Loading...
1/*
2 * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
3 *
4 * Copyright (c) 2006 SUSE Linux Products GmbH
5 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
6 *
7 * This file is released under the GPLv2.
8 */
9
10#include <linux/dma-mapping.h>
11#include <linux/gfp.h>
12
13/*
14 * Managed DMA API
15 */
16struct dma_devres {
17 size_t size;
18 void *vaddr;
19 dma_addr_t dma_handle;
20};
21
22static void dmam_coherent_release(struct device *dev, void *res)
23{
24 struct dma_devres *this = res;
25
26 dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
27}
28
29static void dmam_noncoherent_release(struct device *dev, void *res)
30{
31 struct dma_devres *this = res;
32
33 dma_free_noncoherent(dev, this->size, this->vaddr, this->dma_handle);
34}
35
36static int dmam_match(struct device *dev, void *res, void *match_data)
37{
38 struct dma_devres *this = res, *match = match_data;
39
40 if (this->vaddr == match->vaddr) {
41 WARN_ON(this->size != match->size ||
42 this->dma_handle != match->dma_handle);
43 return 1;
44 }
45 return 0;
46}
47
48/**
49 * dmam_alloc_coherent - Managed dma_alloc_coherent()
50 * @dev: Device to allocate coherent memory for
51 * @size: Size of allocation
52 * @dma_handle: Out argument for allocated DMA handle
53 * @gfp: Allocation flags
54 *
55 * Managed dma_alloc_coherent(). Memory allocated using this function
56 * will be automatically released on driver detach.
57 *
58 * RETURNS:
59 * Pointer to allocated memory on success, NULL on failure.
60 */
61void * dmam_alloc_coherent(struct device *dev, size_t size,
62 dma_addr_t *dma_handle, gfp_t gfp)
63{
64 struct dma_devres *dr;
65 void *vaddr;
66
67 dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
68 if (!dr)
69 return NULL;
70
71 vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
72 if (!vaddr) {
73 devres_free(dr);
74 return NULL;
75 }
76
77 dr->vaddr = vaddr;
78 dr->dma_handle = *dma_handle;
79 dr->size = size;
80
81 devres_add(dev, dr);
82
83 return vaddr;
84}
85EXPORT_SYMBOL(dmam_alloc_coherent);
86
87/**
88 * dmam_free_coherent - Managed dma_free_coherent()
89 * @dev: Device to free coherent memory for
90 * @size: Size of allocation
91 * @vaddr: Virtual address of the memory to free
92 * @dma_handle: DMA handle of the memory to free
93 *
94 * Managed dma_free_coherent().
95 */
96void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
97 dma_addr_t dma_handle)
98{
99 struct dma_devres match_data = { size, vaddr, dma_handle };
100
101 dma_free_coherent(dev, size, vaddr, dma_handle);
102 WARN_ON(devres_destroy(dev, dmam_coherent_release, dmam_match,
103 &match_data));
104}
105EXPORT_SYMBOL(dmam_free_coherent);
106
107/**
108 * dmam_alloc_non_coherent - Managed dma_alloc_non_coherent()
109 * @dev: Device to allocate non_coherent memory for
110 * @size: Size of allocation
111 * @dma_handle: Out argument for allocated DMA handle
112 * @gfp: Allocation flags
113 *
114 * Managed dma_alloc_non_coherent(). Memory allocated using this
115 * function will be automatically released on driver detach.
116 *
117 * RETURNS:
118 * Pointer to allocated memory on success, NULL on failure.
119 */
120void *dmam_alloc_noncoherent(struct device *dev, size_t size,
121 dma_addr_t *dma_handle, gfp_t gfp)
122{
123 struct dma_devres *dr;
124 void *vaddr;
125
126 dr = devres_alloc(dmam_noncoherent_release, sizeof(*dr), gfp);
127 if (!dr)
128 return NULL;
129
130 vaddr = dma_alloc_noncoherent(dev, size, dma_handle, gfp);
131 if (!vaddr) {
132 devres_free(dr);
133 return NULL;
134 }
135
136 dr->vaddr = vaddr;
137 dr->dma_handle = *dma_handle;
138 dr->size = size;
139
140 devres_add(dev, dr);
141
142 return vaddr;
143}
144EXPORT_SYMBOL(dmam_alloc_noncoherent);
145
146/**
147 * dmam_free_coherent - Managed dma_free_noncoherent()
148 * @dev: Device to free noncoherent memory for
149 * @size: Size of allocation
150 * @vaddr: Virtual address of the memory to free
151 * @dma_handle: DMA handle of the memory to free
152 *
153 * Managed dma_free_noncoherent().
154 */
155void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr,
156 dma_addr_t dma_handle)
157{
158 struct dma_devres match_data = { size, vaddr, dma_handle };
159
160 dma_free_noncoherent(dev, size, vaddr, dma_handle);
161 WARN_ON(!devres_destroy(dev, dmam_noncoherent_release, dmam_match,
162 &match_data));
163}
164EXPORT_SYMBOL(dmam_free_noncoherent);
165
166#ifdef ARCH_HAS_DMA_DECLARE_COHERENT_MEMORY
167
168static void dmam_coherent_decl_release(struct device *dev, void *res)
169{
170 dma_release_declared_memory(dev);
171}
172
173/**
174 * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
175 * @dev: Device to declare coherent memory for
176 * @bus_addr: Bus address of coherent memory to be declared
177 * @device_addr: Device address of coherent memory to be declared
178 * @size: Size of coherent memory to be declared
179 * @flags: Flags
180 *
181 * Managed dma_declare_coherent_memory().
182 *
183 * RETURNS:
184 * 0 on success, -errno on failure.
185 */
186int dmam_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
187 dma_addr_t device_addr, size_t size, int flags)
188{
189 void *res;
190 int rc;
191
192 res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
193 if (!res)
194 return -ENOMEM;
195
196 rc = dma_declare_coherent_memory(dev, bus_addr, device_addr, size,
197 flags);
198 if (rc == 0)
199 devres_add(dev, res);
200 else
201 devres_free(res);
202
203 return rc;
204}
205EXPORT_SYMBOL(dmam_declare_coherent_memory);
206
207/**
208 * dmam_release_declared_memory - Managed dma_release_declared_memory().
209 * @dev: Device to release declared coherent memory for
210 *
211 * Managed dmam_release_declared_memory().
212 */
213void dmam_release_declared_memory(struct device *dev)
214{
215 WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
216}
217EXPORT_SYMBOL(dmam_release_declared_memory);
218
219#endif
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8
9#include <linux/acpi.h>
10#include <linux/dma-mapping.h>
11#include <linux/export.h>
12#include <linux/gfp.h>
13#include <linux/of_device.h>
14#include <linux/slab.h>
15#include <linux/vmalloc.h>
16
17/*
18 * Managed DMA API
19 */
20struct dma_devres {
21 size_t size;
22 void *vaddr;
23 dma_addr_t dma_handle;
24 unsigned long attrs;
25};
26
27static void dmam_release(struct device *dev, void *res)
28{
29 struct dma_devres *this = res;
30
31 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
32 this->attrs);
33}
34
35static int dmam_match(struct device *dev, void *res, void *match_data)
36{
37 struct dma_devres *this = res, *match = match_data;
38
39 if (this->vaddr == match->vaddr) {
40 WARN_ON(this->size != match->size ||
41 this->dma_handle != match->dma_handle);
42 return 1;
43 }
44 return 0;
45}
46
47/**
48 * dmam_alloc_coherent - Managed dma_alloc_coherent()
49 * @dev: Device to allocate coherent memory for
50 * @size: Size of allocation
51 * @dma_handle: Out argument for allocated DMA handle
52 * @gfp: Allocation flags
53 *
54 * Managed dma_alloc_coherent(). Memory allocated using this function
55 * will be automatically released on driver detach.
56 *
57 * RETURNS:
58 * Pointer to allocated memory on success, NULL on failure.
59 */
60void *dmam_alloc_coherent(struct device *dev, size_t size,
61 dma_addr_t *dma_handle, gfp_t gfp)
62{
63 struct dma_devres *dr;
64 void *vaddr;
65
66 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
67 if (!dr)
68 return NULL;
69
70 vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
71 if (!vaddr) {
72 devres_free(dr);
73 return NULL;
74 }
75
76 dr->vaddr = vaddr;
77 dr->dma_handle = *dma_handle;
78 dr->size = size;
79
80 devres_add(dev, dr);
81
82 return vaddr;
83}
84EXPORT_SYMBOL(dmam_alloc_coherent);
85
86/**
87 * dmam_free_coherent - Managed dma_free_coherent()
88 * @dev: Device to free coherent memory for
89 * @size: Size of allocation
90 * @vaddr: Virtual address of the memory to free
91 * @dma_handle: DMA handle of the memory to free
92 *
93 * Managed dma_free_coherent().
94 */
95void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
96 dma_addr_t dma_handle)
97{
98 struct dma_devres match_data = { size, vaddr, dma_handle };
99
100 dma_free_coherent(dev, size, vaddr, dma_handle);
101 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
102}
103EXPORT_SYMBOL(dmam_free_coherent);
104
105/**
106 * dmam_alloc_attrs - Managed dma_alloc_attrs()
107 * @dev: Device to allocate non_coherent memory for
108 * @size: Size of allocation
109 * @dma_handle: Out argument for allocated DMA handle
110 * @gfp: Allocation flags
111 * @attrs: Flags in the DMA_ATTR_* namespace.
112 *
113 * Managed dma_alloc_attrs(). Memory allocated using this function will be
114 * automatically released on driver detach.
115 *
116 * RETURNS:
117 * Pointer to allocated memory on success, NULL on failure.
118 */
119void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
120 gfp_t gfp, unsigned long attrs)
121{
122 struct dma_devres *dr;
123 void *vaddr;
124
125 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
126 if (!dr)
127 return NULL;
128
129 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
130 if (!vaddr) {
131 devres_free(dr);
132 return NULL;
133 }
134
135 dr->vaddr = vaddr;
136 dr->dma_handle = *dma_handle;
137 dr->size = size;
138 dr->attrs = attrs;
139
140 devres_add(dev, dr);
141
142 return vaddr;
143}
144EXPORT_SYMBOL(dmam_alloc_attrs);
145
146#ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
147
148static void dmam_coherent_decl_release(struct device *dev, void *res)
149{
150 dma_release_declared_memory(dev);
151}
152
153/**
154 * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
155 * @dev: Device to declare coherent memory for
156 * @phys_addr: Physical address of coherent memory to be declared
157 * @device_addr: Device address of coherent memory to be declared
158 * @size: Size of coherent memory to be declared
159 * @flags: Flags
160 *
161 * Managed dma_declare_coherent_memory().
162 *
163 * RETURNS:
164 * 0 on success, -errno on failure.
165 */
166int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
167 dma_addr_t device_addr, size_t size, int flags)
168{
169 void *res;
170 int rc;
171
172 res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
173 if (!res)
174 return -ENOMEM;
175
176 rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size,
177 flags);
178 if (!rc)
179 devres_add(dev, res);
180 else
181 devres_free(res);
182
183 return rc;
184}
185EXPORT_SYMBOL(dmam_declare_coherent_memory);
186
187/**
188 * dmam_release_declared_memory - Managed dma_release_declared_memory().
189 * @dev: Device to release declared coherent memory for
190 *
191 * Managed dmam_release_declared_memory().
192 */
193void dmam_release_declared_memory(struct device *dev)
194{
195 WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
196}
197EXPORT_SYMBOL(dmam_release_declared_memory);
198
199#endif
200
201/*
202 * Create scatter-list for the already allocated DMA buffer.
203 */
204int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
205 void *cpu_addr, dma_addr_t handle, size_t size)
206{
207 struct page *page = virt_to_page(cpu_addr);
208 int ret;
209
210 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
211 if (unlikely(ret))
212 return ret;
213
214 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
215 return 0;
216}
217EXPORT_SYMBOL(dma_common_get_sgtable);
218
219/*
220 * Create userspace mapping for the DMA-coherent memory.
221 */
222int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
223 void *cpu_addr, dma_addr_t dma_addr, size_t size)
224{
225 int ret = -ENXIO;
226#ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP
227 unsigned long user_count = vma_pages(vma);
228 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
229 unsigned long off = vma->vm_pgoff;
230
231 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
232
233 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
234 return ret;
235
236 if (off < count && user_count <= (count - off))
237 ret = remap_pfn_range(vma, vma->vm_start,
238 page_to_pfn(virt_to_page(cpu_addr)) + off,
239 user_count << PAGE_SHIFT,
240 vma->vm_page_prot);
241#endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
242
243 return ret;
244}
245EXPORT_SYMBOL(dma_common_mmap);
246
247#ifdef CONFIG_MMU
248static struct vm_struct *__dma_common_pages_remap(struct page **pages,
249 size_t size, unsigned long vm_flags, pgprot_t prot,
250 const void *caller)
251{
252 struct vm_struct *area;
253
254 area = get_vm_area_caller(size, vm_flags, caller);
255 if (!area)
256 return NULL;
257
258 if (map_vm_area(area, prot, pages)) {
259 vunmap(area->addr);
260 return NULL;
261 }
262
263 return area;
264}
265
266/*
267 * remaps an array of PAGE_SIZE pages into another vm_area
268 * Cannot be used in non-sleeping contexts
269 */
270void *dma_common_pages_remap(struct page **pages, size_t size,
271 unsigned long vm_flags, pgprot_t prot,
272 const void *caller)
273{
274 struct vm_struct *area;
275
276 area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
277 if (!area)
278 return NULL;
279
280 area->pages = pages;
281
282 return area->addr;
283}
284
285/*
286 * remaps an allocated contiguous region into another vm_area.
287 * Cannot be used in non-sleeping contexts
288 */
289
290void *dma_common_contiguous_remap(struct page *page, size_t size,
291 unsigned long vm_flags,
292 pgprot_t prot, const void *caller)
293{
294 int i;
295 struct page **pages;
296 struct vm_struct *area;
297
298 pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL);
299 if (!pages)
300 return NULL;
301
302 for (i = 0; i < (size >> PAGE_SHIFT); i++)
303 pages[i] = nth_page(page, i);
304
305 area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
306
307 kfree(pages);
308
309 if (!area)
310 return NULL;
311 return area->addr;
312}
313
314/*
315 * unmaps a range previously mapped by dma_common_*_remap
316 */
317void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags)
318{
319 struct vm_struct *area = find_vm_area(cpu_addr);
320
321 if (!area || (area->flags & vm_flags) != vm_flags) {
322 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
323 return;
324 }
325
326 unmap_kernel_range((unsigned long)cpu_addr, PAGE_ALIGN(size));
327 vunmap(cpu_addr);
328}
329#endif
330
331/*
332 * Common configuration to enable DMA API use for a device
333 */
334#include <linux/pci.h>
335
336int dma_configure(struct device *dev)
337{
338 struct device *bridge = NULL, *dma_dev = dev;
339 enum dev_dma_attr attr;
340 int ret = 0;
341
342 if (dev_is_pci(dev)) {
343 bridge = pci_get_host_bridge_device(to_pci_dev(dev));
344 dma_dev = bridge;
345 if (IS_ENABLED(CONFIG_OF) && dma_dev->parent &&
346 dma_dev->parent->of_node)
347 dma_dev = dma_dev->parent;
348 }
349
350 if (dma_dev->of_node) {
351 ret = of_dma_configure(dev, dma_dev->of_node);
352 } else if (has_acpi_companion(dma_dev)) {
353 attr = acpi_get_dma_attr(to_acpi_device_node(dma_dev->fwnode));
354 if (attr != DEV_DMA_NOT_SUPPORTED)
355 ret = acpi_dma_configure(dev, attr);
356 }
357
358 if (bridge)
359 pci_put_host_bridge_device(bridge);
360
361 return ret;
362}
363
364void dma_deconfigure(struct device *dev)
365{
366 of_dma_deconfigure(dev);
367 acpi_dma_deconfigure(dev);
368}