ret;
1228
1229 /*
1230 * There's no point calculating the residue if there's
1231 * no txstate to store the value.
1232 */
1233 if (!txstate) {
1234 if (plchan->state == PL08X_CHAN_PAUSED)
1235 ret = DMA_PAUSED;
1236 return ret;
1237 }
1238
1239 spin_lock_irqsave(&plchan->vc.lock, flags);
1240 ret = dma_cookie_status(chan, cookie, txstate);
1241 if (ret != DMA_COMPLETE) {
1242 vd = vchan_find_desc(&plchan->vc, cookie);
1243 if (vd) {
1244 /* On the issued list, so hasn't been processed yet */
1245 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1246 struct pl08x_sg *dsg;
1247
1248 list_for_each_entry(dsg, &txd->dsg_list, node)
1249 bytes += dsg->len;
1250 } else {
1251 bytes = pl08x_getbytes_chan(plchan);
1252 }
1253 }
1254 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1255
1256 /*
1257 * This cookie not complete yet
1258 * Get number of bytes left in the active transactions and queue
1259 */
1260 dma_set_residue(txstate, bytes);
1261
1262 if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1263 ret = DMA_PAUSED;
1264
1265 /* Whether waiting or running, we're in progress */
1266 return ret;
1267}
1268
1269/* PrimeCell DMA extension */
1270struct burst_table {
1271 u32 burstwords;
1272 u32 reg;
1273};
1274
1275static const struct burst_table burst_sizes[] = {
1276 {
1277 .burstwords = 256,
1278 .reg = PL080_BSIZE_256,
1279 },
1280 {
1281 .burstwords = 128,
1282 .reg = PL080_BSIZE_128,
1283 },
1284 {
1285 .burstwords = 64,
1286 .reg = PL080_BSIZE_64,
1287 },
1288 {
1289 .burstwords = 32,
1290 .reg = PL080_BSIZE_32,
1291 },
1292 {
1293 .burstwords = 16,
1294 .reg = PL080_BSIZE_16,
1295 },
1296 {
1297 .burstwords = 8,
1298 .reg = PL080_BSIZE_8,
1299 },
1300 {
1301 .burstwords = 4,
1302 .reg = PL080_BSIZE_4,
1303 },
1304 {
1305 .burstwords = 0,
1306 .reg = PL080_BSIZE_1,
1307 },
1308};
1309
1310/*
1311 * Given the source and destination available bus masks, select which
1312 * will be routed to each port. We try to have source and destination
1313 * on separate ports, but always respect the allowable settings.
1314 */
1315static u32 pl08x_select_bus(u8 src, u8 dst)
1316{
1317 u32 cctl = 0;
1318
1319 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1320 cctl |= PL080_CONTROL_DST_AHB2;
1321 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1322 cctl |= PL080_CONTROL_SRC_AHB2;
1323
1324 return cctl;
1325}
1326
1327static u32 pl08x_cctl(u32 cctl)
1328{
1329 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1330 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1331 PL080_CONTROL_PROT_MASK);
1332
1333 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1334 return cctl | PL080_CONTROL_PROT_SYS;
1335}
1336
1337static u32 pl08x_width(enum dma_slave_buswidth width)
1338{
1339 switch (width) {
1340 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1341 return PL080_WIDTH_8BIT;
1342 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1343 return PL080_WIDTH_16BIT;
1344 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1345 return PL080_WIDTH_32BIT;
1346 default:
1347 return ~0;
1348 }
1349}
1350
1351static u32 pl08x_burst(u32 maxburst)
1352{
1353 int i;
1354
1355 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1356 if (burst_sizes[i].burstwords <= maxburst)
1357 break;
1358
1359 return burst_sizes[i].reg;
1360}
1361
1362static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1363 enum dma_slave_buswidth addr_width, u32 maxburst)
1364{
1365 u32 width, burst, cctl = 0;
1366
1367 width = pl08x_width(addr_width);
1368 if (width == ~0)
1369 return ~0;
1370
1371 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1372 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1373
1374 /*
1375 * If this channel will only request single transfers, set this
1376 * down to ONE element. Also select one element if no maxburst
1377 * is specified.
1378 */
1379 if (plchan->cd->single)
1380 maxburst = 1;
1381
1382 burst = pl08x_burst(maxburst);
1383 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1384 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1385
1386 return pl08x_cctl(cctl);
1387}
1388
1389static int dma_set_runtime_config(struct dma_chan *chan,
1390 struct dma_slave_config *config)
1391{
1392 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1393 struct pl08x_driver_data *pl08x = plchan->host;
1394
1395 if (!plchan->slave)
1396 return -EINVAL;
1397
1398 /* Reject definitely invalid configurations */
1399 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1400 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1401 return -EINVAL;
1402
1403 if (config->device_fc && pl08x->vd->pl080s) {
1404 dev_err(&pl08x->adev->dev,
1405 "%s: PL080S does not support peripheral flow control\n",
1406 __func__);
1407 return -EINVAL;
1408 }
1409
1410 plchan->cfg = *config;
1411
1412 return 0;
1413}
1414
1415/*
1416 * Slave transactions callback to the slave device to allow
1417 * synchronization of slave DMA signals with the DMAC enable
1418 */
1419static void pl08x_issue_pending(struct dma_chan *chan)
1420{
1421 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1422 unsigned long flags;
1423
1424 spin_lock_irqsave(&plchan->vc.lock, flags);
1425 if (vchan_issue_pending(&plchan->vc)) {
1426 if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1427 pl08x_phy_alloc_and_start(plchan);
1428 }
1429 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1430}
1431
1432static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1433{
1434 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1435
1436 if (txd) {
1437 INIT_LIST_HEAD(&txd->dsg_list);
1438
1439 /* Always enable error and terminal interrupts */
1440 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1441 PL080_CONFIG_TC_IRQ_MASK;
1442 }
1443 return txd;
1444}
1445
1446/*
1447 * Initialize a descriptor to be used by memcpy submit
1448 */
1449static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1450 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1451 size_t len, unsigned long flags)
1452{
1453 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1454 struct pl08x_driver_data *pl08x = plchan->host;
1455 struct pl08x_txd *txd;
1456 struct pl08x_sg *dsg;
1457 int ret;
1458
1459 txd = pl08x_get_txd(plchan);
1460 if (!txd) {
1461 dev_err(&pl08x->adev->dev,
1462 "%s no memory for descriptor\n", __func__);
1463 return NULL;
1464 }
1465
1466 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1467 if (!dsg) {
1468 pl08x_free_txd(pl08x, txd);
1469 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1470 __func__);
1471 return NULL;
1472 }
1473 list_add_tail(&dsg->node, &txd->dsg_list);
1474
1475 dsg->src_addr = src;
1476 dsg->dst_addr = dest;
1477 dsg->len = len;
1478
1479 /* Set platform data for m2m */
1480 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1481 txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1482 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1483
1484 /* Both to be incremented or the code will break */
1485 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1486
1487 if (pl08x->vd->dualmaster)
1488 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1489 pl08x->mem_buses);
1490
1491 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1492 if (!ret) {
1493 pl08x_free_txd(pl08x, txd);
1494 return NULL;
1495 }
1496
1497 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1498}
1499
1500static struct pl08x_txd *pl08x_init_txd(
1501 struct dma_chan *chan,
1502 enum dma_transfer_direction direction,
1503 dma_addr_t *slave_addr)
1504{
1505 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1506 struct pl08x_driver_data *pl08x = plchan->host;
1507 struct pl08x_txd *txd;
1508 enum dma_slave_buswidth addr_width;
1509 int ret, tmp;
1510 u8 src_buses, dst_buses;
1511 u32 maxburst, cctl;
1512
1513 txd = pl08x_get_txd(plchan);
1514 if (!txd) {
1515 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1516 return NULL;
1517 }
1518
1519 /*
1520 * Set up addresses, the PrimeCell configured address
1521 * will take precedence since this may configure the
1522 * channel target address dynamically at runtime.
1523 */
1524 if (direction == DMA_MEM_TO_DEV) {
1525 cctl = PL080_CONTROL_SRC_INCR;
1526 *slave_addr = plchan->cfg.dst_addr;
1527 addr_width = plchan->cfg.dst_addr_width;
1528 maxburst = plchan->cfg.dst_maxburst;
1529 src_buses = pl08x->mem_buses;
1530 dst_buses = plchan->cd->periph_buses;
1531 } else if (direction == DMA_DEV_TO_MEM) {
1532 cctl = PL080_CONTROL_DST_INCR;
1533 *slave_addr = plchan->cfg.src_addr;
1534 addr_width = plchan->cfg.src_addr_width;
1535 maxburst = plchan->cfg.src_maxburst;
1536 src_buses = plchan->cd->periph_buses;
1537 dst_buses = pl08x->mem_buses;
1538 } else {
1539 pl08x_free_txd(pl08x, txd);
1540 dev_err(&pl08x->adev->dev,
1541 "%s direction unsupported\n", __func__);
1542 return NULL;
1543 }
1544
1545 cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1546 if (cctl == ~0) {
1547 pl08x_free_txd(pl08x, txd);
1548 dev_err(&pl08x->adev->dev,
1549 "DMA slave configuration botched?\n");
1550 return NULL;
1551 }
1552
1553 txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1554
1555 if (plchan->cfg.device_fc)
1556 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1557 PL080_FLOW_PER2MEM_PER;
1558 else
1559 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1560 PL080_FLOW_PER2MEM;
1561
1562 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1563
1564 ret = pl08x_request_mux(plchan);
1565 if (ret < 0) {
1566 pl08x_free_txd(pl08x, txd);
1567 dev_dbg(&pl08x->adev->dev,
1568 "unable to mux for transfer on %s due to platform restrictions\n",
1569 plchan->name);
1570 return NULL;
1571 }
1572
1573 dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1574 plchan->signal, plchan->name);
1575
1576 /* Assign the flow control signal to this channel */
1577 if (direction == DMA_MEM_TO_DEV)
1578 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1579 else
1580 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1581
1582 return txd;
1583}
1584
1585static int pl08x_tx_add_sg(struct pl08x_txd *txd,
1586 enum dma_transfer_direction direction,
1587 dma_addr_t slave_addr,
1588 dma_addr_t buf_addr,
1589 unsigned int len)
1590{
1591 struct pl08x_sg *dsg;
1592
1593 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1594 if (!dsg)
1595 return -ENOMEM;
1596
1597 list_add_tail(&dsg->node, &txd->dsg_list);
1598
1599 dsg->len = len;
1600 if (direction == DMA_MEM_TO_DEV) {
1601 dsg->src_addr = buf_addr;
1602 dsg->dst_addr = slave_addr;
1603 } else {
1604 dsg->src_addr = slave_addr;
1605 dsg->dst_addr = buf_addr;
1606 }
1607
1608 return 0;
1609}
1610
1611static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1612 struct dma_chan *chan, struct scatterlist *sgl,
1613 unsigned int sg_len, enum dma_transfer_direction direction,
1614 unsigned long flags, void *context)
1615{
1616 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1617 struct pl08x_driver_data *pl08x = plchan->host;
1618 struct pl08x_txd *txd;
1619 struct scatterlist *sg;
1620 int ret, tmp;
1621 dma_addr_t slave_addr;
1622
1623 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1624 __func__, sg_dma_len(sgl), plchan->name);
1625
1626 txd = pl08x_init_txd(chan, direction, &slave_addr);
1627 if (!txd)
1628 return NULL;
1629
1630 for_each_sg(sgl, sg, sg_len, tmp) {
1631 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1632 sg_dma_address(sg),
1633 sg_dma_len(sg));
1634 if (ret) {
1635 pl08x_release_mux(plchan);
1636 pl08x_free_txd(pl08x, txd);
1637 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1638 __func__);
1639 return NULL;
1640 }
1641 }
1642
1643 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1644 if (!ret) {
1645 pl08x_release_mux(plchan);
1646 pl08x_free_txd(pl08x, txd);
1647 return NULL;
1648 }
1649
1650 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1651}
1652
1653static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
1654 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1655 size_t period_len, enum dma_transfer_direction direction,
1656 unsigned long flags, void *context)
1657{
1658 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1659 struct pl08x_driver_data *pl08x = plchan->host;
1660 struct pl08x_txd *txd;
1661 int ret, tmp;
1662 dma_addr_t slave_addr;
1663
1664 dev_dbg(&pl08x->adev->dev,
1665 "%s prepare cyclic transaction of %d/%d bytes %s %s\n",
1666 __func__, period_len, buf_len,
1667 direction == DMA_MEM_TO_DEV ? "to" : "from",
1668 plchan->name);
1669
1670 txd = pl08x_init_txd(chan, direction, &slave_addr);
1671 if (!txd)
1672 return NULL;
1673
1674 txd->cyclic = true;
1675 txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
1676 for (tmp = 0; tmp < buf_len; tmp += period_len) {
1677 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1678 buf_addr + tmp, period_len);
1679 if (ret) {
1680 pl08x_release_mux(plchan);
1681 pl08x_free_txd(pl08x, txd);
1682 return NULL;
1683 }
1684 }
1685
1686 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1687 if (!ret) {
1688 pl08x_release_mux(plchan);
1689 pl08x_free_txd(pl08x, txd);
1690 return NULL;
1691 }
1692
1693 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1694}
1695
1696static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1697 unsigned long arg)
1698{
1699 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1700 struct pl08x_driver_data *pl08x = plchan->host;
1701 unsigned long flags;
1702 int ret = 0;
1703
1704 /* Controls applicable to inactive channels */
1705 if (cmd == DMA_SLAVE_CONFIG) {
1706 return dma_set_runtime_config(chan,
1707 (struct dma_slave_config *)arg);
1708 }
1709
1710 /*
1711 * Anything succeeds on channels with no physical allocation and
1712 * no queued transfers.
1713 */
1714 spin_lock_irqsave(&plchan->vc.lock, flags);
1715 if (!plchan->phychan && !plchan->at) {
1716 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1717 return 0;
1718 }
1719
1720 switch (cmd) {
1721 case DMA_TERMINATE_ALL:
1722 plchan->state = PL08X_CHAN_IDLE;
1723
1724 if (plchan->phychan) {
1725 /*
1726 * Mark physical channel as free and free any slave
1727 * signal
1728 */
1729 pl08x_phy_free(plchan);
1730 }
1731 /* Dequeue jobs and free LLIs */
1732 if (plchan->at) {
1733 pl08x_desc_free(&plchan->at->vd);
1734 plchan->at = NULL;
1735 }
1736 /* Dequeue jobs not yet fired as well */
1737 pl08x_free_txd_list(pl08x, plchan);
1738 break;
1739 case DMA_PAUSE:
1740 pl08x_pause_phy_chan(plchan->phychan);
1741 plchan->state = PL08X_CHAN_PAUSED;
1742 break;
1743 case DMA_RESUME:
1744 pl08x_resume_phy_chan(plchan->phychan);
1745 plchan->state = PL08X_CHAN_RUNNING;
1746 break;
1747 default:
1748 /* Unknown command */
1749 ret = -ENXIO;
1750 break;
1751 }
1752
1753 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1754
1755 return ret;
1756}
1757
1758bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1759{
1760 struct pl08x_dma_chan *plchan;
1761 char *name = chan_id;
1762
1763 /* Reject channels for devices not bound to this driver */
1764 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1765 return false;
1766
1767 plchan = to_pl08x_chan(chan);
1768
1769 /* Check that the channel is not taken! */
1770 if (!strcmp(plchan->name, name))
1771 return true;
1772
1773 return false;
1774}
1775EXPORT_SYMBOL_GPL(pl08x_filter_id);
1776
1777/*
1778 * Just check that the device is there and active
1779 * TODO: turn this bit on/off depending on the number of physical channels
1780 * actually used, if it is zero... well shut it off. That will save some
1781 * power. Cut the clock at the same time.
1782 */
1783static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1784{
1785 /* The Nomadik variant does not have the config register */
1786 if (pl08x->vd->nomadik)
1787 return;
1788 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1789}
1790
1791static irqreturn_t pl08x_irq(int irq, void *dev)
1792{
1793 struct pl08x_driver_data *pl08x = dev;
1794 u32 mask = 0, err, tc, i;
1795
1796 /* check & clear - ERR & TC interrupts */
1797 err = readl(pl08x->base + PL080_ERR_STATUS);
1798 if (err) {
1799 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1800 __func__, err);
1801 writel(err, pl08x->base + PL080_ERR_CLEAR);
1802 }
1803 tc = readl(pl08x->base + PL080_TC_STATUS);
1804 if (tc)
1805 writel(tc, pl08x->base + PL080_TC_CLEAR);
1806
1807 if (!err && !tc)
1808 return IRQ_NONE;
1809
1810 for (i = 0; i < pl08x->vd->channels; i++) {
1811 if (((1 << i) & err) || ((1 << i) & tc)) {
1812 /* Locate physical channel */
1813 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1814 struct pl08x_dma_chan *plchan = phychan->serving;
1815 struct pl08x_txd *tx;
1816
1817 if (!plchan) {
1818 dev_err(&pl08x->adev->dev,
1819 "%s Error TC interrupt on unused channel: 0x%08x\n",
1820 __func__, i);
1821 continue;
1822 }
1823
1824 spin_lock(&plchan->vc.lock);
1825 tx = plchan->at;
1826 if (tx && tx->cyclic) {
1827 vchan_cyclic_callback(&tx->vd);
1828 } else if (tx) {
1829 plchan->at = NULL;
1830 /*
1831 * This descriptor is done, release its mux
1832 * reservation.
1833 */
1834 pl08x_release_mux(plchan);
1835 tx->done = true;
1836 vchan_cookie_complete(&tx->vd);
1837
1838 /*
1839 * And start the next descriptor (if any),
1840 * otherwise free this channel.
1841 */
1842 if (vchan_next_desc(&plchan->vc))
1843 pl08x_start_next_txd(plchan);
1844 else
1845 pl08x_phy_free(plchan);
1846 }
1847 spin_unlock(&plchan->vc.lock);
1848
1849 mask |= (1 << i);
1850 }
1851 }
1852
1853 return mask ? IRQ_HANDLED : IRQ_NONE;
1854}
1855
1856static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1857{
1858 chan->slave = true;
1859 chan->name = chan->cd->bus_id;
1860 chan->cfg.src_addr = chan->cd->addr;
1861 chan->cfg.dst_addr = chan->cd->addr;
1862}
1863
1864/*
1865 * Initialise the DMAC memcpy/slave channels.
1866 * Make a local wrapper to hold required data
1867 */
1868static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1869 struct dma_device *dmadev, unsigned int channels, bool slave)
1870{
1871 struct pl08x_dma_chan *chan;
1872 int i;
1873
1874 INIT_LIST_HEAD(&dmadev->channels);
1875
1876 /*
1877 * Register as many many memcpy as we have physical channels,
1878 * we won't always be able to use all but the code will have
1879 * to cope with that situation.
1880 */
1881 for (i = 0; i < channels; i++) {
1882 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1883 if (!chan) {
1884 dev_err(&pl08x->adev->dev,
1885 "%s no memory for channel\n", __func__);
1886 return -ENOMEM;
1887 }
1888
1889 chan->host = pl08x;
1890 chan->state = PL08X_CHAN_IDLE;
1891 chan->signal = -1;
1892
1893 if (slave) {
1894 chan->cd = &pl08x->pd->slave_channels[i];
1895 pl08x_dma_slave_init(chan);
1896 } else {
1897 chan->cd = &pl08x->pd->memcpy_channel;
1898 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1899 if (!chan->name) {
1900 kfree(chan);
1901 return -ENOMEM;
1902 }
1903 }
1904 dev_dbg(&pl08x->adev->dev,
1905 "initialize virtual channel \"%s\"\n",
1906 chan->name);
1907
1908 chan->vc.desc_free = pl08x_desc_free;
1909 vchan_init(&chan->vc, dmadev);
1910 }
1911 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1912 i, slave ? "slave" : "memcpy");
1913 return i;
1914}
1915
1916static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1917{
1918 struct pl08x_dma_chan *chan = NULL;
1919 struct pl08x_dma_chan *next;
1920
1921 list_for_each_entry_safe(chan,
1922 next, &dmadev->channels, vc.chan.device_node) {
1923 list_del(&chan->vc.chan.device_node);
1924 kfree(chan);
1925 }
1926}
1927
1928#ifdef CONFIG_DEBUG_FS
1929static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1930{
1931 switch (state) {
1932 case PL08X_CHAN_IDLE:
1933 return "idle";
1934 case PL08X_CHAN_RUNNING:
1935 return "running";
1936 case PL08X_CHAN_PAUSED:
1937 return "paused";
1938 case PL08X_CHAN_WAITING:
1939 return "waiting";
1940 default:
1941 break;
1942 }
1943 return "UNKNOWN STATE";
1944}
1945
1946static int pl08x_debugfs_show(struct seq_file *s, void *data)
1947{
1948 struct pl08x_driver_data *pl08x = s->private;
1949 struct pl08x_dma_chan *chan;
1950 struct pl08x_phy_chan *ch;
1951 unsigned long flags;
1952 int i;
1953
1954 seq_printf(s, "PL08x physical channels:\n");
1955 seq_printf(s, "CHANNEL:\tUSER:\n");
1956 seq_printf(s, "--------\t-----\n");
1957 for (i = 0; i < pl08x->vd->channels; i++) {
1958 struct pl08x_dma_chan *virt_chan;
1959
1960 ch = &pl08x->phy_chans[i];
1961
1962 spin_lock_irqsave(&ch->lock, flags);
1963 virt_chan = ch->serving;
1964
1965 seq_printf(s, "%d\t\t%s%s\n",
1966 ch->id,
1967 virt_chan ? virt_chan->name : "(none)",
1968 ch->locked ? " LOCKED" : "");
1969
1970 spin_unlock_irqrestore(&ch->lock, flags);
1971 }
1972
1973 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1974 seq_printf(s, "CHANNEL:\tSTATE:\n");
1975 seq_printf(s, "--------\t------\n");
1976 list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
1977 seq_printf(s, "%s\t\t%s\n", chan->name,
1978 pl08x_state_str(chan->state));
1979 }
1980
1981 seq_printf(s, "\nPL08x virtual slave channels:\n");
1982 seq_printf(s, "CHANNEL:\tSTATE:\n");
1983 seq_printf(s, "--------\t------\n");
1984 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
1985 seq_printf(s, "%s\t\t%s\n", chan->name,
1986 pl08x_state_str(chan->state));
1987 }
1988
1989 return 0;
1990}
1991
1992static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1993{
1994 return single_open(file, pl08x_debugfs_show, inode->i_private);
1995}
1996
1997static const struct file_operations pl08x_debugfs_operations = {
1998 .open = pl08x_debugfs_open,
1999 .read = seq_read,
2000 .llseek = seq_lseek,
2001 .release = single_release,
2002};
2003
2004static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2005{
2006 /* Expose a simple debugfs interface to view all clocks */
2007 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2008 S_IFREG | S_IRUGO, NULL, pl08x,
2009 &pl08x_debugfs_operations);
2010}
2011
2012#else
2013static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2014{
2015}
2016#endif
2017
2018static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2019{
2020 struct pl08x_driver_data *pl08x;
2021 const struct vendor_data *vd = id->data;
2022 u32 tsfr_size;
2023 int ret = 0;
2024 int i;
2025
2026 ret = amba_request_regions(adev, NULL);
2027 if (ret)
2028 return ret;
2029
2030 /* Ensure that we can do DMA */
2031 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2032 if (ret)
2033 goto out_no_pl08x;
2034
2035 /* Create the driver state holder */
2036 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2037 if (!pl08x) {
2038 ret = -ENOMEM;
2039 goto out_no_pl08x;
2040 }
2041
2042 /* Initialize memcpy engine */
2043 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2044 pl08x->memcpy.dev = &adev->dev;
2045 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
2046 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2047 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2048 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2049 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2050 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2051 pl08x->memcpy.device_control = pl08x_control;
2052
2053 /* Initialize slave engine */
2054 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2055 dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2056 pl08x->slave.dev = &adev->dev;
2057 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
2058 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
2059 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2060 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2061 pl08x->slave.device_issue_pending = pl08x_issue_pending;
2062 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2063 pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2064 pl08x->slave.device_control = pl08x_control;
2065
2066 /* Get the platform data */
2067 pl08x->pd = dev_get_platdata(&adev->dev);
2068 if (!pl08x->pd) {
2069 dev_err(&adev->dev, "no platform data supplied\n");
2070 ret = -EINVAL;
2071 goto out_no_platdata;
2072 }
2073
2074 /* Assign useful pointers to the driver state */
2075 pl08x->adev = adev;
2076 pl08x->vd = vd;
2077
2078 /* By default, AHB1 only. If dualmaster, from platform */
2079 pl08x->lli_buses = PL08X_AHB1;
2080 pl08x->mem_buses = PL08X_AHB1;
2081 if (pl08x->vd->dualmaster) {
2082 pl08x->lli_buses = pl08x->pd->lli_buses;
2083 pl08x->mem_buses = pl08x->pd->mem_buses;
2084 }
2085
2086 if (vd->pl080s)
2087 pl08x->lli_words = PL080S_LLI_WORDS;
2088 else
2089 pl08x->lli_words = PL080_LLI_WORDS;
2090 tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2091
2092 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2093 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2094 tsfr_size, PL08X_ALIGN, 0);
2095 if (!pl08x->pool) {
2096 ret = -ENOMEM;
2097 goto out_no_lli_pool;
2098 }
2099
2100 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2101 if (!pl08x->base) {
2102 ret = -ENOMEM;
2103 goto out_no_ioremap;
2104 }
2105
2106 /* Turn on the PL08x */
2107 pl08x_ensure_on(pl08x);
2108
2109 /* Attach the interrupt handler */
2110 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2111 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2112
2113 ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2114 if (ret) {
2115 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2116 __func__, adev->irq[0]);
2117 goto out_no_irq;
2118 }
2119
2120 /* Initialize physical channels */
2121 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2122 GFP_KERNEL);
2123 if (!pl08x->phy_chans) {
2124 dev_err(&adev->dev, "%s failed to allocate "
2125 "physical channel holders\n",
2126 __func__);
2127 ret = -ENOMEM;
2128 goto out_no_phychans;
2129 }
2130
2131 for (i = 0; i < vd->channels; i++) {
2132 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2133
2134 ch->id = i;
2135 ch->base = pl08x->base + PL080_Cx_BASE(i);
2136 ch->reg_config = ch->base + vd->config_offset;
2137 spin_lock_init(&ch->lock);
2138
2139 /*
2140 * Nomadik variants can have channels that are locked
2141 * down for the secure world only. Lock up these channels
2142 * by perpetually serving a dummy virtual channel.
2143 */
2144 if (vd->nomadik) {
2145 u32 val;
2146
2147 val = readl(ch->reg_config);
2148 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2149 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2150 ch->locked = true;
2151 }
2152 }
2153
2154 dev_dbg(&adev->dev, "physical channel %d is %s\n",
2155 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2156 }
2157
2158 /* Register as many memcpy channels as there are physical channels */
2159 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2160 pl08x->vd->channels, false);
2161 if (ret <= 0) {
2162 dev_warn(&pl08x->adev->dev,
2163 "%s failed to enumerate memcpy channels - %d\n",
2164 __func__, ret);
2165 goto out_no_memcpy;
2166 }
2167 pl08x->memcpy.chancnt = ret;
2168
2169 /* Register slave channels */
2170 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2171 pl08x->pd->num_slave_channels, true);
2172 if (ret < 0) {
2173 dev_warn(&pl08x->adev->dev,
2174 "%s failed to enumerate slave channels - %d\n",
2175 __func__, ret);
2176 goto out_no_slave;
2177 }
2178 pl08x->slave.chancnt = ret;
2179
2180 ret = dma_async_device_register(&pl08x->memcpy);
2181 if (ret) {
2182 dev_warn(&pl08x->adev->dev,
2183 "%s failed to register memcpy as an async device - %d\n",
2184 __func__, ret);
2185 goto out_no_memcpy_reg;
2186 }
2187
2188 ret = dma_async_device_register(&pl08x->slave);
2189 if (ret) {
2190 dev_warn(&pl08x->adev->dev,
2191 "%s failed to register slave as an async device - %d\n",
2192 __func__, ret);
2193 goto out_no_slave_reg;
2194 }
2195
2196 amba_set_drvdata(adev, pl08x);
2197 init_pl08x_debugfs(pl08x);
2198 dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2199 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2200 (unsigned long long)adev->res.start, adev->irq[0]);
2201
2202 return 0;
2203
2204out_no_slave_reg:
2205 dma_async_device_unregister(&pl08x->memcpy);
2206out_no_memcpy_reg:
2207 pl08x_free_virtual_channels(&pl08x->slave);
2208out_no_slave:
2209 pl08x_free_virtual_channels(&pl08x->memcpy);
2210out_no_memcpy:
2211 kfree(pl08x->phy_chans);
2212out_no_phychans:
2213 free_irq(adev->irq[0], pl08x);
2214out_no_irq:
2215 iounmap(pl08x->base);
2216out_no_ioremap:
2217 dma_pool_destroy(pl08x->pool);
2218out_no_lli_pool:
2219out_no_platdata:
2220 kfree(pl08x);
2221out_no_pl08x:
2222 amba_release_regions(adev);
2223 return ret;
2224}
2225
2226/* PL080 has 8 channels and the PL080 have just 2 */
2227static struct vendor_data vendor_pl080 = {
2228 .config_offset = PL080_CH_CONFIG,
2229 .channels = 8,
2230 .dualmaster = true,
2231 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2232};
2233
2234static struct vendor_data vendor_nomadik = {
2235 .config_offset = PL080_CH_CONFIG,
2236 .channels = 8,
2237 .dualmaster = true,
2238 .nomadik = true,
2239 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2240};
2241
2242static struct vendor_data vendor_pl080s = {
2243 .config_offset = PL080S_CH_CONFIG,
2244 .channels = 8,
2245 .pl080s = true,
2246 .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
2247};
2248
2249static struct vendor_data vendor_pl081 = {
2250 .config_offset = PL080_CH_CONFIG,
2251 .channels = 2,
2252 .dualmaster = false,
2253 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2254};
2255
2256static struct amba_id pl08x_ids[] = {
2257 /* Samsung PL080S variant */
2258 {
2259 .id = 0x0a141080,
2260 .mask = 0xffffffff,
2261 .data = &vendor_pl080s,
2262 },
2263 /* PL080 */
2264 {
2265 .id = 0x00041080,
2266 .mask = 0x000fffff,
2267 .data = &vendor_pl080,
2268 },
2269 /* PL081 */
2270 {
2271 .id = 0x00041081,
2272 .mask = 0x000fffff,
2273 .data = &vendor_pl081,
2274 },
2275 /* Nomadik 8815 PL080 variant */
2276 {
2277 .id = 0x00280080,
2278 .mask = 0x00ffffff,
2279 .data = &vendor_nomadik,
2280 },
2281 { 0, 0 },
2282};
2283
2284MODULE_DEVICE_TABLE(amba, pl08x_ids);
2285
2286static struct amba_driver pl08x_amba_driver = {
2287 .drv.name = DRIVER_NAME,
2288 .id_table = pl08x_ids,
2289 .probe = pl08x_probe,
2290};
2291
2292static int __init pl08x_init(void)
2293{
2294 int retval;
2295 retval = amba_driver_register(&pl08x_amba_driver);
2296 if (retval)
2297 printk(KERN_WARNING DRIVER_NAME
2298 "failed to register as an AMBA device (%d)\n",
2299 retval);
2300 return retval;
2301}
2302subsys_initcall(pl08x_init);