Loading...
1/*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 *
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29 * channel.
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
63 *
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
68 *
69 * Only the former works sanely with scatter lists, so we only implement
70 * the DMAC flow control method. However, peripherals which use the LBREQ
71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
72 * these hardware restrictions prevents them from using scatter DMA.
73 *
74 * Global TODO:
75 * - Break out common code from arch/arm/mach-s3c64xx and share
76 */
77#include <linux/device.h>
78#include <linux/init.h>
79#include <linux/module.h>
80#include <linux/interrupt.h>
81#include <linux/slab.h>
82#include <linux/delay.h>
83#include <linux/dma-mapping.h>
84#include <linux/dmapool.h>
85#include <linux/dmaengine.h>
86#include <linux/amba/bus.h>
87#include <linux/amba/pl08x.h>
88#include <linux/debugfs.h>
89#include <linux/seq_file.h>
90
91#include <asm/hardware/pl080.h>
92
93#define DRIVER_NAME "pl08xdmac"
94
95/**
96 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
97 * @channels: the number of channels available in this variant
98 * @dualmaster: whether this version supports dual AHB masters or not.
99 */
100struct vendor_data {
101 u8 channels;
102 bool dualmaster;
103};
104
105/*
106 * PL08X private data structures
107 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
108 * start & end do not - their bus bit info is in cctl. Also note that these
109 * are fixed 32-bit quantities.
110 */
111struct pl08x_lli {
112 u32 src;
113 u32 dst;
114 u32 lli;
115 u32 cctl;
116};
117
118/**
119 * struct pl08x_driver_data - the local state holder for the PL08x
120 * @slave: slave engine for this instance
121 * @memcpy: memcpy engine for this instance
122 * @base: virtual memory base (remapped) for the PL08x
123 * @adev: the corresponding AMBA (PrimeCell) bus entry
124 * @vd: vendor data for this PL08x variant
125 * @pd: platform data passed in from the platform/machine
126 * @phy_chans: array of data for the physical channels
127 * @pool: a pool for the LLI descriptors
128 * @pool_ctr: counter of LLIs in the pool
129 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
130 * @mem_buses: set to indicate memory transfers on AHB2.
131 * @lock: a spinlock for this struct
132 */
133struct pl08x_driver_data {
134 struct dma_device slave;
135 struct dma_device memcpy;
136 void __iomem *base;
137 struct amba_device *adev;
138 const struct vendor_data *vd;
139 struct pl08x_platform_data *pd;
140 struct pl08x_phy_chan *phy_chans;
141 struct dma_pool *pool;
142 int pool_ctr;
143 u8 lli_buses;
144 u8 mem_buses;
145 spinlock_t lock;
146};
147
148/*
149 * PL08X specific defines
150 */
151
152/*
153 * Memory boundaries: the manual for PL08x says that the controller
154 * cannot read past a 1KiB boundary, so these defines are used to
155 * create transfer LLIs that do not cross such boundaries.
156 */
157#define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
158#define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
159
160/* Size (bytes) of each LLI buffer allocated for one transfer */
161# define PL08X_LLI_TSFR_SIZE 0x2000
162
163/* Maximum times we call dma_pool_alloc on this pool without freeing */
164#define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
165#define PL08X_ALIGN 8
166
167static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
168{
169 return container_of(chan, struct pl08x_dma_chan, chan);
170}
171
172static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
173{
174 return container_of(tx, struct pl08x_txd, tx);
175}
176
177/*
178 * Physical channel handling
179 */
180
181/* Whether a certain channel is busy or not */
182static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
183{
184 unsigned int val;
185
186 val = readl(ch->base + PL080_CH_CONFIG);
187 return val & PL080_CONFIG_ACTIVE;
188}
189
190/*
191 * Set the initial DMA register values i.e. those for the first LLI
192 * The next LLI pointer and the configuration interrupt bit have
193 * been set when the LLIs were constructed. Poke them into the hardware
194 * and start the transfer.
195 */
196static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
197 struct pl08x_txd *txd)
198{
199 struct pl08x_driver_data *pl08x = plchan->host;
200 struct pl08x_phy_chan *phychan = plchan->phychan;
201 struct pl08x_lli *lli = &txd->llis_va[0];
202 u32 val;
203
204 plchan->at = txd;
205
206 /* Wait for channel inactive */
207 while (pl08x_phy_channel_busy(phychan))
208 cpu_relax();
209
210 dev_vdbg(&pl08x->adev->dev,
211 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
212 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
213 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
214 txd->ccfg);
215
216 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
217 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
218 writel(lli->lli, phychan->base + PL080_CH_LLI);
219 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
220 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
221
222 /* Enable the DMA channel */
223 /* Do not access config register until channel shows as disabled */
224 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
225 cpu_relax();
226
227 /* Do not access config register until channel shows as inactive */
228 val = readl(phychan->base + PL080_CH_CONFIG);
229 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
230 val = readl(phychan->base + PL080_CH_CONFIG);
231
232 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
233}
234
235/*
236 * Pause the channel by setting the HALT bit.
237 *
238 * For M->P transfers, pause the DMAC first and then stop the peripheral -
239 * the FIFO can only drain if the peripheral is still requesting data.
240 * (note: this can still timeout if the DMAC FIFO never drains of data.)
241 *
242 * For P->M transfers, disable the peripheral first to stop it filling
243 * the DMAC FIFO, and then pause the DMAC.
244 */
245static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
246{
247 u32 val;
248 int timeout;
249
250 /* Set the HALT bit and wait for the FIFO to drain */
251 val = readl(ch->base + PL080_CH_CONFIG);
252 val |= PL080_CONFIG_HALT;
253 writel(val, ch->base + PL080_CH_CONFIG);
254
255 /* Wait for channel inactive */
256 for (timeout = 1000; timeout; timeout--) {
257 if (!pl08x_phy_channel_busy(ch))
258 break;
259 udelay(1);
260 }
261 if (pl08x_phy_channel_busy(ch))
262 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
263}
264
265static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
266{
267 u32 val;
268
269 /* Clear the HALT bit */
270 val = readl(ch->base + PL080_CH_CONFIG);
271 val &= ~PL080_CONFIG_HALT;
272 writel(val, ch->base + PL080_CH_CONFIG);
273}
274
275
276/*
277 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
278 * clears any pending interrupt status. This should not be used for
279 * an on-going transfer, but as a method of shutting down a channel
280 * (eg, when it's no longer used) or terminating a transfer.
281 */
282static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
283 struct pl08x_phy_chan *ch)
284{
285 u32 val = readl(ch->base + PL080_CH_CONFIG);
286
287 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
288 PL080_CONFIG_TC_IRQ_MASK);
289
290 writel(val, ch->base + PL080_CH_CONFIG);
291
292 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
293 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
294}
295
296static inline u32 get_bytes_in_cctl(u32 cctl)
297{
298 /* The source width defines the number of bytes */
299 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
300
301 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
302 case PL080_WIDTH_8BIT:
303 break;
304 case PL080_WIDTH_16BIT:
305 bytes *= 2;
306 break;
307 case PL080_WIDTH_32BIT:
308 bytes *= 4;
309 break;
310 }
311 return bytes;
312}
313
314/* The channel should be paused when calling this */
315static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
316{
317 struct pl08x_phy_chan *ch;
318 struct pl08x_txd *txd;
319 unsigned long flags;
320 size_t bytes = 0;
321
322 spin_lock_irqsave(&plchan->lock, flags);
323 ch = plchan->phychan;
324 txd = plchan->at;
325
326 /*
327 * Follow the LLIs to get the number of remaining
328 * bytes in the currently active transaction.
329 */
330 if (ch && txd) {
331 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
332
333 /* First get the remaining bytes in the active transfer */
334 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
335
336 if (clli) {
337 struct pl08x_lli *llis_va = txd->llis_va;
338 dma_addr_t llis_bus = txd->llis_bus;
339 int index;
340
341 BUG_ON(clli < llis_bus || clli >= llis_bus +
342 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
343
344 /*
345 * Locate the next LLI - as this is an array,
346 * it's simple maths to find.
347 */
348 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
349
350 for (; index < MAX_NUM_TSFR_LLIS; index++) {
351 bytes += get_bytes_in_cctl(llis_va[index].cctl);
352
353 /*
354 * A LLI pointer of 0 terminates the LLI list
355 */
356 if (!llis_va[index].lli)
357 break;
358 }
359 }
360 }
361
362 /* Sum up all queued transactions */
363 if (!list_empty(&plchan->pend_list)) {
364 struct pl08x_txd *txdi;
365 list_for_each_entry(txdi, &plchan->pend_list, node) {
366 bytes += txdi->len;
367 }
368 }
369
370 spin_unlock_irqrestore(&plchan->lock, flags);
371
372 return bytes;
373}
374
375/*
376 * Allocate a physical channel for a virtual channel
377 *
378 * Try to locate a physical channel to be used for this transfer. If all
379 * are taken return NULL and the requester will have to cope by using
380 * some fallback PIO mode or retrying later.
381 */
382static struct pl08x_phy_chan *
383pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
384 struct pl08x_dma_chan *virt_chan)
385{
386 struct pl08x_phy_chan *ch = NULL;
387 unsigned long flags;
388 int i;
389
390 for (i = 0; i < pl08x->vd->channels; i++) {
391 ch = &pl08x->phy_chans[i];
392
393 spin_lock_irqsave(&ch->lock, flags);
394
395 if (!ch->serving) {
396 ch->serving = virt_chan;
397 ch->signal = -1;
398 spin_unlock_irqrestore(&ch->lock, flags);
399 break;
400 }
401
402 spin_unlock_irqrestore(&ch->lock, flags);
403 }
404
405 if (i == pl08x->vd->channels) {
406 /* No physical channel available, cope with it */
407 return NULL;
408 }
409
410 return ch;
411}
412
413static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
414 struct pl08x_phy_chan *ch)
415{
416 unsigned long flags;
417
418 spin_lock_irqsave(&ch->lock, flags);
419
420 /* Stop the channel and clear its interrupts */
421 pl08x_terminate_phy_chan(pl08x, ch);
422
423 /* Mark it as free */
424 ch->serving = NULL;
425 spin_unlock_irqrestore(&ch->lock, flags);
426}
427
428/*
429 * LLI handling
430 */
431
432static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
433{
434 switch (coded) {
435 case PL080_WIDTH_8BIT:
436 return 1;
437 case PL080_WIDTH_16BIT:
438 return 2;
439 case PL080_WIDTH_32BIT:
440 return 4;
441 default:
442 break;
443 }
444 BUG();
445 return 0;
446}
447
448static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
449 size_t tsize)
450{
451 u32 retbits = cctl;
452
453 /* Remove all src, dst and transfer size bits */
454 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
455 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
456 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
457
458 /* Then set the bits according to the parameters */
459 switch (srcwidth) {
460 case 1:
461 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
462 break;
463 case 2:
464 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
465 break;
466 case 4:
467 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
468 break;
469 default:
470 BUG();
471 break;
472 }
473
474 switch (dstwidth) {
475 case 1:
476 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
477 break;
478 case 2:
479 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
480 break;
481 case 4:
482 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
483 break;
484 default:
485 BUG();
486 break;
487 }
488
489 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
490 return retbits;
491}
492
493struct pl08x_lli_build_data {
494 struct pl08x_txd *txd;
495 struct pl08x_bus_data srcbus;
496 struct pl08x_bus_data dstbus;
497 size_t remainder;
498 u32 lli_bus;
499};
500
501/*
502 * Autoselect a master bus to use for the transfer this prefers the
503 * destination bus if both available if fixed address on one bus the
504 * other will be chosen
505 */
506static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
507 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
508{
509 if (!(cctl & PL080_CONTROL_DST_INCR)) {
510 *mbus = &bd->srcbus;
511 *sbus = &bd->dstbus;
512 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
513 *mbus = &bd->dstbus;
514 *sbus = &bd->srcbus;
515 } else {
516 if (bd->dstbus.buswidth == 4) {
517 *mbus = &bd->dstbus;
518 *sbus = &bd->srcbus;
519 } else if (bd->srcbus.buswidth == 4) {
520 *mbus = &bd->srcbus;
521 *sbus = &bd->dstbus;
522 } else if (bd->dstbus.buswidth == 2) {
523 *mbus = &bd->dstbus;
524 *sbus = &bd->srcbus;
525 } else if (bd->srcbus.buswidth == 2) {
526 *mbus = &bd->srcbus;
527 *sbus = &bd->dstbus;
528 } else {
529 /* bd->srcbus.buswidth == 1 */
530 *mbus = &bd->dstbus;
531 *sbus = &bd->srcbus;
532 }
533 }
534}
535
536/*
537 * Fills in one LLI for a certain transfer descriptor and advance the counter
538 */
539static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
540 int num_llis, int len, u32 cctl)
541{
542 struct pl08x_lli *llis_va = bd->txd->llis_va;
543 dma_addr_t llis_bus = bd->txd->llis_bus;
544
545 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
546
547 llis_va[num_llis].cctl = cctl;
548 llis_va[num_llis].src = bd->srcbus.addr;
549 llis_va[num_llis].dst = bd->dstbus.addr;
550 llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
551 llis_va[num_llis].lli |= bd->lli_bus;
552
553 if (cctl & PL080_CONTROL_SRC_INCR)
554 bd->srcbus.addr += len;
555 if (cctl & PL080_CONTROL_DST_INCR)
556 bd->dstbus.addr += len;
557
558 BUG_ON(bd->remainder < len);
559
560 bd->remainder -= len;
561}
562
563/*
564 * Return number of bytes to fill to boundary, or len.
565 * This calculation works for any value of addr.
566 */
567static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
568{
569 size_t boundary_len = PL08X_BOUNDARY_SIZE -
570 (addr & (PL08X_BOUNDARY_SIZE - 1));
571
572 return min(boundary_len, len);
573}
574
575/*
576 * This fills in the table of LLIs for the transfer descriptor
577 * Note that we assume we never have to change the burst sizes
578 * Return 0 for error
579 */
580static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
581 struct pl08x_txd *txd)
582{
583 struct pl08x_bus_data *mbus, *sbus;
584 struct pl08x_lli_build_data bd;
585 int num_llis = 0;
586 u32 cctl;
587 size_t max_bytes_per_lli;
588 size_t total_bytes = 0;
589 struct pl08x_lli *llis_va;
590
591 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
592 &txd->llis_bus);
593 if (!txd->llis_va) {
594 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
595 return 0;
596 }
597
598 pl08x->pool_ctr++;
599
600 /* Get the default CCTL */
601 cctl = txd->cctl;
602
603 bd.txd = txd;
604 bd.srcbus.addr = txd->src_addr;
605 bd.dstbus.addr = txd->dst_addr;
606 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
607
608 /* Find maximum width of the source bus */
609 bd.srcbus.maxwidth =
610 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
611 PL080_CONTROL_SWIDTH_SHIFT);
612
613 /* Find maximum width of the destination bus */
614 bd.dstbus.maxwidth =
615 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
616 PL080_CONTROL_DWIDTH_SHIFT);
617
618 /* Set up the bus widths to the maximum */
619 bd.srcbus.buswidth = bd.srcbus.maxwidth;
620 bd.dstbus.buswidth = bd.dstbus.maxwidth;
621
622 /*
623 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
624 */
625 max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) *
626 PL080_CONTROL_TRANSFER_SIZE_MASK;
627
628 /* We need to count this down to zero */
629 bd.remainder = txd->len;
630
631 /*
632 * Choose bus to align to
633 * - prefers destination bus if both available
634 * - if fixed address on one bus chooses other
635 */
636 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
637
638 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu llimax=%zu\n",
639 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
640 bd.srcbus.buswidth,
641 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
642 bd.dstbus.buswidth,
643 bd.remainder, max_bytes_per_lli);
644 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
645 mbus == &bd.srcbus ? "src" : "dst",
646 sbus == &bd.srcbus ? "src" : "dst");
647
648 if (txd->len < mbus->buswidth) {
649 /* Less than a bus width available - send as single bytes */
650 while (bd.remainder) {
651 dev_vdbg(&pl08x->adev->dev,
652 "%s single byte LLIs for a transfer of "
653 "less than a bus width (remain 0x%08x)\n",
654 __func__, bd.remainder);
655 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
656 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
657 total_bytes++;
658 }
659 } else {
660 /* Make one byte LLIs until master bus is aligned */
661 while ((mbus->addr) % (mbus->buswidth)) {
662 dev_vdbg(&pl08x->adev->dev,
663 "%s adjustment lli for less than bus width "
664 "(remain 0x%08x)\n",
665 __func__, bd.remainder);
666 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
667 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
668 total_bytes++;
669 }
670
671 /*
672 * Master now aligned
673 * - if slave is not then we must set its width down
674 */
675 if (sbus->addr % sbus->buswidth) {
676 dev_dbg(&pl08x->adev->dev,
677 "%s set down bus width to one byte\n",
678 __func__);
679
680 sbus->buswidth = 1;
681 }
682
683 /*
684 * Make largest possible LLIs until less than one bus
685 * width left
686 */
687 while (bd.remainder > (mbus->buswidth - 1)) {
688 size_t lli_len, target_len, tsize, odd_bytes;
689
690 /*
691 * If enough left try to send max possible,
692 * otherwise try to send the remainder
693 */
694 target_len = min(bd.remainder, max_bytes_per_lli);
695
696 /*
697 * Set bus lengths for incrementing buses to the
698 * number of bytes which fill to next memory boundary,
699 * limiting on the target length calculated above.
700 */
701 if (cctl & PL080_CONTROL_SRC_INCR)
702 bd.srcbus.fill_bytes =
703 pl08x_pre_boundary(bd.srcbus.addr,
704 target_len);
705 else
706 bd.srcbus.fill_bytes = target_len;
707
708 if (cctl & PL080_CONTROL_DST_INCR)
709 bd.dstbus.fill_bytes =
710 pl08x_pre_boundary(bd.dstbus.addr,
711 target_len);
712 else
713 bd.dstbus.fill_bytes = target_len;
714
715 /* Find the nearest */
716 lli_len = min(bd.srcbus.fill_bytes,
717 bd.dstbus.fill_bytes);
718
719 BUG_ON(lli_len > bd.remainder);
720
721 if (lli_len <= 0) {
722 dev_err(&pl08x->adev->dev,
723 "%s lli_len is %zu, <= 0\n",
724 __func__, lli_len);
725 return 0;
726 }
727
728 if (lli_len == target_len) {
729 /*
730 * Can send what we wanted.
731 * Maintain alignment
732 */
733 lli_len = (lli_len/mbus->buswidth) *
734 mbus->buswidth;
735 odd_bytes = 0;
736 } else {
737 /*
738 * So now we know how many bytes to transfer
739 * to get to the nearest boundary. The next
740 * LLI will past the boundary. However, we
741 * may be working to a boundary on the slave
742 * bus. We need to ensure the master stays
743 * aligned, and that we are working in
744 * multiples of the bus widths.
745 */
746 odd_bytes = lli_len % mbus->buswidth;
747 lli_len -= odd_bytes;
748
749 }
750
751 if (lli_len) {
752 /*
753 * Check against minimum bus alignment:
754 * Calculate actual transfer size in relation
755 * to bus width an get a maximum remainder of
756 * the smallest bus width - 1
757 */
758 /* FIXME: use round_down()? */
759 tsize = lli_len / min(mbus->buswidth,
760 sbus->buswidth);
761 lli_len = tsize * min(mbus->buswidth,
762 sbus->buswidth);
763
764 if (target_len != lli_len) {
765 dev_vdbg(&pl08x->adev->dev,
766 "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
767 __func__, target_len, lli_len, txd->len);
768 }
769
770 cctl = pl08x_cctl_bits(cctl,
771 bd.srcbus.buswidth,
772 bd.dstbus.buswidth,
773 tsize);
774
775 dev_vdbg(&pl08x->adev->dev,
776 "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
777 __func__, lli_len, bd.remainder);
778 pl08x_fill_lli_for_desc(&bd, num_llis++,
779 lli_len, cctl);
780 total_bytes += lli_len;
781 }
782
783
784 if (odd_bytes) {
785 /*
786 * Creep past the boundary, maintaining
787 * master alignment
788 */
789 int j;
790 for (j = 0; (j < mbus->buswidth)
791 && (bd.remainder); j++) {
792 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
793 dev_vdbg(&pl08x->adev->dev,
794 "%s align with boundary, single byte (remain 0x%08zx)\n",
795 __func__, bd.remainder);
796 pl08x_fill_lli_for_desc(&bd,
797 num_llis++, 1, cctl);
798 total_bytes++;
799 }
800 }
801 }
802
803 /*
804 * Send any odd bytes
805 */
806 while (bd.remainder) {
807 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
808 dev_vdbg(&pl08x->adev->dev,
809 "%s align with boundary, single odd byte (remain %zu)\n",
810 __func__, bd.remainder);
811 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
812 total_bytes++;
813 }
814 }
815 if (total_bytes != txd->len) {
816 dev_err(&pl08x->adev->dev,
817 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
818 __func__, total_bytes, txd->len);
819 return 0;
820 }
821
822 if (num_llis >= MAX_NUM_TSFR_LLIS) {
823 dev_err(&pl08x->adev->dev,
824 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
825 __func__, (u32) MAX_NUM_TSFR_LLIS);
826 return 0;
827 }
828
829 llis_va = txd->llis_va;
830 /* The final LLI terminates the LLI. */
831 llis_va[num_llis - 1].lli = 0;
832 /* The final LLI element shall also fire an interrupt. */
833 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
834
835#ifdef VERBOSE_DEBUG
836 {
837 int i;
838
839 dev_vdbg(&pl08x->adev->dev,
840 "%-3s %-9s %-10s %-10s %-10s %s\n",
841 "lli", "", "csrc", "cdst", "clli", "cctl");
842 for (i = 0; i < num_llis; i++) {
843 dev_vdbg(&pl08x->adev->dev,
844 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
845 i, &llis_va[i], llis_va[i].src,
846 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
847 );
848 }
849 }
850#endif
851
852 return num_llis;
853}
854
855/* You should call this with the struct pl08x lock held */
856static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
857 struct pl08x_txd *txd)
858{
859 /* Free the LLI */
860 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
861
862 pl08x->pool_ctr--;
863
864 kfree(txd);
865}
866
867static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
868 struct pl08x_dma_chan *plchan)
869{
870 struct pl08x_txd *txdi = NULL;
871 struct pl08x_txd *next;
872
873 if (!list_empty(&plchan->pend_list)) {
874 list_for_each_entry_safe(txdi,
875 next, &plchan->pend_list, node) {
876 list_del(&txdi->node);
877 pl08x_free_txd(pl08x, txdi);
878 }
879 }
880}
881
882/*
883 * The DMA ENGINE API
884 */
885static int pl08x_alloc_chan_resources(struct dma_chan *chan)
886{
887 return 0;
888}
889
890static void pl08x_free_chan_resources(struct dma_chan *chan)
891{
892}
893
894/*
895 * This should be called with the channel plchan->lock held
896 */
897static int prep_phy_channel(struct pl08x_dma_chan *plchan,
898 struct pl08x_txd *txd)
899{
900 struct pl08x_driver_data *pl08x = plchan->host;
901 struct pl08x_phy_chan *ch;
902 int ret;
903
904 /* Check if we already have a channel */
905 if (plchan->phychan)
906 return 0;
907
908 ch = pl08x_get_phy_channel(pl08x, plchan);
909 if (!ch) {
910 /* No physical channel available, cope with it */
911 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
912 return -EBUSY;
913 }
914
915 /*
916 * OK we have a physical channel: for memcpy() this is all we
917 * need, but for slaves the physical signals may be muxed!
918 * Can the platform allow us to use this channel?
919 */
920 if (plchan->slave &&
921 ch->signal < 0 &&
922 pl08x->pd->get_signal) {
923 ret = pl08x->pd->get_signal(plchan);
924 if (ret < 0) {
925 dev_dbg(&pl08x->adev->dev,
926 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
927 ch->id, plchan->name);
928 /* Release physical channel & return */
929 pl08x_put_phy_channel(pl08x, ch);
930 return -EBUSY;
931 }
932 ch->signal = ret;
933
934 /* Assign the flow control signal to this channel */
935 if (txd->direction == DMA_TO_DEVICE)
936 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
937 else if (txd->direction == DMA_FROM_DEVICE)
938 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
939 }
940
941 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
942 ch->id,
943 ch->signal,
944 plchan->name);
945
946 plchan->phychan_hold++;
947 plchan->phychan = ch;
948
949 return 0;
950}
951
952static void release_phy_channel(struct pl08x_dma_chan *plchan)
953{
954 struct pl08x_driver_data *pl08x = plchan->host;
955
956 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
957 pl08x->pd->put_signal(plchan);
958 plchan->phychan->signal = -1;
959 }
960 pl08x_put_phy_channel(pl08x, plchan->phychan);
961 plchan->phychan = NULL;
962}
963
964static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
965{
966 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
967 struct pl08x_txd *txd = to_pl08x_txd(tx);
968 unsigned long flags;
969
970 spin_lock_irqsave(&plchan->lock, flags);
971
972 plchan->chan.cookie += 1;
973 if (plchan->chan.cookie < 0)
974 plchan->chan.cookie = 1;
975 tx->cookie = plchan->chan.cookie;
976
977 /* Put this onto the pending list */
978 list_add_tail(&txd->node, &plchan->pend_list);
979
980 /*
981 * If there was no physical channel available for this memcpy,
982 * stack the request up and indicate that the channel is waiting
983 * for a free physical channel.
984 */
985 if (!plchan->slave && !plchan->phychan) {
986 /* Do this memcpy whenever there is a channel ready */
987 plchan->state = PL08X_CHAN_WAITING;
988 plchan->waiting = txd;
989 } else {
990 plchan->phychan_hold--;
991 }
992
993 spin_unlock_irqrestore(&plchan->lock, flags);
994
995 return tx->cookie;
996}
997
998static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
999 struct dma_chan *chan, unsigned long flags)
1000{
1001 struct dma_async_tx_descriptor *retval = NULL;
1002
1003 return retval;
1004}
1005
1006/*
1007 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1008 * If slaves are relying on interrupts to signal completion this function
1009 * must not be called with interrupts disabled.
1010 */
1011static enum dma_status
1012pl08x_dma_tx_status(struct dma_chan *chan,
1013 dma_cookie_t cookie,
1014 struct dma_tx_state *txstate)
1015{
1016 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1017 dma_cookie_t last_used;
1018 dma_cookie_t last_complete;
1019 enum dma_status ret;
1020 u32 bytesleft = 0;
1021
1022 last_used = plchan->chan.cookie;
1023 last_complete = plchan->lc;
1024
1025 ret = dma_async_is_complete(cookie, last_complete, last_used);
1026 if (ret == DMA_SUCCESS) {
1027 dma_set_tx_state(txstate, last_complete, last_used, 0);
1028 return ret;
1029 }
1030
1031 /*
1032 * This cookie not complete yet
1033 */
1034 last_used = plchan->chan.cookie;
1035 last_complete = plchan->lc;
1036
1037 /* Get number of bytes left in the active transactions and queue */
1038 bytesleft = pl08x_getbytes_chan(plchan);
1039
1040 dma_set_tx_state(txstate, last_complete, last_used,
1041 bytesleft);
1042
1043 if (plchan->state == PL08X_CHAN_PAUSED)
1044 return DMA_PAUSED;
1045
1046 /* Whether waiting or running, we're in progress */
1047 return DMA_IN_PROGRESS;
1048}
1049
1050/* PrimeCell DMA extension */
1051struct burst_table {
1052 u32 burstwords;
1053 u32 reg;
1054};
1055
1056static const struct burst_table burst_sizes[] = {
1057 {
1058 .burstwords = 256,
1059 .reg = PL080_BSIZE_256,
1060 },
1061 {
1062 .burstwords = 128,
1063 .reg = PL080_BSIZE_128,
1064 },
1065 {
1066 .burstwords = 64,
1067 .reg = PL080_BSIZE_64,
1068 },
1069 {
1070 .burstwords = 32,
1071 .reg = PL080_BSIZE_32,
1072 },
1073 {
1074 .burstwords = 16,
1075 .reg = PL080_BSIZE_16,
1076 },
1077 {
1078 .burstwords = 8,
1079 .reg = PL080_BSIZE_8,
1080 },
1081 {
1082 .burstwords = 4,
1083 .reg = PL080_BSIZE_4,
1084 },
1085 {
1086 .burstwords = 0,
1087 .reg = PL080_BSIZE_1,
1088 },
1089};
1090
1091/*
1092 * Given the source and destination available bus masks, select which
1093 * will be routed to each port. We try to have source and destination
1094 * on separate ports, but always respect the allowable settings.
1095 */
1096static u32 pl08x_select_bus(u8 src, u8 dst)
1097{
1098 u32 cctl = 0;
1099
1100 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1101 cctl |= PL080_CONTROL_DST_AHB2;
1102 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1103 cctl |= PL080_CONTROL_SRC_AHB2;
1104
1105 return cctl;
1106}
1107
1108static u32 pl08x_cctl(u32 cctl)
1109{
1110 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1111 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1112 PL080_CONTROL_PROT_MASK);
1113
1114 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1115 return cctl | PL080_CONTROL_PROT_SYS;
1116}
1117
1118static u32 pl08x_width(enum dma_slave_buswidth width)
1119{
1120 switch (width) {
1121 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1122 return PL080_WIDTH_8BIT;
1123 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1124 return PL080_WIDTH_16BIT;
1125 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1126 return PL080_WIDTH_32BIT;
1127 default:
1128 return ~0;
1129 }
1130}
1131
1132static u32 pl08x_burst(u32 maxburst)
1133{
1134 int i;
1135
1136 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1137 if (burst_sizes[i].burstwords <= maxburst)
1138 break;
1139
1140 return burst_sizes[i].reg;
1141}
1142
1143static int dma_set_runtime_config(struct dma_chan *chan,
1144 struct dma_slave_config *config)
1145{
1146 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1147 struct pl08x_driver_data *pl08x = plchan->host;
1148 enum dma_slave_buswidth addr_width;
1149 u32 width, burst, maxburst;
1150 u32 cctl = 0;
1151
1152 if (!plchan->slave)
1153 return -EINVAL;
1154
1155 /* Transfer direction */
1156 plchan->runtime_direction = config->direction;
1157 if (config->direction == DMA_TO_DEVICE) {
1158 addr_width = config->dst_addr_width;
1159 maxburst = config->dst_maxburst;
1160 } else if (config->direction == DMA_FROM_DEVICE) {
1161 addr_width = config->src_addr_width;
1162 maxburst = config->src_maxburst;
1163 } else {
1164 dev_err(&pl08x->adev->dev,
1165 "bad runtime_config: alien transfer direction\n");
1166 return -EINVAL;
1167 }
1168
1169 width = pl08x_width(addr_width);
1170 if (width == ~0) {
1171 dev_err(&pl08x->adev->dev,
1172 "bad runtime_config: alien address width\n");
1173 return -EINVAL;
1174 }
1175
1176 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1177 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1178
1179 /*
1180 * If this channel will only request single transfers, set this
1181 * down to ONE element. Also select one element if no maxburst
1182 * is specified.
1183 */
1184 if (plchan->cd->single)
1185 maxburst = 1;
1186
1187 burst = pl08x_burst(maxburst);
1188 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1189 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1190
1191 if (plchan->runtime_direction == DMA_FROM_DEVICE) {
1192 plchan->src_addr = config->src_addr;
1193 plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
1194 pl08x_select_bus(plchan->cd->periph_buses,
1195 pl08x->mem_buses);
1196 } else {
1197 plchan->dst_addr = config->dst_addr;
1198 plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
1199 pl08x_select_bus(pl08x->mem_buses,
1200 plchan->cd->periph_buses);
1201 }
1202
1203 dev_dbg(&pl08x->adev->dev,
1204 "configured channel %s (%s) for %s, data width %d, "
1205 "maxburst %d words, LE, CCTL=0x%08x\n",
1206 dma_chan_name(chan), plchan->name,
1207 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1208 addr_width,
1209 maxburst,
1210 cctl);
1211
1212 return 0;
1213}
1214
1215/*
1216 * Slave transactions callback to the slave device to allow
1217 * synchronization of slave DMA signals with the DMAC enable
1218 */
1219static void pl08x_issue_pending(struct dma_chan *chan)
1220{
1221 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1222 unsigned long flags;
1223
1224 spin_lock_irqsave(&plchan->lock, flags);
1225 /* Something is already active, or we're waiting for a channel... */
1226 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1227 spin_unlock_irqrestore(&plchan->lock, flags);
1228 return;
1229 }
1230
1231 /* Take the first element in the queue and execute it */
1232 if (!list_empty(&plchan->pend_list)) {
1233 struct pl08x_txd *next;
1234
1235 next = list_first_entry(&plchan->pend_list,
1236 struct pl08x_txd,
1237 node);
1238 list_del(&next->node);
1239 plchan->state = PL08X_CHAN_RUNNING;
1240
1241 pl08x_start_txd(plchan, next);
1242 }
1243
1244 spin_unlock_irqrestore(&plchan->lock, flags);
1245}
1246
1247static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1248 struct pl08x_txd *txd)
1249{
1250 struct pl08x_driver_data *pl08x = plchan->host;
1251 unsigned long flags;
1252 int num_llis, ret;
1253
1254 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1255 if (!num_llis) {
1256 kfree(txd);
1257 return -EINVAL;
1258 }
1259
1260 spin_lock_irqsave(&plchan->lock, flags);
1261
1262 /*
1263 * See if we already have a physical channel allocated,
1264 * else this is the time to try to get one.
1265 */
1266 ret = prep_phy_channel(plchan, txd);
1267 if (ret) {
1268 /*
1269 * No physical channel was available.
1270 *
1271 * memcpy transfers can be sorted out at submission time.
1272 *
1273 * Slave transfers may have been denied due to platform
1274 * channel muxing restrictions. Since there is no guarantee
1275 * that this will ever be resolved, and the signal must be
1276 * acquired AFTER acquiring the physical channel, we will let
1277 * them be NACK:ed with -EBUSY here. The drivers can retry
1278 * the prep() call if they are eager on doing this using DMA.
1279 */
1280 if (plchan->slave) {
1281 pl08x_free_txd_list(pl08x, plchan);
1282 pl08x_free_txd(pl08x, txd);
1283 spin_unlock_irqrestore(&plchan->lock, flags);
1284 return -EBUSY;
1285 }
1286 } else
1287 /*
1288 * Else we're all set, paused and ready to roll, status
1289 * will switch to PL08X_CHAN_RUNNING when we call
1290 * issue_pending(). If there is something running on the
1291 * channel already we don't change its state.
1292 */
1293 if (plchan->state == PL08X_CHAN_IDLE)
1294 plchan->state = PL08X_CHAN_PAUSED;
1295
1296 spin_unlock_irqrestore(&plchan->lock, flags);
1297
1298 return 0;
1299}
1300
1301static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1302 unsigned long flags)
1303{
1304 struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1305
1306 if (txd) {
1307 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1308 txd->tx.flags = flags;
1309 txd->tx.tx_submit = pl08x_tx_submit;
1310 INIT_LIST_HEAD(&txd->node);
1311
1312 /* Always enable error and terminal interrupts */
1313 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1314 PL080_CONFIG_TC_IRQ_MASK;
1315 }
1316 return txd;
1317}
1318
1319/*
1320 * Initialize a descriptor to be used by memcpy submit
1321 */
1322static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1323 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1324 size_t len, unsigned long flags)
1325{
1326 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1327 struct pl08x_driver_data *pl08x = plchan->host;
1328 struct pl08x_txd *txd;
1329 int ret;
1330
1331 txd = pl08x_get_txd(plchan, flags);
1332 if (!txd) {
1333 dev_err(&pl08x->adev->dev,
1334 "%s no memory for descriptor\n", __func__);
1335 return NULL;
1336 }
1337
1338 txd->direction = DMA_NONE;
1339 txd->src_addr = src;
1340 txd->dst_addr = dest;
1341 txd->len = len;
1342
1343 /* Set platform data for m2m */
1344 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1345 txd->cctl = pl08x->pd->memcpy_channel.cctl &
1346 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1347
1348 /* Both to be incremented or the code will break */
1349 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1350
1351 if (pl08x->vd->dualmaster)
1352 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1353 pl08x->mem_buses);
1354
1355 ret = pl08x_prep_channel_resources(plchan, txd);
1356 if (ret)
1357 return NULL;
1358
1359 return &txd->tx;
1360}
1361
1362static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1363 struct dma_chan *chan, struct scatterlist *sgl,
1364 unsigned int sg_len, enum dma_data_direction direction,
1365 unsigned long flags)
1366{
1367 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1368 struct pl08x_driver_data *pl08x = plchan->host;
1369 struct pl08x_txd *txd;
1370 int ret;
1371
1372 /*
1373 * Current implementation ASSUMES only one sg
1374 */
1375 if (sg_len != 1) {
1376 dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1377 __func__);
1378 BUG();
1379 }
1380
1381 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1382 __func__, sgl->length, plchan->name);
1383
1384 txd = pl08x_get_txd(plchan, flags);
1385 if (!txd) {
1386 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1387 return NULL;
1388 }
1389
1390 if (direction != plchan->runtime_direction)
1391 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1392 "the direction configured for the PrimeCell\n",
1393 __func__);
1394
1395 /*
1396 * Set up addresses, the PrimeCell configured address
1397 * will take precedence since this may configure the
1398 * channel target address dynamically at runtime.
1399 */
1400 txd->direction = direction;
1401 txd->len = sgl->length;
1402
1403 if (direction == DMA_TO_DEVICE) {
1404 txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1405 txd->cctl = plchan->dst_cctl;
1406 txd->src_addr = sgl->dma_address;
1407 txd->dst_addr = plchan->dst_addr;
1408 } else if (direction == DMA_FROM_DEVICE) {
1409 txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1410 txd->cctl = plchan->src_cctl;
1411 txd->src_addr = plchan->src_addr;
1412 txd->dst_addr = sgl->dma_address;
1413 } else {
1414 dev_err(&pl08x->adev->dev,
1415 "%s direction unsupported\n", __func__);
1416 return NULL;
1417 }
1418
1419 ret = pl08x_prep_channel_resources(plchan, txd);
1420 if (ret)
1421 return NULL;
1422
1423 return &txd->tx;
1424}
1425
1426static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1427 unsigned long arg)
1428{
1429 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1430 struct pl08x_driver_data *pl08x = plchan->host;
1431 unsigned long flags;
1432 int ret = 0;
1433
1434 /* Controls applicable to inactive channels */
1435 if (cmd == DMA_SLAVE_CONFIG) {
1436 return dma_set_runtime_config(chan,
1437 (struct dma_slave_config *)arg);
1438 }
1439
1440 /*
1441 * Anything succeeds on channels with no physical allocation and
1442 * no queued transfers.
1443 */
1444 spin_lock_irqsave(&plchan->lock, flags);
1445 if (!plchan->phychan && !plchan->at) {
1446 spin_unlock_irqrestore(&plchan->lock, flags);
1447 return 0;
1448 }
1449
1450 switch (cmd) {
1451 case DMA_TERMINATE_ALL:
1452 plchan->state = PL08X_CHAN_IDLE;
1453
1454 if (plchan->phychan) {
1455 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1456
1457 /*
1458 * Mark physical channel as free and free any slave
1459 * signal
1460 */
1461 release_phy_channel(plchan);
1462 }
1463 /* Dequeue jobs and free LLIs */
1464 if (plchan->at) {
1465 pl08x_free_txd(pl08x, plchan->at);
1466 plchan->at = NULL;
1467 }
1468 /* Dequeue jobs not yet fired as well */
1469 pl08x_free_txd_list(pl08x, plchan);
1470 break;
1471 case DMA_PAUSE:
1472 pl08x_pause_phy_chan(plchan->phychan);
1473 plchan->state = PL08X_CHAN_PAUSED;
1474 break;
1475 case DMA_RESUME:
1476 pl08x_resume_phy_chan(plchan->phychan);
1477 plchan->state = PL08X_CHAN_RUNNING;
1478 break;
1479 default:
1480 /* Unknown command */
1481 ret = -ENXIO;
1482 break;
1483 }
1484
1485 spin_unlock_irqrestore(&plchan->lock, flags);
1486
1487 return ret;
1488}
1489
1490bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1491{
1492 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1493 char *name = chan_id;
1494
1495 /* Check that the channel is not taken! */
1496 if (!strcmp(plchan->name, name))
1497 return true;
1498
1499 return false;
1500}
1501
1502/*
1503 * Just check that the device is there and active
1504 * TODO: turn this bit on/off depending on the number of physical channels
1505 * actually used, if it is zero... well shut it off. That will save some
1506 * power. Cut the clock at the same time.
1507 */
1508static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1509{
1510 u32 val;
1511
1512 val = readl(pl08x->base + PL080_CONFIG);
1513 val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1514 /* We implicitly clear bit 1 and that means little-endian mode */
1515 val |= PL080_CONFIG_ENABLE;
1516 writel(val, pl08x->base + PL080_CONFIG);
1517}
1518
1519static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1520{
1521 struct device *dev = txd->tx.chan->device->dev;
1522
1523 if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1524 if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1525 dma_unmap_single(dev, txd->src_addr, txd->len,
1526 DMA_TO_DEVICE);
1527 else
1528 dma_unmap_page(dev, txd->src_addr, txd->len,
1529 DMA_TO_DEVICE);
1530 }
1531 if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1532 if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1533 dma_unmap_single(dev, txd->dst_addr, txd->len,
1534 DMA_FROM_DEVICE);
1535 else
1536 dma_unmap_page(dev, txd->dst_addr, txd->len,
1537 DMA_FROM_DEVICE);
1538 }
1539}
1540
1541static void pl08x_tasklet(unsigned long data)
1542{
1543 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1544 struct pl08x_driver_data *pl08x = plchan->host;
1545 struct pl08x_txd *txd;
1546 unsigned long flags;
1547
1548 spin_lock_irqsave(&plchan->lock, flags);
1549
1550 txd = plchan->at;
1551 plchan->at = NULL;
1552
1553 if (txd) {
1554 /* Update last completed */
1555 plchan->lc = txd->tx.cookie;
1556 }
1557
1558 /* If a new descriptor is queued, set it up plchan->at is NULL here */
1559 if (!list_empty(&plchan->pend_list)) {
1560 struct pl08x_txd *next;
1561
1562 next = list_first_entry(&plchan->pend_list,
1563 struct pl08x_txd,
1564 node);
1565 list_del(&next->node);
1566
1567 pl08x_start_txd(plchan, next);
1568 } else if (plchan->phychan_hold) {
1569 /*
1570 * This channel is still in use - we have a new txd being
1571 * prepared and will soon be queued. Don't give up the
1572 * physical channel.
1573 */
1574 } else {
1575 struct pl08x_dma_chan *waiting = NULL;
1576
1577 /*
1578 * No more jobs, so free up the physical channel
1579 * Free any allocated signal on slave transfers too
1580 */
1581 release_phy_channel(plchan);
1582 plchan->state = PL08X_CHAN_IDLE;
1583
1584 /*
1585 * And NOW before anyone else can grab that free:d up
1586 * physical channel, see if there is some memcpy pending
1587 * that seriously needs to start because of being stacked
1588 * up while we were choking the physical channels with data.
1589 */
1590 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1591 chan.device_node) {
1592 if (waiting->state == PL08X_CHAN_WAITING &&
1593 waiting->waiting != NULL) {
1594 int ret;
1595
1596 /* This should REALLY not fail now */
1597 ret = prep_phy_channel(waiting,
1598 waiting->waiting);
1599 BUG_ON(ret);
1600 waiting->phychan_hold--;
1601 waiting->state = PL08X_CHAN_RUNNING;
1602 waiting->waiting = NULL;
1603 pl08x_issue_pending(&waiting->chan);
1604 break;
1605 }
1606 }
1607 }
1608
1609 spin_unlock_irqrestore(&plchan->lock, flags);
1610
1611 if (txd) {
1612 dma_async_tx_callback callback = txd->tx.callback;
1613 void *callback_param = txd->tx.callback_param;
1614
1615 /* Don't try to unmap buffers on slave channels */
1616 if (!plchan->slave)
1617 pl08x_unmap_buffers(txd);
1618
1619 /* Free the descriptor */
1620 spin_lock_irqsave(&plchan->lock, flags);
1621 pl08x_free_txd(pl08x, txd);
1622 spin_unlock_irqrestore(&plchan->lock, flags);
1623
1624 /* Callback to signal completion */
1625 if (callback)
1626 callback(callback_param);
1627 }
1628}
1629
1630static irqreturn_t pl08x_irq(int irq, void *dev)
1631{
1632 struct pl08x_driver_data *pl08x = dev;
1633 u32 mask = 0;
1634 u32 val;
1635 int i;
1636
1637 val = readl(pl08x->base + PL080_ERR_STATUS);
1638 if (val) {
1639 /* An error interrupt (on one or more channels) */
1640 dev_err(&pl08x->adev->dev,
1641 "%s error interrupt, register value 0x%08x\n",
1642 __func__, val);
1643 /*
1644 * Simply clear ALL PL08X error interrupts,
1645 * regardless of channel and cause
1646 * FIXME: should be 0x00000003 on PL081 really.
1647 */
1648 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1649 }
1650 val = readl(pl08x->base + PL080_INT_STATUS);
1651 for (i = 0; i < pl08x->vd->channels; i++) {
1652 if ((1 << i) & val) {
1653 /* Locate physical channel */
1654 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1655 struct pl08x_dma_chan *plchan = phychan->serving;
1656
1657 /* Schedule tasklet on this channel */
1658 tasklet_schedule(&plchan->tasklet);
1659
1660 mask |= (1 << i);
1661 }
1662 }
1663 /* Clear only the terminal interrupts on channels we processed */
1664 writel(mask, pl08x->base + PL080_TC_CLEAR);
1665
1666 return mask ? IRQ_HANDLED : IRQ_NONE;
1667}
1668
1669static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1670{
1671 u32 cctl = pl08x_cctl(chan->cd->cctl);
1672
1673 chan->slave = true;
1674 chan->name = chan->cd->bus_id;
1675 chan->src_addr = chan->cd->addr;
1676 chan->dst_addr = chan->cd->addr;
1677 chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
1678 pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
1679 chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
1680 pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
1681}
1682
1683/*
1684 * Initialise the DMAC memcpy/slave channels.
1685 * Make a local wrapper to hold required data
1686 */
1687static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1688 struct dma_device *dmadev,
1689 unsigned int channels,
1690 bool slave)
1691{
1692 struct pl08x_dma_chan *chan;
1693 int i;
1694
1695 INIT_LIST_HEAD(&dmadev->channels);
1696
1697 /*
1698 * Register as many many memcpy as we have physical channels,
1699 * we won't always be able to use all but the code will have
1700 * to cope with that situation.
1701 */
1702 for (i = 0; i < channels; i++) {
1703 chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1704 if (!chan) {
1705 dev_err(&pl08x->adev->dev,
1706 "%s no memory for channel\n", __func__);
1707 return -ENOMEM;
1708 }
1709
1710 chan->host = pl08x;
1711 chan->state = PL08X_CHAN_IDLE;
1712
1713 if (slave) {
1714 chan->cd = &pl08x->pd->slave_channels[i];
1715 pl08x_dma_slave_init(chan);
1716 } else {
1717 chan->cd = &pl08x->pd->memcpy_channel;
1718 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1719 if (!chan->name) {
1720 kfree(chan);
1721 return -ENOMEM;
1722 }
1723 }
1724 if (chan->cd->circular_buffer) {
1725 dev_err(&pl08x->adev->dev,
1726 "channel %s: circular buffers not supported\n",
1727 chan->name);
1728 kfree(chan);
1729 continue;
1730 }
1731 dev_info(&pl08x->adev->dev,
1732 "initialize virtual channel \"%s\"\n",
1733 chan->name);
1734
1735 chan->chan.device = dmadev;
1736 chan->chan.cookie = 0;
1737 chan->lc = 0;
1738
1739 spin_lock_init(&chan->lock);
1740 INIT_LIST_HEAD(&chan->pend_list);
1741 tasklet_init(&chan->tasklet, pl08x_tasklet,
1742 (unsigned long) chan);
1743
1744 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1745 }
1746 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1747 i, slave ? "slave" : "memcpy");
1748 return i;
1749}
1750
1751static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1752{
1753 struct pl08x_dma_chan *chan = NULL;
1754 struct pl08x_dma_chan *next;
1755
1756 list_for_each_entry_safe(chan,
1757 next, &dmadev->channels, chan.device_node) {
1758 list_del(&chan->chan.device_node);
1759 kfree(chan);
1760 }
1761}
1762
1763#ifdef CONFIG_DEBUG_FS
1764static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1765{
1766 switch (state) {
1767 case PL08X_CHAN_IDLE:
1768 return "idle";
1769 case PL08X_CHAN_RUNNING:
1770 return "running";
1771 case PL08X_CHAN_PAUSED:
1772 return "paused";
1773 case PL08X_CHAN_WAITING:
1774 return "waiting";
1775 default:
1776 break;
1777 }
1778 return "UNKNOWN STATE";
1779}
1780
1781static int pl08x_debugfs_show(struct seq_file *s, void *data)
1782{
1783 struct pl08x_driver_data *pl08x = s->private;
1784 struct pl08x_dma_chan *chan;
1785 struct pl08x_phy_chan *ch;
1786 unsigned long flags;
1787 int i;
1788
1789 seq_printf(s, "PL08x physical channels:\n");
1790 seq_printf(s, "CHANNEL:\tUSER:\n");
1791 seq_printf(s, "--------\t-----\n");
1792 for (i = 0; i < pl08x->vd->channels; i++) {
1793 struct pl08x_dma_chan *virt_chan;
1794
1795 ch = &pl08x->phy_chans[i];
1796
1797 spin_lock_irqsave(&ch->lock, flags);
1798 virt_chan = ch->serving;
1799
1800 seq_printf(s, "%d\t\t%s\n",
1801 ch->id, virt_chan ? virt_chan->name : "(none)");
1802
1803 spin_unlock_irqrestore(&ch->lock, flags);
1804 }
1805
1806 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1807 seq_printf(s, "CHANNEL:\tSTATE:\n");
1808 seq_printf(s, "--------\t------\n");
1809 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1810 seq_printf(s, "%s\t\t%s\n", chan->name,
1811 pl08x_state_str(chan->state));
1812 }
1813
1814 seq_printf(s, "\nPL08x virtual slave channels:\n");
1815 seq_printf(s, "CHANNEL:\tSTATE:\n");
1816 seq_printf(s, "--------\t------\n");
1817 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1818 seq_printf(s, "%s\t\t%s\n", chan->name,
1819 pl08x_state_str(chan->state));
1820 }
1821
1822 return 0;
1823}
1824
1825static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1826{
1827 return single_open(file, pl08x_debugfs_show, inode->i_private);
1828}
1829
1830static const struct file_operations pl08x_debugfs_operations = {
1831 .open = pl08x_debugfs_open,
1832 .read = seq_read,
1833 .llseek = seq_lseek,
1834 .release = single_release,
1835};
1836
1837static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1838{
1839 /* Expose a simple debugfs interface to view all clocks */
1840 (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1841 NULL, pl08x,
1842 &pl08x_debugfs_operations);
1843}
1844
1845#else
1846static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1847{
1848}
1849#endif
1850
1851static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1852{
1853 struct pl08x_driver_data *pl08x;
1854 const struct vendor_data *vd = id->data;
1855 int ret = 0;
1856 int i;
1857
1858 ret = amba_request_regions(adev, NULL);
1859 if (ret)
1860 return ret;
1861
1862 /* Create the driver state holder */
1863 pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1864 if (!pl08x) {
1865 ret = -ENOMEM;
1866 goto out_no_pl08x;
1867 }
1868
1869 /* Initialize memcpy engine */
1870 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1871 pl08x->memcpy.dev = &adev->dev;
1872 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1873 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1874 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1875 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1876 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1877 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1878 pl08x->memcpy.device_control = pl08x_control;
1879
1880 /* Initialize slave engine */
1881 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1882 pl08x->slave.dev = &adev->dev;
1883 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1884 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1885 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1886 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1887 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1888 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1889 pl08x->slave.device_control = pl08x_control;
1890
1891 /* Get the platform data */
1892 pl08x->pd = dev_get_platdata(&adev->dev);
1893 if (!pl08x->pd) {
1894 dev_err(&adev->dev, "no platform data supplied\n");
1895 goto out_no_platdata;
1896 }
1897
1898 /* Assign useful pointers to the driver state */
1899 pl08x->adev = adev;
1900 pl08x->vd = vd;
1901
1902 /* By default, AHB1 only. If dualmaster, from platform */
1903 pl08x->lli_buses = PL08X_AHB1;
1904 pl08x->mem_buses = PL08X_AHB1;
1905 if (pl08x->vd->dualmaster) {
1906 pl08x->lli_buses = pl08x->pd->lli_buses;
1907 pl08x->mem_buses = pl08x->pd->mem_buses;
1908 }
1909
1910 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1911 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1912 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1913 if (!pl08x->pool) {
1914 ret = -ENOMEM;
1915 goto out_no_lli_pool;
1916 }
1917
1918 spin_lock_init(&pl08x->lock);
1919
1920 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1921 if (!pl08x->base) {
1922 ret = -ENOMEM;
1923 goto out_no_ioremap;
1924 }
1925
1926 /* Turn on the PL08x */
1927 pl08x_ensure_on(pl08x);
1928
1929 /* Attach the interrupt handler */
1930 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1931 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1932
1933 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1934 DRIVER_NAME, pl08x);
1935 if (ret) {
1936 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1937 __func__, adev->irq[0]);
1938 goto out_no_irq;
1939 }
1940
1941 /* Initialize physical channels */
1942 pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
1943 GFP_KERNEL);
1944 if (!pl08x->phy_chans) {
1945 dev_err(&adev->dev, "%s failed to allocate "
1946 "physical channel holders\n",
1947 __func__);
1948 goto out_no_phychans;
1949 }
1950
1951 for (i = 0; i < vd->channels; i++) {
1952 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1953
1954 ch->id = i;
1955 ch->base = pl08x->base + PL080_Cx_BASE(i);
1956 spin_lock_init(&ch->lock);
1957 ch->serving = NULL;
1958 ch->signal = -1;
1959 dev_info(&adev->dev,
1960 "physical channel %d is %s\n", i,
1961 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1962 }
1963
1964 /* Register as many memcpy channels as there are physical channels */
1965 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1966 pl08x->vd->channels, false);
1967 if (ret <= 0) {
1968 dev_warn(&pl08x->adev->dev,
1969 "%s failed to enumerate memcpy channels - %d\n",
1970 __func__, ret);
1971 goto out_no_memcpy;
1972 }
1973 pl08x->memcpy.chancnt = ret;
1974
1975 /* Register slave channels */
1976 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1977 pl08x->pd->num_slave_channels,
1978 true);
1979 if (ret <= 0) {
1980 dev_warn(&pl08x->adev->dev,
1981 "%s failed to enumerate slave channels - %d\n",
1982 __func__, ret);
1983 goto out_no_slave;
1984 }
1985 pl08x->slave.chancnt = ret;
1986
1987 ret = dma_async_device_register(&pl08x->memcpy);
1988 if (ret) {
1989 dev_warn(&pl08x->adev->dev,
1990 "%s failed to register memcpy as an async device - %d\n",
1991 __func__, ret);
1992 goto out_no_memcpy_reg;
1993 }
1994
1995 ret = dma_async_device_register(&pl08x->slave);
1996 if (ret) {
1997 dev_warn(&pl08x->adev->dev,
1998 "%s failed to register slave as an async device - %d\n",
1999 __func__, ret);
2000 goto out_no_slave_reg;
2001 }
2002
2003 amba_set_drvdata(adev, pl08x);
2004 init_pl08x_debugfs(pl08x);
2005 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2006 amba_part(adev), amba_rev(adev),
2007 (unsigned long long)adev->res.start, adev->irq[0]);
2008 return 0;
2009
2010out_no_slave_reg:
2011 dma_async_device_unregister(&pl08x->memcpy);
2012out_no_memcpy_reg:
2013 pl08x_free_virtual_channels(&pl08x->slave);
2014out_no_slave:
2015 pl08x_free_virtual_channels(&pl08x->memcpy);
2016out_no_memcpy:
2017 kfree(pl08x->phy_chans);
2018out_no_phychans:
2019 free_irq(adev->irq[0], pl08x);
2020out_no_irq:
2021 iounmap(pl08x->base);
2022out_no_ioremap:
2023 dma_pool_destroy(pl08x->pool);
2024out_no_lli_pool:
2025out_no_platdata:
2026 kfree(pl08x);
2027out_no_pl08x:
2028 amba_release_regions(adev);
2029 return ret;
2030}
2031
2032/* PL080 has 8 channels and the PL080 have just 2 */
2033static struct vendor_data vendor_pl080 = {
2034 .channels = 8,
2035 .dualmaster = true,
2036};
2037
2038static struct vendor_data vendor_pl081 = {
2039 .channels = 2,
2040 .dualmaster = false,
2041};
2042
2043static struct amba_id pl08x_ids[] = {
2044 /* PL080 */
2045 {
2046 .id = 0x00041080,
2047 .mask = 0x000fffff,
2048 .data = &vendor_pl080,
2049 },
2050 /* PL081 */
2051 {
2052 .id = 0x00041081,
2053 .mask = 0x000fffff,
2054 .data = &vendor_pl081,
2055 },
2056 /* Nomadik 8815 PL080 variant */
2057 {
2058 .id = 0x00280880,
2059 .mask = 0x00ffffff,
2060 .data = &vendor_pl080,
2061 },
2062 { 0, 0 },
2063};
2064
2065static struct amba_driver pl08x_amba_driver = {
2066 .drv.name = DRIVER_NAME,
2067 .id_table = pl08x_ids,
2068 .probe = pl08x_probe,
2069};
2070
2071static int __init pl08x_init(void)
2072{
2073 int retval;
2074 retval = amba_driver_register(&pl08x_amba_driver);
2075 if (retval)
2076 printk(KERN_WARNING DRIVER_NAME
2077 "failed to register as an AMBA device (%d)\n",
2078 retval);
2079 return retval;
2080}
2081subsys_initcall(pl08x_init);
1/*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * The full GNU General Public License is in this distribution in the file
19 * called COPYING.
20 *
21 * Documentation: ARM DDI 0196G == PL080
22 * Documentation: ARM DDI 0218E == PL081
23 * Documentation: S3C6410 User's Manual == PL080S
24 *
25 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
26 * channel.
27 *
28 * The PL080 has 8 channels available for simultaneous use, and the PL081
29 * has only two channels. So on these DMA controllers the number of channels
30 * and the number of incoming DMA signals are two totally different things.
31 * It is usually not possible to theoretically handle all physical signals,
32 * so a multiplexing scheme with possible denial of use is necessary.
33 *
34 * The PL080 has a dual bus master, PL081 has a single master.
35 *
36 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
37 * It differs in following aspects:
38 * - CH_CONFIG register at different offset,
39 * - separate CH_CONTROL2 register for transfer size,
40 * - bigger maximum transfer size,
41 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
42 * - no support for peripheral flow control.
43 *
44 * Memory to peripheral transfer may be visualized as
45 * Get data from memory to DMAC
46 * Until no data left
47 * On burst request from peripheral
48 * Destination burst from DMAC to peripheral
49 * Clear burst request
50 * Raise terminal count interrupt
51 *
52 * For peripherals with a FIFO:
53 * Source burst size == half the depth of the peripheral FIFO
54 * Destination burst size == the depth of the peripheral FIFO
55 *
56 * (Bursts are irrelevant for mem to mem transfers - there are no burst
57 * signals, the DMA controller will simply facilitate its AHB master.)
58 *
59 * ASSUMES default (little) endianness for DMA transfers
60 *
61 * The PL08x has two flow control settings:
62 * - DMAC flow control: the transfer size defines the number of transfers
63 * which occur for the current LLI entry, and the DMAC raises TC at the
64 * end of every LLI entry. Observed behaviour shows the DMAC listening
65 * to both the BREQ and SREQ signals (contrary to documented),
66 * transferring data if either is active. The LBREQ and LSREQ signals
67 * are ignored.
68 *
69 * - Peripheral flow control: the transfer size is ignored (and should be
70 * zero). The data is transferred from the current LLI entry, until
71 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
72 * will then move to the next LLI entry. Unsupported by PL080S.
73 */
74#include <linux/amba/bus.h>
75#include <linux/amba/pl08x.h>
76#include <linux/debugfs.h>
77#include <linux/delay.h>
78#include <linux/device.h>
79#include <linux/dmaengine.h>
80#include <linux/dmapool.h>
81#include <linux/dma-mapping.h>
82#include <linux/export.h>
83#include <linux/init.h>
84#include <linux/interrupt.h>
85#include <linux/module.h>
86#include <linux/of.h>
87#include <linux/of_dma.h>
88#include <linux/pm_runtime.h>
89#include <linux/seq_file.h>
90#include <linux/slab.h>
91#include <linux/amba/pl080.h>
92
93#include "dmaengine.h"
94#include "virt-dma.h"
95
96#define DRIVER_NAME "pl08xdmac"
97
98#define PL80X_DMA_BUSWIDTHS \
99 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
100 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
101 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
102 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
103
104static struct amba_driver pl08x_amba_driver;
105struct pl08x_driver_data;
106
107/**
108 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
109 * @channels: the number of channels available in this variant
110 * @signals: the number of request signals available from the hardware
111 * @dualmaster: whether this version supports dual AHB masters or not.
112 * @nomadik: whether the channels have Nomadik security extension bits
113 * that need to be checked for permission before use and some registers are
114 * missing
115 * @pl080s: whether this version is a PL080S, which has separate register and
116 * LLI word for transfer size.
117 * @max_transfer_size: the maximum single element transfer size for this
118 * PL08x variant.
119 */
120struct vendor_data {
121 u8 config_offset;
122 u8 channels;
123 u8 signals;
124 bool dualmaster;
125 bool nomadik;
126 bool pl080s;
127 u32 max_transfer_size;
128};
129
130/**
131 * struct pl08x_bus_data - information of source or destination
132 * busses for a transfer
133 * @addr: current address
134 * @maxwidth: the maximum width of a transfer on this bus
135 * @buswidth: the width of this bus in bytes: 1, 2 or 4
136 */
137struct pl08x_bus_data {
138 dma_addr_t addr;
139 u8 maxwidth;
140 u8 buswidth;
141};
142
143#define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
144
145/**
146 * struct pl08x_phy_chan - holder for the physical channels
147 * @id: physical index to this channel
148 * @lock: a lock to use when altering an instance of this struct
149 * @serving: the virtual channel currently being served by this physical
150 * channel
151 * @locked: channel unavailable for the system, e.g. dedicated to secure
152 * world
153 */
154struct pl08x_phy_chan {
155 unsigned int id;
156 void __iomem *base;
157 void __iomem *reg_config;
158 spinlock_t lock;
159 struct pl08x_dma_chan *serving;
160 bool locked;
161};
162
163/**
164 * struct pl08x_sg - structure containing data per sg
165 * @src_addr: src address of sg
166 * @dst_addr: dst address of sg
167 * @len: transfer len in bytes
168 * @node: node for txd's dsg_list
169 */
170struct pl08x_sg {
171 dma_addr_t src_addr;
172 dma_addr_t dst_addr;
173 size_t len;
174 struct list_head node;
175};
176
177/**
178 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
179 * @vd: virtual DMA descriptor
180 * @dsg_list: list of children sg's
181 * @llis_bus: DMA memory address (physical) start for the LLIs
182 * @llis_va: virtual memory address start for the LLIs
183 * @cctl: control reg values for current txd
184 * @ccfg: config reg values for current txd
185 * @done: this marks completed descriptors, which should not have their
186 * mux released.
187 * @cyclic: indicate cyclic transfers
188 */
189struct pl08x_txd {
190 struct virt_dma_desc vd;
191 struct list_head dsg_list;
192 dma_addr_t llis_bus;
193 u32 *llis_va;
194 /* Default cctl value for LLIs */
195 u32 cctl;
196 /*
197 * Settings to be put into the physical channel when we
198 * trigger this txd. Other registers are in llis_va[0].
199 */
200 u32 ccfg;
201 bool done;
202 bool cyclic;
203};
204
205/**
206 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
207 * states
208 * @PL08X_CHAN_IDLE: the channel is idle
209 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
210 * channel and is running a transfer on it
211 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
212 * channel, but the transfer is currently paused
213 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
214 * channel to become available (only pertains to memcpy channels)
215 */
216enum pl08x_dma_chan_state {
217 PL08X_CHAN_IDLE,
218 PL08X_CHAN_RUNNING,
219 PL08X_CHAN_PAUSED,
220 PL08X_CHAN_WAITING,
221};
222
223/**
224 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
225 * @vc: wrappped virtual channel
226 * @phychan: the physical channel utilized by this channel, if there is one
227 * @name: name of channel
228 * @cd: channel platform data
229 * @runtime_addr: address for RX/TX according to the runtime config
230 * @at: active transaction on this channel
231 * @lock: a lock for this channel data
232 * @host: a pointer to the host (internal use)
233 * @state: whether the channel is idle, paused, running etc
234 * @slave: whether this channel is a device (slave) or for memcpy
235 * @signal: the physical DMA request signal which this channel is using
236 * @mux_use: count of descriptors using this DMA request signal setting
237 */
238struct pl08x_dma_chan {
239 struct virt_dma_chan vc;
240 struct pl08x_phy_chan *phychan;
241 const char *name;
242 struct pl08x_channel_data *cd;
243 struct dma_slave_config cfg;
244 struct pl08x_txd *at;
245 struct pl08x_driver_data *host;
246 enum pl08x_dma_chan_state state;
247 bool slave;
248 int signal;
249 unsigned mux_use;
250};
251
252/**
253 * struct pl08x_driver_data - the local state holder for the PL08x
254 * @slave: slave engine for this instance
255 * @memcpy: memcpy engine for this instance
256 * @base: virtual memory base (remapped) for the PL08x
257 * @adev: the corresponding AMBA (PrimeCell) bus entry
258 * @vd: vendor data for this PL08x variant
259 * @pd: platform data passed in from the platform/machine
260 * @phy_chans: array of data for the physical channels
261 * @pool: a pool for the LLI descriptors
262 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
263 * fetches
264 * @mem_buses: set to indicate memory transfers on AHB2.
265 * @lock: a spinlock for this struct
266 */
267struct pl08x_driver_data {
268 struct dma_device slave;
269 struct dma_device memcpy;
270 void __iomem *base;
271 struct amba_device *adev;
272 const struct vendor_data *vd;
273 struct pl08x_platform_data *pd;
274 struct pl08x_phy_chan *phy_chans;
275 struct dma_pool *pool;
276 u8 lli_buses;
277 u8 mem_buses;
278 u8 lli_words;
279};
280
281/*
282 * PL08X specific defines
283 */
284
285/* The order of words in an LLI. */
286#define PL080_LLI_SRC 0
287#define PL080_LLI_DST 1
288#define PL080_LLI_LLI 2
289#define PL080_LLI_CCTL 3
290#define PL080S_LLI_CCTL2 4
291
292/* Total words in an LLI. */
293#define PL080_LLI_WORDS 4
294#define PL080S_LLI_WORDS 8
295
296/*
297 * Number of LLIs in each LLI buffer allocated for one transfer
298 * (maximum times we call dma_pool_alloc on this pool without freeing)
299 */
300#define MAX_NUM_TSFR_LLIS 512
301#define PL08X_ALIGN 8
302
303static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
304{
305 return container_of(chan, struct pl08x_dma_chan, vc.chan);
306}
307
308static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
309{
310 return container_of(tx, struct pl08x_txd, vd.tx);
311}
312
313/*
314 * Mux handling.
315 *
316 * This gives us the DMA request input to the PL08x primecell which the
317 * peripheral described by the channel data will be routed to, possibly
318 * via a board/SoC specific external MUX. One important point to note
319 * here is that this does not depend on the physical channel.
320 */
321static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
322{
323 const struct pl08x_platform_data *pd = plchan->host->pd;
324 int ret;
325
326 if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
327 ret = pd->get_xfer_signal(plchan->cd);
328 if (ret < 0) {
329 plchan->mux_use = 0;
330 return ret;
331 }
332
333 plchan->signal = ret;
334 }
335 return 0;
336}
337
338static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
339{
340 const struct pl08x_platform_data *pd = plchan->host->pd;
341
342 if (plchan->signal >= 0) {
343 WARN_ON(plchan->mux_use == 0);
344
345 if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
346 pd->put_xfer_signal(plchan->cd, plchan->signal);
347 plchan->signal = -1;
348 }
349 }
350}
351
352/*
353 * Physical channel handling
354 */
355
356/* Whether a certain channel is busy or not */
357static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
358{
359 unsigned int val;
360
361 val = readl(ch->reg_config);
362 return val & PL080_CONFIG_ACTIVE;
363}
364
365static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
366 struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
367{
368 if (pl08x->vd->pl080s)
369 dev_vdbg(&pl08x->adev->dev,
370 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
371 "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
372 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
373 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
374 lli[PL080S_LLI_CCTL2], ccfg);
375 else
376 dev_vdbg(&pl08x->adev->dev,
377 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
378 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
379 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
380 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
381
382 writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
383 writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
384 writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
385 writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);
386
387 if (pl08x->vd->pl080s)
388 writel_relaxed(lli[PL080S_LLI_CCTL2],
389 phychan->base + PL080S_CH_CONTROL2);
390
391 writel(ccfg, phychan->reg_config);
392}
393
394/*
395 * Set the initial DMA register values i.e. those for the first LLI
396 * The next LLI pointer and the configuration interrupt bit have
397 * been set when the LLIs were constructed. Poke them into the hardware
398 * and start the transfer.
399 */
400static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
401{
402 struct pl08x_driver_data *pl08x = plchan->host;
403 struct pl08x_phy_chan *phychan = plchan->phychan;
404 struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
405 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
406 u32 val;
407
408 list_del(&txd->vd.node);
409
410 plchan->at = txd;
411
412 /* Wait for channel inactive */
413 while (pl08x_phy_channel_busy(phychan))
414 cpu_relax();
415
416 pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
417
418 /* Enable the DMA channel */
419 /* Do not access config register until channel shows as disabled */
420 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
421 cpu_relax();
422
423 /* Do not access config register until channel shows as inactive */
424 val = readl(phychan->reg_config);
425 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
426 val = readl(phychan->reg_config);
427
428 writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
429}
430
431/*
432 * Pause the channel by setting the HALT bit.
433 *
434 * For M->P transfers, pause the DMAC first and then stop the peripheral -
435 * the FIFO can only drain if the peripheral is still requesting data.
436 * (note: this can still timeout if the DMAC FIFO never drains of data.)
437 *
438 * For P->M transfers, disable the peripheral first to stop it filling
439 * the DMAC FIFO, and then pause the DMAC.
440 */
441static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
442{
443 u32 val;
444 int timeout;
445
446 /* Set the HALT bit and wait for the FIFO to drain */
447 val = readl(ch->reg_config);
448 val |= PL080_CONFIG_HALT;
449 writel(val, ch->reg_config);
450
451 /* Wait for channel inactive */
452 for (timeout = 1000; timeout; timeout--) {
453 if (!pl08x_phy_channel_busy(ch))
454 break;
455 udelay(1);
456 }
457 if (pl08x_phy_channel_busy(ch))
458 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
459}
460
461static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
462{
463 u32 val;
464
465 /* Clear the HALT bit */
466 val = readl(ch->reg_config);
467 val &= ~PL080_CONFIG_HALT;
468 writel(val, ch->reg_config);
469}
470
471/*
472 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
473 * clears any pending interrupt status. This should not be used for
474 * an on-going transfer, but as a method of shutting down a channel
475 * (eg, when it's no longer used) or terminating a transfer.
476 */
477static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
478 struct pl08x_phy_chan *ch)
479{
480 u32 val = readl(ch->reg_config);
481
482 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
483 PL080_CONFIG_TC_IRQ_MASK);
484
485 writel(val, ch->reg_config);
486
487 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
488 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
489}
490
491static inline u32 get_bytes_in_cctl(u32 cctl)
492{
493 /* The source width defines the number of bytes */
494 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
495
496 cctl &= PL080_CONTROL_SWIDTH_MASK;
497
498 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
499 case PL080_WIDTH_8BIT:
500 break;
501 case PL080_WIDTH_16BIT:
502 bytes *= 2;
503 break;
504 case PL080_WIDTH_32BIT:
505 bytes *= 4;
506 break;
507 }
508 return bytes;
509}
510
511static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
512{
513 /* The source width defines the number of bytes */
514 u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;
515
516 cctl &= PL080_CONTROL_SWIDTH_MASK;
517
518 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
519 case PL080_WIDTH_8BIT:
520 break;
521 case PL080_WIDTH_16BIT:
522 bytes *= 2;
523 break;
524 case PL080_WIDTH_32BIT:
525 bytes *= 4;
526 break;
527 }
528 return bytes;
529}
530
531/* The channel should be paused when calling this */
532static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
533{
534 struct pl08x_driver_data *pl08x = plchan->host;
535 const u32 *llis_va, *llis_va_limit;
536 struct pl08x_phy_chan *ch;
537 dma_addr_t llis_bus;
538 struct pl08x_txd *txd;
539 u32 llis_max_words;
540 size_t bytes;
541 u32 clli;
542
543 ch = plchan->phychan;
544 txd = plchan->at;
545
546 if (!ch || !txd)
547 return 0;
548
549 /*
550 * Follow the LLIs to get the number of remaining
551 * bytes in the currently active transaction.
552 */
553 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
554
555 /* First get the remaining bytes in the active transfer */
556 if (pl08x->vd->pl080s)
557 bytes = get_bytes_in_cctl_pl080s(
558 readl(ch->base + PL080_CH_CONTROL),
559 readl(ch->base + PL080S_CH_CONTROL2));
560 else
561 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
562
563 if (!clli)
564 return bytes;
565
566 llis_va = txd->llis_va;
567 llis_bus = txd->llis_bus;
568
569 llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
570 BUG_ON(clli < llis_bus || clli >= llis_bus +
571 sizeof(u32) * llis_max_words);
572
573 /*
574 * Locate the next LLI - as this is an array,
575 * it's simple maths to find.
576 */
577 llis_va += (clli - llis_bus) / sizeof(u32);
578
579 llis_va_limit = llis_va + llis_max_words;
580
581 for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
582 if (pl08x->vd->pl080s)
583 bytes += get_bytes_in_cctl_pl080s(
584 llis_va[PL080_LLI_CCTL],
585 llis_va[PL080S_LLI_CCTL2]);
586 else
587 bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
588
589 /*
590 * A LLI pointer going backward terminates the LLI list
591 */
592 if (llis_va[PL080_LLI_LLI] <= clli)
593 break;
594 }
595
596 return bytes;
597}
598
599/*
600 * Allocate a physical channel for a virtual channel
601 *
602 * Try to locate a physical channel to be used for this transfer. If all
603 * are taken return NULL and the requester will have to cope by using
604 * some fallback PIO mode or retrying later.
605 */
606static struct pl08x_phy_chan *
607pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
608 struct pl08x_dma_chan *virt_chan)
609{
610 struct pl08x_phy_chan *ch = NULL;
611 unsigned long flags;
612 int i;
613
614 for (i = 0; i < pl08x->vd->channels; i++) {
615 ch = &pl08x->phy_chans[i];
616
617 spin_lock_irqsave(&ch->lock, flags);
618
619 if (!ch->locked && !ch->serving) {
620 ch->serving = virt_chan;
621 spin_unlock_irqrestore(&ch->lock, flags);
622 break;
623 }
624
625 spin_unlock_irqrestore(&ch->lock, flags);
626 }
627
628 if (i == pl08x->vd->channels) {
629 /* No physical channel available, cope with it */
630 return NULL;
631 }
632
633 return ch;
634}
635
636/* Mark the physical channel as free. Note, this write is atomic. */
637static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
638 struct pl08x_phy_chan *ch)
639{
640 ch->serving = NULL;
641}
642
643/*
644 * Try to allocate a physical channel. When successful, assign it to
645 * this virtual channel, and initiate the next descriptor. The
646 * virtual channel lock must be held at this point.
647 */
648static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
649{
650 struct pl08x_driver_data *pl08x = plchan->host;
651 struct pl08x_phy_chan *ch;
652
653 ch = pl08x_get_phy_channel(pl08x, plchan);
654 if (!ch) {
655 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
656 plchan->state = PL08X_CHAN_WAITING;
657 return;
658 }
659
660 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
661 ch->id, plchan->name);
662
663 plchan->phychan = ch;
664 plchan->state = PL08X_CHAN_RUNNING;
665 pl08x_start_next_txd(plchan);
666}
667
668static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
669 struct pl08x_dma_chan *plchan)
670{
671 struct pl08x_driver_data *pl08x = plchan->host;
672
673 dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
674 ch->id, plchan->name);
675
676 /*
677 * We do this without taking the lock; we're really only concerned
678 * about whether this pointer is NULL or not, and we're guaranteed
679 * that this will only be called when it _already_ is non-NULL.
680 */
681 ch->serving = plchan;
682 plchan->phychan = ch;
683 plchan->state = PL08X_CHAN_RUNNING;
684 pl08x_start_next_txd(plchan);
685}
686
687/*
688 * Free a physical DMA channel, potentially reallocating it to another
689 * virtual channel if we have any pending.
690 */
691static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
692{
693 struct pl08x_driver_data *pl08x = plchan->host;
694 struct pl08x_dma_chan *p, *next;
695
696 retry:
697 next = NULL;
698
699 /* Find a waiting virtual channel for the next transfer. */
700 list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
701 if (p->state == PL08X_CHAN_WAITING) {
702 next = p;
703 break;
704 }
705
706 if (!next) {
707 list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
708 if (p->state == PL08X_CHAN_WAITING) {
709 next = p;
710 break;
711 }
712 }
713
714 /* Ensure that the physical channel is stopped */
715 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
716
717 if (next) {
718 bool success;
719
720 /*
721 * Eww. We know this isn't going to deadlock
722 * but lockdep probably doesn't.
723 */
724 spin_lock(&next->vc.lock);
725 /* Re-check the state now that we have the lock */
726 success = next->state == PL08X_CHAN_WAITING;
727 if (success)
728 pl08x_phy_reassign_start(plchan->phychan, next);
729 spin_unlock(&next->vc.lock);
730
731 /* If the state changed, try to find another channel */
732 if (!success)
733 goto retry;
734 } else {
735 /* No more jobs, so free up the physical channel */
736 pl08x_put_phy_channel(pl08x, plchan->phychan);
737 }
738
739 plchan->phychan = NULL;
740 plchan->state = PL08X_CHAN_IDLE;
741}
742
743/*
744 * LLI handling
745 */
746
747static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
748{
749 switch (coded) {
750 case PL080_WIDTH_8BIT:
751 return 1;
752 case PL080_WIDTH_16BIT:
753 return 2;
754 case PL080_WIDTH_32BIT:
755 return 4;
756 default:
757 break;
758 }
759 BUG();
760 return 0;
761}
762
763static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
764 size_t tsize)
765{
766 u32 retbits = cctl;
767
768 /* Remove all src, dst and transfer size bits */
769 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
770 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
771 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
772
773 /* Then set the bits according to the parameters */
774 switch (srcwidth) {
775 case 1:
776 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
777 break;
778 case 2:
779 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
780 break;
781 case 4:
782 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
783 break;
784 default:
785 BUG();
786 break;
787 }
788
789 switch (dstwidth) {
790 case 1:
791 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
792 break;
793 case 2:
794 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
795 break;
796 case 4:
797 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
798 break;
799 default:
800 BUG();
801 break;
802 }
803
804 tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
805 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
806 return retbits;
807}
808
809struct pl08x_lli_build_data {
810 struct pl08x_txd *txd;
811 struct pl08x_bus_data srcbus;
812 struct pl08x_bus_data dstbus;
813 size_t remainder;
814 u32 lli_bus;
815};
816
817/*
818 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
819 * victim in case src & dest are not similarly aligned. i.e. If after aligning
820 * masters address with width requirements of transfer (by sending few byte by
821 * byte data), slave is still not aligned, then its width will be reduced to
822 * BYTE.
823 * - prefers the destination bus if both available
824 * - prefers bus with fixed address (i.e. peripheral)
825 */
826static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
827 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
828{
829 if (!(cctl & PL080_CONTROL_DST_INCR)) {
830 *mbus = &bd->dstbus;
831 *sbus = &bd->srcbus;
832 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
833 *mbus = &bd->srcbus;
834 *sbus = &bd->dstbus;
835 } else {
836 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
837 *mbus = &bd->dstbus;
838 *sbus = &bd->srcbus;
839 } else {
840 *mbus = &bd->srcbus;
841 *sbus = &bd->dstbus;
842 }
843 }
844}
845
846/*
847 * Fills in one LLI for a certain transfer descriptor and advance the counter
848 */
849static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
850 struct pl08x_lli_build_data *bd,
851 int num_llis, int len, u32 cctl, u32 cctl2)
852{
853 u32 offset = num_llis * pl08x->lli_words;
854 u32 *llis_va = bd->txd->llis_va + offset;
855 dma_addr_t llis_bus = bd->txd->llis_bus;
856
857 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
858
859 /* Advance the offset to next LLI. */
860 offset += pl08x->lli_words;
861
862 llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
863 llis_va[PL080_LLI_DST] = bd->dstbus.addr;
864 llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
865 llis_va[PL080_LLI_LLI] |= bd->lli_bus;
866 llis_va[PL080_LLI_CCTL] = cctl;
867 if (pl08x->vd->pl080s)
868 llis_va[PL080S_LLI_CCTL2] = cctl2;
869
870 if (cctl & PL080_CONTROL_SRC_INCR)
871 bd->srcbus.addr += len;
872 if (cctl & PL080_CONTROL_DST_INCR)
873 bd->dstbus.addr += len;
874
875 BUG_ON(bd->remainder < len);
876
877 bd->remainder -= len;
878}
879
880static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
881 struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
882 int num_llis, size_t *total_bytes)
883{
884 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
885 pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
886 (*total_bytes) += len;
887}
888
889#ifdef VERBOSE_DEBUG
890static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
891 const u32 *llis_va, int num_llis)
892{
893 int i;
894
895 if (pl08x->vd->pl080s) {
896 dev_vdbg(&pl08x->adev->dev,
897 "%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
898 "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
899 for (i = 0; i < num_llis; i++) {
900 dev_vdbg(&pl08x->adev->dev,
901 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
902 i, llis_va, llis_va[PL080_LLI_SRC],
903 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
904 llis_va[PL080_LLI_CCTL],
905 llis_va[PL080S_LLI_CCTL2]);
906 llis_va += pl08x->lli_words;
907 }
908 } else {
909 dev_vdbg(&pl08x->adev->dev,
910 "%-3s %-9s %-10s %-10s %-10s %s\n",
911 "lli", "", "csrc", "cdst", "clli", "cctl");
912 for (i = 0; i < num_llis; i++) {
913 dev_vdbg(&pl08x->adev->dev,
914 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
915 i, llis_va, llis_va[PL080_LLI_SRC],
916 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
917 llis_va[PL080_LLI_CCTL]);
918 llis_va += pl08x->lli_words;
919 }
920 }
921}
922#else
923static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
924 const u32 *llis_va, int num_llis) {}
925#endif
926
927/*
928 * This fills in the table of LLIs for the transfer descriptor
929 * Note that we assume we never have to change the burst sizes
930 * Return 0 for error
931 */
932static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
933 struct pl08x_txd *txd)
934{
935 struct pl08x_bus_data *mbus, *sbus;
936 struct pl08x_lli_build_data bd;
937 int num_llis = 0;
938 u32 cctl, early_bytes = 0;
939 size_t max_bytes_per_lli, total_bytes;
940 u32 *llis_va, *last_lli;
941 struct pl08x_sg *dsg;
942
943 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
944 if (!txd->llis_va) {
945 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
946 return 0;
947 }
948
949 bd.txd = txd;
950 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
951 cctl = txd->cctl;
952
953 /* Find maximum width of the source bus */
954 bd.srcbus.maxwidth =
955 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
956 PL080_CONTROL_SWIDTH_SHIFT);
957
958 /* Find maximum width of the destination bus */
959 bd.dstbus.maxwidth =
960 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
961 PL080_CONTROL_DWIDTH_SHIFT);
962
963 list_for_each_entry(dsg, &txd->dsg_list, node) {
964 total_bytes = 0;
965 cctl = txd->cctl;
966
967 bd.srcbus.addr = dsg->src_addr;
968 bd.dstbus.addr = dsg->dst_addr;
969 bd.remainder = dsg->len;
970 bd.srcbus.buswidth = bd.srcbus.maxwidth;
971 bd.dstbus.buswidth = bd.dstbus.maxwidth;
972
973 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
974
975 dev_vdbg(&pl08x->adev->dev,
976 "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
977 (u64)bd.srcbus.addr,
978 cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
979 bd.srcbus.buswidth,
980 (u64)bd.dstbus.addr,
981 cctl & PL080_CONTROL_DST_INCR ? "+" : "",
982 bd.dstbus.buswidth,
983 bd.remainder);
984 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
985 mbus == &bd.srcbus ? "src" : "dst",
986 sbus == &bd.srcbus ? "src" : "dst");
987
988 /*
989 * Zero length is only allowed if all these requirements are
990 * met:
991 * - flow controller is peripheral.
992 * - src.addr is aligned to src.width
993 * - dst.addr is aligned to dst.width
994 *
995 * sg_len == 1 should be true, as there can be two cases here:
996 *
997 * - Memory addresses are contiguous and are not scattered.
998 * Here, Only one sg will be passed by user driver, with
999 * memory address and zero length. We pass this to controller
1000 * and after the transfer it will receive the last burst
1001 * request from peripheral and so transfer finishes.
1002 *
1003 * - Memory addresses are scattered and are not contiguous.
1004 * Here, Obviously as DMA controller doesn't know when a lli's
1005 * transfer gets over, it can't load next lli. So in this
1006 * case, there has to be an assumption that only one lli is
1007 * supported. Thus, we can't have scattered addresses.
1008 */
1009 if (!bd.remainder) {
1010 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1011 PL080_CONFIG_FLOW_CONTROL_SHIFT;
1012 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1013 (fc <= PL080_FLOW_SRC2DST_SRC))) {
1014 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1015 __func__);
1016 return 0;
1017 }
1018
1019 if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1020 !IS_BUS_ALIGNED(&bd.dstbus)) {
1021 dev_err(&pl08x->adev->dev,
1022 "%s src & dst address must be aligned to src"
1023 " & dst width if peripheral is flow controller",
1024 __func__);
1025 return 0;
1026 }
1027
1028 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1029 bd.dstbus.buswidth, 0);
1030 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1031 0, cctl, 0);
1032 break;
1033 }
1034
1035 /*
1036 * Send byte by byte for following cases
1037 * - Less than a bus width available
1038 * - until master bus is aligned
1039 */
1040 if (bd.remainder < mbus->buswidth)
1041 early_bytes = bd.remainder;
1042 else if (!IS_BUS_ALIGNED(mbus)) {
1043 early_bytes = mbus->buswidth -
1044 (mbus->addr & (mbus->buswidth - 1));
1045 if ((bd.remainder - early_bytes) < mbus->buswidth)
1046 early_bytes = bd.remainder;
1047 }
1048
1049 if (early_bytes) {
1050 dev_vdbg(&pl08x->adev->dev,
1051 "%s byte width LLIs (remain 0x%08zx)\n",
1052 __func__, bd.remainder);
1053 prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1054 num_llis++, &total_bytes);
1055 }
1056
1057 if (bd.remainder) {
1058 /*
1059 * Master now aligned
1060 * - if slave is not then we must set its width down
1061 */
1062 if (!IS_BUS_ALIGNED(sbus)) {
1063 dev_dbg(&pl08x->adev->dev,
1064 "%s set down bus width to one byte\n",
1065 __func__);
1066
1067 sbus->buswidth = 1;
1068 }
1069
1070 /*
1071 * Bytes transferred = tsize * src width, not
1072 * MIN(buswidths)
1073 */
1074 max_bytes_per_lli = bd.srcbus.buswidth *
1075 pl08x->vd->max_transfer_size;
1076 dev_vdbg(&pl08x->adev->dev,
1077 "%s max bytes per lli = %zu\n",
1078 __func__, max_bytes_per_lli);
1079
1080 /*
1081 * Make largest possible LLIs until less than one bus
1082 * width left
1083 */
1084 while (bd.remainder > (mbus->buswidth - 1)) {
1085 size_t lli_len, tsize, width;
1086
1087 /*
1088 * If enough left try to send max possible,
1089 * otherwise try to send the remainder
1090 */
1091 lli_len = min(bd.remainder, max_bytes_per_lli);
1092
1093 /*
1094 * Check against maximum bus alignment:
1095 * Calculate actual transfer size in relation to
1096 * bus width an get a maximum remainder of the
1097 * highest bus width - 1
1098 */
1099 width = max(mbus->buswidth, sbus->buswidth);
1100 lli_len = (lli_len / width) * width;
1101 tsize = lli_len / bd.srcbus.buswidth;
1102
1103 dev_vdbg(&pl08x->adev->dev,
1104 "%s fill lli with single lli chunk of "
1105 "size 0x%08zx (remainder 0x%08zx)\n",
1106 __func__, lli_len, bd.remainder);
1107
1108 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1109 bd.dstbus.buswidth, tsize);
1110 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1111 lli_len, cctl, tsize);
1112 total_bytes += lli_len;
1113 }
1114
1115 /*
1116 * Send any odd bytes
1117 */
1118 if (bd.remainder) {
1119 dev_vdbg(&pl08x->adev->dev,
1120 "%s align with boundary, send odd bytes (remain %zu)\n",
1121 __func__, bd.remainder);
1122 prep_byte_width_lli(pl08x, &bd, &cctl,
1123 bd.remainder, num_llis++, &total_bytes);
1124 }
1125 }
1126
1127 if (total_bytes != dsg->len) {
1128 dev_err(&pl08x->adev->dev,
1129 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1130 __func__, total_bytes, dsg->len);
1131 return 0;
1132 }
1133
1134 if (num_llis >= MAX_NUM_TSFR_LLIS) {
1135 dev_err(&pl08x->adev->dev,
1136 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1137 __func__, MAX_NUM_TSFR_LLIS);
1138 return 0;
1139 }
1140 }
1141
1142 llis_va = txd->llis_va;
1143 last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1144
1145 if (txd->cyclic) {
1146 /* Link back to the first LLI. */
1147 last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1148 } else {
1149 /* The final LLI terminates the LLI. */
1150 last_lli[PL080_LLI_LLI] = 0;
1151 /* The final LLI element shall also fire an interrupt. */
1152 last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1153 }
1154
1155 pl08x_dump_lli(pl08x, llis_va, num_llis);
1156
1157 return num_llis;
1158}
1159
1160static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1161 struct pl08x_txd *txd)
1162{
1163 struct pl08x_sg *dsg, *_dsg;
1164
1165 if (txd->llis_va)
1166 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1167
1168 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1169 list_del(&dsg->node);
1170 kfree(dsg);
1171 }
1172
1173 kfree(txd);
1174}
1175
1176static void pl08x_desc_free(struct virt_dma_desc *vd)
1177{
1178 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1179 struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1180
1181 dma_descriptor_unmap(&vd->tx);
1182 if (!txd->done)
1183 pl08x_release_mux(plchan);
1184
1185 pl08x_free_txd(plchan->host, txd);
1186}
1187
1188static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1189 struct pl08x_dma_chan *plchan)
1190{
1191 LIST_HEAD(head);
1192
1193 vchan_get_all_descriptors(&plchan->vc, &head);
1194 vchan_dma_desc_free_list(&plchan->vc, &head);
1195}
1196
1197/*
1198 * The DMA ENGINE API
1199 */
1200static void pl08x_free_chan_resources(struct dma_chan *chan)
1201{
1202 /* Ensure all queued descriptors are freed */
1203 vchan_free_chan_resources(to_virt_chan(chan));
1204}
1205
1206static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1207 struct dma_chan *chan, unsigned long flags)
1208{
1209 struct dma_async_tx_descriptor *retval = NULL;
1210
1211 return retval;
1212}
1213
1214/*
1215 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1216 * If slaves are relying on interrupts to signal completion this function
1217 * must not be called with interrupts disabled.
1218 */
1219static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1220 dma_cookie_t cookie, struct dma_tx_state *txstate)
1221{
1222 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1223 struct virt_dma_desc *vd;
1224 unsigned long flags;
1225 enum dma_status ret;
1226 size_t bytes = 0;
1227
1228 ret = dma_cookie_status(chan, cookie, txstate);
1229 if (ret == DMA_COMPLETE)
1230 return ret;
1231
1232 /*
1233 * There's no point calculating the residue if there's
1234 * no txstate to store the value.
1235 */
1236 if (!txstate) {
1237 if (plchan->state == PL08X_CHAN_PAUSED)
1238 ret = DMA_PAUSED;
1239 return ret;
1240 }
1241
1242 spin_lock_irqsave(&plchan->vc.lock, flags);
1243 ret = dma_cookie_status(chan, cookie, txstate);
1244 if (ret != DMA_COMPLETE) {
1245 vd = vchan_find_desc(&plchan->vc, cookie);
1246 if (vd) {
1247 /* On the issued list, so hasn't been processed yet */
1248 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1249 struct pl08x_sg *dsg;
1250
1251 list_for_each_entry(dsg, &txd->dsg_list, node)
1252 bytes += dsg->len;
1253 } else {
1254 bytes = pl08x_getbytes_chan(plchan);
1255 }
1256 }
1257 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1258
1259 /*
1260 * This cookie not complete yet
1261 * Get number of bytes left in the active transactions and queue
1262 */
1263 dma_set_residue(txstate, bytes);
1264
1265 if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1266 ret = DMA_PAUSED;
1267
1268 /* Whether waiting or running, we're in progress */
1269 return ret;
1270}
1271
1272/* PrimeCell DMA extension */
1273struct burst_table {
1274 u32 burstwords;
1275 u32 reg;
1276};
1277
1278static const struct burst_table burst_sizes[] = {
1279 {
1280 .burstwords = 256,
1281 .reg = PL080_BSIZE_256,
1282 },
1283 {
1284 .burstwords = 128,
1285 .reg = PL080_BSIZE_128,
1286 },
1287 {
1288 .burstwords = 64,
1289 .reg = PL080_BSIZE_64,
1290 },
1291 {
1292 .burstwords = 32,
1293 .reg = PL080_BSIZE_32,
1294 },
1295 {
1296 .burstwords = 16,
1297 .reg = PL080_BSIZE_16,
1298 },
1299 {
1300 .burstwords = 8,
1301 .reg = PL080_BSIZE_8,
1302 },
1303 {
1304 .burstwords = 4,
1305 .reg = PL080_BSIZE_4,
1306 },
1307 {
1308 .burstwords = 0,
1309 .reg = PL080_BSIZE_1,
1310 },
1311};
1312
1313/*
1314 * Given the source and destination available bus masks, select which
1315 * will be routed to each port. We try to have source and destination
1316 * on separate ports, but always respect the allowable settings.
1317 */
1318static u32 pl08x_select_bus(u8 src, u8 dst)
1319{
1320 u32 cctl = 0;
1321
1322 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1323 cctl |= PL080_CONTROL_DST_AHB2;
1324 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1325 cctl |= PL080_CONTROL_SRC_AHB2;
1326
1327 return cctl;
1328}
1329
1330static u32 pl08x_cctl(u32 cctl)
1331{
1332 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1333 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1334 PL080_CONTROL_PROT_MASK);
1335
1336 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1337 return cctl | PL080_CONTROL_PROT_SYS;
1338}
1339
1340static u32 pl08x_width(enum dma_slave_buswidth width)
1341{
1342 switch (width) {
1343 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1344 return PL080_WIDTH_8BIT;
1345 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1346 return PL080_WIDTH_16BIT;
1347 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1348 return PL080_WIDTH_32BIT;
1349 default:
1350 return ~0;
1351 }
1352}
1353
1354static u32 pl08x_burst(u32 maxburst)
1355{
1356 int i;
1357
1358 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1359 if (burst_sizes[i].burstwords <= maxburst)
1360 break;
1361
1362 return burst_sizes[i].reg;
1363}
1364
1365static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1366 enum dma_slave_buswidth addr_width, u32 maxburst)
1367{
1368 u32 width, burst, cctl = 0;
1369
1370 width = pl08x_width(addr_width);
1371 if (width == ~0)
1372 return ~0;
1373
1374 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1375 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1376
1377 /*
1378 * If this channel will only request single transfers, set this
1379 * down to ONE element. Also select one element if no maxburst
1380 * is specified.
1381 */
1382 if (plchan->cd->single)
1383 maxburst = 1;
1384
1385 burst = pl08x_burst(maxburst);
1386 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1387 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1388
1389 return pl08x_cctl(cctl);
1390}
1391
1392/*
1393 * Slave transactions callback to the slave device to allow
1394 * synchronization of slave DMA signals with the DMAC enable
1395 */
1396static void pl08x_issue_pending(struct dma_chan *chan)
1397{
1398 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1399 unsigned long flags;
1400
1401 spin_lock_irqsave(&plchan->vc.lock, flags);
1402 if (vchan_issue_pending(&plchan->vc)) {
1403 if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1404 pl08x_phy_alloc_and_start(plchan);
1405 }
1406 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1407}
1408
1409static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1410{
1411 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1412
1413 if (txd) {
1414 INIT_LIST_HEAD(&txd->dsg_list);
1415
1416 /* Always enable error and terminal interrupts */
1417 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1418 PL080_CONFIG_TC_IRQ_MASK;
1419 }
1420 return txd;
1421}
1422
1423/*
1424 * Initialize a descriptor to be used by memcpy submit
1425 */
1426static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1427 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1428 size_t len, unsigned long flags)
1429{
1430 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1431 struct pl08x_driver_data *pl08x = plchan->host;
1432 struct pl08x_txd *txd;
1433 struct pl08x_sg *dsg;
1434 int ret;
1435
1436 txd = pl08x_get_txd(plchan);
1437 if (!txd) {
1438 dev_err(&pl08x->adev->dev,
1439 "%s no memory for descriptor\n", __func__);
1440 return NULL;
1441 }
1442
1443 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1444 if (!dsg) {
1445 pl08x_free_txd(pl08x, txd);
1446 return NULL;
1447 }
1448 list_add_tail(&dsg->node, &txd->dsg_list);
1449
1450 dsg->src_addr = src;
1451 dsg->dst_addr = dest;
1452 dsg->len = len;
1453
1454 /* Set platform data for m2m */
1455 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1456 txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1457 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1458
1459 /* Both to be incremented or the code will break */
1460 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1461
1462 if (pl08x->vd->dualmaster)
1463 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1464 pl08x->mem_buses);
1465
1466 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1467 if (!ret) {
1468 pl08x_free_txd(pl08x, txd);
1469 return NULL;
1470 }
1471
1472 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1473}
1474
1475static struct pl08x_txd *pl08x_init_txd(
1476 struct dma_chan *chan,
1477 enum dma_transfer_direction direction,
1478 dma_addr_t *slave_addr)
1479{
1480 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1481 struct pl08x_driver_data *pl08x = plchan->host;
1482 struct pl08x_txd *txd;
1483 enum dma_slave_buswidth addr_width;
1484 int ret, tmp;
1485 u8 src_buses, dst_buses;
1486 u32 maxburst, cctl;
1487
1488 txd = pl08x_get_txd(plchan);
1489 if (!txd) {
1490 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1491 return NULL;
1492 }
1493
1494 /*
1495 * Set up addresses, the PrimeCell configured address
1496 * will take precedence since this may configure the
1497 * channel target address dynamically at runtime.
1498 */
1499 if (direction == DMA_MEM_TO_DEV) {
1500 cctl = PL080_CONTROL_SRC_INCR;
1501 *slave_addr = plchan->cfg.dst_addr;
1502 addr_width = plchan->cfg.dst_addr_width;
1503 maxburst = plchan->cfg.dst_maxburst;
1504 src_buses = pl08x->mem_buses;
1505 dst_buses = plchan->cd->periph_buses;
1506 } else if (direction == DMA_DEV_TO_MEM) {
1507 cctl = PL080_CONTROL_DST_INCR;
1508 *slave_addr = plchan->cfg.src_addr;
1509 addr_width = plchan->cfg.src_addr_width;
1510 maxburst = plchan->cfg.src_maxburst;
1511 src_buses = plchan->cd->periph_buses;
1512 dst_buses = pl08x->mem_buses;
1513 } else {
1514 pl08x_free_txd(pl08x, txd);
1515 dev_err(&pl08x->adev->dev,
1516 "%s direction unsupported\n", __func__);
1517 return NULL;
1518 }
1519
1520 cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1521 if (cctl == ~0) {
1522 pl08x_free_txd(pl08x, txd);
1523 dev_err(&pl08x->adev->dev,
1524 "DMA slave configuration botched?\n");
1525 return NULL;
1526 }
1527
1528 txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1529
1530 if (plchan->cfg.device_fc)
1531 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1532 PL080_FLOW_PER2MEM_PER;
1533 else
1534 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1535 PL080_FLOW_PER2MEM;
1536
1537 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1538
1539 ret = pl08x_request_mux(plchan);
1540 if (ret < 0) {
1541 pl08x_free_txd(pl08x, txd);
1542 dev_dbg(&pl08x->adev->dev,
1543 "unable to mux for transfer on %s due to platform restrictions\n",
1544 plchan->name);
1545 return NULL;
1546 }
1547
1548 dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1549 plchan->signal, plchan->name);
1550
1551 /* Assign the flow control signal to this channel */
1552 if (direction == DMA_MEM_TO_DEV)
1553 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1554 else
1555 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1556
1557 return txd;
1558}
1559
1560static int pl08x_tx_add_sg(struct pl08x_txd *txd,
1561 enum dma_transfer_direction direction,
1562 dma_addr_t slave_addr,
1563 dma_addr_t buf_addr,
1564 unsigned int len)
1565{
1566 struct pl08x_sg *dsg;
1567
1568 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1569 if (!dsg)
1570 return -ENOMEM;
1571
1572 list_add_tail(&dsg->node, &txd->dsg_list);
1573
1574 dsg->len = len;
1575 if (direction == DMA_MEM_TO_DEV) {
1576 dsg->src_addr = buf_addr;
1577 dsg->dst_addr = slave_addr;
1578 } else {
1579 dsg->src_addr = slave_addr;
1580 dsg->dst_addr = buf_addr;
1581 }
1582
1583 return 0;
1584}
1585
1586static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1587 struct dma_chan *chan, struct scatterlist *sgl,
1588 unsigned int sg_len, enum dma_transfer_direction direction,
1589 unsigned long flags, void *context)
1590{
1591 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1592 struct pl08x_driver_data *pl08x = plchan->host;
1593 struct pl08x_txd *txd;
1594 struct scatterlist *sg;
1595 int ret, tmp;
1596 dma_addr_t slave_addr;
1597
1598 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1599 __func__, sg_dma_len(sgl), plchan->name);
1600
1601 txd = pl08x_init_txd(chan, direction, &slave_addr);
1602 if (!txd)
1603 return NULL;
1604
1605 for_each_sg(sgl, sg, sg_len, tmp) {
1606 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1607 sg_dma_address(sg),
1608 sg_dma_len(sg));
1609 if (ret) {
1610 pl08x_release_mux(plchan);
1611 pl08x_free_txd(pl08x, txd);
1612 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1613 __func__);
1614 return NULL;
1615 }
1616 }
1617
1618 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1619 if (!ret) {
1620 pl08x_release_mux(plchan);
1621 pl08x_free_txd(pl08x, txd);
1622 return NULL;
1623 }
1624
1625 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1626}
1627
1628static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
1629 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1630 size_t period_len, enum dma_transfer_direction direction,
1631 unsigned long flags)
1632{
1633 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1634 struct pl08x_driver_data *pl08x = plchan->host;
1635 struct pl08x_txd *txd;
1636 int ret, tmp;
1637 dma_addr_t slave_addr;
1638
1639 dev_dbg(&pl08x->adev->dev,
1640 "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
1641 __func__, period_len, buf_len,
1642 direction == DMA_MEM_TO_DEV ? "to" : "from",
1643 plchan->name);
1644
1645 txd = pl08x_init_txd(chan, direction, &slave_addr);
1646 if (!txd)
1647 return NULL;
1648
1649 txd->cyclic = true;
1650 txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
1651 for (tmp = 0; tmp < buf_len; tmp += period_len) {
1652 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1653 buf_addr + tmp, period_len);
1654 if (ret) {
1655 pl08x_release_mux(plchan);
1656 pl08x_free_txd(pl08x, txd);
1657 return NULL;
1658 }
1659 }
1660
1661 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1662 if (!ret) {
1663 pl08x_release_mux(plchan);
1664 pl08x_free_txd(pl08x, txd);
1665 return NULL;
1666 }
1667
1668 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1669}
1670
1671static int pl08x_config(struct dma_chan *chan,
1672 struct dma_slave_config *config)
1673{
1674 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1675 struct pl08x_driver_data *pl08x = plchan->host;
1676
1677 if (!plchan->slave)
1678 return -EINVAL;
1679
1680 /* Reject definitely invalid configurations */
1681 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1682 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1683 return -EINVAL;
1684
1685 if (config->device_fc && pl08x->vd->pl080s) {
1686 dev_err(&pl08x->adev->dev,
1687 "%s: PL080S does not support peripheral flow control\n",
1688 __func__);
1689 return -EINVAL;
1690 }
1691
1692 plchan->cfg = *config;
1693
1694 return 0;
1695}
1696
1697static int pl08x_terminate_all(struct dma_chan *chan)
1698{
1699 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1700 struct pl08x_driver_data *pl08x = plchan->host;
1701 unsigned long flags;
1702
1703 spin_lock_irqsave(&plchan->vc.lock, flags);
1704 if (!plchan->phychan && !plchan->at) {
1705 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1706 return 0;
1707 }
1708
1709 plchan->state = PL08X_CHAN_IDLE;
1710
1711 if (plchan->phychan) {
1712 /*
1713 * Mark physical channel as free and free any slave
1714 * signal
1715 */
1716 pl08x_phy_free(plchan);
1717 }
1718 /* Dequeue jobs and free LLIs */
1719 if (plchan->at) {
1720 pl08x_desc_free(&plchan->at->vd);
1721 plchan->at = NULL;
1722 }
1723 /* Dequeue jobs not yet fired as well */
1724 pl08x_free_txd_list(pl08x, plchan);
1725
1726 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1727
1728 return 0;
1729}
1730
1731static int pl08x_pause(struct dma_chan *chan)
1732{
1733 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1734 unsigned long flags;
1735
1736 /*
1737 * Anything succeeds on channels with no physical allocation and
1738 * no queued transfers.
1739 */
1740 spin_lock_irqsave(&plchan->vc.lock, flags);
1741 if (!plchan->phychan && !plchan->at) {
1742 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1743 return 0;
1744 }
1745
1746 pl08x_pause_phy_chan(plchan->phychan);
1747 plchan->state = PL08X_CHAN_PAUSED;
1748
1749 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1750
1751 return 0;
1752}
1753
1754static int pl08x_resume(struct dma_chan *chan)
1755{
1756 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1757 unsigned long flags;
1758
1759 /*
1760 * Anything succeeds on channels with no physical allocation and
1761 * no queued transfers.
1762 */
1763 spin_lock_irqsave(&plchan->vc.lock, flags);
1764 if (!plchan->phychan && !plchan->at) {
1765 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1766 return 0;
1767 }
1768
1769 pl08x_resume_phy_chan(plchan->phychan);
1770 plchan->state = PL08X_CHAN_RUNNING;
1771
1772 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1773
1774 return 0;
1775}
1776
1777bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1778{
1779 struct pl08x_dma_chan *plchan;
1780 char *name = chan_id;
1781
1782 /* Reject channels for devices not bound to this driver */
1783 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1784 return false;
1785
1786 plchan = to_pl08x_chan(chan);
1787
1788 /* Check that the channel is not taken! */
1789 if (!strcmp(plchan->name, name))
1790 return true;
1791
1792 return false;
1793}
1794EXPORT_SYMBOL_GPL(pl08x_filter_id);
1795
1796static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id)
1797{
1798 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1799
1800 return plchan->cd == chan_id;
1801}
1802
1803/*
1804 * Just check that the device is there and active
1805 * TODO: turn this bit on/off depending on the number of physical channels
1806 * actually used, if it is zero... well shut it off. That will save some
1807 * power. Cut the clock at the same time.
1808 */
1809static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1810{
1811 /* The Nomadik variant does not have the config register */
1812 if (pl08x->vd->nomadik)
1813 return;
1814 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1815}
1816
1817static irqreturn_t pl08x_irq(int irq, void *dev)
1818{
1819 struct pl08x_driver_data *pl08x = dev;
1820 u32 mask = 0, err, tc, i;
1821
1822 /* check & clear - ERR & TC interrupts */
1823 err = readl(pl08x->base + PL080_ERR_STATUS);
1824 if (err) {
1825 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1826 __func__, err);
1827 writel(err, pl08x->base + PL080_ERR_CLEAR);
1828 }
1829 tc = readl(pl08x->base + PL080_TC_STATUS);
1830 if (tc)
1831 writel(tc, pl08x->base + PL080_TC_CLEAR);
1832
1833 if (!err && !tc)
1834 return IRQ_NONE;
1835
1836 for (i = 0; i < pl08x->vd->channels; i++) {
1837 if (((1 << i) & err) || ((1 << i) & tc)) {
1838 /* Locate physical channel */
1839 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1840 struct pl08x_dma_chan *plchan = phychan->serving;
1841 struct pl08x_txd *tx;
1842
1843 if (!plchan) {
1844 dev_err(&pl08x->adev->dev,
1845 "%s Error TC interrupt on unused channel: 0x%08x\n",
1846 __func__, i);
1847 continue;
1848 }
1849
1850 spin_lock(&plchan->vc.lock);
1851 tx = plchan->at;
1852 if (tx && tx->cyclic) {
1853 vchan_cyclic_callback(&tx->vd);
1854 } else if (tx) {
1855 plchan->at = NULL;
1856 /*
1857 * This descriptor is done, release its mux
1858 * reservation.
1859 */
1860 pl08x_release_mux(plchan);
1861 tx->done = true;
1862 vchan_cookie_complete(&tx->vd);
1863
1864 /*
1865 * And start the next descriptor (if any),
1866 * otherwise free this channel.
1867 */
1868 if (vchan_next_desc(&plchan->vc))
1869 pl08x_start_next_txd(plchan);
1870 else
1871 pl08x_phy_free(plchan);
1872 }
1873 spin_unlock(&plchan->vc.lock);
1874
1875 mask |= (1 << i);
1876 }
1877 }
1878
1879 return mask ? IRQ_HANDLED : IRQ_NONE;
1880}
1881
1882static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1883{
1884 chan->slave = true;
1885 chan->name = chan->cd->bus_id;
1886 chan->cfg.src_addr = chan->cd->addr;
1887 chan->cfg.dst_addr = chan->cd->addr;
1888}
1889
1890/*
1891 * Initialise the DMAC memcpy/slave channels.
1892 * Make a local wrapper to hold required data
1893 */
1894static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1895 struct dma_device *dmadev, unsigned int channels, bool slave)
1896{
1897 struct pl08x_dma_chan *chan;
1898 int i;
1899
1900 INIT_LIST_HEAD(&dmadev->channels);
1901
1902 /*
1903 * Register as many many memcpy as we have physical channels,
1904 * we won't always be able to use all but the code will have
1905 * to cope with that situation.
1906 */
1907 for (i = 0; i < channels; i++) {
1908 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1909 if (!chan)
1910 return -ENOMEM;
1911
1912 chan->host = pl08x;
1913 chan->state = PL08X_CHAN_IDLE;
1914 chan->signal = -1;
1915
1916 if (slave) {
1917 chan->cd = &pl08x->pd->slave_channels[i];
1918 /*
1919 * Some implementations have muxed signals, whereas some
1920 * use a mux in front of the signals and need dynamic
1921 * assignment of signals.
1922 */
1923 chan->signal = i;
1924 pl08x_dma_slave_init(chan);
1925 } else {
1926 chan->cd = &pl08x->pd->memcpy_channel;
1927 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1928 if (!chan->name) {
1929 kfree(chan);
1930 return -ENOMEM;
1931 }
1932 }
1933 dev_dbg(&pl08x->adev->dev,
1934 "initialize virtual channel \"%s\"\n",
1935 chan->name);
1936
1937 chan->vc.desc_free = pl08x_desc_free;
1938 vchan_init(&chan->vc, dmadev);
1939 }
1940 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1941 i, slave ? "slave" : "memcpy");
1942 return i;
1943}
1944
1945static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1946{
1947 struct pl08x_dma_chan *chan = NULL;
1948 struct pl08x_dma_chan *next;
1949
1950 list_for_each_entry_safe(chan,
1951 next, &dmadev->channels, vc.chan.device_node) {
1952 list_del(&chan->vc.chan.device_node);
1953 kfree(chan);
1954 }
1955}
1956
1957#ifdef CONFIG_DEBUG_FS
1958static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1959{
1960 switch (state) {
1961 case PL08X_CHAN_IDLE:
1962 return "idle";
1963 case PL08X_CHAN_RUNNING:
1964 return "running";
1965 case PL08X_CHAN_PAUSED:
1966 return "paused";
1967 case PL08X_CHAN_WAITING:
1968 return "waiting";
1969 default:
1970 break;
1971 }
1972 return "UNKNOWN STATE";
1973}
1974
1975static int pl08x_debugfs_show(struct seq_file *s, void *data)
1976{
1977 struct pl08x_driver_data *pl08x = s->private;
1978 struct pl08x_dma_chan *chan;
1979 struct pl08x_phy_chan *ch;
1980 unsigned long flags;
1981 int i;
1982
1983 seq_printf(s, "PL08x physical channels:\n");
1984 seq_printf(s, "CHANNEL:\tUSER:\n");
1985 seq_printf(s, "--------\t-----\n");
1986 for (i = 0; i < pl08x->vd->channels; i++) {
1987 struct pl08x_dma_chan *virt_chan;
1988
1989 ch = &pl08x->phy_chans[i];
1990
1991 spin_lock_irqsave(&ch->lock, flags);
1992 virt_chan = ch->serving;
1993
1994 seq_printf(s, "%d\t\t%s%s\n",
1995 ch->id,
1996 virt_chan ? virt_chan->name : "(none)",
1997 ch->locked ? " LOCKED" : "");
1998
1999 spin_unlock_irqrestore(&ch->lock, flags);
2000 }
2001
2002 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
2003 seq_printf(s, "CHANNEL:\tSTATE:\n");
2004 seq_printf(s, "--------\t------\n");
2005 list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
2006 seq_printf(s, "%s\t\t%s\n", chan->name,
2007 pl08x_state_str(chan->state));
2008 }
2009
2010 seq_printf(s, "\nPL08x virtual slave channels:\n");
2011 seq_printf(s, "CHANNEL:\tSTATE:\n");
2012 seq_printf(s, "--------\t------\n");
2013 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2014 seq_printf(s, "%s\t\t%s\n", chan->name,
2015 pl08x_state_str(chan->state));
2016 }
2017
2018 return 0;
2019}
2020
2021static int pl08x_debugfs_open(struct inode *inode, struct file *file)
2022{
2023 return single_open(file, pl08x_debugfs_show, inode->i_private);
2024}
2025
2026static const struct file_operations pl08x_debugfs_operations = {
2027 .open = pl08x_debugfs_open,
2028 .read = seq_read,
2029 .llseek = seq_lseek,
2030 .release = single_release,
2031};
2032
2033static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2034{
2035 /* Expose a simple debugfs interface to view all clocks */
2036 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2037 S_IFREG | S_IRUGO, NULL, pl08x,
2038 &pl08x_debugfs_operations);
2039}
2040
2041#else
2042static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2043{
2044}
2045#endif
2046
2047#ifdef CONFIG_OF
2048static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2049 u32 id)
2050{
2051 struct pl08x_dma_chan *chan;
2052
2053 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2054 if (chan->signal == id)
2055 return &chan->vc.chan;
2056 }
2057
2058 return NULL;
2059}
2060
2061static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2062 struct of_dma *ofdma)
2063{
2064 struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2065 struct dma_chan *dma_chan;
2066 struct pl08x_dma_chan *plchan;
2067
2068 if (!pl08x)
2069 return NULL;
2070
2071 if (dma_spec->args_count != 2) {
2072 dev_err(&pl08x->adev->dev,
2073 "DMA channel translation requires two cells\n");
2074 return NULL;
2075 }
2076
2077 dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2078 if (!dma_chan) {
2079 dev_err(&pl08x->adev->dev,
2080 "DMA slave channel not found\n");
2081 return NULL;
2082 }
2083
2084 plchan = to_pl08x_chan(dma_chan);
2085 dev_dbg(&pl08x->adev->dev,
2086 "translated channel for signal %d\n",
2087 dma_spec->args[0]);
2088
2089 /* Augment channel data for applicable AHB buses */
2090 plchan->cd->periph_buses = dma_spec->args[1];
2091 return dma_get_slave_channel(dma_chan);
2092}
2093
2094static int pl08x_of_probe(struct amba_device *adev,
2095 struct pl08x_driver_data *pl08x,
2096 struct device_node *np)
2097{
2098 struct pl08x_platform_data *pd;
2099 struct pl08x_channel_data *chanp = NULL;
2100 u32 cctl_memcpy = 0;
2101 u32 val;
2102 int ret;
2103 int i;
2104
2105 pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2106 if (!pd)
2107 return -ENOMEM;
2108
2109 /* Eligible bus masters for fetching LLIs */
2110 if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2111 pd->lli_buses |= PL08X_AHB1;
2112 if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2113 pd->lli_buses |= PL08X_AHB2;
2114 if (!pd->lli_buses) {
2115 dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2116 pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2117 }
2118
2119 /* Eligible bus masters for memory access */
2120 if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2121 pd->mem_buses |= PL08X_AHB1;
2122 if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2123 pd->mem_buses |= PL08X_AHB2;
2124 if (!pd->mem_buses) {
2125 dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2126 pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2127 }
2128
2129 /* Parse the memcpy channel properties */
2130 ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2131 if (ret) {
2132 dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2133 val = 1;
2134 }
2135 switch (val) {
2136 default:
2137 dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2138 /* Fall through */
2139 case 1:
2140 cctl_memcpy |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
2141 PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
2142 break;
2143 case 4:
2144 cctl_memcpy |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
2145 PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
2146 break;
2147 case 8:
2148 cctl_memcpy |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
2149 PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
2150 break;
2151 case 16:
2152 cctl_memcpy |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
2153 PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
2154 break;
2155 case 32:
2156 cctl_memcpy |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
2157 PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
2158 break;
2159 case 64:
2160 cctl_memcpy |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
2161 PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
2162 break;
2163 case 128:
2164 cctl_memcpy |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
2165 PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
2166 break;
2167 case 256:
2168 cctl_memcpy |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
2169 PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
2170 break;
2171 }
2172
2173 ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2174 if (ret) {
2175 dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2176 val = 8;
2177 }
2178 switch (val) {
2179 default:
2180 dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2181 /* Fall through */
2182 case 8:
2183 cctl_memcpy |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
2184 PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
2185 break;
2186 case 16:
2187 cctl_memcpy |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
2188 PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
2189 break;
2190 case 32:
2191 cctl_memcpy |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
2192 PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
2193 break;
2194 }
2195
2196 /* This is currently the only thing making sense */
2197 cctl_memcpy |= PL080_CONTROL_PROT_SYS;
2198
2199 /* Set up memcpy channel */
2200 pd->memcpy_channel.bus_id = "memcpy";
2201 pd->memcpy_channel.cctl_memcpy = cctl_memcpy;
2202 /* Use the buses that can access memory, obviously */
2203 pd->memcpy_channel.periph_buses = pd->mem_buses;
2204
2205 /*
2206 * Allocate channel data for all possible slave channels (one
2207 * for each possible signal), channels will then be allocated
2208 * for a device and have it's AHB interfaces set up at
2209 * translation time.
2210 */
2211 chanp = devm_kcalloc(&adev->dev,
2212 pl08x->vd->signals,
2213 sizeof(struct pl08x_channel_data),
2214 GFP_KERNEL);
2215 if (!chanp)
2216 return -ENOMEM;
2217
2218 pd->slave_channels = chanp;
2219 for (i = 0; i < pl08x->vd->signals; i++) {
2220 /* chanp->periph_buses will be assigned at translation */
2221 chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i);
2222 chanp++;
2223 }
2224 pd->num_slave_channels = pl08x->vd->signals;
2225
2226 pl08x->pd = pd;
2227
2228 return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2229 pl08x);
2230}
2231#else
2232static inline int pl08x_of_probe(struct amba_device *adev,
2233 struct pl08x_driver_data *pl08x,
2234 struct device_node *np)
2235{
2236 return -EINVAL;
2237}
2238#endif
2239
2240static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2241{
2242 struct pl08x_driver_data *pl08x;
2243 const struct vendor_data *vd = id->data;
2244 struct device_node *np = adev->dev.of_node;
2245 u32 tsfr_size;
2246 int ret = 0;
2247 int i;
2248
2249 ret = amba_request_regions(adev, NULL);
2250 if (ret)
2251 return ret;
2252
2253 /* Ensure that we can do DMA */
2254 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2255 if (ret)
2256 goto out_no_pl08x;
2257
2258 /* Create the driver state holder */
2259 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2260 if (!pl08x) {
2261 ret = -ENOMEM;
2262 goto out_no_pl08x;
2263 }
2264
2265 /* Assign useful pointers to the driver state */
2266 pl08x->adev = adev;
2267 pl08x->vd = vd;
2268
2269 /* Initialize memcpy engine */
2270 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2271 pl08x->memcpy.dev = &adev->dev;
2272 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2273 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2274 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2275 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2276 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2277 pl08x->memcpy.device_config = pl08x_config;
2278 pl08x->memcpy.device_pause = pl08x_pause;
2279 pl08x->memcpy.device_resume = pl08x_resume;
2280 pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2281 pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2282 pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2283 pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2284 pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2285
2286 /* Initialize slave engine */
2287 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2288 dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2289 pl08x->slave.dev = &adev->dev;
2290 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
2291 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2292 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2293 pl08x->slave.device_issue_pending = pl08x_issue_pending;
2294 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2295 pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2296 pl08x->slave.device_config = pl08x_config;
2297 pl08x->slave.device_pause = pl08x_pause;
2298 pl08x->slave.device_resume = pl08x_resume;
2299 pl08x->slave.device_terminate_all = pl08x_terminate_all;
2300 pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2301 pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2302 pl08x->slave.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2303 pl08x->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2304
2305 /* Get the platform data */
2306 pl08x->pd = dev_get_platdata(&adev->dev);
2307 if (!pl08x->pd) {
2308 if (np) {
2309 ret = pl08x_of_probe(adev, pl08x, np);
2310 if (ret)
2311 goto out_no_platdata;
2312 } else {
2313 dev_err(&adev->dev, "no platform data supplied\n");
2314 ret = -EINVAL;
2315 goto out_no_platdata;
2316 }
2317 } else {
2318 pl08x->slave.filter.map = pl08x->pd->slave_map;
2319 pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len;
2320 pl08x->slave.filter.fn = pl08x_filter_fn;
2321 }
2322
2323 /* By default, AHB1 only. If dualmaster, from platform */
2324 pl08x->lli_buses = PL08X_AHB1;
2325 pl08x->mem_buses = PL08X_AHB1;
2326 if (pl08x->vd->dualmaster) {
2327 pl08x->lli_buses = pl08x->pd->lli_buses;
2328 pl08x->mem_buses = pl08x->pd->mem_buses;
2329 }
2330
2331 if (vd->pl080s)
2332 pl08x->lli_words = PL080S_LLI_WORDS;
2333 else
2334 pl08x->lli_words = PL080_LLI_WORDS;
2335 tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2336
2337 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2338 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2339 tsfr_size, PL08X_ALIGN, 0);
2340 if (!pl08x->pool) {
2341 ret = -ENOMEM;
2342 goto out_no_lli_pool;
2343 }
2344
2345 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2346 if (!pl08x->base) {
2347 ret = -ENOMEM;
2348 goto out_no_ioremap;
2349 }
2350
2351 /* Turn on the PL08x */
2352 pl08x_ensure_on(pl08x);
2353
2354 /* Attach the interrupt handler */
2355 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2356 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2357
2358 ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2359 if (ret) {
2360 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2361 __func__, adev->irq[0]);
2362 goto out_no_irq;
2363 }
2364
2365 /* Initialize physical channels */
2366 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2367 GFP_KERNEL);
2368 if (!pl08x->phy_chans) {
2369 ret = -ENOMEM;
2370 goto out_no_phychans;
2371 }
2372
2373 for (i = 0; i < vd->channels; i++) {
2374 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2375
2376 ch->id = i;
2377 ch->base = pl08x->base + PL080_Cx_BASE(i);
2378 ch->reg_config = ch->base + vd->config_offset;
2379 spin_lock_init(&ch->lock);
2380
2381 /*
2382 * Nomadik variants can have channels that are locked
2383 * down for the secure world only. Lock up these channels
2384 * by perpetually serving a dummy virtual channel.
2385 */
2386 if (vd->nomadik) {
2387 u32 val;
2388
2389 val = readl(ch->reg_config);
2390 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2391 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2392 ch->locked = true;
2393 }
2394 }
2395
2396 dev_dbg(&adev->dev, "physical channel %d is %s\n",
2397 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2398 }
2399
2400 /* Register as many memcpy channels as there are physical channels */
2401 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2402 pl08x->vd->channels, false);
2403 if (ret <= 0) {
2404 dev_warn(&pl08x->adev->dev,
2405 "%s failed to enumerate memcpy channels - %d\n",
2406 __func__, ret);
2407 goto out_no_memcpy;
2408 }
2409
2410 /* Register slave channels */
2411 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2412 pl08x->pd->num_slave_channels, true);
2413 if (ret < 0) {
2414 dev_warn(&pl08x->adev->dev,
2415 "%s failed to enumerate slave channels - %d\n",
2416 __func__, ret);
2417 goto out_no_slave;
2418 }
2419
2420 ret = dma_async_device_register(&pl08x->memcpy);
2421 if (ret) {
2422 dev_warn(&pl08x->adev->dev,
2423 "%s failed to register memcpy as an async device - %d\n",
2424 __func__, ret);
2425 goto out_no_memcpy_reg;
2426 }
2427
2428 ret = dma_async_device_register(&pl08x->slave);
2429 if (ret) {
2430 dev_warn(&pl08x->adev->dev,
2431 "%s failed to register slave as an async device - %d\n",
2432 __func__, ret);
2433 goto out_no_slave_reg;
2434 }
2435
2436 amba_set_drvdata(adev, pl08x);
2437 init_pl08x_debugfs(pl08x);
2438 dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2439 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2440 (unsigned long long)adev->res.start, adev->irq[0]);
2441
2442 return 0;
2443
2444out_no_slave_reg:
2445 dma_async_device_unregister(&pl08x->memcpy);
2446out_no_memcpy_reg:
2447 pl08x_free_virtual_channels(&pl08x->slave);
2448out_no_slave:
2449 pl08x_free_virtual_channels(&pl08x->memcpy);
2450out_no_memcpy:
2451 kfree(pl08x->phy_chans);
2452out_no_phychans:
2453 free_irq(adev->irq[0], pl08x);
2454out_no_irq:
2455 iounmap(pl08x->base);
2456out_no_ioremap:
2457 dma_pool_destroy(pl08x->pool);
2458out_no_lli_pool:
2459out_no_platdata:
2460 kfree(pl08x);
2461out_no_pl08x:
2462 amba_release_regions(adev);
2463 return ret;
2464}
2465
2466/* PL080 has 8 channels and the PL080 have just 2 */
2467static struct vendor_data vendor_pl080 = {
2468 .config_offset = PL080_CH_CONFIG,
2469 .channels = 8,
2470 .signals = 16,
2471 .dualmaster = true,
2472 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2473};
2474
2475static struct vendor_data vendor_nomadik = {
2476 .config_offset = PL080_CH_CONFIG,
2477 .channels = 8,
2478 .signals = 32,
2479 .dualmaster = true,
2480 .nomadik = true,
2481 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2482};
2483
2484static struct vendor_data vendor_pl080s = {
2485 .config_offset = PL080S_CH_CONFIG,
2486 .channels = 8,
2487 .signals = 32,
2488 .pl080s = true,
2489 .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
2490};
2491
2492static struct vendor_data vendor_pl081 = {
2493 .config_offset = PL080_CH_CONFIG,
2494 .channels = 2,
2495 .signals = 16,
2496 .dualmaster = false,
2497 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2498};
2499
2500static struct amba_id pl08x_ids[] = {
2501 /* Samsung PL080S variant */
2502 {
2503 .id = 0x0a141080,
2504 .mask = 0xffffffff,
2505 .data = &vendor_pl080s,
2506 },
2507 /* PL080 */
2508 {
2509 .id = 0x00041080,
2510 .mask = 0x000fffff,
2511 .data = &vendor_pl080,
2512 },
2513 /* PL081 */
2514 {
2515 .id = 0x00041081,
2516 .mask = 0x000fffff,
2517 .data = &vendor_pl081,
2518 },
2519 /* Nomadik 8815 PL080 variant */
2520 {
2521 .id = 0x00280080,
2522 .mask = 0x00ffffff,
2523 .data = &vendor_nomadik,
2524 },
2525 { 0, 0 },
2526};
2527
2528MODULE_DEVICE_TABLE(amba, pl08x_ids);
2529
2530static struct amba_driver pl08x_amba_driver = {
2531 .drv.name = DRIVER_NAME,
2532 .id_table = pl08x_ids,
2533 .probe = pl08x_probe,
2534};
2535
2536static int __init pl08x_init(void)
2537{
2538 int retval;
2539 retval = amba_driver_register(&pl08x_amba_driver);
2540 if (retval)
2541 printk(KERN_WARNING DRIVER_NAME
2542 "failed to register as an AMBA device (%d)\n",
2543 retval);
2544 return retval;
2545}
2546subsys_initcall(pl08x_init);