Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Written for linux by Johan Myreen as a translation from
   3 * the assembly version by Linus (with diacriticals added)
   4 *
   5 * Some additional features added by Christoph Niemann (ChN), March 1993
   6 *
   7 * Loadable keymaps by Risto Kankkunen, May 1993
   8 *
   9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  10 * Added decr/incr_console, dynamic keymaps, Unicode support,
  11 * dynamic function/string keys, led setting,  Sept 1994
  12 * `Sticky' modifier keys, 951006.
  13 *
  14 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  15 *
  16 * Modified to provide 'generic' keyboard support by Hamish Macdonald
  17 * Merge with the m68k keyboard driver and split-off of the PC low-level
  18 * parts by Geert Uytterhoeven, May 1997
  19 *
  20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  21 * 30-07-98: Dead keys redone, aeb@cwi.nl.
  22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  23 */
  24
  25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26
  27#include <linux/consolemap.h>
  28#include <linux/module.h>
  29#include <linux/sched.h>
  30#include <linux/tty.h>
  31#include <linux/tty_flip.h>
  32#include <linux/mm.h>
  33#include <linux/string.h>
  34#include <linux/init.h>
  35#include <linux/slab.h>
  36#include <linux/irq.h>
  37
  38#include <linux/kbd_kern.h>
  39#include <linux/kbd_diacr.h>
  40#include <linux/vt_kern.h>
  41#include <linux/input.h>
  42#include <linux/reboot.h>
  43#include <linux/notifier.h>
  44#include <linux/jiffies.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  45
  46extern void ctrl_alt_del(void);
  47
  48/*
  49 * Exported functions/variables
  50 */
  51
  52#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
  53
  54/*
  55 * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
  56 * This seems a good reason to start with NumLock off. On HIL keyboards
  57 * of PARISC machines however there is no NumLock key and everyone expects the keypad
  58 * to be used for numbers.
  59 */
  60
  61#if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
  62#define KBD_DEFLEDS (1 << VC_NUMLOCK)
  63#else
  64#define KBD_DEFLEDS 0
 
 
 
  65#endif
  66
  67#define KBD_DEFLOCK 0
  68
  69void compute_shiftstate(void);
  70
  71/*
  72 * Handler Tables.
  73 */
  74
  75#define K_HANDLERS\
  76	k_self,		k_fn,		k_spec,		k_pad,\
  77	k_dead,		k_cons,		k_cur,		k_shift,\
  78	k_meta,		k_ascii,	k_lock,		k_lowercase,\
  79	k_slock,	k_dead2,	k_brl,		k_ignore
  80
  81typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  82			    char up_flag);
  83static k_handler_fn K_HANDLERS;
  84static k_handler_fn *k_handler[16] = { K_HANDLERS };
  85
  86#define FN_HANDLERS\
  87	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
  88	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
  89	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
  90	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
  91	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
  92
  93typedef void (fn_handler_fn)(struct vc_data *vc);
  94static fn_handler_fn FN_HANDLERS;
  95static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  96
  97/*
  98 * Variables exported for vt_ioctl.c
  99 */
 100
 101/* maximum values each key_handler can handle */
 102const int max_vals[] = {
 103	255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
 104	NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
 105	255, NR_LOCK - 1, 255, NR_BRL - 1
 106};
 107
 108const int NR_TYPES = ARRAY_SIZE(max_vals);
 109
 110struct kbd_struct kbd_table[MAX_NR_CONSOLES];
 111EXPORT_SYMBOL_GPL(kbd_table);
 112static struct kbd_struct *kbd = kbd_table;
 113
 114struct vt_spawn_console vt_spawn_con = {
 115	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
 116	.pid  = NULL,
 117	.sig  = 0,
 118};
 119
 120/*
 121 * Variables exported for vt.c
 122 */
 123
 124int shift_state = 0;
 125
 126/*
 127 * Internal Data.
 128 */
 129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130static struct input_handler kbd_handler;
 131static DEFINE_SPINLOCK(kbd_event_lock);
 132static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */
 
 
 133static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
 134static bool dead_key_next;
 135static int npadch = -1;					/* -1 or number assembled on pad */
 
 
 
 
 136static unsigned int diacr;
 137static char rep;					/* flag telling character repeat */
 138
 139static unsigned char ledstate = 0xff;			/* undefined */
 140static unsigned char ledioctl;
 141
 142static struct ledptr {
 143	unsigned int *addr;
 144	unsigned int mask;
 145	unsigned char valid:1;
 146} ledptrs[3];
 147
 148/*
 149 * Notifier list for console keyboard events
 150 */
 151static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
 152
 153int register_keyboard_notifier(struct notifier_block *nb)
 154{
 155	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
 156}
 157EXPORT_SYMBOL_GPL(register_keyboard_notifier);
 158
 159int unregister_keyboard_notifier(struct notifier_block *nb)
 160{
 161	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
 162}
 163EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
 164
 165/*
 166 * Translation of scancodes to keycodes. We set them on only the first
 167 * keyboard in the list that accepts the scancode and keycode.
 168 * Explanation for not choosing the first attached keyboard anymore:
 169 *  USB keyboards for example have two event devices: one for all "normal"
 170 *  keys and one for extra function keys (like "volume up", "make coffee",
 171 *  etc.). So this means that scancodes for the extra function keys won't
 172 *  be valid for the first event device, but will be for the second.
 173 */
 174
 175struct getset_keycode_data {
 176	struct input_keymap_entry ke;
 177	int error;
 178};
 179
 180static int getkeycode_helper(struct input_handle *handle, void *data)
 181{
 182	struct getset_keycode_data *d = data;
 183
 184	d->error = input_get_keycode(handle->dev, &d->ke);
 185
 186	return d->error == 0; /* stop as soon as we successfully get one */
 187}
 188
 189int getkeycode(unsigned int scancode)
 190{
 191	struct getset_keycode_data d = {
 192		.ke	= {
 193			.flags		= 0,
 194			.len		= sizeof(scancode),
 195			.keycode	= 0,
 196		},
 197		.error	= -ENODEV,
 198	};
 199
 200	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 201
 202	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
 203
 204	return d.error ?: d.ke.keycode;
 205}
 206
 207static int setkeycode_helper(struct input_handle *handle, void *data)
 208{
 209	struct getset_keycode_data *d = data;
 210
 211	d->error = input_set_keycode(handle->dev, &d->ke);
 212
 213	return d->error == 0; /* stop as soon as we successfully set one */
 214}
 215
 216int setkeycode(unsigned int scancode, unsigned int keycode)
 217{
 218	struct getset_keycode_data d = {
 219		.ke	= {
 220			.flags		= 0,
 221			.len		= sizeof(scancode),
 222			.keycode	= keycode,
 223		},
 224		.error	= -ENODEV,
 225	};
 226
 227	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 228
 229	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
 230
 231	return d.error;
 232}
 233
 234/*
 235 * Making beeps and bells. Note that we prefer beeps to bells, but when
 236 * shutting the sound off we do both.
 237 */
 238
 239static int kd_sound_helper(struct input_handle *handle, void *data)
 240{
 241	unsigned int *hz = data;
 242	struct input_dev *dev = handle->dev;
 243
 244	if (test_bit(EV_SND, dev->evbit)) {
 245		if (test_bit(SND_TONE, dev->sndbit)) {
 246			input_inject_event(handle, EV_SND, SND_TONE, *hz);
 247			if (*hz)
 248				return 0;
 249		}
 250		if (test_bit(SND_BELL, dev->sndbit))
 251			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
 252	}
 253
 254	return 0;
 255}
 256
 257static void kd_nosound(unsigned long ignored)
 258{
 259	static unsigned int zero;
 260
 261	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
 262}
 263
 264static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
 265
 266void kd_mksound(unsigned int hz, unsigned int ticks)
 267{
 268	del_timer_sync(&kd_mksound_timer);
 269
 270	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
 271
 272	if (hz && ticks)
 273		mod_timer(&kd_mksound_timer, jiffies + ticks);
 274}
 275EXPORT_SYMBOL(kd_mksound);
 276
 277/*
 278 * Setting the keyboard rate.
 279 */
 280
 281static int kbd_rate_helper(struct input_handle *handle, void *data)
 282{
 283	struct input_dev *dev = handle->dev;
 284	struct kbd_repeat *rep = data;
 285
 286	if (test_bit(EV_REP, dev->evbit)) {
 287
 288		if (rep[0].delay > 0)
 289			input_inject_event(handle,
 290					   EV_REP, REP_DELAY, rep[0].delay);
 291		if (rep[0].period > 0)
 292			input_inject_event(handle,
 293					   EV_REP, REP_PERIOD, rep[0].period);
 294
 295		rep[1].delay = dev->rep[REP_DELAY];
 296		rep[1].period = dev->rep[REP_PERIOD];
 297	}
 298
 299	return 0;
 300}
 301
 302int kbd_rate(struct kbd_repeat *rep)
 303{
 304	struct kbd_repeat data[2] = { *rep };
 305
 306	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
 307	*rep = data[1];	/* Copy currently used settings */
 308
 309	return 0;
 310}
 311
 312/*
 313 * Helper Functions.
 314 */
 315static void put_queue(struct vc_data *vc, int ch)
 316{
 317	struct tty_struct *tty = vc->port.tty;
 318
 319	if (tty) {
 320		tty_insert_flip_char(tty, ch, 0);
 321		con_schedule_flip(tty);
 322	}
 323}
 324
 325static void puts_queue(struct vc_data *vc, char *cp)
 326{
 327	struct tty_struct *tty = vc->port.tty;
 328
 329	if (!tty)
 330		return;
 331
 332	while (*cp) {
 333		tty_insert_flip_char(tty, *cp, 0);
 334		cp++;
 335	}
 336	con_schedule_flip(tty);
 337}
 338
 339static void applkey(struct vc_data *vc, int key, char mode)
 340{
 341	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
 342
 343	buf[1] = (mode ? 'O' : '[');
 344	buf[2] = key;
 345	puts_queue(vc, buf);
 346}
 347
 348/*
 349 * Many other routines do put_queue, but I think either
 350 * they produce ASCII, or they produce some user-assigned
 351 * string, and in both cases we might assume that it is
 352 * in utf-8 already.
 353 */
 354static void to_utf8(struct vc_data *vc, uint c)
 355{
 356	if (c < 0x80)
 357		/*  0******* */
 358		put_queue(vc, c);
 359	else if (c < 0x800) {
 360		/* 110***** 10****** */
 361		put_queue(vc, 0xc0 | (c >> 6));
 362		put_queue(vc, 0x80 | (c & 0x3f));
 363	} else if (c < 0x10000) {
 364		if (c >= 0xD800 && c < 0xE000)
 365			return;
 366		if (c == 0xFFFF)
 367			return;
 368		/* 1110**** 10****** 10****** */
 369		put_queue(vc, 0xe0 | (c >> 12));
 370		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 371		put_queue(vc, 0x80 | (c & 0x3f));
 372	} else if (c < 0x110000) {
 373		/* 11110*** 10****** 10****** 10****** */
 374		put_queue(vc, 0xf0 | (c >> 18));
 375		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
 376		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 377		put_queue(vc, 0x80 | (c & 0x3f));
 378	}
 379}
 380
 
 
 
 
 
 
 381/*
 382 * Called after returning from RAW mode or when changing consoles - recompute
 383 * shift_down[] and shift_state from key_down[] maybe called when keymap is
 384 * undefined, so that shiftkey release is seen
 
 385 */
 386void compute_shiftstate(void)
 
 387{
 388	unsigned int i, j, k, sym, val;
 389
 390	shift_state = 0;
 391	memset(shift_down, 0, sizeof(shift_down));
 392
 393	for (i = 0; i < ARRAY_SIZE(key_down); i++) {
 394
 395		if (!key_down[i])
 396			continue;
 397
 398		k = i * BITS_PER_LONG;
 
 
 399
 400		for (j = 0; j < BITS_PER_LONG; j++, k++) {
 401
 402			if (!test_bit(k, key_down))
 403				continue;
 404
 405			sym = U(key_maps[0][k]);
 406			if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
 407				continue;
 
 408
 409			val = KVAL(sym);
 410			if (val == KVAL(K_CAPSSHIFT))
 411				val = KVAL(K_SHIFT);
 412
 413			shift_down[val]++;
 414			shift_state |= (1 << val);
 415		}
 416	}
 417}
 418
 419/*
 420 * We have a combining character DIACR here, followed by the character CH.
 421 * If the combination occurs in the table, return the corresponding value.
 422 * Otherwise, if CH is a space or equals DIACR, return DIACR.
 423 * Otherwise, conclude that DIACR was not combining after all,
 424 * queue it and return CH.
 425 */
 426static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
 427{
 428	unsigned int d = diacr;
 429	unsigned int i;
 430
 431	diacr = 0;
 432
 433	if ((d & ~0xff) == BRL_UC_ROW) {
 434		if ((ch & ~0xff) == BRL_UC_ROW)
 435			return d | ch;
 436	} else {
 437		for (i = 0; i < accent_table_size; i++)
 438			if (accent_table[i].diacr == d && accent_table[i].base == ch)
 439				return accent_table[i].result;
 440	}
 441
 442	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
 443		return d;
 444
 445	if (kbd->kbdmode == VC_UNICODE)
 446		to_utf8(vc, d);
 447	else {
 448		int c = conv_uni_to_8bit(d);
 449		if (c != -1)
 450			put_queue(vc, c);
 451	}
 452
 453	return ch;
 454}
 455
 456/*
 457 * Special function handlers
 458 */
 459static void fn_enter(struct vc_data *vc)
 460{
 461	if (diacr) {
 462		if (kbd->kbdmode == VC_UNICODE)
 463			to_utf8(vc, diacr);
 464		else {
 465			int c = conv_uni_to_8bit(diacr);
 466			if (c != -1)
 467				put_queue(vc, c);
 468		}
 469		diacr = 0;
 470	}
 471
 472	put_queue(vc, 13);
 473	if (vc_kbd_mode(kbd, VC_CRLF))
 474		put_queue(vc, 10);
 475}
 476
 477static void fn_caps_toggle(struct vc_data *vc)
 478{
 479	if (rep)
 480		return;
 481
 482	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
 483}
 484
 485static void fn_caps_on(struct vc_data *vc)
 486{
 487	if (rep)
 488		return;
 489
 490	set_vc_kbd_led(kbd, VC_CAPSLOCK);
 491}
 492
 493static void fn_show_ptregs(struct vc_data *vc)
 494{
 495	struct pt_regs *regs = get_irq_regs();
 496
 497	if (regs)
 498		show_regs(regs);
 499}
 500
 501static void fn_hold(struct vc_data *vc)
 502{
 503	struct tty_struct *tty = vc->port.tty;
 504
 505	if (rep || !tty)
 506		return;
 507
 508	/*
 509	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
 510	 * these routines are also activated by ^S/^Q.
 511	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
 512	 */
 513	if (tty->stopped)
 514		start_tty(tty);
 515	else
 516		stop_tty(tty);
 517}
 518
 519static void fn_num(struct vc_data *vc)
 520{
 521	if (vc_kbd_mode(kbd, VC_APPLIC))
 522		applkey(vc, 'P', 1);
 523	else
 524		fn_bare_num(vc);
 525}
 526
 527/*
 528 * Bind this to Shift-NumLock if you work in application keypad mode
 529 * but want to be able to change the NumLock flag.
 530 * Bind this to NumLock if you prefer that the NumLock key always
 531 * changes the NumLock flag.
 532 */
 533static void fn_bare_num(struct vc_data *vc)
 534{
 535	if (!rep)
 536		chg_vc_kbd_led(kbd, VC_NUMLOCK);
 537}
 538
 539static void fn_lastcons(struct vc_data *vc)
 540{
 541	/* switch to the last used console, ChN */
 542	set_console(last_console);
 543}
 544
 545static void fn_dec_console(struct vc_data *vc)
 546{
 547	int i, cur = fg_console;
 548
 549	/* Currently switching?  Queue this next switch relative to that. */
 550	if (want_console != -1)
 551		cur = want_console;
 552
 553	for (i = cur - 1; i != cur; i--) {
 554		if (i == -1)
 555			i = MAX_NR_CONSOLES - 1;
 556		if (vc_cons_allocated(i))
 557			break;
 558	}
 559	set_console(i);
 560}
 561
 562static void fn_inc_console(struct vc_data *vc)
 563{
 564	int i, cur = fg_console;
 565
 566	/* Currently switching?  Queue this next switch relative to that. */
 567	if (want_console != -1)
 568		cur = want_console;
 569
 570	for (i = cur+1; i != cur; i++) {
 571		if (i == MAX_NR_CONSOLES)
 572			i = 0;
 573		if (vc_cons_allocated(i))
 574			break;
 575	}
 576	set_console(i);
 577}
 578
 579static void fn_send_intr(struct vc_data *vc)
 580{
 581	struct tty_struct *tty = vc->port.tty;
 582
 583	if (!tty)
 584		return;
 585	tty_insert_flip_char(tty, 0, TTY_BREAK);
 586	con_schedule_flip(tty);
 587}
 588
 589static void fn_scroll_forw(struct vc_data *vc)
 590{
 591	scrollfront(vc, 0);
 592}
 593
 594static void fn_scroll_back(struct vc_data *vc)
 595{
 596	scrollback(vc, 0);
 597}
 598
 599static void fn_show_mem(struct vc_data *vc)
 600{
 601	show_mem(0);
 602}
 603
 604static void fn_show_state(struct vc_data *vc)
 605{
 606	show_state();
 607}
 608
 609static void fn_boot_it(struct vc_data *vc)
 610{
 611	ctrl_alt_del();
 612}
 613
 614static void fn_compose(struct vc_data *vc)
 615{
 616	dead_key_next = true;
 617}
 618
 619static void fn_spawn_con(struct vc_data *vc)
 620{
 621	spin_lock(&vt_spawn_con.lock);
 622	if (vt_spawn_con.pid)
 623		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
 624			put_pid(vt_spawn_con.pid);
 625			vt_spawn_con.pid = NULL;
 626		}
 627	spin_unlock(&vt_spawn_con.lock);
 628}
 629
 630static void fn_SAK(struct vc_data *vc)
 631{
 632	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
 633	schedule_work(SAK_work);
 634}
 635
 636static void fn_null(struct vc_data *vc)
 637{
 638	compute_shiftstate();
 639}
 640
 641/*
 642 * Special key handlers
 643 */
 644static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
 645{
 646}
 647
 648static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
 649{
 650	if (up_flag)
 651		return;
 652	if (value >= ARRAY_SIZE(fn_handler))
 653		return;
 654	if ((kbd->kbdmode == VC_RAW ||
 655	     kbd->kbdmode == VC_MEDIUMRAW ||
 656	     kbd->kbdmode == VC_OFF) &&
 657	     value != KVAL(K_SAK))
 658		return;		/* SAK is allowed even in raw mode */
 659	fn_handler[value](vc);
 660}
 661
 662static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
 663{
 664	pr_err("k_lowercase was called - impossible\n");
 665}
 666
 667static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
 668{
 669	if (up_flag)
 670		return;		/* no action, if this is a key release */
 671
 672	if (diacr)
 673		value = handle_diacr(vc, value);
 674
 675	if (dead_key_next) {
 676		dead_key_next = false;
 677		diacr = value;
 678		return;
 679	}
 680	if (kbd->kbdmode == VC_UNICODE)
 681		to_utf8(vc, value);
 682	else {
 683		int c = conv_uni_to_8bit(value);
 684		if (c != -1)
 685			put_queue(vc, c);
 686	}
 687}
 688
 689/*
 690 * Handle dead key. Note that we now may have several
 691 * dead keys modifying the same character. Very useful
 692 * for Vietnamese.
 693 */
 694static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
 695{
 696	if (up_flag)
 697		return;
 698
 699	diacr = (diacr ? handle_diacr(vc, value) : value);
 700}
 701
 702static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
 703{
 704	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
 705}
 706
 707static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
 708{
 709	k_deadunicode(vc, value, up_flag);
 710}
 711
 712/*
 713 * Obsolete - for backwards compatibility only
 714 */
 715static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
 716{
 717	static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718
 719	k_deadunicode(vc, ret_diacr[value], up_flag);
 720}
 721
 722static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
 723{
 724	if (up_flag)
 725		return;
 726
 727	set_console(value);
 728}
 729
 730static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
 731{
 732	if (up_flag)
 733		return;
 734
 735	if ((unsigned)value < ARRAY_SIZE(func_table)) {
 
 
 
 736		if (func_table[value])
 737			puts_queue(vc, func_table[value]);
 
 
 738	} else
 739		pr_err("k_fn called with value=%d\n", value);
 740}
 741
 742static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
 743{
 744	static const char cur_chars[] = "BDCA";
 745
 746	if (up_flag)
 747		return;
 748
 749	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
 750}
 751
 752static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
 753{
 754	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
 755	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
 756
 757	if (up_flag)
 758		return;		/* no action, if this is a key release */
 759
 760	/* kludge... shift forces cursor/number keys */
 761	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
 762		applkey(vc, app_map[value], 1);
 763		return;
 764	}
 765
 766	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
 767
 768		switch (value) {
 769		case KVAL(K_PCOMMA):
 770		case KVAL(K_PDOT):
 771			k_fn(vc, KVAL(K_REMOVE), 0);
 772			return;
 773		case KVAL(K_P0):
 774			k_fn(vc, KVAL(K_INSERT), 0);
 775			return;
 776		case KVAL(K_P1):
 777			k_fn(vc, KVAL(K_SELECT), 0);
 778			return;
 779		case KVAL(K_P2):
 780			k_cur(vc, KVAL(K_DOWN), 0);
 781			return;
 782		case KVAL(K_P3):
 783			k_fn(vc, KVAL(K_PGDN), 0);
 784			return;
 785		case KVAL(K_P4):
 786			k_cur(vc, KVAL(K_LEFT), 0);
 787			return;
 788		case KVAL(K_P6):
 789			k_cur(vc, KVAL(K_RIGHT), 0);
 790			return;
 791		case KVAL(K_P7):
 792			k_fn(vc, KVAL(K_FIND), 0);
 793			return;
 794		case KVAL(K_P8):
 795			k_cur(vc, KVAL(K_UP), 0);
 796			return;
 797		case KVAL(K_P9):
 798			k_fn(vc, KVAL(K_PGUP), 0);
 799			return;
 800		case KVAL(K_P5):
 801			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
 802			return;
 803		}
 804	}
 805
 806	put_queue(vc, pad_chars[value]);
 807	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
 808		put_queue(vc, 10);
 809}
 810
 811static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
 812{
 813	int old_state = shift_state;
 814
 815	if (rep)
 816		return;
 817	/*
 818	 * Mimic typewriter:
 819	 * a CapsShift key acts like Shift but undoes CapsLock
 820	 */
 821	if (value == KVAL(K_CAPSSHIFT)) {
 822		value = KVAL(K_SHIFT);
 823		if (!up_flag)
 824			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
 825	}
 826
 827	if (up_flag) {
 828		/*
 829		 * handle the case that two shift or control
 830		 * keys are depressed simultaneously
 831		 */
 832		if (shift_down[value])
 833			shift_down[value]--;
 834	} else
 835		shift_down[value]++;
 836
 837	if (shift_down[value])
 838		shift_state |= (1 << value);
 839	else
 840		shift_state &= ~(1 << value);
 841
 842	/* kludge */
 843	if (up_flag && shift_state != old_state && npadch != -1) {
 844		if (kbd->kbdmode == VC_UNICODE)
 845			to_utf8(vc, npadch);
 846		else
 847			put_queue(vc, npadch & 0xff);
 848		npadch = -1;
 849	}
 850}
 851
 852static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
 853{
 854	if (up_flag)
 855		return;
 856
 857	if (vc_kbd_mode(kbd, VC_META)) {
 858		put_queue(vc, '\033');
 859		put_queue(vc, value);
 860	} else
 861		put_queue(vc, value | 0x80);
 862}
 863
 864static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
 865{
 866	int base;
 867
 868	if (up_flag)
 869		return;
 870
 871	if (value < 10) {
 872		/* decimal input of code, while Alt depressed */
 873		base = 10;
 874	} else {
 875		/* hexadecimal input of code, while AltGr depressed */
 876		value -= 10;
 877		base = 16;
 878	}
 879
 880	if (npadch == -1)
 881		npadch = value;
 882	else
 883		npadch = npadch * base + value;
 
 
 884}
 885
 886static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
 887{
 888	if (up_flag || rep)
 889		return;
 890
 891	chg_vc_kbd_lock(kbd, value);
 892}
 893
 894static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
 895{
 896	k_shift(vc, value, up_flag);
 897	if (up_flag || rep)
 898		return;
 899
 900	chg_vc_kbd_slock(kbd, value);
 901	/* try to make Alt, oops, AltGr and such work */
 902	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
 903		kbd->slockstate = 0;
 904		chg_vc_kbd_slock(kbd, value);
 905	}
 906}
 907
 908/* by default, 300ms interval for combination release */
 909static unsigned brl_timeout = 300;
 910MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
 911module_param(brl_timeout, uint, 0644);
 912
 913static unsigned brl_nbchords = 1;
 914MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
 915module_param(brl_nbchords, uint, 0644);
 916
 917static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
 918{
 919	static unsigned long chords;
 920	static unsigned committed;
 921
 922	if (!brl_nbchords)
 923		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
 924	else {
 925		committed |= pattern;
 926		chords++;
 927		if (chords == brl_nbchords) {
 928			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
 929			chords = 0;
 930			committed = 0;
 931		}
 932	}
 933}
 934
 935static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
 936{
 937	static unsigned pressed, committing;
 938	static unsigned long releasestart;
 939
 940	if (kbd->kbdmode != VC_UNICODE) {
 941		if (!up_flag)
 942			pr_warning("keyboard mode must be unicode for braille patterns\n");
 943		return;
 944	}
 945
 946	if (!value) {
 947		k_unicode(vc, BRL_UC_ROW, up_flag);
 948		return;
 949	}
 950
 951	if (value > 8)
 952		return;
 953
 954	if (!up_flag) {
 955		pressed |= 1 << (value - 1);
 956		if (!brl_timeout)
 957			committing = pressed;
 958	} else if (brl_timeout) {
 959		if (!committing ||
 960		    time_after(jiffies,
 961			       releasestart + msecs_to_jiffies(brl_timeout))) {
 962			committing = pressed;
 963			releasestart = jiffies;
 964		}
 965		pressed &= ~(1 << (value - 1));
 966		if (!pressed && committing) {
 967			k_brlcommit(vc, committing, 0);
 968			committing = 0;
 969		}
 970	} else {
 971		if (committing) {
 972			k_brlcommit(vc, committing, 0);
 973			committing = 0;
 974		}
 975		pressed &= ~(1 << (value - 1));
 976	}
 977}
 978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 979/*
 980 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
 981 * or (ii) whatever pattern of lights people want to show using KDSETLED,
 982 * or (iii) specified bits of specified words in kernel memory.
 983 */
 984unsigned char getledstate(void)
 985{
 986	return ledstate;
 987}
 988
 989void setledstate(struct kbd_struct *kbd, unsigned int led)
 990{
 
 
 991	if (!(led & ~7)) {
 992		ledioctl = led;
 993		kbd->ledmode = LED_SHOW_IOCTL;
 994	} else
 995		kbd->ledmode = LED_SHOW_FLAGS;
 996
 997	set_leds();
 
 998}
 999
1000static inline unsigned char getleds(void)
1001{
1002	struct kbd_struct *kbd = kbd_table + fg_console;
1003	unsigned char leds;
1004	int i;
1005
1006	if (kbd->ledmode == LED_SHOW_IOCTL)
1007		return ledioctl;
1008
1009	leds = kbd->ledflagstate;
 
1010
1011	if (kbd->ledmode == LED_SHOW_MEM) {
1012		for (i = 0; i < 3; i++)
1013			if (ledptrs[i].valid) {
1014				if (*ledptrs[i].addr & ledptrs[i].mask)
1015					leds |= (1 << i);
1016				else
1017					leds &= ~(1 << i);
1018			}
1019	}
1020	return leds;
 
 
 
 
 
 
 
 
1021}
 
1022
1023static int kbd_update_leds_helper(struct input_handle *handle, void *data)
 
 
 
 
 
 
 
 
1024{
1025	unsigned char leds = *(unsigned char *)data;
 
 
1026
1027	if (test_bit(EV_LED, handle->dev->evbit)) {
1028		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1029		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1030		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1031		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1032	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033
1034	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035}
1036
1037/*
1038 * This is the tasklet that updates LED state on all keyboards
1039 * attached to the box. The reason we use tasklet is that we
1040 * need to handle the scenario when keyboard handler is not
1041 * registered yet but we already getting updates form VT to
1042 * update led state.
1043 */
1044static void kbd_bh(unsigned long dummy)
1045{
1046	unsigned char leds = getleds();
 
 
 
 
 
 
1047
1048	if (leds != ledstate) {
1049		input_handler_for_each_handle(&kbd_handler, &leds,
1050					      kbd_update_leds_helper);
1051		ledstate = leds;
1052	}
1053}
1054
1055DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1056
1057#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1058    defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1059    defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1060    (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1061    defined(CONFIG_AVR32)
1062
1063#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1064			((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
 
 
 
 
 
 
1065
1066static const unsigned short x86_keycodes[256] =
1067	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1068	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1069	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1070	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1071	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1072	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1073	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1074	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1075	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1076	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1077	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1078	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1079	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1080	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1081	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1082
1083#ifdef CONFIG_SPARC
1084static int sparc_l1_a_state;
1085extern void sun_do_break(void);
1086#endif
1087
1088static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1089		       unsigned char up_flag)
1090{
1091	int code;
1092
1093	switch (keycode) {
1094
1095	case KEY_PAUSE:
1096		put_queue(vc, 0xe1);
1097		put_queue(vc, 0x1d | up_flag);
1098		put_queue(vc, 0x45 | up_flag);
1099		break;
1100
1101	case KEY_HANGEUL:
1102		if (!up_flag)
1103			put_queue(vc, 0xf2);
1104		break;
1105
1106	case KEY_HANJA:
1107		if (!up_flag)
1108			put_queue(vc, 0xf1);
1109		break;
1110
1111	case KEY_SYSRQ:
1112		/*
1113		 * Real AT keyboards (that's what we're trying
1114		 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1115		 * pressing PrtSc/SysRq alone, but simply 0x54
1116		 * when pressing Alt+PrtSc/SysRq.
1117		 */
1118		if (test_bit(KEY_LEFTALT, key_down) ||
1119		    test_bit(KEY_RIGHTALT, key_down)) {
1120			put_queue(vc, 0x54 | up_flag);
1121		} else {
1122			put_queue(vc, 0xe0);
1123			put_queue(vc, 0x2a | up_flag);
1124			put_queue(vc, 0xe0);
1125			put_queue(vc, 0x37 | up_flag);
1126		}
1127		break;
1128
1129	default:
1130		if (keycode > 255)
1131			return -1;
1132
1133		code = x86_keycodes[keycode];
1134		if (!code)
1135			return -1;
1136
1137		if (code & 0x100)
1138			put_queue(vc, 0xe0);
1139		put_queue(vc, (code & 0x7f) | up_flag);
1140
1141		break;
1142	}
1143
1144	return 0;
1145}
1146
1147#else
1148
1149#define HW_RAW(dev)	0
 
 
 
1150
1151static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1152{
1153	if (keycode > 127)
1154		return -1;
1155
1156	put_queue(vc, keycode | up_flag);
1157	return 0;
1158}
1159#endif
1160
1161static void kbd_rawcode(unsigned char data)
1162{
1163	struct vc_data *vc = vc_cons[fg_console].d;
1164
1165	kbd = kbd_table + vc->vc_num;
1166	if (kbd->kbdmode == VC_RAW)
1167		put_queue(vc, data);
1168}
1169
1170static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1171{
1172	struct vc_data *vc = vc_cons[fg_console].d;
1173	unsigned short keysym, *key_map;
1174	unsigned char type;
1175	bool raw_mode;
1176	struct tty_struct *tty;
1177	int shift_final;
1178	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1179	int rc;
1180
1181	tty = vc->port.tty;
1182
1183	if (tty && (!tty->driver_data)) {
1184		/* No driver data? Strange. Okay we fix it then. */
1185		tty->driver_data = vc;
1186	}
1187
1188	kbd = kbd_table + vc->vc_num;
1189
1190#ifdef CONFIG_SPARC
1191	if (keycode == KEY_STOP)
1192		sparc_l1_a_state = down;
1193#endif
1194
1195	rep = (down == 2);
1196
1197	raw_mode = (kbd->kbdmode == VC_RAW);
1198	if (raw_mode && !hw_raw)
1199		if (emulate_raw(vc, keycode, !down << 7))
1200			if (keycode < BTN_MISC && printk_ratelimit())
1201				pr_warning("can't emulate rawmode for keycode %d\n",
1202					   keycode);
1203
1204#ifdef CONFIG_SPARC
1205	if (keycode == KEY_A && sparc_l1_a_state) {
1206		sparc_l1_a_state = false;
1207		sun_do_break();
1208	}
1209#endif
1210
1211	if (kbd->kbdmode == VC_MEDIUMRAW) {
1212		/*
1213		 * This is extended medium raw mode, with keys above 127
1214		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1215		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1216		 * interfere with anything else. The two bytes after 0 will
1217		 * always have the up flag set not to interfere with older
1218		 * applications. This allows for 16384 different keycodes,
1219		 * which should be enough.
1220		 */
1221		if (keycode < 128) {
1222			put_queue(vc, keycode | (!down << 7));
1223		} else {
1224			put_queue(vc, !down << 7);
1225			put_queue(vc, (keycode >> 7) | 0x80);
1226			put_queue(vc, keycode | 0x80);
1227		}
1228		raw_mode = true;
1229	}
1230
1231	if (down)
1232		set_bit(keycode, key_down);
1233	else
1234		clear_bit(keycode, key_down);
1235
1236	if (rep &&
1237	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1238	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1239		/*
1240		 * Don't repeat a key if the input buffers are not empty and the
1241		 * characters get aren't echoed locally. This makes key repeat
1242		 * usable with slow applications and under heavy loads.
1243		 */
1244		return;
1245	}
1246
1247	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1248	param.ledstate = kbd->ledflagstate;
1249	key_map = key_maps[shift_final];
1250
1251	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1252					KBD_KEYCODE, &param);
1253	if (rc == NOTIFY_STOP || !key_map) {
1254		atomic_notifier_call_chain(&keyboard_notifier_list,
1255					   KBD_UNBOUND_KEYCODE, &param);
1256		compute_shiftstate();
1257		kbd->slockstate = 0;
1258		return;
1259	}
1260
1261	if (keycode < NR_KEYS)
1262		keysym = key_map[keycode];
1263	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1264		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1265	else
1266		return;
1267
1268	type = KTYP(keysym);
1269
1270	if (type < 0xf0) {
1271		param.value = keysym;
1272		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1273						KBD_UNICODE, &param);
1274		if (rc != NOTIFY_STOP)
1275			if (down && !raw_mode)
1276				to_utf8(vc, keysym);
1277		return;
1278	}
1279
1280	type -= 0xf0;
1281
1282	if (type == KT_LETTER) {
1283		type = KT_LATIN;
1284		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1285			key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1286			if (key_map)
1287				keysym = key_map[keycode];
1288		}
1289	}
1290
1291	param.value = keysym;
1292	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1293					KBD_KEYSYM, &param);
1294	if (rc == NOTIFY_STOP)
1295		return;
1296
1297	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1298		return;
1299
1300	(*k_handler[type])(vc, keysym & 0xff, !down);
1301
1302	param.ledstate = kbd->ledflagstate;
1303	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1304
1305	if (type != KT_SLOCK)
1306		kbd->slockstate = 0;
1307}
1308
1309static void kbd_event(struct input_handle *handle, unsigned int event_type,
1310		      unsigned int event_code, int value)
1311{
1312	/* We are called with interrupts disabled, just take the lock */
1313	spin_lock(&kbd_event_lock);
1314
1315	if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
 
1316		kbd_rawcode(value);
1317	if (event_type == EV_KEY)
1318		kbd_keycode(event_code, value, HW_RAW(handle->dev));
1319
1320	spin_unlock(&kbd_event_lock);
1321
1322	tasklet_schedule(&keyboard_tasklet);
1323	do_poke_blanked_console = 1;
1324	schedule_console_callback();
1325}
1326
1327static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1328{
1329	int i;
1330
1331	if (test_bit(EV_SND, dev->evbit))
1332		return true;
1333
1334	if (test_bit(EV_KEY, dev->evbit)) {
1335		for (i = KEY_RESERVED; i < BTN_MISC; i++)
1336			if (test_bit(i, dev->keybit))
1337				return true;
1338		for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1339			if (test_bit(i, dev->keybit))
1340				return true;
1341	}
1342
1343	return false;
1344}
1345
1346/*
1347 * When a keyboard (or other input device) is found, the kbd_connect
1348 * function is called. The function then looks at the device, and if it
1349 * likes it, it can open it and get events from it. In this (kbd_connect)
1350 * function, we should decide which VT to bind that keyboard to initially.
1351 */
1352static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1353			const struct input_device_id *id)
1354{
1355	struct input_handle *handle;
1356	int error;
1357
1358	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1359	if (!handle)
1360		return -ENOMEM;
1361
1362	handle->dev = dev;
1363	handle->handler = handler;
1364	handle->name = "kbd";
1365
1366	error = input_register_handle(handle);
1367	if (error)
1368		goto err_free_handle;
1369
1370	error = input_open_device(handle);
1371	if (error)
1372		goto err_unregister_handle;
1373
1374	return 0;
1375
1376 err_unregister_handle:
1377	input_unregister_handle(handle);
1378 err_free_handle:
1379	kfree(handle);
1380	return error;
1381}
1382
1383static void kbd_disconnect(struct input_handle *handle)
1384{
1385	input_close_device(handle);
1386	input_unregister_handle(handle);
1387	kfree(handle);
1388}
1389
1390/*
1391 * Start keyboard handler on the new keyboard by refreshing LED state to
1392 * match the rest of the system.
1393 */
1394static void kbd_start(struct input_handle *handle)
1395{
1396	tasklet_disable(&keyboard_tasklet);
1397
1398	if (ledstate != 0xff)
1399		kbd_update_leds_helper(handle, &ledstate);
1400
1401	tasklet_enable(&keyboard_tasklet);
1402}
1403
1404static const struct input_device_id kbd_ids[] = {
1405	{
1406                .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1407                .evbit = { BIT_MASK(EV_KEY) },
1408        },
1409
1410	{
1411                .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1412                .evbit = { BIT_MASK(EV_SND) },
1413        },
1414
1415	{ },    /* Terminating entry */
1416};
1417
1418MODULE_DEVICE_TABLE(input, kbd_ids);
1419
1420static struct input_handler kbd_handler = {
1421	.event		= kbd_event,
1422	.match		= kbd_match,
1423	.connect	= kbd_connect,
1424	.disconnect	= kbd_disconnect,
1425	.start		= kbd_start,
1426	.name		= "kbd",
1427	.id_table	= kbd_ids,
1428};
1429
1430int __init kbd_init(void)
1431{
1432	int i;
1433	int error;
1434
1435        for (i = 0; i < MAX_NR_CONSOLES; i++) {
1436		kbd_table[i].ledflagstate = KBD_DEFLEDS;
1437		kbd_table[i].default_ledflagstate = KBD_DEFLEDS;
1438		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1439		kbd_table[i].lockstate = KBD_DEFLOCK;
1440		kbd_table[i].slockstate = 0;
1441		kbd_table[i].modeflags = KBD_DEFMODE;
1442		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1443	}
1444
 
 
1445	error = input_register_handler(&kbd_handler);
1446	if (error)
1447		return error;
1448
1449	tasklet_enable(&keyboard_tasklet);
1450	tasklet_schedule(&keyboard_tasklet);
1451
1452	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Written for linux by Johan Myreen as a translation from
   4 * the assembly version by Linus (with diacriticals added)
   5 *
   6 * Some additional features added by Christoph Niemann (ChN), March 1993
   7 *
   8 * Loadable keymaps by Risto Kankkunen, May 1993
   9 *
  10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  11 * Added decr/incr_console, dynamic keymaps, Unicode support,
  12 * dynamic function/string keys, led setting,  Sept 1994
  13 * `Sticky' modifier keys, 951006.
  14 *
  15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  16 *
  17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
  18 * Merge with the m68k keyboard driver and split-off of the PC low-level
  19 * parts by Geert Uytterhoeven, May 1997
  20 *
  21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
  23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/consolemap.h>
 
 
 
 
 
 
  29#include <linux/init.h>
 
 
 
 
 
 
  30#include <linux/input.h>
 
 
  31#include <linux/jiffies.h>
  32#include <linux/kbd_diacr.h>
  33#include <linux/kbd_kern.h>
  34#include <linux/leds.h>
  35#include <linux/mm.h>
  36#include <linux/module.h>
  37#include <linux/nospec.h>
  38#include <linux/notifier.h>
  39#include <linux/reboot.h>
  40#include <linux/sched/debug.h>
  41#include <linux/sched/signal.h>
  42#include <linux/slab.h>
  43#include <linux/spinlock.h>
  44#include <linux/string.h>
  45#include <linux/tty_flip.h>
  46#include <linux/tty.h>
  47#include <linux/uaccess.h>
  48#include <linux/vt_kern.h>
  49
  50#include <asm/irq_regs.h>
  51
  52/*
  53 * Exported functions/variables
  54 */
  55
  56#define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
 
 
 
 
 
 
 
  57
  58#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
  59#include <asm/kbdleds.h>
  60#else
  61static inline int kbd_defleds(void)
  62{
  63	return 0;
  64}
  65#endif
  66
  67#define KBD_DEFLOCK 0
  68
 
 
  69/*
  70 * Handler Tables.
  71 */
  72
  73#define K_HANDLERS\
  74	k_self,		k_fn,		k_spec,		k_pad,\
  75	k_dead,		k_cons,		k_cur,		k_shift,\
  76	k_meta,		k_ascii,	k_lock,		k_lowercase,\
  77	k_slock,	k_dead2,	k_brl,		k_ignore
  78
  79typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  80			    char up_flag);
  81static k_handler_fn K_HANDLERS;
  82static k_handler_fn *k_handler[16] = { K_HANDLERS };
  83
  84#define FN_HANDLERS\
  85	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
  86	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
  87	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
  88	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
  89	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
  90
  91typedef void (fn_handler_fn)(struct vc_data *vc);
  92static fn_handler_fn FN_HANDLERS;
  93static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  94
  95/*
  96 * Variables exported for vt_ioctl.c
  97 */
  98
 
 
 
 
 
 
 
 
 
 
 
 
 
  99struct vt_spawn_console vt_spawn_con = {
 100	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
 101	.pid  = NULL,
 102	.sig  = 0,
 103};
 104
 
 
 
 
 
 105
 106/*
 107 * Internal Data.
 108 */
 109
 110static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
 111static struct kbd_struct *kbd = kbd_table;
 112
 113/* maximum values each key_handler can handle */
 114static const unsigned char max_vals[] = {
 115	[ KT_LATIN	] = 255,
 116	[ KT_FN		] = ARRAY_SIZE(func_table) - 1,
 117	[ KT_SPEC	] = ARRAY_SIZE(fn_handler) - 1,
 118	[ KT_PAD	] = NR_PAD - 1,
 119	[ KT_DEAD	] = NR_DEAD - 1,
 120	[ KT_CONS	] = 255,
 121	[ KT_CUR	] = 3,
 122	[ KT_SHIFT	] = NR_SHIFT - 1,
 123	[ KT_META	] = 255,
 124	[ KT_ASCII	] = NR_ASCII - 1,
 125	[ KT_LOCK	] = NR_LOCK - 1,
 126	[ KT_LETTER	] = 255,
 127	[ KT_SLOCK	] = NR_LOCK - 1,
 128	[ KT_DEAD2	] = 255,
 129	[ KT_BRL	] = NR_BRL - 1,
 130};
 131
 132static const int NR_TYPES = ARRAY_SIZE(max_vals);
 133
 134static void kbd_bh(struct tasklet_struct *unused);
 135static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
 136
 137static struct input_handler kbd_handler;
 138static DEFINE_SPINLOCK(kbd_event_lock);
 139static DEFINE_SPINLOCK(led_lock);
 140static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf'  and friends */
 141static DECLARE_BITMAP(key_down, KEY_CNT);	/* keyboard key bitmap */
 142static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
 143static bool dead_key_next;
 144
 145/* Handles a number being assembled on the number pad */
 146static bool npadch_active;
 147static unsigned int npadch_value;
 148
 149static unsigned int diacr;
 150static bool rep;			/* flag telling character repeat */
 151
 152static int shift_state = 0;
 
 153
 154static unsigned int ledstate = -1U;			/* undefined */
 155static unsigned char ledioctl;
 
 
 
 156
 157/*
 158 * Notifier list for console keyboard events
 159 */
 160static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
 161
 162int register_keyboard_notifier(struct notifier_block *nb)
 163{
 164	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
 165}
 166EXPORT_SYMBOL_GPL(register_keyboard_notifier);
 167
 168int unregister_keyboard_notifier(struct notifier_block *nb)
 169{
 170	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
 171}
 172EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
 173
 174/*
 175 * Translation of scancodes to keycodes. We set them on only the first
 176 * keyboard in the list that accepts the scancode and keycode.
 177 * Explanation for not choosing the first attached keyboard anymore:
 178 *  USB keyboards for example have two event devices: one for all "normal"
 179 *  keys and one for extra function keys (like "volume up", "make coffee",
 180 *  etc.). So this means that scancodes for the extra function keys won't
 181 *  be valid for the first event device, but will be for the second.
 182 */
 183
 184struct getset_keycode_data {
 185	struct input_keymap_entry ke;
 186	int error;
 187};
 188
 189static int getkeycode_helper(struct input_handle *handle, void *data)
 190{
 191	struct getset_keycode_data *d = data;
 192
 193	d->error = input_get_keycode(handle->dev, &d->ke);
 194
 195	return d->error == 0; /* stop as soon as we successfully get one */
 196}
 197
 198static int getkeycode(unsigned int scancode)
 199{
 200	struct getset_keycode_data d = {
 201		.ke	= {
 202			.flags		= 0,
 203			.len		= sizeof(scancode),
 204			.keycode	= 0,
 205		},
 206		.error	= -ENODEV,
 207	};
 208
 209	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 210
 211	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
 212
 213	return d.error ?: d.ke.keycode;
 214}
 215
 216static int setkeycode_helper(struct input_handle *handle, void *data)
 217{
 218	struct getset_keycode_data *d = data;
 219
 220	d->error = input_set_keycode(handle->dev, &d->ke);
 221
 222	return d->error == 0; /* stop as soon as we successfully set one */
 223}
 224
 225static int setkeycode(unsigned int scancode, unsigned int keycode)
 226{
 227	struct getset_keycode_data d = {
 228		.ke	= {
 229			.flags		= 0,
 230			.len		= sizeof(scancode),
 231			.keycode	= keycode,
 232		},
 233		.error	= -ENODEV,
 234	};
 235
 236	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 237
 238	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
 239
 240	return d.error;
 241}
 242
 243/*
 244 * Making beeps and bells. Note that we prefer beeps to bells, but when
 245 * shutting the sound off we do both.
 246 */
 247
 248static int kd_sound_helper(struct input_handle *handle, void *data)
 249{
 250	unsigned int *hz = data;
 251	struct input_dev *dev = handle->dev;
 252
 253	if (test_bit(EV_SND, dev->evbit)) {
 254		if (test_bit(SND_TONE, dev->sndbit)) {
 255			input_inject_event(handle, EV_SND, SND_TONE, *hz);
 256			if (*hz)
 257				return 0;
 258		}
 259		if (test_bit(SND_BELL, dev->sndbit))
 260			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
 261	}
 262
 263	return 0;
 264}
 265
 266static void kd_nosound(struct timer_list *unused)
 267{
 268	static unsigned int zero;
 269
 270	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
 271}
 272
 273static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
 274
 275void kd_mksound(unsigned int hz, unsigned int ticks)
 276{
 277	del_timer_sync(&kd_mksound_timer);
 278
 279	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
 280
 281	if (hz && ticks)
 282		mod_timer(&kd_mksound_timer, jiffies + ticks);
 283}
 284EXPORT_SYMBOL(kd_mksound);
 285
 286/*
 287 * Setting the keyboard rate.
 288 */
 289
 290static int kbd_rate_helper(struct input_handle *handle, void *data)
 291{
 292	struct input_dev *dev = handle->dev;
 293	struct kbd_repeat *rpt = data;
 294
 295	if (test_bit(EV_REP, dev->evbit)) {
 296
 297		if (rpt[0].delay > 0)
 298			input_inject_event(handle,
 299					   EV_REP, REP_DELAY, rpt[0].delay);
 300		if (rpt[0].period > 0)
 301			input_inject_event(handle,
 302					   EV_REP, REP_PERIOD, rpt[0].period);
 303
 304		rpt[1].delay = dev->rep[REP_DELAY];
 305		rpt[1].period = dev->rep[REP_PERIOD];
 306	}
 307
 308	return 0;
 309}
 310
 311int kbd_rate(struct kbd_repeat *rpt)
 312{
 313	struct kbd_repeat data[2] = { *rpt };
 314
 315	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
 316	*rpt = data[1];	/* Copy currently used settings */
 317
 318	return 0;
 319}
 320
 321/*
 322 * Helper Functions.
 323 */
 324static void put_queue(struct vc_data *vc, int ch)
 325{
 326	tty_insert_flip_char(&vc->port, ch, 0);
 327	tty_schedule_flip(&vc->port);
 
 
 
 
 328}
 329
 330static void puts_queue(struct vc_data *vc, const char *cp)
 331{
 332	tty_insert_flip_string(&vc->port, cp, strlen(cp));
 333	tty_schedule_flip(&vc->port);
 
 
 
 
 
 
 
 
 334}
 335
 336static void applkey(struct vc_data *vc, int key, char mode)
 337{
 338	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
 339
 340	buf[1] = (mode ? 'O' : '[');
 341	buf[2] = key;
 342	puts_queue(vc, buf);
 343}
 344
 345/*
 346 * Many other routines do put_queue, but I think either
 347 * they produce ASCII, or they produce some user-assigned
 348 * string, and in both cases we might assume that it is
 349 * in utf-8 already.
 350 */
 351static void to_utf8(struct vc_data *vc, uint c)
 352{
 353	if (c < 0x80)
 354		/*  0******* */
 355		put_queue(vc, c);
 356	else if (c < 0x800) {
 357		/* 110***** 10****** */
 358		put_queue(vc, 0xc0 | (c >> 6));
 359		put_queue(vc, 0x80 | (c & 0x3f));
 360	} else if (c < 0x10000) {
 361		if (c >= 0xD800 && c < 0xE000)
 362			return;
 363		if (c == 0xFFFF)
 364			return;
 365		/* 1110**** 10****** 10****** */
 366		put_queue(vc, 0xe0 | (c >> 12));
 367		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 368		put_queue(vc, 0x80 | (c & 0x3f));
 369	} else if (c < 0x110000) {
 370		/* 11110*** 10****** 10****** 10****** */
 371		put_queue(vc, 0xf0 | (c >> 18));
 372		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
 373		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 374		put_queue(vc, 0x80 | (c & 0x3f));
 375	}
 376}
 377
 378/* FIXME: review locking for vt.c callers */
 379static void set_leds(void)
 380{
 381	tasklet_schedule(&keyboard_tasklet);
 382}
 383
 384/*
 385 * Called after returning from RAW mode or when changing consoles - recompute
 386 * shift_down[] and shift_state from key_down[] maybe called when keymap is
 387 * undefined, so that shiftkey release is seen. The caller must hold the
 388 * kbd_event_lock.
 389 */
 390
 391static void do_compute_shiftstate(void)
 392{
 393	unsigned int k, sym, val;
 394
 395	shift_state = 0;
 396	memset(shift_down, 0, sizeof(shift_down));
 397
 398	for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
 399		sym = U(key_maps[0][k]);
 400		if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
 401			continue;
 402
 403		val = KVAL(sym);
 404		if (val == KVAL(K_CAPSSHIFT))
 405			val = KVAL(K_SHIFT);
 406
 407		shift_down[val]++;
 408		shift_state |= BIT(val);
 409	}
 410}
 411
 412/* We still have to export this method to vt.c */
 413void vt_set_leds_compute_shiftstate(void)
 414{
 415	unsigned long flags;
 416
 417	set_leds();
 
 
 418
 419	spin_lock_irqsave(&kbd_event_lock, flags);
 420	do_compute_shiftstate();
 421	spin_unlock_irqrestore(&kbd_event_lock, flags);
 
 422}
 423
 424/*
 425 * We have a combining character DIACR here, followed by the character CH.
 426 * If the combination occurs in the table, return the corresponding value.
 427 * Otherwise, if CH is a space or equals DIACR, return DIACR.
 428 * Otherwise, conclude that DIACR was not combining after all,
 429 * queue it and return CH.
 430 */
 431static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
 432{
 433	unsigned int d = diacr;
 434	unsigned int i;
 435
 436	diacr = 0;
 437
 438	if ((d & ~0xff) == BRL_UC_ROW) {
 439		if ((ch & ~0xff) == BRL_UC_ROW)
 440			return d | ch;
 441	} else {
 442		for (i = 0; i < accent_table_size; i++)
 443			if (accent_table[i].diacr == d && accent_table[i].base == ch)
 444				return accent_table[i].result;
 445	}
 446
 447	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
 448		return d;
 449
 450	if (kbd->kbdmode == VC_UNICODE)
 451		to_utf8(vc, d);
 452	else {
 453		int c = conv_uni_to_8bit(d);
 454		if (c != -1)
 455			put_queue(vc, c);
 456	}
 457
 458	return ch;
 459}
 460
 461/*
 462 * Special function handlers
 463 */
 464static void fn_enter(struct vc_data *vc)
 465{
 466	if (diacr) {
 467		if (kbd->kbdmode == VC_UNICODE)
 468			to_utf8(vc, diacr);
 469		else {
 470			int c = conv_uni_to_8bit(diacr);
 471			if (c != -1)
 472				put_queue(vc, c);
 473		}
 474		diacr = 0;
 475	}
 476
 477	put_queue(vc, '\r');
 478	if (vc_kbd_mode(kbd, VC_CRLF))
 479		put_queue(vc, '\n');
 480}
 481
 482static void fn_caps_toggle(struct vc_data *vc)
 483{
 484	if (rep)
 485		return;
 486
 487	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
 488}
 489
 490static void fn_caps_on(struct vc_data *vc)
 491{
 492	if (rep)
 493		return;
 494
 495	set_vc_kbd_led(kbd, VC_CAPSLOCK);
 496}
 497
 498static void fn_show_ptregs(struct vc_data *vc)
 499{
 500	struct pt_regs *regs = get_irq_regs();
 501
 502	if (regs)
 503		show_regs(regs);
 504}
 505
 506static void fn_hold(struct vc_data *vc)
 507{
 508	struct tty_struct *tty = vc->port.tty;
 509
 510	if (rep || !tty)
 511		return;
 512
 513	/*
 514	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
 515	 * these routines are also activated by ^S/^Q.
 516	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
 517	 */
 518	if (tty->flow.stopped)
 519		start_tty(tty);
 520	else
 521		stop_tty(tty);
 522}
 523
 524static void fn_num(struct vc_data *vc)
 525{
 526	if (vc_kbd_mode(kbd, VC_APPLIC))
 527		applkey(vc, 'P', 1);
 528	else
 529		fn_bare_num(vc);
 530}
 531
 532/*
 533 * Bind this to Shift-NumLock if you work in application keypad mode
 534 * but want to be able to change the NumLock flag.
 535 * Bind this to NumLock if you prefer that the NumLock key always
 536 * changes the NumLock flag.
 537 */
 538static void fn_bare_num(struct vc_data *vc)
 539{
 540	if (!rep)
 541		chg_vc_kbd_led(kbd, VC_NUMLOCK);
 542}
 543
 544static void fn_lastcons(struct vc_data *vc)
 545{
 546	/* switch to the last used console, ChN */
 547	set_console(last_console);
 548}
 549
 550static void fn_dec_console(struct vc_data *vc)
 551{
 552	int i, cur = fg_console;
 553
 554	/* Currently switching?  Queue this next switch relative to that. */
 555	if (want_console != -1)
 556		cur = want_console;
 557
 558	for (i = cur - 1; i != cur; i--) {
 559		if (i == -1)
 560			i = MAX_NR_CONSOLES - 1;
 561		if (vc_cons_allocated(i))
 562			break;
 563	}
 564	set_console(i);
 565}
 566
 567static void fn_inc_console(struct vc_data *vc)
 568{
 569	int i, cur = fg_console;
 570
 571	/* Currently switching?  Queue this next switch relative to that. */
 572	if (want_console != -1)
 573		cur = want_console;
 574
 575	for (i = cur+1; i != cur; i++) {
 576		if (i == MAX_NR_CONSOLES)
 577			i = 0;
 578		if (vc_cons_allocated(i))
 579			break;
 580	}
 581	set_console(i);
 582}
 583
 584static void fn_send_intr(struct vc_data *vc)
 585{
 586	tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
 587	tty_schedule_flip(&vc->port);
 
 
 
 
 588}
 589
 590static void fn_scroll_forw(struct vc_data *vc)
 591{
 592	scrollfront(vc, 0);
 593}
 594
 595static void fn_scroll_back(struct vc_data *vc)
 596{
 597	scrollback(vc);
 598}
 599
 600static void fn_show_mem(struct vc_data *vc)
 601{
 602	show_mem(0, NULL);
 603}
 604
 605static void fn_show_state(struct vc_data *vc)
 606{
 607	show_state();
 608}
 609
 610static void fn_boot_it(struct vc_data *vc)
 611{
 612	ctrl_alt_del();
 613}
 614
 615static void fn_compose(struct vc_data *vc)
 616{
 617	dead_key_next = true;
 618}
 619
 620static void fn_spawn_con(struct vc_data *vc)
 621{
 622	spin_lock(&vt_spawn_con.lock);
 623	if (vt_spawn_con.pid)
 624		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
 625			put_pid(vt_spawn_con.pid);
 626			vt_spawn_con.pid = NULL;
 627		}
 628	spin_unlock(&vt_spawn_con.lock);
 629}
 630
 631static void fn_SAK(struct vc_data *vc)
 632{
 633	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
 634	schedule_work(SAK_work);
 635}
 636
 637static void fn_null(struct vc_data *vc)
 638{
 639	do_compute_shiftstate();
 640}
 641
 642/*
 643 * Special key handlers
 644 */
 645static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
 646{
 647}
 648
 649static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
 650{
 651	if (up_flag)
 652		return;
 653	if (value >= ARRAY_SIZE(fn_handler))
 654		return;
 655	if ((kbd->kbdmode == VC_RAW ||
 656	     kbd->kbdmode == VC_MEDIUMRAW ||
 657	     kbd->kbdmode == VC_OFF) &&
 658	     value != KVAL(K_SAK))
 659		return;		/* SAK is allowed even in raw mode */
 660	fn_handler[value](vc);
 661}
 662
 663static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
 664{
 665	pr_err("k_lowercase was called - impossible\n");
 666}
 667
 668static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
 669{
 670	if (up_flag)
 671		return;		/* no action, if this is a key release */
 672
 673	if (diacr)
 674		value = handle_diacr(vc, value);
 675
 676	if (dead_key_next) {
 677		dead_key_next = false;
 678		diacr = value;
 679		return;
 680	}
 681	if (kbd->kbdmode == VC_UNICODE)
 682		to_utf8(vc, value);
 683	else {
 684		int c = conv_uni_to_8bit(value);
 685		if (c != -1)
 686			put_queue(vc, c);
 687	}
 688}
 689
 690/*
 691 * Handle dead key. Note that we now may have several
 692 * dead keys modifying the same character. Very useful
 693 * for Vietnamese.
 694 */
 695static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
 696{
 697	if (up_flag)
 698		return;
 699
 700	diacr = (diacr ? handle_diacr(vc, value) : value);
 701}
 702
 703static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
 704{
 705	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
 706}
 707
 708static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
 709{
 710	k_deadunicode(vc, value, up_flag);
 711}
 712
 713/*
 714 * Obsolete - for backwards compatibility only
 715 */
 716static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
 717{
 718	static const unsigned char ret_diacr[NR_DEAD] = {
 719		'`',	/* dead_grave */
 720		'\'',	/* dead_acute */
 721		'^',	/* dead_circumflex */
 722		'~',	/* dead_tilda */
 723		'"',	/* dead_diaeresis */
 724		',',	/* dead_cedilla */
 725		'_',	/* dead_macron */
 726		'U',	/* dead_breve */
 727		'.',	/* dead_abovedot */
 728		'*',	/* dead_abovering */
 729		'=',	/* dead_doubleacute */
 730		'c',	/* dead_caron */
 731		'k',	/* dead_ogonek */
 732		'i',	/* dead_iota */
 733		'#',	/* dead_voiced_sound */
 734		'o',	/* dead_semivoiced_sound */
 735		'!',	/* dead_belowdot */
 736		'?',	/* dead_hook */
 737		'+',	/* dead_horn */
 738		'-',	/* dead_stroke */
 739		')',	/* dead_abovecomma */
 740		'(',	/* dead_abovereversedcomma */
 741		':',	/* dead_doublegrave */
 742		'n',	/* dead_invertedbreve */
 743		';',	/* dead_belowcomma */
 744		'$',	/* dead_currency */
 745		'@',	/* dead_greek */
 746	};
 747
 748	k_deadunicode(vc, ret_diacr[value], up_flag);
 749}
 750
 751static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
 752{
 753	if (up_flag)
 754		return;
 755
 756	set_console(value);
 757}
 758
 759static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
 760{
 761	if (up_flag)
 762		return;
 763
 764	if ((unsigned)value < ARRAY_SIZE(func_table)) {
 765		unsigned long flags;
 766
 767		spin_lock_irqsave(&func_buf_lock, flags);
 768		if (func_table[value])
 769			puts_queue(vc, func_table[value]);
 770		spin_unlock_irqrestore(&func_buf_lock, flags);
 771
 772	} else
 773		pr_err("k_fn called with value=%d\n", value);
 774}
 775
 776static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
 777{
 778	static const char cur_chars[] = "BDCA";
 779
 780	if (up_flag)
 781		return;
 782
 783	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
 784}
 785
 786static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
 787{
 788	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
 789	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
 790
 791	if (up_flag)
 792		return;		/* no action, if this is a key release */
 793
 794	/* kludge... shift forces cursor/number keys */
 795	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
 796		applkey(vc, app_map[value], 1);
 797		return;
 798	}
 799
 800	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
 801
 802		switch (value) {
 803		case KVAL(K_PCOMMA):
 804		case KVAL(K_PDOT):
 805			k_fn(vc, KVAL(K_REMOVE), 0);
 806			return;
 807		case KVAL(K_P0):
 808			k_fn(vc, KVAL(K_INSERT), 0);
 809			return;
 810		case KVAL(K_P1):
 811			k_fn(vc, KVAL(K_SELECT), 0);
 812			return;
 813		case KVAL(K_P2):
 814			k_cur(vc, KVAL(K_DOWN), 0);
 815			return;
 816		case KVAL(K_P3):
 817			k_fn(vc, KVAL(K_PGDN), 0);
 818			return;
 819		case KVAL(K_P4):
 820			k_cur(vc, KVAL(K_LEFT), 0);
 821			return;
 822		case KVAL(K_P6):
 823			k_cur(vc, KVAL(K_RIGHT), 0);
 824			return;
 825		case KVAL(K_P7):
 826			k_fn(vc, KVAL(K_FIND), 0);
 827			return;
 828		case KVAL(K_P8):
 829			k_cur(vc, KVAL(K_UP), 0);
 830			return;
 831		case KVAL(K_P9):
 832			k_fn(vc, KVAL(K_PGUP), 0);
 833			return;
 834		case KVAL(K_P5):
 835			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
 836			return;
 837		}
 838	}
 839
 840	put_queue(vc, pad_chars[value]);
 841	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
 842		put_queue(vc, '\n');
 843}
 844
 845static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
 846{
 847	int old_state = shift_state;
 848
 849	if (rep)
 850		return;
 851	/*
 852	 * Mimic typewriter:
 853	 * a CapsShift key acts like Shift but undoes CapsLock
 854	 */
 855	if (value == KVAL(K_CAPSSHIFT)) {
 856		value = KVAL(K_SHIFT);
 857		if (!up_flag)
 858			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
 859	}
 860
 861	if (up_flag) {
 862		/*
 863		 * handle the case that two shift or control
 864		 * keys are depressed simultaneously
 865		 */
 866		if (shift_down[value])
 867			shift_down[value]--;
 868	} else
 869		shift_down[value]++;
 870
 871	if (shift_down[value])
 872		shift_state |= BIT(value);
 873	else
 874		shift_state &= ~BIT(value);
 875
 876	/* kludge */
 877	if (up_flag && shift_state != old_state && npadch_active) {
 878		if (kbd->kbdmode == VC_UNICODE)
 879			to_utf8(vc, npadch_value);
 880		else
 881			put_queue(vc, npadch_value & 0xff);
 882		npadch_active = false;
 883	}
 884}
 885
 886static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
 887{
 888	if (up_flag)
 889		return;
 890
 891	if (vc_kbd_mode(kbd, VC_META)) {
 892		put_queue(vc, '\033');
 893		put_queue(vc, value);
 894	} else
 895		put_queue(vc, value | BIT(7));
 896}
 897
 898static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
 899{
 900	unsigned int base;
 901
 902	if (up_flag)
 903		return;
 904
 905	if (value < 10) {
 906		/* decimal input of code, while Alt depressed */
 907		base = 10;
 908	} else {
 909		/* hexadecimal input of code, while AltGr depressed */
 910		value -= 10;
 911		base = 16;
 912	}
 913
 914	if (!npadch_active) {
 915		npadch_value = 0;
 916		npadch_active = true;
 917	}
 918
 919	npadch_value = npadch_value * base + value;
 920}
 921
 922static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
 923{
 924	if (up_flag || rep)
 925		return;
 926
 927	chg_vc_kbd_lock(kbd, value);
 928}
 929
 930static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
 931{
 932	k_shift(vc, value, up_flag);
 933	if (up_flag || rep)
 934		return;
 935
 936	chg_vc_kbd_slock(kbd, value);
 937	/* try to make Alt, oops, AltGr and such work */
 938	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
 939		kbd->slockstate = 0;
 940		chg_vc_kbd_slock(kbd, value);
 941	}
 942}
 943
 944/* by default, 300ms interval for combination release */
 945static unsigned brl_timeout = 300;
 946MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
 947module_param(brl_timeout, uint, 0644);
 948
 949static unsigned brl_nbchords = 1;
 950MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
 951module_param(brl_nbchords, uint, 0644);
 952
 953static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
 954{
 955	static unsigned long chords;
 956	static unsigned committed;
 957
 958	if (!brl_nbchords)
 959		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
 960	else {
 961		committed |= pattern;
 962		chords++;
 963		if (chords == brl_nbchords) {
 964			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
 965			chords = 0;
 966			committed = 0;
 967		}
 968	}
 969}
 970
 971static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
 972{
 973	static unsigned pressed, committing;
 974	static unsigned long releasestart;
 975
 976	if (kbd->kbdmode != VC_UNICODE) {
 977		if (!up_flag)
 978			pr_warn("keyboard mode must be unicode for braille patterns\n");
 979		return;
 980	}
 981
 982	if (!value) {
 983		k_unicode(vc, BRL_UC_ROW, up_flag);
 984		return;
 985	}
 986
 987	if (value > 8)
 988		return;
 989
 990	if (!up_flag) {
 991		pressed |= BIT(value - 1);
 992		if (!brl_timeout)
 993			committing = pressed;
 994	} else if (brl_timeout) {
 995		if (!committing ||
 996		    time_after(jiffies,
 997			       releasestart + msecs_to_jiffies(brl_timeout))) {
 998			committing = pressed;
 999			releasestart = jiffies;
1000		}
1001		pressed &= ~BIT(value - 1);
1002		if (!pressed && committing) {
1003			k_brlcommit(vc, committing, 0);
1004			committing = 0;
1005		}
1006	} else {
1007		if (committing) {
1008			k_brlcommit(vc, committing, 0);
1009			committing = 0;
1010		}
1011		pressed &= ~BIT(value - 1);
1012	}
1013}
1014
1015#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1016
1017struct kbd_led_trigger {
1018	struct led_trigger trigger;
1019	unsigned int mask;
1020};
1021
1022static int kbd_led_trigger_activate(struct led_classdev *cdev)
1023{
1024	struct kbd_led_trigger *trigger =
1025		container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1026
1027	tasklet_disable(&keyboard_tasklet);
1028	if (ledstate != -1U)
1029		led_trigger_event(&trigger->trigger,
1030				  ledstate & trigger->mask ?
1031					LED_FULL : LED_OFF);
1032	tasklet_enable(&keyboard_tasklet);
1033
1034	return 0;
1035}
1036
1037#define KBD_LED_TRIGGER(_led_bit, _name) {			\
1038		.trigger = {					\
1039			.name = _name,				\
1040			.activate = kbd_led_trigger_activate,	\
1041		},						\
1042		.mask	= BIT(_led_bit),			\
1043	}
1044
1045#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name)		\
1046	KBD_LED_TRIGGER((_led_bit) + 8, _name)
1047
1048static struct kbd_led_trigger kbd_led_triggers[] = {
1049	KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1050	KBD_LED_TRIGGER(VC_NUMLOCK,   "kbd-numlock"),
1051	KBD_LED_TRIGGER(VC_CAPSLOCK,  "kbd-capslock"),
1052	KBD_LED_TRIGGER(VC_KANALOCK,  "kbd-kanalock"),
1053
1054	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK,  "kbd-shiftlock"),
1055	KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK,  "kbd-altgrlock"),
1056	KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK,   "kbd-ctrllock"),
1057	KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK,    "kbd-altlock"),
1058	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1059	KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1060	KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK,  "kbd-ctrlllock"),
1061	KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK,  "kbd-ctrlrlock"),
1062};
1063
1064static void kbd_propagate_led_state(unsigned int old_state,
1065				    unsigned int new_state)
1066{
1067	struct kbd_led_trigger *trigger;
1068	unsigned int changed = old_state ^ new_state;
1069	int i;
1070
1071	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1072		trigger = &kbd_led_triggers[i];
1073
1074		if (changed & trigger->mask)
1075			led_trigger_event(&trigger->trigger,
1076					  new_state & trigger->mask ?
1077						LED_FULL : LED_OFF);
1078	}
1079}
1080
1081static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1082{
1083	unsigned int led_state = *(unsigned int *)data;
1084
1085	if (test_bit(EV_LED, handle->dev->evbit))
1086		kbd_propagate_led_state(~led_state, led_state);
1087
1088	return 0;
1089}
1090
1091static void kbd_init_leds(void)
1092{
1093	int error;
1094	int i;
1095
1096	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1097		error = led_trigger_register(&kbd_led_triggers[i].trigger);
1098		if (error)
1099			pr_err("error %d while registering trigger %s\n",
1100			       error, kbd_led_triggers[i].trigger.name);
1101	}
1102}
1103
1104#else
1105
1106static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1107{
1108	unsigned int leds = *(unsigned int *)data;
1109
1110	if (test_bit(EV_LED, handle->dev->evbit)) {
1111		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1112		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & BIT(1)));
1113		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & BIT(2)));
1114		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1115	}
1116
1117	return 0;
1118}
1119
1120static void kbd_propagate_led_state(unsigned int old_state,
1121				    unsigned int new_state)
1122{
1123	input_handler_for_each_handle(&kbd_handler, &new_state,
1124				      kbd_update_leds_helper);
1125}
1126
1127static void kbd_init_leds(void)
1128{
1129}
1130
1131#endif
1132
1133/*
1134 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1135 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1136 * or (iii) specified bits of specified words in kernel memory.
1137 */
1138static unsigned char getledstate(void)
1139{
1140	return ledstate & 0xff;
1141}
1142
1143void setledstate(struct kbd_struct *kb, unsigned int led)
1144{
1145        unsigned long flags;
1146        spin_lock_irqsave(&led_lock, flags);
1147	if (!(led & ~7)) {
1148		ledioctl = led;
1149		kb->ledmode = LED_SHOW_IOCTL;
1150	} else
1151		kb->ledmode = LED_SHOW_FLAGS;
1152
1153	set_leds();
1154	spin_unlock_irqrestore(&led_lock, flags);
1155}
1156
1157static inline unsigned char getleds(void)
1158{
1159	struct kbd_struct *kb = kbd_table + fg_console;
 
 
1160
1161	if (kb->ledmode == LED_SHOW_IOCTL)
1162		return ledioctl;
1163
1164	return kb->ledflagstate;
1165}
1166
1167/**
1168 *	vt_get_leds	-	helper for braille console
1169 *	@console: console to read
1170 *	@flag: flag we want to check
1171 *
1172 *	Check the status of a keyboard led flag and report it back
1173 */
1174int vt_get_leds(unsigned int console, int flag)
1175{
1176	struct kbd_struct *kb = kbd_table + console;
1177	int ret;
1178	unsigned long flags;
1179
1180	spin_lock_irqsave(&led_lock, flags);
1181	ret = vc_kbd_led(kb, flag);
1182	spin_unlock_irqrestore(&led_lock, flags);
1183
1184	return ret;
1185}
1186EXPORT_SYMBOL_GPL(vt_get_leds);
1187
1188/**
1189 *	vt_set_led_state	-	set LED state of a console
1190 *	@console: console to set
1191 *	@leds: LED bits
1192 *
1193 *	Set the LEDs on a console. This is a wrapper for the VT layer
1194 *	so that we can keep kbd knowledge internal
1195 */
1196void vt_set_led_state(unsigned int console, int leds)
1197{
1198	struct kbd_struct *kb = kbd_table + console;
1199	setledstate(kb, leds);
1200}
1201
1202/**
1203 *	vt_kbd_con_start	-	Keyboard side of console start
1204 *	@console: console
1205 *
1206 *	Handle console start. This is a wrapper for the VT layer
1207 *	so that we can keep kbd knowledge internal
1208 *
1209 *	FIXME: We eventually need to hold the kbd lock here to protect
1210 *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1211 *	and start_tty under the kbd_event_lock, while normal tty paths
1212 *	don't hold the lock. We probably need to split out an LED lock
1213 *	but not during an -rc release!
1214 */
1215void vt_kbd_con_start(unsigned int console)
1216{
1217	struct kbd_struct *kb = kbd_table + console;
1218	unsigned long flags;
1219	spin_lock_irqsave(&led_lock, flags);
1220	clr_vc_kbd_led(kb, VC_SCROLLOCK);
1221	set_leds();
1222	spin_unlock_irqrestore(&led_lock, flags);
1223}
1224
1225/**
1226 *	vt_kbd_con_stop		-	Keyboard side of console stop
1227 *	@console: console
1228 *
1229 *	Handle console stop. This is a wrapper for the VT layer
1230 *	so that we can keep kbd knowledge internal
1231 */
1232void vt_kbd_con_stop(unsigned int console)
1233{
1234	struct kbd_struct *kb = kbd_table + console;
1235	unsigned long flags;
1236	spin_lock_irqsave(&led_lock, flags);
1237	set_vc_kbd_led(kb, VC_SCROLLOCK);
1238	set_leds();
1239	spin_unlock_irqrestore(&led_lock, flags);
1240}
1241
1242/*
1243 * This is the tasklet that updates LED state of LEDs using standard
1244 * keyboard triggers. The reason we use tasklet is that we need to
1245 * handle the scenario when keyboard handler is not registered yet
1246 * but we already getting updates from the VT to update led state.
 
1247 */
1248static void kbd_bh(struct tasklet_struct *unused)
1249{
1250	unsigned int leds;
1251	unsigned long flags;
1252
1253	spin_lock_irqsave(&led_lock, flags);
1254	leds = getleds();
1255	leds |= (unsigned int)kbd->lockstate << 8;
1256	spin_unlock_irqrestore(&led_lock, flags);
1257
1258	if (leds != ledstate) {
1259		kbd_propagate_led_state(ledstate, leds);
 
1260		ledstate = leds;
1261	}
1262}
1263
 
 
1264#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1265    defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1266    defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1267    (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
 
1268
1269static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1270{
1271	if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1272		return false;
1273
1274	return dev->id.bustype == BUS_I8042 &&
1275		dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1276}
1277
1278static const unsigned short x86_keycodes[256] =
1279	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1280	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1281	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1282	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1283	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1284	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1285	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1286	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1287	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1288	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1289	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1290	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1291	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1292	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1293	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1294
1295#ifdef CONFIG_SPARC
1296static int sparc_l1_a_state;
1297extern void sun_do_break(void);
1298#endif
1299
1300static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1301		       unsigned char up_flag)
1302{
1303	int code;
1304
1305	switch (keycode) {
1306
1307	case KEY_PAUSE:
1308		put_queue(vc, 0xe1);
1309		put_queue(vc, 0x1d | up_flag);
1310		put_queue(vc, 0x45 | up_flag);
1311		break;
1312
1313	case KEY_HANGEUL:
1314		if (!up_flag)
1315			put_queue(vc, 0xf2);
1316		break;
1317
1318	case KEY_HANJA:
1319		if (!up_flag)
1320			put_queue(vc, 0xf1);
1321		break;
1322
1323	case KEY_SYSRQ:
1324		/*
1325		 * Real AT keyboards (that's what we're trying
1326		 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1327		 * pressing PrtSc/SysRq alone, but simply 0x54
1328		 * when pressing Alt+PrtSc/SysRq.
1329		 */
1330		if (test_bit(KEY_LEFTALT, key_down) ||
1331		    test_bit(KEY_RIGHTALT, key_down)) {
1332			put_queue(vc, 0x54 | up_flag);
1333		} else {
1334			put_queue(vc, 0xe0);
1335			put_queue(vc, 0x2a | up_flag);
1336			put_queue(vc, 0xe0);
1337			put_queue(vc, 0x37 | up_flag);
1338		}
1339		break;
1340
1341	default:
1342		if (keycode > 255)
1343			return -1;
1344
1345		code = x86_keycodes[keycode];
1346		if (!code)
1347			return -1;
1348
1349		if (code & 0x100)
1350			put_queue(vc, 0xe0);
1351		put_queue(vc, (code & 0x7f) | up_flag);
1352
1353		break;
1354	}
1355
1356	return 0;
1357}
1358
1359#else
1360
1361static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1362{
1363	return false;
1364}
1365
1366static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1367{
1368	if (keycode > 127)
1369		return -1;
1370
1371	put_queue(vc, keycode | up_flag);
1372	return 0;
1373}
1374#endif
1375
1376static void kbd_rawcode(unsigned char data)
1377{
1378	struct vc_data *vc = vc_cons[fg_console].d;
1379
1380	kbd = kbd_table + vc->vc_num;
1381	if (kbd->kbdmode == VC_RAW)
1382		put_queue(vc, data);
1383}
1384
1385static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1386{
1387	struct vc_data *vc = vc_cons[fg_console].d;
1388	unsigned short keysym, *key_map;
1389	unsigned char type;
1390	bool raw_mode;
1391	struct tty_struct *tty;
1392	int shift_final;
1393	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1394	int rc;
1395
1396	tty = vc->port.tty;
1397
1398	if (tty && (!tty->driver_data)) {
1399		/* No driver data? Strange. Okay we fix it then. */
1400		tty->driver_data = vc;
1401	}
1402
1403	kbd = kbd_table + vc->vc_num;
1404
1405#ifdef CONFIG_SPARC
1406	if (keycode == KEY_STOP)
1407		sparc_l1_a_state = down;
1408#endif
1409
1410	rep = (down == 2);
1411
1412	raw_mode = (kbd->kbdmode == VC_RAW);
1413	if (raw_mode && !hw_raw)
1414		if (emulate_raw(vc, keycode, !down << 7))
1415			if (keycode < BTN_MISC && printk_ratelimit())
1416				pr_warn("can't emulate rawmode for keycode %d\n",
1417					keycode);
1418
1419#ifdef CONFIG_SPARC
1420	if (keycode == KEY_A && sparc_l1_a_state) {
1421		sparc_l1_a_state = false;
1422		sun_do_break();
1423	}
1424#endif
1425
1426	if (kbd->kbdmode == VC_MEDIUMRAW) {
1427		/*
1428		 * This is extended medium raw mode, with keys above 127
1429		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1430		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1431		 * interfere with anything else. The two bytes after 0 will
1432		 * always have the up flag set not to interfere with older
1433		 * applications. This allows for 16384 different keycodes,
1434		 * which should be enough.
1435		 */
1436		if (keycode < 128) {
1437			put_queue(vc, keycode | (!down << 7));
1438		} else {
1439			put_queue(vc, !down << 7);
1440			put_queue(vc, (keycode >> 7) | BIT(7));
1441			put_queue(vc, keycode | BIT(7));
1442		}
1443		raw_mode = true;
1444	}
1445
1446	assign_bit(keycode, key_down, down);
 
 
 
1447
1448	if (rep &&
1449	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1450	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1451		/*
1452		 * Don't repeat a key if the input buffers are not empty and the
1453		 * characters get aren't echoed locally. This makes key repeat
1454		 * usable with slow applications and under heavy loads.
1455		 */
1456		return;
1457	}
1458
1459	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1460	param.ledstate = kbd->ledflagstate;
1461	key_map = key_maps[shift_final];
1462
1463	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1464					KBD_KEYCODE, &param);
1465	if (rc == NOTIFY_STOP || !key_map) {
1466		atomic_notifier_call_chain(&keyboard_notifier_list,
1467					   KBD_UNBOUND_KEYCODE, &param);
1468		do_compute_shiftstate();
1469		kbd->slockstate = 0;
1470		return;
1471	}
1472
1473	if (keycode < NR_KEYS)
1474		keysym = key_map[keycode];
1475	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1476		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1477	else
1478		return;
1479
1480	type = KTYP(keysym);
1481
1482	if (type < 0xf0) {
1483		param.value = keysym;
1484		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1485						KBD_UNICODE, &param);
1486		if (rc != NOTIFY_STOP)
1487			if (down && !raw_mode)
1488				k_unicode(vc, keysym, !down);
1489		return;
1490	}
1491
1492	type -= 0xf0;
1493
1494	if (type == KT_LETTER) {
1495		type = KT_LATIN;
1496		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1497			key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1498			if (key_map)
1499				keysym = key_map[keycode];
1500		}
1501	}
1502
1503	param.value = keysym;
1504	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1505					KBD_KEYSYM, &param);
1506	if (rc == NOTIFY_STOP)
1507		return;
1508
1509	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1510		return;
1511
1512	(*k_handler[type])(vc, keysym & 0xff, !down);
1513
1514	param.ledstate = kbd->ledflagstate;
1515	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1516
1517	if (type != KT_SLOCK)
1518		kbd->slockstate = 0;
1519}
1520
1521static void kbd_event(struct input_handle *handle, unsigned int event_type,
1522		      unsigned int event_code, int value)
1523{
1524	/* We are called with interrupts disabled, just take the lock */
1525	spin_lock(&kbd_event_lock);
1526
1527	if (event_type == EV_MSC && event_code == MSC_RAW &&
1528			kbd_is_hw_raw(handle->dev))
1529		kbd_rawcode(value);
1530	if (event_type == EV_KEY && event_code <= KEY_MAX)
1531		kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1532
1533	spin_unlock(&kbd_event_lock);
1534
1535	tasklet_schedule(&keyboard_tasklet);
1536	do_poke_blanked_console = 1;
1537	schedule_console_callback();
1538}
1539
1540static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1541{
 
 
1542	if (test_bit(EV_SND, dev->evbit))
1543		return true;
1544
1545	if (test_bit(EV_KEY, dev->evbit)) {
1546		if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1547				BTN_MISC)
1548			return true;
1549		if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1550					KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1551			return true;
1552	}
1553
1554	return false;
1555}
1556
1557/*
1558 * When a keyboard (or other input device) is found, the kbd_connect
1559 * function is called. The function then looks at the device, and if it
1560 * likes it, it can open it and get events from it. In this (kbd_connect)
1561 * function, we should decide which VT to bind that keyboard to initially.
1562 */
1563static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1564			const struct input_device_id *id)
1565{
1566	struct input_handle *handle;
1567	int error;
1568
1569	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1570	if (!handle)
1571		return -ENOMEM;
1572
1573	handle->dev = dev;
1574	handle->handler = handler;
1575	handle->name = "kbd";
1576
1577	error = input_register_handle(handle);
1578	if (error)
1579		goto err_free_handle;
1580
1581	error = input_open_device(handle);
1582	if (error)
1583		goto err_unregister_handle;
1584
1585	return 0;
1586
1587 err_unregister_handle:
1588	input_unregister_handle(handle);
1589 err_free_handle:
1590	kfree(handle);
1591	return error;
1592}
1593
1594static void kbd_disconnect(struct input_handle *handle)
1595{
1596	input_close_device(handle);
1597	input_unregister_handle(handle);
1598	kfree(handle);
1599}
1600
1601/*
1602 * Start keyboard handler on the new keyboard by refreshing LED state to
1603 * match the rest of the system.
1604 */
1605static void kbd_start(struct input_handle *handle)
1606{
1607	tasklet_disable(&keyboard_tasklet);
1608
1609	if (ledstate != -1U)
1610		kbd_update_leds_helper(handle, &ledstate);
1611
1612	tasklet_enable(&keyboard_tasklet);
1613}
1614
1615static const struct input_device_id kbd_ids[] = {
1616	{
1617		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1618		.evbit = { BIT_MASK(EV_KEY) },
1619	},
1620
1621	{
1622		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1623		.evbit = { BIT_MASK(EV_SND) },
1624	},
1625
1626	{ },    /* Terminating entry */
1627};
1628
1629MODULE_DEVICE_TABLE(input, kbd_ids);
1630
1631static struct input_handler kbd_handler = {
1632	.event		= kbd_event,
1633	.match		= kbd_match,
1634	.connect	= kbd_connect,
1635	.disconnect	= kbd_disconnect,
1636	.start		= kbd_start,
1637	.name		= "kbd",
1638	.id_table	= kbd_ids,
1639};
1640
1641int __init kbd_init(void)
1642{
1643	int i;
1644	int error;
1645
1646	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1647		kbd_table[i].ledflagstate = kbd_defleds();
1648		kbd_table[i].default_ledflagstate = kbd_defleds();
1649		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1650		kbd_table[i].lockstate = KBD_DEFLOCK;
1651		kbd_table[i].slockstate = 0;
1652		kbd_table[i].modeflags = KBD_DEFMODE;
1653		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1654	}
1655
1656	kbd_init_leds();
1657
1658	error = input_register_handler(&kbd_handler);
1659	if (error)
1660		return error;
1661
1662	tasklet_enable(&keyboard_tasklet);
1663	tasklet_schedule(&keyboard_tasklet);
1664
1665	return 0;
1666}
1667
1668/* Ioctl support code */
1669
1670/**
1671 *	vt_do_diacrit		-	diacritical table updates
1672 *	@cmd: ioctl request
1673 *	@udp: pointer to user data for ioctl
1674 *	@perm: permissions check computed by caller
1675 *
1676 *	Update the diacritical tables atomically and safely. Lock them
1677 *	against simultaneous keypresses
1678 */
1679int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1680{
1681	unsigned long flags;
1682	int asize;
1683	int ret = 0;
1684
1685	switch (cmd) {
1686	case KDGKBDIACR:
1687	{
1688		struct kbdiacrs __user *a = udp;
1689		struct kbdiacr *dia;
1690		int i;
1691
1692		dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1693								GFP_KERNEL);
1694		if (!dia)
1695			return -ENOMEM;
1696
1697		/* Lock the diacriticals table, make a copy and then
1698		   copy it after we unlock */
1699		spin_lock_irqsave(&kbd_event_lock, flags);
1700
1701		asize = accent_table_size;
1702		for (i = 0; i < asize; i++) {
1703			dia[i].diacr = conv_uni_to_8bit(
1704						accent_table[i].diacr);
1705			dia[i].base = conv_uni_to_8bit(
1706						accent_table[i].base);
1707			dia[i].result = conv_uni_to_8bit(
1708						accent_table[i].result);
1709		}
1710		spin_unlock_irqrestore(&kbd_event_lock, flags);
1711
1712		if (put_user(asize, &a->kb_cnt))
1713			ret = -EFAULT;
1714		else  if (copy_to_user(a->kbdiacr, dia,
1715				asize * sizeof(struct kbdiacr)))
1716			ret = -EFAULT;
1717		kfree(dia);
1718		return ret;
1719	}
1720	case KDGKBDIACRUC:
1721	{
1722		struct kbdiacrsuc __user *a = udp;
1723		void *buf;
1724
1725		buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1726								GFP_KERNEL);
1727		if (buf == NULL)
1728			return -ENOMEM;
1729
1730		/* Lock the diacriticals table, make a copy and then
1731		   copy it after we unlock */
1732		spin_lock_irqsave(&kbd_event_lock, flags);
1733
1734		asize = accent_table_size;
1735		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1736
1737		spin_unlock_irqrestore(&kbd_event_lock, flags);
1738
1739		if (put_user(asize, &a->kb_cnt))
1740			ret = -EFAULT;
1741		else if (copy_to_user(a->kbdiacruc, buf,
1742				asize*sizeof(struct kbdiacruc)))
1743			ret = -EFAULT;
1744		kfree(buf);
1745		return ret;
1746	}
1747
1748	case KDSKBDIACR:
1749	{
1750		struct kbdiacrs __user *a = udp;
1751		struct kbdiacr *dia = NULL;
1752		unsigned int ct;
1753		int i;
1754
1755		if (!perm)
1756			return -EPERM;
1757		if (get_user(ct, &a->kb_cnt))
1758			return -EFAULT;
1759		if (ct >= MAX_DIACR)
1760			return -EINVAL;
1761
1762		if (ct) {
1763
1764			dia = memdup_user(a->kbdiacr,
1765					sizeof(struct kbdiacr) * ct);
1766			if (IS_ERR(dia))
1767				return PTR_ERR(dia);
1768
1769		}
1770
1771		spin_lock_irqsave(&kbd_event_lock, flags);
1772		accent_table_size = ct;
1773		for (i = 0; i < ct; i++) {
1774			accent_table[i].diacr =
1775					conv_8bit_to_uni(dia[i].diacr);
1776			accent_table[i].base =
1777					conv_8bit_to_uni(dia[i].base);
1778			accent_table[i].result =
1779					conv_8bit_to_uni(dia[i].result);
1780		}
1781		spin_unlock_irqrestore(&kbd_event_lock, flags);
1782		kfree(dia);
1783		return 0;
1784	}
1785
1786	case KDSKBDIACRUC:
1787	{
1788		struct kbdiacrsuc __user *a = udp;
1789		unsigned int ct;
1790		void *buf = NULL;
1791
1792		if (!perm)
1793			return -EPERM;
1794
1795		if (get_user(ct, &a->kb_cnt))
1796			return -EFAULT;
1797
1798		if (ct >= MAX_DIACR)
1799			return -EINVAL;
1800
1801		if (ct) {
1802			buf = memdup_user(a->kbdiacruc,
1803					  ct * sizeof(struct kbdiacruc));
1804			if (IS_ERR(buf))
1805				return PTR_ERR(buf);
1806		} 
1807		spin_lock_irqsave(&kbd_event_lock, flags);
1808		if (ct)
1809			memcpy(accent_table, buf,
1810					ct * sizeof(struct kbdiacruc));
1811		accent_table_size = ct;
1812		spin_unlock_irqrestore(&kbd_event_lock, flags);
1813		kfree(buf);
1814		return 0;
1815	}
1816	}
1817	return ret;
1818}
1819
1820/**
1821 *	vt_do_kdskbmode		-	set keyboard mode ioctl
1822 *	@console: the console to use
1823 *	@arg: the requested mode
1824 *
1825 *	Update the keyboard mode bits while holding the correct locks.
1826 *	Return 0 for success or an error code.
1827 */
1828int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1829{
1830	struct kbd_struct *kb = kbd_table + console;
1831	int ret = 0;
1832	unsigned long flags;
1833
1834	spin_lock_irqsave(&kbd_event_lock, flags);
1835	switch(arg) {
1836	case K_RAW:
1837		kb->kbdmode = VC_RAW;
1838		break;
1839	case K_MEDIUMRAW:
1840		kb->kbdmode = VC_MEDIUMRAW;
1841		break;
1842	case K_XLATE:
1843		kb->kbdmode = VC_XLATE;
1844		do_compute_shiftstate();
1845		break;
1846	case K_UNICODE:
1847		kb->kbdmode = VC_UNICODE;
1848		do_compute_shiftstate();
1849		break;
1850	case K_OFF:
1851		kb->kbdmode = VC_OFF;
1852		break;
1853	default:
1854		ret = -EINVAL;
1855	}
1856	spin_unlock_irqrestore(&kbd_event_lock, flags);
1857	return ret;
1858}
1859
1860/**
1861 *	vt_do_kdskbmeta		-	set keyboard meta state
1862 *	@console: the console to use
1863 *	@arg: the requested meta state
1864 *
1865 *	Update the keyboard meta bits while holding the correct locks.
1866 *	Return 0 for success or an error code.
1867 */
1868int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1869{
1870	struct kbd_struct *kb = kbd_table + console;
1871	int ret = 0;
1872	unsigned long flags;
1873
1874	spin_lock_irqsave(&kbd_event_lock, flags);
1875	switch(arg) {
1876	case K_METABIT:
1877		clr_vc_kbd_mode(kb, VC_META);
1878		break;
1879	case K_ESCPREFIX:
1880		set_vc_kbd_mode(kb, VC_META);
1881		break;
1882	default:
1883		ret = -EINVAL;
1884	}
1885	spin_unlock_irqrestore(&kbd_event_lock, flags);
1886	return ret;
1887}
1888
1889int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1890								int perm)
1891{
1892	struct kbkeycode tmp;
1893	int kc = 0;
1894
1895	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1896		return -EFAULT;
1897	switch (cmd) {
1898	case KDGETKEYCODE:
1899		kc = getkeycode(tmp.scancode);
1900		if (kc >= 0)
1901			kc = put_user(kc, &user_kbkc->keycode);
1902		break;
1903	case KDSETKEYCODE:
1904		if (!perm)
1905			return -EPERM;
1906		kc = setkeycode(tmp.scancode, tmp.keycode);
1907		break;
1908	}
1909	return kc;
1910}
1911
1912static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1913		unsigned char map)
1914{
1915	unsigned short *key_map, val;
1916	unsigned long flags;
1917
1918	/* Ensure another thread doesn't free it under us */
1919	spin_lock_irqsave(&kbd_event_lock, flags);
1920	key_map = key_maps[map];
1921	if (key_map) {
1922		val = U(key_map[idx]);
1923		if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1924			val = K_HOLE;
1925	} else
1926		val = idx ? K_HOLE : K_NOSUCHMAP;
1927	spin_unlock_irqrestore(&kbd_event_lock, flags);
1928
1929	return val;
1930}
1931
1932static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1933		unsigned char map, unsigned short val)
1934{
1935	unsigned long flags;
1936	unsigned short *key_map, *new_map, oldval;
1937
1938	if (!idx && val == K_NOSUCHMAP) {
1939		spin_lock_irqsave(&kbd_event_lock, flags);
1940		/* deallocate map */
1941		key_map = key_maps[map];
1942		if (map && key_map) {
1943			key_maps[map] = NULL;
1944			if (key_map[0] == U(K_ALLOCATED)) {
1945				kfree(key_map);
1946				keymap_count--;
1947			}
1948		}
1949		spin_unlock_irqrestore(&kbd_event_lock, flags);
1950
1951		return 0;
1952	}
1953
1954	if (KTYP(val) < NR_TYPES) {
1955		if (KVAL(val) > max_vals[KTYP(val)])
1956			return -EINVAL;
1957	} else if (kbdmode != VC_UNICODE)
1958		return -EINVAL;
1959
1960	/* ++Geert: non-PC keyboards may generate keycode zero */
1961#if !defined(__mc68000__) && !defined(__powerpc__)
1962	/* assignment to entry 0 only tests validity of args */
1963	if (!idx)
1964		return 0;
1965#endif
1966
1967	new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1968	if (!new_map)
1969		return -ENOMEM;
1970
1971	spin_lock_irqsave(&kbd_event_lock, flags);
1972	key_map = key_maps[map];
1973	if (key_map == NULL) {
1974		int j;
1975
1976		if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1977		    !capable(CAP_SYS_RESOURCE)) {
1978			spin_unlock_irqrestore(&kbd_event_lock, flags);
1979			kfree(new_map);
1980			return -EPERM;
1981		}
1982		key_maps[map] = new_map;
1983		key_map = new_map;
1984		key_map[0] = U(K_ALLOCATED);
1985		for (j = 1; j < NR_KEYS; j++)
1986			key_map[j] = U(K_HOLE);
1987		keymap_count++;
1988	} else
1989		kfree(new_map);
1990
1991	oldval = U(key_map[idx]);
1992	if (val == oldval)
1993		goto out;
1994
1995	/* Attention Key */
1996	if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
1997		spin_unlock_irqrestore(&kbd_event_lock, flags);
1998		return -EPERM;
1999	}
2000
2001	key_map[idx] = U(val);
2002	if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2003		do_compute_shiftstate();
2004out:
2005	spin_unlock_irqrestore(&kbd_event_lock, flags);
2006
2007	return 0;
2008}
2009
2010int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2011						unsigned int console)
2012{
2013	struct kbd_struct *kb = kbd_table + console;
2014	struct kbentry kbe;
2015
2016	if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2017		return -EFAULT;
2018
2019	switch (cmd) {
2020	case KDGKBENT:
2021		return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2022					kbe.kb_table),
2023				&user_kbe->kb_value);
2024	case KDSKBENT:
2025		if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2026			return -EPERM;
2027		return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2028				kbe.kb_value);
2029	}
2030	return 0;
2031}
2032
2033static char *vt_kdskbsent(char *kbs, unsigned char cur)
2034{
2035	static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2036	char *cur_f = func_table[cur];
2037
2038	if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2039		strcpy(cur_f, kbs);
2040		return kbs;
2041	}
2042
2043	func_table[cur] = kbs;
2044
2045	return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2046}
2047
2048int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2049{
2050	unsigned char kb_func;
2051	unsigned long flags;
2052	char *kbs;
2053	int ret;
2054
2055	if (get_user(kb_func, &user_kdgkb->kb_func))
2056		return -EFAULT;
2057
2058	kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
2059
2060	switch (cmd) {
2061	case KDGKBSENT: {
2062		/* size should have been a struct member */
2063		ssize_t len = sizeof(user_kdgkb->kb_string);
2064
2065		kbs = kmalloc(len, GFP_KERNEL);
2066		if (!kbs)
2067			return -ENOMEM;
2068
2069		spin_lock_irqsave(&func_buf_lock, flags);
2070		len = strlcpy(kbs, func_table[kb_func] ? : "", len);
2071		spin_unlock_irqrestore(&func_buf_lock, flags);
2072
2073		ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2074			-EFAULT : 0;
2075
2076		break;
2077	}
2078	case KDSKBSENT:
2079		if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2080			return -EPERM;
2081
2082		kbs = strndup_user(user_kdgkb->kb_string,
2083				sizeof(user_kdgkb->kb_string));
2084		if (IS_ERR(kbs))
2085			return PTR_ERR(kbs);
2086
2087		spin_lock_irqsave(&func_buf_lock, flags);
2088		kbs = vt_kdskbsent(kbs, kb_func);
2089		spin_unlock_irqrestore(&func_buf_lock, flags);
2090
2091		ret = 0;
2092		break;
2093	}
2094
2095	kfree(kbs);
2096
2097	return ret;
2098}
2099
2100int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2101{
2102	struct kbd_struct *kb = kbd_table + console;
2103        unsigned long flags;
2104	unsigned char ucval;
2105
2106        switch(cmd) {
2107	/* the ioctls below read/set the flags usually shown in the leds */
2108	/* don't use them - they will go away without warning */
2109	case KDGKBLED:
2110                spin_lock_irqsave(&kbd_event_lock, flags);
2111		ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2112                spin_unlock_irqrestore(&kbd_event_lock, flags);
2113		return put_user(ucval, (char __user *)arg);
2114
2115	case KDSKBLED:
2116		if (!perm)
2117			return -EPERM;
2118		if (arg & ~0x77)
2119			return -EINVAL;
2120                spin_lock_irqsave(&led_lock, flags);
2121		kb->ledflagstate = (arg & 7);
2122		kb->default_ledflagstate = ((arg >> 4) & 7);
2123		set_leds();
2124                spin_unlock_irqrestore(&led_lock, flags);
2125		return 0;
2126
2127	/* the ioctls below only set the lights, not the functions */
2128	/* for those, see KDGKBLED and KDSKBLED above */
2129	case KDGETLED:
2130		ucval = getledstate();
2131		return put_user(ucval, (char __user *)arg);
2132
2133	case KDSETLED:
2134		if (!perm)
2135			return -EPERM;
2136		setledstate(kb, arg);
2137		return 0;
2138        }
2139        return -ENOIOCTLCMD;
2140}
2141
2142int vt_do_kdgkbmode(unsigned int console)
2143{
2144	struct kbd_struct *kb = kbd_table + console;
2145	/* This is a spot read so needs no locking */
2146	switch (kb->kbdmode) {
2147	case VC_RAW:
2148		return K_RAW;
2149	case VC_MEDIUMRAW:
2150		return K_MEDIUMRAW;
2151	case VC_UNICODE:
2152		return K_UNICODE;
2153	case VC_OFF:
2154		return K_OFF;
2155	default:
2156		return K_XLATE;
2157	}
2158}
2159
2160/**
2161 *	vt_do_kdgkbmeta		-	report meta status
2162 *	@console: console to report
2163 *
2164 *	Report the meta flag status of this console
2165 */
2166int vt_do_kdgkbmeta(unsigned int console)
2167{
2168	struct kbd_struct *kb = kbd_table + console;
2169        /* Again a spot read so no locking */
2170	return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2171}
2172
2173/**
2174 *	vt_reset_unicode	-	reset the unicode status
2175 *	@console: console being reset
2176 *
2177 *	Restore the unicode console state to its default
2178 */
2179void vt_reset_unicode(unsigned int console)
2180{
2181	unsigned long flags;
2182
2183	spin_lock_irqsave(&kbd_event_lock, flags);
2184	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2185	spin_unlock_irqrestore(&kbd_event_lock, flags);
2186}
2187
2188/**
2189 *	vt_get_shift_state	-	shift bit state
2190 *
2191 *	Report the shift bits from the keyboard state. We have to export
2192 *	this to support some oddities in the vt layer.
2193 */
2194int vt_get_shift_state(void)
2195{
2196        /* Don't lock as this is a transient report */
2197        return shift_state;
2198}
2199
2200/**
2201 *	vt_reset_keyboard	-	reset keyboard state
2202 *	@console: console to reset
2203 *
2204 *	Reset the keyboard bits for a console as part of a general console
2205 *	reset event
2206 */
2207void vt_reset_keyboard(unsigned int console)
2208{
2209	struct kbd_struct *kb = kbd_table + console;
2210	unsigned long flags;
2211
2212	spin_lock_irqsave(&kbd_event_lock, flags);
2213	set_vc_kbd_mode(kb, VC_REPEAT);
2214	clr_vc_kbd_mode(kb, VC_CKMODE);
2215	clr_vc_kbd_mode(kb, VC_APPLIC);
2216	clr_vc_kbd_mode(kb, VC_CRLF);
2217	kb->lockstate = 0;
2218	kb->slockstate = 0;
2219	spin_lock(&led_lock);
2220	kb->ledmode = LED_SHOW_FLAGS;
2221	kb->ledflagstate = kb->default_ledflagstate;
2222	spin_unlock(&led_lock);
2223	/* do not do set_leds here because this causes an endless tasklet loop
2224	   when the keyboard hasn't been initialized yet */
2225	spin_unlock_irqrestore(&kbd_event_lock, flags);
2226}
2227
2228/**
2229 *	vt_get_kbd_mode_bit	-	read keyboard status bits
2230 *	@console: console to read from
2231 *	@bit: mode bit to read
2232 *
2233 *	Report back a vt mode bit. We do this without locking so the
2234 *	caller must be sure that there are no synchronization needs
2235 */
2236
2237int vt_get_kbd_mode_bit(unsigned int console, int bit)
2238{
2239	struct kbd_struct *kb = kbd_table + console;
2240	return vc_kbd_mode(kb, bit);
2241}
2242
2243/**
2244 *	vt_set_kbd_mode_bit	-	read keyboard status bits
2245 *	@console: console to read from
2246 *	@bit: mode bit to read
2247 *
2248 *	Set a vt mode bit. We do this without locking so the
2249 *	caller must be sure that there are no synchronization needs
2250 */
2251
2252void vt_set_kbd_mode_bit(unsigned int console, int bit)
2253{
2254	struct kbd_struct *kb = kbd_table + console;
2255	unsigned long flags;
2256
2257	spin_lock_irqsave(&kbd_event_lock, flags);
2258	set_vc_kbd_mode(kb, bit);
2259	spin_unlock_irqrestore(&kbd_event_lock, flags);
2260}
2261
2262/**
2263 *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2264 *	@console: console to read from
2265 *	@bit: mode bit to read
2266 *
2267 *	Report back a vt mode bit. We do this without locking so the
2268 *	caller must be sure that there are no synchronization needs
2269 */
2270
2271void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2272{
2273	struct kbd_struct *kb = kbd_table + console;
2274	unsigned long flags;
2275
2276	spin_lock_irqsave(&kbd_event_lock, flags);
2277	clr_vc_kbd_mode(kb, bit);
2278	spin_unlock_irqrestore(&kbd_event_lock, flags);
2279}