Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (c) 2006 ARM Ltd.
   3 * Copyright (c) 2010 ST-Ericsson SA
   4 *
   5 * Author: Peter Pearse <peter.pearse@arm.com>
   6 * Author: Linus Walleij <linus.walleij@stericsson.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify it
   9 * under the terms of the GNU General Public License as published by the Free
  10 * Software Foundation; either version 2 of the License, or (at your option)
  11 * any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful, but WITHOUT
  14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  16 * more details.
  17 *
  18 * You should have received a copy of the GNU General Public License along with
  19 * this program; if not, write to the Free Software Foundation, Inc., 59
  20 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  21 *
  22 * The full GNU General Public License is in this distribution in the file
  23 * called COPYING.
  24 *
  25 * Documentation: ARM DDI 0196G == PL080
  26 * Documentation: ARM DDI 0218E == PL081
 
  27 *
  28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
  29 * channel.
  30 *
  31 * The PL080 has 8 channels available for simultaneous use, and the PL081
  32 * has only two channels. So on these DMA controllers the number of channels
  33 * and the number of incoming DMA signals are two totally different things.
  34 * It is usually not possible to theoretically handle all physical signals,
  35 * so a multiplexing scheme with possible denial of use is necessary.
  36 *
  37 * The PL080 has a dual bus master, PL081 has a single master.
  38 *
 
 
 
 
 
 
 
 
  39 * Memory to peripheral transfer may be visualized as
  40 *	Get data from memory to DMAC
  41 *	Until no data left
  42 *		On burst request from peripheral
  43 *			Destination burst from DMAC to peripheral
  44 *			Clear burst request
  45 *	Raise terminal count interrupt
  46 *
  47 * For peripherals with a FIFO:
  48 * Source      burst size == half the depth of the peripheral FIFO
  49 * Destination burst size == the depth of the peripheral FIFO
  50 *
  51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
  52 * signals, the DMA controller will simply facilitate its AHB master.)
  53 *
  54 * ASSUMES default (little) endianness for DMA transfers
  55 *
  56 * The PL08x has two flow control settings:
  57 *  - DMAC flow control: the transfer size defines the number of transfers
  58 *    which occur for the current LLI entry, and the DMAC raises TC at the
  59 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
  60 *    to both the BREQ and SREQ signals (contrary to documented),
  61 *    transferring data if either is active.  The LBREQ and LSREQ signals
  62 *    are ignored.
  63 *
  64 *  - Peripheral flow control: the transfer size is ignored (and should be
  65 *    zero).  The data is transferred from the current LLI entry, until
  66 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
  67 *    will then move to the next LLI entry.
  68 *
  69 * Only the former works sanely with scatter lists, so we only implement
  70 * the DMAC flow control method.  However, peripherals which use the LBREQ
  71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
  72 * these hardware restrictions prevents them from using scatter DMA.
  73 *
  74 * Global TODO:
  75 * - Break out common code from arch/arm/mach-s3c64xx and share
  76 */
  77#include <linux/device.h>
  78#include <linux/init.h>
  79#include <linux/module.h>
  80#include <linux/interrupt.h>
  81#include <linux/slab.h>
  82#include <linux/delay.h>
  83#include <linux/dma-mapping.h>
  84#include <linux/dmapool.h>
  85#include <linux/dmaengine.h>
  86#include <linux/amba/bus.h>
  87#include <linux/amba/pl08x.h>
  88#include <linux/debugfs.h>
 
 
 
 
 
 
 
 
 
 
 
 
  89#include <linux/seq_file.h>
 
 
  90
  91#include <asm/hardware/pl080.h>
 
  92
  93#define DRIVER_NAME	"pl08xdmac"
  94
 
 
 
 
 
 
 
 
 
  95/**
  96 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
  97 * @channels: the number of channels available in this variant
 
  98 * @dualmaster: whether this version supports dual AHB masters or not.
 
 
 
 
 
 
 
  99 */
 100struct vendor_data {
 
 101	u8 channels;
 
 102	bool dualmaster;
 
 
 
 103};
 104
 105/*
 106 * PL08X private data structures
 107 * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
 108 * start & end do not - their bus bit info is in cctl.  Also note that these
 109 * are fixed 32-bit quantities.
 110 */
 111struct pl08x_lli {
 112	u32 src;
 113	u32 dst;
 114	u32 lli;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115	u32 cctl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 116};
 117
 118/**
 119 * struct pl08x_driver_data - the local state holder for the PL08x
 120 * @slave: slave engine for this instance
 121 * @memcpy: memcpy engine for this instance
 122 * @base: virtual memory base (remapped) for the PL08x
 123 * @adev: the corresponding AMBA (PrimeCell) bus entry
 124 * @vd: vendor data for this PL08x variant
 125 * @pd: platform data passed in from the platform/machine
 126 * @phy_chans: array of data for the physical channels
 127 * @pool: a pool for the LLI descriptors
 128 * @pool_ctr: counter of LLIs in the pool
 129 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
 130 * @mem_buses: set to indicate memory transfers on AHB2.
 131 * @lock: a spinlock for this struct
 132 */
 133struct pl08x_driver_data {
 134	struct dma_device slave;
 135	struct dma_device memcpy;
 136	void __iomem *base;
 137	struct amba_device *adev;
 138	const struct vendor_data *vd;
 139	struct pl08x_platform_data *pd;
 140	struct pl08x_phy_chan *phy_chans;
 141	struct dma_pool *pool;
 142	int pool_ctr;
 143	u8 lli_buses;
 144	u8 mem_buses;
 145	spinlock_t lock;
 146};
 147
 148/*
 149 * PL08X specific defines
 150 */
 151
 
 
 
 
 
 
 
 
 
 
 
 152/*
 153 * Memory boundaries: the manual for PL08x says that the controller
 154 * cannot read past a 1KiB boundary, so these defines are used to
 155 * create transfer LLIs that do not cross such boundaries.
 156 */
 157#define PL08X_BOUNDARY_SHIFT		(10)	/* 1KB 0x400 */
 158#define PL08X_BOUNDARY_SIZE		(1 << PL08X_BOUNDARY_SHIFT)
 159
 160/* Size (bytes) of each LLI buffer allocated for one transfer */
 161# define PL08X_LLI_TSFR_SIZE	0x2000
 162
 163/* Maximum times we call dma_pool_alloc on this pool without freeing */
 164#define MAX_NUM_TSFR_LLIS	(PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
 165#define PL08X_ALIGN		8
 166
 167static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
 168{
 169	return container_of(chan, struct pl08x_dma_chan, chan);
 170}
 171
 172static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
 173{
 174	return container_of(tx, struct pl08x_txd, tx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175}
 176
 177/*
 178 * Physical channel handling
 179 */
 180
 181/* Whether a certain channel is busy or not */
 182static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
 183{
 184	unsigned int val;
 185
 186	val = readl(ch->base + PL080_CH_CONFIG);
 187	return val & PL080_CONFIG_ACTIVE;
 188}
 189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190/*
 191 * Set the initial DMA register values i.e. those for the first LLI
 192 * The next LLI pointer and the configuration interrupt bit have
 193 * been set when the LLIs were constructed.  Poke them into the hardware
 194 * and start the transfer.
 195 */
 196static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
 197	struct pl08x_txd *txd)
 198{
 199	struct pl08x_driver_data *pl08x = plchan->host;
 200	struct pl08x_phy_chan *phychan = plchan->phychan;
 201	struct pl08x_lli *lli = &txd->llis_va[0];
 
 202	u32 val;
 203
 
 
 204	plchan->at = txd;
 205
 206	/* Wait for channel inactive */
 207	while (pl08x_phy_channel_busy(phychan))
 208		cpu_relax();
 209
 210	dev_vdbg(&pl08x->adev->dev,
 211		"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 212		"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
 213		phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
 214		txd->ccfg);
 215
 216	writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
 217	writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
 218	writel(lli->lli, phychan->base + PL080_CH_LLI);
 219	writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
 220	writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
 221
 222	/* Enable the DMA channel */
 223	/* Do not access config register until channel shows as disabled */
 224	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
 225		cpu_relax();
 226
 227	/* Do not access config register until channel shows as inactive */
 228	val = readl(phychan->base + PL080_CH_CONFIG);
 229	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
 230		val = readl(phychan->base + PL080_CH_CONFIG);
 231
 232	writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
 233}
 234
 235/*
 236 * Pause the channel by setting the HALT bit.
 237 *
 238 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 239 * the FIFO can only drain if the peripheral is still requesting data.
 240 * (note: this can still timeout if the DMAC FIFO never drains of data.)
 241 *
 242 * For P->M transfers, disable the peripheral first to stop it filling
 243 * the DMAC FIFO, and then pause the DMAC.
 244 */
 245static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
 246{
 247	u32 val;
 248	int timeout;
 249
 250	/* Set the HALT bit and wait for the FIFO to drain */
 251	val = readl(ch->base + PL080_CH_CONFIG);
 252	val |= PL080_CONFIG_HALT;
 253	writel(val, ch->base + PL080_CH_CONFIG);
 254
 255	/* Wait for channel inactive */
 256	for (timeout = 1000; timeout; timeout--) {
 257		if (!pl08x_phy_channel_busy(ch))
 258			break;
 259		udelay(1);
 260	}
 261	if (pl08x_phy_channel_busy(ch))
 262		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
 263}
 264
 265static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
 266{
 267	u32 val;
 268
 269	/* Clear the HALT bit */
 270	val = readl(ch->base + PL080_CH_CONFIG);
 271	val &= ~PL080_CONFIG_HALT;
 272	writel(val, ch->base + PL080_CH_CONFIG);
 273}
 274
 275
 276/*
 277 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 278 * clears any pending interrupt status.  This should not be used for
 279 * an on-going transfer, but as a method of shutting down a channel
 280 * (eg, when it's no longer used) or terminating a transfer.
 281 */
 282static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
 283	struct pl08x_phy_chan *ch)
 284{
 285	u32 val = readl(ch->base + PL080_CH_CONFIG);
 286
 287	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
 288	         PL080_CONFIG_TC_IRQ_MASK);
 289
 290	writel(val, ch->base + PL080_CH_CONFIG);
 291
 292	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
 293	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
 294}
 295
 296static inline u32 get_bytes_in_cctl(u32 cctl)
 297{
 298	/* The source width defines the number of bytes */
 299	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
 300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 301	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
 302	case PL080_WIDTH_8BIT:
 303		break;
 304	case PL080_WIDTH_16BIT:
 305		bytes *= 2;
 306		break;
 307	case PL080_WIDTH_32BIT:
 308		bytes *= 4;
 309		break;
 310	}
 311	return bytes;
 312}
 313
 314/* The channel should be paused when calling this */
 315static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
 316{
 
 
 317	struct pl08x_phy_chan *ch;
 
 318	struct pl08x_txd *txd;
 319	unsigned long flags;
 320	size_t bytes = 0;
 
 321
 322	spin_lock_irqsave(&plchan->lock, flags);
 323	ch = plchan->phychan;
 324	txd = plchan->at;
 325
 
 
 
 326	/*
 327	 * Follow the LLIs to get the number of remaining
 328	 * bytes in the currently active transaction.
 329	 */
 330	if (ch && txd) {
 331		u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
 332
 333		/* First get the remaining bytes in the active transfer */
 
 
 
 
 
 334		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
 335
 336		if (clli) {
 337			struct pl08x_lli *llis_va = txd->llis_va;
 338			dma_addr_t llis_bus = txd->llis_bus;
 339			int index;
 340
 341			BUG_ON(clli < llis_bus || clli >= llis_bus +
 342				sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
 343
 344			/*
 345			 * Locate the next LLI - as this is an array,
 346			 * it's simple maths to find.
 347			 */
 348			index = (clli - llis_bus) / sizeof(struct pl08x_lli);
 349
 350			for (; index < MAX_NUM_TSFR_LLIS; index++) {
 351				bytes += get_bytes_in_cctl(llis_va[index].cctl);
 
 
 
 352
 353				/*
 354				 * A LLI pointer of 0 terminates the LLI list
 355				 */
 356				if (!llis_va[index].lli)
 357					break;
 358			}
 359		}
 360	}
 361
 362	/* Sum up all queued transactions */
 363	if (!list_empty(&plchan->pend_list)) {
 364		struct pl08x_txd *txdi;
 365		list_for_each_entry(txdi, &plchan->pend_list, node) {
 366			bytes += txdi->len;
 367		}
 368	}
 369
 370	spin_unlock_irqrestore(&plchan->lock, flags);
 
 
 
 
 
 371
 372	return bytes;
 373}
 374
 375/*
 376 * Allocate a physical channel for a virtual channel
 377 *
 378 * Try to locate a physical channel to be used for this transfer. If all
 379 * are taken return NULL and the requester will have to cope by using
 380 * some fallback PIO mode or retrying later.
 381 */
 382static struct pl08x_phy_chan *
 383pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
 384		      struct pl08x_dma_chan *virt_chan)
 385{
 386	struct pl08x_phy_chan *ch = NULL;
 387	unsigned long flags;
 388	int i;
 389
 390	for (i = 0; i < pl08x->vd->channels; i++) {
 391		ch = &pl08x->phy_chans[i];
 392
 393		spin_lock_irqsave(&ch->lock, flags);
 394
 395		if (!ch->serving) {
 396			ch->serving = virt_chan;
 397			ch->signal = -1;
 398			spin_unlock_irqrestore(&ch->lock, flags);
 399			break;
 400		}
 401
 402		spin_unlock_irqrestore(&ch->lock, flags);
 403	}
 404
 405	if (i == pl08x->vd->channels) {
 406		/* No physical channel available, cope with it */
 407		return NULL;
 408	}
 409
 410	return ch;
 411}
 412
 
 413static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
 414					 struct pl08x_phy_chan *ch)
 415{
 416	unsigned long flags;
 
 417
 418	spin_lock_irqsave(&ch->lock, flags);
 
 
 
 
 
 
 
 
 419
 420	/* Stop the channel and clear its interrupts */
 421	pl08x_terminate_phy_chan(pl08x, ch);
 
 
 
 
 422
 423	/* Mark it as free */
 424	ch->serving = NULL;
 425	spin_unlock_irqrestore(&ch->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 426}
 427
 428/*
 429 * LLI handling
 430 */
 431
 432static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
 433{
 434	switch (coded) {
 435	case PL080_WIDTH_8BIT:
 436		return 1;
 437	case PL080_WIDTH_16BIT:
 438		return 2;
 439	case PL080_WIDTH_32BIT:
 440		return 4;
 441	default:
 442		break;
 443	}
 444	BUG();
 445	return 0;
 446}
 447
 448static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
 449				  size_t tsize)
 450{
 451	u32 retbits = cctl;
 452
 453	/* Remove all src, dst and transfer size bits */
 454	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
 455	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
 456	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
 457
 458	/* Then set the bits according to the parameters */
 459	switch (srcwidth) {
 460	case 1:
 461		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
 462		break;
 463	case 2:
 464		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
 465		break;
 466	case 4:
 467		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
 468		break;
 469	default:
 470		BUG();
 471		break;
 472	}
 473
 474	switch (dstwidth) {
 475	case 1:
 476		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
 477		break;
 478	case 2:
 479		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
 480		break;
 481	case 4:
 482		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
 483		break;
 484	default:
 485		BUG();
 486		break;
 487	}
 488
 
 489	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
 490	return retbits;
 491}
 492
 493struct pl08x_lli_build_data {
 494	struct pl08x_txd *txd;
 495	struct pl08x_bus_data srcbus;
 496	struct pl08x_bus_data dstbus;
 497	size_t remainder;
 498	u32 lli_bus;
 499};
 500
 501/*
 502 * Autoselect a master bus to use for the transfer this prefers the
 503 * destination bus if both available if fixed address on one bus the
 504 * other will be chosen
 
 
 
 
 505 */
 506static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
 507	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
 508{
 509	if (!(cctl & PL080_CONTROL_DST_INCR)) {
 510		*mbus = &bd->srcbus;
 511		*sbus = &bd->dstbus;
 512	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
 513		*mbus = &bd->dstbus;
 514		*sbus = &bd->srcbus;
 
 
 
 515	} else {
 516		if (bd->dstbus.buswidth == 4) {
 517			*mbus = &bd->dstbus;
 518			*sbus = &bd->srcbus;
 519		} else if (bd->srcbus.buswidth == 4) {
 520			*mbus = &bd->srcbus;
 521			*sbus = &bd->dstbus;
 522		} else if (bd->dstbus.buswidth == 2) {
 523			*mbus = &bd->dstbus;
 524			*sbus = &bd->srcbus;
 525		} else if (bd->srcbus.buswidth == 2) {
 526			*mbus = &bd->srcbus;
 527			*sbus = &bd->dstbus;
 528		} else {
 529			/* bd->srcbus.buswidth == 1 */
 530			*mbus = &bd->dstbus;
 531			*sbus = &bd->srcbus;
 532		}
 533	}
 534}
 535
 536/*
 537 * Fills in one LLI for a certain transfer descriptor and advance the counter
 538 */
 539static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
 540	int num_llis, int len, u32 cctl)
 
 541{
 542	struct pl08x_lli *llis_va = bd->txd->llis_va;
 
 543	dma_addr_t llis_bus = bd->txd->llis_bus;
 544
 545	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
 546
 547	llis_va[num_llis].cctl = cctl;
 548	llis_va[num_llis].src = bd->srcbus.addr;
 549	llis_va[num_llis].dst = bd->dstbus.addr;
 550	llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
 551	llis_va[num_llis].lli |= bd->lli_bus;
 
 
 
 
 
 552
 553	if (cctl & PL080_CONTROL_SRC_INCR)
 554		bd->srcbus.addr += len;
 555	if (cctl & PL080_CONTROL_DST_INCR)
 556		bd->dstbus.addr += len;
 557
 558	BUG_ON(bd->remainder < len);
 559
 560	bd->remainder -= len;
 561}
 562
 563/*
 564 * Return number of bytes to fill to boundary, or len.
 565 * This calculation works for any value of addr.
 566 */
 567static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
 
 
 
 
 
 
 
 568{
 569	size_t boundary_len = PL08X_BOUNDARY_SIZE -
 570			(addr & (PL08X_BOUNDARY_SIZE - 1));
 571
 572	return min(boundary_len, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 573}
 
 
 
 
 574
 575/*
 576 * This fills in the table of LLIs for the transfer descriptor
 577 * Note that we assume we never have to change the burst sizes
 578 * Return 0 for error
 579 */
 580static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
 581			      struct pl08x_txd *txd)
 582{
 583	struct pl08x_bus_data *mbus, *sbus;
 584	struct pl08x_lli_build_data bd;
 585	int num_llis = 0;
 586	u32 cctl;
 587	size_t max_bytes_per_lli;
 588	size_t total_bytes = 0;
 589	struct pl08x_lli *llis_va;
 590
 591	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
 592				      &txd->llis_bus);
 593	if (!txd->llis_va) {
 594		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
 595		return 0;
 596	}
 597
 598	pl08x->pool_ctr++;
 599
 600	/* Get the default CCTL */
 601	cctl = txd->cctl;
 602
 603	bd.txd = txd;
 604	bd.srcbus.addr = txd->src_addr;
 605	bd.dstbus.addr = txd->dst_addr;
 606	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
 
 607
 608	/* Find maximum width of the source bus */
 609	bd.srcbus.maxwidth =
 610		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
 611				       PL080_CONTROL_SWIDTH_SHIFT);
 612
 613	/* Find maximum width of the destination bus */
 614	bd.dstbus.maxwidth =
 615		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
 616				       PL080_CONTROL_DWIDTH_SHIFT);
 617
 618	/* Set up the bus widths to the maximum */
 619	bd.srcbus.buswidth = bd.srcbus.maxwidth;
 620	bd.dstbus.buswidth = bd.dstbus.maxwidth;
 621
 622	/*
 623	 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
 624	 */
 625	max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) *
 626		PL080_CONTROL_TRANSFER_SIZE_MASK;
 627
 628	/* We need to count this down to zero */
 629	bd.remainder = txd->len;
 630
 631	/*
 632	 * Choose bus to align to
 633	 * - prefers destination bus if both available
 634	 * - if fixed address on one bus chooses other
 635	 */
 636	pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
 637
 638	dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu llimax=%zu\n",
 639		 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
 640		 bd.srcbus.buswidth,
 641		 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
 642		 bd.dstbus.buswidth,
 643		 bd.remainder, max_bytes_per_lli);
 644	dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
 645		 mbus == &bd.srcbus ? "src" : "dst",
 646		 sbus == &bd.srcbus ? "src" : "dst");
 647
 648	if (txd->len < mbus->buswidth) {
 649		/* Less than a bus width available - send as single bytes */
 650		while (bd.remainder) {
 651			dev_vdbg(&pl08x->adev->dev,
 652				 "%s single byte LLIs for a transfer of "
 653				 "less than a bus width (remain 0x%08x)\n",
 654				 __func__, bd.remainder);
 655			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
 656			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
 657			total_bytes++;
 658		}
 659	} else {
 660		/* Make one byte LLIs until master bus is aligned */
 661		while ((mbus->addr) % (mbus->buswidth)) {
 662			dev_vdbg(&pl08x->adev->dev,
 663				"%s adjustment lli for less than bus width "
 664				 "(remain 0x%08x)\n",
 665				 __func__, bd.remainder);
 666			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
 667			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
 668			total_bytes++;
 669		}
 670
 671		/*
 672		 * Master now aligned
 673		 * - if slave is not then we must set its width down
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 674		 */
 675		if (sbus->addr % sbus->buswidth) {
 676			dev_dbg(&pl08x->adev->dev,
 677				"%s set down bus width to one byte\n",
 678				 __func__);
 
 
 
 
 
 679
 680			sbus->buswidth = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 681		}
 682
 683		/*
 684		 * Make largest possible LLIs until less than one bus
 685		 * width left
 
 686		 */
 687		while (bd.remainder > (mbus->buswidth - 1)) {
 688			size_t lli_len, target_len, tsize, odd_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 689
 
 690			/*
 691			 * If enough left try to send max possible,
 692			 * otherwise try to send the remainder
 693			 */
 694			target_len = min(bd.remainder, max_bytes_per_lli);
 
 
 
 
 
 
 695
 696			/*
 697			 * Set bus lengths for incrementing buses to the
 698			 * number of bytes which fill to next memory boundary,
 699			 * limiting on the target length calculated above.
 700			 */
 701			if (cctl & PL080_CONTROL_SRC_INCR)
 702				bd.srcbus.fill_bytes =
 703					pl08x_pre_boundary(bd.srcbus.addr,
 704						target_len);
 705			else
 706				bd.srcbus.fill_bytes = target_len;
 707
 708			if (cctl & PL080_CONTROL_DST_INCR)
 709				bd.dstbus.fill_bytes =
 710					pl08x_pre_boundary(bd.dstbus.addr,
 711						target_len);
 712			else
 713				bd.dstbus.fill_bytes = target_len;
 714
 715			/* Find the nearest */
 716			lli_len	= min(bd.srcbus.fill_bytes,
 717				      bd.dstbus.fill_bytes);
 718
 719			BUG_ON(lli_len > bd.remainder);
 720
 721			if (lli_len <= 0) {
 722				dev_err(&pl08x->adev->dev,
 723					"%s lli_len is %zu, <= 0\n",
 724						__func__, lli_len);
 725				return 0;
 726			}
 727
 728			if (lli_len == target_len) {
 729				/*
 730				 * Can send what we wanted.
 731				 * Maintain alignment
 732				 */
 733				lli_len	= (lli_len/mbus->buswidth) *
 734							mbus->buswidth;
 735				odd_bytes = 0;
 736			} else {
 737				/*
 738				 * So now we know how many bytes to transfer
 739				 * to get to the nearest boundary.  The next
 740				 * LLI will past the boundary.  However, we
 741				 * may be working to a boundary on the slave
 742				 * bus.  We need to ensure the master stays
 743				 * aligned, and that we are working in
 744				 * multiples of the bus widths.
 745				 */
 746				odd_bytes = lli_len % mbus->buswidth;
 747				lli_len -= odd_bytes;
 748
 749			}
 750
 751			if (lli_len) {
 752				/*
 753				 * Check against minimum bus alignment:
 754				 * Calculate actual transfer size in relation
 755				 * to bus width an get a maximum remainder of
 756				 * the smallest bus width - 1
 757				 */
 758				/* FIXME: use round_down()? */
 759				tsize = lli_len / min(mbus->buswidth,
 760						      sbus->buswidth);
 761				lli_len	= tsize * min(mbus->buswidth,
 762						      sbus->buswidth);
 763
 764				if (target_len != lli_len) {
 765					dev_vdbg(&pl08x->adev->dev,
 766					"%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
 767					__func__, target_len, lli_len, txd->len);
 768				}
 769
 770				cctl = pl08x_cctl_bits(cctl,
 771						       bd.srcbus.buswidth,
 772						       bd.dstbus.buswidth,
 773						       tsize);
 774
 775				dev_vdbg(&pl08x->adev->dev,
 776					"%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
 
 777					__func__, lli_len, bd.remainder);
 778				pl08x_fill_lli_for_desc(&bd, num_llis++,
 779					lli_len, cctl);
 
 
 
 780				total_bytes += lli_len;
 781			}
 782
 783
 784			if (odd_bytes) {
 785				/*
 786				 * Creep past the boundary, maintaining
 787				 * master alignment
 788				 */
 789				int j;
 790				for (j = 0; (j < mbus->buswidth)
 791						&& (bd.remainder); j++) {
 792					cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
 793					dev_vdbg(&pl08x->adev->dev,
 794						"%s align with boundary, single byte (remain 0x%08zx)\n",
 795						__func__, bd.remainder);
 796					pl08x_fill_lli_for_desc(&bd,
 797						num_llis++, 1, cctl);
 798					total_bytes++;
 799				}
 800			}
 801		}
 802
 803		/*
 804		 * Send any odd bytes
 805		 */
 806		while (bd.remainder) {
 807			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
 808			dev_vdbg(&pl08x->adev->dev,
 809				"%s align with boundary, single odd byte (remain %zu)\n",
 810				__func__, bd.remainder);
 811			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
 812			total_bytes++;
 813		}
 814	}
 815	if (total_bytes != txd->len) {
 816		dev_err(&pl08x->adev->dev,
 817			"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
 818			__func__, total_bytes, txd->len);
 819		return 0;
 820	}
 821
 822	if (num_llis >= MAX_NUM_TSFR_LLIS) {
 823		dev_err(&pl08x->adev->dev,
 824			"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
 825			__func__, (u32) MAX_NUM_TSFR_LLIS);
 826		return 0;
 
 827	}
 828
 829	llis_va = txd->llis_va;
 830	/* The final LLI terminates the LLI. */
 831	llis_va[num_llis - 1].lli = 0;
 832	/* The final LLI element shall also fire an interrupt. */
 833	llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
 834
 835#ifdef VERBOSE_DEBUG
 836	{
 837		int i;
 838
 839		dev_vdbg(&pl08x->adev->dev,
 840			 "%-3s %-9s  %-10s %-10s %-10s %s\n",
 841			 "lli", "", "csrc", "cdst", "clli", "cctl");
 842		for (i = 0; i < num_llis; i++) {
 843			dev_vdbg(&pl08x->adev->dev,
 844				 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
 845				 i, &llis_va[i], llis_va[i].src,
 846				 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
 847				);
 848		}
 849	}
 850#endif
 
 851
 852	return num_llis;
 853}
 854
 855/* You should call this with the struct pl08x lock held */
 856static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
 857			   struct pl08x_txd *txd)
 858{
 859	/* Free the LLI */
 860	dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
 861
 862	pl08x->pool_ctr--;
 863
 864	kfree(txd);
 865}
 866
 867static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
 868				struct pl08x_dma_chan *plchan)
 869{
 870	struct pl08x_txd *txdi = NULL;
 871	struct pl08x_txd *next;
 872
 873	if (!list_empty(&plchan->pend_list)) {
 874		list_for_each_entry_safe(txdi,
 875					 next, &plchan->pend_list, node) {
 876			list_del(&txdi->node);
 877			pl08x_free_txd(pl08x, txdi);
 878		}
 879	}
 880}
 881
 882/*
 883 * The DMA ENGINE API
 884 */
 885static int pl08x_alloc_chan_resources(struct dma_chan *chan)
 886{
 887	return 0;
 888}
 889
 890static void pl08x_free_chan_resources(struct dma_chan *chan)
 891{
 892}
 
 893
 894/*
 895 * This should be called with the channel plchan->lock held
 896 */
 897static int prep_phy_channel(struct pl08x_dma_chan *plchan,
 898			    struct pl08x_txd *txd)
 899{
 900	struct pl08x_driver_data *pl08x = plchan->host;
 901	struct pl08x_phy_chan *ch;
 902	int ret;
 903
 904	/* Check if we already have a channel */
 905	if (plchan->phychan)
 906		return 0;
 907
 908	ch = pl08x_get_phy_channel(pl08x, plchan);
 909	if (!ch) {
 910		/* No physical channel available, cope with it */
 911		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
 912		return -EBUSY;
 913	}
 914
 915	/*
 916	 * OK we have a physical channel: for memcpy() this is all we
 917	 * need, but for slaves the physical signals may be muxed!
 918	 * Can the platform allow us to use this channel?
 919	 */
 920	if (plchan->slave &&
 921	    ch->signal < 0 &&
 922	    pl08x->pd->get_signal) {
 923		ret = pl08x->pd->get_signal(plchan);
 924		if (ret < 0) {
 925			dev_dbg(&pl08x->adev->dev,
 926				"unable to use physical channel %d for transfer on %s due to platform restrictions\n",
 927				ch->id, plchan->name);
 928			/* Release physical channel & return */
 929			pl08x_put_phy_channel(pl08x, ch);
 930			return -EBUSY;
 931		}
 932		ch->signal = ret;
 933
 934		/* Assign the flow control signal to this channel */
 935		if (txd->direction == DMA_TO_DEVICE)
 936			txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
 937		else if (txd->direction == DMA_FROM_DEVICE)
 938			txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
 939	}
 940
 941	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
 942		 ch->id,
 943		 ch->signal,
 944		 plchan->name);
 945
 946	plchan->phychan_hold++;
 947	plchan->phychan = ch;
 948
 949	return 0;
 950}
 951
 952static void release_phy_channel(struct pl08x_dma_chan *plchan)
 
 953{
 954	struct pl08x_driver_data *pl08x = plchan->host;
 955
 956	if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
 957		pl08x->pd->put_signal(plchan);
 958		plchan->phychan->signal = -1;
 959	}
 960	pl08x_put_phy_channel(pl08x, plchan->phychan);
 961	plchan->phychan = NULL;
 962}
 963
 964static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
 
 
 
 965{
 966	struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
 967	struct pl08x_txd *txd = to_pl08x_txd(tx);
 968	unsigned long flags;
 969
 970	spin_lock_irqsave(&plchan->lock, flags);
 971
 972	plchan->chan.cookie += 1;
 973	if (plchan->chan.cookie < 0)
 974		plchan->chan.cookie = 1;
 975	tx->cookie = plchan->chan.cookie;
 976
 977	/* Put this onto the pending list */
 978	list_add_tail(&txd->node, &plchan->pend_list);
 979
 980	/*
 981	 * If there was no physical channel available for this memcpy,
 982	 * stack the request up and indicate that the channel is waiting
 983	 * for a free physical channel.
 984	 */
 985	if (!plchan->slave && !plchan->phychan) {
 986		/* Do this memcpy whenever there is a channel ready */
 987		plchan->state = PL08X_CHAN_WAITING;
 988		plchan->waiting = txd;
 989	} else {
 990		plchan->phychan_hold--;
 991	}
 992
 993	spin_unlock_irqrestore(&plchan->lock, flags);
 994
 995	return tx->cookie;
 996}
 997
 998static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
 999		struct dma_chan *chan, unsigned long flags)
1000{
1001	struct dma_async_tx_descriptor *retval = NULL;
1002
1003	return retval;
1004}
1005
1006/*
1007 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1008 * If slaves are relying on interrupts to signal completion this function
1009 * must not be called with interrupts disabled.
1010 */
1011static enum dma_status
1012pl08x_dma_tx_status(struct dma_chan *chan,
1013		    dma_cookie_t cookie,
1014		    struct dma_tx_state *txstate)
1015{
1016	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1017	dma_cookie_t last_used;
1018	dma_cookie_t last_complete;
1019	enum dma_status ret;
1020	u32 bytesleft = 0;
1021
1022	last_used = plchan->chan.cookie;
1023	last_complete = plchan->lc;
 
1024
1025	ret = dma_async_is_complete(cookie, last_complete, last_used);
1026	if (ret == DMA_SUCCESS) {
1027		dma_set_tx_state(txstate, last_complete, last_used, 0);
 
 
 
 
1028		return ret;
1029	}
1030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1031	/*
1032	 * This cookie not complete yet
 
1033	 */
1034	last_used = plchan->chan.cookie;
1035	last_complete = plchan->lc;
1036
1037	/* Get number of bytes left in the active transactions and queue */
1038	bytesleft = pl08x_getbytes_chan(plchan);
1039
1040	dma_set_tx_state(txstate, last_complete, last_used,
1041			 bytesleft);
1042
1043	if (plchan->state == PL08X_CHAN_PAUSED)
1044		return DMA_PAUSED;
1045
1046	/* Whether waiting or running, we're in progress */
1047	return DMA_IN_PROGRESS;
1048}
1049
1050/* PrimeCell DMA extension */
1051struct burst_table {
1052	u32 burstwords;
1053	u32 reg;
1054};
1055
1056static const struct burst_table burst_sizes[] = {
1057	{
1058		.burstwords = 256,
1059		.reg = PL080_BSIZE_256,
1060	},
1061	{
1062		.burstwords = 128,
1063		.reg = PL080_BSIZE_128,
1064	},
1065	{
1066		.burstwords = 64,
1067		.reg = PL080_BSIZE_64,
1068	},
1069	{
1070		.burstwords = 32,
1071		.reg = PL080_BSIZE_32,
1072	},
1073	{
1074		.burstwords = 16,
1075		.reg = PL080_BSIZE_16,
1076	},
1077	{
1078		.burstwords = 8,
1079		.reg = PL080_BSIZE_8,
1080	},
1081	{
1082		.burstwords = 4,
1083		.reg = PL080_BSIZE_4,
1084	},
1085	{
1086		.burstwords = 0,
1087		.reg = PL080_BSIZE_1,
1088	},
1089};
1090
1091/*
1092 * Given the source and destination available bus masks, select which
1093 * will be routed to each port.  We try to have source and destination
1094 * on separate ports, but always respect the allowable settings.
1095 */
1096static u32 pl08x_select_bus(u8 src, u8 dst)
1097{
1098	u32 cctl = 0;
1099
1100	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1101		cctl |= PL080_CONTROL_DST_AHB2;
1102	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1103		cctl |= PL080_CONTROL_SRC_AHB2;
1104
1105	return cctl;
1106}
1107
1108static u32 pl08x_cctl(u32 cctl)
1109{
1110	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1111		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1112		  PL080_CONTROL_PROT_MASK);
1113
1114	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
1115	return cctl | PL080_CONTROL_PROT_SYS;
1116}
1117
1118static u32 pl08x_width(enum dma_slave_buswidth width)
1119{
1120	switch (width) {
1121	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1122		return PL080_WIDTH_8BIT;
1123	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1124		return PL080_WIDTH_16BIT;
1125	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1126		return PL080_WIDTH_32BIT;
1127	default:
1128		return ~0;
1129	}
1130}
1131
1132static u32 pl08x_burst(u32 maxburst)
1133{
1134	int i;
1135
1136	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1137		if (burst_sizes[i].burstwords <= maxburst)
1138			break;
1139
1140	return burst_sizes[i].reg;
1141}
1142
1143static int dma_set_runtime_config(struct dma_chan *chan,
1144				  struct dma_slave_config *config)
1145{
1146	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1147	struct pl08x_driver_data *pl08x = plchan->host;
1148	enum dma_slave_buswidth addr_width;
1149	u32 width, burst, maxburst;
1150	u32 cctl = 0;
1151
1152	if (!plchan->slave)
1153		return -EINVAL;
1154
1155	/* Transfer direction */
1156	plchan->runtime_direction = config->direction;
1157	if (config->direction == DMA_TO_DEVICE) {
1158		addr_width = config->dst_addr_width;
1159		maxburst = config->dst_maxburst;
1160	} else if (config->direction == DMA_FROM_DEVICE) {
1161		addr_width = config->src_addr_width;
1162		maxburst = config->src_maxburst;
1163	} else {
1164		dev_err(&pl08x->adev->dev,
1165			"bad runtime_config: alien transfer direction\n");
1166		return -EINVAL;
1167	}
1168
1169	width = pl08x_width(addr_width);
1170	if (width == ~0) {
1171		dev_err(&pl08x->adev->dev,
1172			"bad runtime_config: alien address width\n");
1173		return -EINVAL;
1174	}
1175
1176	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1177	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1178
1179	/*
1180	 * If this channel will only request single transfers, set this
1181	 * down to ONE element.  Also select one element if no maxburst
1182	 * is specified.
1183	 */
1184	if (plchan->cd->single)
1185		maxburst = 1;
1186
1187	burst = pl08x_burst(maxburst);
1188	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1189	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1190
1191	if (plchan->runtime_direction == DMA_FROM_DEVICE) {
1192		plchan->src_addr = config->src_addr;
1193		plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
1194			pl08x_select_bus(plchan->cd->periph_buses,
1195					 pl08x->mem_buses);
1196	} else {
1197		plchan->dst_addr = config->dst_addr;
1198		plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
1199			pl08x_select_bus(pl08x->mem_buses,
1200					 plchan->cd->periph_buses);
1201	}
1202
1203	dev_dbg(&pl08x->adev->dev,
1204		"configured channel %s (%s) for %s, data width %d, "
1205		"maxburst %d words, LE, CCTL=0x%08x\n",
1206		dma_chan_name(chan), plchan->name,
1207		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1208		addr_width,
1209		maxburst,
1210		cctl);
1211
1212	return 0;
1213}
1214
1215/*
1216 * Slave transactions callback to the slave device to allow
1217 * synchronization of slave DMA signals with the DMAC enable
1218 */
1219static void pl08x_issue_pending(struct dma_chan *chan)
1220{
1221	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1222	unsigned long flags;
1223
1224	spin_lock_irqsave(&plchan->lock, flags);
1225	/* Something is already active, or we're waiting for a channel... */
1226	if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1227		spin_unlock_irqrestore(&plchan->lock, flags);
1228		return;
1229	}
1230
1231	/* Take the first element in the queue and execute it */
1232	if (!list_empty(&plchan->pend_list)) {
1233		struct pl08x_txd *next;
1234
1235		next = list_first_entry(&plchan->pend_list,
1236					struct pl08x_txd,
1237					node);
1238		list_del(&next->node);
1239		plchan->state = PL08X_CHAN_RUNNING;
1240
1241		pl08x_start_txd(plchan, next);
1242	}
1243
1244	spin_unlock_irqrestore(&plchan->lock, flags);
1245}
1246
1247static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1248					struct pl08x_txd *txd)
1249{
1250	struct pl08x_driver_data *pl08x = plchan->host;
1251	unsigned long flags;
1252	int num_llis, ret;
1253
1254	num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1255	if (!num_llis) {
1256		kfree(txd);
1257		return -EINVAL;
1258	}
1259
1260	spin_lock_irqsave(&plchan->lock, flags);
1261
1262	/*
1263	 * See if we already have a physical channel allocated,
1264	 * else this is the time to try to get one.
1265	 */
1266	ret = prep_phy_channel(plchan, txd);
1267	if (ret) {
1268		/*
1269		 * No physical channel was available.
1270		 *
1271		 * memcpy transfers can be sorted out at submission time.
1272		 *
1273		 * Slave transfers may have been denied due to platform
1274		 * channel muxing restrictions.  Since there is no guarantee
1275		 * that this will ever be resolved, and the signal must be
1276		 * acquired AFTER acquiring the physical channel, we will let
1277		 * them be NACK:ed with -EBUSY here. The drivers can retry
1278		 * the prep() call if they are eager on doing this using DMA.
1279		 */
1280		if (plchan->slave) {
1281			pl08x_free_txd_list(pl08x, plchan);
1282			pl08x_free_txd(pl08x, txd);
1283			spin_unlock_irqrestore(&plchan->lock, flags);
1284			return -EBUSY;
1285		}
1286	} else
1287		/*
1288		 * Else we're all set, paused and ready to roll, status
1289		 * will switch to PL08X_CHAN_RUNNING when we call
1290		 * issue_pending(). If there is something running on the
1291		 * channel already we don't change its state.
1292		 */
1293		if (plchan->state == PL08X_CHAN_IDLE)
1294			plchan->state = PL08X_CHAN_PAUSED;
1295
1296	spin_unlock_irqrestore(&plchan->lock, flags);
1297
1298	return 0;
1299}
1300
1301static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1302	unsigned long flags)
1303{
1304	struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1305
1306	if (txd) {
1307		dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1308		txd->tx.flags = flags;
1309		txd->tx.tx_submit = pl08x_tx_submit;
1310		INIT_LIST_HEAD(&txd->node);
1311
1312		/* Always enable error and terminal interrupts */
1313		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1314			    PL080_CONFIG_TC_IRQ_MASK;
1315	}
1316	return txd;
1317}
1318
1319/*
1320 * Initialize a descriptor to be used by memcpy submit
1321 */
1322static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1323		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1324		size_t len, unsigned long flags)
1325{
1326	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1327	struct pl08x_driver_data *pl08x = plchan->host;
1328	struct pl08x_txd *txd;
 
1329	int ret;
1330
1331	txd = pl08x_get_txd(plchan, flags);
1332	if (!txd) {
1333		dev_err(&pl08x->adev->dev,
1334			"%s no memory for descriptor\n", __func__);
1335		return NULL;
1336	}
1337
1338	txd->direction = DMA_NONE;
1339	txd->src_addr = src;
1340	txd->dst_addr = dest;
1341	txd->len = len;
 
 
 
 
 
 
1342
1343	/* Set platform data for m2m */
1344	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1345	txd->cctl = pl08x->pd->memcpy_channel.cctl &
1346			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1347
1348	/* Both to be incremented or the code will break */
1349	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1350
1351	if (pl08x->vd->dualmaster)
1352		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1353					      pl08x->mem_buses);
1354
1355	ret = pl08x_prep_channel_resources(plchan, txd);
1356	if (ret)
 
1357		return NULL;
 
1358
1359	return &txd->tx;
1360}
1361
1362static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1363		struct dma_chan *chan, struct scatterlist *sgl,
1364		unsigned int sg_len, enum dma_data_direction direction,
1365		unsigned long flags)
1366{
1367	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1368	struct pl08x_driver_data *pl08x = plchan->host;
1369	struct pl08x_txd *txd;
1370	int ret;
1371
1372	/*
1373	 * Current implementation ASSUMES only one sg
1374	 */
1375	if (sg_len != 1) {
1376		dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1377			__func__);
1378		BUG();
1379	}
1380
1381	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1382		__func__, sgl->length, plchan->name);
1383
1384	txd = pl08x_get_txd(plchan, flags);
1385	if (!txd) {
1386		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1387		return NULL;
1388	}
1389
1390	if (direction != plchan->runtime_direction)
1391		dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1392			"the direction configured for the PrimeCell\n",
1393			__func__);
1394
1395	/*
1396	 * Set up addresses, the PrimeCell configured address
1397	 * will take precedence since this may configure the
1398	 * channel target address dynamically at runtime.
1399	 */
1400	txd->direction = direction;
1401	txd->len = sgl->length;
1402
1403	if (direction == DMA_TO_DEVICE) {
1404		txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1405		txd->cctl = plchan->dst_cctl;
1406		txd->src_addr = sgl->dma_address;
1407		txd->dst_addr = plchan->dst_addr;
1408	} else if (direction == DMA_FROM_DEVICE) {
1409		txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1410		txd->cctl = plchan->src_cctl;
1411		txd->src_addr = plchan->src_addr;
1412		txd->dst_addr = sgl->dma_address;
 
1413	} else {
 
1414		dev_err(&pl08x->adev->dev,
1415			"%s direction unsupported\n", __func__);
1416		return NULL;
1417	}
1418
1419	ret = pl08x_prep_channel_resources(plchan, txd);
1420	if (ret)
 
 
 
1421		return NULL;
 
1422
1423	return &txd->tx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424}
1425
1426static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1427			 unsigned long arg)
 
 
1428{
1429	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1430	struct pl08x_driver_data *pl08x = plchan->host;
1431	unsigned long flags;
1432	int ret = 0;
 
 
1433
1434	/* Controls applicable to inactive channels */
1435	if (cmd == DMA_SLAVE_CONFIG) {
1436		return dma_set_runtime_config(chan,
1437					      (struct dma_slave_config *)arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1438	}
1439
1440	/*
1441	 * Anything succeeds on channels with no physical allocation and
1442	 * no queued transfers.
1443	 */
1444	spin_lock_irqsave(&plchan->lock, flags);
1445	if (!plchan->phychan && !plchan->at) {
1446		spin_unlock_irqrestore(&plchan->lock, flags);
1447		return 0;
1448	}
1449
1450	switch (cmd) {
1451	case DMA_TERMINATE_ALL:
1452		plchan->state = PL08X_CHAN_IDLE;
1453
1454		if (plchan->phychan) {
1455			pl08x_terminate_phy_chan(pl08x, plchan->phychan);
 
 
 
 
 
 
 
 
1456
1457			/*
1458			 * Mark physical channel as free and free any slave
1459			 * signal
1460			 */
1461			release_phy_channel(plchan);
1462		}
1463		/* Dequeue jobs and free LLIs */
1464		if (plchan->at) {
1465			pl08x_free_txd(pl08x, plchan->at);
1466			plchan->at = NULL;
 
 
 
 
 
 
 
 
 
1467		}
1468		/* Dequeue jobs not yet fired as well */
1469		pl08x_free_txd_list(pl08x, plchan);
1470		break;
1471	case DMA_PAUSE:
1472		pl08x_pause_phy_chan(plchan->phychan);
1473		plchan->state = PL08X_CHAN_PAUSED;
1474		break;
1475	case DMA_RESUME:
1476		pl08x_resume_phy_chan(plchan->phychan);
1477		plchan->state = PL08X_CHAN_RUNNING;
1478		break;
1479	default:
1480		/* Unknown command */
1481		ret = -ENXIO;
1482		break;
1483	}
1484
1485	spin_unlock_irqrestore(&plchan->lock, flags);
 
 
 
 
 
1486
1487	return ret;
1488}
1489
1490bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
 
1491{
1492	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1493	char *name = chan_id;
1494
1495	/* Check that the channel is not taken! */
1496	if (!strcmp(plchan->name, name))
1497		return true;
1498
1499	return false;
1500}
 
 
1501
1502/*
1503 * Just check that the device is there and active
1504 * TODO: turn this bit on/off depending on the number of physical channels
1505 * actually used, if it is zero... well shut it off. That will save some
1506 * power. Cut the clock at the same time.
1507 */
1508static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1509{
1510	u32 val;
1511
1512	val = readl(pl08x->base + PL080_CONFIG);
1513	val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1514	/* We implicitly clear bit 1 and that means little-endian mode */
1515	val |= PL080_CONFIG_ENABLE;
1516	writel(val, pl08x->base + PL080_CONFIG);
1517}
1518
1519static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1520{
1521	struct device *dev = txd->tx.chan->device->dev;
 
 
1522
1523	if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1524		if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1525			dma_unmap_single(dev, txd->src_addr, txd->len,
1526				DMA_TO_DEVICE);
1527		else
1528			dma_unmap_page(dev, txd->src_addr, txd->len,
1529				DMA_TO_DEVICE);
1530	}
1531	if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1532		if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1533			dma_unmap_single(dev, txd->dst_addr, txd->len,
1534				DMA_FROM_DEVICE);
1535		else
1536			dma_unmap_page(dev, txd->dst_addr, txd->len,
1537				DMA_FROM_DEVICE);
 
 
 
 
 
 
 
1538	}
 
 
 
 
 
 
1539}
1540
1541static void pl08x_tasklet(unsigned long data)
1542{
1543	struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1544	struct pl08x_driver_data *pl08x = plchan->host;
1545	struct pl08x_txd *txd;
1546	unsigned long flags;
1547
1548	spin_lock_irqsave(&plchan->lock, flags);
 
 
 
 
 
 
 
 
1549
1550	txd = plchan->at;
1551	plchan->at = NULL;
1552
1553	if (txd) {
1554		/* Update last completed */
1555		plchan->lc = txd->tx.cookie;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1556	}
1557
1558	/* If a new descriptor is queued, set it up plchan->at is NULL here */
1559	if (!list_empty(&plchan->pend_list)) {
1560		struct pl08x_txd *next;
1561
1562		next = list_first_entry(&plchan->pend_list,
1563					struct pl08x_txd,
1564					node);
1565		list_del(&next->node);
1566
1567		pl08x_start_txd(plchan, next);
1568	} else if (plchan->phychan_hold) {
1569		/*
1570		 * This channel is still in use - we have a new txd being
1571		 * prepared and will soon be queued.  Don't give up the
1572		 * physical channel.
1573		 */
1574	} else {
1575		struct pl08x_dma_chan *waiting = NULL;
1576
1577		/*
1578		 * No more jobs, so free up the physical channel
1579		 * Free any allocated signal on slave transfers too
1580		 */
1581		release_phy_channel(plchan);
1582		plchan->state = PL08X_CHAN_IDLE;
1583
1584		/*
1585		 * And NOW before anyone else can grab that free:d up
1586		 * physical channel, see if there is some memcpy pending
1587		 * that seriously needs to start because of being stacked
1588		 * up while we were choking the physical channels with data.
1589		 */
1590		list_for_each_entry(waiting, &pl08x->memcpy.channels,
1591				    chan.device_node) {
1592		  if (waiting->state == PL08X_CHAN_WAITING &&
1593			    waiting->waiting != NULL) {
1594				int ret;
1595
1596				/* This should REALLY not fail now */
1597				ret = prep_phy_channel(waiting,
1598						       waiting->waiting);
1599				BUG_ON(ret);
1600				waiting->phychan_hold--;
1601				waiting->state = PL08X_CHAN_RUNNING;
1602				waiting->waiting = NULL;
1603				pl08x_issue_pending(&waiting->chan);
1604				break;
1605			}
1606		}
1607	}
1608
1609	spin_unlock_irqrestore(&plchan->lock, flags);
1610
1611	if (txd) {
1612		dma_async_tx_callback callback = txd->tx.callback;
1613		void *callback_param = txd->tx.callback_param;
1614
1615		/* Don't try to unmap buffers on slave channels */
1616		if (!plchan->slave)
1617			pl08x_unmap_buffers(txd);
1618
1619		/* Free the descriptor */
1620		spin_lock_irqsave(&plchan->lock, flags);
1621		pl08x_free_txd(pl08x, txd);
1622		spin_unlock_irqrestore(&plchan->lock, flags);
1623
1624		/* Callback to signal completion */
1625		if (callback)
1626			callback(callback_param);
1627	}
 
 
 
 
 
 
 
 
 
 
 
1628}
1629
1630static irqreturn_t pl08x_irq(int irq, void *dev)
1631{
1632	struct pl08x_driver_data *pl08x = dev;
1633	u32 mask = 0;
1634	u32 val;
1635	int i;
 
 
 
 
 
 
 
 
 
 
 
 
1636
1637	val = readl(pl08x->base + PL080_ERR_STATUS);
1638	if (val) {
1639		/* An error interrupt (on one or more channels) */
1640		dev_err(&pl08x->adev->dev,
1641			"%s error interrupt, register value 0x%08x\n",
1642				__func__, val);
1643		/*
1644		 * Simply clear ALL PL08X error interrupts,
1645		 * regardless of channel and cause
1646		 * FIXME: should be 0x00000003 on PL081 really.
1647		 */
1648		writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1649	}
1650	val = readl(pl08x->base + PL080_INT_STATUS);
1651	for (i = 0; i < pl08x->vd->channels; i++) {
1652		if ((1 << i) & val) {
1653			/* Locate physical channel */
1654			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1655			struct pl08x_dma_chan *plchan = phychan->serving;
 
1656
1657			/* Schedule tasklet on this channel */
1658			tasklet_schedule(&plchan->tasklet);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1659
1660			mask |= (1 << i);
1661		}
1662	}
1663	/* Clear only the terminal interrupts on channels we processed */
1664	writel(mask, pl08x->base + PL080_TC_CLEAR);
1665
1666	return mask ? IRQ_HANDLED : IRQ_NONE;
1667}
1668
1669static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1670{
1671	u32 cctl = pl08x_cctl(chan->cd->cctl);
1672
1673	chan->slave = true;
1674	chan->name = chan->cd->bus_id;
1675	chan->src_addr = chan->cd->addr;
1676	chan->dst_addr = chan->cd->addr;
1677	chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
1678		pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
1679	chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
1680		pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
1681}
1682
1683/*
1684 * Initialise the DMAC memcpy/slave channels.
1685 * Make a local wrapper to hold required data
1686 */
1687static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1688					   struct dma_device *dmadev,
1689					   unsigned int channels,
1690					   bool slave)
1691{
1692	struct pl08x_dma_chan *chan;
1693	int i;
1694
1695	INIT_LIST_HEAD(&dmadev->channels);
1696
1697	/*
1698	 * Register as many many memcpy as we have physical channels,
1699	 * we won't always be able to use all but the code will have
1700	 * to cope with that situation.
1701	 */
1702	for (i = 0; i < channels; i++) {
1703		chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1704		if (!chan) {
1705			dev_err(&pl08x->adev->dev,
1706				"%s no memory for channel\n", __func__);
1707			return -ENOMEM;
1708		}
1709
1710		chan->host = pl08x;
1711		chan->state = PL08X_CHAN_IDLE;
 
1712
1713		if (slave) {
1714			chan->cd = &pl08x->pd->slave_channels[i];
 
 
 
 
 
 
1715			pl08x_dma_slave_init(chan);
1716		} else {
1717			chan->cd = &pl08x->pd->memcpy_channel;
1718			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1719			if (!chan->name) {
1720				kfree(chan);
1721				return -ENOMEM;
1722			}
1723		}
1724		if (chan->cd->circular_buffer) {
1725			dev_err(&pl08x->adev->dev,
1726				"channel %s: circular buffers not supported\n",
1727				chan->name);
1728			kfree(chan);
1729			continue;
1730		}
1731		dev_info(&pl08x->adev->dev,
1732			 "initialize virtual channel \"%s\"\n",
1733			 chan->name);
1734
1735		chan->chan.device = dmadev;
1736		chan->chan.cookie = 0;
1737		chan->lc = 0;
1738
1739		spin_lock_init(&chan->lock);
1740		INIT_LIST_HEAD(&chan->pend_list);
1741		tasklet_init(&chan->tasklet, pl08x_tasklet,
1742			     (unsigned long) chan);
1743
1744		list_add_tail(&chan->chan.device_node, &dmadev->channels);
1745	}
1746	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1747		 i, slave ? "slave" : "memcpy");
1748	return i;
1749}
1750
1751static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1752{
1753	struct pl08x_dma_chan *chan = NULL;
1754	struct pl08x_dma_chan *next;
1755
1756	list_for_each_entry_safe(chan,
1757				 next, &dmadev->channels, chan.device_node) {
1758		list_del(&chan->chan.device_node);
1759		kfree(chan);
1760	}
1761}
1762
1763#ifdef CONFIG_DEBUG_FS
1764static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1765{
1766	switch (state) {
1767	case PL08X_CHAN_IDLE:
1768		return "idle";
1769	case PL08X_CHAN_RUNNING:
1770		return "running";
1771	case PL08X_CHAN_PAUSED:
1772		return "paused";
1773	case PL08X_CHAN_WAITING:
1774		return "waiting";
1775	default:
1776		break;
1777	}
1778	return "UNKNOWN STATE";
1779}
1780
1781static int pl08x_debugfs_show(struct seq_file *s, void *data)
1782{
1783	struct pl08x_driver_data *pl08x = s->private;
1784	struct pl08x_dma_chan *chan;
1785	struct pl08x_phy_chan *ch;
1786	unsigned long flags;
1787	int i;
1788
1789	seq_printf(s, "PL08x physical channels:\n");
1790	seq_printf(s, "CHANNEL:\tUSER:\n");
1791	seq_printf(s, "--------\t-----\n");
1792	for (i = 0; i < pl08x->vd->channels; i++) {
1793		struct pl08x_dma_chan *virt_chan;
1794
1795		ch = &pl08x->phy_chans[i];
1796
1797		spin_lock_irqsave(&ch->lock, flags);
1798		virt_chan = ch->serving;
1799
1800		seq_printf(s, "%d\t\t%s\n",
1801			   ch->id, virt_chan ? virt_chan->name : "(none)");
 
 
1802
1803		spin_unlock_irqrestore(&ch->lock, flags);
1804	}
1805
1806	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1807	seq_printf(s, "CHANNEL:\tSTATE:\n");
1808	seq_printf(s, "--------\t------\n");
1809	list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1810		seq_printf(s, "%s\t\t%s\n", chan->name,
1811			   pl08x_state_str(chan->state));
1812	}
1813
1814	seq_printf(s, "\nPL08x virtual slave channels:\n");
1815	seq_printf(s, "CHANNEL:\tSTATE:\n");
1816	seq_printf(s, "--------\t------\n");
1817	list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1818		seq_printf(s, "%s\t\t%s\n", chan->name,
1819			   pl08x_state_str(chan->state));
1820	}
1821
1822	return 0;
1823}
1824
1825static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1826{
1827	return single_open(file, pl08x_debugfs_show, inode->i_private);
1828}
1829
1830static const struct file_operations pl08x_debugfs_operations = {
1831	.open		= pl08x_debugfs_open,
1832	.read		= seq_read,
1833	.llseek		= seq_lseek,
1834	.release	= single_release,
1835};
1836
1837static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1838{
1839	/* Expose a simple debugfs interface to view all clocks */
1840	(void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1841				   NULL, pl08x,
1842				   &pl08x_debugfs_operations);
1843}
1844
1845#else
1846static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1847{
1848}
1849#endif
1850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1851static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1852{
1853	struct pl08x_driver_data *pl08x;
1854	const struct vendor_data *vd = id->data;
 
 
1855	int ret = 0;
1856	int i;
1857
1858	ret = amba_request_regions(adev, NULL);
1859	if (ret)
1860		return ret;
1861
 
 
 
 
 
1862	/* Create the driver state holder */
1863	pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1864	if (!pl08x) {
1865		ret = -ENOMEM;
1866		goto out_no_pl08x;
1867	}
1868
 
 
 
 
1869	/* Initialize memcpy engine */
1870	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1871	pl08x->memcpy.dev = &adev->dev;
1872	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1873	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1874	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1875	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1876	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1877	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1878	pl08x->memcpy.device_control = pl08x_control;
 
 
 
 
 
 
 
1879
1880	/* Initialize slave engine */
1881	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
 
1882	pl08x->slave.dev = &adev->dev;
1883	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1884	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1885	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1886	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1887	pl08x->slave.device_issue_pending = pl08x_issue_pending;
1888	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1889	pl08x->slave.device_control = pl08x_control;
 
 
 
 
 
 
 
 
1890
1891	/* Get the platform data */
1892	pl08x->pd = dev_get_platdata(&adev->dev);
1893	if (!pl08x->pd) {
1894		dev_err(&adev->dev, "no platform data supplied\n");
1895		goto out_no_platdata;
 
 
 
 
 
 
 
 
 
 
 
1896	}
1897
1898	/* Assign useful pointers to the driver state */
1899	pl08x->adev = adev;
1900	pl08x->vd = vd;
1901
1902	/* By default, AHB1 only.  If dualmaster, from platform */
1903	pl08x->lli_buses = PL08X_AHB1;
1904	pl08x->mem_buses = PL08X_AHB1;
1905	if (pl08x->vd->dualmaster) {
1906		pl08x->lli_buses = pl08x->pd->lli_buses;
1907		pl08x->mem_buses = pl08x->pd->mem_buses;
1908	}
1909
 
 
 
 
 
 
1910	/* A DMA memory pool for LLIs, align on 1-byte boundary */
1911	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1912			PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1913	if (!pl08x->pool) {
1914		ret = -ENOMEM;
1915		goto out_no_lli_pool;
1916	}
1917
1918	spin_lock_init(&pl08x->lock);
1919
1920	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1921	if (!pl08x->base) {
1922		ret = -ENOMEM;
1923		goto out_no_ioremap;
1924	}
1925
1926	/* Turn on the PL08x */
1927	pl08x_ensure_on(pl08x);
1928
1929	/* Attach the interrupt handler */
1930	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1931	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1932
1933	ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1934			  DRIVER_NAME, pl08x);
1935	if (ret) {
1936		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1937			__func__, adev->irq[0]);
1938		goto out_no_irq;
1939	}
1940
1941	/* Initialize physical channels */
1942	pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
1943			GFP_KERNEL);
1944	if (!pl08x->phy_chans) {
1945		dev_err(&adev->dev, "%s failed to allocate "
1946			"physical channel holders\n",
1947			__func__);
1948		goto out_no_phychans;
1949	}
1950
1951	for (i = 0; i < vd->channels; i++) {
1952		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1953
1954		ch->id = i;
1955		ch->base = pl08x->base + PL080_Cx_BASE(i);
 
1956		spin_lock_init(&ch->lock);
1957		ch->serving = NULL;
1958		ch->signal = -1;
1959		dev_info(&adev->dev,
1960			 "physical channel %d is %s\n", i,
1961			 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
 
 
 
 
 
 
 
 
 
 
 
 
 
1962	}
1963
1964	/* Register as many memcpy channels as there are physical channels */
1965	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1966					      pl08x->vd->channels, false);
1967	if (ret <= 0) {
1968		dev_warn(&pl08x->adev->dev,
1969			 "%s failed to enumerate memcpy channels - %d\n",
1970			 __func__, ret);
1971		goto out_no_memcpy;
1972	}
1973	pl08x->memcpy.chancnt = ret;
1974
1975	/* Register slave channels */
1976	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1977					      pl08x->pd->num_slave_channels,
1978					      true);
1979	if (ret <= 0) {
1980		dev_warn(&pl08x->adev->dev,
1981			"%s failed to enumerate slave channels - %d\n",
1982				__func__, ret);
1983		goto out_no_slave;
1984	}
1985	pl08x->slave.chancnt = ret;
1986
1987	ret = dma_async_device_register(&pl08x->memcpy);
1988	if (ret) {
1989		dev_warn(&pl08x->adev->dev,
1990			"%s failed to register memcpy as an async device - %d\n",
1991			__func__, ret);
1992		goto out_no_memcpy_reg;
1993	}
1994
1995	ret = dma_async_device_register(&pl08x->slave);
1996	if (ret) {
1997		dev_warn(&pl08x->adev->dev,
1998			"%s failed to register slave as an async device - %d\n",
1999			__func__, ret);
2000		goto out_no_slave_reg;
2001	}
2002
2003	amba_set_drvdata(adev, pl08x);
2004	init_pl08x_debugfs(pl08x);
2005	dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2006		 amba_part(adev), amba_rev(adev),
2007		 (unsigned long long)adev->res.start, adev->irq[0]);
 
2008	return 0;
2009
2010out_no_slave_reg:
2011	dma_async_device_unregister(&pl08x->memcpy);
2012out_no_memcpy_reg:
2013	pl08x_free_virtual_channels(&pl08x->slave);
2014out_no_slave:
2015	pl08x_free_virtual_channels(&pl08x->memcpy);
2016out_no_memcpy:
2017	kfree(pl08x->phy_chans);
2018out_no_phychans:
2019	free_irq(adev->irq[0], pl08x);
2020out_no_irq:
2021	iounmap(pl08x->base);
2022out_no_ioremap:
2023	dma_pool_destroy(pl08x->pool);
2024out_no_lli_pool:
2025out_no_platdata:
2026	kfree(pl08x);
2027out_no_pl08x:
2028	amba_release_regions(adev);
2029	return ret;
2030}
2031
2032/* PL080 has 8 channels and the PL080 have just 2 */
2033static struct vendor_data vendor_pl080 = {
 
2034	.channels = 8,
 
2035	.dualmaster = true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2036};
2037
2038static struct vendor_data vendor_pl081 = {
 
2039	.channels = 2,
 
2040	.dualmaster = false,
 
2041};
2042
2043static struct amba_id pl08x_ids[] = {
 
 
 
 
 
 
2044	/* PL080 */
2045	{
2046		.id	= 0x00041080,
2047		.mask	= 0x000fffff,
2048		.data	= &vendor_pl080,
2049	},
2050	/* PL081 */
2051	{
2052		.id	= 0x00041081,
2053		.mask	= 0x000fffff,
2054		.data	= &vendor_pl081,
2055	},
2056	/* Nomadik 8815 PL080 variant */
2057	{
2058		.id	= 0x00280880,
2059		.mask	= 0x00ffffff,
2060		.data	= &vendor_pl080,
2061	},
2062	{ 0, 0 },
2063};
 
 
2064
2065static struct amba_driver pl08x_amba_driver = {
2066	.drv.name	= DRIVER_NAME,
2067	.id_table	= pl08x_ids,
2068	.probe		= pl08x_probe,
2069};
2070
2071static int __init pl08x_init(void)
2072{
2073	int retval;
2074	retval = amba_driver_register(&pl08x_amba_driver);
2075	if (retval)
2076		printk(KERN_WARNING DRIVER_NAME
2077		       "failed to register as an AMBA device (%d)\n",
2078		       retval);
2079	return retval;
2080}
2081subsys_initcall(pl08x_init);
v4.10.11
   1/*
   2 * Copyright (c) 2006 ARM Ltd.
   3 * Copyright (c) 2010 ST-Ericsson SA
   4 *
   5 * Author: Peter Pearse <peter.pearse@arm.com>
   6 * Author: Linus Walleij <linus.walleij@stericsson.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify it
   9 * under the terms of the GNU General Public License as published by the Free
  10 * Software Foundation; either version 2 of the License, or (at your option)
  11 * any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful, but WITHOUT
  14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  16 * more details.
  17 *
 
 
 
 
  18 * The full GNU General Public License is in this distribution in the file
  19 * called COPYING.
  20 *
  21 * Documentation: ARM DDI 0196G == PL080
  22 * Documentation: ARM DDI 0218E == PL081
  23 * Documentation: S3C6410 User's Manual == PL080S
  24 *
  25 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
  26 * channel.
  27 *
  28 * The PL080 has 8 channels available for simultaneous use, and the PL081
  29 * has only two channels. So on these DMA controllers the number of channels
  30 * and the number of incoming DMA signals are two totally different things.
  31 * It is usually not possible to theoretically handle all physical signals,
  32 * so a multiplexing scheme with possible denial of use is necessary.
  33 *
  34 * The PL080 has a dual bus master, PL081 has a single master.
  35 *
  36 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
  37 * It differs in following aspects:
  38 * - CH_CONFIG register at different offset,
  39 * - separate CH_CONTROL2 register for transfer size,
  40 * - bigger maximum transfer size,
  41 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
  42 * - no support for peripheral flow control.
  43 *
  44 * Memory to peripheral transfer may be visualized as
  45 *	Get data from memory to DMAC
  46 *	Until no data left
  47 *		On burst request from peripheral
  48 *			Destination burst from DMAC to peripheral
  49 *			Clear burst request
  50 *	Raise terminal count interrupt
  51 *
  52 * For peripherals with a FIFO:
  53 * Source      burst size == half the depth of the peripheral FIFO
  54 * Destination burst size == the depth of the peripheral FIFO
  55 *
  56 * (Bursts are irrelevant for mem to mem transfers - there are no burst
  57 * signals, the DMA controller will simply facilitate its AHB master.)
  58 *
  59 * ASSUMES default (little) endianness for DMA transfers
  60 *
  61 * The PL08x has two flow control settings:
  62 *  - DMAC flow control: the transfer size defines the number of transfers
  63 *    which occur for the current LLI entry, and the DMAC raises TC at the
  64 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
  65 *    to both the BREQ and SREQ signals (contrary to documented),
  66 *    transferring data if either is active.  The LBREQ and LSREQ signals
  67 *    are ignored.
  68 *
  69 *  - Peripheral flow control: the transfer size is ignored (and should be
  70 *    zero).  The data is transferred from the current LLI entry, until
  71 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
  72 *    will then move to the next LLI entry. Unsupported by PL080S.
 
 
 
 
 
 
 
 
  73 */
 
 
 
 
 
 
 
 
 
  74#include <linux/amba/bus.h>
  75#include <linux/amba/pl08x.h>
  76#include <linux/debugfs.h>
  77#include <linux/delay.h>
  78#include <linux/device.h>
  79#include <linux/dmaengine.h>
  80#include <linux/dmapool.h>
  81#include <linux/dma-mapping.h>
  82#include <linux/export.h>
  83#include <linux/init.h>
  84#include <linux/interrupt.h>
  85#include <linux/module.h>
  86#include <linux/of.h>
  87#include <linux/of_dma.h>
  88#include <linux/pm_runtime.h>
  89#include <linux/seq_file.h>
  90#include <linux/slab.h>
  91#include <linux/amba/pl080.h>
  92
  93#include "dmaengine.h"
  94#include "virt-dma.h"
  95
  96#define DRIVER_NAME	"pl08xdmac"
  97
  98#define PL80X_DMA_BUSWIDTHS \
  99	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
 100	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
 101	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
 102	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
 103
 104static struct amba_driver pl08x_amba_driver;
 105struct pl08x_driver_data;
 106
 107/**
 108 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
 109 * @channels: the number of channels available in this variant
 110 * @signals: the number of request signals available from the hardware
 111 * @dualmaster: whether this version supports dual AHB masters or not.
 112 * @nomadik: whether the channels have Nomadik security extension bits
 113 *	that need to be checked for permission before use and some registers are
 114 *	missing
 115 * @pl080s: whether this version is a PL080S, which has separate register and
 116 *	LLI word for transfer size.
 117 * @max_transfer_size: the maximum single element transfer size for this
 118 *	PL08x variant.
 119 */
 120struct vendor_data {
 121	u8 config_offset;
 122	u8 channels;
 123	u8 signals;
 124	bool dualmaster;
 125	bool nomadik;
 126	bool pl080s;
 127	u32 max_transfer_size;
 128};
 129
 130/**
 131 * struct pl08x_bus_data - information of source or destination
 132 * busses for a transfer
 133 * @addr: current address
 134 * @maxwidth: the maximum width of a transfer on this bus
 135 * @buswidth: the width of this bus in bytes: 1, 2 or 4
 136 */
 137struct pl08x_bus_data {
 138	dma_addr_t addr;
 139	u8 maxwidth;
 140	u8 buswidth;
 141};
 142
 143#define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
 144
 145/**
 146 * struct pl08x_phy_chan - holder for the physical channels
 147 * @id: physical index to this channel
 148 * @lock: a lock to use when altering an instance of this struct
 149 * @serving: the virtual channel currently being served by this physical
 150 * channel
 151 * @locked: channel unavailable for the system, e.g. dedicated to secure
 152 * world
 153 */
 154struct pl08x_phy_chan {
 155	unsigned int id;
 156	void __iomem *base;
 157	void __iomem *reg_config;
 158	spinlock_t lock;
 159	struct pl08x_dma_chan *serving;
 160	bool locked;
 161};
 162
 163/**
 164 * struct pl08x_sg - structure containing data per sg
 165 * @src_addr: src address of sg
 166 * @dst_addr: dst address of sg
 167 * @len: transfer len in bytes
 168 * @node: node for txd's dsg_list
 169 */
 170struct pl08x_sg {
 171	dma_addr_t src_addr;
 172	dma_addr_t dst_addr;
 173	size_t len;
 174	struct list_head node;
 175};
 176
 177/**
 178 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
 179 * @vd: virtual DMA descriptor
 180 * @dsg_list: list of children sg's
 181 * @llis_bus: DMA memory address (physical) start for the LLIs
 182 * @llis_va: virtual memory address start for the LLIs
 183 * @cctl: control reg values for current txd
 184 * @ccfg: config reg values for current txd
 185 * @done: this marks completed descriptors, which should not have their
 186 *   mux released.
 187 * @cyclic: indicate cyclic transfers
 188 */
 189struct pl08x_txd {
 190	struct virt_dma_desc vd;
 191	struct list_head dsg_list;
 192	dma_addr_t llis_bus;
 193	u32 *llis_va;
 194	/* Default cctl value for LLIs */
 195	u32 cctl;
 196	/*
 197	 * Settings to be put into the physical channel when we
 198	 * trigger this txd.  Other registers are in llis_va[0].
 199	 */
 200	u32 ccfg;
 201	bool done;
 202	bool cyclic;
 203};
 204
 205/**
 206 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
 207 * states
 208 * @PL08X_CHAN_IDLE: the channel is idle
 209 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
 210 * channel and is running a transfer on it
 211 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
 212 * channel, but the transfer is currently paused
 213 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
 214 * channel to become available (only pertains to memcpy channels)
 215 */
 216enum pl08x_dma_chan_state {
 217	PL08X_CHAN_IDLE,
 218	PL08X_CHAN_RUNNING,
 219	PL08X_CHAN_PAUSED,
 220	PL08X_CHAN_WAITING,
 221};
 222
 223/**
 224 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
 225 * @vc: wrappped virtual channel
 226 * @phychan: the physical channel utilized by this channel, if there is one
 227 * @name: name of channel
 228 * @cd: channel platform data
 229 * @runtime_addr: address for RX/TX according to the runtime config
 230 * @at: active transaction on this channel
 231 * @lock: a lock for this channel data
 232 * @host: a pointer to the host (internal use)
 233 * @state: whether the channel is idle, paused, running etc
 234 * @slave: whether this channel is a device (slave) or for memcpy
 235 * @signal: the physical DMA request signal which this channel is using
 236 * @mux_use: count of descriptors using this DMA request signal setting
 237 */
 238struct pl08x_dma_chan {
 239	struct virt_dma_chan vc;
 240	struct pl08x_phy_chan *phychan;
 241	const char *name;
 242	struct pl08x_channel_data *cd;
 243	struct dma_slave_config cfg;
 244	struct pl08x_txd *at;
 245	struct pl08x_driver_data *host;
 246	enum pl08x_dma_chan_state state;
 247	bool slave;
 248	int signal;
 249	unsigned mux_use;
 250};
 251
 252/**
 253 * struct pl08x_driver_data - the local state holder for the PL08x
 254 * @slave: slave engine for this instance
 255 * @memcpy: memcpy engine for this instance
 256 * @base: virtual memory base (remapped) for the PL08x
 257 * @adev: the corresponding AMBA (PrimeCell) bus entry
 258 * @vd: vendor data for this PL08x variant
 259 * @pd: platform data passed in from the platform/machine
 260 * @phy_chans: array of data for the physical channels
 261 * @pool: a pool for the LLI descriptors
 262 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 263 * fetches
 264 * @mem_buses: set to indicate memory transfers on AHB2.
 265 * @lock: a spinlock for this struct
 266 */
 267struct pl08x_driver_data {
 268	struct dma_device slave;
 269	struct dma_device memcpy;
 270	void __iomem *base;
 271	struct amba_device *adev;
 272	const struct vendor_data *vd;
 273	struct pl08x_platform_data *pd;
 274	struct pl08x_phy_chan *phy_chans;
 275	struct dma_pool *pool;
 
 276	u8 lli_buses;
 277	u8 mem_buses;
 278	u8 lli_words;
 279};
 280
 281/*
 282 * PL08X specific defines
 283 */
 284
 285/* The order of words in an LLI. */
 286#define PL080_LLI_SRC		0
 287#define PL080_LLI_DST		1
 288#define PL080_LLI_LLI		2
 289#define PL080_LLI_CCTL		3
 290#define PL080S_LLI_CCTL2	4
 291
 292/* Total words in an LLI. */
 293#define PL080_LLI_WORDS		4
 294#define PL080S_LLI_WORDS	8
 295
 296/*
 297 * Number of LLIs in each LLI buffer allocated for one transfer
 298 * (maximum times we call dma_pool_alloc on this pool without freeing)
 
 299 */
 300#define MAX_NUM_TSFR_LLIS	512
 
 
 
 
 
 
 
 301#define PL08X_ALIGN		8
 302
 303static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
 304{
 305	return container_of(chan, struct pl08x_dma_chan, vc.chan);
 306}
 307
 308static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
 309{
 310	return container_of(tx, struct pl08x_txd, vd.tx);
 311}
 312
 313/*
 314 * Mux handling.
 315 *
 316 * This gives us the DMA request input to the PL08x primecell which the
 317 * peripheral described by the channel data will be routed to, possibly
 318 * via a board/SoC specific external MUX.  One important point to note
 319 * here is that this does not depend on the physical channel.
 320 */
 321static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
 322{
 323	const struct pl08x_platform_data *pd = plchan->host->pd;
 324	int ret;
 325
 326	if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
 327		ret = pd->get_xfer_signal(plchan->cd);
 328		if (ret < 0) {
 329			plchan->mux_use = 0;
 330			return ret;
 331		}
 332
 333		plchan->signal = ret;
 334	}
 335	return 0;
 336}
 337
 338static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
 339{
 340	const struct pl08x_platform_data *pd = plchan->host->pd;
 341
 342	if (plchan->signal >= 0) {
 343		WARN_ON(plchan->mux_use == 0);
 344
 345		if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
 346			pd->put_xfer_signal(plchan->cd, plchan->signal);
 347			plchan->signal = -1;
 348		}
 349	}
 350}
 351
 352/*
 353 * Physical channel handling
 354 */
 355
 356/* Whether a certain channel is busy or not */
 357static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
 358{
 359	unsigned int val;
 360
 361	val = readl(ch->reg_config);
 362	return val & PL080_CONFIG_ACTIVE;
 363}
 364
 365static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
 366		struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
 367{
 368	if (pl08x->vd->pl080s)
 369		dev_vdbg(&pl08x->adev->dev,
 370			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 371			"clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
 372			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 373			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
 374			lli[PL080S_LLI_CCTL2], ccfg);
 375	else
 376		dev_vdbg(&pl08x->adev->dev,
 377			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 378			"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
 379			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 380			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
 381
 382	writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
 383	writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
 384	writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
 385	writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);
 386
 387	if (pl08x->vd->pl080s)
 388		writel_relaxed(lli[PL080S_LLI_CCTL2],
 389				phychan->base + PL080S_CH_CONTROL2);
 390
 391	writel(ccfg, phychan->reg_config);
 392}
 393
 394/*
 395 * Set the initial DMA register values i.e. those for the first LLI
 396 * The next LLI pointer and the configuration interrupt bit have
 397 * been set when the LLIs were constructed.  Poke them into the hardware
 398 * and start the transfer.
 399 */
 400static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
 
 401{
 402	struct pl08x_driver_data *pl08x = plchan->host;
 403	struct pl08x_phy_chan *phychan = plchan->phychan;
 404	struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
 405	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
 406	u32 val;
 407
 408	list_del(&txd->vd.node);
 409
 410	plchan->at = txd;
 411
 412	/* Wait for channel inactive */
 413	while (pl08x_phy_channel_busy(phychan))
 414		cpu_relax();
 415
 416	pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
 
 
 
 
 
 
 
 
 
 
 417
 418	/* Enable the DMA channel */
 419	/* Do not access config register until channel shows as disabled */
 420	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
 421		cpu_relax();
 422
 423	/* Do not access config register until channel shows as inactive */
 424	val = readl(phychan->reg_config);
 425	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
 426		val = readl(phychan->reg_config);
 427
 428	writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
 429}
 430
 431/*
 432 * Pause the channel by setting the HALT bit.
 433 *
 434 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 435 * the FIFO can only drain if the peripheral is still requesting data.
 436 * (note: this can still timeout if the DMAC FIFO never drains of data.)
 437 *
 438 * For P->M transfers, disable the peripheral first to stop it filling
 439 * the DMAC FIFO, and then pause the DMAC.
 440 */
 441static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
 442{
 443	u32 val;
 444	int timeout;
 445
 446	/* Set the HALT bit and wait for the FIFO to drain */
 447	val = readl(ch->reg_config);
 448	val |= PL080_CONFIG_HALT;
 449	writel(val, ch->reg_config);
 450
 451	/* Wait for channel inactive */
 452	for (timeout = 1000; timeout; timeout--) {
 453		if (!pl08x_phy_channel_busy(ch))
 454			break;
 455		udelay(1);
 456	}
 457	if (pl08x_phy_channel_busy(ch))
 458		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
 459}
 460
 461static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
 462{
 463	u32 val;
 464
 465	/* Clear the HALT bit */
 466	val = readl(ch->reg_config);
 467	val &= ~PL080_CONFIG_HALT;
 468	writel(val, ch->reg_config);
 469}
 470
 
 471/*
 472 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 473 * clears any pending interrupt status.  This should not be used for
 474 * an on-going transfer, but as a method of shutting down a channel
 475 * (eg, when it's no longer used) or terminating a transfer.
 476 */
 477static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
 478	struct pl08x_phy_chan *ch)
 479{
 480	u32 val = readl(ch->reg_config);
 481
 482	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
 483		 PL080_CONFIG_TC_IRQ_MASK);
 484
 485	writel(val, ch->reg_config);
 486
 487	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
 488	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
 489}
 490
 491static inline u32 get_bytes_in_cctl(u32 cctl)
 492{
 493	/* The source width defines the number of bytes */
 494	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
 495
 496	cctl &= PL080_CONTROL_SWIDTH_MASK;
 497
 498	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
 499	case PL080_WIDTH_8BIT:
 500		break;
 501	case PL080_WIDTH_16BIT:
 502		bytes *= 2;
 503		break;
 504	case PL080_WIDTH_32BIT:
 505		bytes *= 4;
 506		break;
 507	}
 508	return bytes;
 509}
 510
 511static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
 512{
 513	/* The source width defines the number of bytes */
 514	u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;
 515
 516	cctl &= PL080_CONTROL_SWIDTH_MASK;
 517
 518	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
 519	case PL080_WIDTH_8BIT:
 520		break;
 521	case PL080_WIDTH_16BIT:
 522		bytes *= 2;
 523		break;
 524	case PL080_WIDTH_32BIT:
 525		bytes *= 4;
 526		break;
 527	}
 528	return bytes;
 529}
 530
 531/* The channel should be paused when calling this */
 532static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
 533{
 534	struct pl08x_driver_data *pl08x = plchan->host;
 535	const u32 *llis_va, *llis_va_limit;
 536	struct pl08x_phy_chan *ch;
 537	dma_addr_t llis_bus;
 538	struct pl08x_txd *txd;
 539	u32 llis_max_words;
 540	size_t bytes;
 541	u32 clli;
 542
 
 543	ch = plchan->phychan;
 544	txd = plchan->at;
 545
 546	if (!ch || !txd)
 547		return 0;
 548
 549	/*
 550	 * Follow the LLIs to get the number of remaining
 551	 * bytes in the currently active transaction.
 552	 */
 553	clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
 
 554
 555	/* First get the remaining bytes in the active transfer */
 556	if (pl08x->vd->pl080s)
 557		bytes = get_bytes_in_cctl_pl080s(
 558				readl(ch->base + PL080_CH_CONTROL),
 559				readl(ch->base + PL080S_CH_CONTROL2));
 560	else
 561		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
 562
 563	if (!clli)
 564		return bytes;
 
 
 565
 566	llis_va = txd->llis_va;
 567	llis_bus = txd->llis_bus;
 568
 569	llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
 570	BUG_ON(clli < llis_bus || clli >= llis_bus +
 571						sizeof(u32) * llis_max_words);
 
 
 572
 573	/*
 574	 * Locate the next LLI - as this is an array,
 575	 * it's simple maths to find.
 576	 */
 577	llis_va += (clli - llis_bus) / sizeof(u32);
 578
 579	llis_va_limit = llis_va + llis_max_words;
 
 
 
 
 
 
 
 580
 581	for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
 582		if (pl08x->vd->pl080s)
 583			bytes += get_bytes_in_cctl_pl080s(
 584						llis_va[PL080_LLI_CCTL],
 585						llis_va[PL080S_LLI_CCTL2]);
 586		else
 587			bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
 588
 589		/*
 590		 * A LLI pointer going backward terminates the LLI list
 591		 */
 592		if (llis_va[PL080_LLI_LLI] <= clli)
 593			break;
 594	}
 595
 596	return bytes;
 597}
 598
 599/*
 600 * Allocate a physical channel for a virtual channel
 601 *
 602 * Try to locate a physical channel to be used for this transfer. If all
 603 * are taken return NULL and the requester will have to cope by using
 604 * some fallback PIO mode or retrying later.
 605 */
 606static struct pl08x_phy_chan *
 607pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
 608		      struct pl08x_dma_chan *virt_chan)
 609{
 610	struct pl08x_phy_chan *ch = NULL;
 611	unsigned long flags;
 612	int i;
 613
 614	for (i = 0; i < pl08x->vd->channels; i++) {
 615		ch = &pl08x->phy_chans[i];
 616
 617		spin_lock_irqsave(&ch->lock, flags);
 618
 619		if (!ch->locked && !ch->serving) {
 620			ch->serving = virt_chan;
 
 621			spin_unlock_irqrestore(&ch->lock, flags);
 622			break;
 623		}
 624
 625		spin_unlock_irqrestore(&ch->lock, flags);
 626	}
 627
 628	if (i == pl08x->vd->channels) {
 629		/* No physical channel available, cope with it */
 630		return NULL;
 631	}
 632
 633	return ch;
 634}
 635
 636/* Mark the physical channel as free.  Note, this write is atomic. */
 637static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
 638					 struct pl08x_phy_chan *ch)
 639{
 640	ch->serving = NULL;
 641}
 642
 643/*
 644 * Try to allocate a physical channel.  When successful, assign it to
 645 * this virtual channel, and initiate the next descriptor.  The
 646 * virtual channel lock must be held at this point.
 647 */
 648static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
 649{
 650	struct pl08x_driver_data *pl08x = plchan->host;
 651	struct pl08x_phy_chan *ch;
 652
 653	ch = pl08x_get_phy_channel(pl08x, plchan);
 654	if (!ch) {
 655		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
 656		plchan->state = PL08X_CHAN_WAITING;
 657		return;
 658	}
 659
 660	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
 661		ch->id, plchan->name);
 662
 663	plchan->phychan = ch;
 664	plchan->state = PL08X_CHAN_RUNNING;
 665	pl08x_start_next_txd(plchan);
 666}
 667
 668static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
 669	struct pl08x_dma_chan *plchan)
 670{
 671	struct pl08x_driver_data *pl08x = plchan->host;
 672
 673	dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
 674		ch->id, plchan->name);
 675
 676	/*
 677	 * We do this without taking the lock; we're really only concerned
 678	 * about whether this pointer is NULL or not, and we're guaranteed
 679	 * that this will only be called when it _already_ is non-NULL.
 680	 */
 681	ch->serving = plchan;
 682	plchan->phychan = ch;
 683	plchan->state = PL08X_CHAN_RUNNING;
 684	pl08x_start_next_txd(plchan);
 685}
 686
 687/*
 688 * Free a physical DMA channel, potentially reallocating it to another
 689 * virtual channel if we have any pending.
 690 */
 691static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
 692{
 693	struct pl08x_driver_data *pl08x = plchan->host;
 694	struct pl08x_dma_chan *p, *next;
 695
 696 retry:
 697	next = NULL;
 698
 699	/* Find a waiting virtual channel for the next transfer. */
 700	list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
 701		if (p->state == PL08X_CHAN_WAITING) {
 702			next = p;
 703			break;
 704		}
 705
 706	if (!next) {
 707		list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
 708			if (p->state == PL08X_CHAN_WAITING) {
 709				next = p;
 710				break;
 711			}
 712	}
 713
 714	/* Ensure that the physical channel is stopped */
 715	pl08x_terminate_phy_chan(pl08x, plchan->phychan);
 716
 717	if (next) {
 718		bool success;
 719
 720		/*
 721		 * Eww.  We know this isn't going to deadlock
 722		 * but lockdep probably doesn't.
 723		 */
 724		spin_lock(&next->vc.lock);
 725		/* Re-check the state now that we have the lock */
 726		success = next->state == PL08X_CHAN_WAITING;
 727		if (success)
 728			pl08x_phy_reassign_start(plchan->phychan, next);
 729		spin_unlock(&next->vc.lock);
 730
 731		/* If the state changed, try to find another channel */
 732		if (!success)
 733			goto retry;
 734	} else {
 735		/* No more jobs, so free up the physical channel */
 736		pl08x_put_phy_channel(pl08x, plchan->phychan);
 737	}
 738
 739	plchan->phychan = NULL;
 740	plchan->state = PL08X_CHAN_IDLE;
 741}
 742
 743/*
 744 * LLI handling
 745 */
 746
 747static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
 748{
 749	switch (coded) {
 750	case PL080_WIDTH_8BIT:
 751		return 1;
 752	case PL080_WIDTH_16BIT:
 753		return 2;
 754	case PL080_WIDTH_32BIT:
 755		return 4;
 756	default:
 757		break;
 758	}
 759	BUG();
 760	return 0;
 761}
 762
 763static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
 764				  size_t tsize)
 765{
 766	u32 retbits = cctl;
 767
 768	/* Remove all src, dst and transfer size bits */
 769	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
 770	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
 771	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
 772
 773	/* Then set the bits according to the parameters */
 774	switch (srcwidth) {
 775	case 1:
 776		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
 777		break;
 778	case 2:
 779		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
 780		break;
 781	case 4:
 782		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
 783		break;
 784	default:
 785		BUG();
 786		break;
 787	}
 788
 789	switch (dstwidth) {
 790	case 1:
 791		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
 792		break;
 793	case 2:
 794		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
 795		break;
 796	case 4:
 797		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
 798		break;
 799	default:
 800		BUG();
 801		break;
 802	}
 803
 804	tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
 805	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
 806	return retbits;
 807}
 808
 809struct pl08x_lli_build_data {
 810	struct pl08x_txd *txd;
 811	struct pl08x_bus_data srcbus;
 812	struct pl08x_bus_data dstbus;
 813	size_t remainder;
 814	u32 lli_bus;
 815};
 816
 817/*
 818 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
 819 * victim in case src & dest are not similarly aligned. i.e. If after aligning
 820 * masters address with width requirements of transfer (by sending few byte by
 821 * byte data), slave is still not aligned, then its width will be reduced to
 822 * BYTE.
 823 * - prefers the destination bus if both available
 824 * - prefers bus with fixed address (i.e. peripheral)
 825 */
 826static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
 827	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
 828{
 829	if (!(cctl & PL080_CONTROL_DST_INCR)) {
 
 
 
 830		*mbus = &bd->dstbus;
 831		*sbus = &bd->srcbus;
 832	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
 833		*mbus = &bd->srcbus;
 834		*sbus = &bd->dstbus;
 835	} else {
 836		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
 837			*mbus = &bd->dstbus;
 838			*sbus = &bd->srcbus;
 839		} else {
 
 
 
 
 
 
 840			*mbus = &bd->srcbus;
 841			*sbus = &bd->dstbus;
 
 
 
 
 842		}
 843	}
 844}
 845
 846/*
 847 * Fills in one LLI for a certain transfer descriptor and advance the counter
 848 */
 849static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
 850				    struct pl08x_lli_build_data *bd,
 851				    int num_llis, int len, u32 cctl, u32 cctl2)
 852{
 853	u32 offset = num_llis * pl08x->lli_words;
 854	u32 *llis_va = bd->txd->llis_va + offset;
 855	dma_addr_t llis_bus = bd->txd->llis_bus;
 856
 857	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
 858
 859	/* Advance the offset to next LLI. */
 860	offset += pl08x->lli_words;
 861
 862	llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
 863	llis_va[PL080_LLI_DST] = bd->dstbus.addr;
 864	llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
 865	llis_va[PL080_LLI_LLI] |= bd->lli_bus;
 866	llis_va[PL080_LLI_CCTL] = cctl;
 867	if (pl08x->vd->pl080s)
 868		llis_va[PL080S_LLI_CCTL2] = cctl2;
 869
 870	if (cctl & PL080_CONTROL_SRC_INCR)
 871		bd->srcbus.addr += len;
 872	if (cctl & PL080_CONTROL_DST_INCR)
 873		bd->dstbus.addr += len;
 874
 875	BUG_ON(bd->remainder < len);
 876
 877	bd->remainder -= len;
 878}
 879
 880static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
 881			struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
 882			int num_llis, size_t *total_bytes)
 883{
 884	*cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
 885	pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
 886	(*total_bytes) += len;
 887}
 888
 889#ifdef VERBOSE_DEBUG
 890static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
 891			   const u32 *llis_va, int num_llis)
 892{
 893	int i;
 
 894
 895	if (pl08x->vd->pl080s) {
 896		dev_vdbg(&pl08x->adev->dev,
 897			"%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
 898			"lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
 899		for (i = 0; i < num_llis; i++) {
 900			dev_vdbg(&pl08x->adev->dev,
 901				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
 902				i, llis_va, llis_va[PL080_LLI_SRC],
 903				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
 904				llis_va[PL080_LLI_CCTL],
 905				llis_va[PL080S_LLI_CCTL2]);
 906			llis_va += pl08x->lli_words;
 907		}
 908	} else {
 909		dev_vdbg(&pl08x->adev->dev,
 910			"%-3s %-9s  %-10s %-10s %-10s %s\n",
 911			"lli", "", "csrc", "cdst", "clli", "cctl");
 912		for (i = 0; i < num_llis; i++) {
 913			dev_vdbg(&pl08x->adev->dev,
 914				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
 915				i, llis_va, llis_va[PL080_LLI_SRC],
 916				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
 917				llis_va[PL080_LLI_CCTL]);
 918			llis_va += pl08x->lli_words;
 919		}
 920	}
 921}
 922#else
 923static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
 924				  const u32 *llis_va, int num_llis) {}
 925#endif
 926
 927/*
 928 * This fills in the table of LLIs for the transfer descriptor
 929 * Note that we assume we never have to change the burst sizes
 930 * Return 0 for error
 931 */
 932static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
 933			      struct pl08x_txd *txd)
 934{
 935	struct pl08x_bus_data *mbus, *sbus;
 936	struct pl08x_lli_build_data bd;
 937	int num_llis = 0;
 938	u32 cctl, early_bytes = 0;
 939	size_t max_bytes_per_lli, total_bytes;
 940	u32 *llis_va, *last_lli;
 941	struct pl08x_sg *dsg;
 942
 943	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
 
 944	if (!txd->llis_va) {
 945		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
 946		return 0;
 947	}
 948
 
 
 
 
 
 949	bd.txd = txd;
 
 
 950	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
 951	cctl = txd->cctl;
 952
 953	/* Find maximum width of the source bus */
 954	bd.srcbus.maxwidth =
 955		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
 956				       PL080_CONTROL_SWIDTH_SHIFT);
 957
 958	/* Find maximum width of the destination bus */
 959	bd.dstbus.maxwidth =
 960		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
 961				       PL080_CONTROL_DWIDTH_SHIFT);
 962
 963	list_for_each_entry(dsg, &txd->dsg_list, node) {
 964		total_bytes = 0;
 965		cctl = txd->cctl;
 966
 967		bd.srcbus.addr = dsg->src_addr;
 968		bd.dstbus.addr = dsg->dst_addr;
 969		bd.remainder = dsg->len;
 970		bd.srcbus.buswidth = bd.srcbus.maxwidth;
 971		bd.dstbus.buswidth = bd.dstbus.maxwidth;
 
 
 
 972
 973		pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
 
 
 
 
 
 974
 975		dev_vdbg(&pl08x->adev->dev,
 976			"src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
 977			(u64)bd.srcbus.addr,
 978			cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
 979			bd.srcbus.buswidth,
 980			(u64)bd.dstbus.addr,
 981			cctl & PL080_CONTROL_DST_INCR ? "+" : "",
 982			bd.dstbus.buswidth,
 983			bd.remainder);
 984		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
 985			mbus == &bd.srcbus ? "src" : "dst",
 986			sbus == &bd.srcbus ? "src" : "dst");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987
 988		/*
 989		 * Zero length is only allowed if all these requirements are
 990		 * met:
 991		 * - flow controller is peripheral.
 992		 * - src.addr is aligned to src.width
 993		 * - dst.addr is aligned to dst.width
 994		 *
 995		 * sg_len == 1 should be true, as there can be two cases here:
 996		 *
 997		 * - Memory addresses are contiguous and are not scattered.
 998		 *   Here, Only one sg will be passed by user driver, with
 999		 *   memory address and zero length. We pass this to controller
1000		 *   and after the transfer it will receive the last burst
1001		 *   request from peripheral and so transfer finishes.
1002		 *
1003		 * - Memory addresses are scattered and are not contiguous.
1004		 *   Here, Obviously as DMA controller doesn't know when a lli's
1005		 *   transfer gets over, it can't load next lli. So in this
1006		 *   case, there has to be an assumption that only one lli is
1007		 *   supported. Thus, we can't have scattered addresses.
1008		 */
1009		if (!bd.remainder) {
1010			u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1011				PL080_CONFIG_FLOW_CONTROL_SHIFT;
1012			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1013					(fc <= PL080_FLOW_SRC2DST_SRC))) {
1014				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1015					__func__);
1016				return 0;
1017			}
1018
1019			if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1020				!IS_BUS_ALIGNED(&bd.dstbus)) {
1021				dev_err(&pl08x->adev->dev,
1022					"%s src & dst address must be aligned to src"
1023					" & dst width if peripheral is flow controller",
1024					__func__);
1025				return 0;
1026			}
1027
1028			cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1029					bd.dstbus.buswidth, 0);
1030			pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1031					0, cctl, 0);
1032			break;
1033		}
1034
1035		/*
1036		 * Send byte by byte for following cases
1037		 * - Less than a bus width available
1038		 * - until master bus is aligned
1039		 */
1040		if (bd.remainder < mbus->buswidth)
1041			early_bytes = bd.remainder;
1042		else if (!IS_BUS_ALIGNED(mbus)) {
1043			early_bytes = mbus->buswidth -
1044				(mbus->addr & (mbus->buswidth - 1));
1045			if ((bd.remainder - early_bytes) < mbus->buswidth)
1046				early_bytes = bd.remainder;
1047		}
1048
1049		if (early_bytes) {
1050			dev_vdbg(&pl08x->adev->dev,
1051				"%s byte width LLIs (remain 0x%08zx)\n",
1052				__func__, bd.remainder);
1053			prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1054				num_llis++, &total_bytes);
1055		}
1056
1057		if (bd.remainder) {
1058			/*
1059			 * Master now aligned
1060			 * - if slave is not then we must set its width down
1061			 */
1062			if (!IS_BUS_ALIGNED(sbus)) {
1063				dev_dbg(&pl08x->adev->dev,
1064					"%s set down bus width to one byte\n",
1065					__func__);
1066
1067				sbus->buswidth = 1;
1068			}
1069
1070			/*
1071			 * Bytes transferred = tsize * src width, not
1072			 * MIN(buswidths)
 
1073			 */
1074			max_bytes_per_lli = bd.srcbus.buswidth *
1075						pl08x->vd->max_transfer_size;
1076			dev_vdbg(&pl08x->adev->dev,
1077				"%s max bytes per lli = %zu\n",
1078				__func__, max_bytes_per_lli);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1079
1080			/*
1081			 * Make largest possible LLIs until less than one bus
1082			 * width left
1083			 */
1084			while (bd.remainder > (mbus->buswidth - 1)) {
1085				size_t lli_len, tsize, width;
1086
 
 
 
 
 
 
 
 
 
1087				/*
1088				 * If enough left try to send max possible,
1089				 * otherwise try to send the remainder
 
 
 
 
 
1090				 */
1091				lli_len = min(bd.remainder, max_bytes_per_lli);
 
 
 
1092
 
1093				/*
1094				 * Check against maximum bus alignment:
1095				 * Calculate actual transfer size in relation to
1096				 * bus width an get a maximum remainder of the
1097				 * highest bus width - 1
1098				 */
1099				width = max(mbus->buswidth, sbus->buswidth);
1100				lli_len = (lli_len / width) * width;
1101				tsize = lli_len / bd.srcbus.buswidth;
 
 
 
 
 
 
 
 
 
 
 
 
 
1102
1103				dev_vdbg(&pl08x->adev->dev,
1104					"%s fill lli with single lli chunk of "
1105					"size 0x%08zx (remainder 0x%08zx)\n",
1106					__func__, lli_len, bd.remainder);
1107
1108				cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1109					bd.dstbus.buswidth, tsize);
1110				pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1111						lli_len, cctl, tsize);
1112				total_bytes += lli_len;
1113			}
1114
1115			/*
1116			 * Send any odd bytes
1117			 */
1118			if (bd.remainder) {
1119				dev_vdbg(&pl08x->adev->dev,
1120					"%s align with boundary, send odd bytes (remain %zu)\n",
1121					__func__, bd.remainder);
1122				prep_byte_width_lli(pl08x, &bd, &cctl,
1123					bd.remainder, num_llis++, &total_bytes);
 
 
 
 
 
 
 
 
1124			}
1125		}
1126
1127		if (total_bytes != dsg->len) {
1128			dev_err(&pl08x->adev->dev,
1129				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1130				__func__, total_bytes, dsg->len);
1131			return 0;
 
 
 
 
 
1132		}
 
 
 
 
 
 
 
1133
1134		if (num_llis >= MAX_NUM_TSFR_LLIS) {
1135			dev_err(&pl08x->adev->dev,
1136				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1137				__func__, MAX_NUM_TSFR_LLIS);
1138			return 0;
1139		}
1140	}
1141
1142	llis_va = txd->llis_va;
1143	last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
 
 
 
1144
1145	if (txd->cyclic) {
1146		/* Link back to the first LLI. */
1147		last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1148	} else {
1149		/* The final LLI terminates the LLI. */
1150		last_lli[PL080_LLI_LLI] = 0;
1151		/* The final LLI element shall also fire an interrupt. */
1152		last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
 
 
 
 
 
 
1153	}
1154
1155	pl08x_dump_lli(pl08x, llis_va, num_llis);
1156
1157	return num_llis;
1158}
1159
 
1160static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1161			   struct pl08x_txd *txd)
1162{
1163	struct pl08x_sg *dsg, *_dsg;
 
 
 
 
 
 
1164
1165	if (txd->llis_va)
1166		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
 
 
 
1167
1168	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1169		list_del(&dsg->node);
1170		kfree(dsg);
 
 
 
1171	}
 
1172
1173	kfree(txd);
 
 
 
 
 
1174}
1175
1176static void pl08x_desc_free(struct virt_dma_desc *vd)
1177{
1178	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1179	struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1180
1181	dma_descriptor_unmap(&vd->tx);
1182	if (!txd->done)
1183		pl08x_release_mux(plchan);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184
1185	pl08x_free_txd(plchan->host, txd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186}
1187
1188static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1189				struct pl08x_dma_chan *plchan)
1190{
1191	LIST_HEAD(head);
1192
1193	vchan_get_all_descriptors(&plchan->vc, &head);
1194	vchan_dma_desc_free_list(&plchan->vc, &head);
 
 
 
 
1195}
1196
1197/*
1198 * The DMA ENGINE API
1199 */
1200static void pl08x_free_chan_resources(struct dma_chan *chan)
1201{
1202	/* Ensure all queued descriptors are freed */
1203	vchan_free_chan_resources(to_virt_chan(chan));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1204}
1205
1206static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1207		struct dma_chan *chan, unsigned long flags)
1208{
1209	struct dma_async_tx_descriptor *retval = NULL;
1210
1211	return retval;
1212}
1213
1214/*
1215 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1216 * If slaves are relying on interrupts to signal completion this function
1217 * must not be called with interrupts disabled.
1218 */
1219static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1220		dma_cookie_t cookie, struct dma_tx_state *txstate)
 
 
1221{
1222	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1223	struct virt_dma_desc *vd;
1224	unsigned long flags;
1225	enum dma_status ret;
1226	size_t bytes = 0;
1227
1228	ret = dma_cookie_status(chan, cookie, txstate);
1229	if (ret == DMA_COMPLETE)
1230		return ret;
1231
1232	/*
1233	 * There's no point calculating the residue if there's
1234	 * no txstate to store the value.
1235	 */
1236	if (!txstate) {
1237		if (plchan->state == PL08X_CHAN_PAUSED)
1238			ret = DMA_PAUSED;
1239		return ret;
1240	}
1241
1242	spin_lock_irqsave(&plchan->vc.lock, flags);
1243	ret = dma_cookie_status(chan, cookie, txstate);
1244	if (ret != DMA_COMPLETE) {
1245		vd = vchan_find_desc(&plchan->vc, cookie);
1246		if (vd) {
1247			/* On the issued list, so hasn't been processed yet */
1248			struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1249			struct pl08x_sg *dsg;
1250
1251			list_for_each_entry(dsg, &txd->dsg_list, node)
1252				bytes += dsg->len;
1253		} else {
1254			bytes = pl08x_getbytes_chan(plchan);
1255		}
1256	}
1257	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1258
1259	/*
1260	 * This cookie not complete yet
1261	 * Get number of bytes left in the active transactions and queue
1262	 */
1263	dma_set_residue(txstate, bytes);
 
 
 
 
1264
1265	if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1266		ret = DMA_PAUSED;
 
 
 
1267
1268	/* Whether waiting or running, we're in progress */
1269	return ret;
1270}
1271
1272/* PrimeCell DMA extension */
1273struct burst_table {
1274	u32 burstwords;
1275	u32 reg;
1276};
1277
1278static const struct burst_table burst_sizes[] = {
1279	{
1280		.burstwords = 256,
1281		.reg = PL080_BSIZE_256,
1282	},
1283	{
1284		.burstwords = 128,
1285		.reg = PL080_BSIZE_128,
1286	},
1287	{
1288		.burstwords = 64,
1289		.reg = PL080_BSIZE_64,
1290	},
1291	{
1292		.burstwords = 32,
1293		.reg = PL080_BSIZE_32,
1294	},
1295	{
1296		.burstwords = 16,
1297		.reg = PL080_BSIZE_16,
1298	},
1299	{
1300		.burstwords = 8,
1301		.reg = PL080_BSIZE_8,
1302	},
1303	{
1304		.burstwords = 4,
1305		.reg = PL080_BSIZE_4,
1306	},
1307	{
1308		.burstwords = 0,
1309		.reg = PL080_BSIZE_1,
1310	},
1311};
1312
1313/*
1314 * Given the source and destination available bus masks, select which
1315 * will be routed to each port.  We try to have source and destination
1316 * on separate ports, but always respect the allowable settings.
1317 */
1318static u32 pl08x_select_bus(u8 src, u8 dst)
1319{
1320	u32 cctl = 0;
1321
1322	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1323		cctl |= PL080_CONTROL_DST_AHB2;
1324	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1325		cctl |= PL080_CONTROL_SRC_AHB2;
1326
1327	return cctl;
1328}
1329
1330static u32 pl08x_cctl(u32 cctl)
1331{
1332	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1333		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1334		  PL080_CONTROL_PROT_MASK);
1335
1336	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
1337	return cctl | PL080_CONTROL_PROT_SYS;
1338}
1339
1340static u32 pl08x_width(enum dma_slave_buswidth width)
1341{
1342	switch (width) {
1343	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1344		return PL080_WIDTH_8BIT;
1345	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1346		return PL080_WIDTH_16BIT;
1347	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1348		return PL080_WIDTH_32BIT;
1349	default:
1350		return ~0;
1351	}
1352}
1353
1354static u32 pl08x_burst(u32 maxburst)
1355{
1356	int i;
1357
1358	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1359		if (burst_sizes[i].burstwords <= maxburst)
1360			break;
1361
1362	return burst_sizes[i].reg;
1363}
1364
1365static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1366	enum dma_slave_buswidth addr_width, u32 maxburst)
1367{
1368	u32 width, burst, cctl = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1369
1370	width = pl08x_width(addr_width);
1371	if (width == ~0)
1372		return ~0;
 
 
 
1373
1374	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1375	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1376
1377	/*
1378	 * If this channel will only request single transfers, set this
1379	 * down to ONE element.  Also select one element if no maxburst
1380	 * is specified.
1381	 */
1382	if (plchan->cd->single)
1383		maxburst = 1;
1384
1385	burst = pl08x_burst(maxburst);
1386	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1387	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1388
1389	return pl08x_cctl(cctl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1390}
1391
1392/*
1393 * Slave transactions callback to the slave device to allow
1394 * synchronization of slave DMA signals with the DMAC enable
1395 */
1396static void pl08x_issue_pending(struct dma_chan *chan)
1397{
1398	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1399	unsigned long flags;
1400
1401	spin_lock_irqsave(&plchan->vc.lock, flags);
1402	if (vchan_issue_pending(&plchan->vc)) {
1403		if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1404			pl08x_phy_alloc_and_start(plchan);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1405	}
1406	spin_unlock_irqrestore(&plchan->vc.lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1407}
1408
1409static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
 
1410{
1411	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1412
1413	if (txd) {
1414		INIT_LIST_HEAD(&txd->dsg_list);
 
 
 
1415
1416		/* Always enable error and terminal interrupts */
1417		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1418			    PL080_CONFIG_TC_IRQ_MASK;
1419	}
1420	return txd;
1421}
1422
1423/*
1424 * Initialize a descriptor to be used by memcpy submit
1425 */
1426static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1427		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1428		size_t len, unsigned long flags)
1429{
1430	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1431	struct pl08x_driver_data *pl08x = plchan->host;
1432	struct pl08x_txd *txd;
1433	struct pl08x_sg *dsg;
1434	int ret;
1435
1436	txd = pl08x_get_txd(plchan);
1437	if (!txd) {
1438		dev_err(&pl08x->adev->dev,
1439			"%s no memory for descriptor\n", __func__);
1440		return NULL;
1441	}
1442
1443	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1444	if (!dsg) {
1445		pl08x_free_txd(pl08x, txd);
1446		return NULL;
1447	}
1448	list_add_tail(&dsg->node, &txd->dsg_list);
1449
1450	dsg->src_addr = src;
1451	dsg->dst_addr = dest;
1452	dsg->len = len;
1453
1454	/* Set platform data for m2m */
1455	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1456	txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1457			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1458
1459	/* Both to be incremented or the code will break */
1460	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1461
1462	if (pl08x->vd->dualmaster)
1463		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1464					      pl08x->mem_buses);
1465
1466	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1467	if (!ret) {
1468		pl08x_free_txd(pl08x, txd);
1469		return NULL;
1470	}
1471
1472	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1473}
1474
1475static struct pl08x_txd *pl08x_init_txd(
1476		struct dma_chan *chan,
1477		enum dma_transfer_direction direction,
1478		dma_addr_t *slave_addr)
1479{
1480	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1481	struct pl08x_driver_data *pl08x = plchan->host;
1482	struct pl08x_txd *txd;
1483	enum dma_slave_buswidth addr_width;
1484	int ret, tmp;
1485	u8 src_buses, dst_buses;
1486	u32 maxburst, cctl;
 
 
 
 
 
 
 
 
 
1487
1488	txd = pl08x_get_txd(plchan);
1489	if (!txd) {
1490		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1491		return NULL;
1492	}
1493
 
 
 
 
 
1494	/*
1495	 * Set up addresses, the PrimeCell configured address
1496	 * will take precedence since this may configure the
1497	 * channel target address dynamically at runtime.
1498	 */
1499	if (direction == DMA_MEM_TO_DEV) {
1500		cctl = PL080_CONTROL_SRC_INCR;
1501		*slave_addr = plchan->cfg.dst_addr;
1502		addr_width = plchan->cfg.dst_addr_width;
1503		maxburst = plchan->cfg.dst_maxburst;
1504		src_buses = pl08x->mem_buses;
1505		dst_buses = plchan->cd->periph_buses;
1506	} else if (direction == DMA_DEV_TO_MEM) {
1507		cctl = PL080_CONTROL_DST_INCR;
1508		*slave_addr = plchan->cfg.src_addr;
1509		addr_width = plchan->cfg.src_addr_width;
1510		maxburst = plchan->cfg.src_maxburst;
1511		src_buses = plchan->cd->periph_buses;
1512		dst_buses = pl08x->mem_buses;
1513	} else {
1514		pl08x_free_txd(pl08x, txd);
1515		dev_err(&pl08x->adev->dev,
1516			"%s direction unsupported\n", __func__);
1517		return NULL;
1518	}
1519
1520	cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1521	if (cctl == ~0) {
1522		pl08x_free_txd(pl08x, txd);
1523		dev_err(&pl08x->adev->dev,
1524			"DMA slave configuration botched?\n");
1525		return NULL;
1526	}
1527
1528	txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1529
1530	if (plchan->cfg.device_fc)
1531		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1532			PL080_FLOW_PER2MEM_PER;
1533	else
1534		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1535			PL080_FLOW_PER2MEM;
1536
1537	txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1538
1539	ret = pl08x_request_mux(plchan);
1540	if (ret < 0) {
1541		pl08x_free_txd(pl08x, txd);
1542		dev_dbg(&pl08x->adev->dev,
1543			"unable to mux for transfer on %s due to platform restrictions\n",
1544			plchan->name);
1545		return NULL;
1546	}
1547
1548	dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1549		 plchan->signal, plchan->name);
1550
1551	/* Assign the flow control signal to this channel */
1552	if (direction == DMA_MEM_TO_DEV)
1553		txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1554	else
1555		txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1556
1557	return txd;
1558}
1559
1560static int pl08x_tx_add_sg(struct pl08x_txd *txd,
1561			   enum dma_transfer_direction direction,
1562			   dma_addr_t slave_addr,
1563			   dma_addr_t buf_addr,
1564			   unsigned int len)
1565{
1566	struct pl08x_sg *dsg;
1567
1568	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1569	if (!dsg)
1570		return -ENOMEM;
1571
1572	list_add_tail(&dsg->node, &txd->dsg_list);
1573
1574	dsg->len = len;
1575	if (direction == DMA_MEM_TO_DEV) {
1576		dsg->src_addr = buf_addr;
1577		dsg->dst_addr = slave_addr;
1578	} else {
1579		dsg->src_addr = slave_addr;
1580		dsg->dst_addr = buf_addr;
1581	}
1582
1583	return 0;
1584}
1585
1586static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1587		struct dma_chan *chan, struct scatterlist *sgl,
1588		unsigned int sg_len, enum dma_transfer_direction direction,
1589		unsigned long flags, void *context)
1590{
1591	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1592	struct pl08x_driver_data *pl08x = plchan->host;
1593	struct pl08x_txd *txd;
1594	struct scatterlist *sg;
1595	int ret, tmp;
1596	dma_addr_t slave_addr;
1597
1598	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1599			__func__, sg_dma_len(sgl), plchan->name);
1600
1601	txd = pl08x_init_txd(chan, direction, &slave_addr);
1602	if (!txd)
1603		return NULL;
1604
1605	for_each_sg(sgl, sg, sg_len, tmp) {
1606		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1607				      sg_dma_address(sg),
1608				      sg_dma_len(sg));
1609		if (ret) {
1610			pl08x_release_mux(plchan);
1611			pl08x_free_txd(pl08x, txd);
1612			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1613					__func__);
1614			return NULL;
1615		}
1616	}
1617
1618	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1619	if (!ret) {
1620		pl08x_release_mux(plchan);
1621		pl08x_free_txd(pl08x, txd);
1622		return NULL;
 
 
 
1623	}
1624
1625	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1626}
 
1627
1628static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
1629		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1630		size_t period_len, enum dma_transfer_direction direction,
1631		unsigned long flags)
1632{
1633	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1634	struct pl08x_driver_data *pl08x = plchan->host;
1635	struct pl08x_txd *txd;
1636	int ret, tmp;
1637	dma_addr_t slave_addr;
1638
1639	dev_dbg(&pl08x->adev->dev,
1640		"%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
1641		__func__, period_len, buf_len,
1642		direction == DMA_MEM_TO_DEV ? "to" : "from",
1643		plchan->name);
1644
1645	txd = pl08x_init_txd(chan, direction, &slave_addr);
1646	if (!txd)
1647		return NULL;
1648
1649	txd->cyclic = true;
1650	txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
1651	for (tmp = 0; tmp < buf_len; tmp += period_len) {
1652		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1653				      buf_addr + tmp, period_len);
1654		if (ret) {
1655			pl08x_release_mux(plchan);
1656			pl08x_free_txd(pl08x, txd);
1657			return NULL;
1658		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1659	}
1660
1661	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1662	if (!ret) {
1663		pl08x_release_mux(plchan);
1664		pl08x_free_txd(pl08x, txd);
1665		return NULL;
1666	}
1667
1668	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1669}
1670
1671static int pl08x_config(struct dma_chan *chan,
1672			struct dma_slave_config *config)
1673{
1674	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1675	struct pl08x_driver_data *pl08x = plchan->host;
1676
1677	if (!plchan->slave)
1678		return -EINVAL;
 
1679
1680	/* Reject definitely invalid configurations */
1681	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1682	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1683		return -EINVAL;
1684
1685	if (config->device_fc && pl08x->vd->pl080s) {
1686		dev_err(&pl08x->adev->dev,
1687			"%s: PL080S does not support peripheral flow control\n",
1688			__func__);
1689		return -EINVAL;
1690	}
1691
1692	plchan->cfg = *config;
 
1693
1694	return 0;
 
 
 
 
1695}
1696
1697static int pl08x_terminate_all(struct dma_chan *chan)
1698{
1699	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1700	struct pl08x_driver_data *pl08x = plchan->host;
1701	unsigned long flags;
1702
1703	spin_lock_irqsave(&plchan->vc.lock, flags);
1704	if (!plchan->phychan && !plchan->at) {
1705		spin_unlock_irqrestore(&plchan->vc.lock, flags);
1706		return 0;
 
 
 
1707	}
1708
1709	plchan->state = PL08X_CHAN_IDLE;
1710
1711	if (plchan->phychan) {
1712		/*
1713		 * Mark physical channel as free and free any slave
1714		 * signal
1715		 */
1716		pl08x_phy_free(plchan);
1717	}
1718	/* Dequeue jobs and free LLIs */
1719	if (plchan->at) {
1720		pl08x_desc_free(&plchan->at->vd);
1721		plchan->at = NULL;
1722	}
1723	/* Dequeue jobs not yet fired as well */
1724	pl08x_free_txd_list(pl08x, plchan);
1725
1726	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1727
1728	return 0;
1729}
1730
1731static int pl08x_pause(struct dma_chan *chan)
1732{
1733	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
 
 
1734	unsigned long flags;
1735
1736	/*
1737	 * Anything succeeds on channels with no physical allocation and
1738	 * no queued transfers.
1739	 */
1740	spin_lock_irqsave(&plchan->vc.lock, flags);
1741	if (!plchan->phychan && !plchan->at) {
1742		spin_unlock_irqrestore(&plchan->vc.lock, flags);
1743		return 0;
1744	}
1745
1746	pl08x_pause_phy_chan(plchan->phychan);
1747	plchan->state = PL08X_CHAN_PAUSED;
1748
1749	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1750
1751	return 0;
1752}
1753
1754static int pl08x_resume(struct dma_chan *chan)
1755{
1756	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1757	unsigned long flags;
1758
1759	/*
1760	 * Anything succeeds on channels with no physical allocation and
1761	 * no queued transfers.
1762	 */
1763	spin_lock_irqsave(&plchan->vc.lock, flags);
1764	if (!plchan->phychan && !plchan->at) {
1765		spin_unlock_irqrestore(&plchan->vc.lock, flags);
1766		return 0;
1767	}
1768
1769	pl08x_resume_phy_chan(plchan->phychan);
1770	plchan->state = PL08X_CHAN_RUNNING;
 
1771
1772	spin_unlock_irqrestore(&plchan->vc.lock, flags);
 
 
 
1773
1774	return 0;
1775}
 
 
 
 
 
 
 
1776
1777bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1778{
1779	struct pl08x_dma_chan *plchan;
1780	char *name = chan_id;
 
 
1781
1782	/* Reject channels for devices not bound to this driver */
1783	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1784		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785
1786	plchan = to_pl08x_chan(chan);
1787
1788	/* Check that the channel is not taken! */
1789	if (!strcmp(plchan->name, name))
1790		return true;
1791
1792	return false;
1793}
1794EXPORT_SYMBOL_GPL(pl08x_filter_id);
1795
1796static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id)
1797{
1798	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
 
1799
1800	return plchan->cd == chan_id;
1801}
1802
1803/*
1804 * Just check that the device is there and active
1805 * TODO: turn this bit on/off depending on the number of physical channels
1806 * actually used, if it is zero... well shut it off. That will save some
1807 * power. Cut the clock at the same time.
1808 */
1809static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1810{
1811	/* The Nomadik variant does not have the config register */
1812	if (pl08x->vd->nomadik)
1813		return;
1814	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1815}
1816
1817static irqreturn_t pl08x_irq(int irq, void *dev)
1818{
1819	struct pl08x_driver_data *pl08x = dev;
1820	u32 mask = 0, err, tc, i;
1821
1822	/* check & clear - ERR & TC interrupts */
1823	err = readl(pl08x->base + PL080_ERR_STATUS);
1824	if (err) {
1825		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1826			__func__, err);
1827		writel(err, pl08x->base + PL080_ERR_CLEAR);
1828	}
1829	tc = readl(pl08x->base + PL080_TC_STATUS);
1830	if (tc)
1831		writel(tc, pl08x->base + PL080_TC_CLEAR);
1832
1833	if (!err && !tc)
1834		return IRQ_NONE;
1835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1836	for (i = 0; i < pl08x->vd->channels; i++) {
1837		if (((1 << i) & err) || ((1 << i) & tc)) {
1838			/* Locate physical channel */
1839			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1840			struct pl08x_dma_chan *plchan = phychan->serving;
1841			struct pl08x_txd *tx;
1842
1843			if (!plchan) {
1844				dev_err(&pl08x->adev->dev,
1845					"%s Error TC interrupt on unused channel: 0x%08x\n",
1846					__func__, i);
1847				continue;
1848			}
1849
1850			spin_lock(&plchan->vc.lock);
1851			tx = plchan->at;
1852			if (tx && tx->cyclic) {
1853				vchan_cyclic_callback(&tx->vd);
1854			} else if (tx) {
1855				plchan->at = NULL;
1856				/*
1857				 * This descriptor is done, release its mux
1858				 * reservation.
1859				 */
1860				pl08x_release_mux(plchan);
1861				tx->done = true;
1862				vchan_cookie_complete(&tx->vd);
1863
1864				/*
1865				 * And start the next descriptor (if any),
1866				 * otherwise free this channel.
1867				 */
1868				if (vchan_next_desc(&plchan->vc))
1869					pl08x_start_next_txd(plchan);
1870				else
1871					pl08x_phy_free(plchan);
1872			}
1873			spin_unlock(&plchan->vc.lock);
1874
1875			mask |= (1 << i);
1876		}
1877	}
 
 
1878
1879	return mask ? IRQ_HANDLED : IRQ_NONE;
1880}
1881
1882static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1883{
 
 
1884	chan->slave = true;
1885	chan->name = chan->cd->bus_id;
1886	chan->cfg.src_addr = chan->cd->addr;
1887	chan->cfg.dst_addr = chan->cd->addr;
 
 
 
 
1888}
1889
1890/*
1891 * Initialise the DMAC memcpy/slave channels.
1892 * Make a local wrapper to hold required data
1893 */
1894static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1895		struct dma_device *dmadev, unsigned int channels, bool slave)
 
 
1896{
1897	struct pl08x_dma_chan *chan;
1898	int i;
1899
1900	INIT_LIST_HEAD(&dmadev->channels);
1901
1902	/*
1903	 * Register as many many memcpy as we have physical channels,
1904	 * we won't always be able to use all but the code will have
1905	 * to cope with that situation.
1906	 */
1907	for (i = 0; i < channels; i++) {
1908		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1909		if (!chan)
 
 
1910			return -ENOMEM;
 
1911
1912		chan->host = pl08x;
1913		chan->state = PL08X_CHAN_IDLE;
1914		chan->signal = -1;
1915
1916		if (slave) {
1917			chan->cd = &pl08x->pd->slave_channels[i];
1918			/*
1919			 * Some implementations have muxed signals, whereas some
1920			 * use a mux in front of the signals and need dynamic
1921			 * assignment of signals.
1922			 */
1923			chan->signal = i;
1924			pl08x_dma_slave_init(chan);
1925		} else {
1926			chan->cd = &pl08x->pd->memcpy_channel;
1927			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1928			if (!chan->name) {
1929				kfree(chan);
1930				return -ENOMEM;
1931			}
1932		}
1933		dev_dbg(&pl08x->adev->dev,
 
 
 
 
 
 
 
1934			 "initialize virtual channel \"%s\"\n",
1935			 chan->name);
1936
1937		chan->vc.desc_free = pl08x_desc_free;
1938		vchan_init(&chan->vc, dmadev);
 
 
 
 
 
 
 
 
1939	}
1940	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1941		 i, slave ? "slave" : "memcpy");
1942	return i;
1943}
1944
1945static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1946{
1947	struct pl08x_dma_chan *chan = NULL;
1948	struct pl08x_dma_chan *next;
1949
1950	list_for_each_entry_safe(chan,
1951				 next, &dmadev->channels, vc.chan.device_node) {
1952		list_del(&chan->vc.chan.device_node);
1953		kfree(chan);
1954	}
1955}
1956
1957#ifdef CONFIG_DEBUG_FS
1958static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1959{
1960	switch (state) {
1961	case PL08X_CHAN_IDLE:
1962		return "idle";
1963	case PL08X_CHAN_RUNNING:
1964		return "running";
1965	case PL08X_CHAN_PAUSED:
1966		return "paused";
1967	case PL08X_CHAN_WAITING:
1968		return "waiting";
1969	default:
1970		break;
1971	}
1972	return "UNKNOWN STATE";
1973}
1974
1975static int pl08x_debugfs_show(struct seq_file *s, void *data)
1976{
1977	struct pl08x_driver_data *pl08x = s->private;
1978	struct pl08x_dma_chan *chan;
1979	struct pl08x_phy_chan *ch;
1980	unsigned long flags;
1981	int i;
1982
1983	seq_printf(s, "PL08x physical channels:\n");
1984	seq_printf(s, "CHANNEL:\tUSER:\n");
1985	seq_printf(s, "--------\t-----\n");
1986	for (i = 0; i < pl08x->vd->channels; i++) {
1987		struct pl08x_dma_chan *virt_chan;
1988
1989		ch = &pl08x->phy_chans[i];
1990
1991		spin_lock_irqsave(&ch->lock, flags);
1992		virt_chan = ch->serving;
1993
1994		seq_printf(s, "%d\t\t%s%s\n",
1995			   ch->id,
1996			   virt_chan ? virt_chan->name : "(none)",
1997			   ch->locked ? " LOCKED" : "");
1998
1999		spin_unlock_irqrestore(&ch->lock, flags);
2000	}
2001
2002	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
2003	seq_printf(s, "CHANNEL:\tSTATE:\n");
2004	seq_printf(s, "--------\t------\n");
2005	list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
2006		seq_printf(s, "%s\t\t%s\n", chan->name,
2007			   pl08x_state_str(chan->state));
2008	}
2009
2010	seq_printf(s, "\nPL08x virtual slave channels:\n");
2011	seq_printf(s, "CHANNEL:\tSTATE:\n");
2012	seq_printf(s, "--------\t------\n");
2013	list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2014		seq_printf(s, "%s\t\t%s\n", chan->name,
2015			   pl08x_state_str(chan->state));
2016	}
2017
2018	return 0;
2019}
2020
2021static int pl08x_debugfs_open(struct inode *inode, struct file *file)
2022{
2023	return single_open(file, pl08x_debugfs_show, inode->i_private);
2024}
2025
2026static const struct file_operations pl08x_debugfs_operations = {
2027	.open		= pl08x_debugfs_open,
2028	.read		= seq_read,
2029	.llseek		= seq_lseek,
2030	.release	= single_release,
2031};
2032
2033static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2034{
2035	/* Expose a simple debugfs interface to view all clocks */
2036	(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2037			S_IFREG | S_IRUGO, NULL, pl08x,
2038			&pl08x_debugfs_operations);
2039}
2040
2041#else
2042static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2043{
2044}
2045#endif
2046
2047#ifdef CONFIG_OF
2048static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2049					 u32 id)
2050{
2051	struct pl08x_dma_chan *chan;
2052
2053	list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2054		if (chan->signal == id)
2055			return &chan->vc.chan;
2056	}
2057
2058	return NULL;
2059}
2060
2061static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2062				       struct of_dma *ofdma)
2063{
2064	struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2065	struct dma_chan *dma_chan;
2066	struct pl08x_dma_chan *plchan;
2067
2068	if (!pl08x)
2069		return NULL;
2070
2071	if (dma_spec->args_count != 2) {
2072		dev_err(&pl08x->adev->dev,
2073			"DMA channel translation requires two cells\n");
2074		return NULL;
2075	}
2076
2077	dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2078	if (!dma_chan) {
2079		dev_err(&pl08x->adev->dev,
2080			"DMA slave channel not found\n");
2081		return NULL;
2082	}
2083
2084	plchan = to_pl08x_chan(dma_chan);
2085	dev_dbg(&pl08x->adev->dev,
2086		"translated channel for signal %d\n",
2087		dma_spec->args[0]);
2088
2089	/* Augment channel data for applicable AHB buses */
2090	plchan->cd->periph_buses = dma_spec->args[1];
2091	return dma_get_slave_channel(dma_chan);
2092}
2093
2094static int pl08x_of_probe(struct amba_device *adev,
2095			  struct pl08x_driver_data *pl08x,
2096			  struct device_node *np)
2097{
2098	struct pl08x_platform_data *pd;
2099	struct pl08x_channel_data *chanp = NULL;
2100	u32 cctl_memcpy = 0;
2101	u32 val;
2102	int ret;
2103	int i;
2104
2105	pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2106	if (!pd)
2107		return -ENOMEM;
2108
2109	/* Eligible bus masters for fetching LLIs */
2110	if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2111		pd->lli_buses |= PL08X_AHB1;
2112	if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2113		pd->lli_buses |= PL08X_AHB2;
2114	if (!pd->lli_buses) {
2115		dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2116		pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2117	}
2118
2119	/* Eligible bus masters for memory access */
2120	if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2121		pd->mem_buses |= PL08X_AHB1;
2122	if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2123		pd->mem_buses |= PL08X_AHB2;
2124	if (!pd->mem_buses) {
2125		dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2126		pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2127	}
2128
2129	/* Parse the memcpy channel properties */
2130	ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2131	if (ret) {
2132		dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2133		val = 1;
2134	}
2135	switch (val) {
2136	default:
2137		dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2138		/* Fall through */
2139	case 1:
2140		cctl_memcpy |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
2141			       PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
2142		break;
2143	case 4:
2144		cctl_memcpy |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
2145			       PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
2146		break;
2147	case 8:
2148		cctl_memcpy |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
2149			       PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
2150		break;
2151	case 16:
2152		cctl_memcpy |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
2153			       PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
2154		break;
2155	case 32:
2156		cctl_memcpy |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
2157			       PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
2158		break;
2159	case 64:
2160		cctl_memcpy |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
2161			       PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
2162		break;
2163	case 128:
2164		cctl_memcpy |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
2165			       PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
2166		break;
2167	case 256:
2168		cctl_memcpy |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
2169			       PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
2170		break;
2171	}
2172
2173	ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2174	if (ret) {
2175		dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2176		val = 8;
2177	}
2178	switch (val) {
2179	default:
2180		dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2181		/* Fall through */
2182	case 8:
2183		cctl_memcpy |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
2184			       PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
2185		break;
2186	case 16:
2187		cctl_memcpy |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
2188			       PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
2189		break;
2190	case 32:
2191		cctl_memcpy |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
2192			       PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
2193		break;
2194	}
2195
2196	/* This is currently the only thing making sense */
2197	cctl_memcpy |= PL080_CONTROL_PROT_SYS;
2198
2199	/* Set up memcpy channel */
2200	pd->memcpy_channel.bus_id = "memcpy";
2201	pd->memcpy_channel.cctl_memcpy = cctl_memcpy;
2202	/* Use the buses that can access memory, obviously */
2203	pd->memcpy_channel.periph_buses = pd->mem_buses;
2204
2205	/*
2206	 * Allocate channel data for all possible slave channels (one
2207	 * for each possible signal), channels will then be allocated
2208	 * for a device and have it's AHB interfaces set up at
2209	 * translation time.
2210	 */
2211	chanp = devm_kcalloc(&adev->dev,
2212			pl08x->vd->signals,
2213			sizeof(struct pl08x_channel_data),
2214			GFP_KERNEL);
2215	if (!chanp)
2216		return -ENOMEM;
2217
2218	pd->slave_channels = chanp;
2219	for (i = 0; i < pl08x->vd->signals; i++) {
2220		/* chanp->periph_buses will be assigned at translation */
2221		chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i);
2222		chanp++;
2223	}
2224	pd->num_slave_channels = pl08x->vd->signals;
2225
2226	pl08x->pd = pd;
2227
2228	return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2229					  pl08x);
2230}
2231#else
2232static inline int pl08x_of_probe(struct amba_device *adev,
2233				 struct pl08x_driver_data *pl08x,
2234				 struct device_node *np)
2235{
2236	return -EINVAL;
2237}
2238#endif
2239
2240static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2241{
2242	struct pl08x_driver_data *pl08x;
2243	const struct vendor_data *vd = id->data;
2244	struct device_node *np = adev->dev.of_node;
2245	u32 tsfr_size;
2246	int ret = 0;
2247	int i;
2248
2249	ret = amba_request_regions(adev, NULL);
2250	if (ret)
2251		return ret;
2252
2253	/* Ensure that we can do DMA */
2254	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2255	if (ret)
2256		goto out_no_pl08x;
2257
2258	/* Create the driver state holder */
2259	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2260	if (!pl08x) {
2261		ret = -ENOMEM;
2262		goto out_no_pl08x;
2263	}
2264
2265	/* Assign useful pointers to the driver state */
2266	pl08x->adev = adev;
2267	pl08x->vd = vd;
2268
2269	/* Initialize memcpy engine */
2270	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2271	pl08x->memcpy.dev = &adev->dev;
 
2272	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2273	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2274	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2275	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2276	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2277	pl08x->memcpy.device_config = pl08x_config;
2278	pl08x->memcpy.device_pause = pl08x_pause;
2279	pl08x->memcpy.device_resume = pl08x_resume;
2280	pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2281	pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2282	pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2283	pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2284	pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2285
2286	/* Initialize slave engine */
2287	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2288	dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2289	pl08x->slave.dev = &adev->dev;
 
2290	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
2291	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2292	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2293	pl08x->slave.device_issue_pending = pl08x_issue_pending;
2294	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2295	pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2296	pl08x->slave.device_config = pl08x_config;
2297	pl08x->slave.device_pause = pl08x_pause;
2298	pl08x->slave.device_resume = pl08x_resume;
2299	pl08x->slave.device_terminate_all = pl08x_terminate_all;
2300	pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2301	pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2302	pl08x->slave.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2303	pl08x->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2304
2305	/* Get the platform data */
2306	pl08x->pd = dev_get_platdata(&adev->dev);
2307	if (!pl08x->pd) {
2308		if (np) {
2309			ret = pl08x_of_probe(adev, pl08x, np);
2310			if (ret)
2311				goto out_no_platdata;
2312		} else {
2313			dev_err(&adev->dev, "no platform data supplied\n");
2314			ret = -EINVAL;
2315			goto out_no_platdata;
2316		}
2317	} else {
2318		pl08x->slave.filter.map = pl08x->pd->slave_map;
2319		pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len;
2320		pl08x->slave.filter.fn = pl08x_filter_fn;
2321	}
2322
 
 
 
 
2323	/* By default, AHB1 only.  If dualmaster, from platform */
2324	pl08x->lli_buses = PL08X_AHB1;
2325	pl08x->mem_buses = PL08X_AHB1;
2326	if (pl08x->vd->dualmaster) {
2327		pl08x->lli_buses = pl08x->pd->lli_buses;
2328		pl08x->mem_buses = pl08x->pd->mem_buses;
2329	}
2330
2331	if (vd->pl080s)
2332		pl08x->lli_words = PL080S_LLI_WORDS;
2333	else
2334		pl08x->lli_words = PL080_LLI_WORDS;
2335	tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2336
2337	/* A DMA memory pool for LLIs, align on 1-byte boundary */
2338	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2339						tsfr_size, PL08X_ALIGN, 0);
2340	if (!pl08x->pool) {
2341		ret = -ENOMEM;
2342		goto out_no_lli_pool;
2343	}
2344
 
 
2345	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2346	if (!pl08x->base) {
2347		ret = -ENOMEM;
2348		goto out_no_ioremap;
2349	}
2350
2351	/* Turn on the PL08x */
2352	pl08x_ensure_on(pl08x);
2353
2354	/* Attach the interrupt handler */
2355	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2356	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2357
2358	ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
 
2359	if (ret) {
2360		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2361			__func__, adev->irq[0]);
2362		goto out_no_irq;
2363	}
2364
2365	/* Initialize physical channels */
2366	pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2367			GFP_KERNEL);
2368	if (!pl08x->phy_chans) {
2369		ret = -ENOMEM;
 
 
2370		goto out_no_phychans;
2371	}
2372
2373	for (i = 0; i < vd->channels; i++) {
2374		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2375
2376		ch->id = i;
2377		ch->base = pl08x->base + PL080_Cx_BASE(i);
2378		ch->reg_config = ch->base + vd->config_offset;
2379		spin_lock_init(&ch->lock);
2380
2381		/*
2382		 * Nomadik variants can have channels that are locked
2383		 * down for the secure world only. Lock up these channels
2384		 * by perpetually serving a dummy virtual channel.
2385		 */
2386		if (vd->nomadik) {
2387			u32 val;
2388
2389			val = readl(ch->reg_config);
2390			if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2391				dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2392				ch->locked = true;
2393			}
2394		}
2395
2396		dev_dbg(&adev->dev, "physical channel %d is %s\n",
2397			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2398	}
2399
2400	/* Register as many memcpy channels as there are physical channels */
2401	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2402					      pl08x->vd->channels, false);
2403	if (ret <= 0) {
2404		dev_warn(&pl08x->adev->dev,
2405			 "%s failed to enumerate memcpy channels - %d\n",
2406			 __func__, ret);
2407		goto out_no_memcpy;
2408	}
 
2409
2410	/* Register slave channels */
2411	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2412			pl08x->pd->num_slave_channels, true);
2413	if (ret < 0) {
 
2414		dev_warn(&pl08x->adev->dev,
2415			"%s failed to enumerate slave channels - %d\n",
2416				__func__, ret);
2417		goto out_no_slave;
2418	}
 
2419
2420	ret = dma_async_device_register(&pl08x->memcpy);
2421	if (ret) {
2422		dev_warn(&pl08x->adev->dev,
2423			"%s failed to register memcpy as an async device - %d\n",
2424			__func__, ret);
2425		goto out_no_memcpy_reg;
2426	}
2427
2428	ret = dma_async_device_register(&pl08x->slave);
2429	if (ret) {
2430		dev_warn(&pl08x->adev->dev,
2431			"%s failed to register slave as an async device - %d\n",
2432			__func__, ret);
2433		goto out_no_slave_reg;
2434	}
2435
2436	amba_set_drvdata(adev, pl08x);
2437	init_pl08x_debugfs(pl08x);
2438	dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2439		 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2440		 (unsigned long long)adev->res.start, adev->irq[0]);
2441
2442	return 0;
2443
2444out_no_slave_reg:
2445	dma_async_device_unregister(&pl08x->memcpy);
2446out_no_memcpy_reg:
2447	pl08x_free_virtual_channels(&pl08x->slave);
2448out_no_slave:
2449	pl08x_free_virtual_channels(&pl08x->memcpy);
2450out_no_memcpy:
2451	kfree(pl08x->phy_chans);
2452out_no_phychans:
2453	free_irq(adev->irq[0], pl08x);
2454out_no_irq:
2455	iounmap(pl08x->base);
2456out_no_ioremap:
2457	dma_pool_destroy(pl08x->pool);
2458out_no_lli_pool:
2459out_no_platdata:
2460	kfree(pl08x);
2461out_no_pl08x:
2462	amba_release_regions(adev);
2463	return ret;
2464}
2465
2466/* PL080 has 8 channels and the PL080 have just 2 */
2467static struct vendor_data vendor_pl080 = {
2468	.config_offset = PL080_CH_CONFIG,
2469	.channels = 8,
2470	.signals = 16,
2471	.dualmaster = true,
2472	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2473};
2474
2475static struct vendor_data vendor_nomadik = {
2476	.config_offset = PL080_CH_CONFIG,
2477	.channels = 8,
2478	.signals = 32,
2479	.dualmaster = true,
2480	.nomadik = true,
2481	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2482};
2483
2484static struct vendor_data vendor_pl080s = {
2485	.config_offset = PL080S_CH_CONFIG,
2486	.channels = 8,
2487	.signals = 32,
2488	.pl080s = true,
2489	.max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
2490};
2491
2492static struct vendor_data vendor_pl081 = {
2493	.config_offset = PL080_CH_CONFIG,
2494	.channels = 2,
2495	.signals = 16,
2496	.dualmaster = false,
2497	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2498};
2499
2500static struct amba_id pl08x_ids[] = {
2501	/* Samsung PL080S variant */
2502	{
2503		.id	= 0x0a141080,
2504		.mask	= 0xffffffff,
2505		.data	= &vendor_pl080s,
2506	},
2507	/* PL080 */
2508	{
2509		.id	= 0x00041080,
2510		.mask	= 0x000fffff,
2511		.data	= &vendor_pl080,
2512	},
2513	/* PL081 */
2514	{
2515		.id	= 0x00041081,
2516		.mask	= 0x000fffff,
2517		.data	= &vendor_pl081,
2518	},
2519	/* Nomadik 8815 PL080 variant */
2520	{
2521		.id	= 0x00280080,
2522		.mask	= 0x00ffffff,
2523		.data	= &vendor_nomadik,
2524	},
2525	{ 0, 0 },
2526};
2527
2528MODULE_DEVICE_TABLE(amba, pl08x_ids);
2529
2530static struct amba_driver pl08x_amba_driver = {
2531	.drv.name	= DRIVER_NAME,
2532	.id_table	= pl08x_ids,
2533	.probe		= pl08x_probe,
2534};
2535
2536static int __init pl08x_init(void)
2537{
2538	int retval;
2539	retval = amba_driver_register(&pl08x_amba_driver);
2540	if (retval)
2541		printk(KERN_WARNING DRIVER_NAME
2542		       "failed to register as an AMBA device (%d)\n",
2543		       retval);
2544	return retval;
2545}
2546subsys_initcall(pl08x_init);