Loading...
1/*
2 * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
3 *
4 * Copyright (c) 2006 SUSE Linux Products GmbH
5 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
6 *
7 * This file is released under the GPLv2.
8 */
9
10#include <linux/dma-mapping.h>
11#include <linux/gfp.h>
12
13/*
14 * Managed DMA API
15 */
16struct dma_devres {
17 size_t size;
18 void *vaddr;
19 dma_addr_t dma_handle;
20};
21
22static void dmam_coherent_release(struct device *dev, void *res)
23{
24 struct dma_devres *this = res;
25
26 dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
27}
28
29static void dmam_noncoherent_release(struct device *dev, void *res)
30{
31 struct dma_devres *this = res;
32
33 dma_free_noncoherent(dev, this->size, this->vaddr, this->dma_handle);
34}
35
36static int dmam_match(struct device *dev, void *res, void *match_data)
37{
38 struct dma_devres *this = res, *match = match_data;
39
40 if (this->vaddr == match->vaddr) {
41 WARN_ON(this->size != match->size ||
42 this->dma_handle != match->dma_handle);
43 return 1;
44 }
45 return 0;
46}
47
48/**
49 * dmam_alloc_coherent - Managed dma_alloc_coherent()
50 * @dev: Device to allocate coherent memory for
51 * @size: Size of allocation
52 * @dma_handle: Out argument for allocated DMA handle
53 * @gfp: Allocation flags
54 *
55 * Managed dma_alloc_coherent(). Memory allocated using this function
56 * will be automatically released on driver detach.
57 *
58 * RETURNS:
59 * Pointer to allocated memory on success, NULL on failure.
60 */
61void * dmam_alloc_coherent(struct device *dev, size_t size,
62 dma_addr_t *dma_handle, gfp_t gfp)
63{
64 struct dma_devres *dr;
65 void *vaddr;
66
67 dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
68 if (!dr)
69 return NULL;
70
71 vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
72 if (!vaddr) {
73 devres_free(dr);
74 return NULL;
75 }
76
77 dr->vaddr = vaddr;
78 dr->dma_handle = *dma_handle;
79 dr->size = size;
80
81 devres_add(dev, dr);
82
83 return vaddr;
84}
85EXPORT_SYMBOL(dmam_alloc_coherent);
86
87/**
88 * dmam_free_coherent - Managed dma_free_coherent()
89 * @dev: Device to free coherent memory for
90 * @size: Size of allocation
91 * @vaddr: Virtual address of the memory to free
92 * @dma_handle: DMA handle of the memory to free
93 *
94 * Managed dma_free_coherent().
95 */
96void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
97 dma_addr_t dma_handle)
98{
99 struct dma_devres match_data = { size, vaddr, dma_handle };
100
101 dma_free_coherent(dev, size, vaddr, dma_handle);
102 WARN_ON(devres_destroy(dev, dmam_coherent_release, dmam_match,
103 &match_data));
104}
105EXPORT_SYMBOL(dmam_free_coherent);
106
107/**
108 * dmam_alloc_non_coherent - Managed dma_alloc_non_coherent()
109 * @dev: Device to allocate non_coherent memory for
110 * @size: Size of allocation
111 * @dma_handle: Out argument for allocated DMA handle
112 * @gfp: Allocation flags
113 *
114 * Managed dma_alloc_non_coherent(). Memory allocated using this
115 * function will be automatically released on driver detach.
116 *
117 * RETURNS:
118 * Pointer to allocated memory on success, NULL on failure.
119 */
120void *dmam_alloc_noncoherent(struct device *dev, size_t size,
121 dma_addr_t *dma_handle, gfp_t gfp)
122{
123 struct dma_devres *dr;
124 void *vaddr;
125
126 dr = devres_alloc(dmam_noncoherent_release, sizeof(*dr), gfp);
127 if (!dr)
128 return NULL;
129
130 vaddr = dma_alloc_noncoherent(dev, size, dma_handle, gfp);
131 if (!vaddr) {
132 devres_free(dr);
133 return NULL;
134 }
135
136 dr->vaddr = vaddr;
137 dr->dma_handle = *dma_handle;
138 dr->size = size;
139
140 devres_add(dev, dr);
141
142 return vaddr;
143}
144EXPORT_SYMBOL(dmam_alloc_noncoherent);
145
146/**
147 * dmam_free_coherent - Managed dma_free_noncoherent()
148 * @dev: Device to free noncoherent memory for
149 * @size: Size of allocation
150 * @vaddr: Virtual address of the memory to free
151 * @dma_handle: DMA handle of the memory to free
152 *
153 * Managed dma_free_noncoherent().
154 */
155void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr,
156 dma_addr_t dma_handle)
157{
158 struct dma_devres match_data = { size, vaddr, dma_handle };
159
160 dma_free_noncoherent(dev, size, vaddr, dma_handle);
161 WARN_ON(!devres_destroy(dev, dmam_noncoherent_release, dmam_match,
162 &match_data));
163}
164EXPORT_SYMBOL(dmam_free_noncoherent);
165
166#ifdef ARCH_HAS_DMA_DECLARE_COHERENT_MEMORY
167
168static void dmam_coherent_decl_release(struct device *dev, void *res)
169{
170 dma_release_declared_memory(dev);
171}
172
173/**
174 * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
175 * @dev: Device to declare coherent memory for
176 * @bus_addr: Bus address of coherent memory to be declared
177 * @device_addr: Device address of coherent memory to be declared
178 * @size: Size of coherent memory to be declared
179 * @flags: Flags
180 *
181 * Managed dma_declare_coherent_memory().
182 *
183 * RETURNS:
184 * 0 on success, -errno on failure.
185 */
186int dmam_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
187 dma_addr_t device_addr, size_t size, int flags)
188{
189 void *res;
190 int rc;
191
192 res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
193 if (!res)
194 return -ENOMEM;
195
196 rc = dma_declare_coherent_memory(dev, bus_addr, device_addr, size,
197 flags);
198 if (rc == 0)
199 devres_add(dev, res);
200 else
201 devres_free(res);
202
203 return rc;
204}
205EXPORT_SYMBOL(dmam_declare_coherent_memory);
206
207/**
208 * dmam_release_declared_memory - Managed dma_release_declared_memory().
209 * @dev: Device to release declared coherent memory for
210 *
211 * Managed dmam_release_declared_memory().
212 */
213void dmam_release_declared_memory(struct device *dev)
214{
215 WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
216}
217EXPORT_SYMBOL(dmam_release_declared_memory);
218
219#endif
1/*
2 * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
3 *
4 * Copyright (c) 2006 SUSE Linux Products GmbH
5 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
6 *
7 * This file is released under the GPLv2.
8 */
9
10#include <linux/dma-mapping.h>
11#include <linux/export.h>
12#include <linux/gfp.h>
13#include <linux/slab.h>
14#include <linux/vmalloc.h>
15
16/*
17 * Managed DMA API
18 */
19struct dma_devres {
20 size_t size;
21 void *vaddr;
22 dma_addr_t dma_handle;
23};
24
25static void dmam_coherent_release(struct device *dev, void *res)
26{
27 struct dma_devres *this = res;
28
29 dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
30}
31
32static void dmam_noncoherent_release(struct device *dev, void *res)
33{
34 struct dma_devres *this = res;
35
36 dma_free_noncoherent(dev, this->size, this->vaddr, this->dma_handle);
37}
38
39static int dmam_match(struct device *dev, void *res, void *match_data)
40{
41 struct dma_devres *this = res, *match = match_data;
42
43 if (this->vaddr == match->vaddr) {
44 WARN_ON(this->size != match->size ||
45 this->dma_handle != match->dma_handle);
46 return 1;
47 }
48 return 0;
49}
50
51/**
52 * dmam_alloc_coherent - Managed dma_alloc_coherent()
53 * @dev: Device to allocate coherent memory for
54 * @size: Size of allocation
55 * @dma_handle: Out argument for allocated DMA handle
56 * @gfp: Allocation flags
57 *
58 * Managed dma_alloc_coherent(). Memory allocated using this function
59 * will be automatically released on driver detach.
60 *
61 * RETURNS:
62 * Pointer to allocated memory on success, NULL on failure.
63 */
64void *dmam_alloc_coherent(struct device *dev, size_t size,
65 dma_addr_t *dma_handle, gfp_t gfp)
66{
67 struct dma_devres *dr;
68 void *vaddr;
69
70 dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
71 if (!dr)
72 return NULL;
73
74 vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
75 if (!vaddr) {
76 devres_free(dr);
77 return NULL;
78 }
79
80 dr->vaddr = vaddr;
81 dr->dma_handle = *dma_handle;
82 dr->size = size;
83
84 devres_add(dev, dr);
85
86 return vaddr;
87}
88EXPORT_SYMBOL(dmam_alloc_coherent);
89
90/**
91 * dmam_free_coherent - Managed dma_free_coherent()
92 * @dev: Device to free coherent memory for
93 * @size: Size of allocation
94 * @vaddr: Virtual address of the memory to free
95 * @dma_handle: DMA handle of the memory to free
96 *
97 * Managed dma_free_coherent().
98 */
99void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
100 dma_addr_t dma_handle)
101{
102 struct dma_devres match_data = { size, vaddr, dma_handle };
103
104 dma_free_coherent(dev, size, vaddr, dma_handle);
105 WARN_ON(devres_destroy(dev, dmam_coherent_release, dmam_match,
106 &match_data));
107}
108EXPORT_SYMBOL(dmam_free_coherent);
109
110/**
111 * dmam_alloc_non_coherent - Managed dma_alloc_non_coherent()
112 * @dev: Device to allocate non_coherent memory for
113 * @size: Size of allocation
114 * @dma_handle: Out argument for allocated DMA handle
115 * @gfp: Allocation flags
116 *
117 * Managed dma_alloc_non_coherent(). Memory allocated using this
118 * function will be automatically released on driver detach.
119 *
120 * RETURNS:
121 * Pointer to allocated memory on success, NULL on failure.
122 */
123void *dmam_alloc_noncoherent(struct device *dev, size_t size,
124 dma_addr_t *dma_handle, gfp_t gfp)
125{
126 struct dma_devres *dr;
127 void *vaddr;
128
129 dr = devres_alloc(dmam_noncoherent_release, sizeof(*dr), gfp);
130 if (!dr)
131 return NULL;
132
133 vaddr = dma_alloc_noncoherent(dev, size, dma_handle, gfp);
134 if (!vaddr) {
135 devres_free(dr);
136 return NULL;
137 }
138
139 dr->vaddr = vaddr;
140 dr->dma_handle = *dma_handle;
141 dr->size = size;
142
143 devres_add(dev, dr);
144
145 return vaddr;
146}
147EXPORT_SYMBOL(dmam_alloc_noncoherent);
148
149/**
150 * dmam_free_coherent - Managed dma_free_noncoherent()
151 * @dev: Device to free noncoherent memory for
152 * @size: Size of allocation
153 * @vaddr: Virtual address of the memory to free
154 * @dma_handle: DMA handle of the memory to free
155 *
156 * Managed dma_free_noncoherent().
157 */
158void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr,
159 dma_addr_t dma_handle)
160{
161 struct dma_devres match_data = { size, vaddr, dma_handle };
162
163 dma_free_noncoherent(dev, size, vaddr, dma_handle);
164 WARN_ON(!devres_destroy(dev, dmam_noncoherent_release, dmam_match,
165 &match_data));
166}
167EXPORT_SYMBOL(dmam_free_noncoherent);
168
169#ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
170
171static void dmam_coherent_decl_release(struct device *dev, void *res)
172{
173 dma_release_declared_memory(dev);
174}
175
176/**
177 * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
178 * @dev: Device to declare coherent memory for
179 * @phys_addr: Physical address of coherent memory to be declared
180 * @device_addr: Device address of coherent memory to be declared
181 * @size: Size of coherent memory to be declared
182 * @flags: Flags
183 *
184 * Managed dma_declare_coherent_memory().
185 *
186 * RETURNS:
187 * 0 on success, -errno on failure.
188 */
189int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
190 dma_addr_t device_addr, size_t size, int flags)
191{
192 void *res;
193 int rc;
194
195 res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
196 if (!res)
197 return -ENOMEM;
198
199 rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size,
200 flags);
201 if (rc == 0)
202 devres_add(dev, res);
203 else
204 devres_free(res);
205
206 return rc;
207}
208EXPORT_SYMBOL(dmam_declare_coherent_memory);
209
210/**
211 * dmam_release_declared_memory - Managed dma_release_declared_memory().
212 * @dev: Device to release declared coherent memory for
213 *
214 * Managed dmam_release_declared_memory().
215 */
216void dmam_release_declared_memory(struct device *dev)
217{
218 WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
219}
220EXPORT_SYMBOL(dmam_release_declared_memory);
221
222#endif
223
224/*
225 * Create scatter-list for the already allocated DMA buffer.
226 */
227int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
228 void *cpu_addr, dma_addr_t handle, size_t size)
229{
230 struct page *page = virt_to_page(cpu_addr);
231 int ret;
232
233 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
234 if (unlikely(ret))
235 return ret;
236
237 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
238 return 0;
239}
240EXPORT_SYMBOL(dma_common_get_sgtable);
241
242/*
243 * Create userspace mapping for the DMA-coherent memory.
244 */
245int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
246 void *cpu_addr, dma_addr_t dma_addr, size_t size)
247{
248 int ret = -ENXIO;
249#if defined(CONFIG_MMU) && !defined(CONFIG_ARCH_NO_COHERENT_DMA_MMAP)
250 unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
251 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
252 unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr));
253 unsigned long off = vma->vm_pgoff;
254
255 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
256
257 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
258 return ret;
259
260 if (off < count && user_count <= (count - off)) {
261 ret = remap_pfn_range(vma, vma->vm_start,
262 pfn + off,
263 user_count << PAGE_SHIFT,
264 vma->vm_page_prot);
265 }
266#endif /* CONFIG_MMU && !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
267
268 return ret;
269}
270EXPORT_SYMBOL(dma_common_mmap);
271
272#ifdef CONFIG_MMU
273/*
274 * remaps an array of PAGE_SIZE pages into another vm_area
275 * Cannot be used in non-sleeping contexts
276 */
277void *dma_common_pages_remap(struct page **pages, size_t size,
278 unsigned long vm_flags, pgprot_t prot,
279 const void *caller)
280{
281 struct vm_struct *area;
282
283 area = get_vm_area_caller(size, vm_flags, caller);
284 if (!area)
285 return NULL;
286
287 area->pages = pages;
288
289 if (map_vm_area(area, prot, pages)) {
290 vunmap(area->addr);
291 return NULL;
292 }
293
294 return area->addr;
295}
296
297/*
298 * remaps an allocated contiguous region into another vm_area.
299 * Cannot be used in non-sleeping contexts
300 */
301
302void *dma_common_contiguous_remap(struct page *page, size_t size,
303 unsigned long vm_flags,
304 pgprot_t prot, const void *caller)
305{
306 int i;
307 struct page **pages;
308 void *ptr;
309 unsigned long pfn;
310
311 pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL);
312 if (!pages)
313 return NULL;
314
315 for (i = 0, pfn = page_to_pfn(page); i < (size >> PAGE_SHIFT); i++)
316 pages[i] = pfn_to_page(pfn + i);
317
318 ptr = dma_common_pages_remap(pages, size, vm_flags, prot, caller);
319
320 kfree(pages);
321
322 return ptr;
323}
324
325/*
326 * unmaps a range previously mapped by dma_common_*_remap
327 */
328void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags)
329{
330 struct vm_struct *area = find_vm_area(cpu_addr);
331
332 if (!area || (area->flags & vm_flags) != vm_flags) {
333 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
334 return;
335 }
336
337 unmap_kernel_range((unsigned long)cpu_addr, size);
338 vunmap(cpu_addr);
339}
340#endif