Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Written for linux by Johan Myreen as a translation from
   3 * the assembly version by Linus (with diacriticals added)
   4 *
   5 * Some additional features added by Christoph Niemann (ChN), March 1993
   6 *
   7 * Loadable keymaps by Risto Kankkunen, May 1993
   8 *
   9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  10 * Added decr/incr_console, dynamic keymaps, Unicode support,
  11 * dynamic function/string keys, led setting,  Sept 1994
  12 * `Sticky' modifier keys, 951006.
  13 *
  14 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  15 *
  16 * Modified to provide 'generic' keyboard support by Hamish Macdonald
  17 * Merge with the m68k keyboard driver and split-off of the PC low-level
  18 * parts by Geert Uytterhoeven, May 1997
  19 *
  20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  21 * 30-07-98: Dead keys redone, aeb@cwi.nl.
  22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  23 */
  24
  25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26
  27#include <linux/consolemap.h>
  28#include <linux/module.h>
  29#include <linux/sched.h>
  30#include <linux/tty.h>
  31#include <linux/tty_flip.h>
  32#include <linux/mm.h>
  33#include <linux/string.h>
  34#include <linux/init.h>
  35#include <linux/slab.h>
  36#include <linux/irq.h>
  37
  38#include <linux/kbd_kern.h>
  39#include <linux/kbd_diacr.h>
  40#include <linux/vt_kern.h>
  41#include <linux/input.h>
  42#include <linux/reboot.h>
  43#include <linux/notifier.h>
  44#include <linux/jiffies.h>
 
 
 
  45
  46extern void ctrl_alt_del(void);
  47
  48/*
  49 * Exported functions/variables
  50 */
  51
  52#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
  53
  54/*
  55 * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
  56 * This seems a good reason to start with NumLock off. On HIL keyboards
  57 * of PARISC machines however there is no NumLock key and everyone expects the keypad
  58 * to be used for numbers.
  59 */
  60
  61#if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
  62#define KBD_DEFLEDS (1 << VC_NUMLOCK)
  63#else
  64#define KBD_DEFLEDS 0
 
 
 
  65#endif
  66
  67#define KBD_DEFLOCK 0
  68
  69void compute_shiftstate(void);
  70
  71/*
  72 * Handler Tables.
  73 */
  74
  75#define K_HANDLERS\
  76	k_self,		k_fn,		k_spec,		k_pad,\
  77	k_dead,		k_cons,		k_cur,		k_shift,\
  78	k_meta,		k_ascii,	k_lock,		k_lowercase,\
  79	k_slock,	k_dead2,	k_brl,		k_ignore
  80
  81typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  82			    char up_flag);
  83static k_handler_fn K_HANDLERS;
  84static k_handler_fn *k_handler[16] = { K_HANDLERS };
  85
  86#define FN_HANDLERS\
  87	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
  88	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
  89	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
  90	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
  91	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
  92
  93typedef void (fn_handler_fn)(struct vc_data *vc);
  94static fn_handler_fn FN_HANDLERS;
  95static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  96
  97/*
  98 * Variables exported for vt_ioctl.c
  99 */
 100
 101/* maximum values each key_handler can handle */
 102const int max_vals[] = {
 103	255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
 104	NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
 105	255, NR_LOCK - 1, 255, NR_BRL - 1
 106};
 107
 108const int NR_TYPES = ARRAY_SIZE(max_vals);
 109
 110struct kbd_struct kbd_table[MAX_NR_CONSOLES];
 111EXPORT_SYMBOL_GPL(kbd_table);
 112static struct kbd_struct *kbd = kbd_table;
 113
 114struct vt_spawn_console vt_spawn_con = {
 115	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
 116	.pid  = NULL,
 117	.sig  = 0,
 118};
 119
 120/*
 121 * Variables exported for vt.c
 122 */
 123
 124int shift_state = 0;
 125
 126/*
 127 * Internal Data.
 128 */
 129
 
 
 
 
 
 
 
 
 
 
 
 
 130static struct input_handler kbd_handler;
 131static DEFINE_SPINLOCK(kbd_event_lock);
 
 132static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */
 133static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
 134static bool dead_key_next;
 135static int npadch = -1;					/* -1 or number assembled on pad */
 136static unsigned int diacr;
 137static char rep;					/* flag telling character repeat */
 138
 139static unsigned char ledstate = 0xff;			/* undefined */
 140static unsigned char ledioctl;
 141
 142static struct ledptr {
 143	unsigned int *addr;
 144	unsigned int mask;
 145	unsigned char valid:1;
 146} ledptrs[3];
 147
 148/*
 149 * Notifier list for console keyboard events
 150 */
 151static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
 152
 153int register_keyboard_notifier(struct notifier_block *nb)
 154{
 155	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
 156}
 157EXPORT_SYMBOL_GPL(register_keyboard_notifier);
 158
 159int unregister_keyboard_notifier(struct notifier_block *nb)
 160{
 161	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
 162}
 163EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
 164
 165/*
 166 * Translation of scancodes to keycodes. We set them on only the first
 167 * keyboard in the list that accepts the scancode and keycode.
 168 * Explanation for not choosing the first attached keyboard anymore:
 169 *  USB keyboards for example have two event devices: one for all "normal"
 170 *  keys and one for extra function keys (like "volume up", "make coffee",
 171 *  etc.). So this means that scancodes for the extra function keys won't
 172 *  be valid for the first event device, but will be for the second.
 173 */
 174
 175struct getset_keycode_data {
 176	struct input_keymap_entry ke;
 177	int error;
 178};
 179
 180static int getkeycode_helper(struct input_handle *handle, void *data)
 181{
 182	struct getset_keycode_data *d = data;
 183
 184	d->error = input_get_keycode(handle->dev, &d->ke);
 185
 186	return d->error == 0; /* stop as soon as we successfully get one */
 187}
 188
 189int getkeycode(unsigned int scancode)
 190{
 191	struct getset_keycode_data d = {
 192		.ke	= {
 193			.flags		= 0,
 194			.len		= sizeof(scancode),
 195			.keycode	= 0,
 196		},
 197		.error	= -ENODEV,
 198	};
 199
 200	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 201
 202	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
 203
 204	return d.error ?: d.ke.keycode;
 205}
 206
 207static int setkeycode_helper(struct input_handle *handle, void *data)
 208{
 209	struct getset_keycode_data *d = data;
 210
 211	d->error = input_set_keycode(handle->dev, &d->ke);
 212
 213	return d->error == 0; /* stop as soon as we successfully set one */
 214}
 215
 216int setkeycode(unsigned int scancode, unsigned int keycode)
 217{
 218	struct getset_keycode_data d = {
 219		.ke	= {
 220			.flags		= 0,
 221			.len		= sizeof(scancode),
 222			.keycode	= keycode,
 223		},
 224		.error	= -ENODEV,
 225	};
 226
 227	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 228
 229	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
 230
 231	return d.error;
 232}
 233
 234/*
 235 * Making beeps and bells. Note that we prefer beeps to bells, but when
 236 * shutting the sound off we do both.
 237 */
 238
 239static int kd_sound_helper(struct input_handle *handle, void *data)
 240{
 241	unsigned int *hz = data;
 242	struct input_dev *dev = handle->dev;
 243
 244	if (test_bit(EV_SND, dev->evbit)) {
 245		if (test_bit(SND_TONE, dev->sndbit)) {
 246			input_inject_event(handle, EV_SND, SND_TONE, *hz);
 247			if (*hz)
 248				return 0;
 249		}
 250		if (test_bit(SND_BELL, dev->sndbit))
 251			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
 252	}
 253
 254	return 0;
 255}
 256
 257static void kd_nosound(unsigned long ignored)
 258{
 259	static unsigned int zero;
 260
 261	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
 262}
 263
 264static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
 265
 266void kd_mksound(unsigned int hz, unsigned int ticks)
 267{
 268	del_timer_sync(&kd_mksound_timer);
 269
 270	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
 271
 272	if (hz && ticks)
 273		mod_timer(&kd_mksound_timer, jiffies + ticks);
 274}
 275EXPORT_SYMBOL(kd_mksound);
 276
 277/*
 278 * Setting the keyboard rate.
 279 */
 280
 281static int kbd_rate_helper(struct input_handle *handle, void *data)
 282{
 283	struct input_dev *dev = handle->dev;
 284	struct kbd_repeat *rep = data;
 285
 286	if (test_bit(EV_REP, dev->evbit)) {
 287
 288		if (rep[0].delay > 0)
 289			input_inject_event(handle,
 290					   EV_REP, REP_DELAY, rep[0].delay);
 291		if (rep[0].period > 0)
 292			input_inject_event(handle,
 293					   EV_REP, REP_PERIOD, rep[0].period);
 294
 295		rep[1].delay = dev->rep[REP_DELAY];
 296		rep[1].period = dev->rep[REP_PERIOD];
 297	}
 298
 299	return 0;
 300}
 301
 302int kbd_rate(struct kbd_repeat *rep)
 303{
 304	struct kbd_repeat data[2] = { *rep };
 305
 306	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
 307	*rep = data[1];	/* Copy currently used settings */
 308
 309	return 0;
 310}
 311
 312/*
 313 * Helper Functions.
 314 */
 315static void put_queue(struct vc_data *vc, int ch)
 316{
 317	struct tty_struct *tty = vc->port.tty;
 318
 319	if (tty) {
 320		tty_insert_flip_char(tty, ch, 0);
 321		con_schedule_flip(tty);
 322	}
 323}
 324
 325static void puts_queue(struct vc_data *vc, char *cp)
 326{
 327	struct tty_struct *tty = vc->port.tty;
 328
 329	if (!tty)
 330		return;
 331
 332	while (*cp) {
 333		tty_insert_flip_char(tty, *cp, 0);
 334		cp++;
 335	}
 336	con_schedule_flip(tty);
 337}
 338
 339static void applkey(struct vc_data *vc, int key, char mode)
 340{
 341	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
 342
 343	buf[1] = (mode ? 'O' : '[');
 344	buf[2] = key;
 345	puts_queue(vc, buf);
 346}
 347
 348/*
 349 * Many other routines do put_queue, but I think either
 350 * they produce ASCII, or they produce some user-assigned
 351 * string, and in both cases we might assume that it is
 352 * in utf-8 already.
 353 */
 354static void to_utf8(struct vc_data *vc, uint c)
 355{
 356	if (c < 0x80)
 357		/*  0******* */
 358		put_queue(vc, c);
 359	else if (c < 0x800) {
 360		/* 110***** 10****** */
 361		put_queue(vc, 0xc0 | (c >> 6));
 362		put_queue(vc, 0x80 | (c & 0x3f));
 363	} else if (c < 0x10000) {
 364		if (c >= 0xD800 && c < 0xE000)
 365			return;
 366		if (c == 0xFFFF)
 367			return;
 368		/* 1110**** 10****** 10****** */
 369		put_queue(vc, 0xe0 | (c >> 12));
 370		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 371		put_queue(vc, 0x80 | (c & 0x3f));
 372	} else if (c < 0x110000) {
 373		/* 11110*** 10****** 10****** 10****** */
 374		put_queue(vc, 0xf0 | (c >> 18));
 375		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
 376		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 377		put_queue(vc, 0x80 | (c & 0x3f));
 378	}
 379}
 380
 381/*
 382 * Called after returning from RAW mode or when changing consoles - recompute
 383 * shift_down[] and shift_state from key_down[] maybe called when keymap is
 384 * undefined, so that shiftkey release is seen
 
 385 */
 386void compute_shiftstate(void)
 
 387{
 388	unsigned int i, j, k, sym, val;
 389
 390	shift_state = 0;
 391	memset(shift_down, 0, sizeof(shift_down));
 392
 393	for (i = 0; i < ARRAY_SIZE(key_down); i++) {
 394
 395		if (!key_down[i])
 396			continue;
 397
 398		k = i * BITS_PER_LONG;
 399
 400		for (j = 0; j < BITS_PER_LONG; j++, k++) {
 401
 402			if (!test_bit(k, key_down))
 403				continue;
 404
 405			sym = U(key_maps[0][k]);
 406			if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
 407				continue;
 408
 409			val = KVAL(sym);
 410			if (val == KVAL(K_CAPSSHIFT))
 411				val = KVAL(K_SHIFT);
 412
 413			shift_down[val]++;
 414			shift_state |= (1 << val);
 415		}
 416	}
 417}
 418
 
 
 
 
 
 
 
 
 
 419/*
 420 * We have a combining character DIACR here, followed by the character CH.
 421 * If the combination occurs in the table, return the corresponding value.
 422 * Otherwise, if CH is a space or equals DIACR, return DIACR.
 423 * Otherwise, conclude that DIACR was not combining after all,
 424 * queue it and return CH.
 425 */
 426static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
 427{
 428	unsigned int d = diacr;
 429	unsigned int i;
 430
 431	diacr = 0;
 432
 433	if ((d & ~0xff) == BRL_UC_ROW) {
 434		if ((ch & ~0xff) == BRL_UC_ROW)
 435			return d | ch;
 436	} else {
 437		for (i = 0; i < accent_table_size; i++)
 438			if (accent_table[i].diacr == d && accent_table[i].base == ch)
 439				return accent_table[i].result;
 440	}
 441
 442	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
 443		return d;
 444
 445	if (kbd->kbdmode == VC_UNICODE)
 446		to_utf8(vc, d);
 447	else {
 448		int c = conv_uni_to_8bit(d);
 449		if (c != -1)
 450			put_queue(vc, c);
 451	}
 452
 453	return ch;
 454}
 455
 456/*
 457 * Special function handlers
 458 */
 459static void fn_enter(struct vc_data *vc)
 460{
 461	if (diacr) {
 462		if (kbd->kbdmode == VC_UNICODE)
 463			to_utf8(vc, diacr);
 464		else {
 465			int c = conv_uni_to_8bit(diacr);
 466			if (c != -1)
 467				put_queue(vc, c);
 468		}
 469		diacr = 0;
 470	}
 471
 472	put_queue(vc, 13);
 473	if (vc_kbd_mode(kbd, VC_CRLF))
 474		put_queue(vc, 10);
 475}
 476
 477static void fn_caps_toggle(struct vc_data *vc)
 478{
 479	if (rep)
 480		return;
 481
 482	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
 483}
 484
 485static void fn_caps_on(struct vc_data *vc)
 486{
 487	if (rep)
 488		return;
 489
 490	set_vc_kbd_led(kbd, VC_CAPSLOCK);
 491}
 492
 493static void fn_show_ptregs(struct vc_data *vc)
 494{
 495	struct pt_regs *regs = get_irq_regs();
 496
 497	if (regs)
 498		show_regs(regs);
 499}
 500
 501static void fn_hold(struct vc_data *vc)
 502{
 503	struct tty_struct *tty = vc->port.tty;
 504
 505	if (rep || !tty)
 506		return;
 507
 508	/*
 509	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
 510	 * these routines are also activated by ^S/^Q.
 511	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
 512	 */
 513	if (tty->stopped)
 514		start_tty(tty);
 515	else
 516		stop_tty(tty);
 517}
 518
 519static void fn_num(struct vc_data *vc)
 520{
 521	if (vc_kbd_mode(kbd, VC_APPLIC))
 522		applkey(vc, 'P', 1);
 523	else
 524		fn_bare_num(vc);
 525}
 526
 527/*
 528 * Bind this to Shift-NumLock if you work in application keypad mode
 529 * but want to be able to change the NumLock flag.
 530 * Bind this to NumLock if you prefer that the NumLock key always
 531 * changes the NumLock flag.
 532 */
 533static void fn_bare_num(struct vc_data *vc)
 534{
 535	if (!rep)
 536		chg_vc_kbd_led(kbd, VC_NUMLOCK);
 537}
 538
 539static void fn_lastcons(struct vc_data *vc)
 540{
 541	/* switch to the last used console, ChN */
 542	set_console(last_console);
 543}
 544
 545static void fn_dec_console(struct vc_data *vc)
 546{
 547	int i, cur = fg_console;
 548
 549	/* Currently switching?  Queue this next switch relative to that. */
 550	if (want_console != -1)
 551		cur = want_console;
 552
 553	for (i = cur - 1; i != cur; i--) {
 554		if (i == -1)
 555			i = MAX_NR_CONSOLES - 1;
 556		if (vc_cons_allocated(i))
 557			break;
 558	}
 559	set_console(i);
 560}
 561
 562static void fn_inc_console(struct vc_data *vc)
 563{
 564	int i, cur = fg_console;
 565
 566	/* Currently switching?  Queue this next switch relative to that. */
 567	if (want_console != -1)
 568		cur = want_console;
 569
 570	for (i = cur+1; i != cur; i++) {
 571		if (i == MAX_NR_CONSOLES)
 572			i = 0;
 573		if (vc_cons_allocated(i))
 574			break;
 575	}
 576	set_console(i);
 577}
 578
 579static void fn_send_intr(struct vc_data *vc)
 580{
 581	struct tty_struct *tty = vc->port.tty;
 582
 583	if (!tty)
 584		return;
 585	tty_insert_flip_char(tty, 0, TTY_BREAK);
 586	con_schedule_flip(tty);
 587}
 588
 589static void fn_scroll_forw(struct vc_data *vc)
 590{
 591	scrollfront(vc, 0);
 592}
 593
 594static void fn_scroll_back(struct vc_data *vc)
 595{
 596	scrollback(vc, 0);
 597}
 598
 599static void fn_show_mem(struct vc_data *vc)
 600{
 601	show_mem(0);
 602}
 603
 604static void fn_show_state(struct vc_data *vc)
 605{
 606	show_state();
 607}
 608
 609static void fn_boot_it(struct vc_data *vc)
 610{
 611	ctrl_alt_del();
 612}
 613
 614static void fn_compose(struct vc_data *vc)
 615{
 616	dead_key_next = true;
 617}
 618
 619static void fn_spawn_con(struct vc_data *vc)
 620{
 621	spin_lock(&vt_spawn_con.lock);
 622	if (vt_spawn_con.pid)
 623		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
 624			put_pid(vt_spawn_con.pid);
 625			vt_spawn_con.pid = NULL;
 626		}
 627	spin_unlock(&vt_spawn_con.lock);
 628}
 629
 630static void fn_SAK(struct vc_data *vc)
 631{
 632	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
 633	schedule_work(SAK_work);
 634}
 635
 636static void fn_null(struct vc_data *vc)
 637{
 638	compute_shiftstate();
 639}
 640
 641/*
 642 * Special key handlers
 643 */
 644static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
 645{
 646}
 647
 648static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
 649{
 650	if (up_flag)
 651		return;
 652	if (value >= ARRAY_SIZE(fn_handler))
 653		return;
 654	if ((kbd->kbdmode == VC_RAW ||
 655	     kbd->kbdmode == VC_MEDIUMRAW ||
 656	     kbd->kbdmode == VC_OFF) &&
 657	     value != KVAL(K_SAK))
 658		return;		/* SAK is allowed even in raw mode */
 659	fn_handler[value](vc);
 660}
 661
 662static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
 663{
 664	pr_err("k_lowercase was called - impossible\n");
 665}
 666
 667static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
 668{
 669	if (up_flag)
 670		return;		/* no action, if this is a key release */
 671
 672	if (diacr)
 673		value = handle_diacr(vc, value);
 674
 675	if (dead_key_next) {
 676		dead_key_next = false;
 677		diacr = value;
 678		return;
 679	}
 680	if (kbd->kbdmode == VC_UNICODE)
 681		to_utf8(vc, value);
 682	else {
 683		int c = conv_uni_to_8bit(value);
 684		if (c != -1)
 685			put_queue(vc, c);
 686	}
 687}
 688
 689/*
 690 * Handle dead key. Note that we now may have several
 691 * dead keys modifying the same character. Very useful
 692 * for Vietnamese.
 693 */
 694static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
 695{
 696	if (up_flag)
 697		return;
 698
 699	diacr = (diacr ? handle_diacr(vc, value) : value);
 700}
 701
 702static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
 703{
 704	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
 705}
 706
 707static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
 708{
 709	k_deadunicode(vc, value, up_flag);
 710}
 711
 712/*
 713 * Obsolete - for backwards compatibility only
 714 */
 715static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
 716{
 717	static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
 718
 719	k_deadunicode(vc, ret_diacr[value], up_flag);
 720}
 721
 722static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
 723{
 724	if (up_flag)
 725		return;
 726
 727	set_console(value);
 728}
 729
 730static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
 731{
 732	if (up_flag)
 733		return;
 734
 735	if ((unsigned)value < ARRAY_SIZE(func_table)) {
 736		if (func_table[value])
 737			puts_queue(vc, func_table[value]);
 738	} else
 739		pr_err("k_fn called with value=%d\n", value);
 740}
 741
 742static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
 743{
 744	static const char cur_chars[] = "BDCA";
 745
 746	if (up_flag)
 747		return;
 748
 749	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
 750}
 751
 752static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
 753{
 754	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
 755	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
 756
 757	if (up_flag)
 758		return;		/* no action, if this is a key release */
 759
 760	/* kludge... shift forces cursor/number keys */
 761	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
 762		applkey(vc, app_map[value], 1);
 763		return;
 764	}
 765
 766	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
 767
 768		switch (value) {
 769		case KVAL(K_PCOMMA):
 770		case KVAL(K_PDOT):
 771			k_fn(vc, KVAL(K_REMOVE), 0);
 772			return;
 773		case KVAL(K_P0):
 774			k_fn(vc, KVAL(K_INSERT), 0);
 775			return;
 776		case KVAL(K_P1):
 777			k_fn(vc, KVAL(K_SELECT), 0);
 778			return;
 779		case KVAL(K_P2):
 780			k_cur(vc, KVAL(K_DOWN), 0);
 781			return;
 782		case KVAL(K_P3):
 783			k_fn(vc, KVAL(K_PGDN), 0);
 784			return;
 785		case KVAL(K_P4):
 786			k_cur(vc, KVAL(K_LEFT), 0);
 787			return;
 788		case KVAL(K_P6):
 789			k_cur(vc, KVAL(K_RIGHT), 0);
 790			return;
 791		case KVAL(K_P7):
 792			k_fn(vc, KVAL(K_FIND), 0);
 793			return;
 794		case KVAL(K_P8):
 795			k_cur(vc, KVAL(K_UP), 0);
 796			return;
 797		case KVAL(K_P9):
 798			k_fn(vc, KVAL(K_PGUP), 0);
 799			return;
 800		case KVAL(K_P5):
 801			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
 802			return;
 803		}
 804	}
 805
 806	put_queue(vc, pad_chars[value]);
 807	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
 808		put_queue(vc, 10);
 809}
 810
 811static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
 812{
 813	int old_state = shift_state;
 814
 815	if (rep)
 816		return;
 817	/*
 818	 * Mimic typewriter:
 819	 * a CapsShift key acts like Shift but undoes CapsLock
 820	 */
 821	if (value == KVAL(K_CAPSSHIFT)) {
 822		value = KVAL(K_SHIFT);
 823		if (!up_flag)
 824			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
 825	}
 826
 827	if (up_flag) {
 828		/*
 829		 * handle the case that two shift or control
 830		 * keys are depressed simultaneously
 831		 */
 832		if (shift_down[value])
 833			shift_down[value]--;
 834	} else
 835		shift_down[value]++;
 836
 837	if (shift_down[value])
 838		shift_state |= (1 << value);
 839	else
 840		shift_state &= ~(1 << value);
 841
 842	/* kludge */
 843	if (up_flag && shift_state != old_state && npadch != -1) {
 844		if (kbd->kbdmode == VC_UNICODE)
 845			to_utf8(vc, npadch);
 846		else
 847			put_queue(vc, npadch & 0xff);
 848		npadch = -1;
 849	}
 850}
 851
 852static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
 853{
 854	if (up_flag)
 855		return;
 856
 857	if (vc_kbd_mode(kbd, VC_META)) {
 858		put_queue(vc, '\033');
 859		put_queue(vc, value);
 860	} else
 861		put_queue(vc, value | 0x80);
 862}
 863
 864static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
 865{
 866	int base;
 867
 868	if (up_flag)
 869		return;
 870
 871	if (value < 10) {
 872		/* decimal input of code, while Alt depressed */
 873		base = 10;
 874	} else {
 875		/* hexadecimal input of code, while AltGr depressed */
 876		value -= 10;
 877		base = 16;
 878	}
 879
 880	if (npadch == -1)
 881		npadch = value;
 882	else
 883		npadch = npadch * base + value;
 884}
 885
 886static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
 887{
 888	if (up_flag || rep)
 889		return;
 890
 891	chg_vc_kbd_lock(kbd, value);
 892}
 893
 894static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
 895{
 896	k_shift(vc, value, up_flag);
 897	if (up_flag || rep)
 898		return;
 899
 900	chg_vc_kbd_slock(kbd, value);
 901	/* try to make Alt, oops, AltGr and such work */
 902	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
 903		kbd->slockstate = 0;
 904		chg_vc_kbd_slock(kbd, value);
 905	}
 906}
 907
 908/* by default, 300ms interval for combination release */
 909static unsigned brl_timeout = 300;
 910MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
 911module_param(brl_timeout, uint, 0644);
 912
 913static unsigned brl_nbchords = 1;
 914MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
 915module_param(brl_nbchords, uint, 0644);
 916
 917static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
 918{
 919	static unsigned long chords;
 920	static unsigned committed;
 921
 922	if (!brl_nbchords)
 923		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
 924	else {
 925		committed |= pattern;
 926		chords++;
 927		if (chords == brl_nbchords) {
 928			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
 929			chords = 0;
 930			committed = 0;
 931		}
 932	}
 933}
 934
 935static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
 936{
 937	static unsigned pressed, committing;
 938	static unsigned long releasestart;
 939
 940	if (kbd->kbdmode != VC_UNICODE) {
 941		if (!up_flag)
 942			pr_warning("keyboard mode must be unicode for braille patterns\n");
 943		return;
 944	}
 945
 946	if (!value) {
 947		k_unicode(vc, BRL_UC_ROW, up_flag);
 948		return;
 949	}
 950
 951	if (value > 8)
 952		return;
 953
 954	if (!up_flag) {
 955		pressed |= 1 << (value - 1);
 956		if (!brl_timeout)
 957			committing = pressed;
 958	} else if (brl_timeout) {
 959		if (!committing ||
 960		    time_after(jiffies,
 961			       releasestart + msecs_to_jiffies(brl_timeout))) {
 962			committing = pressed;
 963			releasestart = jiffies;
 964		}
 965		pressed &= ~(1 << (value - 1));
 966		if (!pressed && committing) {
 967			k_brlcommit(vc, committing, 0);
 968			committing = 0;
 969		}
 970	} else {
 971		if (committing) {
 972			k_brlcommit(vc, committing, 0);
 973			committing = 0;
 974		}
 975		pressed &= ~(1 << (value - 1));
 976	}
 977}
 978
 979/*
 980 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
 981 * or (ii) whatever pattern of lights people want to show using KDSETLED,
 982 * or (iii) specified bits of specified words in kernel memory.
 983 */
 984unsigned char getledstate(void)
 
 
 985{
 986	return ledstate;
 
 
 
 
 
 
 
 
 987}
 988
 989void setledstate(struct kbd_struct *kbd, unsigned int led)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 990{
 991	if (!(led & ~7)) {
 992		ledioctl = led;
 993		kbd->ledmode = LED_SHOW_IOCTL;
 994	} else
 995		kbd->ledmode = LED_SHOW_FLAGS;
 996
 997	set_leds();
 
 
 
 
 
 
 
 998}
 999
1000static inline unsigned char getleds(void)
1001{
1002	struct kbd_struct *kbd = kbd_table + fg_console;
1003	unsigned char leds;
1004	int i;
1005
1006	if (kbd->ledmode == LED_SHOW_IOCTL)
1007		return ledioctl;
 
 
 
1008
1009	leds = kbd->ledflagstate;
 
 
 
1010
1011	if (kbd->ledmode == LED_SHOW_MEM) {
1012		for (i = 0; i < 3; i++)
1013			if (ledptrs[i].valid) {
1014				if (*ledptrs[i].addr & ledptrs[i].mask)
1015					leds |= (1 << i);
1016				else
1017					leds &= ~(1 << i);
1018			}
1019	}
1020	return leds;
1021}
1022
 
 
1023static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1024{
1025	unsigned char leds = *(unsigned char *)data;
1026
1027	if (test_bit(EV_LED, handle->dev->evbit)) {
1028		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1029		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1030		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1031		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1032	}
1033
1034	return 0;
1035}
1036
 
 
 
 
 
 
 
 
 
 
 
 
 
1037/*
1038 * This is the tasklet that updates LED state on all keyboards
1039 * attached to the box. The reason we use tasklet is that we
1040 * need to handle the scenario when keyboard handler is not
1041 * registered yet but we already getting updates form VT to
1042 * update led state.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1043 */
1044static void kbd_bh(unsigned long dummy)
1045{
1046	unsigned char leds = getleds();
 
 
 
 
 
 
1047
1048	if (leds != ledstate) {
1049		input_handler_for_each_handle(&kbd_handler, &leds,
1050					      kbd_update_leds_helper);
1051		ledstate = leds;
1052	}
1053}
1054
1055DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1056
1057#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1058    defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1059    defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1060    (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1061    defined(CONFIG_AVR32)
1062
1063#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1064			((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1065
1066static const unsigned short x86_keycodes[256] =
1067	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1068	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1069	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1070	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1071	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1072	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1073	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1074	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1075	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1076	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1077	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1078	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1079	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1080	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1081	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1082
1083#ifdef CONFIG_SPARC
1084static int sparc_l1_a_state;
1085extern void sun_do_break(void);
1086#endif
1087
1088static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1089		       unsigned char up_flag)
1090{
1091	int code;
1092
1093	switch (keycode) {
1094
1095	case KEY_PAUSE:
1096		put_queue(vc, 0xe1);
1097		put_queue(vc, 0x1d | up_flag);
1098		put_queue(vc, 0x45 | up_flag);
1099		break;
1100
1101	case KEY_HANGEUL:
1102		if (!up_flag)
1103			put_queue(vc, 0xf2);
1104		break;
1105
1106	case KEY_HANJA:
1107		if (!up_flag)
1108			put_queue(vc, 0xf1);
1109		break;
1110
1111	case KEY_SYSRQ:
1112		/*
1113		 * Real AT keyboards (that's what we're trying
1114		 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1115		 * pressing PrtSc/SysRq alone, but simply 0x54
1116		 * when pressing Alt+PrtSc/SysRq.
1117		 */
1118		if (test_bit(KEY_LEFTALT, key_down) ||
1119		    test_bit(KEY_RIGHTALT, key_down)) {
1120			put_queue(vc, 0x54 | up_flag);
1121		} else {
1122			put_queue(vc, 0xe0);
1123			put_queue(vc, 0x2a | up_flag);
1124			put_queue(vc, 0xe0);
1125			put_queue(vc, 0x37 | up_flag);
1126		}
1127		break;
1128
1129	default:
1130		if (keycode > 255)
1131			return -1;
1132
1133		code = x86_keycodes[keycode];
1134		if (!code)
1135			return -1;
1136
1137		if (code & 0x100)
1138			put_queue(vc, 0xe0);
1139		put_queue(vc, (code & 0x7f) | up_flag);
1140
1141		break;
1142	}
1143
1144	return 0;
1145}
1146
1147#else
1148
1149#define HW_RAW(dev)	0
1150
1151static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1152{
1153	if (keycode > 127)
1154		return -1;
1155
1156	put_queue(vc, keycode | up_flag);
1157	return 0;
1158}
1159#endif
1160
1161static void kbd_rawcode(unsigned char data)
1162{
1163	struct vc_data *vc = vc_cons[fg_console].d;
1164
1165	kbd = kbd_table + vc->vc_num;
1166	if (kbd->kbdmode == VC_RAW)
1167		put_queue(vc, data);
1168}
1169
1170static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1171{
1172	struct vc_data *vc = vc_cons[fg_console].d;
1173	unsigned short keysym, *key_map;
1174	unsigned char type;
1175	bool raw_mode;
1176	struct tty_struct *tty;
1177	int shift_final;
1178	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1179	int rc;
1180
1181	tty = vc->port.tty;
1182
1183	if (tty && (!tty->driver_data)) {
1184		/* No driver data? Strange. Okay we fix it then. */
1185		tty->driver_data = vc;
1186	}
1187
1188	kbd = kbd_table + vc->vc_num;
1189
1190#ifdef CONFIG_SPARC
1191	if (keycode == KEY_STOP)
1192		sparc_l1_a_state = down;
1193#endif
1194
1195	rep = (down == 2);
1196
1197	raw_mode = (kbd->kbdmode == VC_RAW);
1198	if (raw_mode && !hw_raw)
1199		if (emulate_raw(vc, keycode, !down << 7))
1200			if (keycode < BTN_MISC && printk_ratelimit())
1201				pr_warning("can't emulate rawmode for keycode %d\n",
1202					   keycode);
1203
1204#ifdef CONFIG_SPARC
1205	if (keycode == KEY_A && sparc_l1_a_state) {
1206		sparc_l1_a_state = false;
1207		sun_do_break();
1208	}
1209#endif
1210
1211	if (kbd->kbdmode == VC_MEDIUMRAW) {
1212		/*
1213		 * This is extended medium raw mode, with keys above 127
1214		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1215		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1216		 * interfere with anything else. The two bytes after 0 will
1217		 * always have the up flag set not to interfere with older
1218		 * applications. This allows for 16384 different keycodes,
1219		 * which should be enough.
1220		 */
1221		if (keycode < 128) {
1222			put_queue(vc, keycode | (!down << 7));
1223		} else {
1224			put_queue(vc, !down << 7);
1225			put_queue(vc, (keycode >> 7) | 0x80);
1226			put_queue(vc, keycode | 0x80);
1227		}
1228		raw_mode = true;
1229	}
1230
1231	if (down)
1232		set_bit(keycode, key_down);
1233	else
1234		clear_bit(keycode, key_down);
1235
1236	if (rep &&
1237	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1238	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1239		/*
1240		 * Don't repeat a key if the input buffers are not empty and the
1241		 * characters get aren't echoed locally. This makes key repeat
1242		 * usable with slow applications and under heavy loads.
1243		 */
1244		return;
1245	}
1246
1247	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1248	param.ledstate = kbd->ledflagstate;
1249	key_map = key_maps[shift_final];
1250
1251	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1252					KBD_KEYCODE, &param);
1253	if (rc == NOTIFY_STOP || !key_map) {
1254		atomic_notifier_call_chain(&keyboard_notifier_list,
1255					   KBD_UNBOUND_KEYCODE, &param);
1256		compute_shiftstate();
1257		kbd->slockstate = 0;
1258		return;
1259	}
1260
1261	if (keycode < NR_KEYS)
1262		keysym = key_map[keycode];
1263	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1264		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1265	else
1266		return;
1267
1268	type = KTYP(keysym);
1269
1270	if (type < 0xf0) {
1271		param.value = keysym;
1272		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1273						KBD_UNICODE, &param);
1274		if (rc != NOTIFY_STOP)
1275			if (down && !raw_mode)
1276				to_utf8(vc, keysym);
1277		return;
1278	}
1279
1280	type -= 0xf0;
1281
1282	if (type == KT_LETTER) {
1283		type = KT_LATIN;
1284		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1285			key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1286			if (key_map)
1287				keysym = key_map[keycode];
1288		}
1289	}
1290
1291	param.value = keysym;
1292	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1293					KBD_KEYSYM, &param);
1294	if (rc == NOTIFY_STOP)
1295		return;
1296
1297	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1298		return;
1299
1300	(*k_handler[type])(vc, keysym & 0xff, !down);
1301
1302	param.ledstate = kbd->ledflagstate;
1303	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1304
1305	if (type != KT_SLOCK)
1306		kbd->slockstate = 0;
1307}
1308
1309static void kbd_event(struct input_handle *handle, unsigned int event_type,
1310		      unsigned int event_code, int value)
1311{
1312	/* We are called with interrupts disabled, just take the lock */
1313	spin_lock(&kbd_event_lock);
1314
1315	if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1316		kbd_rawcode(value);
1317	if (event_type == EV_KEY)
1318		kbd_keycode(event_code, value, HW_RAW(handle->dev));
1319
1320	spin_unlock(&kbd_event_lock);
1321
1322	tasklet_schedule(&keyboard_tasklet);
1323	do_poke_blanked_console = 1;
1324	schedule_console_callback();
1325}
1326
1327static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1328{
1329	int i;
1330
1331	if (test_bit(EV_SND, dev->evbit))
1332		return true;
1333
1334	if (test_bit(EV_KEY, dev->evbit)) {
1335		for (i = KEY_RESERVED; i < BTN_MISC; i++)
1336			if (test_bit(i, dev->keybit))
1337				return true;
1338		for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1339			if (test_bit(i, dev->keybit))
1340				return true;
1341	}
1342
1343	return false;
1344}
1345
1346/*
1347 * When a keyboard (or other input device) is found, the kbd_connect
1348 * function is called. The function then looks at the device, and if it
1349 * likes it, it can open it and get events from it. In this (kbd_connect)
1350 * function, we should decide which VT to bind that keyboard to initially.
1351 */
1352static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1353			const struct input_device_id *id)
1354{
1355	struct input_handle *handle;
1356	int error;
1357
1358	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1359	if (!handle)
1360		return -ENOMEM;
1361
1362	handle->dev = dev;
1363	handle->handler = handler;
1364	handle->name = "kbd";
1365
1366	error = input_register_handle(handle);
1367	if (error)
1368		goto err_free_handle;
1369
1370	error = input_open_device(handle);
1371	if (error)
1372		goto err_unregister_handle;
1373
1374	return 0;
1375
1376 err_unregister_handle:
1377	input_unregister_handle(handle);
1378 err_free_handle:
1379	kfree(handle);
1380	return error;
1381}
1382
1383static void kbd_disconnect(struct input_handle *handle)
1384{
1385	input_close_device(handle);
1386	input_unregister_handle(handle);
1387	kfree(handle);
1388}
1389
1390/*
1391 * Start keyboard handler on the new keyboard by refreshing LED state to
1392 * match the rest of the system.
1393 */
1394static void kbd_start(struct input_handle *handle)
1395{
1396	tasklet_disable(&keyboard_tasklet);
1397
1398	if (ledstate != 0xff)
1399		kbd_update_leds_helper(handle, &ledstate);
1400
1401	tasklet_enable(&keyboard_tasklet);
1402}
1403
1404static const struct input_device_id kbd_ids[] = {
1405	{
1406                .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1407                .evbit = { BIT_MASK(EV_KEY) },
1408        },
1409
1410	{
1411                .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1412                .evbit = { BIT_MASK(EV_SND) },
1413        },
1414
1415	{ },    /* Terminating entry */
1416};
1417
1418MODULE_DEVICE_TABLE(input, kbd_ids);
1419
1420static struct input_handler kbd_handler = {
1421	.event		= kbd_event,
1422	.match		= kbd_match,
1423	.connect	= kbd_connect,
1424	.disconnect	= kbd_disconnect,
1425	.start		= kbd_start,
1426	.name		= "kbd",
1427	.id_table	= kbd_ids,
1428};
1429
1430int __init kbd_init(void)
1431{
1432	int i;
1433	int error;
1434
1435        for (i = 0; i < MAX_NR_CONSOLES; i++) {
1436		kbd_table[i].ledflagstate = KBD_DEFLEDS;
1437		kbd_table[i].default_ledflagstate = KBD_DEFLEDS;
1438		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1439		kbd_table[i].lockstate = KBD_DEFLOCK;
1440		kbd_table[i].slockstate = 0;
1441		kbd_table[i].modeflags = KBD_DEFMODE;
1442		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1443	}
1444
 
 
1445	error = input_register_handler(&kbd_handler);
1446	if (error)
1447		return error;
1448
1449	tasklet_enable(&keyboard_tasklet);
1450	tasklet_schedule(&keyboard_tasklet);
1451
1452	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453}
v4.10.11
   1/*
   2 * Written for linux by Johan Myreen as a translation from
   3 * the assembly version by Linus (with diacriticals added)
   4 *
   5 * Some additional features added by Christoph Niemann (ChN), March 1993
   6 *
   7 * Loadable keymaps by Risto Kankkunen, May 1993
   8 *
   9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  10 * Added decr/incr_console, dynamic keymaps, Unicode support,
  11 * dynamic function/string keys, led setting,  Sept 1994
  12 * `Sticky' modifier keys, 951006.
  13 *
  14 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  15 *
  16 * Modified to provide 'generic' keyboard support by Hamish Macdonald
  17 * Merge with the m68k keyboard driver and split-off of the PC low-level
  18 * parts by Geert Uytterhoeven, May 1997
  19 *
  20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  21 * 30-07-98: Dead keys redone, aeb@cwi.nl.
  22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  23 */
  24
  25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26
  27#include <linux/consolemap.h>
  28#include <linux/module.h>
  29#include <linux/sched.h>
  30#include <linux/tty.h>
  31#include <linux/tty_flip.h>
  32#include <linux/mm.h>
  33#include <linux/string.h>
  34#include <linux/init.h>
  35#include <linux/slab.h>
  36#include <linux/leds.h>
  37
  38#include <linux/kbd_kern.h>
  39#include <linux/kbd_diacr.h>
  40#include <linux/vt_kern.h>
  41#include <linux/input.h>
  42#include <linux/reboot.h>
  43#include <linux/notifier.h>
  44#include <linux/jiffies.h>
  45#include <linux/uaccess.h>
  46
  47#include <asm/irq_regs.h>
  48
  49extern void ctrl_alt_del(void);
  50
  51/*
  52 * Exported functions/variables
  53 */
  54
  55#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
  56
  57#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
  58#include <asm/kbdleds.h>
 
 
 
 
 
 
 
  59#else
  60static inline int kbd_defleds(void)
  61{
  62	return 0;
  63}
  64#endif
  65
  66#define KBD_DEFLOCK 0
  67
 
 
  68/*
  69 * Handler Tables.
  70 */
  71
  72#define K_HANDLERS\
  73	k_self,		k_fn,		k_spec,		k_pad,\
  74	k_dead,		k_cons,		k_cur,		k_shift,\
  75	k_meta,		k_ascii,	k_lock,		k_lowercase,\
  76	k_slock,	k_dead2,	k_brl,		k_ignore
  77
  78typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  79			    char up_flag);
  80static k_handler_fn K_HANDLERS;
  81static k_handler_fn *k_handler[16] = { K_HANDLERS };
  82
  83#define FN_HANDLERS\
  84	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
  85	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
  86	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
  87	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
  88	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
  89
  90typedef void (fn_handler_fn)(struct vc_data *vc);
  91static fn_handler_fn FN_HANDLERS;
  92static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  93
  94/*
  95 * Variables exported for vt_ioctl.c
  96 */
  97
 
 
 
 
 
 
 
 
 
 
 
 
 
  98struct vt_spawn_console vt_spawn_con = {
  99	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
 100	.pid  = NULL,
 101	.sig  = 0,
 102};
 103
 
 
 
 
 
 104
 105/*
 106 * Internal Data.
 107 */
 108
 109static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
 110static struct kbd_struct *kbd = kbd_table;
 111
 112/* maximum values each key_handler can handle */
 113static const int max_vals[] = {
 114	255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
 115	NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
 116	255, NR_LOCK - 1, 255, NR_BRL - 1
 117};
 118
 119static const int NR_TYPES = ARRAY_SIZE(max_vals);
 120
 121static struct input_handler kbd_handler;
 122static DEFINE_SPINLOCK(kbd_event_lock);
 123static DEFINE_SPINLOCK(led_lock);
 124static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */
 125static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
 126static bool dead_key_next;
 127static int npadch = -1;					/* -1 or number assembled on pad */
 128static unsigned int diacr;
 129static char rep;					/* flag telling character repeat */
 130
 131static int shift_state = 0;
 
 132
 133static unsigned int ledstate = -1U;			/* undefined */
 134static unsigned char ledioctl;
 
 
 
 135
 136/*
 137 * Notifier list for console keyboard events
 138 */
 139static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
 140
 141int register_keyboard_notifier(struct notifier_block *nb)
 142{
 143	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
 144}
 145EXPORT_SYMBOL_GPL(register_keyboard_notifier);
 146
 147int unregister_keyboard_notifier(struct notifier_block *nb)
 148{
 149	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
 150}
 151EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
 152
 153/*
 154 * Translation of scancodes to keycodes. We set them on only the first
 155 * keyboard in the list that accepts the scancode and keycode.
 156 * Explanation for not choosing the first attached keyboard anymore:
 157 *  USB keyboards for example have two event devices: one for all "normal"
 158 *  keys and one for extra function keys (like "volume up", "make coffee",
 159 *  etc.). So this means that scancodes for the extra function keys won't
 160 *  be valid for the first event device, but will be for the second.
 161 */
 162
 163struct getset_keycode_data {
 164	struct input_keymap_entry ke;
 165	int error;
 166};
 167
 168static int getkeycode_helper(struct input_handle *handle, void *data)
 169{
 170	struct getset_keycode_data *d = data;
 171
 172	d->error = input_get_keycode(handle->dev, &d->ke);
 173
 174	return d->error == 0; /* stop as soon as we successfully get one */
 175}
 176
 177static int getkeycode(unsigned int scancode)
 178{
 179	struct getset_keycode_data d = {
 180		.ke	= {
 181			.flags		= 0,
 182			.len		= sizeof(scancode),
 183			.keycode	= 0,
 184		},
 185		.error	= -ENODEV,
 186	};
 187
 188	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 189
 190	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
 191
 192	return d.error ?: d.ke.keycode;
 193}
 194
 195static int setkeycode_helper(struct input_handle *handle, void *data)
 196{
 197	struct getset_keycode_data *d = data;
 198
 199	d->error = input_set_keycode(handle->dev, &d->ke);
 200
 201	return d->error == 0; /* stop as soon as we successfully set one */
 202}
 203
 204static int setkeycode(unsigned int scancode, unsigned int keycode)
 205{
 206	struct getset_keycode_data d = {
 207		.ke	= {
 208			.flags		= 0,
 209			.len		= sizeof(scancode),
 210			.keycode	= keycode,
 211		},
 212		.error	= -ENODEV,
 213	};
 214
 215	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 216
 217	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
 218
 219	return d.error;
 220}
 221
 222/*
 223 * Making beeps and bells. Note that we prefer beeps to bells, but when
 224 * shutting the sound off we do both.
 225 */
 226
 227static int kd_sound_helper(struct input_handle *handle, void *data)
 228{
 229	unsigned int *hz = data;
 230	struct input_dev *dev = handle->dev;
 231
 232	if (test_bit(EV_SND, dev->evbit)) {
 233		if (test_bit(SND_TONE, dev->sndbit)) {
 234			input_inject_event(handle, EV_SND, SND_TONE, *hz);
 235			if (*hz)
 236				return 0;
 237		}
 238		if (test_bit(SND_BELL, dev->sndbit))
 239			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
 240	}
 241
 242	return 0;
 243}
 244
 245static void kd_nosound(unsigned long ignored)
 246{
 247	static unsigned int zero;
 248
 249	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
 250}
 251
 252static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
 253
 254void kd_mksound(unsigned int hz, unsigned int ticks)
 255{
 256	del_timer_sync(&kd_mksound_timer);
 257
 258	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
 259
 260	if (hz && ticks)
 261		mod_timer(&kd_mksound_timer, jiffies + ticks);
 262}
 263EXPORT_SYMBOL(kd_mksound);
 264
 265/*
 266 * Setting the keyboard rate.
 267 */
 268
 269static int kbd_rate_helper(struct input_handle *handle, void *data)
 270{
 271	struct input_dev *dev = handle->dev;
 272	struct kbd_repeat *rpt = data;
 273
 274	if (test_bit(EV_REP, dev->evbit)) {
 275
 276		if (rpt[0].delay > 0)
 277			input_inject_event(handle,
 278					   EV_REP, REP_DELAY, rpt[0].delay);
 279		if (rpt[0].period > 0)
 280			input_inject_event(handle,
 281					   EV_REP, REP_PERIOD, rpt[0].period);
 282
 283		rpt[1].delay = dev->rep[REP_DELAY];
 284		rpt[1].period = dev->rep[REP_PERIOD];
 285	}
 286
 287	return 0;
 288}
 289
 290int kbd_rate(struct kbd_repeat *rpt)
 291{
 292	struct kbd_repeat data[2] = { *rpt };
 293
 294	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
 295	*rpt = data[1];	/* Copy currently used settings */
 296
 297	return 0;
 298}
 299
 300/*
 301 * Helper Functions.
 302 */
 303static void put_queue(struct vc_data *vc, int ch)
 304{
 305	tty_insert_flip_char(&vc->port, ch, 0);
 306	tty_schedule_flip(&vc->port);
 
 
 
 
 307}
 308
 309static void puts_queue(struct vc_data *vc, char *cp)
 310{
 
 
 
 
 
 311	while (*cp) {
 312		tty_insert_flip_char(&vc->port, *cp, 0);
 313		cp++;
 314	}
 315	tty_schedule_flip(&vc->port);
 316}
 317
 318static void applkey(struct vc_data *vc, int key, char mode)
 319{
 320	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
 321
 322	buf[1] = (mode ? 'O' : '[');
 323	buf[2] = key;
 324	puts_queue(vc, buf);
 325}
 326
 327/*
 328 * Many other routines do put_queue, but I think either
 329 * they produce ASCII, or they produce some user-assigned
 330 * string, and in both cases we might assume that it is
 331 * in utf-8 already.
 332 */
 333static void to_utf8(struct vc_data *vc, uint c)
 334{
 335	if (c < 0x80)
 336		/*  0******* */
 337		put_queue(vc, c);
 338	else if (c < 0x800) {
 339		/* 110***** 10****** */
 340		put_queue(vc, 0xc0 | (c >> 6));
 341		put_queue(vc, 0x80 | (c & 0x3f));
 342	} else if (c < 0x10000) {
 343		if (c >= 0xD800 && c < 0xE000)
 344			return;
 345		if (c == 0xFFFF)
 346			return;
 347		/* 1110**** 10****** 10****** */
 348		put_queue(vc, 0xe0 | (c >> 12));
 349		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 350		put_queue(vc, 0x80 | (c & 0x3f));
 351	} else if (c < 0x110000) {
 352		/* 11110*** 10****** 10****** 10****** */
 353		put_queue(vc, 0xf0 | (c >> 18));
 354		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
 355		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 356		put_queue(vc, 0x80 | (c & 0x3f));
 357	}
 358}
 359
 360/*
 361 * Called after returning from RAW mode or when changing consoles - recompute
 362 * shift_down[] and shift_state from key_down[] maybe called when keymap is
 363 * undefined, so that shiftkey release is seen. The caller must hold the
 364 * kbd_event_lock.
 365 */
 366
 367static void do_compute_shiftstate(void)
 368{
 369	unsigned int k, sym, val;
 370
 371	shift_state = 0;
 372	memset(shift_down, 0, sizeof(shift_down));
 373
 374	for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
 375		sym = U(key_maps[0][k]);
 376		if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
 377			continue;
 378
 379		val = KVAL(sym);
 380		if (val == KVAL(K_CAPSSHIFT))
 381			val = KVAL(K_SHIFT);
 
 
 
 
 
 
 
 382
 383		shift_down[val]++;
 384		shift_state |= BIT(val);
 
 
 
 
 
 385	}
 386}
 387
 388/* We still have to export this method to vt.c */
 389void compute_shiftstate(void)
 390{
 391	unsigned long flags;
 392	spin_lock_irqsave(&kbd_event_lock, flags);
 393	do_compute_shiftstate();
 394	spin_unlock_irqrestore(&kbd_event_lock, flags);
 395}
 396
 397/*
 398 * We have a combining character DIACR here, followed by the character CH.
 399 * If the combination occurs in the table, return the corresponding value.
 400 * Otherwise, if CH is a space or equals DIACR, return DIACR.
 401 * Otherwise, conclude that DIACR was not combining after all,
 402 * queue it and return CH.
 403 */
 404static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
 405{
 406	unsigned int d = diacr;
 407	unsigned int i;
 408
 409	diacr = 0;
 410
 411	if ((d & ~0xff) == BRL_UC_ROW) {
 412		if ((ch & ~0xff) == BRL_UC_ROW)
 413			return d | ch;
 414	} else {
 415		for (i = 0; i < accent_table_size; i++)
 416			if (accent_table[i].diacr == d && accent_table[i].base == ch)
 417				return accent_table[i].result;
 418	}
 419
 420	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
 421		return d;
 422
 423	if (kbd->kbdmode == VC_UNICODE)
 424		to_utf8(vc, d);
 425	else {
 426		int c = conv_uni_to_8bit(d);
 427		if (c != -1)
 428			put_queue(vc, c);
 429	}
 430
 431	return ch;
 432}
 433
 434/*
 435 * Special function handlers
 436 */
 437static void fn_enter(struct vc_data *vc)
 438{
 439	if (diacr) {
 440		if (kbd->kbdmode == VC_UNICODE)
 441			to_utf8(vc, diacr);
 442		else {
 443			int c = conv_uni_to_8bit(diacr);
 444			if (c != -1)
 445				put_queue(vc, c);
 446		}
 447		diacr = 0;
 448	}
 449
 450	put_queue(vc, 13);
 451	if (vc_kbd_mode(kbd, VC_CRLF))
 452		put_queue(vc, 10);
 453}
 454
 455static void fn_caps_toggle(struct vc_data *vc)
 456{
 457	if (rep)
 458		return;
 459
 460	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
 461}
 462
 463static void fn_caps_on(struct vc_data *vc)
 464{
 465	if (rep)
 466		return;
 467
 468	set_vc_kbd_led(kbd, VC_CAPSLOCK);
 469}
 470
 471static void fn_show_ptregs(struct vc_data *vc)
 472{
 473	struct pt_regs *regs = get_irq_regs();
 474
 475	if (regs)
 476		show_regs(regs);
 477}
 478
 479static void fn_hold(struct vc_data *vc)
 480{
 481	struct tty_struct *tty = vc->port.tty;
 482
 483	if (rep || !tty)
 484		return;
 485
 486	/*
 487	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
 488	 * these routines are also activated by ^S/^Q.
 489	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
 490	 */
 491	if (tty->stopped)
 492		start_tty(tty);
 493	else
 494		stop_tty(tty);
 495}
 496
 497static void fn_num(struct vc_data *vc)
 498{
 499	if (vc_kbd_mode(kbd, VC_APPLIC))
 500		applkey(vc, 'P', 1);
 501	else
 502		fn_bare_num(vc);
 503}
 504
 505/*
 506 * Bind this to Shift-NumLock if you work in application keypad mode
 507 * but want to be able to change the NumLock flag.
 508 * Bind this to NumLock if you prefer that the NumLock key always
 509 * changes the NumLock flag.
 510 */
 511static void fn_bare_num(struct vc_data *vc)
 512{
 513	if (!rep)
 514		chg_vc_kbd_led(kbd, VC_NUMLOCK);
 515}
 516
 517static void fn_lastcons(struct vc_data *vc)
 518{
 519	/* switch to the last used console, ChN */
 520	set_console(last_console);
 521}
 522
 523static void fn_dec_console(struct vc_data *vc)
 524{
 525	int i, cur = fg_console;
 526
 527	/* Currently switching?  Queue this next switch relative to that. */
 528	if (want_console != -1)
 529		cur = want_console;
 530
 531	for (i = cur - 1; i != cur; i--) {
 532		if (i == -1)
 533			i = MAX_NR_CONSOLES - 1;
 534		if (vc_cons_allocated(i))
 535			break;
 536	}
 537	set_console(i);
 538}
 539
 540static void fn_inc_console(struct vc_data *vc)
 541{
 542	int i, cur = fg_console;
 543
 544	/* Currently switching?  Queue this next switch relative to that. */
 545	if (want_console != -1)
 546		cur = want_console;
 547
 548	for (i = cur+1; i != cur; i++) {
 549		if (i == MAX_NR_CONSOLES)
 550			i = 0;
 551		if (vc_cons_allocated(i))
 552			break;
 553	}
 554	set_console(i);
 555}
 556
 557static void fn_send_intr(struct vc_data *vc)
 558{
 559	tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
 560	tty_schedule_flip(&vc->port);
 
 
 
 
 561}
 562
 563static void fn_scroll_forw(struct vc_data *vc)
 564{
 565	scrollfront(vc, 0);
 566}
 567
 568static void fn_scroll_back(struct vc_data *vc)
 569{
 570	scrollback(vc);
 571}
 572
 573static void fn_show_mem(struct vc_data *vc)
 574{
 575	show_mem(0);
 576}
 577
 578static void fn_show_state(struct vc_data *vc)
 579{
 580	show_state();
 581}
 582
 583static void fn_boot_it(struct vc_data *vc)
 584{
 585	ctrl_alt_del();
 586}
 587
 588static void fn_compose(struct vc_data *vc)
 589{
 590	dead_key_next = true;
 591}
 592
 593static void fn_spawn_con(struct vc_data *vc)
 594{
 595	spin_lock(&vt_spawn_con.lock);
 596	if (vt_spawn_con.pid)
 597		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
 598			put_pid(vt_spawn_con.pid);
 599			vt_spawn_con.pid = NULL;
 600		}
 601	spin_unlock(&vt_spawn_con.lock);
 602}
 603
 604static void fn_SAK(struct vc_data *vc)
 605{
 606	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
 607	schedule_work(SAK_work);
 608}
 609
 610static void fn_null(struct vc_data *vc)
 611{
 612	do_compute_shiftstate();
 613}
 614
 615/*
 616 * Special key handlers
 617 */
 618static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
 619{
 620}
 621
 622static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
 623{
 624	if (up_flag)
 625		return;
 626	if (value >= ARRAY_SIZE(fn_handler))
 627		return;
 628	if ((kbd->kbdmode == VC_RAW ||
 629	     kbd->kbdmode == VC_MEDIUMRAW ||
 630	     kbd->kbdmode == VC_OFF) &&
 631	     value != KVAL(K_SAK))
 632		return;		/* SAK is allowed even in raw mode */
 633	fn_handler[value](vc);
 634}
 635
 636static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
 637{
 638	pr_err("k_lowercase was called - impossible\n");
 639}
 640
 641static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
 642{
 643	if (up_flag)
 644		return;		/* no action, if this is a key release */
 645
 646	if (diacr)
 647		value = handle_diacr(vc, value);
 648
 649	if (dead_key_next) {
 650		dead_key_next = false;
 651		diacr = value;
 652		return;
 653	}
 654	if (kbd->kbdmode == VC_UNICODE)
 655		to_utf8(vc, value);
 656	else {
 657		int c = conv_uni_to_8bit(value);
 658		if (c != -1)
 659			put_queue(vc, c);
 660	}
 661}
 662
 663/*
 664 * Handle dead key. Note that we now may have several
 665 * dead keys modifying the same character. Very useful
 666 * for Vietnamese.
 667 */
 668static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
 669{
 670	if (up_flag)
 671		return;
 672
 673	diacr = (diacr ? handle_diacr(vc, value) : value);
 674}
 675
 676static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
 677{
 678	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
 679}
 680
 681static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
 682{
 683	k_deadunicode(vc, value, up_flag);
 684}
 685
 686/*
 687 * Obsolete - for backwards compatibility only
 688 */
 689static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
 690{
 691	static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
 692
 693	k_deadunicode(vc, ret_diacr[value], up_flag);
 694}
 695
 696static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
 697{
 698	if (up_flag)
 699		return;
 700
 701	set_console(value);
 702}
 703
 704static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
 705{
 706	if (up_flag)
 707		return;
 708
 709	if ((unsigned)value < ARRAY_SIZE(func_table)) {
 710		if (func_table[value])
 711			puts_queue(vc, func_table[value]);
 712	} else
 713		pr_err("k_fn called with value=%d\n", value);
 714}
 715
 716static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
 717{
 718	static const char cur_chars[] = "BDCA";
 719
 720	if (up_flag)
 721		return;
 722
 723	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
 724}
 725
 726static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
 727{
 728	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
 729	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
 730
 731	if (up_flag)
 732		return;		/* no action, if this is a key release */
 733
 734	/* kludge... shift forces cursor/number keys */
 735	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
 736		applkey(vc, app_map[value], 1);
 737		return;
 738	}
 739
 740	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
 741
 742		switch (value) {
 743		case KVAL(K_PCOMMA):
 744		case KVAL(K_PDOT):
 745			k_fn(vc, KVAL(K_REMOVE), 0);
 746			return;
 747		case KVAL(K_P0):
 748			k_fn(vc, KVAL(K_INSERT), 0);
 749			return;
 750		case KVAL(K_P1):
 751			k_fn(vc, KVAL(K_SELECT), 0);
 752			return;
 753		case KVAL(K_P2):
 754			k_cur(vc, KVAL(K_DOWN), 0);
 755			return;
 756		case KVAL(K_P3):
 757			k_fn(vc, KVAL(K_PGDN), 0);
 758			return;
 759		case KVAL(K_P4):
 760			k_cur(vc, KVAL(K_LEFT), 0);
 761			return;
 762		case KVAL(K_P6):
 763			k_cur(vc, KVAL(K_RIGHT), 0);
 764			return;
 765		case KVAL(K_P7):
 766			k_fn(vc, KVAL(K_FIND), 0);
 767			return;
 768		case KVAL(K_P8):
 769			k_cur(vc, KVAL(K_UP), 0);
 770			return;
 771		case KVAL(K_P9):
 772			k_fn(vc, KVAL(K_PGUP), 0);
 773			return;
 774		case KVAL(K_P5):
 775			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
 776			return;
 777		}
 778	}
 779
 780	put_queue(vc, pad_chars[value]);
 781	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
 782		put_queue(vc, 10);
 783}
 784
 785static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
 786{
 787	int old_state = shift_state;
 788
 789	if (rep)
 790		return;
 791	/*
 792	 * Mimic typewriter:
 793	 * a CapsShift key acts like Shift but undoes CapsLock
 794	 */
 795	if (value == KVAL(K_CAPSSHIFT)) {
 796		value = KVAL(K_SHIFT);
 797		if (!up_flag)
 798			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
 799	}
 800
 801	if (up_flag) {
 802		/*
 803		 * handle the case that two shift or control
 804		 * keys are depressed simultaneously
 805		 */
 806		if (shift_down[value])
 807			shift_down[value]--;
 808	} else
 809		shift_down[value]++;
 810
 811	if (shift_down[value])
 812		shift_state |= (1 << value);
 813	else
 814		shift_state &= ~(1 << value);
 815
 816	/* kludge */
 817	if (up_flag && shift_state != old_state && npadch != -1) {
 818		if (kbd->kbdmode == VC_UNICODE)
 819			to_utf8(vc, npadch);
 820		else
 821			put_queue(vc, npadch & 0xff);
 822		npadch = -1;
 823	}
 824}
 825
 826static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
 827{
 828	if (up_flag)
 829		return;
 830
 831	if (vc_kbd_mode(kbd, VC_META)) {
 832		put_queue(vc, '\033');
 833		put_queue(vc, value);
 834	} else
 835		put_queue(vc, value | 0x80);
 836}
 837
 838static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
 839{
 840	int base;
 841
 842	if (up_flag)
 843		return;
 844
 845	if (value < 10) {
 846		/* decimal input of code, while Alt depressed */
 847		base = 10;
 848	} else {
 849		/* hexadecimal input of code, while AltGr depressed */
 850		value -= 10;
 851		base = 16;
 852	}
 853
 854	if (npadch == -1)
 855		npadch = value;
 856	else
 857		npadch = npadch * base + value;
 858}
 859
 860static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
 861{
 862	if (up_flag || rep)
 863		return;
 864
 865	chg_vc_kbd_lock(kbd, value);
 866}
 867
 868static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
 869{
 870	k_shift(vc, value, up_flag);
 871	if (up_flag || rep)
 872		return;
 873
 874	chg_vc_kbd_slock(kbd, value);
 875	/* try to make Alt, oops, AltGr and such work */
 876	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
 877		kbd->slockstate = 0;
 878		chg_vc_kbd_slock(kbd, value);
 879	}
 880}
 881
 882/* by default, 300ms interval for combination release */
 883static unsigned brl_timeout = 300;
 884MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
 885module_param(brl_timeout, uint, 0644);
 886
 887static unsigned brl_nbchords = 1;
 888MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
 889module_param(brl_nbchords, uint, 0644);
 890
 891static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
 892{
 893	static unsigned long chords;
 894	static unsigned committed;
 895
 896	if (!brl_nbchords)
 897		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
 898	else {
 899		committed |= pattern;
 900		chords++;
 901		if (chords == brl_nbchords) {
 902			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
 903			chords = 0;
 904			committed = 0;
 905		}
 906	}
 907}
 908
 909static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
 910{
 911	static unsigned pressed, committing;
 912	static unsigned long releasestart;
 913
 914	if (kbd->kbdmode != VC_UNICODE) {
 915		if (!up_flag)
 916			pr_warn("keyboard mode must be unicode for braille patterns\n");
 917		return;
 918	}
 919
 920	if (!value) {
 921		k_unicode(vc, BRL_UC_ROW, up_flag);
 922		return;
 923	}
 924
 925	if (value > 8)
 926		return;
 927
 928	if (!up_flag) {
 929		pressed |= 1 << (value - 1);
 930		if (!brl_timeout)
 931			committing = pressed;
 932	} else if (brl_timeout) {
 933		if (!committing ||
 934		    time_after(jiffies,
 935			       releasestart + msecs_to_jiffies(brl_timeout))) {
 936			committing = pressed;
 937			releasestart = jiffies;
 938		}
 939		pressed &= ~(1 << (value - 1));
 940		if (!pressed && committing) {
 941			k_brlcommit(vc, committing, 0);
 942			committing = 0;
 943		}
 944	} else {
 945		if (committing) {
 946			k_brlcommit(vc, committing, 0);
 947			committing = 0;
 948		}
 949		pressed &= ~(1 << (value - 1));
 950	}
 951}
 952
 953#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
 954
 955struct kbd_led_trigger {
 956	struct led_trigger trigger;
 957	unsigned int mask;
 958};
 959
 960static void kbd_led_trigger_activate(struct led_classdev *cdev)
 961{
 962	struct kbd_led_trigger *trigger =
 963		container_of(cdev->trigger, struct kbd_led_trigger, trigger);
 964
 965	tasklet_disable(&keyboard_tasklet);
 966	if (ledstate != -1U)
 967		led_trigger_event(&trigger->trigger,
 968				  ledstate & trigger->mask ?
 969					LED_FULL : LED_OFF);
 970	tasklet_enable(&keyboard_tasklet);
 971}
 972
 973#define KBD_LED_TRIGGER(_led_bit, _name) {			\
 974		.trigger = {					\
 975			.name = _name,				\
 976			.activate = kbd_led_trigger_activate,	\
 977		},						\
 978		.mask	= BIT(_led_bit),			\
 979	}
 980
 981#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name)		\
 982	KBD_LED_TRIGGER((_led_bit) + 8, _name)
 983
 984static struct kbd_led_trigger kbd_led_triggers[] = {
 985	KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
 986	KBD_LED_TRIGGER(VC_NUMLOCK,   "kbd-numlock"),
 987	KBD_LED_TRIGGER(VC_CAPSLOCK,  "kbd-capslock"),
 988	KBD_LED_TRIGGER(VC_KANALOCK,  "kbd-kanalock"),
 989
 990	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK,  "kbd-shiftlock"),
 991	KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK,  "kbd-altgrlock"),
 992	KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK,   "kbd-ctrllock"),
 993	KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK,    "kbd-altlock"),
 994	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
 995	KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
 996	KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK,  "kbd-ctrlllock"),
 997	KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK,  "kbd-ctrlrlock"),
 998};
 999
1000static void kbd_propagate_led_state(unsigned int old_state,
1001				    unsigned int new_state)
1002{
1003	struct kbd_led_trigger *trigger;
1004	unsigned int changed = old_state ^ new_state;
1005	int i;
 
 
1006
1007	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1008		trigger = &kbd_led_triggers[i];
1009
1010		if (changed & trigger->mask)
1011			led_trigger_event(&trigger->trigger,
1012					  new_state & trigger->mask ?
1013						LED_FULL : LED_OFF);
1014	}
1015}
1016
1017static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1018{
1019	unsigned int led_state = *(unsigned int *)data;
 
 
1020
1021	if (test_bit(EV_LED, handle->dev->evbit))
1022		kbd_propagate_led_state(~led_state, led_state);
1023
1024	return 0;
1025}
1026
1027static void kbd_init_leds(void)
1028{
1029	int error;
1030	int i;
1031
1032	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1033		error = led_trigger_register(&kbd_led_triggers[i].trigger);
1034		if (error)
1035			pr_err("error %d while registering trigger %s\n",
1036			       error, kbd_led_triggers[i].trigger.name);
 
 
 
1037	}
 
1038}
1039
1040#else
1041
1042static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1043{
1044	unsigned int leds = *(unsigned int *)data;
1045
1046	if (test_bit(EV_LED, handle->dev->evbit)) {
1047		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1048		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1049		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1050		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1051	}
1052
1053	return 0;
1054}
1055
1056static void kbd_propagate_led_state(unsigned int old_state,
1057				    unsigned int new_state)
1058{
1059	input_handler_for_each_handle(&kbd_handler, &new_state,
1060				      kbd_update_leds_helper);
1061}
1062
1063static void kbd_init_leds(void)
1064{
1065}
1066
1067#endif
1068
1069/*
1070 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1071 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1072 * or (iii) specified bits of specified words in kernel memory.
1073 */
1074static unsigned char getledstate(void)
1075{
1076	return ledstate & 0xff;
1077}
1078
1079void setledstate(struct kbd_struct *kb, unsigned int led)
1080{
1081        unsigned long flags;
1082        spin_lock_irqsave(&led_lock, flags);
1083	if (!(led & ~7)) {
1084		ledioctl = led;
1085		kb->ledmode = LED_SHOW_IOCTL;
1086	} else
1087		kb->ledmode = LED_SHOW_FLAGS;
1088
1089	set_leds();
1090	spin_unlock_irqrestore(&led_lock, flags);
1091}
1092
1093static inline unsigned char getleds(void)
1094{
1095	struct kbd_struct *kb = kbd_table + fg_console;
1096
1097	if (kb->ledmode == LED_SHOW_IOCTL)
1098		return ledioctl;
1099
1100	return kb->ledflagstate;
1101}
1102
1103/**
1104 *	vt_get_leds	-	helper for braille console
1105 *	@console: console to read
1106 *	@flag: flag we want to check
1107 *
1108 *	Check the status of a keyboard led flag and report it back
1109 */
1110int vt_get_leds(int console, int flag)
1111{
1112	struct kbd_struct *kb = kbd_table + console;
1113	int ret;
1114	unsigned long flags;
1115
1116	spin_lock_irqsave(&led_lock, flags);
1117	ret = vc_kbd_led(kb, flag);
1118	spin_unlock_irqrestore(&led_lock, flags);
1119
1120	return ret;
1121}
1122EXPORT_SYMBOL_GPL(vt_get_leds);
1123
1124/**
1125 *	vt_set_led_state	-	set LED state of a console
1126 *	@console: console to set
1127 *	@leds: LED bits
1128 *
1129 *	Set the LEDs on a console. This is a wrapper for the VT layer
1130 *	so that we can keep kbd knowledge internal
1131 */
1132void vt_set_led_state(int console, int leds)
1133{
1134	struct kbd_struct *kb = kbd_table + console;
1135	setledstate(kb, leds);
1136}
1137
1138/**
1139 *	vt_kbd_con_start	-	Keyboard side of console start
1140 *	@console: console
1141 *
1142 *	Handle console start. This is a wrapper for the VT layer
1143 *	so that we can keep kbd knowledge internal
1144 *
1145 *	FIXME: We eventually need to hold the kbd lock here to protect
1146 *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1147 *	and start_tty under the kbd_event_lock, while normal tty paths
1148 *	don't hold the lock. We probably need to split out an LED lock
1149 *	but not during an -rc release!
1150 */
1151void vt_kbd_con_start(int console)
1152{
1153	struct kbd_struct *kb = kbd_table + console;
1154	unsigned long flags;
1155	spin_lock_irqsave(&led_lock, flags);
1156	clr_vc_kbd_led(kb, VC_SCROLLOCK);
1157	set_leds();
1158	spin_unlock_irqrestore(&led_lock, flags);
1159}
1160
1161/**
1162 *	vt_kbd_con_stop		-	Keyboard side of console stop
1163 *	@console: console
1164 *
1165 *	Handle console stop. This is a wrapper for the VT layer
1166 *	so that we can keep kbd knowledge internal
1167 */
1168void vt_kbd_con_stop(int console)
1169{
1170	struct kbd_struct *kb = kbd_table + console;
1171	unsigned long flags;
1172	spin_lock_irqsave(&led_lock, flags);
1173	set_vc_kbd_led(kb, VC_SCROLLOCK);
1174	set_leds();
1175	spin_unlock_irqrestore(&led_lock, flags);
1176}
1177
1178/*
1179 * This is the tasklet that updates LED state of LEDs using standard
1180 * keyboard triggers. The reason we use tasklet is that we need to
1181 * handle the scenario when keyboard handler is not registered yet
1182 * but we already getting updates from the VT to update led state.
1183 */
1184static void kbd_bh(unsigned long dummy)
1185{
1186	unsigned int leds;
1187	unsigned long flags;
1188
1189	spin_lock_irqsave(&led_lock, flags);
1190	leds = getleds();
1191	leds |= (unsigned int)kbd->lockstate << 8;
1192	spin_unlock_irqrestore(&led_lock, flags);
1193
1194	if (leds != ledstate) {
1195		kbd_propagate_led_state(ledstate, leds);
 
1196		ledstate = leds;
1197	}
1198}
1199
1200DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1201
1202#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1203    defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1204    defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1205    (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1206    defined(CONFIG_AVR32)
1207
1208#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1209			((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1210
1211static const unsigned short x86_keycodes[256] =
1212	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1213	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1214	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1215	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1216	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1217	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1218	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1219	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1220	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1221	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1222	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1223	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1224	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1225	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1226	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1227
1228#ifdef CONFIG_SPARC
1229static int sparc_l1_a_state;
1230extern void sun_do_break(void);
1231#endif
1232
1233static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1234		       unsigned char up_flag)
1235{
1236	int code;
1237
1238	switch (keycode) {
1239
1240	case KEY_PAUSE:
1241		put_queue(vc, 0xe1);
1242		put_queue(vc, 0x1d | up_flag);
1243		put_queue(vc, 0x45 | up_flag);
1244		break;
1245
1246	case KEY_HANGEUL:
1247		if (!up_flag)
1248			put_queue(vc, 0xf2);
1249		break;
1250
1251	case KEY_HANJA:
1252		if (!up_flag)
1253			put_queue(vc, 0xf1);
1254		break;
1255
1256	case KEY_SYSRQ:
1257		/*
1258		 * Real AT keyboards (that's what we're trying
1259		 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1260		 * pressing PrtSc/SysRq alone, but simply 0x54
1261		 * when pressing Alt+PrtSc/SysRq.
1262		 */
1263		if (test_bit(KEY_LEFTALT, key_down) ||
1264		    test_bit(KEY_RIGHTALT, key_down)) {
1265			put_queue(vc, 0x54 | up_flag);
1266		} else {
1267			put_queue(vc, 0xe0);
1268			put_queue(vc, 0x2a | up_flag);
1269			put_queue(vc, 0xe0);
1270			put_queue(vc, 0x37 | up_flag);
1271		}
1272		break;
1273
1274	default:
1275		if (keycode > 255)
1276			return -1;
1277
1278		code = x86_keycodes[keycode];
1279		if (!code)
1280			return -1;
1281
1282		if (code & 0x100)
1283			put_queue(vc, 0xe0);
1284		put_queue(vc, (code & 0x7f) | up_flag);
1285
1286		break;
1287	}
1288
1289	return 0;
1290}
1291
1292#else
1293
1294#define HW_RAW(dev)	0
1295
1296static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1297{
1298	if (keycode > 127)
1299		return -1;
1300
1301	put_queue(vc, keycode | up_flag);
1302	return 0;
1303}
1304#endif
1305
1306static void kbd_rawcode(unsigned char data)
1307{
1308	struct vc_data *vc = vc_cons[fg_console].d;
1309
1310	kbd = kbd_table + vc->vc_num;
1311	if (kbd->kbdmode == VC_RAW)
1312		put_queue(vc, data);
1313}
1314
1315static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1316{
1317	struct vc_data *vc = vc_cons[fg_console].d;
1318	unsigned short keysym, *key_map;
1319	unsigned char type;
1320	bool raw_mode;
1321	struct tty_struct *tty;
1322	int shift_final;
1323	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1324	int rc;
1325
1326	tty = vc->port.tty;
1327
1328	if (tty && (!tty->driver_data)) {
1329		/* No driver data? Strange. Okay we fix it then. */
1330		tty->driver_data = vc;
1331	}
1332
1333	kbd = kbd_table + vc->vc_num;
1334
1335#ifdef CONFIG_SPARC
1336	if (keycode == KEY_STOP)
1337		sparc_l1_a_state = down;
1338#endif
1339
1340	rep = (down == 2);
1341
1342	raw_mode = (kbd->kbdmode == VC_RAW);
1343	if (raw_mode && !hw_raw)
1344		if (emulate_raw(vc, keycode, !down << 7))
1345			if (keycode < BTN_MISC && printk_ratelimit())
1346				pr_warn("can't emulate rawmode for keycode %d\n",
1347					keycode);
1348
1349#ifdef CONFIG_SPARC
1350	if (keycode == KEY_A && sparc_l1_a_state) {
1351		sparc_l1_a_state = false;
1352		sun_do_break();
1353	}
1354#endif
1355
1356	if (kbd->kbdmode == VC_MEDIUMRAW) {
1357		/*
1358		 * This is extended medium raw mode, with keys above 127
1359		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1360		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1361		 * interfere with anything else. The two bytes after 0 will
1362		 * always have the up flag set not to interfere with older
1363		 * applications. This allows for 16384 different keycodes,
1364		 * which should be enough.
1365		 */
1366		if (keycode < 128) {
1367			put_queue(vc, keycode | (!down << 7));
1368		} else {
1369			put_queue(vc, !down << 7);
1370			put_queue(vc, (keycode >> 7) | 0x80);
1371			put_queue(vc, keycode | 0x80);
1372		}
1373		raw_mode = true;
1374	}
1375
1376	if (down)
1377		set_bit(keycode, key_down);
1378	else
1379		clear_bit(keycode, key_down);
1380
1381	if (rep &&
1382	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1383	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1384		/*
1385		 * Don't repeat a key if the input buffers are not empty and the
1386		 * characters get aren't echoed locally. This makes key repeat
1387		 * usable with slow applications and under heavy loads.
1388		 */
1389		return;
1390	}
1391
1392	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1393	param.ledstate = kbd->ledflagstate;
1394	key_map = key_maps[shift_final];
1395
1396	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1397					KBD_KEYCODE, &param);
1398	if (rc == NOTIFY_STOP || !key_map) {
1399		atomic_notifier_call_chain(&keyboard_notifier_list,
1400					   KBD_UNBOUND_KEYCODE, &param);
1401		do_compute_shiftstate();
1402		kbd->slockstate = 0;
1403		return;
1404	}
1405
1406	if (keycode < NR_KEYS)
1407		keysym = key_map[keycode];
1408	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1409		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1410	else
1411		return;
1412
1413	type = KTYP(keysym);
1414
1415	if (type < 0xf0) {
1416		param.value = keysym;
1417		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1418						KBD_UNICODE, &param);
1419		if (rc != NOTIFY_STOP)
1420			if (down && !raw_mode)
1421				to_utf8(vc, keysym);
1422		return;
1423	}
1424
1425	type -= 0xf0;
1426
1427	if (type == KT_LETTER) {
1428		type = KT_LATIN;
1429		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1430			key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1431			if (key_map)
1432				keysym = key_map[keycode];
1433		}
1434	}
1435
1436	param.value = keysym;
1437	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1438					KBD_KEYSYM, &param);
1439	if (rc == NOTIFY_STOP)
1440		return;
1441
1442	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1443		return;
1444
1445	(*k_handler[type])(vc, keysym & 0xff, !down);
1446
1447	param.ledstate = kbd->ledflagstate;
1448	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1449
1450	if (type != KT_SLOCK)
1451		kbd->slockstate = 0;
1452}
1453
1454static void kbd_event(struct input_handle *handle, unsigned int event_type,
1455		      unsigned int event_code, int value)
1456{
1457	/* We are called with interrupts disabled, just take the lock */
1458	spin_lock(&kbd_event_lock);
1459
1460	if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1461		kbd_rawcode(value);
1462	if (event_type == EV_KEY)
1463		kbd_keycode(event_code, value, HW_RAW(handle->dev));
1464
1465	spin_unlock(&kbd_event_lock);
1466
1467	tasklet_schedule(&keyboard_tasklet);
1468	do_poke_blanked_console = 1;
1469	schedule_console_callback();
1470}
1471
1472static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1473{
1474	int i;
1475
1476	if (test_bit(EV_SND, dev->evbit))
1477		return true;
1478
1479	if (test_bit(EV_KEY, dev->evbit)) {
1480		for (i = KEY_RESERVED; i < BTN_MISC; i++)
1481			if (test_bit(i, dev->keybit))
1482				return true;
1483		for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1484			if (test_bit(i, dev->keybit))
1485				return true;
1486	}
1487
1488	return false;
1489}
1490
1491/*
1492 * When a keyboard (or other input device) is found, the kbd_connect
1493 * function is called. The function then looks at the device, and if it
1494 * likes it, it can open it and get events from it. In this (kbd_connect)
1495 * function, we should decide which VT to bind that keyboard to initially.
1496 */
1497static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1498			const struct input_device_id *id)
1499{
1500	struct input_handle *handle;
1501	int error;
1502
1503	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1504	if (!handle)
1505		return -ENOMEM;
1506
1507	handle->dev = dev;
1508	handle->handler = handler;
1509	handle->name = "kbd";
1510
1511	error = input_register_handle(handle);
1512	if (error)
1513		goto err_free_handle;
1514
1515	error = input_open_device(handle);
1516	if (error)
1517		goto err_unregister_handle;
1518
1519	return 0;
1520
1521 err_unregister_handle:
1522	input_unregister_handle(handle);
1523 err_free_handle:
1524	kfree(handle);
1525	return error;
1526}
1527
1528static void kbd_disconnect(struct input_handle *handle)
1529{
1530	input_close_device(handle);
1531	input_unregister_handle(handle);
1532	kfree(handle);
1533}
1534
1535/*
1536 * Start keyboard handler on the new keyboard by refreshing LED state to
1537 * match the rest of the system.
1538 */
1539static void kbd_start(struct input_handle *handle)
1540{
1541	tasklet_disable(&keyboard_tasklet);
1542
1543	if (ledstate != -1U)
1544		kbd_update_leds_helper(handle, &ledstate);
1545
1546	tasklet_enable(&keyboard_tasklet);
1547}
1548
1549static const struct input_device_id kbd_ids[] = {
1550	{
1551		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1552		.evbit = { BIT_MASK(EV_KEY) },
1553	},
1554
1555	{
1556		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1557		.evbit = { BIT_MASK(EV_SND) },
1558	},
1559
1560	{ },    /* Terminating entry */
1561};
1562
1563MODULE_DEVICE_TABLE(input, kbd_ids);
1564
1565static struct input_handler kbd_handler = {
1566	.event		= kbd_event,
1567	.match		= kbd_match,
1568	.connect	= kbd_connect,
1569	.disconnect	= kbd_disconnect,
1570	.start		= kbd_start,
1571	.name		= "kbd",
1572	.id_table	= kbd_ids,
1573};
1574
1575int __init kbd_init(void)
1576{
1577	int i;
1578	int error;
1579
1580	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1581		kbd_table[i].ledflagstate = kbd_defleds();
1582		kbd_table[i].default_ledflagstate = kbd_defleds();
1583		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1584		kbd_table[i].lockstate = KBD_DEFLOCK;
1585		kbd_table[i].slockstate = 0;
1586		kbd_table[i].modeflags = KBD_DEFMODE;
1587		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1588	}
1589
1590	kbd_init_leds();
1591
1592	error = input_register_handler(&kbd_handler);
1593	if (error)
1594		return error;
1595
1596	tasklet_enable(&keyboard_tasklet);
1597	tasklet_schedule(&keyboard_tasklet);
1598
1599	return 0;
1600}
1601
1602/* Ioctl support code */
1603
1604/**
1605 *	vt_do_diacrit		-	diacritical table updates
1606 *	@cmd: ioctl request
1607 *	@udp: pointer to user data for ioctl
1608 *	@perm: permissions check computed by caller
1609 *
1610 *	Update the diacritical tables atomically and safely. Lock them
1611 *	against simultaneous keypresses
1612 */
1613int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1614{
1615	unsigned long flags;
1616	int asize;
1617	int ret = 0;
1618
1619	switch (cmd) {
1620	case KDGKBDIACR:
1621	{
1622		struct kbdiacrs __user *a = udp;
1623		struct kbdiacr *dia;
1624		int i;
1625
1626		dia = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1627								GFP_KERNEL);
1628		if (!dia)
1629			return -ENOMEM;
1630
1631		/* Lock the diacriticals table, make a copy and then
1632		   copy it after we unlock */
1633		spin_lock_irqsave(&kbd_event_lock, flags);
1634
1635		asize = accent_table_size;
1636		for (i = 0; i < asize; i++) {
1637			dia[i].diacr = conv_uni_to_8bit(
1638						accent_table[i].diacr);
1639			dia[i].base = conv_uni_to_8bit(
1640						accent_table[i].base);
1641			dia[i].result = conv_uni_to_8bit(
1642						accent_table[i].result);
1643		}
1644		spin_unlock_irqrestore(&kbd_event_lock, flags);
1645
1646		if (put_user(asize, &a->kb_cnt))
1647			ret = -EFAULT;
1648		else  if (copy_to_user(a->kbdiacr, dia,
1649				asize * sizeof(struct kbdiacr)))
1650			ret = -EFAULT;
1651		kfree(dia);
1652		return ret;
1653	}
1654	case KDGKBDIACRUC:
1655	{
1656		struct kbdiacrsuc __user *a = udp;
1657		void *buf;
1658
1659		buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1660								GFP_KERNEL);
1661		if (buf == NULL)
1662			return -ENOMEM;
1663
1664		/* Lock the diacriticals table, make a copy and then
1665		   copy it after we unlock */
1666		spin_lock_irqsave(&kbd_event_lock, flags);
1667
1668		asize = accent_table_size;
1669		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1670
1671		spin_unlock_irqrestore(&kbd_event_lock, flags);
1672
1673		if (put_user(asize, &a->kb_cnt))
1674			ret = -EFAULT;
1675		else if (copy_to_user(a->kbdiacruc, buf,
1676				asize*sizeof(struct kbdiacruc)))
1677			ret = -EFAULT;
1678		kfree(buf);
1679		return ret;
1680	}
1681
1682	case KDSKBDIACR:
1683	{
1684		struct kbdiacrs __user *a = udp;
1685		struct kbdiacr *dia = NULL;
1686		unsigned int ct;
1687		int i;
1688
1689		if (!perm)
1690			return -EPERM;
1691		if (get_user(ct, &a->kb_cnt))
1692			return -EFAULT;
1693		if (ct >= MAX_DIACR)
1694			return -EINVAL;
1695
1696		if (ct) {
1697
1698			dia = memdup_user(a->kbdiacr,
1699					sizeof(struct kbdiacr) * ct);
1700			if (IS_ERR(dia))
1701				return PTR_ERR(dia);
1702
1703		}
1704
1705		spin_lock_irqsave(&kbd_event_lock, flags);
1706		accent_table_size = ct;
1707		for (i = 0; i < ct; i++) {
1708			accent_table[i].diacr =
1709					conv_8bit_to_uni(dia[i].diacr);
1710			accent_table[i].base =
1711					conv_8bit_to_uni(dia[i].base);
1712			accent_table[i].result =
1713					conv_8bit_to_uni(dia[i].result);
1714		}
1715		spin_unlock_irqrestore(&kbd_event_lock, flags);
1716		kfree(dia);
1717		return 0;
1718	}
1719
1720	case KDSKBDIACRUC:
1721	{
1722		struct kbdiacrsuc __user *a = udp;
1723		unsigned int ct;
1724		void *buf = NULL;
1725
1726		if (!perm)
1727			return -EPERM;
1728
1729		if (get_user(ct, &a->kb_cnt))
1730			return -EFAULT;
1731
1732		if (ct >= MAX_DIACR)
1733			return -EINVAL;
1734
1735		if (ct) {
1736			buf = memdup_user(a->kbdiacruc,
1737					  ct * sizeof(struct kbdiacruc));
1738			if (IS_ERR(buf))
1739				return PTR_ERR(buf);
1740		} 
1741		spin_lock_irqsave(&kbd_event_lock, flags);
1742		if (ct)
1743			memcpy(accent_table, buf,
1744					ct * sizeof(struct kbdiacruc));
1745		accent_table_size = ct;
1746		spin_unlock_irqrestore(&kbd_event_lock, flags);
1747		kfree(buf);
1748		return 0;
1749	}
1750	}
1751	return ret;
1752}
1753
1754/**
1755 *	vt_do_kdskbmode		-	set keyboard mode ioctl
1756 *	@console: the console to use
1757 *	@arg: the requested mode
1758 *
1759 *	Update the keyboard mode bits while holding the correct locks.
1760 *	Return 0 for success or an error code.
1761 */
1762int vt_do_kdskbmode(int console, unsigned int arg)
1763{
1764	struct kbd_struct *kb = kbd_table + console;
1765	int ret = 0;
1766	unsigned long flags;
1767
1768	spin_lock_irqsave(&kbd_event_lock, flags);
1769	switch(arg) {
1770	case K_RAW:
1771		kb->kbdmode = VC_RAW;
1772		break;
1773	case K_MEDIUMRAW:
1774		kb->kbdmode = VC_MEDIUMRAW;
1775		break;
1776	case K_XLATE:
1777		kb->kbdmode = VC_XLATE;
1778		do_compute_shiftstate();
1779		break;
1780	case K_UNICODE:
1781		kb->kbdmode = VC_UNICODE;
1782		do_compute_shiftstate();
1783		break;
1784	case K_OFF:
1785		kb->kbdmode = VC_OFF;
1786		break;
1787	default:
1788		ret = -EINVAL;
1789	}
1790	spin_unlock_irqrestore(&kbd_event_lock, flags);
1791	return ret;
1792}
1793
1794/**
1795 *	vt_do_kdskbmeta		-	set keyboard meta state
1796 *	@console: the console to use
1797 *	@arg: the requested meta state
1798 *
1799 *	Update the keyboard meta bits while holding the correct locks.
1800 *	Return 0 for success or an error code.
1801 */
1802int vt_do_kdskbmeta(int console, unsigned int arg)
1803{
1804	struct kbd_struct *kb = kbd_table + console;
1805	int ret = 0;
1806	unsigned long flags;
1807
1808	spin_lock_irqsave(&kbd_event_lock, flags);
1809	switch(arg) {
1810	case K_METABIT:
1811		clr_vc_kbd_mode(kb, VC_META);
1812		break;
1813	case K_ESCPREFIX:
1814		set_vc_kbd_mode(kb, VC_META);
1815		break;
1816	default:
1817		ret = -EINVAL;
1818	}
1819	spin_unlock_irqrestore(&kbd_event_lock, flags);
1820	return ret;
1821}
1822
1823int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1824								int perm)
1825{
1826	struct kbkeycode tmp;
1827	int kc = 0;
1828
1829	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1830		return -EFAULT;
1831	switch (cmd) {
1832	case KDGETKEYCODE:
1833		kc = getkeycode(tmp.scancode);
1834		if (kc >= 0)
1835			kc = put_user(kc, &user_kbkc->keycode);
1836		break;
1837	case KDSETKEYCODE:
1838		if (!perm)
1839			return -EPERM;
1840		kc = setkeycode(tmp.scancode, tmp.keycode);
1841		break;
1842	}
1843	return kc;
1844}
1845
1846#define i (tmp.kb_index)
1847#define s (tmp.kb_table)
1848#define v (tmp.kb_value)
1849
1850int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1851						int console)
1852{
1853	struct kbd_struct *kb = kbd_table + console;
1854	struct kbentry tmp;
1855	ushort *key_map, *new_map, val, ov;
1856	unsigned long flags;
1857
1858	if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1859		return -EFAULT;
1860
1861	if (!capable(CAP_SYS_TTY_CONFIG))
1862		perm = 0;
1863
1864	switch (cmd) {
1865	case KDGKBENT:
1866		/* Ensure another thread doesn't free it under us */
1867		spin_lock_irqsave(&kbd_event_lock, flags);
1868		key_map = key_maps[s];
1869		if (key_map) {
1870		    val = U(key_map[i]);
1871		    if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1872			val = K_HOLE;
1873		} else
1874		    val = (i ? K_HOLE : K_NOSUCHMAP);
1875		spin_unlock_irqrestore(&kbd_event_lock, flags);
1876		return put_user(val, &user_kbe->kb_value);
1877	case KDSKBENT:
1878		if (!perm)
1879			return -EPERM;
1880		if (!i && v == K_NOSUCHMAP) {
1881			spin_lock_irqsave(&kbd_event_lock, flags);
1882			/* deallocate map */
1883			key_map = key_maps[s];
1884			if (s && key_map) {
1885			    key_maps[s] = NULL;
1886			    if (key_map[0] == U(K_ALLOCATED)) {
1887					kfree(key_map);
1888					keymap_count--;
1889			    }
1890			}
1891			spin_unlock_irqrestore(&kbd_event_lock, flags);
1892			break;
1893		}
1894
1895		if (KTYP(v) < NR_TYPES) {
1896		    if (KVAL(v) > max_vals[KTYP(v)])
1897				return -EINVAL;
1898		} else
1899		    if (kb->kbdmode != VC_UNICODE)
1900				return -EINVAL;
1901
1902		/* ++Geert: non-PC keyboards may generate keycode zero */
1903#if !defined(__mc68000__) && !defined(__powerpc__)
1904		/* assignment to entry 0 only tests validity of args */
1905		if (!i)
1906			break;
1907#endif
1908
1909		new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1910		if (!new_map)
1911			return -ENOMEM;
1912		spin_lock_irqsave(&kbd_event_lock, flags);
1913		key_map = key_maps[s];
1914		if (key_map == NULL) {
1915			int j;
1916
1917			if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1918			    !capable(CAP_SYS_RESOURCE)) {
1919				spin_unlock_irqrestore(&kbd_event_lock, flags);
1920				kfree(new_map);
1921				return -EPERM;
1922			}
1923			key_maps[s] = new_map;
1924			key_map = new_map;
1925			key_map[0] = U(K_ALLOCATED);
1926			for (j = 1; j < NR_KEYS; j++)
1927				key_map[j] = U(K_HOLE);
1928			keymap_count++;
1929		} else
1930			kfree(new_map);
1931
1932		ov = U(key_map[i]);
1933		if (v == ov)
1934			goto out;
1935		/*
1936		 * Attention Key.
1937		 */
1938		if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1939			spin_unlock_irqrestore(&kbd_event_lock, flags);
1940			return -EPERM;
1941		}
1942		key_map[i] = U(v);
1943		if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1944			do_compute_shiftstate();
1945out:
1946		spin_unlock_irqrestore(&kbd_event_lock, flags);
1947		break;
1948	}
1949	return 0;
1950}
1951#undef i
1952#undef s
1953#undef v
1954
1955/* FIXME: This one needs untangling and locking */
1956int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1957{
1958	struct kbsentry *kbs;
1959	char *p;
1960	u_char *q;
1961	u_char __user *up;
1962	int sz;
1963	int delta;
1964	char *first_free, *fj, *fnw;
1965	int i, j, k;
1966	int ret;
1967
1968	if (!capable(CAP_SYS_TTY_CONFIG))
1969		perm = 0;
1970
1971	kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1972	if (!kbs) {
1973		ret = -ENOMEM;
1974		goto reterr;
1975	}
1976
1977	/* we mostly copy too much here (512bytes), but who cares ;) */
1978	if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1979		ret = -EFAULT;
1980		goto reterr;
1981	}
1982	kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1983	i = kbs->kb_func;
1984
1985	switch (cmd) {
1986	case KDGKBSENT:
1987		sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1988						  a struct member */
1989		up = user_kdgkb->kb_string;
1990		p = func_table[i];
1991		if(p)
1992			for ( ; *p && sz; p++, sz--)
1993				if (put_user(*p, up++)) {
1994					ret = -EFAULT;
1995					goto reterr;
1996				}
1997		if (put_user('\0', up)) {
1998			ret = -EFAULT;
1999			goto reterr;
2000		}
2001		kfree(kbs);
2002		return ((p && *p) ? -EOVERFLOW : 0);
2003	case KDSKBSENT:
2004		if (!perm) {
2005			ret = -EPERM;
2006			goto reterr;
2007		}
2008
2009		q = func_table[i];
2010		first_free = funcbufptr + (funcbufsize - funcbufleft);
2011		for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2012			;
2013		if (j < MAX_NR_FUNC)
2014			fj = func_table[j];
2015		else
2016			fj = first_free;
2017
2018		delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2019		if (delta <= funcbufleft) { 	/* it fits in current buf */
2020		    if (j < MAX_NR_FUNC) {
2021			memmove(fj + delta, fj, first_free - fj);
2022			for (k = j; k < MAX_NR_FUNC; k++)
2023			    if (func_table[k])
2024				func_table[k] += delta;
2025		    }
2026		    if (!q)
2027		      func_table[i] = fj;
2028		    funcbufleft -= delta;
2029		} else {			/* allocate a larger buffer */
2030		    sz = 256;
2031		    while (sz < funcbufsize - funcbufleft + delta)
2032		      sz <<= 1;
2033		    fnw = kmalloc(sz, GFP_KERNEL);
2034		    if(!fnw) {
2035		      ret = -ENOMEM;
2036		      goto reterr;
2037		    }
2038
2039		    if (!q)
2040		      func_table[i] = fj;
2041		    if (fj > funcbufptr)
2042			memmove(fnw, funcbufptr, fj - funcbufptr);
2043		    for (k = 0; k < j; k++)
2044		      if (func_table[k])
2045			func_table[k] = fnw + (func_table[k] - funcbufptr);
2046
2047		    if (first_free > fj) {
2048			memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2049			for (k = j; k < MAX_NR_FUNC; k++)
2050			  if (func_table[k])
2051			    func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2052		    }
2053		    if (funcbufptr != func_buf)
2054		      kfree(funcbufptr);
2055		    funcbufptr = fnw;
2056		    funcbufleft = funcbufleft - delta + sz - funcbufsize;
2057		    funcbufsize = sz;
2058		}
2059		strcpy(func_table[i], kbs->kb_string);
2060		break;
2061	}
2062	ret = 0;
2063reterr:
2064	kfree(kbs);
2065	return ret;
2066}
2067
2068int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2069{
2070	struct kbd_struct *kb = kbd_table + console;
2071        unsigned long flags;
2072	unsigned char ucval;
2073
2074        switch(cmd) {
2075	/* the ioctls below read/set the flags usually shown in the leds */
2076	/* don't use them - they will go away without warning */
2077	case KDGKBLED:
2078                spin_lock_irqsave(&kbd_event_lock, flags);
2079		ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2080                spin_unlock_irqrestore(&kbd_event_lock, flags);
2081		return put_user(ucval, (char __user *)arg);
2082
2083	case KDSKBLED:
2084		if (!perm)
2085			return -EPERM;
2086		if (arg & ~0x77)
2087			return -EINVAL;
2088                spin_lock_irqsave(&led_lock, flags);
2089		kb->ledflagstate = (arg & 7);
2090		kb->default_ledflagstate = ((arg >> 4) & 7);
2091		set_leds();
2092                spin_unlock_irqrestore(&led_lock, flags);
2093		return 0;
2094
2095	/* the ioctls below only set the lights, not the functions */
2096	/* for those, see KDGKBLED and KDSKBLED above */
2097	case KDGETLED:
2098		ucval = getledstate();
2099		return put_user(ucval, (char __user *)arg);
2100
2101	case KDSETLED:
2102		if (!perm)
2103			return -EPERM;
2104		setledstate(kb, arg);
2105		return 0;
2106        }
2107        return -ENOIOCTLCMD;
2108}
2109
2110int vt_do_kdgkbmode(int console)
2111{
2112	struct kbd_struct *kb = kbd_table + console;
2113	/* This is a spot read so needs no locking */
2114	switch (kb->kbdmode) {
2115	case VC_RAW:
2116		return K_RAW;
2117	case VC_MEDIUMRAW:
2118		return K_MEDIUMRAW;
2119	case VC_UNICODE:
2120		return K_UNICODE;
2121	case VC_OFF:
2122		return K_OFF;
2123	default:
2124		return K_XLATE;
2125	}
2126}
2127
2128/**
2129 *	vt_do_kdgkbmeta		-	report meta status
2130 *	@console: console to report
2131 *
2132 *	Report the meta flag status of this console
2133 */
2134int vt_do_kdgkbmeta(int console)
2135{
2136	struct kbd_struct *kb = kbd_table + console;
2137        /* Again a spot read so no locking */
2138	return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2139}
2140
2141/**
2142 *	vt_reset_unicode	-	reset the unicode status
2143 *	@console: console being reset
2144 *
2145 *	Restore the unicode console state to its default
2146 */
2147void vt_reset_unicode(int console)
2148{
2149	unsigned long flags;
2150
2151	spin_lock_irqsave(&kbd_event_lock, flags);
2152	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2153	spin_unlock_irqrestore(&kbd_event_lock, flags);
2154}
2155
2156/**
2157 *	vt_get_shiftstate	-	shift bit state
2158 *
2159 *	Report the shift bits from the keyboard state. We have to export
2160 *	this to support some oddities in the vt layer.
2161 */
2162int vt_get_shift_state(void)
2163{
2164        /* Don't lock as this is a transient report */
2165        return shift_state;
2166}
2167
2168/**
2169 *	vt_reset_keyboard	-	reset keyboard state
2170 *	@console: console to reset
2171 *
2172 *	Reset the keyboard bits for a console as part of a general console
2173 *	reset event
2174 */
2175void vt_reset_keyboard(int console)
2176{
2177	struct kbd_struct *kb = kbd_table + console;
2178	unsigned long flags;
2179
2180	spin_lock_irqsave(&kbd_event_lock, flags);
2181	set_vc_kbd_mode(kb, VC_REPEAT);
2182	clr_vc_kbd_mode(kb, VC_CKMODE);
2183	clr_vc_kbd_mode(kb, VC_APPLIC);
2184	clr_vc_kbd_mode(kb, VC_CRLF);
2185	kb->lockstate = 0;
2186	kb->slockstate = 0;
2187	spin_lock(&led_lock);
2188	kb->ledmode = LED_SHOW_FLAGS;
2189	kb->ledflagstate = kb->default_ledflagstate;
2190	spin_unlock(&led_lock);
2191	/* do not do set_leds here because this causes an endless tasklet loop
2192	   when the keyboard hasn't been initialized yet */
2193	spin_unlock_irqrestore(&kbd_event_lock, flags);
2194}
2195
2196/**
2197 *	vt_get_kbd_mode_bit	-	read keyboard status bits
2198 *	@console: console to read from
2199 *	@bit: mode bit to read
2200 *
2201 *	Report back a vt mode bit. We do this without locking so the
2202 *	caller must be sure that there are no synchronization needs
2203 */
2204
2205int vt_get_kbd_mode_bit(int console, int bit)
2206{
2207	struct kbd_struct *kb = kbd_table + console;
2208	return vc_kbd_mode(kb, bit);
2209}
2210
2211/**
2212 *	vt_set_kbd_mode_bit	-	read keyboard status bits
2213 *	@console: console to read from
2214 *	@bit: mode bit to read
2215 *
2216 *	Set a vt mode bit. We do this without locking so the
2217 *	caller must be sure that there are no synchronization needs
2218 */
2219
2220void vt_set_kbd_mode_bit(int console, int bit)
2221{
2222	struct kbd_struct *kb = kbd_table + console;
2223	unsigned long flags;
2224
2225	spin_lock_irqsave(&kbd_event_lock, flags);
2226	set_vc_kbd_mode(kb, bit);
2227	spin_unlock_irqrestore(&kbd_event_lock, flags);
2228}
2229
2230/**
2231 *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2232 *	@console: console to read from
2233 *	@bit: mode bit to read
2234 *
2235 *	Report back a vt mode bit. We do this without locking so the
2236 *	caller must be sure that there are no synchronization needs
2237 */
2238
2239void vt_clr_kbd_mode_bit(int console, int bit)
2240{
2241	struct kbd_struct *kb = kbd_table + console;
2242	unsigned long flags;
2243
2244	spin_lock_irqsave(&kbd_event_lock, flags);
2245	clr_vc_kbd_mode(kb, bit);
2246	spin_unlock_irqrestore(&kbd_event_lock, flags);
2247}