Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (c) 2006 ARM Ltd.
   3 * Copyright (c) 2010 ST-Ericsson SA
   4 *
   5 * Author: Peter Pearse <peter.pearse@arm.com>
   6 * Author: Linus Walleij <linus.walleij@stericsson.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify it
   9 * under the terms of the GNU General Public License as published by the Free
  10 * Software Foundation; either version 2 of the License, or (at your option)
  11 * any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful, but WITHOUT
  14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  16 * more details.
  17 *
  18 * You should have received a copy of the GNU General Public License along with
  19 * this program; if not, write to the Free Software Foundation, Inc., 59
  20 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  21 *
  22 * The full GNU General Public License is in this distribution in the file
  23 * called COPYING.
  24 *
  25 * Documentation: ARM DDI 0196G == PL080
  26 * Documentation: ARM DDI 0218E == PL081
 
  27 *
  28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
  29 * channel.
  30 *
  31 * The PL080 has 8 channels available for simultaneous use, and the PL081
  32 * has only two channels. So on these DMA controllers the number of channels
  33 * and the number of incoming DMA signals are two totally different things.
  34 * It is usually not possible to theoretically handle all physical signals,
  35 * so a multiplexing scheme with possible denial of use is necessary.
  36 *
  37 * The PL080 has a dual bus master, PL081 has a single master.
  38 *
 
 
 
 
 
 
 
 
  39 * Memory to peripheral transfer may be visualized as
  40 *	Get data from memory to DMAC
  41 *	Until no data left
  42 *		On burst request from peripheral
  43 *			Destination burst from DMAC to peripheral
  44 *			Clear burst request
  45 *	Raise terminal count interrupt
  46 *
  47 * For peripherals with a FIFO:
  48 * Source      burst size == half the depth of the peripheral FIFO
  49 * Destination burst size == the depth of the peripheral FIFO
  50 *
  51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
  52 * signals, the DMA controller will simply facilitate its AHB master.)
  53 *
  54 * ASSUMES default (little) endianness for DMA transfers
  55 *
  56 * The PL08x has two flow control settings:
  57 *  - DMAC flow control: the transfer size defines the number of transfers
  58 *    which occur for the current LLI entry, and the DMAC raises TC at the
  59 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
  60 *    to both the BREQ and SREQ signals (contrary to documented),
  61 *    transferring data if either is active.  The LBREQ and LSREQ signals
  62 *    are ignored.
  63 *
  64 *  - Peripheral flow control: the transfer size is ignored (and should be
  65 *    zero).  The data is transferred from the current LLI entry, until
  66 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
  67 *    will then move to the next LLI entry.
  68 *
  69 * Only the former works sanely with scatter lists, so we only implement
  70 * the DMAC flow control method.  However, peripherals which use the LBREQ
  71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
  72 * these hardware restrictions prevents them from using scatter DMA.
  73 *
  74 * Global TODO:
  75 * - Break out common code from arch/arm/mach-s3c64xx and share
  76 */
  77#include <linux/device.h>
  78#include <linux/init.h>
  79#include <linux/module.h>
  80#include <linux/interrupt.h>
  81#include <linux/slab.h>
  82#include <linux/delay.h>
  83#include <linux/dma-mapping.h>
  84#include <linux/dmapool.h>
  85#include <linux/dmaengine.h>
  86#include <linux/amba/bus.h>
  87#include <linux/amba/pl08x.h>
  88#include <linux/debugfs.h>
 
 
 
 
 
 
 
 
 
 
  89#include <linux/seq_file.h>
 
 
  90
  91#include <asm/hardware/pl080.h>
 
  92
  93#define DRIVER_NAME	"pl08xdmac"
  94
 
 
 
  95/**
  96 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
  97 * @channels: the number of channels available in this variant
  98 * @dualmaster: whether this version supports dual AHB masters or not.
 
 
 
 
 
  99 */
 100struct vendor_data {
 
 101	u8 channels;
 102	bool dualmaster;
 
 
 
 103};
 104
 105/*
 106 * PL08X private data structures
 107 * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
 108 * start & end do not - their bus bit info is in cctl.  Also note that these
 109 * are fixed 32-bit quantities.
 110 */
 111struct pl08x_lli {
 112	u32 src;
 113	u32 dst;
 114	u32 lli;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115	u32 cctl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 116};
 117
 118/**
 119 * struct pl08x_driver_data - the local state holder for the PL08x
 120 * @slave: slave engine for this instance
 121 * @memcpy: memcpy engine for this instance
 122 * @base: virtual memory base (remapped) for the PL08x
 123 * @adev: the corresponding AMBA (PrimeCell) bus entry
 124 * @vd: vendor data for this PL08x variant
 125 * @pd: platform data passed in from the platform/machine
 126 * @phy_chans: array of data for the physical channels
 127 * @pool: a pool for the LLI descriptors
 128 * @pool_ctr: counter of LLIs in the pool
 129 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
 130 * @mem_buses: set to indicate memory transfers on AHB2.
 131 * @lock: a spinlock for this struct
 132 */
 133struct pl08x_driver_data {
 134	struct dma_device slave;
 135	struct dma_device memcpy;
 136	void __iomem *base;
 137	struct amba_device *adev;
 138	const struct vendor_data *vd;
 139	struct pl08x_platform_data *pd;
 140	struct pl08x_phy_chan *phy_chans;
 141	struct dma_pool *pool;
 142	int pool_ctr;
 143	u8 lli_buses;
 144	u8 mem_buses;
 145	spinlock_t lock;
 146};
 147
 148/*
 149 * PL08X specific defines
 150 */
 151
 
 
 
 
 
 
 
 
 
 
 
 152/*
 153 * Memory boundaries: the manual for PL08x says that the controller
 154 * cannot read past a 1KiB boundary, so these defines are used to
 155 * create transfer LLIs that do not cross such boundaries.
 156 */
 157#define PL08X_BOUNDARY_SHIFT		(10)	/* 1KB 0x400 */
 158#define PL08X_BOUNDARY_SIZE		(1 << PL08X_BOUNDARY_SHIFT)
 159
 160/* Size (bytes) of each LLI buffer allocated for one transfer */
 161# define PL08X_LLI_TSFR_SIZE	0x2000
 162
 163/* Maximum times we call dma_pool_alloc on this pool without freeing */
 164#define MAX_NUM_TSFR_LLIS	(PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
 165#define PL08X_ALIGN		8
 166
 167static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
 168{
 169	return container_of(chan, struct pl08x_dma_chan, chan);
 170}
 171
 172static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
 173{
 174	return container_of(tx, struct pl08x_txd, tx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175}
 176
 177/*
 178 * Physical channel handling
 179 */
 180
 181/* Whether a certain channel is busy or not */
 182static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
 183{
 184	unsigned int val;
 185
 186	val = readl(ch->base + PL080_CH_CONFIG);
 187	return val & PL080_CONFIG_ACTIVE;
 188}
 189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190/*
 191 * Set the initial DMA register values i.e. those for the first LLI
 192 * The next LLI pointer and the configuration interrupt bit have
 193 * been set when the LLIs were constructed.  Poke them into the hardware
 194 * and start the transfer.
 195 */
 196static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
 197	struct pl08x_txd *txd)
 198{
 199	struct pl08x_driver_data *pl08x = plchan->host;
 200	struct pl08x_phy_chan *phychan = plchan->phychan;
 201	struct pl08x_lli *lli = &txd->llis_va[0];
 
 202	u32 val;
 203
 
 
 204	plchan->at = txd;
 205
 206	/* Wait for channel inactive */
 207	while (pl08x_phy_channel_busy(phychan))
 208		cpu_relax();
 209
 210	dev_vdbg(&pl08x->adev->dev,
 211		"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 212		"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
 213		phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
 214		txd->ccfg);
 215
 216	writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
 217	writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
 218	writel(lli->lli, phychan->base + PL080_CH_LLI);
 219	writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
 220	writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
 221
 222	/* Enable the DMA channel */
 223	/* Do not access config register until channel shows as disabled */
 224	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
 225		cpu_relax();
 226
 227	/* Do not access config register until channel shows as inactive */
 228	val = readl(phychan->base + PL080_CH_CONFIG);
 229	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
 230		val = readl(phychan->base + PL080_CH_CONFIG);
 231
 232	writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
 233}
 234
 235/*
 236 * Pause the channel by setting the HALT bit.
 237 *
 238 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 239 * the FIFO can only drain if the peripheral is still requesting data.
 240 * (note: this can still timeout if the DMAC FIFO never drains of data.)
 241 *
 242 * For P->M transfers, disable the peripheral first to stop it filling
 243 * the DMAC FIFO, and then pause the DMAC.
 244 */
 245static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
 246{
 247	u32 val;
 248	int timeout;
 249
 250	/* Set the HALT bit and wait for the FIFO to drain */
 251	val = readl(ch->base + PL080_CH_CONFIG);
 252	val |= PL080_CONFIG_HALT;
 253	writel(val, ch->base + PL080_CH_CONFIG);
 254
 255	/* Wait for channel inactive */
 256	for (timeout = 1000; timeout; timeout--) {
 257		if (!pl08x_phy_channel_busy(ch))
 258			break;
 259		udelay(1);
 260	}
 261	if (pl08x_phy_channel_busy(ch))
 262		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
 263}
 264
 265static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
 266{
 267	u32 val;
 268
 269	/* Clear the HALT bit */
 270	val = readl(ch->base + PL080_CH_CONFIG);
 271	val &= ~PL080_CONFIG_HALT;
 272	writel(val, ch->base + PL080_CH_CONFIG);
 273}
 274
 275
 276/*
 277 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 278 * clears any pending interrupt status.  This should not be used for
 279 * an on-going transfer, but as a method of shutting down a channel
 280 * (eg, when it's no longer used) or terminating a transfer.
 281 */
 282static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
 283	struct pl08x_phy_chan *ch)
 284{
 285	u32 val = readl(ch->base + PL080_CH_CONFIG);
 286
 287	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
 288	         PL080_CONFIG_TC_IRQ_MASK);
 289
 290	writel(val, ch->base + PL080_CH_CONFIG);
 291
 292	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
 293	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
 294}
 295
 296static inline u32 get_bytes_in_cctl(u32 cctl)
 297{
 298	/* The source width defines the number of bytes */
 299	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
 300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 301	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
 302	case PL080_WIDTH_8BIT:
 303		break;
 304	case PL080_WIDTH_16BIT:
 305		bytes *= 2;
 306		break;
 307	case PL080_WIDTH_32BIT:
 308		bytes *= 4;
 309		break;
 310	}
 311	return bytes;
 312}
 313
 314/* The channel should be paused when calling this */
 315static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
 316{
 
 
 317	struct pl08x_phy_chan *ch;
 
 318	struct pl08x_txd *txd;
 319	unsigned long flags;
 320	size_t bytes = 0;
 
 321
 322	spin_lock_irqsave(&plchan->lock, flags);
 323	ch = plchan->phychan;
 324	txd = plchan->at;
 325
 
 
 
 326	/*
 327	 * Follow the LLIs to get the number of remaining
 328	 * bytes in the currently active transaction.
 329	 */
 330	if (ch && txd) {
 331		u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
 332
 333		/* First get the remaining bytes in the active transfer */
 
 
 
 
 
 334		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
 335
 336		if (clli) {
 337			struct pl08x_lli *llis_va = txd->llis_va;
 338			dma_addr_t llis_bus = txd->llis_bus;
 339			int index;
 340
 341			BUG_ON(clli < llis_bus || clli >= llis_bus +
 342				sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
 343
 344			/*
 345			 * Locate the next LLI - as this is an array,
 346			 * it's simple maths to find.
 347			 */
 348			index = (clli - llis_bus) / sizeof(struct pl08x_lli);
 349
 350			for (; index < MAX_NUM_TSFR_LLIS; index++) {
 351				bytes += get_bytes_in_cctl(llis_va[index].cctl);
 
 
 
 352
 353				/*
 354				 * A LLI pointer of 0 terminates the LLI list
 355				 */
 356				if (!llis_va[index].lli)
 357					break;
 358			}
 359		}
 360	}
 361
 362	/* Sum up all queued transactions */
 363	if (!list_empty(&plchan->pend_list)) {
 364		struct pl08x_txd *txdi;
 365		list_for_each_entry(txdi, &plchan->pend_list, node) {
 366			bytes += txdi->len;
 367		}
 368	}
 369
 370	spin_unlock_irqrestore(&plchan->lock, flags);
 
 
 
 
 
 371
 372	return bytes;
 373}
 374
 375/*
 376 * Allocate a physical channel for a virtual channel
 377 *
 378 * Try to locate a physical channel to be used for this transfer. If all
 379 * are taken return NULL and the requester will have to cope by using
 380 * some fallback PIO mode or retrying later.
 381 */
 382static struct pl08x_phy_chan *
 383pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
 384		      struct pl08x_dma_chan *virt_chan)
 385{
 386	struct pl08x_phy_chan *ch = NULL;
 387	unsigned long flags;
 388	int i;
 389
 390	for (i = 0; i < pl08x->vd->channels; i++) {
 391		ch = &pl08x->phy_chans[i];
 392
 393		spin_lock_irqsave(&ch->lock, flags);
 394
 395		if (!ch->serving) {
 396			ch->serving = virt_chan;
 397			ch->signal = -1;
 398			spin_unlock_irqrestore(&ch->lock, flags);
 399			break;
 400		}
 401
 402		spin_unlock_irqrestore(&ch->lock, flags);
 403	}
 404
 405	if (i == pl08x->vd->channels) {
 406		/* No physical channel available, cope with it */
 407		return NULL;
 408	}
 409
 410	return ch;
 411}
 412
 
 413static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
 414					 struct pl08x_phy_chan *ch)
 415{
 416	unsigned long flags;
 
 417
 418	spin_lock_irqsave(&ch->lock, flags);
 
 
 
 
 
 
 
 
 419
 420	/* Stop the channel and clear its interrupts */
 421	pl08x_terminate_phy_chan(pl08x, ch);
 
 
 
 
 422
 423	/* Mark it as free */
 424	ch->serving = NULL;
 425	spin_unlock_irqrestore(&ch->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 426}
 427
 428/*
 429 * LLI handling
 430 */
 431
 432static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
 433{
 434	switch (coded) {
 435	case PL080_WIDTH_8BIT:
 436		return 1;
 437	case PL080_WIDTH_16BIT:
 438		return 2;
 439	case PL080_WIDTH_32BIT:
 440		return 4;
 441	default:
 442		break;
 443	}
 444	BUG();
 445	return 0;
 446}
 447
 448static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
 449				  size_t tsize)
 450{
 451	u32 retbits = cctl;
 452
 453	/* Remove all src, dst and transfer size bits */
 454	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
 455	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
 456	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
 457
 458	/* Then set the bits according to the parameters */
 459	switch (srcwidth) {
 460	case 1:
 461		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
 462		break;
 463	case 2:
 464		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
 465		break;
 466	case 4:
 467		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
 468		break;
 469	default:
 470		BUG();
 471		break;
 472	}
 473
 474	switch (dstwidth) {
 475	case 1:
 476		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
 477		break;
 478	case 2:
 479		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
 480		break;
 481	case 4:
 482		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
 483		break;
 484	default:
 485		BUG();
 486		break;
 487	}
 488
 
 489	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
 490	return retbits;
 491}
 492
 493struct pl08x_lli_build_data {
 494	struct pl08x_txd *txd;
 495	struct pl08x_bus_data srcbus;
 496	struct pl08x_bus_data dstbus;
 497	size_t remainder;
 498	u32 lli_bus;
 499};
 500
 501/*
 502 * Autoselect a master bus to use for the transfer this prefers the
 503 * destination bus if both available if fixed address on one bus the
 504 * other will be chosen
 
 
 
 
 505 */
 506static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
 507	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
 508{
 509	if (!(cctl & PL080_CONTROL_DST_INCR)) {
 510		*mbus = &bd->srcbus;
 511		*sbus = &bd->dstbus;
 512	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
 513		*mbus = &bd->dstbus;
 514		*sbus = &bd->srcbus;
 
 
 
 515	} else {
 516		if (bd->dstbus.buswidth == 4) {
 517			*mbus = &bd->dstbus;
 518			*sbus = &bd->srcbus;
 519		} else if (bd->srcbus.buswidth == 4) {
 520			*mbus = &bd->srcbus;
 521			*sbus = &bd->dstbus;
 522		} else if (bd->dstbus.buswidth == 2) {
 523			*mbus = &bd->dstbus;
 524			*sbus = &bd->srcbus;
 525		} else if (bd->srcbus.buswidth == 2) {
 526			*mbus = &bd->srcbus;
 527			*sbus = &bd->dstbus;
 528		} else {
 529			/* bd->srcbus.buswidth == 1 */
 530			*mbus = &bd->dstbus;
 531			*sbus = &bd->srcbus;
 532		}
 533	}
 534}
 535
 536/*
 537 * Fills in one LLI for a certain transfer descriptor and advance the counter
 538 */
 539static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
 540	int num_llis, int len, u32 cctl)
 
 541{
 542	struct pl08x_lli *llis_va = bd->txd->llis_va;
 
 543	dma_addr_t llis_bus = bd->txd->llis_bus;
 544
 545	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
 546
 547	llis_va[num_llis].cctl = cctl;
 548	llis_va[num_llis].src = bd->srcbus.addr;
 549	llis_va[num_llis].dst = bd->dstbus.addr;
 550	llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
 551	llis_va[num_llis].lli |= bd->lli_bus;
 
 
 
 
 
 552
 553	if (cctl & PL080_CONTROL_SRC_INCR)
 554		bd->srcbus.addr += len;
 555	if (cctl & PL080_CONTROL_DST_INCR)
 556		bd->dstbus.addr += len;
 557
 558	BUG_ON(bd->remainder < len);
 559
 560	bd->remainder -= len;
 561}
 562
 563/*
 564 * Return number of bytes to fill to boundary, or len.
 565 * This calculation works for any value of addr.
 566 */
 567static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
 
 
 
 
 
 
 
 568{
 569	size_t boundary_len = PL08X_BOUNDARY_SIZE -
 570			(addr & (PL08X_BOUNDARY_SIZE - 1));
 571
 572	return min(boundary_len, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 573}
 
 
 
 
 574
 575/*
 576 * This fills in the table of LLIs for the transfer descriptor
 577 * Note that we assume we never have to change the burst sizes
 578 * Return 0 for error
 579 */
 580static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
 581			      struct pl08x_txd *txd)
 582{
 583	struct pl08x_bus_data *mbus, *sbus;
 584	struct pl08x_lli_build_data bd;
 585	int num_llis = 0;
 586	u32 cctl;
 587	size_t max_bytes_per_lli;
 588	size_t total_bytes = 0;
 589	struct pl08x_lli *llis_va;
 590
 591	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
 592				      &txd->llis_bus);
 593	if (!txd->llis_va) {
 594		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
 595		return 0;
 596	}
 597
 598	pl08x->pool_ctr++;
 599
 600	/* Get the default CCTL */
 601	cctl = txd->cctl;
 602
 603	bd.txd = txd;
 604	bd.srcbus.addr = txd->src_addr;
 605	bd.dstbus.addr = txd->dst_addr;
 606	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
 
 607
 608	/* Find maximum width of the source bus */
 609	bd.srcbus.maxwidth =
 610		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
 611				       PL080_CONTROL_SWIDTH_SHIFT);
 612
 613	/* Find maximum width of the destination bus */
 614	bd.dstbus.maxwidth =
 615		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
 616				       PL080_CONTROL_DWIDTH_SHIFT);
 617
 618	/* Set up the bus widths to the maximum */
 619	bd.srcbus.buswidth = bd.srcbus.maxwidth;
 620	bd.dstbus.buswidth = bd.dstbus.maxwidth;
 
 
 
 
 
 
 621
 622	/*
 623	 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
 624	 */
 625	max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) *
 626		PL080_CONTROL_TRANSFER_SIZE_MASK;
 627
 628	/* We need to count this down to zero */
 629	bd.remainder = txd->len;
 630
 631	/*
 632	 * Choose bus to align to
 633	 * - prefers destination bus if both available
 634	 * - if fixed address on one bus chooses other
 635	 */
 636	pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
 637
 638	dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu llimax=%zu\n",
 639		 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
 640		 bd.srcbus.buswidth,
 641		 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
 642		 bd.dstbus.buswidth,
 643		 bd.remainder, max_bytes_per_lli);
 644	dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
 645		 mbus == &bd.srcbus ? "src" : "dst",
 646		 sbus == &bd.srcbus ? "src" : "dst");
 647
 648	if (txd->len < mbus->buswidth) {
 649		/* Less than a bus width available - send as single bytes */
 650		while (bd.remainder) {
 651			dev_vdbg(&pl08x->adev->dev,
 652				 "%s single byte LLIs for a transfer of "
 653				 "less than a bus width (remain 0x%08x)\n",
 654				 __func__, bd.remainder);
 655			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
 656			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
 657			total_bytes++;
 658		}
 659	} else {
 660		/* Make one byte LLIs until master bus is aligned */
 661		while ((mbus->addr) % (mbus->buswidth)) {
 662			dev_vdbg(&pl08x->adev->dev,
 663				"%s adjustment lli for less than bus width "
 664				 "(remain 0x%08x)\n",
 665				 __func__, bd.remainder);
 666			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
 667			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
 668			total_bytes++;
 669		}
 670
 671		/*
 672		 * Master now aligned
 673		 * - if slave is not then we must set its width down
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 674		 */
 675		if (sbus->addr % sbus->buswidth) {
 676			dev_dbg(&pl08x->adev->dev,
 677				"%s set down bus width to one byte\n",
 678				 __func__);
 
 
 
 
 
 679
 680			sbus->buswidth = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 681		}
 682
 683		/*
 684		 * Make largest possible LLIs until less than one bus
 685		 * width left
 
 686		 */
 687		while (bd.remainder > (mbus->buswidth - 1)) {
 688			size_t lli_len, target_len, tsize, odd_bytes;
 
 
 
 
 
 
 689
 
 
 
 
 
 
 
 
 
 690			/*
 691			 * If enough left try to send max possible,
 692			 * otherwise try to send the remainder
 693			 */
 694			target_len = min(bd.remainder, max_bytes_per_lli);
 
 
 
 
 
 
 695
 696			/*
 697			 * Set bus lengths for incrementing buses to the
 698			 * number of bytes which fill to next memory boundary,
 699			 * limiting on the target length calculated above.
 700			 */
 701			if (cctl & PL080_CONTROL_SRC_INCR)
 702				bd.srcbus.fill_bytes =
 703					pl08x_pre_boundary(bd.srcbus.addr,
 704						target_len);
 705			else
 706				bd.srcbus.fill_bytes = target_len;
 707
 708			if (cctl & PL080_CONTROL_DST_INCR)
 709				bd.dstbus.fill_bytes =
 710					pl08x_pre_boundary(bd.dstbus.addr,
 711						target_len);
 712			else
 713				bd.dstbus.fill_bytes = target_len;
 714
 715			/* Find the nearest */
 716			lli_len	= min(bd.srcbus.fill_bytes,
 717				      bd.dstbus.fill_bytes);
 718
 719			BUG_ON(lli_len > bd.remainder);
 720
 721			if (lli_len <= 0) {
 722				dev_err(&pl08x->adev->dev,
 723					"%s lli_len is %zu, <= 0\n",
 724						__func__, lli_len);
 725				return 0;
 726			}
 727
 728			if (lli_len == target_len) {
 729				/*
 730				 * Can send what we wanted.
 731				 * Maintain alignment
 732				 */
 733				lli_len	= (lli_len/mbus->buswidth) *
 734							mbus->buswidth;
 735				odd_bytes = 0;
 736			} else {
 737				/*
 738				 * So now we know how many bytes to transfer
 739				 * to get to the nearest boundary.  The next
 740				 * LLI will past the boundary.  However, we
 741				 * may be working to a boundary on the slave
 742				 * bus.  We need to ensure the master stays
 743				 * aligned, and that we are working in
 744				 * multiples of the bus widths.
 745				 */
 746				odd_bytes = lli_len % mbus->buswidth;
 747				lli_len -= odd_bytes;
 748
 749			}
 750
 751			if (lli_len) {
 752				/*
 753				 * Check against minimum bus alignment:
 754				 * Calculate actual transfer size in relation
 755				 * to bus width an get a maximum remainder of
 756				 * the smallest bus width - 1
 757				 */
 758				/* FIXME: use round_down()? */
 759				tsize = lli_len / min(mbus->buswidth,
 760						      sbus->buswidth);
 761				lli_len	= tsize * min(mbus->buswidth,
 762						      sbus->buswidth);
 763
 764				if (target_len != lli_len) {
 765					dev_vdbg(&pl08x->adev->dev,
 766					"%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
 767					__func__, target_len, lli_len, txd->len);
 768				}
 769
 770				cctl = pl08x_cctl_bits(cctl,
 771						       bd.srcbus.buswidth,
 772						       bd.dstbus.buswidth,
 773						       tsize);
 774
 775				dev_vdbg(&pl08x->adev->dev,
 776					"%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
 
 777					__func__, lli_len, bd.remainder);
 778				pl08x_fill_lli_for_desc(&bd, num_llis++,
 779					lli_len, cctl);
 
 
 
 780				total_bytes += lli_len;
 781			}
 782
 783
 784			if (odd_bytes) {
 785				/*
 786				 * Creep past the boundary, maintaining
 787				 * master alignment
 788				 */
 789				int j;
 790				for (j = 0; (j < mbus->buswidth)
 791						&& (bd.remainder); j++) {
 792					cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
 793					dev_vdbg(&pl08x->adev->dev,
 794						"%s align with boundary, single byte (remain 0x%08zx)\n",
 795						__func__, bd.remainder);
 796					pl08x_fill_lli_for_desc(&bd,
 797						num_llis++, 1, cctl);
 798					total_bytes++;
 799				}
 800			}
 801		}
 802
 803		/*
 804		 * Send any odd bytes
 805		 */
 806		while (bd.remainder) {
 807			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
 808			dev_vdbg(&pl08x->adev->dev,
 809				"%s align with boundary, single odd byte (remain %zu)\n",
 810				__func__, bd.remainder);
 811			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
 812			total_bytes++;
 813		}
 814	}
 815	if (total_bytes != txd->len) {
 816		dev_err(&pl08x->adev->dev,
 817			"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
 818			__func__, total_bytes, txd->len);
 819		return 0;
 820	}
 821
 822	if (num_llis >= MAX_NUM_TSFR_LLIS) {
 823		dev_err(&pl08x->adev->dev,
 824			"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
 825			__func__, (u32) MAX_NUM_TSFR_LLIS);
 826		return 0;
 
 827	}
 828
 829	llis_va = txd->llis_va;
 830	/* The final LLI terminates the LLI. */
 831	llis_va[num_llis - 1].lli = 0;
 832	/* The final LLI element shall also fire an interrupt. */
 833	llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
 834
 835#ifdef VERBOSE_DEBUG
 836	{
 837		int i;
 838
 839		dev_vdbg(&pl08x->adev->dev,
 840			 "%-3s %-9s  %-10s %-10s %-10s %s\n",
 841			 "lli", "", "csrc", "cdst", "clli", "cctl");
 842		for (i = 0; i < num_llis; i++) {
 843			dev_vdbg(&pl08x->adev->dev,
 844				 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
 845				 i, &llis_va[i], llis_va[i].src,
 846				 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
 847				);
 848		}
 849	}
 850#endif
 
 851
 852	return num_llis;
 853}
 854
 855/* You should call this with the struct pl08x lock held */
 856static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
 857			   struct pl08x_txd *txd)
 858{
 859	/* Free the LLI */
 860	dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
 
 
 861
 862	pl08x->pool_ctr--;
 
 
 
 863
 864	kfree(txd);
 865}
 866
 
 
 
 
 
 
 
 
 
 
 
 
 867static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
 868				struct pl08x_dma_chan *plchan)
 869{
 870	struct pl08x_txd *txdi = NULL;
 871	struct pl08x_txd *next;
 872
 873	if (!list_empty(&plchan->pend_list)) {
 874		list_for_each_entry_safe(txdi,
 875					 next, &plchan->pend_list, node) {
 876			list_del(&txdi->node);
 877			pl08x_free_txd(pl08x, txdi);
 878		}
 879	}
 880}
 881
 882/*
 883 * The DMA ENGINE API
 884 */
 885static int pl08x_alloc_chan_resources(struct dma_chan *chan)
 886{
 887	return 0;
 888}
 889
 890static void pl08x_free_chan_resources(struct dma_chan *chan)
 891{
 892}
 893
 894/*
 895 * This should be called with the channel plchan->lock held
 896 */
 897static int prep_phy_channel(struct pl08x_dma_chan *plchan,
 898			    struct pl08x_txd *txd)
 899{
 900	struct pl08x_driver_data *pl08x = plchan->host;
 901	struct pl08x_phy_chan *ch;
 902	int ret;
 903
 904	/* Check if we already have a channel */
 905	if (plchan->phychan)
 906		return 0;
 907
 908	ch = pl08x_get_phy_channel(pl08x, plchan);
 909	if (!ch) {
 910		/* No physical channel available, cope with it */
 911		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
 912		return -EBUSY;
 913	}
 914
 915	/*
 916	 * OK we have a physical channel: for memcpy() this is all we
 917	 * need, but for slaves the physical signals may be muxed!
 918	 * Can the platform allow us to use this channel?
 919	 */
 920	if (plchan->slave &&
 921	    ch->signal < 0 &&
 922	    pl08x->pd->get_signal) {
 923		ret = pl08x->pd->get_signal(plchan);
 924		if (ret < 0) {
 925			dev_dbg(&pl08x->adev->dev,
 926				"unable to use physical channel %d for transfer on %s due to platform restrictions\n",
 927				ch->id, plchan->name);
 928			/* Release physical channel & return */
 929			pl08x_put_phy_channel(pl08x, ch);
 930			return -EBUSY;
 931		}
 932		ch->signal = ret;
 933
 934		/* Assign the flow control signal to this channel */
 935		if (txd->direction == DMA_TO_DEVICE)
 936			txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
 937		else if (txd->direction == DMA_FROM_DEVICE)
 938			txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
 939	}
 940
 941	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
 942		 ch->id,
 943		 ch->signal,
 944		 plchan->name);
 945
 946	plchan->phychan_hold++;
 947	plchan->phychan = ch;
 948
 949	return 0;
 950}
 951
 952static void release_phy_channel(struct pl08x_dma_chan *plchan)
 953{
 954	struct pl08x_driver_data *pl08x = plchan->host;
 955
 956	if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
 957		pl08x->pd->put_signal(plchan);
 958		plchan->phychan->signal = -1;
 959	}
 960	pl08x_put_phy_channel(pl08x, plchan->phychan);
 961	plchan->phychan = NULL;
 962}
 963
 964static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
 965{
 966	struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
 967	struct pl08x_txd *txd = to_pl08x_txd(tx);
 968	unsigned long flags;
 969
 970	spin_lock_irqsave(&plchan->lock, flags);
 971
 972	plchan->chan.cookie += 1;
 973	if (plchan->chan.cookie < 0)
 974		plchan->chan.cookie = 1;
 975	tx->cookie = plchan->chan.cookie;
 976
 977	/* Put this onto the pending list */
 978	list_add_tail(&txd->node, &plchan->pend_list);
 979
 980	/*
 981	 * If there was no physical channel available for this memcpy,
 982	 * stack the request up and indicate that the channel is waiting
 983	 * for a free physical channel.
 984	 */
 985	if (!plchan->slave && !plchan->phychan) {
 986		/* Do this memcpy whenever there is a channel ready */
 987		plchan->state = PL08X_CHAN_WAITING;
 988		plchan->waiting = txd;
 989	} else {
 990		plchan->phychan_hold--;
 991	}
 992
 993	spin_unlock_irqrestore(&plchan->lock, flags);
 994
 995	return tx->cookie;
 996}
 997
 998static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
 999		struct dma_chan *chan, unsigned long flags)
1000{
1001	struct dma_async_tx_descriptor *retval = NULL;
1002
1003	return retval;
1004}
1005
1006/*
1007 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1008 * If slaves are relying on interrupts to signal completion this function
1009 * must not be called with interrupts disabled.
1010 */
1011static enum dma_status
1012pl08x_dma_tx_status(struct dma_chan *chan,
1013		    dma_cookie_t cookie,
1014		    struct dma_tx_state *txstate)
1015{
1016	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1017	dma_cookie_t last_used;
1018	dma_cookie_t last_complete;
1019	enum dma_status ret;
1020	u32 bytesleft = 0;
1021
1022	last_used = plchan->chan.cookie;
1023	last_complete = plchan->lc;
 
1024
1025	ret = dma_async_is_complete(cookie, last_complete, last_used);
1026	if (ret == DMA_SUCCESS) {
1027		dma_set_tx_state(txstate, last_complete, last_used, 0);
 
 
 
 
1028		return ret;
1029	}
1030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1031	/*
1032	 * This cookie not complete yet
 
1033	 */
1034	last_used = plchan->chan.cookie;
1035	last_complete = plchan->lc;
1036
1037	/* Get number of bytes left in the active transactions and queue */
1038	bytesleft = pl08x_getbytes_chan(plchan);
1039
1040	dma_set_tx_state(txstate, last_complete, last_used,
1041			 bytesleft);
1042
1043	if (plchan->state == PL08X_CHAN_PAUSED)
1044		return DMA_PAUSED;
1045
1046	/* Whether waiting or running, we're in progress */
1047	return DMA_IN_PROGRESS;
1048}
1049
1050/* PrimeCell DMA extension */
1051struct burst_table {
1052	u32 burstwords;
1053	u32 reg;
1054};
1055
1056static const struct burst_table burst_sizes[] = {
1057	{
1058		.burstwords = 256,
1059		.reg = PL080_BSIZE_256,
1060	},
1061	{
1062		.burstwords = 128,
1063		.reg = PL080_BSIZE_128,
1064	},
1065	{
1066		.burstwords = 64,
1067		.reg = PL080_BSIZE_64,
1068	},
1069	{
1070		.burstwords = 32,
1071		.reg = PL080_BSIZE_32,
1072	},
1073	{
1074		.burstwords = 16,
1075		.reg = PL080_BSIZE_16,
1076	},
1077	{
1078		.burstwords = 8,
1079		.reg = PL080_BSIZE_8,
1080	},
1081	{
1082		.burstwords = 4,
1083		.reg = PL080_BSIZE_4,
1084	},
1085	{
1086		.burstwords = 0,
1087		.reg = PL080_BSIZE_1,
1088	},
1089};
1090
1091/*
1092 * Given the source and destination available bus masks, select which
1093 * will be routed to each port.  We try to have source and destination
1094 * on separate ports, but always respect the allowable settings.
1095 */
1096static u32 pl08x_select_bus(u8 src, u8 dst)
1097{
1098	u32 cctl = 0;
1099
1100	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1101		cctl |= PL080_CONTROL_DST_AHB2;
1102	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1103		cctl |= PL080_CONTROL_SRC_AHB2;
1104
1105	return cctl;
1106}
1107
1108static u32 pl08x_cctl(u32 cctl)
1109{
1110	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1111		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1112		  PL080_CONTROL_PROT_MASK);
1113
1114	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
1115	return cctl | PL080_CONTROL_PROT_SYS;
1116}
1117
1118static u32 pl08x_width(enum dma_slave_buswidth width)
1119{
1120	switch (width) {
1121	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1122		return PL080_WIDTH_8BIT;
1123	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1124		return PL080_WIDTH_16BIT;
1125	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1126		return PL080_WIDTH_32BIT;
1127	default:
1128		return ~0;
1129	}
1130}
1131
1132static u32 pl08x_burst(u32 maxburst)
1133{
1134	int i;
1135
1136	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1137		if (burst_sizes[i].burstwords <= maxburst)
1138			break;
1139
1140	return burst_sizes[i].reg;
1141}
1142
1143static int dma_set_runtime_config(struct dma_chan *chan,
1144				  struct dma_slave_config *config)
1145{
1146	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1147	struct pl08x_driver_data *pl08x = plchan->host;
1148	enum dma_slave_buswidth addr_width;
1149	u32 width, burst, maxburst;
1150	u32 cctl = 0;
1151
1152	if (!plchan->slave)
1153		return -EINVAL;
1154
1155	/* Transfer direction */
1156	plchan->runtime_direction = config->direction;
1157	if (config->direction == DMA_TO_DEVICE) {
1158		addr_width = config->dst_addr_width;
1159		maxburst = config->dst_maxburst;
1160	} else if (config->direction == DMA_FROM_DEVICE) {
1161		addr_width = config->src_addr_width;
1162		maxburst = config->src_maxburst;
1163	} else {
1164		dev_err(&pl08x->adev->dev,
1165			"bad runtime_config: alien transfer direction\n");
1166		return -EINVAL;
1167	}
1168
1169	width = pl08x_width(addr_width);
1170	if (width == ~0) {
1171		dev_err(&pl08x->adev->dev,
1172			"bad runtime_config: alien address width\n");
1173		return -EINVAL;
1174	}
1175
1176	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1177	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1178
1179	/*
1180	 * If this channel will only request single transfers, set this
1181	 * down to ONE element.  Also select one element if no maxburst
1182	 * is specified.
1183	 */
1184	if (plchan->cd->single)
1185		maxburst = 1;
1186
1187	burst = pl08x_burst(maxburst);
1188	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1189	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1190
1191	if (plchan->runtime_direction == DMA_FROM_DEVICE) {
1192		plchan->src_addr = config->src_addr;
1193		plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
1194			pl08x_select_bus(plchan->cd->periph_buses,
1195					 pl08x->mem_buses);
1196	} else {
1197		plchan->dst_addr = config->dst_addr;
1198		plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
1199			pl08x_select_bus(pl08x->mem_buses,
1200					 plchan->cd->periph_buses);
 
 
 
 
 
 
 
 
 
 
 
 
1201	}
1202
1203	dev_dbg(&pl08x->adev->dev,
1204		"configured channel %s (%s) for %s, data width %d, "
1205		"maxburst %d words, LE, CCTL=0x%08x\n",
1206		dma_chan_name(chan), plchan->name,
1207		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1208		addr_width,
1209		maxburst,
1210		cctl);
1211
1212	return 0;
1213}
1214
1215/*
1216 * Slave transactions callback to the slave device to allow
1217 * synchronization of slave DMA signals with the DMAC enable
1218 */
1219static void pl08x_issue_pending(struct dma_chan *chan)
1220{
1221	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1222	unsigned long flags;
1223
1224	spin_lock_irqsave(&plchan->lock, flags);
1225	/* Something is already active, or we're waiting for a channel... */
1226	if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1227		spin_unlock_irqrestore(&plchan->lock, flags);
1228		return;
1229	}
1230
1231	/* Take the first element in the queue and execute it */
1232	if (!list_empty(&plchan->pend_list)) {
1233		struct pl08x_txd *next;
1234
1235		next = list_first_entry(&plchan->pend_list,
1236					struct pl08x_txd,
1237					node);
1238		list_del(&next->node);
1239		plchan->state = PL08X_CHAN_RUNNING;
1240
1241		pl08x_start_txd(plchan, next);
1242	}
1243
1244	spin_unlock_irqrestore(&plchan->lock, flags);
1245}
1246
1247static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1248					struct pl08x_txd *txd)
1249{
1250	struct pl08x_driver_data *pl08x = plchan->host;
1251	unsigned long flags;
1252	int num_llis, ret;
1253
1254	num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1255	if (!num_llis) {
1256		kfree(txd);
1257		return -EINVAL;
1258	}
1259
1260	spin_lock_irqsave(&plchan->lock, flags);
1261
1262	/*
1263	 * See if we already have a physical channel allocated,
1264	 * else this is the time to try to get one.
1265	 */
1266	ret = prep_phy_channel(plchan, txd);
1267	if (ret) {
1268		/*
1269		 * No physical channel was available.
1270		 *
1271		 * memcpy transfers can be sorted out at submission time.
1272		 *
1273		 * Slave transfers may have been denied due to platform
1274		 * channel muxing restrictions.  Since there is no guarantee
1275		 * that this will ever be resolved, and the signal must be
1276		 * acquired AFTER acquiring the physical channel, we will let
1277		 * them be NACK:ed with -EBUSY here. The drivers can retry
1278		 * the prep() call if they are eager on doing this using DMA.
1279		 */
1280		if (plchan->slave) {
1281			pl08x_free_txd_list(pl08x, plchan);
1282			pl08x_free_txd(pl08x, txd);
1283			spin_unlock_irqrestore(&plchan->lock, flags);
1284			return -EBUSY;
1285		}
1286	} else
1287		/*
1288		 * Else we're all set, paused and ready to roll, status
1289		 * will switch to PL08X_CHAN_RUNNING when we call
1290		 * issue_pending(). If there is something running on the
1291		 * channel already we don't change its state.
1292		 */
1293		if (plchan->state == PL08X_CHAN_IDLE)
1294			plchan->state = PL08X_CHAN_PAUSED;
1295
1296	spin_unlock_irqrestore(&plchan->lock, flags);
1297
1298	return 0;
1299}
1300
1301static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1302	unsigned long flags)
1303{
1304	struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1305
1306	if (txd) {
1307		dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1308		txd->tx.flags = flags;
1309		txd->tx.tx_submit = pl08x_tx_submit;
1310		INIT_LIST_HEAD(&txd->node);
1311
1312		/* Always enable error and terminal interrupts */
1313		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1314			    PL080_CONFIG_TC_IRQ_MASK;
1315	}
1316	return txd;
1317}
1318
1319/*
1320 * Initialize a descriptor to be used by memcpy submit
1321 */
1322static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1323		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1324		size_t len, unsigned long flags)
1325{
1326	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1327	struct pl08x_driver_data *pl08x = plchan->host;
1328	struct pl08x_txd *txd;
 
1329	int ret;
1330
1331	txd = pl08x_get_txd(plchan, flags);
1332	if (!txd) {
1333		dev_err(&pl08x->adev->dev,
1334			"%s no memory for descriptor\n", __func__);
1335		return NULL;
1336	}
1337
1338	txd->direction = DMA_NONE;
1339	txd->src_addr = src;
1340	txd->dst_addr = dest;
1341	txd->len = len;
 
 
 
 
 
 
 
 
1342
1343	/* Set platform data for m2m */
1344	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1345	txd->cctl = pl08x->pd->memcpy_channel.cctl &
1346			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1347
1348	/* Both to be incremented or the code will break */
1349	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1350
1351	if (pl08x->vd->dualmaster)
1352		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1353					      pl08x->mem_buses);
1354
1355	ret = pl08x_prep_channel_resources(plchan, txd);
1356	if (ret)
 
1357		return NULL;
 
1358
1359	return &txd->tx;
1360}
1361
1362static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1363		struct dma_chan *chan, struct scatterlist *sgl,
1364		unsigned int sg_len, enum dma_data_direction direction,
1365		unsigned long flags)
1366{
1367	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1368	struct pl08x_driver_data *pl08x = plchan->host;
1369	struct pl08x_txd *txd;
1370	int ret;
1371
1372	/*
1373	 * Current implementation ASSUMES only one sg
1374	 */
1375	if (sg_len != 1) {
1376		dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1377			__func__);
1378		BUG();
1379	}
1380
1381	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1382		__func__, sgl->length, plchan->name);
1383
1384	txd = pl08x_get_txd(plchan, flags);
1385	if (!txd) {
1386		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1387		return NULL;
1388	}
1389
1390	if (direction != plchan->runtime_direction)
1391		dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1392			"the direction configured for the PrimeCell\n",
1393			__func__);
1394
1395	/*
1396	 * Set up addresses, the PrimeCell configured address
1397	 * will take precedence since this may configure the
1398	 * channel target address dynamically at runtime.
1399	 */
1400	txd->direction = direction;
1401	txd->len = sgl->length;
1402
1403	if (direction == DMA_TO_DEVICE) {
1404		txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1405		txd->cctl = plchan->dst_cctl;
1406		txd->src_addr = sgl->dma_address;
1407		txd->dst_addr = plchan->dst_addr;
1408	} else if (direction == DMA_FROM_DEVICE) {
1409		txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1410		txd->cctl = plchan->src_cctl;
1411		txd->src_addr = plchan->src_addr;
1412		txd->dst_addr = sgl->dma_address;
 
1413	} else {
 
1414		dev_err(&pl08x->adev->dev,
1415			"%s direction unsupported\n", __func__);
1416		return NULL;
1417	}
1418
1419	ret = pl08x_prep_channel_resources(plchan, txd);
1420	if (ret)
 
 
 
1421		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1422
1423	return &txd->tx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424}
1425
1426static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1427			 unsigned long arg)
1428{
1429	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1430	struct pl08x_driver_data *pl08x = plchan->host;
1431	unsigned long flags;
1432	int ret = 0;
1433
1434	/* Controls applicable to inactive channels */
1435	if (cmd == DMA_SLAVE_CONFIG) {
1436		return dma_set_runtime_config(chan,
1437					      (struct dma_slave_config *)arg);
1438	}
1439
1440	/*
1441	 * Anything succeeds on channels with no physical allocation and
1442	 * no queued transfers.
1443	 */
1444	spin_lock_irqsave(&plchan->lock, flags);
1445	if (!plchan->phychan && !plchan->at) {
1446		spin_unlock_irqrestore(&plchan->lock, flags);
1447		return 0;
1448	}
1449
1450	switch (cmd) {
1451	case DMA_TERMINATE_ALL:
1452		plchan->state = PL08X_CHAN_IDLE;
1453
1454		if (plchan->phychan) {
1455			pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1456
1457			/*
1458			 * Mark physical channel as free and free any slave
1459			 * signal
1460			 */
1461			release_phy_channel(plchan);
1462		}
1463		/* Dequeue jobs and free LLIs */
1464		if (plchan->at) {
1465			pl08x_free_txd(pl08x, plchan->at);
1466			plchan->at = NULL;
1467		}
1468		/* Dequeue jobs not yet fired as well */
1469		pl08x_free_txd_list(pl08x, plchan);
1470		break;
1471	case DMA_PAUSE:
1472		pl08x_pause_phy_chan(plchan->phychan);
1473		plchan->state = PL08X_CHAN_PAUSED;
1474		break;
1475	case DMA_RESUME:
1476		pl08x_resume_phy_chan(plchan->phychan);
1477		plchan->state = PL08X_CHAN_RUNNING;
1478		break;
1479	default:
1480		/* Unknown command */
1481		ret = -ENXIO;
1482		break;
1483	}
1484
1485	spin_unlock_irqrestore(&plchan->lock, flags);
1486
1487	return ret;
1488}
1489
1490bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1491{
1492	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1493	char *name = chan_id;
1494
 
 
 
 
 
 
1495	/* Check that the channel is not taken! */
1496	if (!strcmp(plchan->name, name))
1497		return true;
1498
1499	return false;
1500}
 
1501
1502/*
1503 * Just check that the device is there and active
1504 * TODO: turn this bit on/off depending on the number of physical channels
1505 * actually used, if it is zero... well shut it off. That will save some
1506 * power. Cut the clock at the same time.
1507 */
1508static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1509{
1510	u32 val;
1511
1512	val = readl(pl08x->base + PL080_CONFIG);
1513	val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1514	/* We implicitly clear bit 1 and that means little-endian mode */
1515	val |= PL080_CONFIG_ENABLE;
1516	writel(val, pl08x->base + PL080_CONFIG);
1517}
1518
1519static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1520{
1521	struct device *dev = txd->tx.chan->device->dev;
1522
1523	if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1524		if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1525			dma_unmap_single(dev, txd->src_addr, txd->len,
1526				DMA_TO_DEVICE);
1527		else
1528			dma_unmap_page(dev, txd->src_addr, txd->len,
1529				DMA_TO_DEVICE);
1530	}
1531	if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1532		if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1533			dma_unmap_single(dev, txd->dst_addr, txd->len,
1534				DMA_FROM_DEVICE);
1535		else
1536			dma_unmap_page(dev, txd->dst_addr, txd->len,
1537				DMA_FROM_DEVICE);
1538	}
1539}
1540
1541static void pl08x_tasklet(unsigned long data)
1542{
1543	struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1544	struct pl08x_driver_data *pl08x = plchan->host;
1545	struct pl08x_txd *txd;
1546	unsigned long flags;
1547
1548	spin_lock_irqsave(&plchan->lock, flags);
1549
1550	txd = plchan->at;
1551	plchan->at = NULL;
1552
1553	if (txd) {
1554		/* Update last completed */
1555		plchan->lc = txd->tx.cookie;
1556	}
1557
1558	/* If a new descriptor is queued, set it up plchan->at is NULL here */
1559	if (!list_empty(&plchan->pend_list)) {
1560		struct pl08x_txd *next;
1561
1562		next = list_first_entry(&plchan->pend_list,
1563					struct pl08x_txd,
1564					node);
1565		list_del(&next->node);
1566
1567		pl08x_start_txd(plchan, next);
1568	} else if (plchan->phychan_hold) {
1569		/*
1570		 * This channel is still in use - we have a new txd being
1571		 * prepared and will soon be queued.  Don't give up the
1572		 * physical channel.
1573		 */
1574	} else {
1575		struct pl08x_dma_chan *waiting = NULL;
1576
1577		/*
1578		 * No more jobs, so free up the physical channel
1579		 * Free any allocated signal on slave transfers too
1580		 */
1581		release_phy_channel(plchan);
1582		plchan->state = PL08X_CHAN_IDLE;
1583
1584		/*
1585		 * And NOW before anyone else can grab that free:d up
1586		 * physical channel, see if there is some memcpy pending
1587		 * that seriously needs to start because of being stacked
1588		 * up while we were choking the physical channels with data.
1589		 */
1590		list_for_each_entry(waiting, &pl08x->memcpy.channels,
1591				    chan.device_node) {
1592		  if (waiting->state == PL08X_CHAN_WAITING &&
1593			    waiting->waiting != NULL) {
1594				int ret;
1595
1596				/* This should REALLY not fail now */
1597				ret = prep_phy_channel(waiting,
1598						       waiting->waiting);
1599				BUG_ON(ret);
1600				waiting->phychan_hold--;
1601				waiting->state = PL08X_CHAN_RUNNING;
1602				waiting->waiting = NULL;
1603				pl08x_issue_pending(&waiting->chan);
1604				break;
1605			}
1606		}
1607	}
1608
1609	spin_unlock_irqrestore(&plchan->lock, flags);
1610
1611	if (txd) {
1612		dma_async_tx_callback callback = txd->tx.callback;
1613		void *callback_param = txd->tx.callback_param;
1614
1615		/* Don't try to unmap buffers on slave channels */
1616		if (!plchan->slave)
1617			pl08x_unmap_buffers(txd);
1618
1619		/* Free the descriptor */
1620		spin_lock_irqsave(&plchan->lock, flags);
1621		pl08x_free_txd(pl08x, txd);
1622		spin_unlock_irqrestore(&plchan->lock, flags);
1623
1624		/* Callback to signal completion */
1625		if (callback)
1626			callback(callback_param);
1627	}
1628}
1629
1630static irqreturn_t pl08x_irq(int irq, void *dev)
1631{
1632	struct pl08x_driver_data *pl08x = dev;
1633	u32 mask = 0;
1634	u32 val;
1635	int i;
 
 
 
 
 
 
 
 
 
 
 
 
1636
1637	val = readl(pl08x->base + PL080_ERR_STATUS);
1638	if (val) {
1639		/* An error interrupt (on one or more channels) */
1640		dev_err(&pl08x->adev->dev,
1641			"%s error interrupt, register value 0x%08x\n",
1642				__func__, val);
1643		/*
1644		 * Simply clear ALL PL08X error interrupts,
1645		 * regardless of channel and cause
1646		 * FIXME: should be 0x00000003 on PL081 really.
1647		 */
1648		writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1649	}
1650	val = readl(pl08x->base + PL080_INT_STATUS);
1651	for (i = 0; i < pl08x->vd->channels; i++) {
1652		if ((1 << i) & val) {
1653			/* Locate physical channel */
1654			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1655			struct pl08x_dma_chan *plchan = phychan->serving;
 
1656
1657			/* Schedule tasklet on this channel */
1658			tasklet_schedule(&plchan->tasklet);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1659
1660			mask |= (1 << i);
1661		}
1662	}
1663	/* Clear only the terminal interrupts on channels we processed */
1664	writel(mask, pl08x->base + PL080_TC_CLEAR);
1665
1666	return mask ? IRQ_HANDLED : IRQ_NONE;
1667}
1668
1669static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1670{
1671	u32 cctl = pl08x_cctl(chan->cd->cctl);
1672
1673	chan->slave = true;
1674	chan->name = chan->cd->bus_id;
1675	chan->src_addr = chan->cd->addr;
1676	chan->dst_addr = chan->cd->addr;
1677	chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
1678		pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
1679	chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
1680		pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
1681}
1682
1683/*
1684 * Initialise the DMAC memcpy/slave channels.
1685 * Make a local wrapper to hold required data
1686 */
1687static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1688					   struct dma_device *dmadev,
1689					   unsigned int channels,
1690					   bool slave)
1691{
1692	struct pl08x_dma_chan *chan;
1693	int i;
1694
1695	INIT_LIST_HEAD(&dmadev->channels);
1696
1697	/*
1698	 * Register as many many memcpy as we have physical channels,
1699	 * we won't always be able to use all but the code will have
1700	 * to cope with that situation.
1701	 */
1702	for (i = 0; i < channels; i++) {
1703		chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1704		if (!chan) {
1705			dev_err(&pl08x->adev->dev,
1706				"%s no memory for channel\n", __func__);
1707			return -ENOMEM;
1708		}
1709
1710		chan->host = pl08x;
1711		chan->state = PL08X_CHAN_IDLE;
 
1712
1713		if (slave) {
1714			chan->cd = &pl08x->pd->slave_channels[i];
1715			pl08x_dma_slave_init(chan);
1716		} else {
1717			chan->cd = &pl08x->pd->memcpy_channel;
1718			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1719			if (!chan->name) {
1720				kfree(chan);
1721				return -ENOMEM;
1722			}
1723		}
1724		if (chan->cd->circular_buffer) {
1725			dev_err(&pl08x->adev->dev,
1726				"channel %s: circular buffers not supported\n",
1727				chan->name);
1728			kfree(chan);
1729			continue;
1730		}
1731		dev_info(&pl08x->adev->dev,
1732			 "initialize virtual channel \"%s\"\n",
1733			 chan->name);
1734
1735		chan->chan.device = dmadev;
1736		chan->chan.cookie = 0;
1737		chan->lc = 0;
1738
1739		spin_lock_init(&chan->lock);
1740		INIT_LIST_HEAD(&chan->pend_list);
1741		tasklet_init(&chan->tasklet, pl08x_tasklet,
1742			     (unsigned long) chan);
1743
1744		list_add_tail(&chan->chan.device_node, &dmadev->channels);
1745	}
1746	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1747		 i, slave ? "slave" : "memcpy");
1748	return i;
1749}
1750
1751static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1752{
1753	struct pl08x_dma_chan *chan = NULL;
1754	struct pl08x_dma_chan *next;
1755
1756	list_for_each_entry_safe(chan,
1757				 next, &dmadev->channels, chan.device_node) {
1758		list_del(&chan->chan.device_node);
1759		kfree(chan);
1760	}
1761}
1762
1763#ifdef CONFIG_DEBUG_FS
1764static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1765{
1766	switch (state) {
1767	case PL08X_CHAN_IDLE:
1768		return "idle";
1769	case PL08X_CHAN_RUNNING:
1770		return "running";
1771	case PL08X_CHAN_PAUSED:
1772		return "paused";
1773	case PL08X_CHAN_WAITING:
1774		return "waiting";
1775	default:
1776		break;
1777	}
1778	return "UNKNOWN STATE";
1779}
1780
1781static int pl08x_debugfs_show(struct seq_file *s, void *data)
1782{
1783	struct pl08x_driver_data *pl08x = s->private;
1784	struct pl08x_dma_chan *chan;
1785	struct pl08x_phy_chan *ch;
1786	unsigned long flags;
1787	int i;
1788
1789	seq_printf(s, "PL08x physical channels:\n");
1790	seq_printf(s, "CHANNEL:\tUSER:\n");
1791	seq_printf(s, "--------\t-----\n");
1792	for (i = 0; i < pl08x->vd->channels; i++) {
1793		struct pl08x_dma_chan *virt_chan;
1794
1795		ch = &pl08x->phy_chans[i];
1796
1797		spin_lock_irqsave(&ch->lock, flags);
1798		virt_chan = ch->serving;
1799
1800		seq_printf(s, "%d\t\t%s\n",
1801			   ch->id, virt_chan ? virt_chan->name : "(none)");
 
 
1802
1803		spin_unlock_irqrestore(&ch->lock, flags);
1804	}
1805
1806	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1807	seq_printf(s, "CHANNEL:\tSTATE:\n");
1808	seq_printf(s, "--------\t------\n");
1809	list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1810		seq_printf(s, "%s\t\t%s\n", chan->name,
1811			   pl08x_state_str(chan->state));
1812	}
1813
1814	seq_printf(s, "\nPL08x virtual slave channels:\n");
1815	seq_printf(s, "CHANNEL:\tSTATE:\n");
1816	seq_printf(s, "--------\t------\n");
1817	list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1818		seq_printf(s, "%s\t\t%s\n", chan->name,
1819			   pl08x_state_str(chan->state));
1820	}
1821
1822	return 0;
1823}
1824
1825static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1826{
1827	return single_open(file, pl08x_debugfs_show, inode->i_private);
1828}
1829
1830static const struct file_operations pl08x_debugfs_operations = {
1831	.open		= pl08x_debugfs_open,
1832	.read		= seq_read,
1833	.llseek		= seq_lseek,
1834	.release	= single_release,
1835};
1836
1837static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1838{
1839	/* Expose a simple debugfs interface to view all clocks */
1840	(void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1841				   NULL, pl08x,
1842				   &pl08x_debugfs_operations);
1843}
1844
1845#else
1846static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1847{
1848}
1849#endif
1850
1851static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1852{
1853	struct pl08x_driver_data *pl08x;
1854	const struct vendor_data *vd = id->data;
 
1855	int ret = 0;
1856	int i;
1857
1858	ret = amba_request_regions(adev, NULL);
1859	if (ret)
1860		return ret;
1861
 
 
 
 
 
1862	/* Create the driver state holder */
1863	pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1864	if (!pl08x) {
1865		ret = -ENOMEM;
1866		goto out_no_pl08x;
1867	}
1868
1869	/* Initialize memcpy engine */
1870	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1871	pl08x->memcpy.dev = &adev->dev;
1872	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1873	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1874	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1875	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1876	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1877	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1878	pl08x->memcpy.device_control = pl08x_control;
1879
1880	/* Initialize slave engine */
1881	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
 
1882	pl08x->slave.dev = &adev->dev;
1883	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1884	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1885	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1886	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1887	pl08x->slave.device_issue_pending = pl08x_issue_pending;
1888	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
 
1889	pl08x->slave.device_control = pl08x_control;
1890
1891	/* Get the platform data */
1892	pl08x->pd = dev_get_platdata(&adev->dev);
1893	if (!pl08x->pd) {
1894		dev_err(&adev->dev, "no platform data supplied\n");
 
1895		goto out_no_platdata;
1896	}
1897
1898	/* Assign useful pointers to the driver state */
1899	pl08x->adev = adev;
1900	pl08x->vd = vd;
1901
1902	/* By default, AHB1 only.  If dualmaster, from platform */
1903	pl08x->lli_buses = PL08X_AHB1;
1904	pl08x->mem_buses = PL08X_AHB1;
1905	if (pl08x->vd->dualmaster) {
1906		pl08x->lli_buses = pl08x->pd->lli_buses;
1907		pl08x->mem_buses = pl08x->pd->mem_buses;
1908	}
1909
 
 
 
 
 
 
1910	/* A DMA memory pool for LLIs, align on 1-byte boundary */
1911	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1912			PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1913	if (!pl08x->pool) {
1914		ret = -ENOMEM;
1915		goto out_no_lli_pool;
1916	}
1917
1918	spin_lock_init(&pl08x->lock);
1919
1920	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1921	if (!pl08x->base) {
1922		ret = -ENOMEM;
1923		goto out_no_ioremap;
1924	}
1925
1926	/* Turn on the PL08x */
1927	pl08x_ensure_on(pl08x);
1928
1929	/* Attach the interrupt handler */
1930	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1931	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1932
1933	ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1934			  DRIVER_NAME, pl08x);
1935	if (ret) {
1936		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1937			__func__, adev->irq[0]);
1938		goto out_no_irq;
1939	}
1940
1941	/* Initialize physical channels */
1942	pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
1943			GFP_KERNEL);
1944	if (!pl08x->phy_chans) {
1945		dev_err(&adev->dev, "%s failed to allocate "
1946			"physical channel holders\n",
1947			__func__);
 
1948		goto out_no_phychans;
1949	}
1950
1951	for (i = 0; i < vd->channels; i++) {
1952		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1953
1954		ch->id = i;
1955		ch->base = pl08x->base + PL080_Cx_BASE(i);
 
1956		spin_lock_init(&ch->lock);
1957		ch->serving = NULL;
1958		ch->signal = -1;
1959		dev_info(&adev->dev,
1960			 "physical channel %d is %s\n", i,
1961			 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
 
 
 
 
 
 
 
 
 
 
 
 
 
1962	}
1963
1964	/* Register as many memcpy channels as there are physical channels */
1965	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1966					      pl08x->vd->channels, false);
1967	if (ret <= 0) {
1968		dev_warn(&pl08x->adev->dev,
1969			 "%s failed to enumerate memcpy channels - %d\n",
1970			 __func__, ret);
1971		goto out_no_memcpy;
1972	}
1973	pl08x->memcpy.chancnt = ret;
1974
1975	/* Register slave channels */
1976	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1977					      pl08x->pd->num_slave_channels,
1978					      true);
1979	if (ret <= 0) {
1980		dev_warn(&pl08x->adev->dev,
1981			"%s failed to enumerate slave channels - %d\n",
1982				__func__, ret);
1983		goto out_no_slave;
1984	}
1985	pl08x->slave.chancnt = ret;
1986
1987	ret = dma_async_device_register(&pl08x->memcpy);
1988	if (ret) {
1989		dev_warn(&pl08x->adev->dev,
1990			"%s failed to register memcpy as an async device - %d\n",
1991			__func__, ret);
1992		goto out_no_memcpy_reg;
1993	}
1994
1995	ret = dma_async_device_register(&pl08x->slave);
1996	if (ret) {
1997		dev_warn(&pl08x->adev->dev,
1998			"%s failed to register slave as an async device - %d\n",
1999			__func__, ret);
2000		goto out_no_slave_reg;
2001	}
2002
2003	amba_set_drvdata(adev, pl08x);
2004	init_pl08x_debugfs(pl08x);
2005	dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2006		 amba_part(adev), amba_rev(adev),
2007		 (unsigned long long)adev->res.start, adev->irq[0]);
 
2008	return 0;
2009
2010out_no_slave_reg:
2011	dma_async_device_unregister(&pl08x->memcpy);
2012out_no_memcpy_reg:
2013	pl08x_free_virtual_channels(&pl08x->slave);
2014out_no_slave:
2015	pl08x_free_virtual_channels(&pl08x->memcpy);
2016out_no_memcpy:
2017	kfree(pl08x->phy_chans);
2018out_no_phychans:
2019	free_irq(adev->irq[0], pl08x);
2020out_no_irq:
2021	iounmap(pl08x->base);
2022out_no_ioremap:
2023	dma_pool_destroy(pl08x->pool);
2024out_no_lli_pool:
2025out_no_platdata:
2026	kfree(pl08x);
2027out_no_pl08x:
2028	amba_release_regions(adev);
2029	return ret;
2030}
2031
2032/* PL080 has 8 channels and the PL080 have just 2 */
2033static struct vendor_data vendor_pl080 = {
 
 
 
 
 
 
 
 
2034	.channels = 8,
2035	.dualmaster = true,
 
 
 
 
 
 
 
 
 
2036};
2037
2038static struct vendor_data vendor_pl081 = {
 
2039	.channels = 2,
2040	.dualmaster = false,
 
2041};
2042
2043static struct amba_id pl08x_ids[] = {
 
 
 
 
 
 
2044	/* PL080 */
2045	{
2046		.id	= 0x00041080,
2047		.mask	= 0x000fffff,
2048		.data	= &vendor_pl080,
2049	},
2050	/* PL081 */
2051	{
2052		.id	= 0x00041081,
2053		.mask	= 0x000fffff,
2054		.data	= &vendor_pl081,
2055	},
2056	/* Nomadik 8815 PL080 variant */
2057	{
2058		.id	= 0x00280880,
2059		.mask	= 0x00ffffff,
2060		.data	= &vendor_pl080,
2061	},
2062	{ 0, 0 },
2063};
 
 
2064
2065static struct amba_driver pl08x_amba_driver = {
2066	.drv.name	= DRIVER_NAME,
2067	.id_table	= pl08x_ids,
2068	.probe		= pl08x_probe,
2069};
2070
2071static int __init pl08x_init(void)
2072{
2073	int retval;
2074	retval = amba_driver_register(&pl08x_amba_driver);
2075	if (retval)
2076		printk(KERN_WARNING DRIVER_NAME
2077		       "failed to register as an AMBA device (%d)\n",
2078		       retval);
2079	return retval;
2080}
2081subsys_initcall(pl08x_init);
v3.15
   1/*
   2 * Copyright (c) 2006 ARM Ltd.
   3 * Copyright (c) 2010 ST-Ericsson SA
   4 *
   5 * Author: Peter Pearse <peter.pearse@arm.com>
   6 * Author: Linus Walleij <linus.walleij@stericsson.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify it
   9 * under the terms of the GNU General Public License as published by the Free
  10 * Software Foundation; either version 2 of the License, or (at your option)
  11 * any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful, but WITHOUT
  14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  16 * more details.
  17 *
  18 * You should have received a copy of the GNU General Public License along with
  19 * this program; if not, write to the Free Software Foundation, Inc., 59
  20 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  21 *
  22 * The full GNU General Public License is in this distribution in the file
  23 * called COPYING.
  24 *
  25 * Documentation: ARM DDI 0196G == PL080
  26 * Documentation: ARM DDI 0218E == PL081
  27 * Documentation: S3C6410 User's Manual == PL080S
  28 *
  29 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
  30 * channel.
  31 *
  32 * The PL080 has 8 channels available for simultaneous use, and the PL081
  33 * has only two channels. So on these DMA controllers the number of channels
  34 * and the number of incoming DMA signals are two totally different things.
  35 * It is usually not possible to theoretically handle all physical signals,
  36 * so a multiplexing scheme with possible denial of use is necessary.
  37 *
  38 * The PL080 has a dual bus master, PL081 has a single master.
  39 *
  40 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
  41 * It differs in following aspects:
  42 * - CH_CONFIG register at different offset,
  43 * - separate CH_CONTROL2 register for transfer size,
  44 * - bigger maximum transfer size,
  45 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
  46 * - no support for peripheral flow control.
  47 *
  48 * Memory to peripheral transfer may be visualized as
  49 *	Get data from memory to DMAC
  50 *	Until no data left
  51 *		On burst request from peripheral
  52 *			Destination burst from DMAC to peripheral
  53 *			Clear burst request
  54 *	Raise terminal count interrupt
  55 *
  56 * For peripherals with a FIFO:
  57 * Source      burst size == half the depth of the peripheral FIFO
  58 * Destination burst size == the depth of the peripheral FIFO
  59 *
  60 * (Bursts are irrelevant for mem to mem transfers - there are no burst
  61 * signals, the DMA controller will simply facilitate its AHB master.)
  62 *
  63 * ASSUMES default (little) endianness for DMA transfers
  64 *
  65 * The PL08x has two flow control settings:
  66 *  - DMAC flow control: the transfer size defines the number of transfers
  67 *    which occur for the current LLI entry, and the DMAC raises TC at the
  68 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
  69 *    to both the BREQ and SREQ signals (contrary to documented),
  70 *    transferring data if either is active.  The LBREQ and LSREQ signals
  71 *    are ignored.
  72 *
  73 *  - Peripheral flow control: the transfer size is ignored (and should be
  74 *    zero).  The data is transferred from the current LLI entry, until
  75 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
  76 *    will then move to the next LLI entry. Unsupported by PL080S.
 
 
 
 
 
 
 
 
  77 */
 
 
 
 
 
 
 
 
 
  78#include <linux/amba/bus.h>
  79#include <linux/amba/pl08x.h>
  80#include <linux/debugfs.h>
  81#include <linux/delay.h>
  82#include <linux/device.h>
  83#include <linux/dmaengine.h>
  84#include <linux/dmapool.h>
  85#include <linux/dma-mapping.h>
  86#include <linux/export.h>
  87#include <linux/init.h>
  88#include <linux/interrupt.h>
  89#include <linux/module.h>
  90#include <linux/pm_runtime.h>
  91#include <linux/seq_file.h>
  92#include <linux/slab.h>
  93#include <linux/amba/pl080.h>
  94
  95#include "dmaengine.h"
  96#include "virt-dma.h"
  97
  98#define DRIVER_NAME	"pl08xdmac"
  99
 100static struct amba_driver pl08x_amba_driver;
 101struct pl08x_driver_data;
 102
 103/**
 104 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
 105 * @channels: the number of channels available in this variant
 106 * @dualmaster: whether this version supports dual AHB masters or not.
 107 * @nomadik: whether the channels have Nomadik security extension bits
 108 *	that need to be checked for permission before use and some registers are
 109 *	missing
 110 * @pl080s: whether this version is a PL080S, which has separate register and
 111 *	LLI word for transfer size.
 112 */
 113struct vendor_data {
 114	u8 config_offset;
 115	u8 channels;
 116	bool dualmaster;
 117	bool nomadik;
 118	bool pl080s;
 119	u32 max_transfer_size;
 120};
 121
 122/**
 123 * struct pl08x_bus_data - information of source or destination
 124 * busses for a transfer
 125 * @addr: current address
 126 * @maxwidth: the maximum width of a transfer on this bus
 127 * @buswidth: the width of this bus in bytes: 1, 2 or 4
 128 */
 129struct pl08x_bus_data {
 130	dma_addr_t addr;
 131	u8 maxwidth;
 132	u8 buswidth;
 133};
 134
 135#define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
 136
 137/**
 138 * struct pl08x_phy_chan - holder for the physical channels
 139 * @id: physical index to this channel
 140 * @lock: a lock to use when altering an instance of this struct
 141 * @serving: the virtual channel currently being served by this physical
 142 * channel
 143 * @locked: channel unavailable for the system, e.g. dedicated to secure
 144 * world
 145 */
 146struct pl08x_phy_chan {
 147	unsigned int id;
 148	void __iomem *base;
 149	void __iomem *reg_config;
 150	spinlock_t lock;
 151	struct pl08x_dma_chan *serving;
 152	bool locked;
 153};
 154
 155/**
 156 * struct pl08x_sg - structure containing data per sg
 157 * @src_addr: src address of sg
 158 * @dst_addr: dst address of sg
 159 * @len: transfer len in bytes
 160 * @node: node for txd's dsg_list
 161 */
 162struct pl08x_sg {
 163	dma_addr_t src_addr;
 164	dma_addr_t dst_addr;
 165	size_t len;
 166	struct list_head node;
 167};
 168
 169/**
 170 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
 171 * @vd: virtual DMA descriptor
 172 * @dsg_list: list of children sg's
 173 * @llis_bus: DMA memory address (physical) start for the LLIs
 174 * @llis_va: virtual memory address start for the LLIs
 175 * @cctl: control reg values for current txd
 176 * @ccfg: config reg values for current txd
 177 * @done: this marks completed descriptors, which should not have their
 178 *   mux released.
 179 * @cyclic: indicate cyclic transfers
 180 */
 181struct pl08x_txd {
 182	struct virt_dma_desc vd;
 183	struct list_head dsg_list;
 184	dma_addr_t llis_bus;
 185	u32 *llis_va;
 186	/* Default cctl value for LLIs */
 187	u32 cctl;
 188	/*
 189	 * Settings to be put into the physical channel when we
 190	 * trigger this txd.  Other registers are in llis_va[0].
 191	 */
 192	u32 ccfg;
 193	bool done;
 194	bool cyclic;
 195};
 196
 197/**
 198 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
 199 * states
 200 * @PL08X_CHAN_IDLE: the channel is idle
 201 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
 202 * channel and is running a transfer on it
 203 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
 204 * channel, but the transfer is currently paused
 205 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
 206 * channel to become available (only pertains to memcpy channels)
 207 */
 208enum pl08x_dma_chan_state {
 209	PL08X_CHAN_IDLE,
 210	PL08X_CHAN_RUNNING,
 211	PL08X_CHAN_PAUSED,
 212	PL08X_CHAN_WAITING,
 213};
 214
 215/**
 216 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
 217 * @vc: wrappped virtual channel
 218 * @phychan: the physical channel utilized by this channel, if there is one
 219 * @name: name of channel
 220 * @cd: channel platform data
 221 * @runtime_addr: address for RX/TX according to the runtime config
 222 * @at: active transaction on this channel
 223 * @lock: a lock for this channel data
 224 * @host: a pointer to the host (internal use)
 225 * @state: whether the channel is idle, paused, running etc
 226 * @slave: whether this channel is a device (slave) or for memcpy
 227 * @signal: the physical DMA request signal which this channel is using
 228 * @mux_use: count of descriptors using this DMA request signal setting
 229 */
 230struct pl08x_dma_chan {
 231	struct virt_dma_chan vc;
 232	struct pl08x_phy_chan *phychan;
 233	const char *name;
 234	const struct pl08x_channel_data *cd;
 235	struct dma_slave_config cfg;
 236	struct pl08x_txd *at;
 237	struct pl08x_driver_data *host;
 238	enum pl08x_dma_chan_state state;
 239	bool slave;
 240	int signal;
 241	unsigned mux_use;
 242};
 243
 244/**
 245 * struct pl08x_driver_data - the local state holder for the PL08x
 246 * @slave: slave engine for this instance
 247 * @memcpy: memcpy engine for this instance
 248 * @base: virtual memory base (remapped) for the PL08x
 249 * @adev: the corresponding AMBA (PrimeCell) bus entry
 250 * @vd: vendor data for this PL08x variant
 251 * @pd: platform data passed in from the platform/machine
 252 * @phy_chans: array of data for the physical channels
 253 * @pool: a pool for the LLI descriptors
 254 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 255 * fetches
 256 * @mem_buses: set to indicate memory transfers on AHB2.
 257 * @lock: a spinlock for this struct
 258 */
 259struct pl08x_driver_data {
 260	struct dma_device slave;
 261	struct dma_device memcpy;
 262	void __iomem *base;
 263	struct amba_device *adev;
 264	const struct vendor_data *vd;
 265	struct pl08x_platform_data *pd;
 266	struct pl08x_phy_chan *phy_chans;
 267	struct dma_pool *pool;
 
 268	u8 lli_buses;
 269	u8 mem_buses;
 270	u8 lli_words;
 271};
 272
 273/*
 274 * PL08X specific defines
 275 */
 276
 277/* The order of words in an LLI. */
 278#define PL080_LLI_SRC		0
 279#define PL080_LLI_DST		1
 280#define PL080_LLI_LLI		2
 281#define PL080_LLI_CCTL		3
 282#define PL080S_LLI_CCTL2	4
 283
 284/* Total words in an LLI. */
 285#define PL080_LLI_WORDS		4
 286#define PL080S_LLI_WORDS	8
 287
 288/*
 289 * Number of LLIs in each LLI buffer allocated for one transfer
 290 * (maximum times we call dma_pool_alloc on this pool without freeing)
 
 291 */
 292#define MAX_NUM_TSFR_LLIS	512
 
 
 
 
 
 
 
 293#define PL08X_ALIGN		8
 294
 295static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
 296{
 297	return container_of(chan, struct pl08x_dma_chan, vc.chan);
 298}
 299
 300static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
 301{
 302	return container_of(tx, struct pl08x_txd, vd.tx);
 303}
 304
 305/*
 306 * Mux handling.
 307 *
 308 * This gives us the DMA request input to the PL08x primecell which the
 309 * peripheral described by the channel data will be routed to, possibly
 310 * via a board/SoC specific external MUX.  One important point to note
 311 * here is that this does not depend on the physical channel.
 312 */
 313static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
 314{
 315	const struct pl08x_platform_data *pd = plchan->host->pd;
 316	int ret;
 317
 318	if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
 319		ret = pd->get_xfer_signal(plchan->cd);
 320		if (ret < 0) {
 321			plchan->mux_use = 0;
 322			return ret;
 323		}
 324
 325		plchan->signal = ret;
 326	}
 327	return 0;
 328}
 329
 330static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
 331{
 332	const struct pl08x_platform_data *pd = plchan->host->pd;
 333
 334	if (plchan->signal >= 0) {
 335		WARN_ON(plchan->mux_use == 0);
 336
 337		if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
 338			pd->put_xfer_signal(plchan->cd, plchan->signal);
 339			plchan->signal = -1;
 340		}
 341	}
 342}
 343
 344/*
 345 * Physical channel handling
 346 */
 347
 348/* Whether a certain channel is busy or not */
 349static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
 350{
 351	unsigned int val;
 352
 353	val = readl(ch->reg_config);
 354	return val & PL080_CONFIG_ACTIVE;
 355}
 356
 357static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
 358		struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
 359{
 360	if (pl08x->vd->pl080s)
 361		dev_vdbg(&pl08x->adev->dev,
 362			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 363			"clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
 364			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 365			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
 366			lli[PL080S_LLI_CCTL2], ccfg);
 367	else
 368		dev_vdbg(&pl08x->adev->dev,
 369			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 370			"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
 371			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 372			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
 373
 374	writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
 375	writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
 376	writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
 377	writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);
 378
 379	if (pl08x->vd->pl080s)
 380		writel_relaxed(lli[PL080S_LLI_CCTL2],
 381				phychan->base + PL080S_CH_CONTROL2);
 382
 383	writel(ccfg, phychan->reg_config);
 384}
 385
 386/*
 387 * Set the initial DMA register values i.e. those for the first LLI
 388 * The next LLI pointer and the configuration interrupt bit have
 389 * been set when the LLIs were constructed.  Poke them into the hardware
 390 * and start the transfer.
 391 */
 392static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
 
 393{
 394	struct pl08x_driver_data *pl08x = plchan->host;
 395	struct pl08x_phy_chan *phychan = plchan->phychan;
 396	struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
 397	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
 398	u32 val;
 399
 400	list_del(&txd->vd.node);
 401
 402	plchan->at = txd;
 403
 404	/* Wait for channel inactive */
 405	while (pl08x_phy_channel_busy(phychan))
 406		cpu_relax();
 407
 408	pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
 
 
 
 
 
 
 
 
 
 
 409
 410	/* Enable the DMA channel */
 411	/* Do not access config register until channel shows as disabled */
 412	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
 413		cpu_relax();
 414
 415	/* Do not access config register until channel shows as inactive */
 416	val = readl(phychan->reg_config);
 417	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
 418		val = readl(phychan->reg_config);
 419
 420	writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
 421}
 422
 423/*
 424 * Pause the channel by setting the HALT bit.
 425 *
 426 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 427 * the FIFO can only drain if the peripheral is still requesting data.
 428 * (note: this can still timeout if the DMAC FIFO never drains of data.)
 429 *
 430 * For P->M transfers, disable the peripheral first to stop it filling
 431 * the DMAC FIFO, and then pause the DMAC.
 432 */
 433static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
 434{
 435	u32 val;
 436	int timeout;
 437
 438	/* Set the HALT bit and wait for the FIFO to drain */
 439	val = readl(ch->reg_config);
 440	val |= PL080_CONFIG_HALT;
 441	writel(val, ch->reg_config);
 442
 443	/* Wait for channel inactive */
 444	for (timeout = 1000; timeout; timeout--) {
 445		if (!pl08x_phy_channel_busy(ch))
 446			break;
 447		udelay(1);
 448	}
 449	if (pl08x_phy_channel_busy(ch))
 450		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
 451}
 452
 453static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
 454{
 455	u32 val;
 456
 457	/* Clear the HALT bit */
 458	val = readl(ch->reg_config);
 459	val &= ~PL080_CONFIG_HALT;
 460	writel(val, ch->reg_config);
 461}
 462
 
 463/*
 464 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 465 * clears any pending interrupt status.  This should not be used for
 466 * an on-going transfer, but as a method of shutting down a channel
 467 * (eg, when it's no longer used) or terminating a transfer.
 468 */
 469static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
 470	struct pl08x_phy_chan *ch)
 471{
 472	u32 val = readl(ch->reg_config);
 473
 474	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
 475	         PL080_CONFIG_TC_IRQ_MASK);
 476
 477	writel(val, ch->reg_config);
 478
 479	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
 480	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
 481}
 482
 483static inline u32 get_bytes_in_cctl(u32 cctl)
 484{
 485	/* The source width defines the number of bytes */
 486	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
 487
 488	cctl &= PL080_CONTROL_SWIDTH_MASK;
 489
 490	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
 491	case PL080_WIDTH_8BIT:
 492		break;
 493	case PL080_WIDTH_16BIT:
 494		bytes *= 2;
 495		break;
 496	case PL080_WIDTH_32BIT:
 497		bytes *= 4;
 498		break;
 499	}
 500	return bytes;
 501}
 502
 503static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
 504{
 505	/* The source width defines the number of bytes */
 506	u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;
 507
 508	cctl &= PL080_CONTROL_SWIDTH_MASK;
 509
 510	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
 511	case PL080_WIDTH_8BIT:
 512		break;
 513	case PL080_WIDTH_16BIT:
 514		bytes *= 2;
 515		break;
 516	case PL080_WIDTH_32BIT:
 517		bytes *= 4;
 518		break;
 519	}
 520	return bytes;
 521}
 522
 523/* The channel should be paused when calling this */
 524static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
 525{
 526	struct pl08x_driver_data *pl08x = plchan->host;
 527	const u32 *llis_va, *llis_va_limit;
 528	struct pl08x_phy_chan *ch;
 529	dma_addr_t llis_bus;
 530	struct pl08x_txd *txd;
 531	u32 llis_max_words;
 532	size_t bytes;
 533	u32 clli;
 534
 
 535	ch = plchan->phychan;
 536	txd = plchan->at;
 537
 538	if (!ch || !txd)
 539		return 0;
 540
 541	/*
 542	 * Follow the LLIs to get the number of remaining
 543	 * bytes in the currently active transaction.
 544	 */
 545	clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
 
 546
 547	/* First get the remaining bytes in the active transfer */
 548	if (pl08x->vd->pl080s)
 549		bytes = get_bytes_in_cctl_pl080s(
 550				readl(ch->base + PL080_CH_CONTROL),
 551				readl(ch->base + PL080S_CH_CONTROL2));
 552	else
 553		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
 554
 555	if (!clli)
 556		return bytes;
 
 
 557
 558	llis_va = txd->llis_va;
 559	llis_bus = txd->llis_bus;
 560
 561	llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
 562	BUG_ON(clli < llis_bus || clli >= llis_bus +
 563						sizeof(u32) * llis_max_words);
 
 
 564
 565	/*
 566	 * Locate the next LLI - as this is an array,
 567	 * it's simple maths to find.
 568	 */
 569	llis_va += (clli - llis_bus) / sizeof(u32);
 570
 571	llis_va_limit = llis_va + llis_max_words;
 
 
 
 
 
 
 
 572
 573	for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
 574		if (pl08x->vd->pl080s)
 575			bytes += get_bytes_in_cctl_pl080s(
 576						llis_va[PL080_LLI_CCTL],
 577						llis_va[PL080S_LLI_CCTL2]);
 578		else
 579			bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
 580
 581		/*
 582		 * A LLI pointer going backward terminates the LLI list
 583		 */
 584		if (llis_va[PL080_LLI_LLI] <= clli)
 585			break;
 586	}
 587
 588	return bytes;
 589}
 590
 591/*
 592 * Allocate a physical channel for a virtual channel
 593 *
 594 * Try to locate a physical channel to be used for this transfer. If all
 595 * are taken return NULL and the requester will have to cope by using
 596 * some fallback PIO mode or retrying later.
 597 */
 598static struct pl08x_phy_chan *
 599pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
 600		      struct pl08x_dma_chan *virt_chan)
 601{
 602	struct pl08x_phy_chan *ch = NULL;
 603	unsigned long flags;
 604	int i;
 605
 606	for (i = 0; i < pl08x->vd->channels; i++) {
 607		ch = &pl08x->phy_chans[i];
 608
 609		spin_lock_irqsave(&ch->lock, flags);
 610
 611		if (!ch->locked && !ch->serving) {
 612			ch->serving = virt_chan;
 
 613			spin_unlock_irqrestore(&ch->lock, flags);
 614			break;
 615		}
 616
 617		spin_unlock_irqrestore(&ch->lock, flags);
 618	}
 619
 620	if (i == pl08x->vd->channels) {
 621		/* No physical channel available, cope with it */
 622		return NULL;
 623	}
 624
 625	return ch;
 626}
 627
 628/* Mark the physical channel as free.  Note, this write is atomic. */
 629static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
 630					 struct pl08x_phy_chan *ch)
 631{
 632	ch->serving = NULL;
 633}
 634
 635/*
 636 * Try to allocate a physical channel.  When successful, assign it to
 637 * this virtual channel, and initiate the next descriptor.  The
 638 * virtual channel lock must be held at this point.
 639 */
 640static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
 641{
 642	struct pl08x_driver_data *pl08x = plchan->host;
 643	struct pl08x_phy_chan *ch;
 644
 645	ch = pl08x_get_phy_channel(pl08x, plchan);
 646	if (!ch) {
 647		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
 648		plchan->state = PL08X_CHAN_WAITING;
 649		return;
 650	}
 651
 652	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
 653		ch->id, plchan->name);
 654
 655	plchan->phychan = ch;
 656	plchan->state = PL08X_CHAN_RUNNING;
 657	pl08x_start_next_txd(plchan);
 658}
 659
 660static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
 661	struct pl08x_dma_chan *plchan)
 662{
 663	struct pl08x_driver_data *pl08x = plchan->host;
 664
 665	dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
 666		ch->id, plchan->name);
 667
 668	/*
 669	 * We do this without taking the lock; we're really only concerned
 670	 * about whether this pointer is NULL or not, and we're guaranteed
 671	 * that this will only be called when it _already_ is non-NULL.
 672	 */
 673	ch->serving = plchan;
 674	plchan->phychan = ch;
 675	plchan->state = PL08X_CHAN_RUNNING;
 676	pl08x_start_next_txd(plchan);
 677}
 678
 679/*
 680 * Free a physical DMA channel, potentially reallocating it to another
 681 * virtual channel if we have any pending.
 682 */
 683static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
 684{
 685	struct pl08x_driver_data *pl08x = plchan->host;
 686	struct pl08x_dma_chan *p, *next;
 687
 688 retry:
 689	next = NULL;
 690
 691	/* Find a waiting virtual channel for the next transfer. */
 692	list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
 693		if (p->state == PL08X_CHAN_WAITING) {
 694			next = p;
 695			break;
 696		}
 697
 698	if (!next) {
 699		list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
 700			if (p->state == PL08X_CHAN_WAITING) {
 701				next = p;
 702				break;
 703			}
 704	}
 705
 706	/* Ensure that the physical channel is stopped */
 707	pl08x_terminate_phy_chan(pl08x, plchan->phychan);
 708
 709	if (next) {
 710		bool success;
 711
 712		/*
 713		 * Eww.  We know this isn't going to deadlock
 714		 * but lockdep probably doesn't.
 715		 */
 716		spin_lock(&next->vc.lock);
 717		/* Re-check the state now that we have the lock */
 718		success = next->state == PL08X_CHAN_WAITING;
 719		if (success)
 720			pl08x_phy_reassign_start(plchan->phychan, next);
 721		spin_unlock(&next->vc.lock);
 722
 723		/* If the state changed, try to find another channel */
 724		if (!success)
 725			goto retry;
 726	} else {
 727		/* No more jobs, so free up the physical channel */
 728		pl08x_put_phy_channel(pl08x, plchan->phychan);
 729	}
 730
 731	plchan->phychan = NULL;
 732	plchan->state = PL08X_CHAN_IDLE;
 733}
 734
 735/*
 736 * LLI handling
 737 */
 738
 739static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
 740{
 741	switch (coded) {
 742	case PL080_WIDTH_8BIT:
 743		return 1;
 744	case PL080_WIDTH_16BIT:
 745		return 2;
 746	case PL080_WIDTH_32BIT:
 747		return 4;
 748	default:
 749		break;
 750	}
 751	BUG();
 752	return 0;
 753}
 754
 755static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
 756				  size_t tsize)
 757{
 758	u32 retbits = cctl;
 759
 760	/* Remove all src, dst and transfer size bits */
 761	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
 762	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
 763	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
 764
 765	/* Then set the bits according to the parameters */
 766	switch (srcwidth) {
 767	case 1:
 768		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
 769		break;
 770	case 2:
 771		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
 772		break;
 773	case 4:
 774		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
 775		break;
 776	default:
 777		BUG();
 778		break;
 779	}
 780
 781	switch (dstwidth) {
 782	case 1:
 783		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
 784		break;
 785	case 2:
 786		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
 787		break;
 788	case 4:
 789		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
 790		break;
 791	default:
 792		BUG();
 793		break;
 794	}
 795
 796	tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
 797	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
 798	return retbits;
 799}
 800
 801struct pl08x_lli_build_data {
 802	struct pl08x_txd *txd;
 803	struct pl08x_bus_data srcbus;
 804	struct pl08x_bus_data dstbus;
 805	size_t remainder;
 806	u32 lli_bus;
 807};
 808
 809/*
 810 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
 811 * victim in case src & dest are not similarly aligned. i.e. If after aligning
 812 * masters address with width requirements of transfer (by sending few byte by
 813 * byte data), slave is still not aligned, then its width will be reduced to
 814 * BYTE.
 815 * - prefers the destination bus if both available
 816 * - prefers bus with fixed address (i.e. peripheral)
 817 */
 818static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
 819	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
 820{
 821	if (!(cctl & PL080_CONTROL_DST_INCR)) {
 
 
 
 822		*mbus = &bd->dstbus;
 823		*sbus = &bd->srcbus;
 824	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
 825		*mbus = &bd->srcbus;
 826		*sbus = &bd->dstbus;
 827	} else {
 828		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
 
 
 
 
 
 
 829			*mbus = &bd->dstbus;
 830			*sbus = &bd->srcbus;
 831		} else {
 832			*mbus = &bd->srcbus;
 833			*sbus = &bd->dstbus;
 
 
 
 
 834		}
 835	}
 836}
 837
 838/*
 839 * Fills in one LLI for a certain transfer descriptor and advance the counter
 840 */
 841static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
 842				    struct pl08x_lli_build_data *bd,
 843				    int num_llis, int len, u32 cctl, u32 cctl2)
 844{
 845	u32 offset = num_llis * pl08x->lli_words;
 846	u32 *llis_va = bd->txd->llis_va + offset;
 847	dma_addr_t llis_bus = bd->txd->llis_bus;
 848
 849	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
 850
 851	/* Advance the offset to next LLI. */
 852	offset += pl08x->lli_words;
 853
 854	llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
 855	llis_va[PL080_LLI_DST] = bd->dstbus.addr;
 856	llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
 857	llis_va[PL080_LLI_LLI] |= bd->lli_bus;
 858	llis_va[PL080_LLI_CCTL] = cctl;
 859	if (pl08x->vd->pl080s)
 860		llis_va[PL080S_LLI_CCTL2] = cctl2;
 861
 862	if (cctl & PL080_CONTROL_SRC_INCR)
 863		bd->srcbus.addr += len;
 864	if (cctl & PL080_CONTROL_DST_INCR)
 865		bd->dstbus.addr += len;
 866
 867	BUG_ON(bd->remainder < len);
 868
 869	bd->remainder -= len;
 870}
 871
 872static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
 873			struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
 874			int num_llis, size_t *total_bytes)
 875{
 876	*cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
 877	pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
 878	(*total_bytes) += len;
 879}
 880
 881#ifdef VERBOSE_DEBUG
 882static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
 883			   const u32 *llis_va, int num_llis)
 884{
 885	int i;
 
 886
 887	if (pl08x->vd->pl080s) {
 888		dev_vdbg(&pl08x->adev->dev,
 889			"%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
 890			"lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
 891		for (i = 0; i < num_llis; i++) {
 892			dev_vdbg(&pl08x->adev->dev,
 893				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
 894				i, llis_va, llis_va[PL080_LLI_SRC],
 895				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
 896				llis_va[PL080_LLI_CCTL],
 897				llis_va[PL080S_LLI_CCTL2]);
 898			llis_va += pl08x->lli_words;
 899		}
 900	} else {
 901		dev_vdbg(&pl08x->adev->dev,
 902			"%-3s %-9s  %-10s %-10s %-10s %s\n",
 903			"lli", "", "csrc", "cdst", "clli", "cctl");
 904		for (i = 0; i < num_llis; i++) {
 905			dev_vdbg(&pl08x->adev->dev,
 906				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
 907				i, llis_va, llis_va[PL080_LLI_SRC],
 908				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
 909				llis_va[PL080_LLI_CCTL]);
 910			llis_va += pl08x->lli_words;
 911		}
 912	}
 913}
 914#else
 915static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
 916				  const u32 *llis_va, int num_llis) {}
 917#endif
 918
 919/*
 920 * This fills in the table of LLIs for the transfer descriptor
 921 * Note that we assume we never have to change the burst sizes
 922 * Return 0 for error
 923 */
 924static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
 925			      struct pl08x_txd *txd)
 926{
 927	struct pl08x_bus_data *mbus, *sbus;
 928	struct pl08x_lli_build_data bd;
 929	int num_llis = 0;
 930	u32 cctl, early_bytes = 0;
 931	size_t max_bytes_per_lli, total_bytes;
 932	u32 *llis_va, *last_lli;
 933	struct pl08x_sg *dsg;
 934
 935	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
 
 936	if (!txd->llis_va) {
 937		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
 938		return 0;
 939	}
 940
 
 
 
 
 
 941	bd.txd = txd;
 
 
 942	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
 943	cctl = txd->cctl;
 944
 945	/* Find maximum width of the source bus */
 946	bd.srcbus.maxwidth =
 947		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
 948				       PL080_CONTROL_SWIDTH_SHIFT);
 949
 950	/* Find maximum width of the destination bus */
 951	bd.dstbus.maxwidth =
 952		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
 953				       PL080_CONTROL_DWIDTH_SHIFT);
 954
 955	list_for_each_entry(dsg, &txd->dsg_list, node) {
 956		total_bytes = 0;
 957		cctl = txd->cctl;
 958
 959		bd.srcbus.addr = dsg->src_addr;
 960		bd.dstbus.addr = dsg->dst_addr;
 961		bd.remainder = dsg->len;
 962		bd.srcbus.buswidth = bd.srcbus.maxwidth;
 963		bd.dstbus.buswidth = bd.dstbus.maxwidth;
 964
 965		pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
 
 
 
 
 
 
 
 966
 967		dev_vdbg(&pl08x->adev->dev,
 968			"src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
 969			(u64)bd.srcbus.addr,
 970			cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
 971			bd.srcbus.buswidth,
 972			(u64)bd.dstbus.addr,
 973			cctl & PL080_CONTROL_DST_INCR ? "+" : "",
 974			bd.dstbus.buswidth,
 975			bd.remainder);
 976		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
 977			mbus == &bd.srcbus ? "src" : "dst",
 978			sbus == &bd.srcbus ? "src" : "dst");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 979
 980		/*
 981		 * Zero length is only allowed if all these requirements are
 982		 * met:
 983		 * - flow controller is peripheral.
 984		 * - src.addr is aligned to src.width
 985		 * - dst.addr is aligned to dst.width
 986		 *
 987		 * sg_len == 1 should be true, as there can be two cases here:
 988		 *
 989		 * - Memory addresses are contiguous and are not scattered.
 990		 *   Here, Only one sg will be passed by user driver, with
 991		 *   memory address and zero length. We pass this to controller
 992		 *   and after the transfer it will receive the last burst
 993		 *   request from peripheral and so transfer finishes.
 994		 *
 995		 * - Memory addresses are scattered and are not contiguous.
 996		 *   Here, Obviously as DMA controller doesn't know when a lli's
 997		 *   transfer gets over, it can't load next lli. So in this
 998		 *   case, there has to be an assumption that only one lli is
 999		 *   supported. Thus, we can't have scattered addresses.
1000		 */
1001		if (!bd.remainder) {
1002			u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1003				PL080_CONFIG_FLOW_CONTROL_SHIFT;
1004			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1005					(fc <= PL080_FLOW_SRC2DST_SRC))) {
1006				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1007					__func__);
1008				return 0;
1009			}
1010
1011			if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1012				!IS_BUS_ALIGNED(&bd.dstbus)) {
1013				dev_err(&pl08x->adev->dev,
1014					"%s src & dst address must be aligned to src"
1015					" & dst width if peripheral is flow controller",
1016					__func__);
1017				return 0;
1018			}
1019
1020			cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1021					bd.dstbus.buswidth, 0);
1022			pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1023					0, cctl, 0);
1024			break;
1025		}
1026
1027		/*
1028		 * Send byte by byte for following cases
1029		 * - Less than a bus width available
1030		 * - until master bus is aligned
1031		 */
1032		if (bd.remainder < mbus->buswidth)
1033			early_bytes = bd.remainder;
1034		else if (!IS_BUS_ALIGNED(mbus)) {
1035			early_bytes = mbus->buswidth -
1036				(mbus->addr & (mbus->buswidth - 1));
1037			if ((bd.remainder - early_bytes) < mbus->buswidth)
1038				early_bytes = bd.remainder;
1039		}
1040
1041		if (early_bytes) {
1042			dev_vdbg(&pl08x->adev->dev,
1043				"%s byte width LLIs (remain 0x%08x)\n",
1044				__func__, bd.remainder);
1045			prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1046				num_llis++, &total_bytes);
1047		}
1048
1049		if (bd.remainder) {
1050			/*
1051			 * Master now aligned
1052			 * - if slave is not then we must set its width down
1053			 */
1054			if (!IS_BUS_ALIGNED(sbus)) {
1055				dev_dbg(&pl08x->adev->dev,
1056					"%s set down bus width to one byte\n",
1057					__func__);
1058
1059				sbus->buswidth = 1;
1060			}
1061
1062			/*
1063			 * Bytes transferred = tsize * src width, not
1064			 * MIN(buswidths)
 
1065			 */
1066			max_bytes_per_lli = bd.srcbus.buswidth *
1067						pl08x->vd->max_transfer_size;
1068			dev_vdbg(&pl08x->adev->dev,
1069				"%s max bytes per lli = %zu\n",
1070				__func__, max_bytes_per_lli);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071
1072			/*
1073			 * Make largest possible LLIs until less than one bus
1074			 * width left
1075			 */
1076			while (bd.remainder > (mbus->buswidth - 1)) {
1077				size_t lli_len, tsize, width;
1078
 
1079				/*
1080				 * If enough left try to send max possible,
1081				 * otherwise try to send the remainder
1082				 */
1083				lli_len = min(bd.remainder, max_bytes_per_lli);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1084
 
1085				/*
1086				 * Check against maximum bus alignment:
1087				 * Calculate actual transfer size in relation to
1088				 * bus width an get a maximum remainder of the
1089				 * highest bus width - 1
1090				 */
1091				width = max(mbus->buswidth, sbus->buswidth);
1092				lli_len = (lli_len / width) * width;
1093				tsize = lli_len / bd.srcbus.buswidth;
 
 
 
 
 
 
 
 
 
 
 
 
 
1094
1095				dev_vdbg(&pl08x->adev->dev,
1096					"%s fill lli with single lli chunk of "
1097					"size 0x%08zx (remainder 0x%08zx)\n",
1098					__func__, lli_len, bd.remainder);
1099
1100				cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1101					bd.dstbus.buswidth, tsize);
1102				pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1103						lli_len, cctl, tsize);
1104				total_bytes += lli_len;
1105			}
1106
1107			/*
1108			 * Send any odd bytes
1109			 */
1110			if (bd.remainder) {
1111				dev_vdbg(&pl08x->adev->dev,
1112					"%s align with boundary, send odd bytes (remain %zu)\n",
1113					__func__, bd.remainder);
1114				prep_byte_width_lli(pl08x, &bd, &cctl,
1115					bd.remainder, num_llis++, &total_bytes);
 
 
 
 
 
 
 
 
1116			}
1117		}
1118
1119		if (total_bytes != dsg->len) {
1120			dev_err(&pl08x->adev->dev,
1121				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1122				__func__, total_bytes, dsg->len);
1123			return 0;
 
 
 
 
 
1124		}
 
 
 
 
 
 
 
1125
1126		if (num_llis >= MAX_NUM_TSFR_LLIS) {
1127			dev_err(&pl08x->adev->dev,
1128				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1129				__func__, MAX_NUM_TSFR_LLIS);
1130			return 0;
1131		}
1132	}
1133
1134	llis_va = txd->llis_va;
1135	last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
 
 
 
1136
1137	if (txd->cyclic) {
1138		/* Link back to the first LLI. */
1139		last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1140	} else {
1141		/* The final LLI terminates the LLI. */
1142		last_lli[PL080_LLI_LLI] = 0;
1143		/* The final LLI element shall also fire an interrupt. */
1144		last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
 
 
 
 
 
 
1145	}
1146
1147	pl08x_dump_lli(pl08x, llis_va, num_llis);
1148
1149	return num_llis;
1150}
1151
 
1152static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1153			   struct pl08x_txd *txd)
1154{
1155	struct pl08x_sg *dsg, *_dsg;
1156
1157	if (txd->llis_va)
1158		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1159
1160	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1161		list_del(&dsg->node);
1162		kfree(dsg);
1163	}
1164
1165	kfree(txd);
1166}
1167
1168static void pl08x_desc_free(struct virt_dma_desc *vd)
1169{
1170	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1171	struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1172
1173	dma_descriptor_unmap(&vd->tx);
1174	if (!txd->done)
1175		pl08x_release_mux(plchan);
1176
1177	pl08x_free_txd(plchan->host, txd);
1178}
1179
1180static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1181				struct pl08x_dma_chan *plchan)
1182{
1183	LIST_HEAD(head);
 
1184
1185	vchan_get_all_descriptors(&plchan->vc, &head);
1186	vchan_dma_desc_free_list(&plchan->vc, &head);
 
 
 
 
 
1187}
1188
1189/*
1190 * The DMA ENGINE API
1191 */
1192static int pl08x_alloc_chan_resources(struct dma_chan *chan)
1193{
1194	return 0;
1195}
1196
1197static void pl08x_free_chan_resources(struct dma_chan *chan)
1198{
1199	/* Ensure all queued descriptors are freed */
1200	vchan_free_chan_resources(to_virt_chan(chan));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1201}
1202
1203static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1204		struct dma_chan *chan, unsigned long flags)
1205{
1206	struct dma_async_tx_descriptor *retval = NULL;
1207
1208	return retval;
1209}
1210
1211/*
1212 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1213 * If slaves are relying on interrupts to signal completion this function
1214 * must not be called with interrupts disabled.
1215 */
1216static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1217		dma_cookie_t cookie, struct dma_tx_state *txstate)
 
 
1218{
1219	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1220	struct virt_dma_desc *vd;
1221	unsigned long flags;
1222	enum dma_status ret;
1223	size_t bytes = 0;
1224
1225	ret = dma_cookie_status(chan, cookie, txstate);
1226	if (ret == DMA_COMPLETE)
1227		return ret;
1228
1229	/*
1230	 * There's no point calculating the residue if there's
1231	 * no txstate to store the value.
1232	 */
1233	if (!txstate) {
1234		if (plchan->state == PL08X_CHAN_PAUSED)
1235			ret = DMA_PAUSED;
1236		return ret;
1237	}
1238
1239	spin_lock_irqsave(&plchan->vc.lock, flags);
1240	ret = dma_cookie_status(chan, cookie, txstate);
1241	if (ret != DMA_COMPLETE) {
1242		vd = vchan_find_desc(&plchan->vc, cookie);
1243		if (vd) {
1244			/* On the issued list, so hasn't been processed yet */
1245			struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1246			struct pl08x_sg *dsg;
1247
1248			list_for_each_entry(dsg, &txd->dsg_list, node)
1249				bytes += dsg->len;
1250		} else {
1251			bytes = pl08x_getbytes_chan(plchan);
1252		}
1253	}
1254	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1255
1256	/*
1257	 * This cookie not complete yet
1258	 * Get number of bytes left in the active transactions and queue
1259	 */
1260	dma_set_residue(txstate, bytes);
 
 
 
 
1261
1262	if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1263		ret = DMA_PAUSED;
 
 
 
1264
1265	/* Whether waiting or running, we're in progress */
1266	return ret;
1267}
1268
1269/* PrimeCell DMA extension */
1270struct burst_table {
1271	u32 burstwords;
1272	u32 reg;
1273};
1274
1275static const struct burst_table burst_sizes[] = {
1276	{
1277		.burstwords = 256,
1278		.reg = PL080_BSIZE_256,
1279	},
1280	{
1281		.burstwords = 128,
1282		.reg = PL080_BSIZE_128,
1283	},
1284	{
1285		.burstwords = 64,
1286		.reg = PL080_BSIZE_64,
1287	},
1288	{
1289		.burstwords = 32,
1290		.reg = PL080_BSIZE_32,
1291	},
1292	{
1293		.burstwords = 16,
1294		.reg = PL080_BSIZE_16,
1295	},
1296	{
1297		.burstwords = 8,
1298		.reg = PL080_BSIZE_8,
1299	},
1300	{
1301		.burstwords = 4,
1302		.reg = PL080_BSIZE_4,
1303	},
1304	{
1305		.burstwords = 0,
1306		.reg = PL080_BSIZE_1,
1307	},
1308};
1309
1310/*
1311 * Given the source and destination available bus masks, select which
1312 * will be routed to each port.  We try to have source and destination
1313 * on separate ports, but always respect the allowable settings.
1314 */
1315static u32 pl08x_select_bus(u8 src, u8 dst)
1316{
1317	u32 cctl = 0;
1318
1319	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1320		cctl |= PL080_CONTROL_DST_AHB2;
1321	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1322		cctl |= PL080_CONTROL_SRC_AHB2;
1323
1324	return cctl;
1325}
1326
1327static u32 pl08x_cctl(u32 cctl)
1328{
1329	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1330		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1331		  PL080_CONTROL_PROT_MASK);
1332
1333	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
1334	return cctl | PL080_CONTROL_PROT_SYS;
1335}
1336
1337static u32 pl08x_width(enum dma_slave_buswidth width)
1338{
1339	switch (width) {
1340	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1341		return PL080_WIDTH_8BIT;
1342	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1343		return PL080_WIDTH_16BIT;
1344	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1345		return PL080_WIDTH_32BIT;
1346	default:
1347		return ~0;
1348	}
1349}
1350
1351static u32 pl08x_burst(u32 maxburst)
1352{
1353	int i;
1354
1355	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1356		if (burst_sizes[i].burstwords <= maxburst)
1357			break;
1358
1359	return burst_sizes[i].reg;
1360}
1361
1362static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1363	enum dma_slave_buswidth addr_width, u32 maxburst)
1364{
1365	u32 width, burst, cctl = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1366
1367	width = pl08x_width(addr_width);
1368	if (width == ~0)
1369		return ~0;
 
 
 
1370
1371	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1372	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1373
1374	/*
1375	 * If this channel will only request single transfers, set this
1376	 * down to ONE element.  Also select one element if no maxburst
1377	 * is specified.
1378	 */
1379	if (plchan->cd->single)
1380		maxburst = 1;
1381
1382	burst = pl08x_burst(maxburst);
1383	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1384	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1385
1386	return pl08x_cctl(cctl);
1387}
1388
1389static int dma_set_runtime_config(struct dma_chan *chan,
1390				  struct dma_slave_config *config)
1391{
1392	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1393	struct pl08x_driver_data *pl08x = plchan->host;
1394
1395	if (!plchan->slave)
1396		return -EINVAL;
1397
1398	/* Reject definitely invalid configurations */
1399	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1400	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1401		return -EINVAL;
1402
1403	if (config->device_fc && pl08x->vd->pl080s) {
1404		dev_err(&pl08x->adev->dev,
1405			"%s: PL080S does not support peripheral flow control\n",
1406			__func__);
1407		return -EINVAL;
1408	}
1409
1410	plchan->cfg = *config;
 
 
 
 
 
 
 
1411
1412	return 0;
1413}
1414
1415/*
1416 * Slave transactions callback to the slave device to allow
1417 * synchronization of slave DMA signals with the DMAC enable
1418 */
1419static void pl08x_issue_pending(struct dma_chan *chan)
1420{
1421	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1422	unsigned long flags;
1423
1424	spin_lock_irqsave(&plchan->vc.lock, flags);
1425	if (vchan_issue_pending(&plchan->vc)) {
1426		if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1427			pl08x_phy_alloc_and_start(plchan);
 
1428	}
1429	spin_unlock_irqrestore(&plchan->vc.lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430}
1431
1432static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
 
1433{
1434	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1435
1436	if (txd) {
1437		INIT_LIST_HEAD(&txd->dsg_list);
 
 
 
1438
1439		/* Always enable error and terminal interrupts */
1440		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1441			    PL080_CONFIG_TC_IRQ_MASK;
1442	}
1443	return txd;
1444}
1445
1446/*
1447 * Initialize a descriptor to be used by memcpy submit
1448 */
1449static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1450		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1451		size_t len, unsigned long flags)
1452{
1453	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1454	struct pl08x_driver_data *pl08x = plchan->host;
1455	struct pl08x_txd *txd;
1456	struct pl08x_sg *dsg;
1457	int ret;
1458
1459	txd = pl08x_get_txd(plchan);
1460	if (!txd) {
1461		dev_err(&pl08x->adev->dev,
1462			"%s no memory for descriptor\n", __func__);
1463		return NULL;
1464	}
1465
1466	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1467	if (!dsg) {
1468		pl08x_free_txd(pl08x, txd);
1469		dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1470				__func__);
1471		return NULL;
1472	}
1473	list_add_tail(&dsg->node, &txd->dsg_list);
1474
1475	dsg->src_addr = src;
1476	dsg->dst_addr = dest;
1477	dsg->len = len;
1478
1479	/* Set platform data for m2m */
1480	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1481	txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1482			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1483
1484	/* Both to be incremented or the code will break */
1485	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1486
1487	if (pl08x->vd->dualmaster)
1488		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1489					      pl08x->mem_buses);
1490
1491	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1492	if (!ret) {
1493		pl08x_free_txd(pl08x, txd);
1494		return NULL;
1495	}
1496
1497	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1498}
1499
1500static struct pl08x_txd *pl08x_init_txd(
1501		struct dma_chan *chan,
1502		enum dma_transfer_direction direction,
1503		dma_addr_t *slave_addr)
1504{
1505	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1506	struct pl08x_driver_data *pl08x = plchan->host;
1507	struct pl08x_txd *txd;
1508	enum dma_slave_buswidth addr_width;
1509	int ret, tmp;
1510	u8 src_buses, dst_buses;
1511	u32 maxburst, cctl;
 
 
 
 
 
 
 
 
 
1512
1513	txd = pl08x_get_txd(plchan);
1514	if (!txd) {
1515		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1516		return NULL;
1517	}
1518
 
 
 
 
 
1519	/*
1520	 * Set up addresses, the PrimeCell configured address
1521	 * will take precedence since this may configure the
1522	 * channel target address dynamically at runtime.
1523	 */
1524	if (direction == DMA_MEM_TO_DEV) {
1525		cctl = PL080_CONTROL_SRC_INCR;
1526		*slave_addr = plchan->cfg.dst_addr;
1527		addr_width = plchan->cfg.dst_addr_width;
1528		maxburst = plchan->cfg.dst_maxburst;
1529		src_buses = pl08x->mem_buses;
1530		dst_buses = plchan->cd->periph_buses;
1531	} else if (direction == DMA_DEV_TO_MEM) {
1532		cctl = PL080_CONTROL_DST_INCR;
1533		*slave_addr = plchan->cfg.src_addr;
1534		addr_width = plchan->cfg.src_addr_width;
1535		maxburst = plchan->cfg.src_maxburst;
1536		src_buses = plchan->cd->periph_buses;
1537		dst_buses = pl08x->mem_buses;
1538	} else {
1539		pl08x_free_txd(pl08x, txd);
1540		dev_err(&pl08x->adev->dev,
1541			"%s direction unsupported\n", __func__);
1542		return NULL;
1543	}
1544
1545	cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1546	if (cctl == ~0) {
1547		pl08x_free_txd(pl08x, txd);
1548		dev_err(&pl08x->adev->dev,
1549			"DMA slave configuration botched?\n");
1550		return NULL;
1551	}
1552
1553	txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1554
1555	if (plchan->cfg.device_fc)
1556		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1557			PL080_FLOW_PER2MEM_PER;
1558	else
1559		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1560			PL080_FLOW_PER2MEM;
1561
1562	txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1563
1564	ret = pl08x_request_mux(plchan);
1565	if (ret < 0) {
1566		pl08x_free_txd(pl08x, txd);
1567		dev_dbg(&pl08x->adev->dev,
1568			"unable to mux for transfer on %s due to platform restrictions\n",
1569			plchan->name);
1570		return NULL;
1571	}
1572
1573	dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1574		 plchan->signal, plchan->name);
1575
1576	/* Assign the flow control signal to this channel */
1577	if (direction == DMA_MEM_TO_DEV)
1578		txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1579	else
1580		txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1581
1582	return txd;
1583}
1584
1585static int pl08x_tx_add_sg(struct pl08x_txd *txd,
1586			   enum dma_transfer_direction direction,
1587			   dma_addr_t slave_addr,
1588			   dma_addr_t buf_addr,
1589			   unsigned int len)
1590{
1591	struct pl08x_sg *dsg;
1592
1593	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1594	if (!dsg)
1595		return -ENOMEM;
1596
1597	list_add_tail(&dsg->node, &txd->dsg_list);
1598
1599	dsg->len = len;
1600	if (direction == DMA_MEM_TO_DEV) {
1601		dsg->src_addr = buf_addr;
1602		dsg->dst_addr = slave_addr;
1603	} else {
1604		dsg->src_addr = slave_addr;
1605		dsg->dst_addr = buf_addr;
1606	}
1607
1608	return 0;
1609}
1610
1611static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1612		struct dma_chan *chan, struct scatterlist *sgl,
1613		unsigned int sg_len, enum dma_transfer_direction direction,
1614		unsigned long flags, void *context)
1615{
1616	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1617	struct pl08x_driver_data *pl08x = plchan->host;
1618	struct pl08x_txd *txd;
1619	struct scatterlist *sg;
1620	int ret, tmp;
1621	dma_addr_t slave_addr;
1622
1623	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1624			__func__, sg_dma_len(sgl), plchan->name);
1625
1626	txd = pl08x_init_txd(chan, direction, &slave_addr);
1627	if (!txd)
1628		return NULL;
1629
1630	for_each_sg(sgl, sg, sg_len, tmp) {
1631		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1632				      sg_dma_address(sg),
1633				      sg_dma_len(sg));
1634		if (ret) {
1635			pl08x_release_mux(plchan);
1636			pl08x_free_txd(pl08x, txd);
1637			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1638					__func__);
1639			return NULL;
1640		}
1641	}
1642
1643	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1644	if (!ret) {
1645		pl08x_release_mux(plchan);
1646		pl08x_free_txd(pl08x, txd);
1647		return NULL;
1648	}
1649
1650	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1651}
1652
1653static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
1654		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1655		size_t period_len, enum dma_transfer_direction direction,
1656		unsigned long flags, void *context)
1657{
1658	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1659	struct pl08x_driver_data *pl08x = plchan->host;
1660	struct pl08x_txd *txd;
1661	int ret, tmp;
1662	dma_addr_t slave_addr;
1663
1664	dev_dbg(&pl08x->adev->dev,
1665		"%s prepare cyclic transaction of %d/%d bytes %s %s\n",
1666		__func__, period_len, buf_len,
1667		direction == DMA_MEM_TO_DEV ? "to" : "from",
1668		plchan->name);
1669
1670	txd = pl08x_init_txd(chan, direction, &slave_addr);
1671	if (!txd)
1672		return NULL;
1673
1674	txd->cyclic = true;
1675	txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
1676	for (tmp = 0; tmp < buf_len; tmp += period_len) {
1677		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1678				      buf_addr + tmp, period_len);
1679		if (ret) {
1680			pl08x_release_mux(plchan);
1681			pl08x_free_txd(pl08x, txd);
1682			return NULL;
1683		}
1684	}
1685
1686	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1687	if (!ret) {
1688		pl08x_release_mux(plchan);
1689		pl08x_free_txd(pl08x, txd);
1690		return NULL;
1691	}
1692
1693	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1694}
1695
1696static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1697			 unsigned long arg)
1698{
1699	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1700	struct pl08x_driver_data *pl08x = plchan->host;
1701	unsigned long flags;
1702	int ret = 0;
1703
1704	/* Controls applicable to inactive channels */
1705	if (cmd == DMA_SLAVE_CONFIG) {
1706		return dma_set_runtime_config(chan,
1707					      (struct dma_slave_config *)arg);
1708	}
1709
1710	/*
1711	 * Anything succeeds on channels with no physical allocation and
1712	 * no queued transfers.
1713	 */
1714	spin_lock_irqsave(&plchan->vc.lock, flags);
1715	if (!plchan->phychan && !plchan->at) {
1716		spin_unlock_irqrestore(&plchan->vc.lock, flags);
1717		return 0;
1718	}
1719
1720	switch (cmd) {
1721	case DMA_TERMINATE_ALL:
1722		plchan->state = PL08X_CHAN_IDLE;
1723
1724		if (plchan->phychan) {
 
 
1725			/*
1726			 * Mark physical channel as free and free any slave
1727			 * signal
1728			 */
1729			pl08x_phy_free(plchan);
1730		}
1731		/* Dequeue jobs and free LLIs */
1732		if (plchan->at) {
1733			pl08x_desc_free(&plchan->at->vd);
1734			plchan->at = NULL;
1735		}
1736		/* Dequeue jobs not yet fired as well */
1737		pl08x_free_txd_list(pl08x, plchan);
1738		break;
1739	case DMA_PAUSE:
1740		pl08x_pause_phy_chan(plchan->phychan);
1741		plchan->state = PL08X_CHAN_PAUSED;
1742		break;
1743	case DMA_RESUME:
1744		pl08x_resume_phy_chan(plchan->phychan);
1745		plchan->state = PL08X_CHAN_RUNNING;
1746		break;
1747	default:
1748		/* Unknown command */
1749		ret = -ENXIO;
1750		break;
1751	}
1752
1753	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1754
1755	return ret;
1756}
1757
1758bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1759{
1760	struct pl08x_dma_chan *plchan;
1761	char *name = chan_id;
1762
1763	/* Reject channels for devices not bound to this driver */
1764	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1765		return false;
1766
1767	plchan = to_pl08x_chan(chan);
1768
1769	/* Check that the channel is not taken! */
1770	if (!strcmp(plchan->name, name))
1771		return true;
1772
1773	return false;
1774}
1775EXPORT_SYMBOL_GPL(pl08x_filter_id);
1776
1777/*
1778 * Just check that the device is there and active
1779 * TODO: turn this bit on/off depending on the number of physical channels
1780 * actually used, if it is zero... well shut it off. That will save some
1781 * power. Cut the clock at the same time.
1782 */
1783static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1784{
1785	/* The Nomadik variant does not have the config register */
1786	if (pl08x->vd->nomadik)
1787		return;
1788	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1789}
1790
1791static irqreturn_t pl08x_irq(int irq, void *dev)
1792{
1793	struct pl08x_driver_data *pl08x = dev;
1794	u32 mask = 0, err, tc, i;
1795
1796	/* check & clear - ERR & TC interrupts */
1797	err = readl(pl08x->base + PL080_ERR_STATUS);
1798	if (err) {
1799		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1800			__func__, err);
1801		writel(err, pl08x->base + PL080_ERR_CLEAR);
1802	}
1803	tc = readl(pl08x->base + PL080_TC_STATUS);
1804	if (tc)
1805		writel(tc, pl08x->base + PL080_TC_CLEAR);
1806
1807	if (!err && !tc)
1808		return IRQ_NONE;
1809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1810	for (i = 0; i < pl08x->vd->channels; i++) {
1811		if (((1 << i) & err) || ((1 << i) & tc)) {
1812			/* Locate physical channel */
1813			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1814			struct pl08x_dma_chan *plchan = phychan->serving;
1815			struct pl08x_txd *tx;
1816
1817			if (!plchan) {
1818				dev_err(&pl08x->adev->dev,
1819					"%s Error TC interrupt on unused channel: 0x%08x\n",
1820					__func__, i);
1821				continue;
1822			}
1823
1824			spin_lock(&plchan->vc.lock);
1825			tx = plchan->at;
1826			if (tx && tx->cyclic) {
1827				vchan_cyclic_callback(&tx->vd);
1828			} else if (tx) {
1829				plchan->at = NULL;
1830				/*
1831				 * This descriptor is done, release its mux
1832				 * reservation.
1833				 */
1834				pl08x_release_mux(plchan);
1835				tx->done = true;
1836				vchan_cookie_complete(&tx->vd);
1837
1838				/*
1839				 * And start the next descriptor (if any),
1840				 * otherwise free this channel.
1841				 */
1842				if (vchan_next_desc(&plchan->vc))
1843					pl08x_start_next_txd(plchan);
1844				else
1845					pl08x_phy_free(plchan);
1846			}
1847			spin_unlock(&plchan->vc.lock);
1848
1849			mask |= (1 << i);
1850		}
1851	}
 
 
1852
1853	return mask ? IRQ_HANDLED : IRQ_NONE;
1854}
1855
1856static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1857{
 
 
1858	chan->slave = true;
1859	chan->name = chan->cd->bus_id;
1860	chan->cfg.src_addr = chan->cd->addr;
1861	chan->cfg.dst_addr = chan->cd->addr;
 
 
 
 
1862}
1863
1864/*
1865 * Initialise the DMAC memcpy/slave channels.
1866 * Make a local wrapper to hold required data
1867 */
1868static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1869		struct dma_device *dmadev, unsigned int channels, bool slave)
 
 
1870{
1871	struct pl08x_dma_chan *chan;
1872	int i;
1873
1874	INIT_LIST_HEAD(&dmadev->channels);
1875
1876	/*
1877	 * Register as many many memcpy as we have physical channels,
1878	 * we won't always be able to use all but the code will have
1879	 * to cope with that situation.
1880	 */
1881	for (i = 0; i < channels; i++) {
1882		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1883		if (!chan) {
1884			dev_err(&pl08x->adev->dev,
1885				"%s no memory for channel\n", __func__);
1886			return -ENOMEM;
1887		}
1888
1889		chan->host = pl08x;
1890		chan->state = PL08X_CHAN_IDLE;
1891		chan->signal = -1;
1892
1893		if (slave) {
1894			chan->cd = &pl08x->pd->slave_channels[i];
1895			pl08x_dma_slave_init(chan);
1896		} else {
1897			chan->cd = &pl08x->pd->memcpy_channel;
1898			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1899			if (!chan->name) {
1900				kfree(chan);
1901				return -ENOMEM;
1902			}
1903		}
1904		dev_dbg(&pl08x->adev->dev,
 
 
 
 
 
 
 
1905			 "initialize virtual channel \"%s\"\n",
1906			 chan->name);
1907
1908		chan->vc.desc_free = pl08x_desc_free;
1909		vchan_init(&chan->vc, dmadev);
 
 
 
 
 
 
 
 
1910	}
1911	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1912		 i, slave ? "slave" : "memcpy");
1913	return i;
1914}
1915
1916static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1917{
1918	struct pl08x_dma_chan *chan = NULL;
1919	struct pl08x_dma_chan *next;
1920
1921	list_for_each_entry_safe(chan,
1922				 next, &dmadev->channels, vc.chan.device_node) {
1923		list_del(&chan->vc.chan.device_node);
1924		kfree(chan);
1925	}
1926}
1927
1928#ifdef CONFIG_DEBUG_FS
1929static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1930{
1931	switch (state) {
1932	case PL08X_CHAN_IDLE:
1933		return "idle";
1934	case PL08X_CHAN_RUNNING:
1935		return "running";
1936	case PL08X_CHAN_PAUSED:
1937		return "paused";
1938	case PL08X_CHAN_WAITING:
1939		return "waiting";
1940	default:
1941		break;
1942	}
1943	return "UNKNOWN STATE";
1944}
1945
1946static int pl08x_debugfs_show(struct seq_file *s, void *data)
1947{
1948	struct pl08x_driver_data *pl08x = s->private;
1949	struct pl08x_dma_chan *chan;
1950	struct pl08x_phy_chan *ch;
1951	unsigned long flags;
1952	int i;
1953
1954	seq_printf(s, "PL08x physical channels:\n");
1955	seq_printf(s, "CHANNEL:\tUSER:\n");
1956	seq_printf(s, "--------\t-----\n");
1957	for (i = 0; i < pl08x->vd->channels; i++) {
1958		struct pl08x_dma_chan *virt_chan;
1959
1960		ch = &pl08x->phy_chans[i];
1961
1962		spin_lock_irqsave(&ch->lock, flags);
1963		virt_chan = ch->serving;
1964
1965		seq_printf(s, "%d\t\t%s%s\n",
1966			   ch->id,
1967			   virt_chan ? virt_chan->name : "(none)",
1968			   ch->locked ? " LOCKED" : "");
1969
1970		spin_unlock_irqrestore(&ch->lock, flags);
1971	}
1972
1973	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1974	seq_printf(s, "CHANNEL:\tSTATE:\n");
1975	seq_printf(s, "--------\t------\n");
1976	list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
1977		seq_printf(s, "%s\t\t%s\n", chan->name,
1978			   pl08x_state_str(chan->state));
1979	}
1980
1981	seq_printf(s, "\nPL08x virtual slave channels:\n");
1982	seq_printf(s, "CHANNEL:\tSTATE:\n");
1983	seq_printf(s, "--------\t------\n");
1984	list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
1985		seq_printf(s, "%s\t\t%s\n", chan->name,
1986			   pl08x_state_str(chan->state));
1987	}
1988
1989	return 0;
1990}
1991
1992static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1993{
1994	return single_open(file, pl08x_debugfs_show, inode->i_private);
1995}
1996
1997static const struct file_operations pl08x_debugfs_operations = {
1998	.open		= pl08x_debugfs_open,
1999	.read		= seq_read,
2000	.llseek		= seq_lseek,
2001	.release	= single_release,
2002};
2003
2004static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2005{
2006	/* Expose a simple debugfs interface to view all clocks */
2007	(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2008			S_IFREG | S_IRUGO, NULL, pl08x,
2009			&pl08x_debugfs_operations);
2010}
2011
2012#else
2013static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2014{
2015}
2016#endif
2017
2018static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2019{
2020	struct pl08x_driver_data *pl08x;
2021	const struct vendor_data *vd = id->data;
2022	u32 tsfr_size;
2023	int ret = 0;
2024	int i;
2025
2026	ret = amba_request_regions(adev, NULL);
2027	if (ret)
2028		return ret;
2029
2030	/* Ensure that we can do DMA */
2031	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2032	if (ret)
2033		goto out_no_pl08x;
2034
2035	/* Create the driver state holder */
2036	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2037	if (!pl08x) {
2038		ret = -ENOMEM;
2039		goto out_no_pl08x;
2040	}
2041
2042	/* Initialize memcpy engine */
2043	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2044	pl08x->memcpy.dev = &adev->dev;
2045	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
2046	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2047	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2048	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2049	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2050	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2051	pl08x->memcpy.device_control = pl08x_control;
2052
2053	/* Initialize slave engine */
2054	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2055	dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2056	pl08x->slave.dev = &adev->dev;
2057	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
2058	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
2059	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2060	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2061	pl08x->slave.device_issue_pending = pl08x_issue_pending;
2062	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2063	pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2064	pl08x->slave.device_control = pl08x_control;
2065
2066	/* Get the platform data */
2067	pl08x->pd = dev_get_platdata(&adev->dev);
2068	if (!pl08x->pd) {
2069		dev_err(&adev->dev, "no platform data supplied\n");
2070		ret = -EINVAL;
2071		goto out_no_platdata;
2072	}
2073
2074	/* Assign useful pointers to the driver state */
2075	pl08x->adev = adev;
2076	pl08x->vd = vd;
2077
2078	/* By default, AHB1 only.  If dualmaster, from platform */
2079	pl08x->lli_buses = PL08X_AHB1;
2080	pl08x->mem_buses = PL08X_AHB1;
2081	if (pl08x->vd->dualmaster) {
2082		pl08x->lli_buses = pl08x->pd->lli_buses;
2083		pl08x->mem_buses = pl08x->pd->mem_buses;
2084	}
2085
2086	if (vd->pl080s)
2087		pl08x->lli_words = PL080S_LLI_WORDS;
2088	else
2089		pl08x->lli_words = PL080_LLI_WORDS;
2090	tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2091
2092	/* A DMA memory pool for LLIs, align on 1-byte boundary */
2093	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2094						tsfr_size, PL08X_ALIGN, 0);
2095	if (!pl08x->pool) {
2096		ret = -ENOMEM;
2097		goto out_no_lli_pool;
2098	}
2099
 
 
2100	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2101	if (!pl08x->base) {
2102		ret = -ENOMEM;
2103		goto out_no_ioremap;
2104	}
2105
2106	/* Turn on the PL08x */
2107	pl08x_ensure_on(pl08x);
2108
2109	/* Attach the interrupt handler */
2110	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2111	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2112
2113	ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
 
2114	if (ret) {
2115		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2116			__func__, adev->irq[0]);
2117		goto out_no_irq;
2118	}
2119
2120	/* Initialize physical channels */
2121	pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2122			GFP_KERNEL);
2123	if (!pl08x->phy_chans) {
2124		dev_err(&adev->dev, "%s failed to allocate "
2125			"physical channel holders\n",
2126			__func__);
2127		ret = -ENOMEM;
2128		goto out_no_phychans;
2129	}
2130
2131	for (i = 0; i < vd->channels; i++) {
2132		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2133
2134		ch->id = i;
2135		ch->base = pl08x->base + PL080_Cx_BASE(i);
2136		ch->reg_config = ch->base + vd->config_offset;
2137		spin_lock_init(&ch->lock);
2138
2139		/*
2140		 * Nomadik variants can have channels that are locked
2141		 * down for the secure world only. Lock up these channels
2142		 * by perpetually serving a dummy virtual channel.
2143		 */
2144		if (vd->nomadik) {
2145			u32 val;
2146
2147			val = readl(ch->reg_config);
2148			if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2149				dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2150				ch->locked = true;
2151			}
2152		}
2153
2154		dev_dbg(&adev->dev, "physical channel %d is %s\n",
2155			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2156	}
2157
2158	/* Register as many memcpy channels as there are physical channels */
2159	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2160					      pl08x->vd->channels, false);
2161	if (ret <= 0) {
2162		dev_warn(&pl08x->adev->dev,
2163			 "%s failed to enumerate memcpy channels - %d\n",
2164			 __func__, ret);
2165		goto out_no_memcpy;
2166	}
2167	pl08x->memcpy.chancnt = ret;
2168
2169	/* Register slave channels */
2170	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2171			pl08x->pd->num_slave_channels, true);
2172	if (ret < 0) {
 
2173		dev_warn(&pl08x->adev->dev,
2174			"%s failed to enumerate slave channels - %d\n",
2175				__func__, ret);
2176		goto out_no_slave;
2177	}
2178	pl08x->slave.chancnt = ret;
2179
2180	ret = dma_async_device_register(&pl08x->memcpy);
2181	if (ret) {
2182		dev_warn(&pl08x->adev->dev,
2183			"%s failed to register memcpy as an async device - %d\n",
2184			__func__, ret);
2185		goto out_no_memcpy_reg;
2186	}
2187
2188	ret = dma_async_device_register(&pl08x->slave);
2189	if (ret) {
2190		dev_warn(&pl08x->adev->dev,
2191			"%s failed to register slave as an async device - %d\n",
2192			__func__, ret);
2193		goto out_no_slave_reg;
2194	}
2195
2196	amba_set_drvdata(adev, pl08x);
2197	init_pl08x_debugfs(pl08x);
2198	dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2199		 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2200		 (unsigned long long)adev->res.start, adev->irq[0]);
2201
2202	return 0;
2203
2204out_no_slave_reg:
2205	dma_async_device_unregister(&pl08x->memcpy);
2206out_no_memcpy_reg:
2207	pl08x_free_virtual_channels(&pl08x->slave);
2208out_no_slave:
2209	pl08x_free_virtual_channels(&pl08x->memcpy);
2210out_no_memcpy:
2211	kfree(pl08x->phy_chans);
2212out_no_phychans:
2213	free_irq(adev->irq[0], pl08x);
2214out_no_irq:
2215	iounmap(pl08x->base);
2216out_no_ioremap:
2217	dma_pool_destroy(pl08x->pool);
2218out_no_lli_pool:
2219out_no_platdata:
2220	kfree(pl08x);
2221out_no_pl08x:
2222	amba_release_regions(adev);
2223	return ret;
2224}
2225
2226/* PL080 has 8 channels and the PL080 have just 2 */
2227static struct vendor_data vendor_pl080 = {
2228	.config_offset = PL080_CH_CONFIG,
2229	.channels = 8,
2230	.dualmaster = true,
2231	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2232};
2233
2234static struct vendor_data vendor_nomadik = {
2235	.config_offset = PL080_CH_CONFIG,
2236	.channels = 8,
2237	.dualmaster = true,
2238	.nomadik = true,
2239	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2240};
2241
2242static struct vendor_data vendor_pl080s = {
2243	.config_offset = PL080S_CH_CONFIG,
2244	.channels = 8,
2245	.pl080s = true,
2246	.max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
2247};
2248
2249static struct vendor_data vendor_pl081 = {
2250	.config_offset = PL080_CH_CONFIG,
2251	.channels = 2,
2252	.dualmaster = false,
2253	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2254};
2255
2256static struct amba_id pl08x_ids[] = {
2257	/* Samsung PL080S variant */
2258	{
2259		.id	= 0x0a141080,
2260		.mask	= 0xffffffff,
2261		.data	= &vendor_pl080s,
2262	},
2263	/* PL080 */
2264	{
2265		.id	= 0x00041080,
2266		.mask	= 0x000fffff,
2267		.data	= &vendor_pl080,
2268	},
2269	/* PL081 */
2270	{
2271		.id	= 0x00041081,
2272		.mask	= 0x000fffff,
2273		.data	= &vendor_pl081,
2274	},
2275	/* Nomadik 8815 PL080 variant */
2276	{
2277		.id	= 0x00280080,
2278		.mask	= 0x00ffffff,
2279		.data	= &vendor_nomadik,
2280	},
2281	{ 0, 0 },
2282};
2283
2284MODULE_DEVICE_TABLE(amba, pl08x_ids);
2285
2286static struct amba_driver pl08x_amba_driver = {
2287	.drv.name	= DRIVER_NAME,
2288	.id_table	= pl08x_ids,
2289	.probe		= pl08x_probe,
2290};
2291
2292static int __init pl08x_init(void)
2293{
2294	int retval;
2295	retval = amba_driver_register(&pl08x_amba_driver);
2296	if (retval)
2297		printk(KERN_WARNING DRIVER_NAME
2298		       "failed to register as an AMBA device (%d)\n",
2299		       retval);
2300	return retval;
2301}
2302subsys_initcall(pl08x_init);