Loading...
1/*
2 * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
3 *
4 * Copyright (c) 2006 SUSE Linux Products GmbH
5 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
6 *
7 * This file is released under the GPLv2.
8 */
9
10#include <linux/dma-mapping.h>
11#include <linux/gfp.h>
12
13/*
14 * Managed DMA API
15 */
16struct dma_devres {
17 size_t size;
18 void *vaddr;
19 dma_addr_t dma_handle;
20};
21
22static void dmam_coherent_release(struct device *dev, void *res)
23{
24 struct dma_devres *this = res;
25
26 dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
27}
28
29static void dmam_noncoherent_release(struct device *dev, void *res)
30{
31 struct dma_devres *this = res;
32
33 dma_free_noncoherent(dev, this->size, this->vaddr, this->dma_handle);
34}
35
36static int dmam_match(struct device *dev, void *res, void *match_data)
37{
38 struct dma_devres *this = res, *match = match_data;
39
40 if (this->vaddr == match->vaddr) {
41 WARN_ON(this->size != match->size ||
42 this->dma_handle != match->dma_handle);
43 return 1;
44 }
45 return 0;
46}
47
48/**
49 * dmam_alloc_coherent - Managed dma_alloc_coherent()
50 * @dev: Device to allocate coherent memory for
51 * @size: Size of allocation
52 * @dma_handle: Out argument for allocated DMA handle
53 * @gfp: Allocation flags
54 *
55 * Managed dma_alloc_coherent(). Memory allocated using this function
56 * will be automatically released on driver detach.
57 *
58 * RETURNS:
59 * Pointer to allocated memory on success, NULL on failure.
60 */
61void * dmam_alloc_coherent(struct device *dev, size_t size,
62 dma_addr_t *dma_handle, gfp_t gfp)
63{
64 struct dma_devres *dr;
65 void *vaddr;
66
67 dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
68 if (!dr)
69 return NULL;
70
71 vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
72 if (!vaddr) {
73 devres_free(dr);
74 return NULL;
75 }
76
77 dr->vaddr = vaddr;
78 dr->dma_handle = *dma_handle;
79 dr->size = size;
80
81 devres_add(dev, dr);
82
83 return vaddr;
84}
85EXPORT_SYMBOL(dmam_alloc_coherent);
86
87/**
88 * dmam_free_coherent - Managed dma_free_coherent()
89 * @dev: Device to free coherent memory for
90 * @size: Size of allocation
91 * @vaddr: Virtual address of the memory to free
92 * @dma_handle: DMA handle of the memory to free
93 *
94 * Managed dma_free_coherent().
95 */
96void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
97 dma_addr_t dma_handle)
98{
99 struct dma_devres match_data = { size, vaddr, dma_handle };
100
101 dma_free_coherent(dev, size, vaddr, dma_handle);
102 WARN_ON(devres_destroy(dev, dmam_coherent_release, dmam_match,
103 &match_data));
104}
105EXPORT_SYMBOL(dmam_free_coherent);
106
107/**
108 * dmam_alloc_non_coherent - Managed dma_alloc_non_coherent()
109 * @dev: Device to allocate non_coherent memory for
110 * @size: Size of allocation
111 * @dma_handle: Out argument for allocated DMA handle
112 * @gfp: Allocation flags
113 *
114 * Managed dma_alloc_non_coherent(). Memory allocated using this
115 * function will be automatically released on driver detach.
116 *
117 * RETURNS:
118 * Pointer to allocated memory on success, NULL on failure.
119 */
120void *dmam_alloc_noncoherent(struct device *dev, size_t size,
121 dma_addr_t *dma_handle, gfp_t gfp)
122{
123 struct dma_devres *dr;
124 void *vaddr;
125
126 dr = devres_alloc(dmam_noncoherent_release, sizeof(*dr), gfp);
127 if (!dr)
128 return NULL;
129
130 vaddr = dma_alloc_noncoherent(dev, size, dma_handle, gfp);
131 if (!vaddr) {
132 devres_free(dr);
133 return NULL;
134 }
135
136 dr->vaddr = vaddr;
137 dr->dma_handle = *dma_handle;
138 dr->size = size;
139
140 devres_add(dev, dr);
141
142 return vaddr;
143}
144EXPORT_SYMBOL(dmam_alloc_noncoherent);
145
146/**
147 * dmam_free_coherent - Managed dma_free_noncoherent()
148 * @dev: Device to free noncoherent memory for
149 * @size: Size of allocation
150 * @vaddr: Virtual address of the memory to free
151 * @dma_handle: DMA handle of the memory to free
152 *
153 * Managed dma_free_noncoherent().
154 */
155void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr,
156 dma_addr_t dma_handle)
157{
158 struct dma_devres match_data = { size, vaddr, dma_handle };
159
160 dma_free_noncoherent(dev, size, vaddr, dma_handle);
161 WARN_ON(!devres_destroy(dev, dmam_noncoherent_release, dmam_match,
162 &match_data));
163}
164EXPORT_SYMBOL(dmam_free_noncoherent);
165
166#ifdef ARCH_HAS_DMA_DECLARE_COHERENT_MEMORY
167
168static void dmam_coherent_decl_release(struct device *dev, void *res)
169{
170 dma_release_declared_memory(dev);
171}
172
173/**
174 * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
175 * @dev: Device to declare coherent memory for
176 * @bus_addr: Bus address of coherent memory to be declared
177 * @device_addr: Device address of coherent memory to be declared
178 * @size: Size of coherent memory to be declared
179 * @flags: Flags
180 *
181 * Managed dma_declare_coherent_memory().
182 *
183 * RETURNS:
184 * 0 on success, -errno on failure.
185 */
186int dmam_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
187 dma_addr_t device_addr, size_t size, int flags)
188{
189 void *res;
190 int rc;
191
192 res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
193 if (!res)
194 return -ENOMEM;
195
196 rc = dma_declare_coherent_memory(dev, bus_addr, device_addr, size,
197 flags);
198 if (rc == 0)
199 devres_add(dev, res);
200 else
201 devres_free(res);
202
203 return rc;
204}
205EXPORT_SYMBOL(dmam_declare_coherent_memory);
206
207/**
208 * dmam_release_declared_memory - Managed dma_release_declared_memory().
209 * @dev: Device to release declared coherent memory for
210 *
211 * Managed dmam_release_declared_memory().
212 */
213void dmam_release_declared_memory(struct device *dev)
214{
215 WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
216}
217EXPORT_SYMBOL(dmam_release_declared_memory);
218
219#endif
1/*
2 * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
3 *
4 * Copyright (c) 2006 SUSE Linux Products GmbH
5 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
6 *
7 * This file is released under the GPLv2.
8 */
9
10#include <linux/dma-mapping.h>
11#include <linux/export.h>
12#include <linux/gfp.h>
13
14/*
15 * Managed DMA API
16 */
17struct dma_devres {
18 size_t size;
19 void *vaddr;
20 dma_addr_t dma_handle;
21};
22
23static void dmam_coherent_release(struct device *dev, void *res)
24{
25 struct dma_devres *this = res;
26
27 dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
28}
29
30static void dmam_noncoherent_release(struct device *dev, void *res)
31{
32 struct dma_devres *this = res;
33
34 dma_free_noncoherent(dev, this->size, this->vaddr, this->dma_handle);
35}
36
37static int dmam_match(struct device *dev, void *res, void *match_data)
38{
39 struct dma_devres *this = res, *match = match_data;
40
41 if (this->vaddr == match->vaddr) {
42 WARN_ON(this->size != match->size ||
43 this->dma_handle != match->dma_handle);
44 return 1;
45 }
46 return 0;
47}
48
49/**
50 * dmam_alloc_coherent - Managed dma_alloc_coherent()
51 * @dev: Device to allocate coherent memory for
52 * @size: Size of allocation
53 * @dma_handle: Out argument for allocated DMA handle
54 * @gfp: Allocation flags
55 *
56 * Managed dma_alloc_coherent(). Memory allocated using this function
57 * will be automatically released on driver detach.
58 *
59 * RETURNS:
60 * Pointer to allocated memory on success, NULL on failure.
61 */
62void * dmam_alloc_coherent(struct device *dev, size_t size,
63 dma_addr_t *dma_handle, gfp_t gfp)
64{
65 struct dma_devres *dr;
66 void *vaddr;
67
68 dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
69 if (!dr)
70 return NULL;
71
72 vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
73 if (!vaddr) {
74 devres_free(dr);
75 return NULL;
76 }
77
78 dr->vaddr = vaddr;
79 dr->dma_handle = *dma_handle;
80 dr->size = size;
81
82 devres_add(dev, dr);
83
84 return vaddr;
85}
86EXPORT_SYMBOL(dmam_alloc_coherent);
87
88/**
89 * dmam_free_coherent - Managed dma_free_coherent()
90 * @dev: Device to free coherent memory for
91 * @size: Size of allocation
92 * @vaddr: Virtual address of the memory to free
93 * @dma_handle: DMA handle of the memory to free
94 *
95 * Managed dma_free_coherent().
96 */
97void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
98 dma_addr_t dma_handle)
99{
100 struct dma_devres match_data = { size, vaddr, dma_handle };
101
102 dma_free_coherent(dev, size, vaddr, dma_handle);
103 WARN_ON(devres_destroy(dev, dmam_coherent_release, dmam_match,
104 &match_data));
105}
106EXPORT_SYMBOL(dmam_free_coherent);
107
108/**
109 * dmam_alloc_non_coherent - Managed dma_alloc_non_coherent()
110 * @dev: Device to allocate non_coherent memory for
111 * @size: Size of allocation
112 * @dma_handle: Out argument for allocated DMA handle
113 * @gfp: Allocation flags
114 *
115 * Managed dma_alloc_non_coherent(). Memory allocated using this
116 * function will be automatically released on driver detach.
117 *
118 * RETURNS:
119 * Pointer to allocated memory on success, NULL on failure.
120 */
121void *dmam_alloc_noncoherent(struct device *dev, size_t size,
122 dma_addr_t *dma_handle, gfp_t gfp)
123{
124 struct dma_devres *dr;
125 void *vaddr;
126
127 dr = devres_alloc(dmam_noncoherent_release, sizeof(*dr), gfp);
128 if (!dr)
129 return NULL;
130
131 vaddr = dma_alloc_noncoherent(dev, size, dma_handle, gfp);
132 if (!vaddr) {
133 devres_free(dr);
134 return NULL;
135 }
136
137 dr->vaddr = vaddr;
138 dr->dma_handle = *dma_handle;
139 dr->size = size;
140
141 devres_add(dev, dr);
142
143 return vaddr;
144}
145EXPORT_SYMBOL(dmam_alloc_noncoherent);
146
147/**
148 * dmam_free_coherent - Managed dma_free_noncoherent()
149 * @dev: Device to free noncoherent memory for
150 * @size: Size of allocation
151 * @vaddr: Virtual address of the memory to free
152 * @dma_handle: DMA handle of the memory to free
153 *
154 * Managed dma_free_noncoherent().
155 */
156void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr,
157 dma_addr_t dma_handle)
158{
159 struct dma_devres match_data = { size, vaddr, dma_handle };
160
161 dma_free_noncoherent(dev, size, vaddr, dma_handle);
162 WARN_ON(!devres_destroy(dev, dmam_noncoherent_release, dmam_match,
163 &match_data));
164}
165EXPORT_SYMBOL(dmam_free_noncoherent);
166
167#ifdef ARCH_HAS_DMA_DECLARE_COHERENT_MEMORY
168
169static void dmam_coherent_decl_release(struct device *dev, void *res)
170{
171 dma_release_declared_memory(dev);
172}
173
174/**
175 * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
176 * @dev: Device to declare coherent memory for
177 * @bus_addr: Bus address of coherent memory to be declared
178 * @device_addr: Device address of coherent memory to be declared
179 * @size: Size of coherent memory to be declared
180 * @flags: Flags
181 *
182 * Managed dma_declare_coherent_memory().
183 *
184 * RETURNS:
185 * 0 on success, -errno on failure.
186 */
187int dmam_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
188 dma_addr_t device_addr, size_t size, int flags)
189{
190 void *res;
191 int rc;
192
193 res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
194 if (!res)
195 return -ENOMEM;
196
197 rc = dma_declare_coherent_memory(dev, bus_addr, device_addr, size,
198 flags);
199 if (rc == 0)
200 devres_add(dev, res);
201 else
202 devres_free(res);
203
204 return rc;
205}
206EXPORT_SYMBOL(dmam_declare_coherent_memory);
207
208/**
209 * dmam_release_declared_memory - Managed dma_release_declared_memory().
210 * @dev: Device to release declared coherent memory for
211 *
212 * Managed dmam_release_declared_memory().
213 */
214void dmam_release_declared_memory(struct device *dev)
215{
216 WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
217}
218EXPORT_SYMBOL(dmam_release_declared_memory);
219
220#endif