Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v3.1
 
   1/*
   2 * Written for linux by Johan Myreen as a translation from
   3 * the assembly version by Linus (with diacriticals added)
   4 *
   5 * Some additional features added by Christoph Niemann (ChN), March 1993
   6 *
   7 * Loadable keymaps by Risto Kankkunen, May 1993
   8 *
   9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  10 * Added decr/incr_console, dynamic keymaps, Unicode support,
  11 * dynamic function/string keys, led setting,  Sept 1994
  12 * `Sticky' modifier keys, 951006.
  13 *
  14 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  15 *
  16 * Modified to provide 'generic' keyboard support by Hamish Macdonald
  17 * Merge with the m68k keyboard driver and split-off of the PC low-level
  18 * parts by Geert Uytterhoeven, May 1997
  19 *
  20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  21 * 30-07-98: Dead keys redone, aeb@cwi.nl.
  22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  23 */
  24
  25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26
  27#include <linux/consolemap.h>
  28#include <linux/module.h>
  29#include <linux/sched.h>
 
  30#include <linux/tty.h>
  31#include <linux/tty_flip.h>
  32#include <linux/mm.h>
  33#include <linux/string.h>
  34#include <linux/init.h>
  35#include <linux/slab.h>
  36#include <linux/irq.h>
  37
  38#include <linux/kbd_kern.h>
  39#include <linux/kbd_diacr.h>
  40#include <linux/vt_kern.h>
  41#include <linux/input.h>
  42#include <linux/reboot.h>
  43#include <linux/notifier.h>
  44#include <linux/jiffies.h>
 
 
 
  45
  46extern void ctrl_alt_del(void);
  47
  48/*
  49 * Exported functions/variables
  50 */
  51
  52#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
  53
  54/*
  55 * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
  56 * This seems a good reason to start with NumLock off. On HIL keyboards
  57 * of PARISC machines however there is no NumLock key and everyone expects the keypad
  58 * to be used for numbers.
  59 */
  60
  61#if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
  62#define KBD_DEFLEDS (1 << VC_NUMLOCK)
  63#else
  64#define KBD_DEFLEDS 0
 
 
 
  65#endif
  66
  67#define KBD_DEFLOCK 0
  68
  69void compute_shiftstate(void);
  70
  71/*
  72 * Handler Tables.
  73 */
  74
  75#define K_HANDLERS\
  76	k_self,		k_fn,		k_spec,		k_pad,\
  77	k_dead,		k_cons,		k_cur,		k_shift,\
  78	k_meta,		k_ascii,	k_lock,		k_lowercase,\
  79	k_slock,	k_dead2,	k_brl,		k_ignore
  80
  81typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  82			    char up_flag);
  83static k_handler_fn K_HANDLERS;
  84static k_handler_fn *k_handler[16] = { K_HANDLERS };
  85
  86#define FN_HANDLERS\
  87	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
  88	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
  89	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
  90	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
  91	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
  92
  93typedef void (fn_handler_fn)(struct vc_data *vc);
  94static fn_handler_fn FN_HANDLERS;
  95static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  96
  97/*
  98 * Variables exported for vt_ioctl.c
  99 */
 100
 101/* maximum values each key_handler can handle */
 102const int max_vals[] = {
 103	255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
 104	NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
 105	255, NR_LOCK - 1, 255, NR_BRL - 1
 106};
 107
 108const int NR_TYPES = ARRAY_SIZE(max_vals);
 109
 110struct kbd_struct kbd_table[MAX_NR_CONSOLES];
 111EXPORT_SYMBOL_GPL(kbd_table);
 112static struct kbd_struct *kbd = kbd_table;
 113
 114struct vt_spawn_console vt_spawn_con = {
 115	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
 116	.pid  = NULL,
 117	.sig  = 0,
 118};
 119
 120/*
 121 * Variables exported for vt.c
 122 */
 123
 124int shift_state = 0;
 125
 126/*
 127 * Internal Data.
 128 */
 129
 
 
 
 
 
 
 
 
 
 
 
 
 130static struct input_handler kbd_handler;
 131static DEFINE_SPINLOCK(kbd_event_lock);
 
 132static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */
 133static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
 134static bool dead_key_next;
 135static int npadch = -1;					/* -1 or number assembled on pad */
 136static unsigned int diacr;
 137static char rep;					/* flag telling character repeat */
 138
 139static unsigned char ledstate = 0xff;			/* undefined */
 140static unsigned char ledioctl;
 141
 142static struct ledptr {
 143	unsigned int *addr;
 144	unsigned int mask;
 145	unsigned char valid:1;
 146} ledptrs[3];
 147
 148/*
 149 * Notifier list for console keyboard events
 150 */
 151static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
 152
 153int register_keyboard_notifier(struct notifier_block *nb)
 154{
 155	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
 156}
 157EXPORT_SYMBOL_GPL(register_keyboard_notifier);
 158
 159int unregister_keyboard_notifier(struct notifier_block *nb)
 160{
 161	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
 162}
 163EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
 164
 165/*
 166 * Translation of scancodes to keycodes. We set them on only the first
 167 * keyboard in the list that accepts the scancode and keycode.
 168 * Explanation for not choosing the first attached keyboard anymore:
 169 *  USB keyboards for example have two event devices: one for all "normal"
 170 *  keys and one for extra function keys (like "volume up", "make coffee",
 171 *  etc.). So this means that scancodes for the extra function keys won't
 172 *  be valid for the first event device, but will be for the second.
 173 */
 174
 175struct getset_keycode_data {
 176	struct input_keymap_entry ke;
 177	int error;
 178};
 179
 180static int getkeycode_helper(struct input_handle *handle, void *data)
 181{
 182	struct getset_keycode_data *d = data;
 183
 184	d->error = input_get_keycode(handle->dev, &d->ke);
 185
 186	return d->error == 0; /* stop as soon as we successfully get one */
 187}
 188
 189int getkeycode(unsigned int scancode)
 190{
 191	struct getset_keycode_data d = {
 192		.ke	= {
 193			.flags		= 0,
 194			.len		= sizeof(scancode),
 195			.keycode	= 0,
 196		},
 197		.error	= -ENODEV,
 198	};
 199
 200	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 201
 202	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
 203
 204	return d.error ?: d.ke.keycode;
 205}
 206
 207static int setkeycode_helper(struct input_handle *handle, void *data)
 208{
 209	struct getset_keycode_data *d = data;
 210
 211	d->error = input_set_keycode(handle->dev, &d->ke);
 212
 213	return d->error == 0; /* stop as soon as we successfully set one */
 214}
 215
 216int setkeycode(unsigned int scancode, unsigned int keycode)
 217{
 218	struct getset_keycode_data d = {
 219		.ke	= {
 220			.flags		= 0,
 221			.len		= sizeof(scancode),
 222			.keycode	= keycode,
 223		},
 224		.error	= -ENODEV,
 225	};
 226
 227	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 228
 229	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
 230
 231	return d.error;
 232}
 233
 234/*
 235 * Making beeps and bells. Note that we prefer beeps to bells, but when
 236 * shutting the sound off we do both.
 237 */
 238
 239static int kd_sound_helper(struct input_handle *handle, void *data)
 240{
 241	unsigned int *hz = data;
 242	struct input_dev *dev = handle->dev;
 243
 244	if (test_bit(EV_SND, dev->evbit)) {
 245		if (test_bit(SND_TONE, dev->sndbit)) {
 246			input_inject_event(handle, EV_SND, SND_TONE, *hz);
 247			if (*hz)
 248				return 0;
 249		}
 250		if (test_bit(SND_BELL, dev->sndbit))
 251			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
 252	}
 253
 254	return 0;
 255}
 256
 257static void kd_nosound(unsigned long ignored)
 258{
 259	static unsigned int zero;
 260
 261	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
 262}
 263
 264static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
 265
 266void kd_mksound(unsigned int hz, unsigned int ticks)
 267{
 268	del_timer_sync(&kd_mksound_timer);
 269
 270	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
 271
 272	if (hz && ticks)
 273		mod_timer(&kd_mksound_timer, jiffies + ticks);
 274}
 275EXPORT_SYMBOL(kd_mksound);
 276
 277/*
 278 * Setting the keyboard rate.
 279 */
 280
 281static int kbd_rate_helper(struct input_handle *handle, void *data)
 282{
 283	struct input_dev *dev = handle->dev;
 284	struct kbd_repeat *rep = data;
 285
 286	if (test_bit(EV_REP, dev->evbit)) {
 287
 288		if (rep[0].delay > 0)
 289			input_inject_event(handle,
 290					   EV_REP, REP_DELAY, rep[0].delay);
 291		if (rep[0].period > 0)
 292			input_inject_event(handle,
 293					   EV_REP, REP_PERIOD, rep[0].period);
 294
 295		rep[1].delay = dev->rep[REP_DELAY];
 296		rep[1].period = dev->rep[REP_PERIOD];
 297	}
 298
 299	return 0;
 300}
 301
 302int kbd_rate(struct kbd_repeat *rep)
 303{
 304	struct kbd_repeat data[2] = { *rep };
 305
 306	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
 307	*rep = data[1];	/* Copy currently used settings */
 308
 309	return 0;
 310}
 311
 312/*
 313 * Helper Functions.
 314 */
 315static void put_queue(struct vc_data *vc, int ch)
 316{
 317	struct tty_struct *tty = vc->port.tty;
 318
 319	if (tty) {
 320		tty_insert_flip_char(tty, ch, 0);
 321		con_schedule_flip(tty);
 322	}
 323}
 324
 325static void puts_queue(struct vc_data *vc, char *cp)
 326{
 327	struct tty_struct *tty = vc->port.tty;
 328
 329	if (!tty)
 330		return;
 331
 332	while (*cp) {
 333		tty_insert_flip_char(tty, *cp, 0);
 334		cp++;
 335	}
 336	con_schedule_flip(tty);
 337}
 338
 339static void applkey(struct vc_data *vc, int key, char mode)
 340{
 341	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
 342
 343	buf[1] = (mode ? 'O' : '[');
 344	buf[2] = key;
 345	puts_queue(vc, buf);
 346}
 347
 348/*
 349 * Many other routines do put_queue, but I think either
 350 * they produce ASCII, or they produce some user-assigned
 351 * string, and in both cases we might assume that it is
 352 * in utf-8 already.
 353 */
 354static void to_utf8(struct vc_data *vc, uint c)
 355{
 356	if (c < 0x80)
 357		/*  0******* */
 358		put_queue(vc, c);
 359	else if (c < 0x800) {
 360		/* 110***** 10****** */
 361		put_queue(vc, 0xc0 | (c >> 6));
 362		put_queue(vc, 0x80 | (c & 0x3f));
 363	} else if (c < 0x10000) {
 364		if (c >= 0xD800 && c < 0xE000)
 365			return;
 366		if (c == 0xFFFF)
 367			return;
 368		/* 1110**** 10****** 10****** */
 369		put_queue(vc, 0xe0 | (c >> 12));
 370		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 371		put_queue(vc, 0x80 | (c & 0x3f));
 372	} else if (c < 0x110000) {
 373		/* 11110*** 10****** 10****** 10****** */
 374		put_queue(vc, 0xf0 | (c >> 18));
 375		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
 376		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 377		put_queue(vc, 0x80 | (c & 0x3f));
 378	}
 379}
 380
 381/*
 382 * Called after returning from RAW mode or when changing consoles - recompute
 383 * shift_down[] and shift_state from key_down[] maybe called when keymap is
 384 * undefined, so that shiftkey release is seen
 
 385 */
 386void compute_shiftstate(void)
 
 387{
 388	unsigned int i, j, k, sym, val;
 389
 390	shift_state = 0;
 391	memset(shift_down, 0, sizeof(shift_down));
 392
 393	for (i = 0; i < ARRAY_SIZE(key_down); i++) {
 394
 395		if (!key_down[i])
 396			continue;
 397
 398		k = i * BITS_PER_LONG;
 399
 400		for (j = 0; j < BITS_PER_LONG; j++, k++) {
 401
 402			if (!test_bit(k, key_down))
 403				continue;
 404
 405			sym = U(key_maps[0][k]);
 406			if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
 407				continue;
 408
 409			val = KVAL(sym);
 410			if (val == KVAL(K_CAPSSHIFT))
 411				val = KVAL(K_SHIFT);
 412
 413			shift_down[val]++;
 414			shift_state |= (1 << val);
 415		}
 416	}
 417}
 418
 
 
 
 
 
 
 
 
 
 419/*
 420 * We have a combining character DIACR here, followed by the character CH.
 421 * If the combination occurs in the table, return the corresponding value.
 422 * Otherwise, if CH is a space or equals DIACR, return DIACR.
 423 * Otherwise, conclude that DIACR was not combining after all,
 424 * queue it and return CH.
 425 */
 426static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
 427{
 428	unsigned int d = diacr;
 429	unsigned int i;
 430
 431	diacr = 0;
 432
 433	if ((d & ~0xff) == BRL_UC_ROW) {
 434		if ((ch & ~0xff) == BRL_UC_ROW)
 435			return d | ch;
 436	} else {
 437		for (i = 0; i < accent_table_size; i++)
 438			if (accent_table[i].diacr == d && accent_table[i].base == ch)
 439				return accent_table[i].result;
 440	}
 441
 442	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
 443		return d;
 444
 445	if (kbd->kbdmode == VC_UNICODE)
 446		to_utf8(vc, d);
 447	else {
 448		int c = conv_uni_to_8bit(d);
 449		if (c != -1)
 450			put_queue(vc, c);
 451	}
 452
 453	return ch;
 454}
 455
 456/*
 457 * Special function handlers
 458 */
 459static void fn_enter(struct vc_data *vc)
 460{
 461	if (diacr) {
 462		if (kbd->kbdmode == VC_UNICODE)
 463			to_utf8(vc, diacr);
 464		else {
 465			int c = conv_uni_to_8bit(diacr);
 466			if (c != -1)
 467				put_queue(vc, c);
 468		}
 469		diacr = 0;
 470	}
 471
 472	put_queue(vc, 13);
 473	if (vc_kbd_mode(kbd, VC_CRLF))
 474		put_queue(vc, 10);
 475}
 476
 477static void fn_caps_toggle(struct vc_data *vc)
 478{
 479	if (rep)
 480		return;
 481
 482	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
 483}
 484
 485static void fn_caps_on(struct vc_data *vc)
 486{
 487	if (rep)
 488		return;
 489
 490	set_vc_kbd_led(kbd, VC_CAPSLOCK);
 491}
 492
 493static void fn_show_ptregs(struct vc_data *vc)
 494{
 495	struct pt_regs *regs = get_irq_regs();
 496
 497	if (regs)
 498		show_regs(regs);
 499}
 500
 501static void fn_hold(struct vc_data *vc)
 502{
 503	struct tty_struct *tty = vc->port.tty;
 504
 505	if (rep || !tty)
 506		return;
 507
 508	/*
 509	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
 510	 * these routines are also activated by ^S/^Q.
 511	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
 512	 */
 513	if (tty->stopped)
 514		start_tty(tty);
 515	else
 516		stop_tty(tty);
 517}
 518
 519static void fn_num(struct vc_data *vc)
 520{
 521	if (vc_kbd_mode(kbd, VC_APPLIC))
 522		applkey(vc, 'P', 1);
 523	else
 524		fn_bare_num(vc);
 525}
 526
 527/*
 528 * Bind this to Shift-NumLock if you work in application keypad mode
 529 * but want to be able to change the NumLock flag.
 530 * Bind this to NumLock if you prefer that the NumLock key always
 531 * changes the NumLock flag.
 532 */
 533static void fn_bare_num(struct vc_data *vc)
 534{
 535	if (!rep)
 536		chg_vc_kbd_led(kbd, VC_NUMLOCK);
 537}
 538
 539static void fn_lastcons(struct vc_data *vc)
 540{
 541	/* switch to the last used console, ChN */
 542	set_console(last_console);
 543}
 544
 545static void fn_dec_console(struct vc_data *vc)
 546{
 547	int i, cur = fg_console;
 548
 549	/* Currently switching?  Queue this next switch relative to that. */
 550	if (want_console != -1)
 551		cur = want_console;
 552
 553	for (i = cur - 1; i != cur; i--) {
 554		if (i == -1)
 555			i = MAX_NR_CONSOLES - 1;
 556		if (vc_cons_allocated(i))
 557			break;
 558	}
 559	set_console(i);
 560}
 561
 562static void fn_inc_console(struct vc_data *vc)
 563{
 564	int i, cur = fg_console;
 565
 566	/* Currently switching?  Queue this next switch relative to that. */
 567	if (want_console != -1)
 568		cur = want_console;
 569
 570	for (i = cur+1; i != cur; i++) {
 571		if (i == MAX_NR_CONSOLES)
 572			i = 0;
 573		if (vc_cons_allocated(i))
 574			break;
 575	}
 576	set_console(i);
 577}
 578
 579static void fn_send_intr(struct vc_data *vc)
 580{
 581	struct tty_struct *tty = vc->port.tty;
 582
 583	if (!tty)
 584		return;
 585	tty_insert_flip_char(tty, 0, TTY_BREAK);
 586	con_schedule_flip(tty);
 587}
 588
 589static void fn_scroll_forw(struct vc_data *vc)
 590{
 591	scrollfront(vc, 0);
 592}
 593
 594static void fn_scroll_back(struct vc_data *vc)
 595{
 596	scrollback(vc, 0);
 597}
 598
 599static void fn_show_mem(struct vc_data *vc)
 600{
 601	show_mem(0);
 602}
 603
 604static void fn_show_state(struct vc_data *vc)
 605{
 606	show_state();
 607}
 608
 609static void fn_boot_it(struct vc_data *vc)
 610{
 611	ctrl_alt_del();
 612}
 613
 614static void fn_compose(struct vc_data *vc)
 615{
 616	dead_key_next = true;
 617}
 618
 619static void fn_spawn_con(struct vc_data *vc)
 620{
 621	spin_lock(&vt_spawn_con.lock);
 622	if (vt_spawn_con.pid)
 623		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
 624			put_pid(vt_spawn_con.pid);
 625			vt_spawn_con.pid = NULL;
 626		}
 627	spin_unlock(&vt_spawn_con.lock);
 628}
 629
 630static void fn_SAK(struct vc_data *vc)
 631{
 632	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
 633	schedule_work(SAK_work);
 634}
 635
 636static void fn_null(struct vc_data *vc)
 637{
 638	compute_shiftstate();
 639}
 640
 641/*
 642 * Special key handlers
 643 */
 644static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
 645{
 646}
 647
 648static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
 649{
 650	if (up_flag)
 651		return;
 652	if (value >= ARRAY_SIZE(fn_handler))
 653		return;
 654	if ((kbd->kbdmode == VC_RAW ||
 655	     kbd->kbdmode == VC_MEDIUMRAW ||
 656	     kbd->kbdmode == VC_OFF) &&
 657	     value != KVAL(K_SAK))
 658		return;		/* SAK is allowed even in raw mode */
 659	fn_handler[value](vc);
 660}
 661
 662static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
 663{
 664	pr_err("k_lowercase was called - impossible\n");
 665}
 666
 667static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
 668{
 669	if (up_flag)
 670		return;		/* no action, if this is a key release */
 671
 672	if (diacr)
 673		value = handle_diacr(vc, value);
 674
 675	if (dead_key_next) {
 676		dead_key_next = false;
 677		diacr = value;
 678		return;
 679	}
 680	if (kbd->kbdmode == VC_UNICODE)
 681		to_utf8(vc, value);
 682	else {
 683		int c = conv_uni_to_8bit(value);
 684		if (c != -1)
 685			put_queue(vc, c);
 686	}
 687}
 688
 689/*
 690 * Handle dead key. Note that we now may have several
 691 * dead keys modifying the same character. Very useful
 692 * for Vietnamese.
 693 */
 694static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
 695{
 696	if (up_flag)
 697		return;
 698
 699	diacr = (diacr ? handle_diacr(vc, value) : value);
 700}
 701
 702static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
 703{
 704	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
 705}
 706
 707static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
 708{
 709	k_deadunicode(vc, value, up_flag);
 710}
 711
 712/*
 713 * Obsolete - for backwards compatibility only
 714 */
 715static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
 716{
 717	static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
 718
 719	k_deadunicode(vc, ret_diacr[value], up_flag);
 720}
 721
 722static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
 723{
 724	if (up_flag)
 725		return;
 726
 727	set_console(value);
 728}
 729
 730static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
 731{
 732	if (up_flag)
 733		return;
 734
 735	if ((unsigned)value < ARRAY_SIZE(func_table)) {
 736		if (func_table[value])
 737			puts_queue(vc, func_table[value]);
 738	} else
 739		pr_err("k_fn called with value=%d\n", value);
 740}
 741
 742static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
 743{
 744	static const char cur_chars[] = "BDCA";
 745
 746	if (up_flag)
 747		return;
 748
 749	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
 750}
 751
 752static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
 753{
 754	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
 755	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
 756
 757	if (up_flag)
 758		return;		/* no action, if this is a key release */
 759
 760	/* kludge... shift forces cursor/number keys */
 761	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
 762		applkey(vc, app_map[value], 1);
 763		return;
 764	}
 765
 766	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
 767
 768		switch (value) {
 769		case KVAL(K_PCOMMA):
 770		case KVAL(K_PDOT):
 771			k_fn(vc, KVAL(K_REMOVE), 0);
 772			return;
 773		case KVAL(K_P0):
 774			k_fn(vc, KVAL(K_INSERT), 0);
 775			return;
 776		case KVAL(K_P1):
 777			k_fn(vc, KVAL(K_SELECT), 0);
 778			return;
 779		case KVAL(K_P2):
 780			k_cur(vc, KVAL(K_DOWN), 0);
 781			return;
 782		case KVAL(K_P3):
 783			k_fn(vc, KVAL(K_PGDN), 0);
 784			return;
 785		case KVAL(K_P4):
 786			k_cur(vc, KVAL(K_LEFT), 0);
 787			return;
 788		case KVAL(K_P6):
 789			k_cur(vc, KVAL(K_RIGHT), 0);
 790			return;
 791		case KVAL(K_P7):
 792			k_fn(vc, KVAL(K_FIND), 0);
 793			return;
 794		case KVAL(K_P8):
 795			k_cur(vc, KVAL(K_UP), 0);
 796			return;
 797		case KVAL(K_P9):
 798			k_fn(vc, KVAL(K_PGUP), 0);
 799			return;
 800		case KVAL(K_P5):
 801			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
 802			return;
 803		}
 804	}
 805
 806	put_queue(vc, pad_chars[value]);
 807	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
 808		put_queue(vc, 10);
 809}
 810
 811static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
 812{
 813	int old_state = shift_state;
 814
 815	if (rep)
 816		return;
 817	/*
 818	 * Mimic typewriter:
 819	 * a CapsShift key acts like Shift but undoes CapsLock
 820	 */
 821	if (value == KVAL(K_CAPSSHIFT)) {
 822		value = KVAL(K_SHIFT);
 823		if (!up_flag)
 824			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
 825	}
 826
 827	if (up_flag) {
 828		/*
 829		 * handle the case that two shift or control
 830		 * keys are depressed simultaneously
 831		 */
 832		if (shift_down[value])
 833			shift_down[value]--;
 834	} else
 835		shift_down[value]++;
 836
 837	if (shift_down[value])
 838		shift_state |= (1 << value);
 839	else
 840		shift_state &= ~(1 << value);
 841
 842	/* kludge */
 843	if (up_flag && shift_state != old_state && npadch != -1) {
 844		if (kbd->kbdmode == VC_UNICODE)
 845			to_utf8(vc, npadch);
 846		else
 847			put_queue(vc, npadch & 0xff);
 848		npadch = -1;
 849	}
 850}
 851
 852static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
 853{
 854	if (up_flag)
 855		return;
 856
 857	if (vc_kbd_mode(kbd, VC_META)) {
 858		put_queue(vc, '\033');
 859		put_queue(vc, value);
 860	} else
 861		put_queue(vc, value | 0x80);
 862}
 863
 864static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
 865{
 866	int base;
 867
 868	if (up_flag)
 869		return;
 870
 871	if (value < 10) {
 872		/* decimal input of code, while Alt depressed */
 873		base = 10;
 874	} else {
 875		/* hexadecimal input of code, while AltGr depressed */
 876		value -= 10;
 877		base = 16;
 878	}
 879
 880	if (npadch == -1)
 881		npadch = value;
 882	else
 883		npadch = npadch * base + value;
 884}
 885
 886static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
 887{
 888	if (up_flag || rep)
 889		return;
 890
 891	chg_vc_kbd_lock(kbd, value);
 892}
 893
 894static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
 895{
 896	k_shift(vc, value, up_flag);
 897	if (up_flag || rep)
 898		return;
 899
 900	chg_vc_kbd_slock(kbd, value);
 901	/* try to make Alt, oops, AltGr and such work */
 902	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
 903		kbd->slockstate = 0;
 904		chg_vc_kbd_slock(kbd, value);
 905	}
 906}
 907
 908/* by default, 300ms interval for combination release */
 909static unsigned brl_timeout = 300;
 910MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
 911module_param(brl_timeout, uint, 0644);
 912
 913static unsigned brl_nbchords = 1;
 914MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
 915module_param(brl_nbchords, uint, 0644);
 916
 917static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
 918{
 919	static unsigned long chords;
 920	static unsigned committed;
 921
 922	if (!brl_nbchords)
 923		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
 924	else {
 925		committed |= pattern;
 926		chords++;
 927		if (chords == brl_nbchords) {
 928			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
 929			chords = 0;
 930			committed = 0;
 931		}
 932	}
 933}
 934
 935static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
 936{
 937	static unsigned pressed, committing;
 938	static unsigned long releasestart;
 939
 940	if (kbd->kbdmode != VC_UNICODE) {
 941		if (!up_flag)
 942			pr_warning("keyboard mode must be unicode for braille patterns\n");
 943		return;
 944	}
 945
 946	if (!value) {
 947		k_unicode(vc, BRL_UC_ROW, up_flag);
 948		return;
 949	}
 950
 951	if (value > 8)
 952		return;
 953
 954	if (!up_flag) {
 955		pressed |= 1 << (value - 1);
 956		if (!brl_timeout)
 957			committing = pressed;
 958	} else if (brl_timeout) {
 959		if (!committing ||
 960		    time_after(jiffies,
 961			       releasestart + msecs_to_jiffies(brl_timeout))) {
 962			committing = pressed;
 963			releasestart = jiffies;
 964		}
 965		pressed &= ~(1 << (value - 1));
 966		if (!pressed && committing) {
 967			k_brlcommit(vc, committing, 0);
 968			committing = 0;
 969		}
 970	} else {
 971		if (committing) {
 972			k_brlcommit(vc, committing, 0);
 973			committing = 0;
 974		}
 975		pressed &= ~(1 << (value - 1));
 976	}
 977}
 978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 979/*
 980 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
 981 * or (ii) whatever pattern of lights people want to show using KDSETLED,
 982 * or (iii) specified bits of specified words in kernel memory.
 983 */
 984unsigned char getledstate(void)
 985{
 986	return ledstate;
 987}
 988
 989void setledstate(struct kbd_struct *kbd, unsigned int led)
 990{
 
 
 991	if (!(led & ~7)) {
 992		ledioctl = led;
 993		kbd->ledmode = LED_SHOW_IOCTL;
 994	} else
 995		kbd->ledmode = LED_SHOW_FLAGS;
 996
 997	set_leds();
 
 998}
 999
1000static inline unsigned char getleds(void)
1001{
1002	struct kbd_struct *kbd = kbd_table + fg_console;
1003	unsigned char leds;
1004	int i;
1005
1006	if (kbd->ledmode == LED_SHOW_IOCTL)
1007		return ledioctl;
1008
1009	leds = kbd->ledflagstate;
 
1010
1011	if (kbd->ledmode == LED_SHOW_MEM) {
1012		for (i = 0; i < 3; i++)
1013			if (ledptrs[i].valid) {
1014				if (*ledptrs[i].addr & ledptrs[i].mask)
1015					leds |= (1 << i);
1016				else
1017					leds &= ~(1 << i);
1018			}
1019	}
1020	return leds;
 
 
 
 
 
 
 
 
1021}
 
1022
1023static int kbd_update_leds_helper(struct input_handle *handle, void *data)
 
 
 
 
 
 
 
 
1024{
1025	unsigned char leds = *(unsigned char *)data;
 
 
1026
1027	if (test_bit(EV_LED, handle->dev->evbit)) {
1028		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1029		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1030		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1031		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1032	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033
1034	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035}
1036
1037/*
1038 * This is the tasklet that updates LED state on all keyboards
1039 * attached to the box. The reason we use tasklet is that we
1040 * need to handle the scenario when keyboard handler is not
1041 * registered yet but we already getting updates form VT to
1042 * update led state.
1043 */
1044static void kbd_bh(unsigned long dummy)
1045{
1046	unsigned char leds = getleds();
 
 
 
 
 
 
1047
1048	if (leds != ledstate) {
1049		input_handler_for_each_handle(&kbd_handler, &leds,
1050					      kbd_update_leds_helper);
1051		ledstate = leds;
1052	}
1053}
1054
1055DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1056
1057#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1058    defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1059    defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1060    (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1061    defined(CONFIG_AVR32)
1062
1063#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1064			((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1065
1066static const unsigned short x86_keycodes[256] =
1067	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1068	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1069	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1070	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1071	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1072	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1073	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1074	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1075	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1076	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1077	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1078	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1079	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1080	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1081	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1082
1083#ifdef CONFIG_SPARC
1084static int sparc_l1_a_state;
1085extern void sun_do_break(void);
1086#endif
1087
1088static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1089		       unsigned char up_flag)
1090{
1091	int code;
1092
1093	switch (keycode) {
1094
1095	case KEY_PAUSE:
1096		put_queue(vc, 0xe1);
1097		put_queue(vc, 0x1d | up_flag);
1098		put_queue(vc, 0x45 | up_flag);
1099		break;
1100
1101	case KEY_HANGEUL:
1102		if (!up_flag)
1103			put_queue(vc, 0xf2);
1104		break;
1105
1106	case KEY_HANJA:
1107		if (!up_flag)
1108			put_queue(vc, 0xf1);
1109		break;
1110
1111	case KEY_SYSRQ:
1112		/*
1113		 * Real AT keyboards (that's what we're trying
1114		 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1115		 * pressing PrtSc/SysRq alone, but simply 0x54
1116		 * when pressing Alt+PrtSc/SysRq.
1117		 */
1118		if (test_bit(KEY_LEFTALT, key_down) ||
1119		    test_bit(KEY_RIGHTALT, key_down)) {
1120			put_queue(vc, 0x54 | up_flag);
1121		} else {
1122			put_queue(vc, 0xe0);
1123			put_queue(vc, 0x2a | up_flag);
1124			put_queue(vc, 0xe0);
1125			put_queue(vc, 0x37 | up_flag);
1126		}
1127		break;
1128
1129	default:
1130		if (keycode > 255)
1131			return -1;
1132
1133		code = x86_keycodes[keycode];
1134		if (!code)
1135			return -1;
1136
1137		if (code & 0x100)
1138			put_queue(vc, 0xe0);
1139		put_queue(vc, (code & 0x7f) | up_flag);
1140
1141		break;
1142	}
1143
1144	return 0;
1145}
1146
1147#else
1148
1149#define HW_RAW(dev)	0
1150
1151static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1152{
1153	if (keycode > 127)
1154		return -1;
1155
1156	put_queue(vc, keycode | up_flag);
1157	return 0;
1158}
1159#endif
1160
1161static void kbd_rawcode(unsigned char data)
1162{
1163	struct vc_data *vc = vc_cons[fg_console].d;
1164
1165	kbd = kbd_table + vc->vc_num;
1166	if (kbd->kbdmode == VC_RAW)
1167		put_queue(vc, data);
1168}
1169
1170static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1171{
1172	struct vc_data *vc = vc_cons[fg_console].d;
1173	unsigned short keysym, *key_map;
1174	unsigned char type;
1175	bool raw_mode;
1176	struct tty_struct *tty;
1177	int shift_final;
1178	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1179	int rc;
1180
1181	tty = vc->port.tty;
1182
1183	if (tty && (!tty->driver_data)) {
1184		/* No driver data? Strange. Okay we fix it then. */
1185		tty->driver_data = vc;
1186	}
1187
1188	kbd = kbd_table + vc->vc_num;
1189
1190#ifdef CONFIG_SPARC
1191	if (keycode == KEY_STOP)
1192		sparc_l1_a_state = down;
1193#endif
1194
1195	rep = (down == 2);
1196
1197	raw_mode = (kbd->kbdmode == VC_RAW);
1198	if (raw_mode && !hw_raw)
1199		if (emulate_raw(vc, keycode, !down << 7))
1200			if (keycode < BTN_MISC && printk_ratelimit())
1201				pr_warning("can't emulate rawmode for keycode %d\n",
1202					   keycode);
1203
1204#ifdef CONFIG_SPARC
1205	if (keycode == KEY_A && sparc_l1_a_state) {
1206		sparc_l1_a_state = false;
1207		sun_do_break();
1208	}
1209#endif
1210
1211	if (kbd->kbdmode == VC_MEDIUMRAW) {
1212		/*
1213		 * This is extended medium raw mode, with keys above 127
1214		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1215		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1216		 * interfere with anything else. The two bytes after 0 will
1217		 * always have the up flag set not to interfere with older
1218		 * applications. This allows for 16384 different keycodes,
1219		 * which should be enough.
1220		 */
1221		if (keycode < 128) {
1222			put_queue(vc, keycode | (!down << 7));
1223		} else {
1224			put_queue(vc, !down << 7);
1225			put_queue(vc, (keycode >> 7) | 0x80);
1226			put_queue(vc, keycode | 0x80);
1227		}
1228		raw_mode = true;
1229	}
1230
1231	if (down)
1232		set_bit(keycode, key_down);
1233	else
1234		clear_bit(keycode, key_down);
1235
1236	if (rep &&
1237	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1238	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1239		/*
1240		 * Don't repeat a key if the input buffers are not empty and the
1241		 * characters get aren't echoed locally. This makes key repeat
1242		 * usable with slow applications and under heavy loads.
1243		 */
1244		return;
1245	}
1246
1247	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1248	param.ledstate = kbd->ledflagstate;
1249	key_map = key_maps[shift_final];
1250
1251	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1252					KBD_KEYCODE, &param);
1253	if (rc == NOTIFY_STOP || !key_map) {
1254		atomic_notifier_call_chain(&keyboard_notifier_list,
1255					   KBD_UNBOUND_KEYCODE, &param);
1256		compute_shiftstate();
1257		kbd->slockstate = 0;
1258		return;
1259	}
1260
1261	if (keycode < NR_KEYS)
1262		keysym = key_map[keycode];
1263	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1264		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1265	else
1266		return;
1267
1268	type = KTYP(keysym);
1269
1270	if (type < 0xf0) {
1271		param.value = keysym;
1272		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1273						KBD_UNICODE, &param);
1274		if (rc != NOTIFY_STOP)
1275			if (down && !raw_mode)
1276				to_utf8(vc, keysym);
1277		return;
1278	}
1279
1280	type -= 0xf0;
1281
1282	if (type == KT_LETTER) {
1283		type = KT_LATIN;
1284		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1285			key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1286			if (key_map)
1287				keysym = key_map[keycode];
1288		}
1289	}
1290
1291	param.value = keysym;
1292	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1293					KBD_KEYSYM, &param);
1294	if (rc == NOTIFY_STOP)
1295		return;
1296
1297	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1298		return;
1299
1300	(*k_handler[type])(vc, keysym & 0xff, !down);
1301
1302	param.ledstate = kbd->ledflagstate;
1303	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1304
1305	if (type != KT_SLOCK)
1306		kbd->slockstate = 0;
1307}
1308
1309static void kbd_event(struct input_handle *handle, unsigned int event_type,
1310		      unsigned int event_code, int value)
1311{
1312	/* We are called with interrupts disabled, just take the lock */
1313	spin_lock(&kbd_event_lock);
1314
1315	if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1316		kbd_rawcode(value);
1317	if (event_type == EV_KEY)
1318		kbd_keycode(event_code, value, HW_RAW(handle->dev));
1319
1320	spin_unlock(&kbd_event_lock);
1321
1322	tasklet_schedule(&keyboard_tasklet);
1323	do_poke_blanked_console = 1;
1324	schedule_console_callback();
1325}
1326
1327static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1328{
1329	int i;
1330
1331	if (test_bit(EV_SND, dev->evbit))
1332		return true;
1333
1334	if (test_bit(EV_KEY, dev->evbit)) {
1335		for (i = KEY_RESERVED; i < BTN_MISC; i++)
1336			if (test_bit(i, dev->keybit))
1337				return true;
1338		for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1339			if (test_bit(i, dev->keybit))
1340				return true;
1341	}
1342
1343	return false;
1344}
1345
1346/*
1347 * When a keyboard (or other input device) is found, the kbd_connect
1348 * function is called. The function then looks at the device, and if it
1349 * likes it, it can open it and get events from it. In this (kbd_connect)
1350 * function, we should decide which VT to bind that keyboard to initially.
1351 */
1352static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1353			const struct input_device_id *id)
1354{
1355	struct input_handle *handle;
1356	int error;
1357
1358	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1359	if (!handle)
1360		return -ENOMEM;
1361
1362	handle->dev = dev;
1363	handle->handler = handler;
1364	handle->name = "kbd";
1365
1366	error = input_register_handle(handle);
1367	if (error)
1368		goto err_free_handle;
1369
1370	error = input_open_device(handle);
1371	if (error)
1372		goto err_unregister_handle;
1373
1374	return 0;
1375
1376 err_unregister_handle:
1377	input_unregister_handle(handle);
1378 err_free_handle:
1379	kfree(handle);
1380	return error;
1381}
1382
1383static void kbd_disconnect(struct input_handle *handle)
1384{
1385	input_close_device(handle);
1386	input_unregister_handle(handle);
1387	kfree(handle);
1388}
1389
1390/*
1391 * Start keyboard handler on the new keyboard by refreshing LED state to
1392 * match the rest of the system.
1393 */
1394static void kbd_start(struct input_handle *handle)
1395{
1396	tasklet_disable(&keyboard_tasklet);
1397
1398	if (ledstate != 0xff)
1399		kbd_update_leds_helper(handle, &ledstate);
1400
1401	tasklet_enable(&keyboard_tasklet);
1402}
1403
1404static const struct input_device_id kbd_ids[] = {
1405	{
1406                .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1407                .evbit = { BIT_MASK(EV_KEY) },
1408        },
1409
1410	{
1411                .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1412                .evbit = { BIT_MASK(EV_SND) },
1413        },
1414
1415	{ },    /* Terminating entry */
1416};
1417
1418MODULE_DEVICE_TABLE(input, kbd_ids);
1419
1420static struct input_handler kbd_handler = {
1421	.event		= kbd_event,
1422	.match		= kbd_match,
1423	.connect	= kbd_connect,
1424	.disconnect	= kbd_disconnect,
1425	.start		= kbd_start,
1426	.name		= "kbd",
1427	.id_table	= kbd_ids,
1428};
1429
1430int __init kbd_init(void)
1431{
1432	int i;
1433	int error;
1434
1435        for (i = 0; i < MAX_NR_CONSOLES; i++) {
1436		kbd_table[i].ledflagstate = KBD_DEFLEDS;
1437		kbd_table[i].default_ledflagstate = KBD_DEFLEDS;
1438		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1439		kbd_table[i].lockstate = KBD_DEFLOCK;
1440		kbd_table[i].slockstate = 0;
1441		kbd_table[i].modeflags = KBD_DEFMODE;
1442		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1443	}
1444
 
 
1445	error = input_register_handler(&kbd_handler);
1446	if (error)
1447		return error;
1448
1449	tasklet_enable(&keyboard_tasklet);
1450	tasklet_schedule(&keyboard_tasklet);
1451
1452	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Written for linux by Johan Myreen as a translation from
   4 * the assembly version by Linus (with diacriticals added)
   5 *
   6 * Some additional features added by Christoph Niemann (ChN), March 1993
   7 *
   8 * Loadable keymaps by Risto Kankkunen, May 1993
   9 *
  10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  11 * Added decr/incr_console, dynamic keymaps, Unicode support,
  12 * dynamic function/string keys, led setting,  Sept 1994
  13 * `Sticky' modifier keys, 951006.
  14 *
  15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  16 *
  17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
  18 * Merge with the m68k keyboard driver and split-off of the PC low-level
  19 * parts by Geert Uytterhoeven, May 1997
  20 *
  21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
  23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/consolemap.h>
  29#include <linux/module.h>
  30#include <linux/sched/signal.h>
  31#include <linux/sched/debug.h>
  32#include <linux/tty.h>
  33#include <linux/tty_flip.h>
  34#include <linux/mm.h>
  35#include <linux/string.h>
  36#include <linux/init.h>
  37#include <linux/slab.h>
  38#include <linux/leds.h>
  39
  40#include <linux/kbd_kern.h>
  41#include <linux/kbd_diacr.h>
  42#include <linux/vt_kern.h>
  43#include <linux/input.h>
  44#include <linux/reboot.h>
  45#include <linux/notifier.h>
  46#include <linux/jiffies.h>
  47#include <linux/uaccess.h>
  48
  49#include <asm/irq_regs.h>
  50
  51extern void ctrl_alt_del(void);
  52
  53/*
  54 * Exported functions/variables
  55 */
  56
  57#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
  58
  59#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
  60#include <asm/kbdleds.h>
 
 
 
 
 
 
 
  61#else
  62static inline int kbd_defleds(void)
  63{
  64	return 0;
  65}
  66#endif
  67
  68#define KBD_DEFLOCK 0
  69
 
 
  70/*
  71 * Handler Tables.
  72 */
  73
  74#define K_HANDLERS\
  75	k_self,		k_fn,		k_spec,		k_pad,\
  76	k_dead,		k_cons,		k_cur,		k_shift,\
  77	k_meta,		k_ascii,	k_lock,		k_lowercase,\
  78	k_slock,	k_dead2,	k_brl,		k_ignore
  79
  80typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  81			    char up_flag);
  82static k_handler_fn K_HANDLERS;
  83static k_handler_fn *k_handler[16] = { K_HANDLERS };
  84
  85#define FN_HANDLERS\
  86	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
  87	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
  88	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
  89	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
  90	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
  91
  92typedef void (fn_handler_fn)(struct vc_data *vc);
  93static fn_handler_fn FN_HANDLERS;
  94static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  95
  96/*
  97 * Variables exported for vt_ioctl.c
  98 */
  99
 
 
 
 
 
 
 
 
 
 
 
 
 
 100struct vt_spawn_console vt_spawn_con = {
 101	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
 102	.pid  = NULL,
 103	.sig  = 0,
 104};
 105
 
 
 
 
 
 106
 107/*
 108 * Internal Data.
 109 */
 110
 111static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
 112static struct kbd_struct *kbd = kbd_table;
 113
 114/* maximum values each key_handler can handle */
 115static const int max_vals[] = {
 116	255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
 117	NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
 118	255, NR_LOCK - 1, 255, NR_BRL - 1
 119};
 120
 121static const int NR_TYPES = ARRAY_SIZE(max_vals);
 122
 123static struct input_handler kbd_handler;
 124static DEFINE_SPINLOCK(kbd_event_lock);
 125static DEFINE_SPINLOCK(led_lock);
 126static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */
 127static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
 128static bool dead_key_next;
 129static int npadch = -1;					/* -1 or number assembled on pad */
 130static unsigned int diacr;
 131static char rep;					/* flag telling character repeat */
 132
 133static int shift_state = 0;
 
 134
 135static unsigned int ledstate = -1U;			/* undefined */
 136static unsigned char ledioctl;
 
 
 
 137
 138/*
 139 * Notifier list for console keyboard events
 140 */
 141static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
 142
 143int register_keyboard_notifier(struct notifier_block *nb)
 144{
 145	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
 146}
 147EXPORT_SYMBOL_GPL(register_keyboard_notifier);
 148
 149int unregister_keyboard_notifier(struct notifier_block *nb)
 150{
 151	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
 152}
 153EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
 154
 155/*
 156 * Translation of scancodes to keycodes. We set them on only the first
 157 * keyboard in the list that accepts the scancode and keycode.
 158 * Explanation for not choosing the first attached keyboard anymore:
 159 *  USB keyboards for example have two event devices: one for all "normal"
 160 *  keys and one for extra function keys (like "volume up", "make coffee",
 161 *  etc.). So this means that scancodes for the extra function keys won't
 162 *  be valid for the first event device, but will be for the second.
 163 */
 164
 165struct getset_keycode_data {
 166	struct input_keymap_entry ke;
 167	int error;
 168};
 169
 170static int getkeycode_helper(struct input_handle *handle, void *data)
 171{
 172	struct getset_keycode_data *d = data;
 173
 174	d->error = input_get_keycode(handle->dev, &d->ke);
 175
 176	return d->error == 0; /* stop as soon as we successfully get one */
 177}
 178
 179static int getkeycode(unsigned int scancode)
 180{
 181	struct getset_keycode_data d = {
 182		.ke	= {
 183			.flags		= 0,
 184			.len		= sizeof(scancode),
 185			.keycode	= 0,
 186		},
 187		.error	= -ENODEV,
 188	};
 189
 190	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 191
 192	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
 193
 194	return d.error ?: d.ke.keycode;
 195}
 196
 197static int setkeycode_helper(struct input_handle *handle, void *data)
 198{
 199	struct getset_keycode_data *d = data;
 200
 201	d->error = input_set_keycode(handle->dev, &d->ke);
 202
 203	return d->error == 0; /* stop as soon as we successfully set one */
 204}
 205
 206static int setkeycode(unsigned int scancode, unsigned int keycode)
 207{
 208	struct getset_keycode_data d = {
 209		.ke	= {
 210			.flags		= 0,
 211			.len		= sizeof(scancode),
 212			.keycode	= keycode,
 213		},
 214		.error	= -ENODEV,
 215	};
 216
 217	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 218
 219	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
 220
 221	return d.error;
 222}
 223
 224/*
 225 * Making beeps and bells. Note that we prefer beeps to bells, but when
 226 * shutting the sound off we do both.
 227 */
 228
 229static int kd_sound_helper(struct input_handle *handle, void *data)
 230{
 231	unsigned int *hz = data;
 232	struct input_dev *dev = handle->dev;
 233
 234	if (test_bit(EV_SND, dev->evbit)) {
 235		if (test_bit(SND_TONE, dev->sndbit)) {
 236			input_inject_event(handle, EV_SND, SND_TONE, *hz);
 237			if (*hz)
 238				return 0;
 239		}
 240		if (test_bit(SND_BELL, dev->sndbit))
 241			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
 242	}
 243
 244	return 0;
 245}
 246
 247static void kd_nosound(struct timer_list *unused)
 248{
 249	static unsigned int zero;
 250
 251	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
 252}
 253
 254static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
 255
 256void kd_mksound(unsigned int hz, unsigned int ticks)
 257{
 258	del_timer_sync(&kd_mksound_timer);
 259
 260	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
 261
 262	if (hz && ticks)
 263		mod_timer(&kd_mksound_timer, jiffies + ticks);
 264}
 265EXPORT_SYMBOL(kd_mksound);
 266
 267/*
 268 * Setting the keyboard rate.
 269 */
 270
 271static int kbd_rate_helper(struct input_handle *handle, void *data)
 272{
 273	struct input_dev *dev = handle->dev;
 274	struct kbd_repeat *rpt = data;
 275
 276	if (test_bit(EV_REP, dev->evbit)) {
 277
 278		if (rpt[0].delay > 0)
 279			input_inject_event(handle,
 280					   EV_REP, REP_DELAY, rpt[0].delay);
 281		if (rpt[0].period > 0)
 282			input_inject_event(handle,
 283					   EV_REP, REP_PERIOD, rpt[0].period);
 284
 285		rpt[1].delay = dev->rep[REP_DELAY];
 286		rpt[1].period = dev->rep[REP_PERIOD];
 287	}
 288
 289	return 0;
 290}
 291
 292int kbd_rate(struct kbd_repeat *rpt)
 293{
 294	struct kbd_repeat data[2] = { *rpt };
 295
 296	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
 297	*rpt = data[1];	/* Copy currently used settings */
 298
 299	return 0;
 300}
 301
 302/*
 303 * Helper Functions.
 304 */
 305static void put_queue(struct vc_data *vc, int ch)
 306{
 307	tty_insert_flip_char(&vc->port, ch, 0);
 308	tty_schedule_flip(&vc->port);
 
 
 
 
 309}
 310
 311static void puts_queue(struct vc_data *vc, char *cp)
 312{
 
 
 
 
 
 313	while (*cp) {
 314		tty_insert_flip_char(&vc->port, *cp, 0);
 315		cp++;
 316	}
 317	tty_schedule_flip(&vc->port);
 318}
 319
 320static void applkey(struct vc_data *vc, int key, char mode)
 321{
 322	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
 323
 324	buf[1] = (mode ? 'O' : '[');
 325	buf[2] = key;
 326	puts_queue(vc, buf);
 327}
 328
 329/*
 330 * Many other routines do put_queue, but I think either
 331 * they produce ASCII, or they produce some user-assigned
 332 * string, and in both cases we might assume that it is
 333 * in utf-8 already.
 334 */
 335static void to_utf8(struct vc_data *vc, uint c)
 336{
 337	if (c < 0x80)
 338		/*  0******* */
 339		put_queue(vc, c);
 340	else if (c < 0x800) {
 341		/* 110***** 10****** */
 342		put_queue(vc, 0xc0 | (c >> 6));
 343		put_queue(vc, 0x80 | (c & 0x3f));
 344	} else if (c < 0x10000) {
 345		if (c >= 0xD800 && c < 0xE000)
 346			return;
 347		if (c == 0xFFFF)
 348			return;
 349		/* 1110**** 10****** 10****** */
 350		put_queue(vc, 0xe0 | (c >> 12));
 351		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 352		put_queue(vc, 0x80 | (c & 0x3f));
 353	} else if (c < 0x110000) {
 354		/* 11110*** 10****** 10****** 10****** */
 355		put_queue(vc, 0xf0 | (c >> 18));
 356		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
 357		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 358		put_queue(vc, 0x80 | (c & 0x3f));
 359	}
 360}
 361
 362/*
 363 * Called after returning from RAW mode or when changing consoles - recompute
 364 * shift_down[] and shift_state from key_down[] maybe called when keymap is
 365 * undefined, so that shiftkey release is seen. The caller must hold the
 366 * kbd_event_lock.
 367 */
 368
 369static void do_compute_shiftstate(void)
 370{
 371	unsigned int k, sym, val;
 372
 373	shift_state = 0;
 374	memset(shift_down, 0, sizeof(shift_down));
 375
 376	for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
 377		sym = U(key_maps[0][k]);
 378		if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
 379			continue;
 380
 381		val = KVAL(sym);
 382		if (val == KVAL(K_CAPSSHIFT))
 383			val = KVAL(K_SHIFT);
 
 
 
 
 
 
 
 384
 385		shift_down[val]++;
 386		shift_state |= BIT(val);
 
 
 
 
 
 387	}
 388}
 389
 390/* We still have to export this method to vt.c */
 391void compute_shiftstate(void)
 392{
 393	unsigned long flags;
 394	spin_lock_irqsave(&kbd_event_lock, flags);
 395	do_compute_shiftstate();
 396	spin_unlock_irqrestore(&kbd_event_lock, flags);
 397}
 398
 399/*
 400 * We have a combining character DIACR here, followed by the character CH.
 401 * If the combination occurs in the table, return the corresponding value.
 402 * Otherwise, if CH is a space or equals DIACR, return DIACR.
 403 * Otherwise, conclude that DIACR was not combining after all,
 404 * queue it and return CH.
 405 */
 406static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
 407{
 408	unsigned int d = diacr;
 409	unsigned int i;
 410
 411	diacr = 0;
 412
 413	if ((d & ~0xff) == BRL_UC_ROW) {
 414		if ((ch & ~0xff) == BRL_UC_ROW)
 415			return d | ch;
 416	} else {
 417		for (i = 0; i < accent_table_size; i++)
 418			if (accent_table[i].diacr == d && accent_table[i].base == ch)
 419				return accent_table[i].result;
 420	}
 421
 422	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
 423		return d;
 424
 425	if (kbd->kbdmode == VC_UNICODE)
 426		to_utf8(vc, d);
 427	else {
 428		int c = conv_uni_to_8bit(d);
 429		if (c != -1)
 430			put_queue(vc, c);
 431	}
 432
 433	return ch;
 434}
 435
 436/*
 437 * Special function handlers
 438 */
 439static void fn_enter(struct vc_data *vc)
 440{
 441	if (diacr) {
 442		if (kbd->kbdmode == VC_UNICODE)
 443			to_utf8(vc, diacr);
 444		else {
 445			int c = conv_uni_to_8bit(diacr);
 446			if (c != -1)
 447				put_queue(vc, c);
 448		}
 449		diacr = 0;
 450	}
 451
 452	put_queue(vc, 13);
 453	if (vc_kbd_mode(kbd, VC_CRLF))
 454		put_queue(vc, 10);
 455}
 456
 457static void fn_caps_toggle(struct vc_data *vc)
 458{
 459	if (rep)
 460		return;
 461
 462	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
 463}
 464
 465static void fn_caps_on(struct vc_data *vc)
 466{
 467	if (rep)
 468		return;
 469
 470	set_vc_kbd_led(kbd, VC_CAPSLOCK);
 471}
 472
 473static void fn_show_ptregs(struct vc_data *vc)
 474{
 475	struct pt_regs *regs = get_irq_regs();
 476
 477	if (regs)
 478		show_regs(regs);
 479}
 480
 481static void fn_hold(struct vc_data *vc)
 482{
 483	struct tty_struct *tty = vc->port.tty;
 484
 485	if (rep || !tty)
 486		return;
 487
 488	/*
 489	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
 490	 * these routines are also activated by ^S/^Q.
 491	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
 492	 */
 493	if (tty->stopped)
 494		start_tty(tty);
 495	else
 496		stop_tty(tty);
 497}
 498
 499static void fn_num(struct vc_data *vc)
 500{
 501	if (vc_kbd_mode(kbd, VC_APPLIC))
 502		applkey(vc, 'P', 1);
 503	else
 504		fn_bare_num(vc);
 505}
 506
 507/*
 508 * Bind this to Shift-NumLock if you work in application keypad mode
 509 * but want to be able to change the NumLock flag.
 510 * Bind this to NumLock if you prefer that the NumLock key always
 511 * changes the NumLock flag.
 512 */
 513static void fn_bare_num(struct vc_data *vc)
 514{
 515	if (!rep)
 516		chg_vc_kbd_led(kbd, VC_NUMLOCK);
 517}
 518
 519static void fn_lastcons(struct vc_data *vc)
 520{
 521	/* switch to the last used console, ChN */
 522	set_console(last_console);
 523}
 524
 525static void fn_dec_console(struct vc_data *vc)
 526{
 527	int i, cur = fg_console;
 528
 529	/* Currently switching?  Queue this next switch relative to that. */
 530	if (want_console != -1)
 531		cur = want_console;
 532
 533	for (i = cur - 1; i != cur; i--) {
 534		if (i == -1)
 535			i = MAX_NR_CONSOLES - 1;
 536		if (vc_cons_allocated(i))
 537			break;
 538	}
 539	set_console(i);
 540}
 541
 542static void fn_inc_console(struct vc_data *vc)
 543{
 544	int i, cur = fg_console;
 545
 546	/* Currently switching?  Queue this next switch relative to that. */
 547	if (want_console != -1)
 548		cur = want_console;
 549
 550	for (i = cur+1; i != cur; i++) {
 551		if (i == MAX_NR_CONSOLES)
 552			i = 0;
 553		if (vc_cons_allocated(i))
 554			break;
 555	}
 556	set_console(i);
 557}
 558
 559static void fn_send_intr(struct vc_data *vc)
 560{
 561	tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
 562	tty_schedule_flip(&vc->port);
 
 
 
 
 563}
 564
 565static void fn_scroll_forw(struct vc_data *vc)
 566{
 567	scrollfront(vc, 0);
 568}
 569
 570static void fn_scroll_back(struct vc_data *vc)
 571{
 572	scrollback(vc);
 573}
 574
 575static void fn_show_mem(struct vc_data *vc)
 576{
 577	show_mem(0, NULL);
 578}
 579
 580static void fn_show_state(struct vc_data *vc)
 581{
 582	show_state();
 583}
 584
 585static void fn_boot_it(struct vc_data *vc)
 586{
 587	ctrl_alt_del();
 588}
 589
 590static void fn_compose(struct vc_data *vc)
 591{
 592	dead_key_next = true;
 593}
 594
 595static void fn_spawn_con(struct vc_data *vc)
 596{
 597	spin_lock(&vt_spawn_con.lock);
 598	if (vt_spawn_con.pid)
 599		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
 600			put_pid(vt_spawn_con.pid);
 601			vt_spawn_con.pid = NULL;
 602		}
 603	spin_unlock(&vt_spawn_con.lock);
 604}
 605
 606static void fn_SAK(struct vc_data *vc)
 607{
 608	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
 609	schedule_work(SAK_work);
 610}
 611
 612static void fn_null(struct vc_data *vc)
 613{
 614	do_compute_shiftstate();
 615}
 616
 617/*
 618 * Special key handlers
 619 */
 620static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
 621{
 622}
 623
 624static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
 625{
 626	if (up_flag)
 627		return;
 628	if (value >= ARRAY_SIZE(fn_handler))
 629		return;
 630	if ((kbd->kbdmode == VC_RAW ||
 631	     kbd->kbdmode == VC_MEDIUMRAW ||
 632	     kbd->kbdmode == VC_OFF) &&
 633	     value != KVAL(K_SAK))
 634		return;		/* SAK is allowed even in raw mode */
 635	fn_handler[value](vc);
 636}
 637
 638static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
 639{
 640	pr_err("k_lowercase was called - impossible\n");
 641}
 642
 643static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
 644{
 645	if (up_flag)
 646		return;		/* no action, if this is a key release */
 647
 648	if (diacr)
 649		value = handle_diacr(vc, value);
 650
 651	if (dead_key_next) {
 652		dead_key_next = false;
 653		diacr = value;
 654		return;
 655	}
 656	if (kbd->kbdmode == VC_UNICODE)
 657		to_utf8(vc, value);
 658	else {
 659		int c = conv_uni_to_8bit(value);
 660		if (c != -1)
 661			put_queue(vc, c);
 662	}
 663}
 664
 665/*
 666 * Handle dead key. Note that we now may have several
 667 * dead keys modifying the same character. Very useful
 668 * for Vietnamese.
 669 */
 670static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
 671{
 672	if (up_flag)
 673		return;
 674
 675	diacr = (diacr ? handle_diacr(vc, value) : value);
 676}
 677
 678static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
 679{
 680	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
 681}
 682
 683static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
 684{
 685	k_deadunicode(vc, value, up_flag);
 686}
 687
 688/*
 689 * Obsolete - for backwards compatibility only
 690 */
 691static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
 692{
 693	static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
 694
 695	k_deadunicode(vc, ret_diacr[value], up_flag);
 696}
 697
 698static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
 699{
 700	if (up_flag)
 701		return;
 702
 703	set_console(value);
 704}
 705
 706static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
 707{
 708	if (up_flag)
 709		return;
 710
 711	if ((unsigned)value < ARRAY_SIZE(func_table)) {
 712		if (func_table[value])
 713			puts_queue(vc, func_table[value]);
 714	} else
 715		pr_err("k_fn called with value=%d\n", value);
 716}
 717
 718static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
 719{
 720	static const char cur_chars[] = "BDCA";
 721
 722	if (up_flag)
 723		return;
 724
 725	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
 726}
 727
 728static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
 729{
 730	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
 731	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
 732
 733	if (up_flag)
 734		return;		/* no action, if this is a key release */
 735
 736	/* kludge... shift forces cursor/number keys */
 737	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
 738		applkey(vc, app_map[value], 1);
 739		return;
 740	}
 741
 742	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
 743
 744		switch (value) {
 745		case KVAL(K_PCOMMA):
 746		case KVAL(K_PDOT):
 747			k_fn(vc, KVAL(K_REMOVE), 0);
 748			return;
 749		case KVAL(K_P0):
 750			k_fn(vc, KVAL(K_INSERT), 0);
 751			return;
 752		case KVAL(K_P1):
 753			k_fn(vc, KVAL(K_SELECT), 0);
 754			return;
 755		case KVAL(K_P2):
 756			k_cur(vc, KVAL(K_DOWN), 0);
 757			return;
 758		case KVAL(K_P3):
 759			k_fn(vc, KVAL(K_PGDN), 0);
 760			return;
 761		case KVAL(K_P4):
 762			k_cur(vc, KVAL(K_LEFT), 0);
 763			return;
 764		case KVAL(K_P6):
 765			k_cur(vc, KVAL(K_RIGHT), 0);
 766			return;
 767		case KVAL(K_P7):
 768			k_fn(vc, KVAL(K_FIND), 0);
 769			return;
 770		case KVAL(K_P8):
 771			k_cur(vc, KVAL(K_UP), 0);
 772			return;
 773		case KVAL(K_P9):
 774			k_fn(vc, KVAL(K_PGUP), 0);
 775			return;
 776		case KVAL(K_P5):
 777			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
 778			return;
 779		}
 780	}
 781
 782	put_queue(vc, pad_chars[value]);
 783	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
 784		put_queue(vc, 10);
 785}
 786
 787static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
 788{
 789	int old_state = shift_state;
 790
 791	if (rep)
 792		return;
 793	/*
 794	 * Mimic typewriter:
 795	 * a CapsShift key acts like Shift but undoes CapsLock
 796	 */
 797	if (value == KVAL(K_CAPSSHIFT)) {
 798		value = KVAL(K_SHIFT);
 799		if (!up_flag)
 800			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
 801	}
 802
 803	if (up_flag) {
 804		/*
 805		 * handle the case that two shift or control
 806		 * keys are depressed simultaneously
 807		 */
 808		if (shift_down[value])
 809			shift_down[value]--;
 810	} else
 811		shift_down[value]++;
 812
 813	if (shift_down[value])
 814		shift_state |= (1 << value);
 815	else
 816		shift_state &= ~(1 << value);
 817
 818	/* kludge */
 819	if (up_flag && shift_state != old_state && npadch != -1) {
 820		if (kbd->kbdmode == VC_UNICODE)
 821			to_utf8(vc, npadch);
 822		else
 823			put_queue(vc, npadch & 0xff);
 824		npadch = -1;
 825	}
 826}
 827
 828static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
 829{
 830	if (up_flag)
 831		return;
 832
 833	if (vc_kbd_mode(kbd, VC_META)) {
 834		put_queue(vc, '\033');
 835		put_queue(vc, value);
 836	} else
 837		put_queue(vc, value | 0x80);
 838}
 839
 840static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
 841{
 842	int base;
 843
 844	if (up_flag)
 845		return;
 846
 847	if (value < 10) {
 848		/* decimal input of code, while Alt depressed */
 849		base = 10;
 850	} else {
 851		/* hexadecimal input of code, while AltGr depressed */
 852		value -= 10;
 853		base = 16;
 854	}
 855
 856	if (npadch == -1)
 857		npadch = value;
 858	else
 859		npadch = npadch * base + value;
 860}
 861
 862static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
 863{
 864	if (up_flag || rep)
 865		return;
 866
 867	chg_vc_kbd_lock(kbd, value);
 868}
 869
 870static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
 871{
 872	k_shift(vc, value, up_flag);
 873	if (up_flag || rep)
 874		return;
 875
 876	chg_vc_kbd_slock(kbd, value);
 877	/* try to make Alt, oops, AltGr and such work */
 878	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
 879		kbd->slockstate = 0;
 880		chg_vc_kbd_slock(kbd, value);
 881	}
 882}
 883
 884/* by default, 300ms interval for combination release */
 885static unsigned brl_timeout = 300;
 886MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
 887module_param(brl_timeout, uint, 0644);
 888
 889static unsigned brl_nbchords = 1;
 890MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
 891module_param(brl_nbchords, uint, 0644);
 892
 893static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
 894{
 895	static unsigned long chords;
 896	static unsigned committed;
 897
 898	if (!brl_nbchords)
 899		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
 900	else {
 901		committed |= pattern;
 902		chords++;
 903		if (chords == brl_nbchords) {
 904			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
 905			chords = 0;
 906			committed = 0;
 907		}
 908	}
 909}
 910
 911static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
 912{
 913	static unsigned pressed, committing;
 914	static unsigned long releasestart;
 915
 916	if (kbd->kbdmode != VC_UNICODE) {
 917		if (!up_flag)
 918			pr_warn("keyboard mode must be unicode for braille patterns\n");
 919		return;
 920	}
 921
 922	if (!value) {
 923		k_unicode(vc, BRL_UC_ROW, up_flag);
 924		return;
 925	}
 926
 927	if (value > 8)
 928		return;
 929
 930	if (!up_flag) {
 931		pressed |= 1 << (value - 1);
 932		if (!brl_timeout)
 933			committing = pressed;
 934	} else if (brl_timeout) {
 935		if (!committing ||
 936		    time_after(jiffies,
 937			       releasestart + msecs_to_jiffies(brl_timeout))) {
 938			committing = pressed;
 939			releasestart = jiffies;
 940		}
 941		pressed &= ~(1 << (value - 1));
 942		if (!pressed && committing) {
 943			k_brlcommit(vc, committing, 0);
 944			committing = 0;
 945		}
 946	} else {
 947		if (committing) {
 948			k_brlcommit(vc, committing, 0);
 949			committing = 0;
 950		}
 951		pressed &= ~(1 << (value - 1));
 952	}
 953}
 954
 955#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
 956
 957struct kbd_led_trigger {
 958	struct led_trigger trigger;
 959	unsigned int mask;
 960};
 961
 962static void kbd_led_trigger_activate(struct led_classdev *cdev)
 963{
 964	struct kbd_led_trigger *trigger =
 965		container_of(cdev->trigger, struct kbd_led_trigger, trigger);
 966
 967	tasklet_disable(&keyboard_tasklet);
 968	if (ledstate != -1U)
 969		led_trigger_event(&trigger->trigger,
 970				  ledstate & trigger->mask ?
 971					LED_FULL : LED_OFF);
 972	tasklet_enable(&keyboard_tasklet);
 973}
 974
 975#define KBD_LED_TRIGGER(_led_bit, _name) {			\
 976		.trigger = {					\
 977			.name = _name,				\
 978			.activate = kbd_led_trigger_activate,	\
 979		},						\
 980		.mask	= BIT(_led_bit),			\
 981	}
 982
 983#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name)		\
 984	KBD_LED_TRIGGER((_led_bit) + 8, _name)
 985
 986static struct kbd_led_trigger kbd_led_triggers[] = {
 987	KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
 988	KBD_LED_TRIGGER(VC_NUMLOCK,   "kbd-numlock"),
 989	KBD_LED_TRIGGER(VC_CAPSLOCK,  "kbd-capslock"),
 990	KBD_LED_TRIGGER(VC_KANALOCK,  "kbd-kanalock"),
 991
 992	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK,  "kbd-shiftlock"),
 993	KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK,  "kbd-altgrlock"),
 994	KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK,   "kbd-ctrllock"),
 995	KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK,    "kbd-altlock"),
 996	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
 997	KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
 998	KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK,  "kbd-ctrlllock"),
 999	KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK,  "kbd-ctrlrlock"),
1000};
1001
1002static void kbd_propagate_led_state(unsigned int old_state,
1003				    unsigned int new_state)
1004{
1005	struct kbd_led_trigger *trigger;
1006	unsigned int changed = old_state ^ new_state;
1007	int i;
1008
1009	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1010		trigger = &kbd_led_triggers[i];
1011
1012		if (changed & trigger->mask)
1013			led_trigger_event(&trigger->trigger,
1014					  new_state & trigger->mask ?
1015						LED_FULL : LED_OFF);
1016	}
1017}
1018
1019static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1020{
1021	unsigned int led_state = *(unsigned int *)data;
1022
1023	if (test_bit(EV_LED, handle->dev->evbit))
1024		kbd_propagate_led_state(~led_state, led_state);
1025
1026	return 0;
1027}
1028
1029static void kbd_init_leds(void)
1030{
1031	int error;
1032	int i;
1033
1034	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1035		error = led_trigger_register(&kbd_led_triggers[i].trigger);
1036		if (error)
1037			pr_err("error %d while registering trigger %s\n",
1038			       error, kbd_led_triggers[i].trigger.name);
1039	}
1040}
1041
1042#else
1043
1044static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1045{
1046	unsigned int leds = *(unsigned int *)data;
1047
1048	if (test_bit(EV_LED, handle->dev->evbit)) {
1049		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1050		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1051		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1052		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1053	}
1054
1055	return 0;
1056}
1057
1058static void kbd_propagate_led_state(unsigned int old_state,
1059				    unsigned int new_state)
1060{
1061	input_handler_for_each_handle(&kbd_handler, &new_state,
1062				      kbd_update_leds_helper);
1063}
1064
1065static void kbd_init_leds(void)
1066{
1067}
1068
1069#endif
1070
1071/*
1072 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1073 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1074 * or (iii) specified bits of specified words in kernel memory.
1075 */
1076static unsigned char getledstate(void)
1077{
1078	return ledstate & 0xff;
1079}
1080
1081void setledstate(struct kbd_struct *kb, unsigned int led)
1082{
1083        unsigned long flags;
1084        spin_lock_irqsave(&led_lock, flags);
1085	if (!(led & ~7)) {
1086		ledioctl = led;
1087		kb->ledmode = LED_SHOW_IOCTL;
1088	} else
1089		kb->ledmode = LED_SHOW_FLAGS;
1090
1091	set_leds();
1092	spin_unlock_irqrestore(&led_lock, flags);
1093}
1094
1095static inline unsigned char getleds(void)
1096{
1097	struct kbd_struct *kb = kbd_table + fg_console;
 
 
1098
1099	if (kb->ledmode == LED_SHOW_IOCTL)
1100		return ledioctl;
1101
1102	return kb->ledflagstate;
1103}
1104
1105/**
1106 *	vt_get_leds	-	helper for braille console
1107 *	@console: console to read
1108 *	@flag: flag we want to check
1109 *
1110 *	Check the status of a keyboard led flag and report it back
1111 */
1112int vt_get_leds(int console, int flag)
1113{
1114	struct kbd_struct *kb = kbd_table + console;
1115	int ret;
1116	unsigned long flags;
1117
1118	spin_lock_irqsave(&led_lock, flags);
1119	ret = vc_kbd_led(kb, flag);
1120	spin_unlock_irqrestore(&led_lock, flags);
1121
1122	return ret;
1123}
1124EXPORT_SYMBOL_GPL(vt_get_leds);
1125
1126/**
1127 *	vt_set_led_state	-	set LED state of a console
1128 *	@console: console to set
1129 *	@leds: LED bits
1130 *
1131 *	Set the LEDs on a console. This is a wrapper for the VT layer
1132 *	so that we can keep kbd knowledge internal
1133 */
1134void vt_set_led_state(int console, int leds)
1135{
1136	struct kbd_struct *kb = kbd_table + console;
1137	setledstate(kb, leds);
1138}
1139
1140/**
1141 *	vt_kbd_con_start	-	Keyboard side of console start
1142 *	@console: console
1143 *
1144 *	Handle console start. This is a wrapper for the VT layer
1145 *	so that we can keep kbd knowledge internal
1146 *
1147 *	FIXME: We eventually need to hold the kbd lock here to protect
1148 *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1149 *	and start_tty under the kbd_event_lock, while normal tty paths
1150 *	don't hold the lock. We probably need to split out an LED lock
1151 *	but not during an -rc release!
1152 */
1153void vt_kbd_con_start(int console)
1154{
1155	struct kbd_struct *kb = kbd_table + console;
1156	unsigned long flags;
1157	spin_lock_irqsave(&led_lock, flags);
1158	clr_vc_kbd_led(kb, VC_SCROLLOCK);
1159	set_leds();
1160	spin_unlock_irqrestore(&led_lock, flags);
1161}
1162
1163/**
1164 *	vt_kbd_con_stop		-	Keyboard side of console stop
1165 *	@console: console
1166 *
1167 *	Handle console stop. This is a wrapper for the VT layer
1168 *	so that we can keep kbd knowledge internal
1169 */
1170void vt_kbd_con_stop(int console)
1171{
1172	struct kbd_struct *kb = kbd_table + console;
1173	unsigned long flags;
1174	spin_lock_irqsave(&led_lock, flags);
1175	set_vc_kbd_led(kb, VC_SCROLLOCK);
1176	set_leds();
1177	spin_unlock_irqrestore(&led_lock, flags);
1178}
1179
1180/*
1181 * This is the tasklet that updates LED state of LEDs using standard
1182 * keyboard triggers. The reason we use tasklet is that we need to
1183 * handle the scenario when keyboard handler is not registered yet
1184 * but we already getting updates from the VT to update led state.
 
1185 */
1186static void kbd_bh(unsigned long dummy)
1187{
1188	unsigned int leds;
1189	unsigned long flags;
1190
1191	spin_lock_irqsave(&led_lock, flags);
1192	leds = getleds();
1193	leds |= (unsigned int)kbd->lockstate << 8;
1194	spin_unlock_irqrestore(&led_lock, flags);
1195
1196	if (leds != ledstate) {
1197		kbd_propagate_led_state(ledstate, leds);
 
1198		ledstate = leds;
1199	}
1200}
1201
1202DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1203
1204#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1205    defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1206    defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1207    (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
 
1208
1209#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1210			((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1211
1212static const unsigned short x86_keycodes[256] =
1213	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1214	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1215	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1216	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1217	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1218	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1219	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1220	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1221	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1222	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1223	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1224	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1225	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1226	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1227	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1228
1229#ifdef CONFIG_SPARC
1230static int sparc_l1_a_state;
1231extern void sun_do_break(void);
1232#endif
1233
1234static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1235		       unsigned char up_flag)
1236{
1237	int code;
1238
1239	switch (keycode) {
1240
1241	case KEY_PAUSE:
1242		put_queue(vc, 0xe1);
1243		put_queue(vc, 0x1d | up_flag);
1244		put_queue(vc, 0x45 | up_flag);
1245		break;
1246
1247	case KEY_HANGEUL:
1248		if (!up_flag)
1249			put_queue(vc, 0xf2);
1250		break;
1251
1252	case KEY_HANJA:
1253		if (!up_flag)
1254			put_queue(vc, 0xf1);
1255		break;
1256
1257	case KEY_SYSRQ:
1258		/*
1259		 * Real AT keyboards (that's what we're trying
1260		 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1261		 * pressing PrtSc/SysRq alone, but simply 0x54
1262		 * when pressing Alt+PrtSc/SysRq.
1263		 */
1264		if (test_bit(KEY_LEFTALT, key_down) ||
1265		    test_bit(KEY_RIGHTALT, key_down)) {
1266			put_queue(vc, 0x54 | up_flag);
1267		} else {
1268			put_queue(vc, 0xe0);
1269			put_queue(vc, 0x2a | up_flag);
1270			put_queue(vc, 0xe0);
1271			put_queue(vc, 0x37 | up_flag);
1272		}
1273		break;
1274
1275	default:
1276		if (keycode > 255)
1277			return -1;
1278
1279		code = x86_keycodes[keycode];
1280		if (!code)
1281			return -1;
1282
1283		if (code & 0x100)
1284			put_queue(vc, 0xe0);
1285		put_queue(vc, (code & 0x7f) | up_flag);
1286
1287		break;
1288	}
1289
1290	return 0;
1291}
1292
1293#else
1294
1295#define HW_RAW(dev)	0
1296
1297static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1298{
1299	if (keycode > 127)
1300		return -1;
1301
1302	put_queue(vc, keycode | up_flag);
1303	return 0;
1304}
1305#endif
1306
1307static void kbd_rawcode(unsigned char data)
1308{
1309	struct vc_data *vc = vc_cons[fg_console].d;
1310
1311	kbd = kbd_table + vc->vc_num;
1312	if (kbd->kbdmode == VC_RAW)
1313		put_queue(vc, data);
1314}
1315
1316static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1317{
1318	struct vc_data *vc = vc_cons[fg_console].d;
1319	unsigned short keysym, *key_map;
1320	unsigned char type;
1321	bool raw_mode;
1322	struct tty_struct *tty;
1323	int shift_final;
1324	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1325	int rc;
1326
1327	tty = vc->port.tty;
1328
1329	if (tty && (!tty->driver_data)) {
1330		/* No driver data? Strange. Okay we fix it then. */
1331		tty->driver_data = vc;
1332	}
1333
1334	kbd = kbd_table + vc->vc_num;
1335
1336#ifdef CONFIG_SPARC
1337	if (keycode == KEY_STOP)
1338		sparc_l1_a_state = down;
1339#endif
1340
1341	rep = (down == 2);
1342
1343	raw_mode = (kbd->kbdmode == VC_RAW);
1344	if (raw_mode && !hw_raw)
1345		if (emulate_raw(vc, keycode, !down << 7))
1346			if (keycode < BTN_MISC && printk_ratelimit())
1347				pr_warn("can't emulate rawmode for keycode %d\n",
1348					keycode);
1349
1350#ifdef CONFIG_SPARC
1351	if (keycode == KEY_A && sparc_l1_a_state) {
1352		sparc_l1_a_state = false;
1353		sun_do_break();
1354	}
1355#endif
1356
1357	if (kbd->kbdmode == VC_MEDIUMRAW) {
1358		/*
1359		 * This is extended medium raw mode, with keys above 127
1360		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1361		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1362		 * interfere with anything else. The two bytes after 0 will
1363		 * always have the up flag set not to interfere with older
1364		 * applications. This allows for 16384 different keycodes,
1365		 * which should be enough.
1366		 */
1367		if (keycode < 128) {
1368			put_queue(vc, keycode | (!down << 7));
1369		} else {
1370			put_queue(vc, !down << 7);
1371			put_queue(vc, (keycode >> 7) | 0x80);
1372			put_queue(vc, keycode | 0x80);
1373		}
1374		raw_mode = true;
1375	}
1376
1377	if (down)
1378		set_bit(keycode, key_down);
1379	else
1380		clear_bit(keycode, key_down);
1381
1382	if (rep &&
1383	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1384	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1385		/*
1386		 * Don't repeat a key if the input buffers are not empty and the
1387		 * characters get aren't echoed locally. This makes key repeat
1388		 * usable with slow applications and under heavy loads.
1389		 */
1390		return;
1391	}
1392
1393	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1394	param.ledstate = kbd->ledflagstate;
1395	key_map = key_maps[shift_final];
1396
1397	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1398					KBD_KEYCODE, &param);
1399	if (rc == NOTIFY_STOP || !key_map) {
1400		atomic_notifier_call_chain(&keyboard_notifier_list,
1401					   KBD_UNBOUND_KEYCODE, &param);
1402		do_compute_shiftstate();
1403		kbd->slockstate = 0;
1404		return;
1405	}
1406
1407	if (keycode < NR_KEYS)
1408		keysym = key_map[keycode];
1409	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1410		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1411	else
1412		return;
1413
1414	type = KTYP(keysym);
1415
1416	if (type < 0xf0) {
1417		param.value = keysym;
1418		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1419						KBD_UNICODE, &param);
1420		if (rc != NOTIFY_STOP)
1421			if (down && !raw_mode)
1422				to_utf8(vc, keysym);
1423		return;
1424	}
1425
1426	type -= 0xf0;
1427
1428	if (type == KT_LETTER) {
1429		type = KT_LATIN;
1430		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1431			key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1432			if (key_map)
1433				keysym = key_map[keycode];
1434		}
1435	}
1436
1437	param.value = keysym;
1438	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1439					KBD_KEYSYM, &param);
1440	if (rc == NOTIFY_STOP)
1441		return;
1442
1443	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1444		return;
1445
1446	(*k_handler[type])(vc, keysym & 0xff, !down);
1447
1448	param.ledstate = kbd->ledflagstate;
1449	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1450
1451	if (type != KT_SLOCK)
1452		kbd->slockstate = 0;
1453}
1454
1455static void kbd_event(struct input_handle *handle, unsigned int event_type,
1456		      unsigned int event_code, int value)
1457{
1458	/* We are called with interrupts disabled, just take the lock */
1459	spin_lock(&kbd_event_lock);
1460
1461	if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1462		kbd_rawcode(value);
1463	if (event_type == EV_KEY)
1464		kbd_keycode(event_code, value, HW_RAW(handle->dev));
1465
1466	spin_unlock(&kbd_event_lock);
1467
1468	tasklet_schedule(&keyboard_tasklet);
1469	do_poke_blanked_console = 1;
1470	schedule_console_callback();
1471}
1472
1473static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1474{
1475	int i;
1476
1477	if (test_bit(EV_SND, dev->evbit))
1478		return true;
1479
1480	if (test_bit(EV_KEY, dev->evbit)) {
1481		for (i = KEY_RESERVED; i < BTN_MISC; i++)
1482			if (test_bit(i, dev->keybit))
1483				return true;
1484		for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1485			if (test_bit(i, dev->keybit))
1486				return true;
1487	}
1488
1489	return false;
1490}
1491
1492/*
1493 * When a keyboard (or other input device) is found, the kbd_connect
1494 * function is called. The function then looks at the device, and if it
1495 * likes it, it can open it and get events from it. In this (kbd_connect)
1496 * function, we should decide which VT to bind that keyboard to initially.
1497 */
1498static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1499			const struct input_device_id *id)
1500{
1501	struct input_handle *handle;
1502	int error;
1503
1504	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1505	if (!handle)
1506		return -ENOMEM;
1507
1508	handle->dev = dev;
1509	handle->handler = handler;
1510	handle->name = "kbd";
1511
1512	error = input_register_handle(handle);
1513	if (error)
1514		goto err_free_handle;
1515
1516	error = input_open_device(handle);
1517	if (error)
1518		goto err_unregister_handle;
1519
1520	return 0;
1521
1522 err_unregister_handle:
1523	input_unregister_handle(handle);
1524 err_free_handle:
1525	kfree(handle);
1526	return error;
1527}
1528
1529static void kbd_disconnect(struct input_handle *handle)
1530{
1531	input_close_device(handle);
1532	input_unregister_handle(handle);
1533	kfree(handle);
1534}
1535
1536/*
1537 * Start keyboard handler on the new keyboard by refreshing LED state to
1538 * match the rest of the system.
1539 */
1540static void kbd_start(struct input_handle *handle)
1541{
1542	tasklet_disable(&keyboard_tasklet);
1543
1544	if (ledstate != -1U)
1545		kbd_update_leds_helper(handle, &ledstate);
1546
1547	tasklet_enable(&keyboard_tasklet);
1548}
1549
1550static const struct input_device_id kbd_ids[] = {
1551	{
1552		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1553		.evbit = { BIT_MASK(EV_KEY) },
1554	},
1555
1556	{
1557		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1558		.evbit = { BIT_MASK(EV_SND) },
1559	},
1560
1561	{ },    /* Terminating entry */
1562};
1563
1564MODULE_DEVICE_TABLE(input, kbd_ids);
1565
1566static struct input_handler kbd_handler = {
1567	.event		= kbd_event,
1568	.match		= kbd_match,
1569	.connect	= kbd_connect,
1570	.disconnect	= kbd_disconnect,
1571	.start		= kbd_start,
1572	.name		= "kbd",
1573	.id_table	= kbd_ids,
1574};
1575
1576int __init kbd_init(void)
1577{
1578	int i;
1579	int error;
1580
1581	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1582		kbd_table[i].ledflagstate = kbd_defleds();
1583		kbd_table[i].default_ledflagstate = kbd_defleds();
1584		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1585		kbd_table[i].lockstate = KBD_DEFLOCK;
1586		kbd_table[i].slockstate = 0;
1587		kbd_table[i].modeflags = KBD_DEFMODE;
1588		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1589	}
1590
1591	kbd_init_leds();
1592
1593	error = input_register_handler(&kbd_handler);
1594	if (error)
1595		return error;
1596
1597	tasklet_enable(&keyboard_tasklet);
1598	tasklet_schedule(&keyboard_tasklet);
1599
1600	return 0;
1601}
1602
1603/* Ioctl support code */
1604
1605/**
1606 *	vt_do_diacrit		-	diacritical table updates
1607 *	@cmd: ioctl request
1608 *	@udp: pointer to user data for ioctl
1609 *	@perm: permissions check computed by caller
1610 *
1611 *	Update the diacritical tables atomically and safely. Lock them
1612 *	against simultaneous keypresses
1613 */
1614int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1615{
1616	unsigned long flags;
1617	int asize;
1618	int ret = 0;
1619
1620	switch (cmd) {
1621	case KDGKBDIACR:
1622	{
1623		struct kbdiacrs __user *a = udp;
1624		struct kbdiacr *dia;
1625		int i;
1626
1627		dia = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1628								GFP_KERNEL);
1629		if (!dia)
1630			return -ENOMEM;
1631
1632		/* Lock the diacriticals table, make a copy and then
1633		   copy it after we unlock */
1634		spin_lock_irqsave(&kbd_event_lock, flags);
1635
1636		asize = accent_table_size;
1637		for (i = 0; i < asize; i++) {
1638			dia[i].diacr = conv_uni_to_8bit(
1639						accent_table[i].diacr);
1640			dia[i].base = conv_uni_to_8bit(
1641						accent_table[i].base);
1642			dia[i].result = conv_uni_to_8bit(
1643						accent_table[i].result);
1644		}
1645		spin_unlock_irqrestore(&kbd_event_lock, flags);
1646
1647		if (put_user(asize, &a->kb_cnt))
1648			ret = -EFAULT;
1649		else  if (copy_to_user(a->kbdiacr, dia,
1650				asize * sizeof(struct kbdiacr)))
1651			ret = -EFAULT;
1652		kfree(dia);
1653		return ret;
1654	}
1655	case KDGKBDIACRUC:
1656	{
1657		struct kbdiacrsuc __user *a = udp;
1658		void *buf;
1659
1660		buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1661								GFP_KERNEL);
1662		if (buf == NULL)
1663			return -ENOMEM;
1664
1665		/* Lock the diacriticals table, make a copy and then
1666		   copy it after we unlock */
1667		spin_lock_irqsave(&kbd_event_lock, flags);
1668
1669		asize = accent_table_size;
1670		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1671
1672		spin_unlock_irqrestore(&kbd_event_lock, flags);
1673
1674		if (put_user(asize, &a->kb_cnt))
1675			ret = -EFAULT;
1676		else if (copy_to_user(a->kbdiacruc, buf,
1677				asize*sizeof(struct kbdiacruc)))
1678			ret = -EFAULT;
1679		kfree(buf);
1680		return ret;
1681	}
1682
1683	case KDSKBDIACR:
1684	{
1685		struct kbdiacrs __user *a = udp;
1686		struct kbdiacr *dia = NULL;
1687		unsigned int ct;
1688		int i;
1689
1690		if (!perm)
1691			return -EPERM;
1692		if (get_user(ct, &a->kb_cnt))
1693			return -EFAULT;
1694		if (ct >= MAX_DIACR)
1695			return -EINVAL;
1696
1697		if (ct) {
1698
1699			dia = memdup_user(a->kbdiacr,
1700					sizeof(struct kbdiacr) * ct);
1701			if (IS_ERR(dia))
1702				return PTR_ERR(dia);
1703
1704		}
1705
1706		spin_lock_irqsave(&kbd_event_lock, flags);
1707		accent_table_size = ct;
1708		for (i = 0; i < ct; i++) {
1709			accent_table[i].diacr =
1710					conv_8bit_to_uni(dia[i].diacr);
1711			accent_table[i].base =
1712					conv_8bit_to_uni(dia[i].base);
1713			accent_table[i].result =
1714					conv_8bit_to_uni(dia[i].result);
1715		}
1716		spin_unlock_irqrestore(&kbd_event_lock, flags);
1717		kfree(dia);
1718		return 0;
1719	}
1720
1721	case KDSKBDIACRUC:
1722	{
1723		struct kbdiacrsuc __user *a = udp;
1724		unsigned int ct;
1725		void *buf = NULL;
1726
1727		if (!perm)
1728			return -EPERM;
1729
1730		if (get_user(ct, &a->kb_cnt))
1731			return -EFAULT;
1732
1733		if (ct >= MAX_DIACR)
1734			return -EINVAL;
1735
1736		if (ct) {
1737			buf = memdup_user(a->kbdiacruc,
1738					  ct * sizeof(struct kbdiacruc));
1739			if (IS_ERR(buf))
1740				return PTR_ERR(buf);
1741		} 
1742		spin_lock_irqsave(&kbd_event_lock, flags);
1743		if (ct)
1744			memcpy(accent_table, buf,
1745					ct * sizeof(struct kbdiacruc));
1746		accent_table_size = ct;
1747		spin_unlock_irqrestore(&kbd_event_lock, flags);
1748		kfree(buf);
1749		return 0;
1750	}
1751	}
1752	return ret;
1753}
1754
1755/**
1756 *	vt_do_kdskbmode		-	set keyboard mode ioctl
1757 *	@console: the console to use
1758 *	@arg: the requested mode
1759 *
1760 *	Update the keyboard mode bits while holding the correct locks.
1761 *	Return 0 for success or an error code.
1762 */
1763int vt_do_kdskbmode(int console, unsigned int arg)
1764{
1765	struct kbd_struct *kb = kbd_table + console;
1766	int ret = 0;
1767	unsigned long flags;
1768
1769	spin_lock_irqsave(&kbd_event_lock, flags);
1770	switch(arg) {
1771	case K_RAW:
1772		kb->kbdmode = VC_RAW;
1773		break;
1774	case K_MEDIUMRAW:
1775		kb->kbdmode = VC_MEDIUMRAW;
1776		break;
1777	case K_XLATE:
1778		kb->kbdmode = VC_XLATE;
1779		do_compute_shiftstate();
1780		break;
1781	case K_UNICODE:
1782		kb->kbdmode = VC_UNICODE;
1783		do_compute_shiftstate();
1784		break;
1785	case K_OFF:
1786		kb->kbdmode = VC_OFF;
1787		break;
1788	default:
1789		ret = -EINVAL;
1790	}
1791	spin_unlock_irqrestore(&kbd_event_lock, flags);
1792	return ret;
1793}
1794
1795/**
1796 *	vt_do_kdskbmeta		-	set keyboard meta state
1797 *	@console: the console to use
1798 *	@arg: the requested meta state
1799 *
1800 *	Update the keyboard meta bits while holding the correct locks.
1801 *	Return 0 for success or an error code.
1802 */
1803int vt_do_kdskbmeta(int console, unsigned int arg)
1804{
1805	struct kbd_struct *kb = kbd_table + console;
1806	int ret = 0;
1807	unsigned long flags;
1808
1809	spin_lock_irqsave(&kbd_event_lock, flags);
1810	switch(arg) {
1811	case K_METABIT:
1812		clr_vc_kbd_mode(kb, VC_META);
1813		break;
1814	case K_ESCPREFIX:
1815		set_vc_kbd_mode(kb, VC_META);
1816		break;
1817	default:
1818		ret = -EINVAL;
1819	}
1820	spin_unlock_irqrestore(&kbd_event_lock, flags);
1821	return ret;
1822}
1823
1824int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1825								int perm)
1826{
1827	struct kbkeycode tmp;
1828	int kc = 0;
1829
1830	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1831		return -EFAULT;
1832	switch (cmd) {
1833	case KDGETKEYCODE:
1834		kc = getkeycode(tmp.scancode);
1835		if (kc >= 0)
1836			kc = put_user(kc, &user_kbkc->keycode);
1837		break;
1838	case KDSETKEYCODE:
1839		if (!perm)
1840			return -EPERM;
1841		kc = setkeycode(tmp.scancode, tmp.keycode);
1842		break;
1843	}
1844	return kc;
1845}
1846
1847#define i (tmp.kb_index)
1848#define s (tmp.kb_table)
1849#define v (tmp.kb_value)
1850
1851int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1852						int console)
1853{
1854	struct kbd_struct *kb = kbd_table + console;
1855	struct kbentry tmp;
1856	ushort *key_map, *new_map, val, ov;
1857	unsigned long flags;
1858
1859	if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1860		return -EFAULT;
1861
1862	if (!capable(CAP_SYS_TTY_CONFIG))
1863		perm = 0;
1864
1865	switch (cmd) {
1866	case KDGKBENT:
1867		/* Ensure another thread doesn't free it under us */
1868		spin_lock_irqsave(&kbd_event_lock, flags);
1869		key_map = key_maps[s];
1870		if (key_map) {
1871		    val = U(key_map[i]);
1872		    if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1873			val = K_HOLE;
1874		} else
1875		    val = (i ? K_HOLE : K_NOSUCHMAP);
1876		spin_unlock_irqrestore(&kbd_event_lock, flags);
1877		return put_user(val, &user_kbe->kb_value);
1878	case KDSKBENT:
1879		if (!perm)
1880			return -EPERM;
1881		if (!i && v == K_NOSUCHMAP) {
1882			spin_lock_irqsave(&kbd_event_lock, flags);
1883			/* deallocate map */
1884			key_map = key_maps[s];
1885			if (s && key_map) {
1886			    key_maps[s] = NULL;
1887			    if (key_map[0] == U(K_ALLOCATED)) {
1888					kfree(key_map);
1889					keymap_count--;
1890			    }
1891			}
1892			spin_unlock_irqrestore(&kbd_event_lock, flags);
1893			break;
1894		}
1895
1896		if (KTYP(v) < NR_TYPES) {
1897		    if (KVAL(v) > max_vals[KTYP(v)])
1898				return -EINVAL;
1899		} else
1900		    if (kb->kbdmode != VC_UNICODE)
1901				return -EINVAL;
1902
1903		/* ++Geert: non-PC keyboards may generate keycode zero */
1904#if !defined(__mc68000__) && !defined(__powerpc__)
1905		/* assignment to entry 0 only tests validity of args */
1906		if (!i)
1907			break;
1908#endif
1909
1910		new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1911		if (!new_map)
1912			return -ENOMEM;
1913		spin_lock_irqsave(&kbd_event_lock, flags);
1914		key_map = key_maps[s];
1915		if (key_map == NULL) {
1916			int j;
1917
1918			if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1919			    !capable(CAP_SYS_RESOURCE)) {
1920				spin_unlock_irqrestore(&kbd_event_lock, flags);
1921				kfree(new_map);
1922				return -EPERM;
1923			}
1924			key_maps[s] = new_map;
1925			key_map = new_map;
1926			key_map[0] = U(K_ALLOCATED);
1927			for (j = 1; j < NR_KEYS; j++)
1928				key_map[j] = U(K_HOLE);
1929			keymap_count++;
1930		} else
1931			kfree(new_map);
1932
1933		ov = U(key_map[i]);
1934		if (v == ov)
1935			goto out;
1936		/*
1937		 * Attention Key.
1938		 */
1939		if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1940			spin_unlock_irqrestore(&kbd_event_lock, flags);
1941			return -EPERM;
1942		}
1943		key_map[i] = U(v);
1944		if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1945			do_compute_shiftstate();
1946out:
1947		spin_unlock_irqrestore(&kbd_event_lock, flags);
1948		break;
1949	}
1950	return 0;
1951}
1952#undef i
1953#undef s
1954#undef v
1955
1956/* FIXME: This one needs untangling and locking */
1957int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1958{
1959	struct kbsentry *kbs;
1960	char *p;
1961	u_char *q;
1962	u_char __user *up;
1963	int sz;
1964	int delta;
1965	char *first_free, *fj, *fnw;
1966	int i, j, k;
1967	int ret;
1968
1969	if (!capable(CAP_SYS_TTY_CONFIG))
1970		perm = 0;
1971
1972	kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1973	if (!kbs) {
1974		ret = -ENOMEM;
1975		goto reterr;
1976	}
1977
1978	/* we mostly copy too much here (512bytes), but who cares ;) */
1979	if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1980		ret = -EFAULT;
1981		goto reterr;
1982	}
1983	kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1984	i = kbs->kb_func;
1985
1986	switch (cmd) {
1987	case KDGKBSENT:
1988		sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1989						  a struct member */
1990		up = user_kdgkb->kb_string;
1991		p = func_table[i];
1992		if(p)
1993			for ( ; *p && sz; p++, sz--)
1994				if (put_user(*p, up++)) {
1995					ret = -EFAULT;
1996					goto reterr;
1997				}
1998		if (put_user('\0', up)) {
1999			ret = -EFAULT;
2000			goto reterr;
2001		}
2002		kfree(kbs);
2003		return ((p && *p) ? -EOVERFLOW : 0);
2004	case KDSKBSENT:
2005		if (!perm) {
2006			ret = -EPERM;
2007			goto reterr;
2008		}
2009
2010		q = func_table[i];
2011		first_free = funcbufptr + (funcbufsize - funcbufleft);
2012		for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2013			;
2014		if (j < MAX_NR_FUNC)
2015			fj = func_table[j];
2016		else
2017			fj = first_free;
2018
2019		delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2020		if (delta <= funcbufleft) { 	/* it fits in current buf */
2021		    if (j < MAX_NR_FUNC) {
2022			memmove(fj + delta, fj, first_free - fj);
2023			for (k = j; k < MAX_NR_FUNC; k++)
2024			    if (func_table[k])
2025				func_table[k] += delta;
2026		    }
2027		    if (!q)
2028		      func_table[i] = fj;
2029		    funcbufleft -= delta;
2030		} else {			/* allocate a larger buffer */
2031		    sz = 256;
2032		    while (sz < funcbufsize - funcbufleft + delta)
2033		      sz <<= 1;
2034		    fnw = kmalloc(sz, GFP_KERNEL);
2035		    if(!fnw) {
2036		      ret = -ENOMEM;
2037		      goto reterr;
2038		    }
2039
2040		    if (!q)
2041		      func_table[i] = fj;
2042		    if (fj > funcbufptr)
2043			memmove(fnw, funcbufptr, fj - funcbufptr);
2044		    for (k = 0; k < j; k++)
2045		      if (func_table[k])
2046			func_table[k] = fnw + (func_table[k] - funcbufptr);
2047
2048		    if (first_free > fj) {
2049			memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2050			for (k = j; k < MAX_NR_FUNC; k++)
2051			  if (func_table[k])
2052			    func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2053		    }
2054		    if (funcbufptr != func_buf)
2055		      kfree(funcbufptr);
2056		    funcbufptr = fnw;
2057		    funcbufleft = funcbufleft - delta + sz - funcbufsize;
2058		    funcbufsize = sz;
2059		}
2060		strcpy(func_table[i], kbs->kb_string);
2061		break;
2062	}
2063	ret = 0;
2064reterr:
2065	kfree(kbs);
2066	return ret;
2067}
2068
2069int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2070{
2071	struct kbd_struct *kb = kbd_table + console;
2072        unsigned long flags;
2073	unsigned char ucval;
2074
2075        switch(cmd) {
2076	/* the ioctls below read/set the flags usually shown in the leds */
2077	/* don't use them - they will go away without warning */
2078	case KDGKBLED:
2079                spin_lock_irqsave(&kbd_event_lock, flags);
2080		ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2081                spin_unlock_irqrestore(&kbd_event_lock, flags);
2082		return put_user(ucval, (char __user *)arg);
2083
2084	case KDSKBLED:
2085		if (!perm)
2086			return -EPERM;
2087		if (arg & ~0x77)
2088			return -EINVAL;
2089                spin_lock_irqsave(&led_lock, flags);
2090		kb->ledflagstate = (arg & 7);
2091		kb->default_ledflagstate = ((arg >> 4) & 7);
2092		set_leds();
2093                spin_unlock_irqrestore(&led_lock, flags);
2094		return 0;
2095
2096	/* the ioctls below only set the lights, not the functions */
2097	/* for those, see KDGKBLED and KDSKBLED above */
2098	case KDGETLED:
2099		ucval = getledstate();
2100		return put_user(ucval, (char __user *)arg);
2101
2102	case KDSETLED:
2103		if (!perm)
2104			return -EPERM;
2105		setledstate(kb, arg);
2106		return 0;
2107        }
2108        return -ENOIOCTLCMD;
2109}
2110
2111int vt_do_kdgkbmode(int console)
2112{
2113	struct kbd_struct *kb = kbd_table + console;
2114	/* This is a spot read so needs no locking */
2115	switch (kb->kbdmode) {
2116	case VC_RAW:
2117		return K_RAW;
2118	case VC_MEDIUMRAW:
2119		return K_MEDIUMRAW;
2120	case VC_UNICODE:
2121		return K_UNICODE;
2122	case VC_OFF:
2123		return K_OFF;
2124	default:
2125		return K_XLATE;
2126	}
2127}
2128
2129/**
2130 *	vt_do_kdgkbmeta		-	report meta status
2131 *	@console: console to report
2132 *
2133 *	Report the meta flag status of this console
2134 */
2135int vt_do_kdgkbmeta(int console)
2136{
2137	struct kbd_struct *kb = kbd_table + console;
2138        /* Again a spot read so no locking */
2139	return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2140}
2141
2142/**
2143 *	vt_reset_unicode	-	reset the unicode status
2144 *	@console: console being reset
2145 *
2146 *	Restore the unicode console state to its default
2147 */
2148void vt_reset_unicode(int console)
2149{
2150	unsigned long flags;
2151
2152	spin_lock_irqsave(&kbd_event_lock, flags);
2153	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2154	spin_unlock_irqrestore(&kbd_event_lock, flags);
2155}
2156
2157/**
2158 *	vt_get_shiftstate	-	shift bit state
2159 *
2160 *	Report the shift bits from the keyboard state. We have to export
2161 *	this to support some oddities in the vt layer.
2162 */
2163int vt_get_shift_state(void)
2164{
2165        /* Don't lock as this is a transient report */
2166        return shift_state;
2167}
2168
2169/**
2170 *	vt_reset_keyboard	-	reset keyboard state
2171 *	@console: console to reset
2172 *
2173 *	Reset the keyboard bits for a console as part of a general console
2174 *	reset event
2175 */
2176void vt_reset_keyboard(int console)
2177{
2178	struct kbd_struct *kb = kbd_table + console;
2179	unsigned long flags;
2180
2181	spin_lock_irqsave(&kbd_event_lock, flags);
2182	set_vc_kbd_mode(kb, VC_REPEAT);
2183	clr_vc_kbd_mode(kb, VC_CKMODE);
2184	clr_vc_kbd_mode(kb, VC_APPLIC);
2185	clr_vc_kbd_mode(kb, VC_CRLF);
2186	kb->lockstate = 0;
2187	kb->slockstate = 0;
2188	spin_lock(&led_lock);
2189	kb->ledmode = LED_SHOW_FLAGS;
2190	kb->ledflagstate = kb->default_ledflagstate;
2191	spin_unlock(&led_lock);
2192	/* do not do set_leds here because this causes an endless tasklet loop
2193	   when the keyboard hasn't been initialized yet */
2194	spin_unlock_irqrestore(&kbd_event_lock, flags);
2195}
2196
2197/**
2198 *	vt_get_kbd_mode_bit	-	read keyboard status bits
2199 *	@console: console to read from
2200 *	@bit: mode bit to read
2201 *
2202 *	Report back a vt mode bit. We do this without locking so the
2203 *	caller must be sure that there are no synchronization needs
2204 */
2205
2206int vt_get_kbd_mode_bit(int console, int bit)
2207{
2208	struct kbd_struct *kb = kbd_table + console;
2209	return vc_kbd_mode(kb, bit);
2210}
2211
2212/**
2213 *	vt_set_kbd_mode_bit	-	read keyboard status bits
2214 *	@console: console to read from
2215 *	@bit: mode bit to read
2216 *
2217 *	Set a vt mode bit. We do this without locking so the
2218 *	caller must be sure that there are no synchronization needs
2219 */
2220
2221void vt_set_kbd_mode_bit(int console, int bit)
2222{
2223	struct kbd_struct *kb = kbd_table + console;
2224	unsigned long flags;
2225
2226	spin_lock_irqsave(&kbd_event_lock, flags);
2227	set_vc_kbd_mode(kb, bit);
2228	spin_unlock_irqrestore(&kbd_event_lock, flags);
2229}
2230
2231/**
2232 *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2233 *	@console: console to read from
2234 *	@bit: mode bit to read
2235 *
2236 *	Report back a vt mode bit. We do this without locking so the
2237 *	caller must be sure that there are no synchronization needs
2238 */
2239
2240void vt_clr_kbd_mode_bit(int console, int bit)
2241{
2242	struct kbd_struct *kb = kbd_table + console;
2243	unsigned long flags;
2244
2245	spin_lock_irqsave(&kbd_event_lock, flags);
2246	clr_vc_kbd_mode(kb, bit);
2247	spin_unlock_irqrestore(&kbd_event_lock, flags);
2248}