Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
 
   3 *
   4 *  SCSI queueing library.
   5 *      Initial versions: Eric Youngdale (eric@andante.org).
   6 *                        Based upon conversations with large numbers
   7 *                        of people at Linux Expo.
   8 */
   9
  10#include <linux/bio.h>
  11#include <linux/bitops.h>
  12#include <linux/blkdev.h>
  13#include <linux/completion.h>
  14#include <linux/kernel.h>
  15#include <linux/mempool.h>
  16#include <linux/slab.h>
  17#include <linux/init.h>
  18#include <linux/pci.h>
  19#include <linux/delay.h>
  20#include <linux/hardirq.h>
  21#include <linux/scatterlist.h>
 
 
 
  22
  23#include <scsi/scsi.h>
  24#include <scsi/scsi_cmnd.h>
  25#include <scsi/scsi_dbg.h>
  26#include <scsi/scsi_device.h>
  27#include <scsi/scsi_driver.h>
  28#include <scsi/scsi_eh.h>
  29#include <scsi/scsi_host.h>
 
 
  30
 
 
 
  31#include "scsi_priv.h"
  32#include "scsi_logging.h"
  33
 
 
 
 
  34
  35#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
  36#define SG_MEMPOOL_SIZE		2
  37
  38struct scsi_host_sg_pool {
  39	size_t		size;
  40	char		*name;
  41	struct kmem_cache	*slab;
  42	mempool_t	*pool;
  43};
  44
  45#define SP(x) { x, "sgpool-" __stringify(x) }
  46#if (SCSI_MAX_SG_SEGMENTS < 32)
  47#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
  48#endif
  49static struct scsi_host_sg_pool scsi_sg_pools[] = {
  50	SP(8),
  51	SP(16),
  52#if (SCSI_MAX_SG_SEGMENTS > 32)
  53	SP(32),
  54#if (SCSI_MAX_SG_SEGMENTS > 64)
  55	SP(64),
  56#if (SCSI_MAX_SG_SEGMENTS > 128)
  57	SP(128),
  58#if (SCSI_MAX_SG_SEGMENTS > 256)
  59#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
  60#endif
  61#endif
  62#endif
  63#endif
  64	SP(SCSI_MAX_SG_SEGMENTS)
  65};
  66#undef SP
  67
  68struct kmem_cache *scsi_sdb_cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69
  70/*
  71 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
  72 * not change behaviour from the previous unplug mechanism, experimentation
  73 * may prove this needs changing.
  74 */
  75#define SCSI_QUEUE_DELAY	3
  76
  77/*
  78 * Function:	scsi_unprep_request()
  79 *
  80 * Purpose:	Remove all preparation done for a request, including its
  81 *		associated scsi_cmnd, so that it can be requeued.
  82 *
  83 * Arguments:	req	- request to unprepare
  84 *
  85 * Lock status:	Assumed that no locks are held upon entry.
  86 *
  87 * Returns:	Nothing.
  88 */
  89static void scsi_unprep_request(struct request *req)
  90{
  91	struct scsi_cmnd *cmd = req->special;
  92
  93	blk_unprep_request(req);
  94	req->special = NULL;
  95
  96	scsi_put_command(cmd);
  97}
  98
  99/**
 100 * __scsi_queue_insert - private queue insertion
 101 * @cmd: The SCSI command being requeued
 102 * @reason:  The reason for the requeue
 103 * @unbusy: Whether the queue should be unbusied
 104 *
 105 * This is a private queue insertion.  The public interface
 106 * scsi_queue_insert() always assumes the queue should be unbusied
 107 * because it's always called before the completion.  This function is
 108 * for a requeue after completion, which should only occur in this
 109 * file.
 110 */
 111static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
 112{
 113	struct Scsi_Host *host = cmd->device->host;
 114	struct scsi_device *device = cmd->device;
 115	struct scsi_target *starget = scsi_target(device);
 116	struct request_queue *q = device->request_queue;
 117	unsigned long flags;
 118
 119	SCSI_LOG_MLQUEUE(1,
 120		 printk("Inserting command %p into mlqueue\n", cmd));
 121
 122	/*
 123	 * Set the appropriate busy bit for the device/host.
 124	 *
 125	 * If the host/device isn't busy, assume that something actually
 126	 * completed, and that we should be able to queue a command now.
 127	 *
 128	 * Note that the prior mid-layer assumption that any host could
 129	 * always queue at least one command is now broken.  The mid-layer
 130	 * will implement a user specifiable stall (see
 131	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 132	 * if a command is requeued with no other commands outstanding
 133	 * either for the device or for the host.
 134	 */
 135	switch (reason) {
 136	case SCSI_MLQUEUE_HOST_BUSY:
 137		host->host_blocked = host->max_host_blocked;
 138		break;
 139	case SCSI_MLQUEUE_DEVICE_BUSY:
 140	case SCSI_MLQUEUE_EH_RETRY:
 141		device->device_blocked = device->max_device_blocked;
 
 142		break;
 143	case SCSI_MLQUEUE_TARGET_BUSY:
 144		starget->target_blocked = starget->max_target_blocked;
 
 145		break;
 146	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147
 148	/*
 149	 * Decrement the counters, since these commands are no longer
 150	 * active on the host/device.
 151	 */
 152	if (unbusy)
 153		scsi_device_unbusy(device);
 154
 155	/*
 156	 * Requeue this command.  It will go before all other commands
 157	 * that are already in the queue.
 
 
 158	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159	spin_lock_irqsave(q->queue_lock, flags);
 160	blk_requeue_request(q, cmd->request);
 
 161	spin_unlock_irqrestore(q->queue_lock, flags);
 162
 163	kblockd_schedule_work(q, &device->requeue_work);
 164
 165	return 0;
 166}
 167
 168/*
 169 * Function:    scsi_queue_insert()
 170 *
 171 * Purpose:     Insert a command in the midlevel queue.
 172 *
 173 * Arguments:   cmd    - command that we are adding to queue.
 174 *              reason - why we are inserting command to queue.
 175 *
 176 * Lock status: Assumed that lock is not held upon entry.
 177 *
 178 * Returns:     Nothing.
 179 *
 180 * Notes:       We do this for one of two cases.  Either the host is busy
 181 *              and it cannot accept any more commands for the time being,
 182 *              or the device returned QUEUE_FULL and can accept no more
 183 *              commands.
 184 * Notes:       This could be called either from an interrupt context or a
 185 *              normal process context.
 186 */
 187int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 188{
 189	return __scsi_queue_insert(cmd, reason, 1);
 190}
 
 
 191/**
 192 * scsi_execute - insert request and wait for the result
 193 * @sdev:	scsi device
 194 * @cmd:	scsi command
 195 * @data_direction: data direction
 196 * @buffer:	data buffer
 197 * @bufflen:	len of buffer
 198 * @sense:	optional sense buffer
 
 199 * @timeout:	request timeout in seconds
 200 * @retries:	number of times to retry request
 201 * @flags:	or into request flags;
 
 202 * @resid:	optional residual length
 203 *
 204 * returns the req->errors value which is the scsi_cmnd result
 205 * field.
 206 */
 207int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 208		 int data_direction, void *buffer, unsigned bufflen,
 209		 unsigned char *sense, int timeout, int retries, int flags,
 
 210		 int *resid)
 211{
 212	struct request *req;
 213	int write = (data_direction == DMA_TO_DEVICE);
 214	int ret = DRIVER_ERROR << 24;
 215
 216	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
 217	if (!req)
 
 
 218		return ret;
 
 219
 220	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
 221					buffer, bufflen, __GFP_WAIT))
 222		goto out;
 223
 224	req->cmd_len = COMMAND_SIZE(cmd[0]);
 225	memcpy(req->cmd, cmd, req->cmd_len);
 226	req->sense = sense;
 227	req->sense_len = 0;
 228	req->retries = retries;
 229	req->timeout = timeout;
 230	req->cmd_type = REQ_TYPE_BLOCK_PC;
 231	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
 232
 233	/*
 234	 * head injection *required* here otherwise quiesce won't work
 235	 */
 236	blk_execute_rq(req->q, NULL, req, 1);
 237
 238	/*
 239	 * Some devices (USB mass-storage in particular) may transfer
 240	 * garbage data together with a residue indicating that the data
 241	 * is invalid.  Prevent the garbage from being misinterpreted
 242	 * and prevent security leaks by zeroing out the excess data.
 243	 */
 244	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
 245		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
 246
 247	if (resid)
 248		*resid = req->resid_len;
 249	ret = req->errors;
 
 
 
 
 250 out:
 251	blk_put_request(req);
 252
 253	return ret;
 254}
 255EXPORT_SYMBOL(scsi_execute);
 256
 257
 258int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
 259		     int data_direction, void *buffer, unsigned bufflen,
 260		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
 261		     int *resid)
 262{
 263	char *sense = NULL;
 264	int result;
 265	
 266	if (sshdr) {
 267		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
 268		if (!sense)
 269			return DRIVER_ERROR << 24;
 270	}
 271	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
 272			      sense, timeout, retries, 0, resid);
 273	if (sshdr)
 274		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
 275
 276	kfree(sense);
 277	return result;
 278}
 279EXPORT_SYMBOL(scsi_execute_req);
 280
 281/*
 282 * Function:    scsi_init_cmd_errh()
 283 *
 284 * Purpose:     Initialize cmd fields related to error handling.
 285 *
 286 * Arguments:   cmd	- command that is ready to be queued.
 287 *
 288 * Notes:       This function has the job of initializing a number of
 289 *              fields related to error handling.   Typically this will
 290 *              be called once for each command, as required.
 291 */
 292static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 293{
 294	cmd->serial_number = 0;
 295	scsi_set_resid(cmd, 0);
 296	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 297	if (cmd->cmd_len == 0)
 298		cmd->cmd_len = scsi_command_size(cmd->cmnd);
 299}
 300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 301void scsi_device_unbusy(struct scsi_device *sdev)
 302{
 303	struct Scsi_Host *shost = sdev->host;
 304	struct scsi_target *starget = scsi_target(sdev);
 305	unsigned long flags;
 306
 307	spin_lock_irqsave(shost->host_lock, flags);
 308	shost->host_busy--;
 309	starget->target_busy--;
 310	if (unlikely(scsi_host_in_recovery(shost) &&
 311		     (shost->host_failed || shost->host_eh_scheduled)))
 312		scsi_eh_wakeup(shost);
 313	spin_unlock(shost->host_lock);
 314	spin_lock(sdev->request_queue->queue_lock);
 315	sdev->device_busy--;
 316	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
 
 
 
 
 317}
 318
 319/*
 320 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 321 * and call blk_run_queue for all the scsi_devices on the target -
 322 * including current_sdev first.
 323 *
 324 * Called with *no* scsi locks held.
 325 */
 326static void scsi_single_lun_run(struct scsi_device *current_sdev)
 327{
 328	struct Scsi_Host *shost = current_sdev->host;
 329	struct scsi_device *sdev, *tmp;
 330	struct scsi_target *starget = scsi_target(current_sdev);
 331	unsigned long flags;
 332
 333	spin_lock_irqsave(shost->host_lock, flags);
 334	starget->starget_sdev_user = NULL;
 335	spin_unlock_irqrestore(shost->host_lock, flags);
 336
 337	/*
 338	 * Call blk_run_queue for all LUNs on the target, starting with
 339	 * current_sdev. We race with others (to set starget_sdev_user),
 340	 * but in most cases, we will be first. Ideally, each LU on the
 341	 * target would get some limited time or requests on the target.
 342	 */
 343	blk_run_queue(current_sdev->request_queue);
 344
 345	spin_lock_irqsave(shost->host_lock, flags);
 346	if (starget->starget_sdev_user)
 347		goto out;
 348	list_for_each_entry_safe(sdev, tmp, &starget->devices,
 349			same_target_siblings) {
 350		if (sdev == current_sdev)
 351			continue;
 352		if (scsi_device_get(sdev))
 353			continue;
 354
 355		spin_unlock_irqrestore(shost->host_lock, flags);
 356		blk_run_queue(sdev->request_queue);
 357		spin_lock_irqsave(shost->host_lock, flags);
 358	
 359		scsi_device_put(sdev);
 360	}
 361 out:
 362	spin_unlock_irqrestore(shost->host_lock, flags);
 363}
 364
 365static inline int scsi_device_is_busy(struct scsi_device *sdev)
 366{
 367	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
 368		return 1;
 369
 370	return 0;
 
 371}
 372
 373static inline int scsi_target_is_busy(struct scsi_target *starget)
 374{
 375	return ((starget->can_queue > 0 &&
 376		 starget->target_busy >= starget->can_queue) ||
 377		 starget->target_blocked);
 
 
 
 
 378}
 379
 380static inline int scsi_host_is_busy(struct Scsi_Host *shost)
 381{
 382	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
 383	    shost->host_blocked || shost->host_self_blocked)
 384		return 1;
 385
 386	return 0;
 
 
 
 387}
 388
 389/*
 390 * Function:	scsi_run_queue()
 391 *
 392 * Purpose:	Select a proper request queue to serve next
 393 *
 394 * Arguments:	q	- last request's queue
 395 *
 396 * Returns:     Nothing
 397 *
 398 * Notes:	The previous command was completely finished, start
 399 *		a new one if possible.
 400 */
 401static void scsi_run_queue(struct request_queue *q)
 402{
 403	struct scsi_device *sdev = q->queuedata;
 404	struct Scsi_Host *shost;
 405	LIST_HEAD(starved_list);
 
 406	unsigned long flags;
 407
 408	/* if the device is dead, sdev will be NULL, so no queue to run */
 409	if (!sdev)
 410		return;
 411
 412	shost = sdev->host;
 413	if (scsi_target(sdev)->single_lun)
 414		scsi_single_lun_run(sdev);
 415
 416	spin_lock_irqsave(shost->host_lock, flags);
 417	list_splice_init(&shost->starved_list, &starved_list);
 418
 419	while (!list_empty(&starved_list)) {
 
 
 420		/*
 421		 * As long as shost is accepting commands and we have
 422		 * starved queues, call blk_run_queue. scsi_request_fn
 423		 * drops the queue_lock and can add us back to the
 424		 * starved_list.
 425		 *
 426		 * host_lock protects the starved_list and starved_entry.
 427		 * scsi_request_fn must get the host_lock before checking
 428		 * or modifying starved_list or starved_entry.
 429		 */
 430		if (scsi_host_is_busy(shost))
 431			break;
 432
 433		sdev = list_entry(starved_list.next,
 434				  struct scsi_device, starved_entry);
 435		list_del_init(&sdev->starved_entry);
 436		if (scsi_target_is_busy(scsi_target(sdev))) {
 437			list_move_tail(&sdev->starved_entry,
 438				       &shost->starved_list);
 439			continue;
 440		}
 441
 442		spin_unlock(shost->host_lock);
 443		spin_lock(sdev->request_queue->queue_lock);
 444		__blk_run_queue(sdev->request_queue);
 445		spin_unlock(sdev->request_queue->queue_lock);
 446		spin_lock(shost->host_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447	}
 448	/* put any unprocessed entries back */
 449	list_splice(&starved_list, &shost->starved_list);
 450	spin_unlock_irqrestore(shost->host_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451
 452	blk_run_queue(q);
 
 
 
 453}
 454
 455void scsi_requeue_run_queue(struct work_struct *work)
 456{
 457	struct scsi_device *sdev;
 458	struct request_queue *q;
 459
 460	sdev = container_of(work, struct scsi_device, requeue_work);
 461	q = sdev->request_queue;
 462	scsi_run_queue(q);
 463}
 464
 465/*
 466 * Function:	scsi_requeue_command()
 467 *
 468 * Purpose:	Handle post-processing of completed commands.
 469 *
 470 * Arguments:	q	- queue to operate on
 471 *		cmd	- command that may need to be requeued.
 472 *
 473 * Returns:	Nothing
 474 *
 475 * Notes:	After command completion, there may be blocks left
 476 *		over which weren't finished by the previous command
 477 *		this can be for a number of reasons - the main one is
 478 *		I/O errors in the middle of the request, in which case
 479 *		we need to request the blocks that come after the bad
 480 *		sector.
 481 * Notes:	Upon return, cmd is a stale pointer.
 482 */
 483static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
 484{
 
 485	struct request *req = cmd->request;
 486	unsigned long flags;
 487
 488	spin_lock_irqsave(q->queue_lock, flags);
 489	scsi_unprep_request(req);
 
 
 490	blk_requeue_request(q, req);
 491	spin_unlock_irqrestore(q->queue_lock, flags);
 492
 493	scsi_run_queue(q);
 494}
 495
 496void scsi_next_command(struct scsi_cmnd *cmd)
 497{
 498	struct scsi_device *sdev = cmd->device;
 499	struct request_queue *q = sdev->request_queue;
 500
 501	/* need to hold a reference on the device before we let go of the cmd */
 502	get_device(&sdev->sdev_gendev);
 503
 504	scsi_put_command(cmd);
 505	scsi_run_queue(q);
 506
 507	/* ok to remove device now */
 508	put_device(&sdev->sdev_gendev);
 509}
 510
 511void scsi_run_host_queues(struct Scsi_Host *shost)
 512{
 513	struct scsi_device *sdev;
 514
 515	shost_for_each_device(sdev, shost)
 516		scsi_run_queue(sdev->request_queue);
 517}
 518
 519static void __scsi_release_buffers(struct scsi_cmnd *, int);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520
 521/*
 522 * Function:    scsi_end_request()
 523 *
 524 * Purpose:     Post-processing of completed commands (usually invoked at end
 525 *		of upper level post-processing and scsi_io_completion).
 526 *
 527 * Arguments:   cmd	 - command that is complete.
 528 *              error    - 0 if I/O indicates success, < 0 for I/O error.
 529 *              bytes    - number of bytes of completed I/O
 530 *		requeue  - indicates whether we should requeue leftovers.
 531 *
 532 * Lock status: Assumed that lock is not held upon entry.
 533 *
 534 * Returns:     cmd if requeue required, NULL otherwise.
 535 *
 536 * Notes:       This is called for block device requests in order to
 537 *              mark some number of sectors as complete.
 538 * 
 539 *		We are guaranteeing that the request queue will be goosed
 540 *		at some point during this call.
 541 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
 542 */
 543static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
 544					  int bytes, int requeue)
 545{
 546	struct request_queue *q = cmd->device->request_queue;
 547	struct request *req = cmd->request;
 548
 549	/*
 550	 * If there are blocks left over at the end, set up the command
 551	 * to queue the remainder of them.
 552	 */
 553	if (blk_end_request(req, error, bytes)) {
 554		/* kill remainder if no retrys */
 555		if (error && scsi_noretry_cmd(cmd))
 556			blk_end_request_all(req, error);
 557		else {
 558			if (requeue) {
 559				/*
 560				 * Bleah.  Leftovers again.  Stick the
 561				 * leftovers in the front of the
 562				 * queue, and goose the queue again.
 563				 */
 564				scsi_release_buffers(cmd);
 565				scsi_requeue_command(q, cmd);
 566				cmd = NULL;
 567			}
 568			return cmd;
 569		}
 570	}
 571
 572	/*
 573	 * This will goose the queue request function at the end, so we don't
 574	 * need to worry about launching another command.
 575	 */
 576	__scsi_release_buffers(cmd, 0);
 577	scsi_next_command(cmd);
 578	return NULL;
 579}
 580
 581static inline unsigned int scsi_sgtable_index(unsigned short nents)
 582{
 583	unsigned int index;
 584
 585	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
 586
 587	if (nents <= 8)
 588		index = 0;
 589	else
 590		index = get_count_order(nents) - 3;
 591
 592	return index;
 
 593}
 594
 595static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
 596{
 597	struct scsi_host_sg_pool *sgp;
 598
 599	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 600	mempool_free(sgl, sgp->pool);
 
 601}
 602
 603static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
 
 604{
 605	struct scsi_host_sg_pool *sgp;
 
 
 606
 607	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 608	return mempool_alloc(sgp->pool, gfp_mask);
 609}
 610
 611static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
 612			      gfp_t gfp_mask)
 613{
 614	int ret;
 615
 616	BUG_ON(!nents);
 
 617
 618	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
 619			       gfp_mask, scsi_sg_alloc);
 620	if (unlikely(ret))
 621		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
 622				scsi_sg_free);
 623
 624	return ret;
 625}
 
 
 
 
 
 
 
 626
 627static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
 628{
 629	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
 630}
 631
 632static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
 633{
 
 
 
 
 
 634
 635	if (cmd->sdb.table.nents)
 636		scsi_free_sgtable(&cmd->sdb);
 
 
 637
 638	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 
 
 639
 640	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
 641		struct scsi_data_buffer *bidi_sdb =
 642			cmd->request->next_rq->special;
 643		scsi_free_sgtable(bidi_sdb);
 644		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
 645		cmd->request->next_rq->special = NULL;
 646	}
 647
 648	if (scsi_prot_sg_count(cmd))
 649		scsi_free_sgtable(cmd->prot_sdb);
 650}
 651
 652/*
 653 * Function:    scsi_release_buffers()
 654 *
 655 * Purpose:     Completion processing for block device I/O requests.
 656 *
 657 * Arguments:   cmd	- command that we are bailing.
 658 *
 659 * Lock status: Assumed that no lock is held upon entry.
 660 *
 661 * Returns:     Nothing
 662 *
 663 * Notes:       In the event that an upper level driver rejects a
 664 *		command, we must release resources allocated during
 665 *		the __init_io() function.  Primarily this would involve
 666 *		the scatter-gather table, and potentially any bounce
 667 *		buffers.
 668 */
 669void scsi_release_buffers(struct scsi_cmnd *cmd)
 670{
 671	__scsi_release_buffers(cmd, 1);
 672}
 673EXPORT_SYMBOL(scsi_release_buffers);
 674
 675static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
 676{
 677	int error = 0;
 678
 679	switch(host_byte(result)) {
 
 680	case DID_TRANSPORT_FAILFAST:
 681		error = -ENOLINK;
 682		break;
 683	case DID_TARGET_FAILURE:
 684		cmd->result |= (DID_OK << 16);
 685		error = -EREMOTEIO;
 686		break;
 687	case DID_NEXUS_FAILURE:
 688		cmd->result |= (DID_OK << 16);
 689		error = -EBADE;
 690		break;
 
 
 
 
 691	default:
 692		error = -EIO;
 693		break;
 694	}
 695
 696	return error;
 697}
 698
 699/*
 700 * Function:    scsi_io_completion()
 701 *
 702 * Purpose:     Completion processing for block device I/O requests.
 703 *
 704 * Arguments:   cmd   - command that is finished.
 705 *
 706 * Lock status: Assumed that no lock is held upon entry.
 707 *
 708 * Returns:     Nothing
 709 *
 710 * Notes:       This function is matched in terms of capabilities to
 711 *              the function that created the scatter-gather list.
 712 *              In other words, if there are no bounce buffers
 713 *              (the normal case for most drivers), we don't need
 714 *              the logic to deal with cleaning up afterwards.
 715 *
 716 *		We must call scsi_end_request().  This will finish off
 717 *		the specified number of sectors.  If we are done, the
 718 *		command block will be released and the queue function
 719 *		will be goosed.  If we are not done then we have to
 720 *		figure out what to do next:
 721 *
 722 *		a) We can call scsi_requeue_command().  The request
 723 *		   will be unprepared and put back on the queue.  Then
 724 *		   a new command will be created for it.  This should
 725 *		   be used if we made forward progress, or if we want
 726 *		   to switch from READ(10) to READ(6) for example.
 727 *
 728 *		b) We can call scsi_queue_insert().  The request will
 729 *		   be put back on the queue and retried using the same
 730 *		   command as before, possibly after a delay.
 731 *
 732 *		c) We can call blk_end_request() with -EIO to fail
 733 *		   the remainder of the request.
 734 */
 735void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 736{
 737	int result = cmd->result;
 738	struct request_queue *q = cmd->device->request_queue;
 739	struct request *req = cmd->request;
 740	int error = 0;
 741	struct scsi_sense_hdr sshdr;
 742	int sense_valid = 0;
 743	int sense_deferred = 0;
 744	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 745	      ACTION_DELAYED_RETRY} action;
 746	char *description = NULL;
 747
 748	if (result) {
 749		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 750		if (sense_valid)
 751			sense_deferred = scsi_sense_is_deferred(&sshdr);
 752	}
 753
 754	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
 755		req->errors = result;
 756		if (result) {
 757			if (sense_valid && req->sense) {
 758				/*
 759				 * SG_IO wants current and deferred errors
 760				 */
 761				int len = 8 + cmd->sense_buffer[7];
 762
 763				if (len > SCSI_SENSE_BUFFERSIZE)
 764					len = SCSI_SENSE_BUFFERSIZE;
 765				memcpy(req->sense, cmd->sense_buffer,  len);
 766				req->sense_len = len;
 767			}
 768			if (!sense_deferred)
 769				error = __scsi_error_from_host_byte(cmd, result);
 770		}
 771
 772		req->resid_len = scsi_get_resid(cmd);
 
 
 
 773
 774		if (scsi_bidi_cmnd(cmd)) {
 775			/*
 776			 * Bidi commands Must be complete as a whole,
 777			 * both sides at once.
 778			 */
 779			req->next_rq->resid_len = scsi_in(cmd)->resid;
 780
 781			scsi_release_buffers(cmd);
 782			blk_end_request_all(req, 0);
 783
 784			scsi_next_command(cmd);
 785			return;
 786		}
 
 
 
 
 
 
 
 787	}
 788
 789	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
 790	BUG_ON(blk_bidi_rq(req));
 791
 792	/*
 793	 * Next deal with any sectors which we were able to correctly
 794	 * handle.
 795	 */
 796	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
 797				      "%d bytes done.\n",
 798				      blk_rq_sectors(req), good_bytes));
 799
 800	/*
 801	 * Recovered errors need reporting, but they're always treated
 802	 * as success, so fiddle the result code here.  For BLOCK_PC
 803	 * we already took a copy of the original into rq->errors which
 804	 * is what gets returned to the user
 805	 */
 806	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 807		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
 808		 * print since caller wants ATA registers. Only occurs on
 809		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
 810		 */
 811		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 812			;
 813		else if (!(req->cmd_flags & REQ_QUIET))
 814			scsi_print_sense("", cmd);
 815		result = 0;
 816		/* BLOCK_PC may have set error */
 817		error = 0;
 
 
 
 
 
 
 
 
 
 
 
 818	}
 819
 820	/*
 821	 * A number of bytes were successfully read.  If there
 822	 * are leftovers and there is some kind of error
 823	 * (result != 0), retry the rest.
 824	 */
 825	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
 
 826		return;
 827
 828	error = __scsi_error_from_host_byte(cmd, result);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 829
 830	if (host_byte(result) == DID_RESET) {
 831		/* Third party bus reset or reset for error recovery
 832		 * reasons.  Just retry the command and see what
 833		 * happens.
 834		 */
 835		action = ACTION_RETRY;
 836	} else if (sense_valid && !sense_deferred) {
 837		switch (sshdr.sense_key) {
 838		case UNIT_ATTENTION:
 839			if (cmd->device->removable) {
 840				/* Detected disc change.  Set a bit
 841				 * and quietly refuse further access.
 842				 */
 843				cmd->device->changed = 1;
 844				description = "Media Changed";
 845				action = ACTION_FAIL;
 846			} else {
 847				/* Must have been a power glitch, or a
 848				 * bus reset.  Could not have been a
 849				 * media change, so we just retry the
 850				 * command and see what happens.
 851				 */
 852				action = ACTION_RETRY;
 853			}
 854			break;
 855		case ILLEGAL_REQUEST:
 856			/* If we had an ILLEGAL REQUEST returned, then
 857			 * we may have performed an unsupported
 858			 * command.  The only thing this should be
 859			 * would be a ten byte read where only a six
 860			 * byte read was supported.  Also, on a system
 861			 * where READ CAPACITY failed, we may have
 862			 * read past the end of the disk.
 863			 */
 864			if ((cmd->device->use_10_for_rw &&
 865			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 866			    (cmd->cmnd[0] == READ_10 ||
 867			     cmd->cmnd[0] == WRITE_10)) {
 868				/* This will issue a new 6-byte command. */
 869				cmd->device->use_10_for_rw = 0;
 870				action = ACTION_REPREP;
 871			} else if (sshdr.asc == 0x10) /* DIX */ {
 872				description = "Host Data Integrity Failure";
 873				action = ACTION_FAIL;
 874				error = -EILSEQ;
 875			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 876			} else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
 877				   (cmd->cmnd[0] == UNMAP ||
 878				    cmd->cmnd[0] == WRITE_SAME_16 ||
 879				    cmd->cmnd[0] == WRITE_SAME)) {
 880				description = "Discard failure";
 881				action = ACTION_FAIL;
 
 882			} else
 883				action = ACTION_FAIL;
 884			break;
 885		case ABORTED_COMMAND:
 886			action = ACTION_FAIL;
 887			if (sshdr.asc == 0x10) { /* DIF */
 888				description = "Target Data Integrity Failure";
 889				error = -EILSEQ;
 890			}
 891			break;
 892		case NOT_READY:
 893			/* If the device is in the process of becoming
 894			 * ready, or has a temporary blockage, retry.
 895			 */
 896			if (sshdr.asc == 0x04) {
 897				switch (sshdr.ascq) {
 898				case 0x01: /* becoming ready */
 899				case 0x04: /* format in progress */
 900				case 0x05: /* rebuild in progress */
 901				case 0x06: /* recalculation in progress */
 902				case 0x07: /* operation in progress */
 903				case 0x08: /* Long write in progress */
 904				case 0x09: /* self test in progress */
 905				case 0x14: /* space allocation in progress */
 906					action = ACTION_DELAYED_RETRY;
 907					break;
 908				default:
 909					description = "Device not ready";
 910					action = ACTION_FAIL;
 911					break;
 912				}
 913			} else {
 914				description = "Device not ready";
 915				action = ACTION_FAIL;
 916			}
 917			break;
 918		case VOLUME_OVERFLOW:
 919			/* See SSC3rXX or current. */
 920			action = ACTION_FAIL;
 921			break;
 922		default:
 923			description = "Unhandled sense code";
 924			action = ACTION_FAIL;
 925			break;
 926		}
 927	} else {
 928		description = "Unhandled error code";
 
 
 
 929		action = ACTION_FAIL;
 930	}
 931
 932	switch (action) {
 933	case ACTION_FAIL:
 934		/* Give up and fail the remainder of the request */
 935		scsi_release_buffers(cmd);
 936		if (!(req->cmd_flags & REQ_QUIET)) {
 937			if (description)
 938				scmd_printk(KERN_INFO, cmd, "%s\n",
 939					    description);
 940			scsi_print_result(cmd);
 941			if (driver_byte(result) & DRIVER_SENSE)
 942				scsi_print_sense("", cmd);
 943			scsi_print_command(cmd);
 
 
 
 
 
 
 
 
 
 
 944		}
 945		if (blk_end_request_err(req, error))
 946			scsi_requeue_command(q, cmd);
 947		else
 948			scsi_next_command(cmd);
 949		break;
 950	case ACTION_REPREP:
 
 951		/* Unprep the request and put it back at the head of the queue.
 952		 * A new command will be prepared and issued.
 953		 */
 954		scsi_release_buffers(cmd);
 955		scsi_requeue_command(q, cmd);
 
 
 
 
 956		break;
 957	case ACTION_RETRY:
 958		/* Retry the same command immediately */
 959		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
 960		break;
 961	case ACTION_DELAYED_RETRY:
 962		/* Retry the same command after a delay */
 963		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
 964		break;
 965	}
 966}
 967
 968static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
 969			     gfp_t gfp_mask)
 970{
 971	int count;
 972
 973	/*
 974	 * If sg table allocation fails, requeue request later.
 975	 */
 976	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
 977					gfp_mask))) {
 978		return BLKPREP_DEFER;
 979	}
 980
 981	req->buffer = NULL;
 982
 983	/* 
 984	 * Next, walk the list, and fill in the addresses and sizes of
 985	 * each segment.
 986	 */
 987	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
 988	BUG_ON(count > sdb->table.nents);
 989	sdb->table.nents = count;
 990	sdb->length = blk_rq_bytes(req);
 991	return BLKPREP_OK;
 992}
 993
 994/*
 995 * Function:    scsi_init_io()
 996 *
 997 * Purpose:     SCSI I/O initialize function.
 998 *
 999 * Arguments:   cmd   - Command descriptor we wish to initialize
1000 *
1001 * Returns:     0 on success
1002 *		BLKPREP_DEFER if the failure is retryable
1003 *		BLKPREP_KILL if the failure is fatal
1004 */
1005int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1006{
 
1007	struct request *rq = cmd->request;
 
 
1008
1009	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
 
 
 
1010	if (error)
1011		goto err_exit;
1012
1013	if (blk_bidi_rq(rq)) {
1014		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1015			scsi_sdb_cache, GFP_ATOMIC);
1016		if (!bidi_sdb) {
1017			error = BLKPREP_DEFER;
1018			goto err_exit;
 
 
 
 
1019		}
1020
1021		rq->next_rq->special = bidi_sdb;
1022		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1023		if (error)
1024			goto err_exit;
1025	}
1026
1027	if (blk_integrity_rq(rq)) {
1028		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1029		int ivecs, count;
1030
1031		BUG_ON(prot_sdb == NULL);
 
 
 
 
 
 
 
 
 
 
1032		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1033
1034		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
 
1035			error = BLKPREP_DEFER;
1036			goto err_exit;
1037		}
1038
1039		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1040						prot_sdb->table.sgl);
1041		BUG_ON(unlikely(count > ivecs));
1042		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1043
1044		cmd->prot_sdb = prot_sdb;
1045		cmd->prot_sdb->table.nents = count;
1046	}
1047
1048	return BLKPREP_OK ;
1049
1050err_exit:
1051	scsi_release_buffers(cmd);
1052	cmd->request->special = NULL;
1053	scsi_put_command(cmd);
 
 
 
 
 
1054	return error;
1055}
1056EXPORT_SYMBOL(scsi_init_io);
1057
1058static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1059		struct request *req)
 
 
 
 
 
 
 
 
 
 
1060{
1061	struct scsi_cmnd *cmd;
1062
1063	if (!req->special) {
1064		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1065		if (unlikely(!cmd))
1066			return NULL;
1067		req->special = cmd;
1068	} else {
1069		cmd = req->special;
1070	}
1071
1072	/* pull a tag out of the request if we have one */
1073	cmd->tag = req->tag;
1074	cmd->request = req;
 
 
 
1075
1076	cmd->cmnd = req->cmd;
1077	cmd->prot_op = SCSI_PROT_NORMAL;
 
 
 
 
 
 
 
 
 
 
 
1078
1079	return cmd;
 
 
 
 
 
1080}
1081
1082int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
 
1083{
1084	struct scsi_cmnd *cmd;
1085	int ret = scsi_prep_state_check(sdev, req);
 
 
 
 
1086
1087	if (ret != BLKPREP_OK)
1088		return ret;
 
 
1089
1090	cmd = scsi_get_cmd_from_req(sdev, req);
1091	if (unlikely(!cmd))
1092		return BLKPREP_DEFER;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093
1094	/*
1095	 * BLOCK_PC requests may transfer data, in which case they must
1096	 * a bio attached to them.  Or they might contain a SCSI command
1097	 * that does not transfer data, in which case they may optionally
1098	 * submit a request without an attached bio.
1099	 */
1100	if (req->bio) {
1101		int ret;
1102
1103		BUG_ON(!req->nr_phys_segments);
1104
1105		ret = scsi_init_io(cmd, GFP_ATOMIC);
1106		if (unlikely(ret))
1107			return ret;
1108	} else {
1109		BUG_ON(blk_rq_bytes(req));
1110
1111		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1112		req->buffer = NULL;
1113	}
1114
1115	cmd->cmd_len = req->cmd_len;
1116	if (!blk_rq_bytes(req))
1117		cmd->sc_data_direction = DMA_NONE;
1118	else if (rq_data_dir(req) == WRITE)
1119		cmd->sc_data_direction = DMA_TO_DEVICE;
1120	else
1121		cmd->sc_data_direction = DMA_FROM_DEVICE;
1122	
1123	cmd->transfersize = blk_rq_bytes(req);
1124	cmd->allowed = req->retries;
1125	return BLKPREP_OK;
1126}
1127EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1128
1129/*
1130 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1131 * from filesystems that still need to be translated to SCSI CDBs from
1132 * the ULD.
1133 */
1134int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1135{
1136	struct scsi_cmnd *cmd;
1137	int ret = scsi_prep_state_check(sdev, req);
1138
1139	if (ret != BLKPREP_OK)
1140		return ret;
1141
1142	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1143			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1144		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1145		if (ret != BLKPREP_OK)
1146			return ret;
1147	}
1148
1149	/*
1150	 * Filesystem requests must transfer data.
1151	 */
1152	BUG_ON(!req->nr_phys_segments);
1153
1154	cmd = scsi_get_cmd_from_req(sdev, req);
1155	if (unlikely(!cmd))
1156		return BLKPREP_DEFER;
1157
1158	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1159	return scsi_init_io(cmd, GFP_ATOMIC);
 
 
 
 
 
 
 
 
 
1160}
1161EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1162
1163int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
 
1164{
1165	int ret = BLKPREP_OK;
1166
1167	/*
1168	 * If the device is not in running state we will reject some
1169	 * or all commands.
1170	 */
1171	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1172		switch (sdev->sdev_state) {
1173		case SDEV_OFFLINE:
 
1174			/*
1175			 * If the device is offline we refuse to process any
1176			 * commands.  The device must be brought online
1177			 * before trying any recovery commands.
1178			 */
1179			sdev_printk(KERN_ERR, sdev,
1180				    "rejecting I/O to offline device\n");
1181			ret = BLKPREP_KILL;
1182			break;
1183		case SDEV_DEL:
1184			/*
1185			 * If the device is fully deleted, we refuse to
1186			 * process any commands as well.
1187			 */
1188			sdev_printk(KERN_ERR, sdev,
1189				    "rejecting I/O to dead device\n");
1190			ret = BLKPREP_KILL;
1191			break;
1192		case SDEV_QUIESCE:
1193		case SDEV_BLOCK:
1194		case SDEV_CREATED_BLOCK:
 
 
 
1195			/*
1196			 * If the devices is blocked we defer normal commands.
1197			 */
1198			if (!(req->cmd_flags & REQ_PREEMPT))
1199				ret = BLKPREP_DEFER;
1200			break;
1201		default:
1202			/*
1203			 * For any other not fully online state we only allow
1204			 * special commands.  In particular any user initiated
1205			 * command is not allowed.
1206			 */
1207			if (!(req->cmd_flags & REQ_PREEMPT))
1208				ret = BLKPREP_KILL;
1209			break;
1210		}
1211	}
1212	return ret;
1213}
1214EXPORT_SYMBOL(scsi_prep_state_check);
1215
1216int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
 
1217{
1218	struct scsi_device *sdev = q->queuedata;
1219
1220	switch (ret) {
1221	case BLKPREP_KILL:
1222		req->errors = DID_NO_CONNECT << 16;
 
1223		/* release the command and kill it */
1224		if (req->special) {
1225			struct scsi_cmnd *cmd = req->special;
1226			scsi_release_buffers(cmd);
1227			scsi_put_command(cmd);
 
1228			req->special = NULL;
1229		}
1230		break;
1231	case BLKPREP_DEFER:
1232		/*
1233		 * If we defer, the blk_peek_request() returns NULL, but the
1234		 * queue must be restarted, so we schedule a callback to happen
1235		 * shortly.
1236		 */
1237		if (sdev->device_busy == 0)
1238			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1239		break;
1240	default:
1241		req->cmd_flags |= REQ_DONTPREP;
1242	}
1243
1244	return ret;
1245}
1246EXPORT_SYMBOL(scsi_prep_return);
1247
1248int scsi_prep_fn(struct request_queue *q, struct request *req)
1249{
1250	struct scsi_device *sdev = q->queuedata;
1251	int ret = BLKPREP_KILL;
 
 
 
 
 
1252
1253	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1254		ret = scsi_setup_blk_pc_cmnd(sdev, req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1255	return scsi_prep_return(q, req, ret);
1256}
1257EXPORT_SYMBOL(scsi_prep_fn);
 
 
 
 
1258
1259/*
1260 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1261 * return 0.
1262 *
1263 * Called with the queue_lock held.
1264 */
1265static inline int scsi_dev_queue_ready(struct request_queue *q,
1266				  struct scsi_device *sdev)
1267{
1268	if (sdev->device_busy == 0 && sdev->device_blocked) {
 
 
 
 
 
 
1269		/*
1270		 * unblock after device_blocked iterates to zero
1271		 */
1272		if (--sdev->device_blocked == 0) {
1273			SCSI_LOG_MLQUEUE(3,
1274				   sdev_printk(KERN_INFO, sdev,
1275				   "unblocking device at zero depth\n"));
1276		} else {
1277			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1278			return 0;
1279		}
 
 
1280	}
1281	if (scsi_device_is_busy(sdev))
1282		return 0;
 
1283
1284	return 1;
 
 
 
1285}
1286
1287
1288/*
1289 * scsi_target_queue_ready: checks if there we can send commands to target
1290 * @sdev: scsi device on starget to check.
1291 *
1292 * Called with the host lock held.
1293 */
1294static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1295					   struct scsi_device *sdev)
1296{
1297	struct scsi_target *starget = scsi_target(sdev);
 
1298
1299	if (starget->single_lun) {
 
1300		if (starget->starget_sdev_user &&
1301		    starget->starget_sdev_user != sdev)
 
1302			return 0;
 
1303		starget->starget_sdev_user = sdev;
 
1304	}
1305
1306	if (starget->target_busy == 0 && starget->target_blocked) {
 
 
 
 
 
 
 
1307		/*
1308		 * unblock after target_blocked iterates to zero
1309		 */
1310		if (--starget->target_blocked == 0) {
1311			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1312					 "unblocking target at zero depth\n"));
1313		} else
1314			return 0;
1315	}
1316
1317	if (scsi_target_is_busy(starget)) {
1318		if (list_empty(&sdev->starved_entry))
1319			list_add_tail(&sdev->starved_entry,
1320				      &shost->starved_list);
1321		return 0;
1322	}
1323
1324	/* We're OK to process the command, so we can't be starved */
1325	if (!list_empty(&sdev->starved_entry))
1326		list_del_init(&sdev->starved_entry);
1327	return 1;
 
 
 
 
 
 
 
 
 
1328}
1329
1330/*
1331 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1332 * return 0. We must end up running the queue again whenever 0 is
1333 * returned, else IO can hang.
1334 *
1335 * Called with host_lock held.
1336 */
1337static inline int scsi_host_queue_ready(struct request_queue *q,
1338				   struct Scsi_Host *shost,
1339				   struct scsi_device *sdev)
1340{
 
 
1341	if (scsi_host_in_recovery(shost))
1342		return 0;
1343	if (shost->host_busy == 0 && shost->host_blocked) {
 
 
 
 
 
1344		/*
1345		 * unblock after host_blocked iterates to zero
1346		 */
1347		if (--shost->host_blocked == 0) {
1348			SCSI_LOG_MLQUEUE(3,
1349				printk("scsi%d unblocking host at zero depth\n",
1350					shost->host_no));
1351		} else {
1352			return 0;
1353		}
1354	}
1355	if (scsi_host_is_busy(shost)) {
1356		if (list_empty(&sdev->starved_entry))
1357			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1358		return 0;
1359	}
1360
 
 
 
 
 
1361	/* We're OK to process the command, so we can't be starved */
1362	if (!list_empty(&sdev->starved_entry))
1363		list_del_init(&sdev->starved_entry);
 
 
 
 
1364
1365	return 1;
 
 
 
 
 
 
 
 
 
1366}
1367
1368/*
1369 * Busy state exporting function for request stacking drivers.
1370 *
1371 * For efficiency, no lock is taken to check the busy state of
1372 * shost/starget/sdev, since the returned value is not guaranteed and
1373 * may be changed after request stacking drivers call the function,
1374 * regardless of taking lock or not.
1375 *
1376 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1377 * (e.g. !sdev), scsi needs to return 'not busy'.
1378 * Otherwise, request stacking drivers may hold requests forever.
1379 */
1380static int scsi_lld_busy(struct request_queue *q)
1381{
1382	struct scsi_device *sdev = q->queuedata;
1383	struct Scsi_Host *shost;
1384	struct scsi_target *starget;
1385
1386	if (!sdev)
1387		return 0;
1388
1389	shost = sdev->host;
1390	starget = scsi_target(sdev);
1391
1392	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1393	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
 
 
 
 
 
1394		return 1;
1395
1396	return 0;
1397}
1398
1399/*
1400 * Kill a request for a dead device
1401 */
1402static void scsi_kill_request(struct request *req, struct request_queue *q)
1403{
1404	struct scsi_cmnd *cmd = req->special;
1405	struct scsi_device *sdev;
1406	struct scsi_target *starget;
1407	struct Scsi_Host *shost;
1408
1409	blk_start_request(req);
1410
 
 
1411	sdev = cmd->device;
1412	starget = scsi_target(sdev);
1413	shost = sdev->host;
1414	scsi_init_cmd_errh(cmd);
1415	cmd->result = DID_NO_CONNECT << 16;
1416	atomic_inc(&cmd->device->iorequest_cnt);
1417
1418	/*
1419	 * SCSI request completion path will do scsi_device_unbusy(),
1420	 * bump busy counts.  To bump the counters, we need to dance
1421	 * with the locks as normal issue path does.
1422	 */
1423	sdev->device_busy++;
1424	spin_unlock(sdev->request_queue->queue_lock);
1425	spin_lock(shost->host_lock);
1426	shost->host_busy++;
1427	starget->target_busy++;
1428	spin_unlock(shost->host_lock);
1429	spin_lock(sdev->request_queue->queue_lock);
1430
1431	blk_complete_request(req);
1432}
1433
1434static void scsi_softirq_done(struct request *rq)
1435{
1436	struct scsi_cmnd *cmd = rq->special;
1437	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1438	int disposition;
1439
1440	INIT_LIST_HEAD(&cmd->eh_entry);
1441
1442	atomic_inc(&cmd->device->iodone_cnt);
1443	if (cmd->result)
1444		atomic_inc(&cmd->device->ioerr_cnt);
1445
1446	disposition = scsi_decide_disposition(cmd);
1447	if (disposition != SUCCESS &&
1448	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1449		sdev_printk(KERN_ERR, cmd->device,
1450			    "timing out command, waited %lus\n",
1451			    wait_for/HZ);
1452		disposition = SUCCESS;
1453	}
1454			
1455	scsi_log_completion(cmd, disposition);
1456
1457	switch (disposition) {
1458		case SUCCESS:
1459			scsi_finish_command(cmd);
1460			break;
1461		case NEEDS_RETRY:
1462			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1463			break;
1464		case ADD_TO_MLQUEUE:
1465			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1466			break;
1467		default:
1468			if (!scsi_eh_scmd_add(cmd, 0))
1469				scsi_finish_command(cmd);
1470	}
1471}
1472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1473/*
1474 * Function:    scsi_request_fn()
1475 *
1476 * Purpose:     Main strategy routine for SCSI.
1477 *
1478 * Arguments:   q       - Pointer to actual queue.
1479 *
1480 * Returns:     Nothing
1481 *
1482 * Lock status: IO request lock assumed to be held when called.
 
 
 
1483 */
1484static void scsi_request_fn(struct request_queue *q)
 
 
1485{
1486	struct scsi_device *sdev = q->queuedata;
1487	struct Scsi_Host *shost;
1488	struct scsi_cmnd *cmd;
1489	struct request *req;
1490
1491	if (!sdev) {
1492		printk("scsi: killing requests for dead queue\n");
1493		while ((req = blk_peek_request(q)) != NULL)
1494			scsi_kill_request(req, q);
1495		return;
1496	}
1497
1498	if(!get_device(&sdev->sdev_gendev))
1499		/* We must be tearing the block queue down already */
1500		return;
1501
1502	/*
1503	 * To start with, we keep looping until the queue is empty, or until
1504	 * the host is no longer able to accept any more requests.
1505	 */
1506	shost = sdev->host;
1507	for (;;) {
1508		int rtn;
1509		/*
1510		 * get next queueable request.  We do this early to make sure
1511		 * that the request is fully prepared even if we cannot 
1512		 * accept it.
1513		 */
1514		req = blk_peek_request(q);
1515		if (!req || !scsi_dev_queue_ready(q, sdev))
1516			break;
1517
1518		if (unlikely(!scsi_device_online(sdev))) {
1519			sdev_printk(KERN_ERR, sdev,
1520				    "rejecting I/O to offline device\n");
1521			scsi_kill_request(req, q);
1522			continue;
1523		}
1524
 
 
1525
1526		/*
1527		 * Remove the request from the request list.
1528		 */
1529		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1530			blk_start_request(req);
1531		sdev->device_busy++;
1532
1533		spin_unlock(q->queue_lock);
1534		cmd = req->special;
1535		if (unlikely(cmd == NULL)) {
1536			printk(KERN_CRIT "impossible request in %s.\n"
1537					 "please mail a stack trace to "
1538					 "linux-scsi@vger.kernel.org\n",
1539					 __func__);
1540			blk_dump_rq_flags(req, "foo");
1541			BUG();
1542		}
1543		spin_lock(shost->host_lock);
1544
1545		/*
1546		 * We hit this when the driver is using a host wide
1547		 * tag map. For device level tag maps the queue_depth check
1548		 * in the device ready fn would prevent us from trying
1549		 * to allocate a tag. Since the map is a shared host resource
1550		 * we add the dev to the starved list so it eventually gets
1551		 * a run when a tag is freed.
1552		 */
1553		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
 
1554			if (list_empty(&sdev->starved_entry))
1555				list_add_tail(&sdev->starved_entry,
1556					      &shost->starved_list);
 
1557			goto not_ready;
1558		}
1559
1560		if (!scsi_target_queue_ready(shost, sdev))
1561			goto not_ready;
1562
1563		if (!scsi_host_queue_ready(q, shost, sdev))
1564			goto not_ready;
1565
1566		scsi_target(sdev)->target_busy++;
1567		shost->host_busy++;
1568
1569		/*
1570		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1571		 *		take the lock again.
1572		 */
1573		spin_unlock_irq(shost->host_lock);
1574
1575		/*
1576		 * Finally, initialize any error handling parameters, and set up
1577		 * the timers for timeouts.
1578		 */
1579		scsi_init_cmd_errh(cmd);
1580
1581		/*
1582		 * Dispatch the command to the low-level driver.
1583		 */
 
1584		rtn = scsi_dispatch_cmd(cmd);
1585		spin_lock_irq(q->queue_lock);
1586		if (rtn)
 
1587			goto out_delay;
 
 
1588	}
1589
1590	goto out;
1591
 
 
 
1592 not_ready:
1593	spin_unlock_irq(shost->host_lock);
1594
1595	/*
1596	 * lock q, handle tag, requeue req, and decrement device_busy. We
1597	 * must return with queue_lock held.
1598	 *
1599	 * Decrementing device_busy without checking it is OK, as all such
1600	 * cases (host limits or settings) should run the queue at some
1601	 * later time.
1602	 */
1603	spin_lock_irq(q->queue_lock);
1604	blk_requeue_request(q, req);
1605	sdev->device_busy--;
1606out_delay:
1607	if (sdev->device_busy == 0)
1608		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1609out:
1610	/* must be careful here...if we trigger the ->remove() function
1611	 * we cannot be holding the q lock */
1612	spin_unlock_irq(q->queue_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1613	put_device(&sdev->sdev_gendev);
1614	spin_lock_irq(q->queue_lock);
1615}
1616
1617u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1618{
1619	struct device *host_dev;
1620	u64 bounce_limit = 0xffffffff;
1621
1622	if (shost->unchecked_isa_dma)
1623		return BLK_BOUNCE_ISA;
1624	/*
1625	 * Platforms with virtual-DMA translation
1626	 * hardware have no practical limit.
1627	 */
1628	if (!PCI_DMA_BUS_IS_PHYS)
1629		return BLK_BOUNCE_ANY;
1630
1631	host_dev = scsi_get_device(shost);
1632	if (host_dev && host_dev->dma_mask)
1633		bounce_limit = *host_dev->dma_mask;
1634
1635	return bounce_limit;
1636}
1637EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1638
1639struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1640					 request_fn_proc *request_fn)
1641{
1642	struct request_queue *q;
1643	struct device *dev = shost->shost_gendev.parent;
1644
1645	q = blk_init_queue(request_fn, NULL);
1646	if (!q)
1647		return NULL;
1648
1649	/*
1650	 * this limit is imposed by hardware restrictions
1651	 */
1652	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1653					SCSI_MAX_SG_CHAIN_SEGMENTS));
1654
1655	if (scsi_host_prot_dma(shost)) {
1656		shost->sg_prot_tablesize =
1657			min_not_zero(shost->sg_prot_tablesize,
1658				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1659		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1660		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1661	}
1662
1663	blk_queue_max_hw_sectors(q, shost->max_sectors);
1664	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1665	blk_queue_segment_boundary(q, shost->dma_boundary);
1666	dma_set_seg_boundary(dev, shost->dma_boundary);
1667
1668	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1669
1670	if (!shost->use_clustering)
1671		q->limits.cluster = 0;
1672
1673	/*
1674	 * set a reasonable default alignment on word boundaries: the
1675	 * host and device may alter it using
1676	 * blk_queue_update_dma_alignment() later.
 
 
1677	 */
1678	blk_queue_dma_alignment(q, 0x03);
 
 
1679
1680	return q;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1681}
1682EXPORT_SYMBOL(__scsi_alloc_queue);
1683
1684struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1685{
 
1686	struct request_queue *q;
1687
1688	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1689	if (!q)
1690		return NULL;
 
 
 
 
 
 
 
 
 
 
 
1691
 
 
1692	blk_queue_prep_rq(q, scsi_prep_fn);
 
1693	blk_queue_softirq_done(q, scsi_softirq_done);
1694	blk_queue_rq_timed_out(q, scsi_times_out);
1695	blk_queue_lld_busy(q, scsi_lld_busy);
1696	return q;
1697}
1698
1699void scsi_free_queue(struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1700{
1701	blk_cleanup_queue(q);
 
 
 
 
 
 
 
1702}
1703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1704/*
1705 * Function:    scsi_block_requests()
1706 *
1707 * Purpose:     Utility function used by low-level drivers to prevent further
1708 *		commands from being queued to the device.
1709 *
1710 * Arguments:   shost       - Host in question
1711 *
1712 * Returns:     Nothing
1713 *
1714 * Lock status: No locks are assumed held.
1715 *
1716 * Notes:       There is no timer nor any other means by which the requests
1717 *		get unblocked other than the low-level driver calling
1718 *		scsi_unblock_requests().
1719 */
1720void scsi_block_requests(struct Scsi_Host *shost)
1721{
1722	shost->host_self_blocked = 1;
1723}
1724EXPORT_SYMBOL(scsi_block_requests);
1725
1726/*
1727 * Function:    scsi_unblock_requests()
1728 *
1729 * Purpose:     Utility function used by low-level drivers to allow further
1730 *		commands from being queued to the device.
1731 *
1732 * Arguments:   shost       - Host in question
1733 *
1734 * Returns:     Nothing
1735 *
1736 * Lock status: No locks are assumed held.
1737 *
1738 * Notes:       There is no timer nor any other means by which the requests
1739 *		get unblocked other than the low-level driver calling
1740 *		scsi_unblock_requests().
1741 *
1742 *		This is done as an API function so that changes to the
1743 *		internals of the scsi mid-layer won't require wholesale
1744 *		changes to drivers that use this feature.
1745 */
1746void scsi_unblock_requests(struct Scsi_Host *shost)
1747{
1748	shost->host_self_blocked = 0;
1749	scsi_run_host_queues(shost);
1750}
1751EXPORT_SYMBOL(scsi_unblock_requests);
1752
1753int __init scsi_init_queue(void)
1754{
1755	int i;
1756
1757	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1758					   sizeof(struct scsi_data_buffer),
1759					   0, 0, NULL);
1760	if (!scsi_sdb_cache) {
1761		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1762		return -ENOMEM;
1763	}
1764
1765	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1766		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1767		int size = sgp->size * sizeof(struct scatterlist);
1768
1769		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1770				SLAB_HWCACHE_ALIGN, NULL);
1771		if (!sgp->slab) {
1772			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1773					sgp->name);
1774			goto cleanup_sdb;
1775		}
1776
1777		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1778						     sgp->slab);
1779		if (!sgp->pool) {
1780			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1781					sgp->name);
1782			goto cleanup_sdb;
1783		}
1784	}
1785
1786	return 0;
1787
1788cleanup_sdb:
1789	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1790		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1791		if (sgp->pool)
1792			mempool_destroy(sgp->pool);
1793		if (sgp->slab)
1794			kmem_cache_destroy(sgp->slab);
1795	}
1796	kmem_cache_destroy(scsi_sdb_cache);
1797
1798	return -ENOMEM;
1799}
1800
1801void scsi_exit_queue(void)
1802{
1803	int i;
1804
1805	kmem_cache_destroy(scsi_sdb_cache);
1806
1807	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1808		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1809		mempool_destroy(sgp->pool);
1810		kmem_cache_destroy(sgp->slab);
1811	}
1812}
1813
1814/**
1815 *	scsi_mode_select - issue a mode select
1816 *	@sdev:	SCSI device to be queried
1817 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1818 *	@sp:	Save page bit (0 == don't save, 1 == save)
1819 *	@modepage: mode page being requested
1820 *	@buffer: request buffer (may not be smaller than eight bytes)
1821 *	@len:	length of request buffer.
1822 *	@timeout: command timeout
1823 *	@retries: number of retries before failing
1824 *	@data: returns a structure abstracting the mode header data
1825 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1826 *		must be SCSI_SENSE_BUFFERSIZE big.
1827 *
1828 *	Returns zero if successful; negative error number or scsi
1829 *	status on error
1830 *
1831 */
1832int
1833scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1834		 unsigned char *buffer, int len, int timeout, int retries,
1835		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1836{
1837	unsigned char cmd[10];
1838	unsigned char *real_buffer;
1839	int ret;
1840
1841	memset(cmd, 0, sizeof(cmd));
1842	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1843
1844	if (sdev->use_10_for_ms) {
1845		if (len > 65535)
1846			return -EINVAL;
1847		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1848		if (!real_buffer)
1849			return -ENOMEM;
1850		memcpy(real_buffer + 8, buffer, len);
1851		len += 8;
1852		real_buffer[0] = 0;
1853		real_buffer[1] = 0;
1854		real_buffer[2] = data->medium_type;
1855		real_buffer[3] = data->device_specific;
1856		real_buffer[4] = data->longlba ? 0x01 : 0;
1857		real_buffer[5] = 0;
1858		real_buffer[6] = data->block_descriptor_length >> 8;
1859		real_buffer[7] = data->block_descriptor_length;
1860
1861		cmd[0] = MODE_SELECT_10;
1862		cmd[7] = len >> 8;
1863		cmd[8] = len;
1864	} else {
1865		if (len > 255 || data->block_descriptor_length > 255 ||
1866		    data->longlba)
1867			return -EINVAL;
1868
1869		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1870		if (!real_buffer)
1871			return -ENOMEM;
1872		memcpy(real_buffer + 4, buffer, len);
1873		len += 4;
1874		real_buffer[0] = 0;
1875		real_buffer[1] = data->medium_type;
1876		real_buffer[2] = data->device_specific;
1877		real_buffer[3] = data->block_descriptor_length;
1878		
1879
1880		cmd[0] = MODE_SELECT;
1881		cmd[4] = len;
1882	}
1883
1884	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1885			       sshdr, timeout, retries, NULL);
1886	kfree(real_buffer);
1887	return ret;
1888}
1889EXPORT_SYMBOL_GPL(scsi_mode_select);
1890
1891/**
1892 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1893 *	@sdev:	SCSI device to be queried
1894 *	@dbd:	set if mode sense will allow block descriptors to be returned
1895 *	@modepage: mode page being requested
1896 *	@buffer: request buffer (may not be smaller than eight bytes)
1897 *	@len:	length of request buffer.
1898 *	@timeout: command timeout
1899 *	@retries: number of retries before failing
1900 *	@data: returns a structure abstracting the mode header data
1901 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1902 *		must be SCSI_SENSE_BUFFERSIZE big.
1903 *
1904 *	Returns zero if unsuccessful, or the header offset (either 4
1905 *	or 8 depending on whether a six or ten byte command was
1906 *	issued) if successful.
1907 */
1908int
1909scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1910		  unsigned char *buffer, int len, int timeout, int retries,
1911		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1912{
1913	unsigned char cmd[12];
1914	int use_10_for_ms;
1915	int header_length;
1916	int result;
1917	struct scsi_sense_hdr my_sshdr;
1918
1919	memset(data, 0, sizeof(*data));
1920	memset(&cmd[0], 0, 12);
1921	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1922	cmd[2] = modepage;
1923
1924	/* caller might not be interested in sense, but we need it */
1925	if (!sshdr)
1926		sshdr = &my_sshdr;
1927
1928 retry:
1929	use_10_for_ms = sdev->use_10_for_ms;
1930
1931	if (use_10_for_ms) {
1932		if (len < 8)
1933			len = 8;
1934
1935		cmd[0] = MODE_SENSE_10;
1936		cmd[8] = len;
1937		header_length = 8;
1938	} else {
1939		if (len < 4)
1940			len = 4;
1941
1942		cmd[0] = MODE_SENSE;
1943		cmd[4] = len;
1944		header_length = 4;
1945	}
1946
1947	memset(buffer, 0, len);
1948
1949	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1950				  sshdr, timeout, retries, NULL);
1951
1952	/* This code looks awful: what it's doing is making sure an
1953	 * ILLEGAL REQUEST sense return identifies the actual command
1954	 * byte as the problem.  MODE_SENSE commands can return
1955	 * ILLEGAL REQUEST if the code page isn't supported */
1956
1957	if (use_10_for_ms && !scsi_status_is_good(result) &&
1958	    (driver_byte(result) & DRIVER_SENSE)) {
1959		if (scsi_sense_valid(sshdr)) {
1960			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1961			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1962				/* 
1963				 * Invalid command operation code
1964				 */
1965				sdev->use_10_for_ms = 0;
1966				goto retry;
1967			}
1968		}
1969	}
1970
1971	if(scsi_status_is_good(result)) {
1972		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1973			     (modepage == 6 || modepage == 8))) {
1974			/* Initio breakage? */
1975			header_length = 0;
1976			data->length = 13;
1977			data->medium_type = 0;
1978			data->device_specific = 0;
1979			data->longlba = 0;
1980			data->block_descriptor_length = 0;
1981		} else if(use_10_for_ms) {
1982			data->length = buffer[0]*256 + buffer[1] + 2;
1983			data->medium_type = buffer[2];
1984			data->device_specific = buffer[3];
1985			data->longlba = buffer[4] & 0x01;
1986			data->block_descriptor_length = buffer[6]*256
1987				+ buffer[7];
1988		} else {
1989			data->length = buffer[0] + 1;
1990			data->medium_type = buffer[1];
1991			data->device_specific = buffer[2];
1992			data->block_descriptor_length = buffer[3];
1993		}
1994		data->header_length = header_length;
 
 
 
 
 
1995	}
1996
1997	return result;
1998}
1999EXPORT_SYMBOL(scsi_mode_sense);
2000
2001/**
2002 *	scsi_test_unit_ready - test if unit is ready
2003 *	@sdev:	scsi device to change the state of.
2004 *	@timeout: command timeout
2005 *	@retries: number of retries before failing
2006 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2007 *		returning sense. Make sure that this is cleared before passing
2008 *		in.
2009 *
2010 *	Returns zero if unsuccessful or an error if TUR failed.  For
2011 *	removable media, UNIT_ATTENTION sets ->changed flag.
2012 **/
2013int
2014scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2015		     struct scsi_sense_hdr *sshdr_external)
2016{
2017	char cmd[] = {
2018		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2019	};
2020	struct scsi_sense_hdr *sshdr;
2021	int result;
2022
2023	if (!sshdr_external)
2024		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2025	else
2026		sshdr = sshdr_external;
2027
2028	/* try to eat the UNIT_ATTENTION if there are enough retries */
2029	do {
2030		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2031					  timeout, retries, NULL);
2032		if (sdev->removable && scsi_sense_valid(sshdr) &&
2033		    sshdr->sense_key == UNIT_ATTENTION)
2034			sdev->changed = 1;
2035	} while (scsi_sense_valid(sshdr) &&
2036		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2037
2038	if (!sshdr_external)
2039		kfree(sshdr);
2040	return result;
2041}
2042EXPORT_SYMBOL(scsi_test_unit_ready);
2043
2044/**
2045 *	scsi_device_set_state - Take the given device through the device state model.
2046 *	@sdev:	scsi device to change the state of.
2047 *	@state:	state to change to.
2048 *
2049 *	Returns zero if unsuccessful or an error if the requested 
2050 *	transition is illegal.
2051 */
2052int
2053scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2054{
2055	enum scsi_device_state oldstate = sdev->sdev_state;
2056
2057	if (state == oldstate)
2058		return 0;
2059
2060	switch (state) {
2061	case SDEV_CREATED:
2062		switch (oldstate) {
2063		case SDEV_CREATED_BLOCK:
2064			break;
2065		default:
2066			goto illegal;
2067		}
2068		break;
2069			
2070	case SDEV_RUNNING:
2071		switch (oldstate) {
2072		case SDEV_CREATED:
2073		case SDEV_OFFLINE:
 
2074		case SDEV_QUIESCE:
2075		case SDEV_BLOCK:
2076			break;
2077		default:
2078			goto illegal;
2079		}
2080		break;
2081
2082	case SDEV_QUIESCE:
2083		switch (oldstate) {
2084		case SDEV_RUNNING:
2085		case SDEV_OFFLINE:
 
2086			break;
2087		default:
2088			goto illegal;
2089		}
2090		break;
2091
2092	case SDEV_OFFLINE:
 
2093		switch (oldstate) {
2094		case SDEV_CREATED:
2095		case SDEV_RUNNING:
2096		case SDEV_QUIESCE:
2097		case SDEV_BLOCK:
2098			break;
2099		default:
2100			goto illegal;
2101		}
2102		break;
2103
2104	case SDEV_BLOCK:
2105		switch (oldstate) {
2106		case SDEV_RUNNING:
2107		case SDEV_CREATED_BLOCK:
2108			break;
2109		default:
2110			goto illegal;
2111		}
2112		break;
2113
2114	case SDEV_CREATED_BLOCK:
2115		switch (oldstate) {
2116		case SDEV_CREATED:
2117			break;
2118		default:
2119			goto illegal;
2120		}
2121		break;
2122
2123	case SDEV_CANCEL:
2124		switch (oldstate) {
2125		case SDEV_CREATED:
2126		case SDEV_RUNNING:
2127		case SDEV_QUIESCE:
2128		case SDEV_OFFLINE:
2129		case SDEV_BLOCK:
2130			break;
2131		default:
2132			goto illegal;
2133		}
2134		break;
2135
2136	case SDEV_DEL:
2137		switch (oldstate) {
2138		case SDEV_CREATED:
2139		case SDEV_RUNNING:
2140		case SDEV_OFFLINE:
 
2141		case SDEV_CANCEL:
 
 
2142			break;
2143		default:
2144			goto illegal;
2145		}
2146		break;
2147
2148	}
2149	sdev->sdev_state = state;
2150	return 0;
2151
2152 illegal:
2153	SCSI_LOG_ERROR_RECOVERY(1, 
2154				sdev_printk(KERN_ERR, sdev,
2155					    "Illegal state transition %s->%s\n",
2156					    scsi_device_state_name(oldstate),
2157					    scsi_device_state_name(state))
2158				);
2159	return -EINVAL;
2160}
2161EXPORT_SYMBOL(scsi_device_set_state);
2162
2163/**
2164 * 	sdev_evt_emit - emit a single SCSI device uevent
2165 *	@sdev: associated SCSI device
2166 *	@evt: event to emit
2167 *
2168 *	Send a single uevent (scsi_event) to the associated scsi_device.
2169 */
2170static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2171{
2172	int idx = 0;
2173	char *envp[3];
2174
2175	switch (evt->evt_type) {
2176	case SDEV_EVT_MEDIA_CHANGE:
2177		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2178		break;
2179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2180	default:
2181		/* do nothing */
2182		break;
2183	}
2184
2185	envp[idx++] = NULL;
2186
2187	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2188}
2189
2190/**
2191 * 	sdev_evt_thread - send a uevent for each scsi event
2192 *	@work: work struct for scsi_device
2193 *
2194 *	Dispatch queued events to their associated scsi_device kobjects
2195 *	as uevents.
2196 */
2197void scsi_evt_thread(struct work_struct *work)
2198{
2199	struct scsi_device *sdev;
 
2200	LIST_HEAD(event_list);
2201
2202	sdev = container_of(work, struct scsi_device, event_work);
2203
 
 
 
 
2204	while (1) {
2205		struct scsi_event *evt;
2206		struct list_head *this, *tmp;
2207		unsigned long flags;
2208
2209		spin_lock_irqsave(&sdev->list_lock, flags);
2210		list_splice_init(&sdev->event_list, &event_list);
2211		spin_unlock_irqrestore(&sdev->list_lock, flags);
2212
2213		if (list_empty(&event_list))
2214			break;
2215
2216		list_for_each_safe(this, tmp, &event_list) {
2217			evt = list_entry(this, struct scsi_event, node);
2218			list_del(&evt->node);
2219			scsi_evt_emit(sdev, evt);
2220			kfree(evt);
2221		}
2222	}
2223}
2224
2225/**
2226 * 	sdev_evt_send - send asserted event to uevent thread
2227 *	@sdev: scsi_device event occurred on
2228 *	@evt: event to send
2229 *
2230 *	Assert scsi device event asynchronously.
2231 */
2232void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2233{
2234	unsigned long flags;
2235
2236#if 0
2237	/* FIXME: currently this check eliminates all media change events
2238	 * for polled devices.  Need to update to discriminate between AN
2239	 * and polled events */
2240	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2241		kfree(evt);
2242		return;
2243	}
2244#endif
2245
2246	spin_lock_irqsave(&sdev->list_lock, flags);
2247	list_add_tail(&evt->node, &sdev->event_list);
2248	schedule_work(&sdev->event_work);
2249	spin_unlock_irqrestore(&sdev->list_lock, flags);
2250}
2251EXPORT_SYMBOL_GPL(sdev_evt_send);
2252
2253/**
2254 * 	sdev_evt_alloc - allocate a new scsi event
2255 *	@evt_type: type of event to allocate
2256 *	@gfpflags: GFP flags for allocation
2257 *
2258 *	Allocates and returns a new scsi_event.
2259 */
2260struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2261				  gfp_t gfpflags)
2262{
2263	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2264	if (!evt)
2265		return NULL;
2266
2267	evt->evt_type = evt_type;
2268	INIT_LIST_HEAD(&evt->node);
2269
2270	/* evt_type-specific initialization, if any */
2271	switch (evt_type) {
2272	case SDEV_EVT_MEDIA_CHANGE:
 
 
 
 
 
 
 
2273	default:
2274		/* do nothing */
2275		break;
2276	}
2277
2278	return evt;
2279}
2280EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2281
2282/**
2283 * 	sdev_evt_send_simple - send asserted event to uevent thread
2284 *	@sdev: scsi_device event occurred on
2285 *	@evt_type: type of event to send
2286 *	@gfpflags: GFP flags for allocation
2287 *
2288 *	Assert scsi device event asynchronously, given an event type.
2289 */
2290void sdev_evt_send_simple(struct scsi_device *sdev,
2291			  enum scsi_device_event evt_type, gfp_t gfpflags)
2292{
2293	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2294	if (!evt) {
2295		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2296			    evt_type);
2297		return;
2298	}
2299
2300	sdev_evt_send(sdev, evt);
2301}
2302EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2303
2304/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2305 *	scsi_device_quiesce - Block user issued commands.
2306 *	@sdev:	scsi device to quiesce.
2307 *
2308 *	This works by trying to transition to the SDEV_QUIESCE state
2309 *	(which must be a legal transition).  When the device is in this
2310 *	state, only special requests will be accepted, all others will
2311 *	be deferred.  Since special requests may also be requeued requests,
2312 *	a successful return doesn't guarantee the device will be 
2313 *	totally quiescent.
2314 *
2315 *	Must be called with user context, may sleep.
2316 *
2317 *	Returns zero if unsuccessful or an error if not.
2318 */
2319int
2320scsi_device_quiesce(struct scsi_device *sdev)
2321{
2322	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2323	if (err)
2324		return err;
2325
2326	scsi_run_queue(sdev->request_queue);
2327	while (sdev->device_busy) {
2328		msleep_interruptible(200);
2329		scsi_run_queue(sdev->request_queue);
2330	}
2331	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2332}
2333EXPORT_SYMBOL(scsi_device_quiesce);
2334
2335/**
2336 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2337 *	@sdev:	scsi device to resume.
2338 *
2339 *	Moves the device from quiesced back to running and restarts the
2340 *	queues.
2341 *
2342 *	Must be called with user context, may sleep.
2343 */
2344void
2345scsi_device_resume(struct scsi_device *sdev)
2346{
2347	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2348		return;
2349	scsi_run_queue(sdev->request_queue);
 
 
 
 
 
 
 
 
2350}
2351EXPORT_SYMBOL(scsi_device_resume);
2352
2353static void
2354device_quiesce_fn(struct scsi_device *sdev, void *data)
2355{
2356	scsi_device_quiesce(sdev);
2357}
2358
2359void
2360scsi_target_quiesce(struct scsi_target *starget)
2361{
2362	starget_for_each_device(starget, NULL, device_quiesce_fn);
2363}
2364EXPORT_SYMBOL(scsi_target_quiesce);
2365
2366static void
2367device_resume_fn(struct scsi_device *sdev, void *data)
2368{
2369	scsi_device_resume(sdev);
2370}
2371
2372void
2373scsi_target_resume(struct scsi_target *starget)
2374{
2375	starget_for_each_device(starget, NULL, device_resume_fn);
2376}
2377EXPORT_SYMBOL(scsi_target_resume);
2378
2379/**
2380 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2381 * @sdev:	device to block
2382 *
2383 * Block request made by scsi lld's to temporarily stop all
2384 * scsi commands on the specified device.  Called from interrupt
2385 * or normal process context.
2386 *
2387 * Returns zero if successful or error if not
2388 *
2389 * Notes:       
2390 *	This routine transitions the device to the SDEV_BLOCK state
2391 *	(which must be a legal transition).  When the device is in this
2392 *	state, all commands are deferred until the scsi lld reenables
2393 *	the device with scsi_device_unblock or device_block_tmo fires.
2394 *	This routine assumes the host_lock is held on entry.
2395 */
2396int
2397scsi_internal_device_block(struct scsi_device *sdev)
2398{
2399	struct request_queue *q = sdev->request_queue;
2400	unsigned long flags;
2401	int err = 0;
2402
2403	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2404	if (err) {
2405		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2406
2407		if (err)
2408			return err;
2409	}
2410
2411	/* 
2412	 * The device has transitioned to SDEV_BLOCK.  Stop the
2413	 * block layer from calling the midlayer with this device's
2414	 * request queue. 
2415	 */
2416	spin_lock_irqsave(q->queue_lock, flags);
2417	blk_stop_queue(q);
2418	spin_unlock_irqrestore(q->queue_lock, flags);
 
 
 
 
2419
2420	return 0;
2421}
2422EXPORT_SYMBOL_GPL(scsi_internal_device_block);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2423 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2424/**
2425 * scsi_internal_device_unblock - resume a device after a block request
2426 * @sdev:	device to resume
 
 
 
 
2427 *
2428 * Called by scsi lld's or the midlayer to restart the device queue
2429 * for the previously suspended scsi device.  Called from interrupt or
2430 * normal process context.
2431 *
2432 * Returns zero if successful or error if not.
2433 *
2434 * Notes:       
2435 *	This routine transitions the device to the SDEV_RUNNING state
2436 *	(which must be a legal transition) allowing the midlayer to
2437 *	goose the queue for this device.  This routine assumes the 
2438 *	host_lock is held upon entry.
2439 */
2440int
2441scsi_internal_device_unblock(struct scsi_device *sdev)
2442{
2443	struct request_queue *q = sdev->request_queue; 
2444	unsigned long flags;
2445	
2446	/* 
2447	 * Try to transition the scsi device to SDEV_RUNNING
2448	 * and goose the device queue if successful.  
2449	 */
2450	if (sdev->sdev_state == SDEV_BLOCK)
2451		sdev->sdev_state = SDEV_RUNNING;
2452	else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2453		sdev->sdev_state = SDEV_CREATED;
2454	else if (sdev->sdev_state != SDEV_CANCEL &&
2455		 sdev->sdev_state != SDEV_OFFLINE)
 
 
 
 
 
 
 
 
 
 
2456		return -EINVAL;
2457
2458	spin_lock_irqsave(q->queue_lock, flags);
2459	blk_start_queue(q);
2460	spin_unlock_irqrestore(q->queue_lock, flags);
2461
2462	return 0;
2463}
2464EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2465
2466static void
2467device_block(struct scsi_device *sdev, void *data)
2468{
2469	scsi_internal_device_block(sdev);
2470}
2471
2472static int
2473target_block(struct device *dev, void *data)
2474{
2475	if (scsi_is_target_device(dev))
2476		starget_for_each_device(to_scsi_target(dev), NULL,
2477					device_block);
2478	return 0;
2479}
2480
2481void
2482scsi_target_block(struct device *dev)
2483{
2484	if (scsi_is_target_device(dev))
2485		starget_for_each_device(to_scsi_target(dev), NULL,
2486					device_block);
2487	else
2488		device_for_each_child(dev, NULL, target_block);
2489}
2490EXPORT_SYMBOL_GPL(scsi_target_block);
2491
2492static void
2493device_unblock(struct scsi_device *sdev, void *data)
2494{
2495	scsi_internal_device_unblock(sdev);
2496}
2497
2498static int
2499target_unblock(struct device *dev, void *data)
2500{
2501	if (scsi_is_target_device(dev))
2502		starget_for_each_device(to_scsi_target(dev), NULL,
2503					device_unblock);
2504	return 0;
2505}
2506
2507void
2508scsi_target_unblock(struct device *dev)
2509{
2510	if (scsi_is_target_device(dev))
2511		starget_for_each_device(to_scsi_target(dev), NULL,
2512					device_unblock);
2513	else
2514		device_for_each_child(dev, NULL, target_unblock);
2515}
2516EXPORT_SYMBOL_GPL(scsi_target_unblock);
2517
2518/**
2519 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2520 * @sgl:	scatter-gather list
2521 * @sg_count:	number of segments in sg
2522 * @offset:	offset in bytes into sg, on return offset into the mapped area
2523 * @len:	bytes to map, on return number of bytes mapped
2524 *
2525 * Returns virtual address of the start of the mapped page
2526 */
2527void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2528			  size_t *offset, size_t *len)
2529{
2530	int i;
2531	size_t sg_len = 0, len_complete = 0;
2532	struct scatterlist *sg;
2533	struct page *page;
2534
2535	WARN_ON(!irqs_disabled());
2536
2537	for_each_sg(sgl, sg, sg_count, i) {
2538		len_complete = sg_len; /* Complete sg-entries */
2539		sg_len += sg->length;
2540		if (sg_len > *offset)
2541			break;
2542	}
2543
2544	if (unlikely(i == sg_count)) {
2545		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2546			"elements %d\n",
2547		       __func__, sg_len, *offset, sg_count);
2548		WARN_ON(1);
2549		return NULL;
2550	}
2551
2552	/* Offset starting from the beginning of first page in this sg-entry */
2553	*offset = *offset - len_complete + sg->offset;
2554
2555	/* Assumption: contiguous pages can be accessed as "page + i" */
2556	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2557	*offset &= ~PAGE_MASK;
2558
2559	/* Bytes in this sg-entry from *offset to the end of the page */
2560	sg_len = PAGE_SIZE - *offset;
2561	if (*len > sg_len)
2562		*len = sg_len;
2563
2564	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2565}
2566EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2567
2568/**
2569 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2570 * @virt:	virtual address to be unmapped
2571 */
2572void scsi_kunmap_atomic_sg(void *virt)
2573{
2574	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2575}
2576EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
v4.17
   1/*
   2 * Copyright (C) 1999 Eric Youngdale
   3 * Copyright (C) 2014 Christoph Hellwig
   4 *
   5 *  SCSI queueing library.
   6 *      Initial versions: Eric Youngdale (eric@andante.org).
   7 *                        Based upon conversations with large numbers
   8 *                        of people at Linux Expo.
   9 */
  10
  11#include <linux/bio.h>
  12#include <linux/bitops.h>
  13#include <linux/blkdev.h>
  14#include <linux/completion.h>
  15#include <linux/kernel.h>
  16#include <linux/export.h>
 
  17#include <linux/init.h>
  18#include <linux/pci.h>
  19#include <linux/delay.h>
  20#include <linux/hardirq.h>
  21#include <linux/scatterlist.h>
  22#include <linux/blk-mq.h>
  23#include <linux/ratelimit.h>
  24#include <asm/unaligned.h>
  25
  26#include <scsi/scsi.h>
  27#include <scsi/scsi_cmnd.h>
  28#include <scsi/scsi_dbg.h>
  29#include <scsi/scsi_device.h>
  30#include <scsi/scsi_driver.h>
  31#include <scsi/scsi_eh.h>
  32#include <scsi/scsi_host.h>
  33#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  34#include <scsi/scsi_dh.h>
  35
  36#include <trace/events/scsi.h>
  37
  38#include "scsi_debugfs.h"
  39#include "scsi_priv.h"
  40#include "scsi_logging.h"
  41
  42static struct kmem_cache *scsi_sdb_cache;
  43static struct kmem_cache *scsi_sense_cache;
  44static struct kmem_cache *scsi_sense_isadma_cache;
  45static DEFINE_MUTEX(scsi_sense_cache_mutex);
  46
  47static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
 
  48
  49static inline struct kmem_cache *
  50scsi_select_sense_cache(bool unchecked_isa_dma)
  51{
  52	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
  53}
 
  54
  55static void scsi_free_sense_buffer(bool unchecked_isa_dma,
  56				   unsigned char *sense_buffer)
  57{
  58	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
  59			sense_buffer);
  60}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61
  62static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
  63	gfp_t gfp_mask, int numa_node)
  64{
  65	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
  66				     gfp_mask, numa_node);
  67}
  68
  69int scsi_init_sense_cache(struct Scsi_Host *shost)
  70{
  71	struct kmem_cache *cache;
  72	int ret = 0;
  73
  74	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
  75	if (cache)
  76		return 0;
  77
  78	mutex_lock(&scsi_sense_cache_mutex);
  79	if (shost->unchecked_isa_dma) {
  80		scsi_sense_isadma_cache =
  81			kmem_cache_create("scsi_sense_cache(DMA)",
  82				SCSI_SENSE_BUFFERSIZE, 0,
  83				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
  84		if (!scsi_sense_isadma_cache)
  85			ret = -ENOMEM;
  86	} else {
  87		scsi_sense_cache =
  88			kmem_cache_create_usercopy("scsi_sense_cache",
  89				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
  90				0, SCSI_SENSE_BUFFERSIZE, NULL);
  91		if (!scsi_sense_cache)
  92			ret = -ENOMEM;
  93	}
  94
  95	mutex_unlock(&scsi_sense_cache_mutex);
  96	return ret;
  97}
  98
  99/*
 100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
 101 * not change behaviour from the previous unplug mechanism, experimentation
 102 * may prove this needs changing.
 103 */
 104#define SCSI_QUEUE_DELAY	3
 105
 106static void
 107scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108{
 109	struct Scsi_Host *host = cmd->device->host;
 110	struct scsi_device *device = cmd->device;
 111	struct scsi_target *starget = scsi_target(device);
 
 
 
 
 
 112
 113	/*
 114	 * Set the appropriate busy bit for the device/host.
 115	 *
 116	 * If the host/device isn't busy, assume that something actually
 117	 * completed, and that we should be able to queue a command now.
 118	 *
 119	 * Note that the prior mid-layer assumption that any host could
 120	 * always queue at least one command is now broken.  The mid-layer
 121	 * will implement a user specifiable stall (see
 122	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 123	 * if a command is requeued with no other commands outstanding
 124	 * either for the device or for the host.
 125	 */
 126	switch (reason) {
 127	case SCSI_MLQUEUE_HOST_BUSY:
 128		atomic_set(&host->host_blocked, host->max_host_blocked);
 129		break;
 130	case SCSI_MLQUEUE_DEVICE_BUSY:
 131	case SCSI_MLQUEUE_EH_RETRY:
 132		atomic_set(&device->device_blocked,
 133			   device->max_device_blocked);
 134		break;
 135	case SCSI_MLQUEUE_TARGET_BUSY:
 136		atomic_set(&starget->target_blocked,
 137			   starget->max_target_blocked);
 138		break;
 139	}
 140}
 141
 142static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
 143{
 144	struct scsi_device *sdev = cmd->device;
 145
 146	if (cmd->request->rq_flags & RQF_DONTPREP) {
 147		cmd->request->rq_flags &= ~RQF_DONTPREP;
 148		scsi_mq_uninit_cmd(cmd);
 149	} else {
 150		WARN_ON_ONCE(true);
 151	}
 152	blk_mq_requeue_request(cmd->request, true);
 153	put_device(&sdev->sdev_gendev);
 154}
 155
 156/**
 157 * __scsi_queue_insert - private queue insertion
 158 * @cmd: The SCSI command being requeued
 159 * @reason:  The reason for the requeue
 160 * @unbusy: Whether the queue should be unbusied
 161 *
 162 * This is a private queue insertion.  The public interface
 163 * scsi_queue_insert() always assumes the queue should be unbusied
 164 * because it's always called before the completion.  This function is
 165 * for a requeue after completion, which should only occur in this
 166 * file.
 167 */
 168static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 169{
 170	struct scsi_device *device = cmd->device;
 171	struct request_queue *q = device->request_queue;
 172	unsigned long flags;
 173
 174	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 175		"Inserting command %p into mlqueue\n", cmd));
 176
 177	scsi_set_blocked(cmd, reason);
 178
 179	/*
 180	 * Decrement the counters, since these commands are no longer
 181	 * active on the host/device.
 182	 */
 183	if (unbusy)
 184		scsi_device_unbusy(device);
 185
 186	/*
 187	 * Requeue this command.  It will go before all other commands
 188	 * that are already in the queue. Schedule requeue work under
 189	 * lock such that the kblockd_schedule_work() call happens
 190	 * before blk_cleanup_queue() finishes.
 191	 */
 192	cmd->result = 0;
 193	if (q->mq_ops) {
 194		/*
 195		 * Before a SCSI command is dispatched,
 196		 * get_device(&sdev->sdev_gendev) is called and the host,
 197		 * target and device busy counters are increased. Since
 198		 * requeuing a request causes these actions to be repeated and
 199		 * since scsi_device_unbusy() has already been called,
 200		 * put_device(&device->sdev_gendev) must still be called. Call
 201		 * put_device() after blk_mq_requeue_request() to avoid that
 202		 * removal of the SCSI device can start before requeueing has
 203		 * happened.
 204		 */
 205		blk_mq_requeue_request(cmd->request, true);
 206		put_device(&device->sdev_gendev);
 207		return;
 208	}
 209	spin_lock_irqsave(q->queue_lock, flags);
 210	blk_requeue_request(q, cmd->request);
 211	kblockd_schedule_work(&device->requeue_work);
 212	spin_unlock_irqrestore(q->queue_lock, flags);
 
 
 
 
 213}
 214
 215/*
 216 * Function:    scsi_queue_insert()
 217 *
 218 * Purpose:     Insert a command in the midlevel queue.
 219 *
 220 * Arguments:   cmd    - command that we are adding to queue.
 221 *              reason - why we are inserting command to queue.
 222 *
 223 * Lock status: Assumed that lock is not held upon entry.
 224 *
 225 * Returns:     Nothing.
 226 *
 227 * Notes:       We do this for one of two cases.  Either the host is busy
 228 *              and it cannot accept any more commands for the time being,
 229 *              or the device returned QUEUE_FULL and can accept no more
 230 *              commands.
 231 * Notes:       This could be called either from an interrupt context or a
 232 *              normal process context.
 233 */
 234void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 235{
 236	__scsi_queue_insert(cmd, reason, true);
 237}
 238
 239
 240/**
 241 * scsi_execute - insert request and wait for the result
 242 * @sdev:	scsi device
 243 * @cmd:	scsi command
 244 * @data_direction: data direction
 245 * @buffer:	data buffer
 246 * @bufflen:	len of buffer
 247 * @sense:	optional sense buffer
 248 * @sshdr:	optional decoded sense header
 249 * @timeout:	request timeout in seconds
 250 * @retries:	number of times to retry request
 251 * @flags:	flags for ->cmd_flags
 252 * @rq_flags:	flags for ->rq_flags
 253 * @resid:	optional residual length
 254 *
 255 * Returns the scsi_cmnd result field if a command was executed, or a negative
 256 * Linux error code if we didn't get that far.
 257 */
 258int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 259		 int data_direction, void *buffer, unsigned bufflen,
 260		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
 261		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
 262		 int *resid)
 263{
 264	struct request *req;
 265	struct scsi_request *rq;
 266	int ret = DRIVER_ERROR << 24;
 267
 268	req = blk_get_request_flags(sdev->request_queue,
 269			data_direction == DMA_TO_DEVICE ?
 270			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
 271	if (IS_ERR(req))
 272		return ret;
 273	rq = scsi_req(req);
 274
 275	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
 276					buffer, bufflen, __GFP_RECLAIM))
 277		goto out;
 278
 279	rq->cmd_len = COMMAND_SIZE(cmd[0]);
 280	memcpy(rq->cmd, cmd, rq->cmd_len);
 281	rq->retries = retries;
 
 
 282	req->timeout = timeout;
 283	req->cmd_flags |= flags;
 284	req->rq_flags |= rq_flags | RQF_QUIET;
 285
 286	/*
 287	 * head injection *required* here otherwise quiesce won't work
 288	 */
 289	blk_execute_rq(req->q, NULL, req, 1);
 290
 291	/*
 292	 * Some devices (USB mass-storage in particular) may transfer
 293	 * garbage data together with a residue indicating that the data
 294	 * is invalid.  Prevent the garbage from being misinterpreted
 295	 * and prevent security leaks by zeroing out the excess data.
 296	 */
 297	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
 298		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
 299
 300	if (resid)
 301		*resid = rq->resid_len;
 302	if (sense && rq->sense_len)
 303		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
 304	if (sshdr)
 305		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
 306	ret = rq->result;
 307 out:
 308	blk_put_request(req);
 309
 310	return ret;
 311}
 312EXPORT_SYMBOL(scsi_execute);
 313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314/*
 315 * Function:    scsi_init_cmd_errh()
 316 *
 317 * Purpose:     Initialize cmd fields related to error handling.
 318 *
 319 * Arguments:   cmd	- command that is ready to be queued.
 320 *
 321 * Notes:       This function has the job of initializing a number of
 322 *              fields related to error handling.   Typically this will
 323 *              be called once for each command, as required.
 324 */
 325static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 326{
 327	cmd->serial_number = 0;
 328	scsi_set_resid(cmd, 0);
 329	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 330	if (cmd->cmd_len == 0)
 331		cmd->cmd_len = scsi_command_size(cmd->cmnd);
 332}
 333
 334/*
 335 * Decrement the host_busy counter and wake up the error handler if necessary.
 336 * Avoid as follows that the error handler is not woken up if shost->host_busy
 337 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 338 * with an RCU read lock in this function to ensure that this function in its
 339 * entirety either finishes before scsi_eh_scmd_add() increases the
 340 * host_failed counter or that it notices the shost state change made by
 341 * scsi_eh_scmd_add().
 342 */
 343static void scsi_dec_host_busy(struct Scsi_Host *shost)
 344{
 345	unsigned long flags;
 346
 347	rcu_read_lock();
 348	atomic_dec(&shost->host_busy);
 349	if (unlikely(scsi_host_in_recovery(shost))) {
 350		spin_lock_irqsave(shost->host_lock, flags);
 351		if (shost->host_failed || shost->host_eh_scheduled)
 352			scsi_eh_wakeup(shost);
 353		spin_unlock_irqrestore(shost->host_lock, flags);
 354	}
 355	rcu_read_unlock();
 356}
 357
 358void scsi_device_unbusy(struct scsi_device *sdev)
 359{
 360	struct Scsi_Host *shost = sdev->host;
 361	struct scsi_target *starget = scsi_target(sdev);
 
 362
 363	scsi_dec_host_busy(shost);
 364
 365	if (starget->can_queue > 0)
 366		atomic_dec(&starget->target_busy);
 367
 368	atomic_dec(&sdev->device_busy);
 369}
 370
 371static void scsi_kick_queue(struct request_queue *q)
 372{
 373	if (q->mq_ops)
 374		blk_mq_start_hw_queues(q);
 375	else
 376		blk_run_queue(q);
 377}
 378
 379/*
 380 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 381 * and call blk_run_queue for all the scsi_devices on the target -
 382 * including current_sdev first.
 383 *
 384 * Called with *no* scsi locks held.
 385 */
 386static void scsi_single_lun_run(struct scsi_device *current_sdev)
 387{
 388	struct Scsi_Host *shost = current_sdev->host;
 389	struct scsi_device *sdev, *tmp;
 390	struct scsi_target *starget = scsi_target(current_sdev);
 391	unsigned long flags;
 392
 393	spin_lock_irqsave(shost->host_lock, flags);
 394	starget->starget_sdev_user = NULL;
 395	spin_unlock_irqrestore(shost->host_lock, flags);
 396
 397	/*
 398	 * Call blk_run_queue for all LUNs on the target, starting with
 399	 * current_sdev. We race with others (to set starget_sdev_user),
 400	 * but in most cases, we will be first. Ideally, each LU on the
 401	 * target would get some limited time or requests on the target.
 402	 */
 403	scsi_kick_queue(current_sdev->request_queue);
 404
 405	spin_lock_irqsave(shost->host_lock, flags);
 406	if (starget->starget_sdev_user)
 407		goto out;
 408	list_for_each_entry_safe(sdev, tmp, &starget->devices,
 409			same_target_siblings) {
 410		if (sdev == current_sdev)
 411			continue;
 412		if (scsi_device_get(sdev))
 413			continue;
 414
 415		spin_unlock_irqrestore(shost->host_lock, flags);
 416		scsi_kick_queue(sdev->request_queue);
 417		spin_lock_irqsave(shost->host_lock, flags);
 418	
 419		scsi_device_put(sdev);
 420	}
 421 out:
 422	spin_unlock_irqrestore(shost->host_lock, flags);
 423}
 424
 425static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 426{
 427	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
 428		return true;
 429	if (atomic_read(&sdev->device_blocked) > 0)
 430		return true;
 431	return false;
 432}
 433
 434static inline bool scsi_target_is_busy(struct scsi_target *starget)
 435{
 436	if (starget->can_queue > 0) {
 437		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 438			return true;
 439		if (atomic_read(&starget->target_blocked) > 0)
 440			return true;
 441	}
 442	return false;
 443}
 444
 445static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 446{
 447	if (shost->can_queue > 0 &&
 448	    atomic_read(&shost->host_busy) >= shost->can_queue)
 449		return true;
 450	if (atomic_read(&shost->host_blocked) > 0)
 451		return true;
 452	if (shost->host_self_blocked)
 453		return true;
 454	return false;
 455}
 456
 457static void scsi_starved_list_run(struct Scsi_Host *shost)
 
 
 
 
 
 
 
 
 
 
 
 
 458{
 
 
 459	LIST_HEAD(starved_list);
 460	struct scsi_device *sdev;
 461	unsigned long flags;
 462
 
 
 
 
 
 
 
 
 463	spin_lock_irqsave(shost->host_lock, flags);
 464	list_splice_init(&shost->starved_list, &starved_list);
 465
 466	while (!list_empty(&starved_list)) {
 467		struct request_queue *slq;
 468
 469		/*
 470		 * As long as shost is accepting commands and we have
 471		 * starved queues, call blk_run_queue. scsi_request_fn
 472		 * drops the queue_lock and can add us back to the
 473		 * starved_list.
 474		 *
 475		 * host_lock protects the starved_list and starved_entry.
 476		 * scsi_request_fn must get the host_lock before checking
 477		 * or modifying starved_list or starved_entry.
 478		 */
 479		if (scsi_host_is_busy(shost))
 480			break;
 481
 482		sdev = list_entry(starved_list.next,
 483				  struct scsi_device, starved_entry);
 484		list_del_init(&sdev->starved_entry);
 485		if (scsi_target_is_busy(scsi_target(sdev))) {
 486			list_move_tail(&sdev->starved_entry,
 487				       &shost->starved_list);
 488			continue;
 489		}
 490
 491		/*
 492		 * Once we drop the host lock, a racing scsi_remove_device()
 493		 * call may remove the sdev from the starved list and destroy
 494		 * it and the queue.  Mitigate by taking a reference to the
 495		 * queue and never touching the sdev again after we drop the
 496		 * host lock.  Note: if __scsi_remove_device() invokes
 497		 * blk_cleanup_queue() before the queue is run from this
 498		 * function then blk_run_queue() will return immediately since
 499		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 500		 */
 501		slq = sdev->request_queue;
 502		if (!blk_get_queue(slq))
 503			continue;
 504		spin_unlock_irqrestore(shost->host_lock, flags);
 505
 506		scsi_kick_queue(slq);
 507		blk_put_queue(slq);
 508
 509		spin_lock_irqsave(shost->host_lock, flags);
 510	}
 511	/* put any unprocessed entries back */
 512	list_splice(&starved_list, &shost->starved_list);
 513	spin_unlock_irqrestore(shost->host_lock, flags);
 514}
 515
 516/*
 517 * Function:   scsi_run_queue()
 518 *
 519 * Purpose:    Select a proper request queue to serve next
 520 *
 521 * Arguments:  q       - last request's queue
 522 *
 523 * Returns:     Nothing
 524 *
 525 * Notes:      The previous command was completely finished, start
 526 *             a new one if possible.
 527 */
 528static void scsi_run_queue(struct request_queue *q)
 529{
 530	struct scsi_device *sdev = q->queuedata;
 531
 532	if (scsi_target(sdev)->single_lun)
 533		scsi_single_lun_run(sdev);
 534	if (!list_empty(&sdev->host->starved_list))
 535		scsi_starved_list_run(sdev->host);
 536
 537	if (q->mq_ops)
 538		blk_mq_run_hw_queues(q, false);
 539	else
 540		blk_run_queue(q);
 541}
 542
 543void scsi_requeue_run_queue(struct work_struct *work)
 544{
 545	struct scsi_device *sdev;
 546	struct request_queue *q;
 547
 548	sdev = container_of(work, struct scsi_device, requeue_work);
 549	q = sdev->request_queue;
 550	scsi_run_queue(q);
 551}
 552
 553/*
 554 * Function:	scsi_requeue_command()
 555 *
 556 * Purpose:	Handle post-processing of completed commands.
 557 *
 558 * Arguments:	q	- queue to operate on
 559 *		cmd	- command that may need to be requeued.
 560 *
 561 * Returns:	Nothing
 562 *
 563 * Notes:	After command completion, there may be blocks left
 564 *		over which weren't finished by the previous command
 565 *		this can be for a number of reasons - the main one is
 566 *		I/O errors in the middle of the request, in which case
 567 *		we need to request the blocks that come after the bad
 568 *		sector.
 569 * Notes:	Upon return, cmd is a stale pointer.
 570 */
 571static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
 572{
 573	struct scsi_device *sdev = cmd->device;
 574	struct request *req = cmd->request;
 575	unsigned long flags;
 576
 577	spin_lock_irqsave(q->queue_lock, flags);
 578	blk_unprep_request(req);
 579	req->special = NULL;
 580	scsi_put_command(cmd);
 581	blk_requeue_request(q, req);
 582	spin_unlock_irqrestore(q->queue_lock, flags);
 583
 584	scsi_run_queue(q);
 
 585
 
 
 
 
 
 
 
 
 
 
 
 
 586	put_device(&sdev->sdev_gendev);
 587}
 588
 589void scsi_run_host_queues(struct Scsi_Host *shost)
 590{
 591	struct scsi_device *sdev;
 592
 593	shost_for_each_device(sdev, shost)
 594		scsi_run_queue(sdev->request_queue);
 595}
 596
 597static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 598{
 599	if (!blk_rq_is_passthrough(cmd->request)) {
 600		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 601
 602		if (drv->uninit_command)
 603			drv->uninit_command(cmd);
 604	}
 605}
 606
 607static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
 608{
 609	struct scsi_data_buffer *sdb;
 610
 611	if (cmd->sdb.table.nents)
 612		sg_free_table_chained(&cmd->sdb.table, true);
 613	if (cmd->request->next_rq) {
 614		sdb = cmd->request->next_rq->special;
 615		if (sdb)
 616			sg_free_table_chained(&sdb->table, true);
 617	}
 618	if (scsi_prot_sg_count(cmd))
 619		sg_free_table_chained(&cmd->prot_sdb->table, true);
 620}
 621
 622static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 623{
 624	scsi_mq_free_sgtables(cmd);
 625	scsi_uninit_cmd(cmd);
 626	scsi_del_cmd_from_list(cmd);
 627}
 628
 629/*
 630 * Function:    scsi_release_buffers()
 631 *
 632 * Purpose:     Free resources allocate for a scsi_command.
 
 633 *
 634 * Arguments:   cmd	- command that we are bailing.
 
 
 
 635 *
 636 * Lock status: Assumed that no lock is held upon entry.
 637 *
 638 * Returns:     Nothing
 639 *
 640 * Notes:       In the event that an upper level driver rejects a
 641 *		command, we must release resources allocated during
 642 *		the __init_io() function.  Primarily this would involve
 643 *		the scatter-gather table.
 
 
 644 */
 645static void scsi_release_buffers(struct scsi_cmnd *cmd)
 
 646{
 647	if (cmd->sdb.table.nents)
 648		sg_free_table_chained(&cmd->sdb.table, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649
 650	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 
 
 
 651
 652	if (scsi_prot_sg_count(cmd))
 653		sg_free_table_chained(&cmd->prot_sdb->table, false);
 654}
 655
 656static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
 657{
 658	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
 659
 660	sg_free_table_chained(&bidi_sdb->table, false);
 661	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
 662	cmd->request->next_rq->special = NULL;
 663}
 664
 665static bool scsi_end_request(struct request *req, blk_status_t error,
 666		unsigned int bytes, unsigned int bidi_bytes)
 667{
 668	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 669	struct scsi_device *sdev = cmd->device;
 670	struct request_queue *q = sdev->request_queue;
 671
 672	if (blk_update_request(req, error, bytes))
 673		return true;
 
 674
 675	/* Bidi request must be completed as a whole */
 676	if (unlikely(bidi_bytes) &&
 677	    blk_update_request(req->next_rq, error, bidi_bytes))
 678		return true;
 679
 680	if (blk_queue_add_random(q))
 681		add_disk_randomness(req->rq_disk);
 682
 683	if (!blk_rq_is_scsi(req)) {
 684		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
 685		cmd->flags &= ~SCMD_INITIALIZED;
 686		destroy_rcu_head(&cmd->rcu);
 687	}
 688
 689	if (req->mq_ctx) {
 690		/*
 691		 * In the MQ case the command gets freed by __blk_mq_end_request,
 692		 * so we have to do all cleanup that depends on it earlier.
 693		 *
 694		 * We also can't kick the queues from irq context, so we
 695		 * will have to defer it to a workqueue.
 696		 */
 697		scsi_mq_uninit_cmd(cmd);
 698
 699		__blk_mq_end_request(req, error);
 
 
 
 700
 701		if (scsi_target(sdev)->single_lun ||
 702		    !list_empty(&sdev->host->starved_list))
 703			kblockd_schedule_work(&sdev->requeue_work);
 704		else
 705			blk_mq_run_hw_queues(q, true);
 706	} else {
 707		unsigned long flags;
 708
 709		if (bidi_bytes)
 710			scsi_release_bidi_buffers(cmd);
 711		scsi_release_buffers(cmd);
 712		scsi_put_command(cmd);
 713
 714		spin_lock_irqsave(q->queue_lock, flags);
 715		blk_finish_request(req, error);
 716		spin_unlock_irqrestore(q->queue_lock, flags);
 717
 718		scsi_run_queue(q);
 
 
 
 
 
 719	}
 720
 721	put_device(&sdev->sdev_gendev);
 722	return false;
 723}
 724
 725/**
 726 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 727 * @cmd:	SCSI command
 728 * @result:	scsi error code
 
 
 
 
 
 
 729 *
 730 * Translate a SCSI result code into a blk_status_t value. May reset the host
 731 * byte of @cmd->result.
 
 
 
 732 */
 733static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
 734{
 735	switch (host_byte(result)) {
 736	case DID_OK:
 737		/*
 738		 * Also check the other bytes than the status byte in result
 739		 * to handle the case when a SCSI LLD sets result to
 740		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
 741		 */
 742		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
 743			return BLK_STS_OK;
 744		return BLK_STS_IOERR;
 745	case DID_TRANSPORT_FAILFAST:
 746		return BLK_STS_TRANSPORT;
 
 747	case DID_TARGET_FAILURE:
 748		set_host_byte(cmd, DID_OK);
 749		return BLK_STS_TARGET;
 
 750	case DID_NEXUS_FAILURE:
 751		return BLK_STS_NEXUS;
 752	case DID_ALLOC_FAILURE:
 753		set_host_byte(cmd, DID_OK);
 754		return BLK_STS_NOSPC;
 755	case DID_MEDIUM_ERROR:
 756		set_host_byte(cmd, DID_OK);
 757		return BLK_STS_MEDIUM;
 758	default:
 759		return BLK_STS_IOERR;
 
 760	}
 
 
 761}
 762
 763/*
 764 * Function:    scsi_io_completion()
 765 *
 766 * Purpose:     Completion processing for block device I/O requests.
 767 *
 768 * Arguments:   cmd   - command that is finished.
 769 *
 770 * Lock status: Assumed that no lock is held upon entry.
 771 *
 772 * Returns:     Nothing
 773 *
 774 * Notes:       We will finish off the specified number of sectors.  If we
 775 *		are done, the command block will be released and the queue
 776 *		function will be goosed.  If we are not done then we have to
 
 
 
 
 
 
 
 777 *		figure out what to do next:
 778 *
 779 *		a) We can call scsi_requeue_command().  The request
 780 *		   will be unprepared and put back on the queue.  Then
 781 *		   a new command will be created for it.  This should
 782 *		   be used if we made forward progress, or if we want
 783 *		   to switch from READ(10) to READ(6) for example.
 784 *
 785 *		b) We can call __scsi_queue_insert().  The request will
 786 *		   be put back on the queue and retried using the same
 787 *		   command as before, possibly after a delay.
 788 *
 789 *		c) We can call scsi_end_request() with -EIO to fail
 790 *		   the remainder of the request.
 791 */
 792void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 793{
 794	int result = cmd->result;
 795	struct request_queue *q = cmd->device->request_queue;
 796	struct request *req = cmd->request;
 797	blk_status_t error = BLK_STS_OK;
 798	struct scsi_sense_hdr sshdr;
 799	bool sense_valid = false;
 800	int sense_deferred = 0, level = 0;
 801	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 802	      ACTION_DELAYED_RETRY} action;
 803	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
 804
 805	if (result) {
 806		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 807		if (sense_valid)
 808			sense_deferred = scsi_sense_is_deferred(&sshdr);
 809	}
 810
 811	if (blk_rq_is_passthrough(req)) {
 
 812		if (result) {
 813			if (sense_valid) {
 814				/*
 815				 * SG_IO wants current and deferred errors
 816				 */
 817				scsi_req(req)->sense_len =
 818					min(8 + cmd->sense_buffer[7],
 819					    SCSI_SENSE_BUFFERSIZE);
 
 
 
 820			}
 821			if (!sense_deferred)
 822				error = scsi_result_to_blk_status(cmd, result);
 823		}
 824		/*
 825		 * scsi_result_to_blk_status may have reset the host_byte
 826		 */
 827		scsi_req(req)->result = cmd->result;
 828		scsi_req(req)->resid_len = scsi_get_resid(cmd);
 829
 830		if (scsi_bidi_cmnd(cmd)) {
 831			/*
 832			 * Bidi commands Must be complete as a whole,
 833			 * both sides at once.
 834			 */
 835			scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
 836			if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
 837					blk_rq_bytes(req->next_rq)))
 838				BUG();
 
 
 839			return;
 840		}
 841	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
 842		/*
 843		 * Flush commands do not transfers any data, and thus cannot use
 844		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 845		 * This sets the error explicitly for the problem case.
 846		 */
 847		error = scsi_result_to_blk_status(cmd, result);
 848	}
 849
 850	/* no bidi support for !blk_rq_is_passthrough yet */
 851	BUG_ON(blk_bidi_rq(req));
 852
 853	/*
 854	 * Next deal with any sectors which we were able to correctly
 855	 * handle.
 856	 */
 857	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 858		"%u sectors total, %d bytes done.\n",
 859		blk_rq_sectors(req), good_bytes));
 860
 861	/*
 862	 * Recovered errors need reporting, but they're always treated as
 863	 * success, so fiddle the result code here.  For passthrough requests
 864	 * we already took a copy of the original into sreq->result which
 865	 * is what gets returned to the user
 866	 */
 867	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 868		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
 869		 * print since caller wants ATA registers. Only occurs on
 870		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
 871		 */
 872		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 873			;
 874		else if (!(req->rq_flags & RQF_QUIET))
 875			scsi_print_sense(cmd);
 876		result = 0;
 877		/* for passthrough error may be set */
 878		error = BLK_STS_OK;
 879	}
 880	/*
 881	 * Another corner case: the SCSI status byte is non-zero but 'good'.
 882	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
 883	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
 884	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
 885	 * intermediate statuses (both obsolete in SAM-4) as good.
 886	 */
 887	if (status_byte(result) && scsi_status_is_good(result)) {
 888		result = 0;
 889		error = BLK_STS_OK;
 890	}
 891
 892	/*
 893	 * special case: failed zero length commands always need to
 894	 * drop down into the retry code. Otherwise, if we finished
 895	 * all bytes in the request we are done now.
 896	 */
 897	if (!(blk_rq_bytes(req) == 0 && error) &&
 898	    !scsi_end_request(req, error, good_bytes, 0))
 899		return;
 900
 901	/*
 902	 * Kill remainder if no retrys.
 903	 */
 904	if (error && scsi_noretry_cmd(cmd)) {
 905		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
 906			BUG();
 907		return;
 908	}
 909
 910	/*
 911	 * If there had been no error, but we have leftover bytes in the
 912	 * requeues just queue the command up again.
 913	 */
 914	if (result == 0)
 915		goto requeue;
 916
 917	error = scsi_result_to_blk_status(cmd, result);
 918
 919	if (host_byte(result) == DID_RESET) {
 920		/* Third party bus reset or reset for error recovery
 921		 * reasons.  Just retry the command and see what
 922		 * happens.
 923		 */
 924		action = ACTION_RETRY;
 925	} else if (sense_valid && !sense_deferred) {
 926		switch (sshdr.sense_key) {
 927		case UNIT_ATTENTION:
 928			if (cmd->device->removable) {
 929				/* Detected disc change.  Set a bit
 930				 * and quietly refuse further access.
 931				 */
 932				cmd->device->changed = 1;
 
 933				action = ACTION_FAIL;
 934			} else {
 935				/* Must have been a power glitch, or a
 936				 * bus reset.  Could not have been a
 937				 * media change, so we just retry the
 938				 * command and see what happens.
 939				 */
 940				action = ACTION_RETRY;
 941			}
 942			break;
 943		case ILLEGAL_REQUEST:
 944			/* If we had an ILLEGAL REQUEST returned, then
 945			 * we may have performed an unsupported
 946			 * command.  The only thing this should be
 947			 * would be a ten byte read where only a six
 948			 * byte read was supported.  Also, on a system
 949			 * where READ CAPACITY failed, we may have
 950			 * read past the end of the disk.
 951			 */
 952			if ((cmd->device->use_10_for_rw &&
 953			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 954			    (cmd->cmnd[0] == READ_10 ||
 955			     cmd->cmnd[0] == WRITE_10)) {
 956				/* This will issue a new 6-byte command. */
 957				cmd->device->use_10_for_rw = 0;
 958				action = ACTION_REPREP;
 959			} else if (sshdr.asc == 0x10) /* DIX */ {
 
 960				action = ACTION_FAIL;
 961				error = BLK_STS_PROTECTION;
 962			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 963			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 
 
 
 
 964				action = ACTION_FAIL;
 965				error = BLK_STS_TARGET;
 966			} else
 967				action = ACTION_FAIL;
 968			break;
 969		case ABORTED_COMMAND:
 970			action = ACTION_FAIL;
 971			if (sshdr.asc == 0x10) /* DIF */
 972				error = BLK_STS_PROTECTION;
 
 
 973			break;
 974		case NOT_READY:
 975			/* If the device is in the process of becoming
 976			 * ready, or has a temporary blockage, retry.
 977			 */
 978			if (sshdr.asc == 0x04) {
 979				switch (sshdr.ascq) {
 980				case 0x01: /* becoming ready */
 981				case 0x04: /* format in progress */
 982				case 0x05: /* rebuild in progress */
 983				case 0x06: /* recalculation in progress */
 984				case 0x07: /* operation in progress */
 985				case 0x08: /* Long write in progress */
 986				case 0x09: /* self test in progress */
 987				case 0x14: /* space allocation in progress */
 988					action = ACTION_DELAYED_RETRY;
 989					break;
 990				default:
 
 991					action = ACTION_FAIL;
 992					break;
 993				}
 994			} else
 
 995				action = ACTION_FAIL;
 
 996			break;
 997		case VOLUME_OVERFLOW:
 998			/* See SSC3rXX or current. */
 999			action = ACTION_FAIL;
1000			break;
1001		default:
 
1002			action = ACTION_FAIL;
1003			break;
1004		}
1005	} else
1006		action = ACTION_FAIL;
1007
1008	if (action != ACTION_FAIL &&
1009	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1010		action = ACTION_FAIL;
 
1011
1012	switch (action) {
1013	case ACTION_FAIL:
1014		/* Give up and fail the remainder of the request */
1015		if (!(req->rq_flags & RQF_QUIET)) {
1016			static DEFINE_RATELIMIT_STATE(_rs,
1017					DEFAULT_RATELIMIT_INTERVAL,
1018					DEFAULT_RATELIMIT_BURST);
1019
1020			if (unlikely(scsi_logging_level))
1021				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1022						       SCSI_LOG_MLCOMPLETE_BITS);
1023
1024			/*
1025			 * if logging is enabled the failure will be printed
1026			 * in scsi_log_completion(), so avoid duplicate messages
1027			 */
1028			if (!level && __ratelimit(&_rs)) {
1029				scsi_print_result(cmd, NULL, FAILED);
1030				if (driver_byte(result) & DRIVER_SENSE)
1031					scsi_print_sense(cmd);
1032				scsi_print_command(cmd);
1033			}
1034		}
1035		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1036			return;
1037		/*FALLTHRU*/
 
 
1038	case ACTION_REPREP:
1039	requeue:
1040		/* Unprep the request and put it back at the head of the queue.
1041		 * A new command will be prepared and issued.
1042		 */
1043		if (q->mq_ops) {
1044			scsi_mq_requeue_cmd(cmd);
1045		} else {
1046			scsi_release_buffers(cmd);
1047			scsi_requeue_command(q, cmd);
1048		}
1049		break;
1050	case ACTION_RETRY:
1051		/* Retry the same command immediately */
1052		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
1053		break;
1054	case ACTION_DELAYED_RETRY:
1055		/* Retry the same command after a delay */
1056		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
1057		break;
1058	}
1059}
1060
1061static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
 
1062{
1063	int count;
1064
1065	/*
1066	 * If sg table allocation fails, requeue request later.
1067	 */
1068	if (unlikely(sg_alloc_table_chained(&sdb->table,
1069			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1070		return BLKPREP_DEFER;
 
 
 
1071
1072	/* 
1073	 * Next, walk the list, and fill in the addresses and sizes of
1074	 * each segment.
1075	 */
1076	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1077	BUG_ON(count > sdb->table.nents);
1078	sdb->table.nents = count;
1079	sdb->length = blk_rq_payload_bytes(req);
1080	return BLKPREP_OK;
1081}
1082
1083/*
1084 * Function:    scsi_init_io()
1085 *
1086 * Purpose:     SCSI I/O initialize function.
1087 *
1088 * Arguments:   cmd   - Command descriptor we wish to initialize
1089 *
1090 * Returns:     0 on success
1091 *		BLKPREP_DEFER if the failure is retryable
1092 *		BLKPREP_KILL if the failure is fatal
1093 */
1094int scsi_init_io(struct scsi_cmnd *cmd)
1095{
1096	struct scsi_device *sdev = cmd->device;
1097	struct request *rq = cmd->request;
1098	bool is_mq = (rq->mq_ctx != NULL);
1099	int error = BLKPREP_KILL;
1100
1101	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1102		goto err_exit;
1103
1104	error = scsi_init_sgtable(rq, &cmd->sdb);
1105	if (error)
1106		goto err_exit;
1107
1108	if (blk_bidi_rq(rq)) {
1109		if (!rq->q->mq_ops) {
1110			struct scsi_data_buffer *bidi_sdb =
1111				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1112			if (!bidi_sdb) {
1113				error = BLKPREP_DEFER;
1114				goto err_exit;
1115			}
1116
1117			rq->next_rq->special = bidi_sdb;
1118		}
1119
1120		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
 
1121		if (error)
1122			goto err_exit;
1123	}
1124
1125	if (blk_integrity_rq(rq)) {
1126		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1127		int ivecs, count;
1128
1129		if (prot_sdb == NULL) {
1130			/*
1131			 * This can happen if someone (e.g. multipath)
1132			 * queues a command to a device on an adapter
1133			 * that does not support DIX.
1134			 */
1135			WARN_ON_ONCE(1);
1136			error = BLKPREP_KILL;
1137			goto err_exit;
1138		}
1139
1140		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1141
1142		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1143				prot_sdb->table.sgl)) {
1144			error = BLKPREP_DEFER;
1145			goto err_exit;
1146		}
1147
1148		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1149						prot_sdb->table.sgl);
1150		BUG_ON(unlikely(count > ivecs));
1151		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1152
1153		cmd->prot_sdb = prot_sdb;
1154		cmd->prot_sdb->table.nents = count;
1155	}
1156
1157	return BLKPREP_OK;
 
1158err_exit:
1159	if (is_mq) {
1160		scsi_mq_free_sgtables(cmd);
1161	} else {
1162		scsi_release_buffers(cmd);
1163		cmd->request->special = NULL;
1164		scsi_put_command(cmd);
1165		put_device(&sdev->sdev_gendev);
1166	}
1167	return error;
1168}
1169EXPORT_SYMBOL(scsi_init_io);
1170
1171/**
1172 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1173 * @rq: Request associated with the SCSI command to be initialized.
1174 *
1175 * This function initializes the members of struct scsi_cmnd that must be
1176 * initialized before request processing starts and that won't be
1177 * reinitialized if a SCSI command is requeued.
1178 *
1179 * Called from inside blk_get_request() for pass-through requests and from
1180 * inside scsi_init_command() for filesystem requests.
1181 */
1182static void scsi_initialize_rq(struct request *rq)
1183{
1184	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1185
1186	scsi_req_init(&cmd->req);
1187	init_rcu_head(&cmd->rcu);
1188	cmd->jiffies_at_alloc = jiffies;
1189	cmd->retries = 0;
1190}
 
 
 
1191
1192/* Add a command to the list used by the aacraid and dpt_i2o drivers */
1193void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1194{
1195	struct scsi_device *sdev = cmd->device;
1196	struct Scsi_Host *shost = sdev->host;
1197	unsigned long flags;
1198
1199	if (shost->use_cmd_list) {
1200		spin_lock_irqsave(&sdev->list_lock, flags);
1201		list_add_tail(&cmd->list, &sdev->cmd_list);
1202		spin_unlock_irqrestore(&sdev->list_lock, flags);
1203	}
1204}
1205
1206/* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1207void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1208{
1209	struct scsi_device *sdev = cmd->device;
1210	struct Scsi_Host *shost = sdev->host;
1211	unsigned long flags;
1212
1213	if (shost->use_cmd_list) {
1214		spin_lock_irqsave(&sdev->list_lock, flags);
1215		BUG_ON(list_empty(&cmd->list));
1216		list_del_init(&cmd->list);
1217		spin_unlock_irqrestore(&sdev->list_lock, flags);
1218	}
1219}
1220
1221/* Called after a request has been started. */
1222void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1223{
1224	void *buf = cmd->sense_buffer;
1225	void *prot = cmd->prot_sdb;
1226	struct request *rq = blk_mq_rq_from_pdu(cmd);
1227	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1228	unsigned long jiffies_at_alloc;
1229	int retries;
1230
1231	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1232		flags |= SCMD_INITIALIZED;
1233		scsi_initialize_rq(rq);
1234	}
1235
1236	jiffies_at_alloc = cmd->jiffies_at_alloc;
1237	retries = cmd->retries;
1238	/* zero out the cmd, except for the embedded scsi_request */
1239	memset((char *)cmd + sizeof(cmd->req), 0,
1240		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1241
1242	cmd->device = dev;
1243	cmd->sense_buffer = buf;
1244	cmd->prot_sdb = prot;
1245	cmd->flags = flags;
1246	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1247	cmd->jiffies_at_alloc = jiffies_at_alloc;
1248	cmd->retries = retries;
1249
1250	scsi_add_cmd_to_list(cmd);
1251}
1252
1253static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1254{
1255	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1256
1257	/*
1258	 * Passthrough requests may transfer data, in which case they must
1259	 * a bio attached to them.  Or they might contain a SCSI command
1260	 * that does not transfer data, in which case they may optionally
1261	 * submit a request without an attached bio.
1262	 */
1263	if (req->bio) {
1264		int ret = scsi_init_io(cmd);
 
 
 
 
1265		if (unlikely(ret))
1266			return ret;
1267	} else {
1268		BUG_ON(blk_rq_bytes(req));
1269
1270		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 
1271	}
1272
1273	cmd->cmd_len = scsi_req(req)->cmd_len;
1274	cmd->cmnd = scsi_req(req)->cmd;
 
 
 
 
 
 
1275	cmd->transfersize = blk_rq_bytes(req);
1276	cmd->allowed = scsi_req(req)->retries;
1277	return BLKPREP_OK;
1278}
 
1279
1280/*
1281 * Setup a normal block command.  These are simple request from filesystems
1282 * that still need to be translated to SCSI CDBs from the ULD.
 
1283 */
1284static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1285{
1286	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 
1287
1288	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1289		int ret = sdev->handler->prep_fn(sdev, req);
 
 
 
 
1290		if (ret != BLKPREP_OK)
1291			return ret;
1292	}
1293
1294	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1295	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1296	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1297}
1298
1299static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1300{
1301	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1302
1303	if (!blk_rq_bytes(req))
1304		cmd->sc_data_direction = DMA_NONE;
1305	else if (rq_data_dir(req) == WRITE)
1306		cmd->sc_data_direction = DMA_TO_DEVICE;
1307	else
1308		cmd->sc_data_direction = DMA_FROM_DEVICE;
1309
1310	if (blk_rq_is_scsi(req))
1311		return scsi_setup_scsi_cmnd(sdev, req);
1312	else
1313		return scsi_setup_fs_cmnd(sdev, req);
1314}
 
1315
1316static int
1317scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1318{
1319	int ret = BLKPREP_OK;
1320
1321	/*
1322	 * If the device is not in running state we will reject some
1323	 * or all commands.
1324	 */
1325	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1326		switch (sdev->sdev_state) {
1327		case SDEV_OFFLINE:
1328		case SDEV_TRANSPORT_OFFLINE:
1329			/*
1330			 * If the device is offline we refuse to process any
1331			 * commands.  The device must be brought online
1332			 * before trying any recovery commands.
1333			 */
1334			sdev_printk(KERN_ERR, sdev,
1335				    "rejecting I/O to offline device\n");
1336			ret = BLKPREP_KILL;
1337			break;
1338		case SDEV_DEL:
1339			/*
1340			 * If the device is fully deleted, we refuse to
1341			 * process any commands as well.
1342			 */
1343			sdev_printk(KERN_ERR, sdev,
1344				    "rejecting I/O to dead device\n");
1345			ret = BLKPREP_KILL;
1346			break;
 
1347		case SDEV_BLOCK:
1348		case SDEV_CREATED_BLOCK:
1349			ret = BLKPREP_DEFER;
1350			break;
1351		case SDEV_QUIESCE:
1352			/*
1353			 * If the devices is blocked we defer normal commands.
1354			 */
1355			if (req && !(req->rq_flags & RQF_PREEMPT))
1356				ret = BLKPREP_DEFER;
1357			break;
1358		default:
1359			/*
1360			 * For any other not fully online state we only allow
1361			 * special commands.  In particular any user initiated
1362			 * command is not allowed.
1363			 */
1364			if (req && !(req->rq_flags & RQF_PREEMPT))
1365				ret = BLKPREP_KILL;
1366			break;
1367		}
1368	}
1369	return ret;
1370}
 
1371
1372static int
1373scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1374{
1375	struct scsi_device *sdev = q->queuedata;
1376
1377	switch (ret) {
1378	case BLKPREP_KILL:
1379	case BLKPREP_INVALID:
1380		scsi_req(req)->result = DID_NO_CONNECT << 16;
1381		/* release the command and kill it */
1382		if (req->special) {
1383			struct scsi_cmnd *cmd = req->special;
1384			scsi_release_buffers(cmd);
1385			scsi_put_command(cmd);
1386			put_device(&sdev->sdev_gendev);
1387			req->special = NULL;
1388		}
1389		break;
1390	case BLKPREP_DEFER:
1391		/*
1392		 * If we defer, the blk_peek_request() returns NULL, but the
1393		 * queue must be restarted, so we schedule a callback to happen
1394		 * shortly.
1395		 */
1396		if (atomic_read(&sdev->device_busy) == 0)
1397			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1398		break;
1399	default:
1400		req->rq_flags |= RQF_DONTPREP;
1401	}
1402
1403	return ret;
1404}
 
1405
1406static int scsi_prep_fn(struct request_queue *q, struct request *req)
1407{
1408	struct scsi_device *sdev = q->queuedata;
1409	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1410	int ret;
1411
1412	ret = scsi_prep_state_check(sdev, req);
1413	if (ret != BLKPREP_OK)
1414		goto out;
1415
1416	if (!req->special) {
1417		/* Bail if we can't get a reference to the device */
1418		if (unlikely(!get_device(&sdev->sdev_gendev))) {
1419			ret = BLKPREP_DEFER;
1420			goto out;
1421		}
1422
1423		scsi_init_command(sdev, cmd);
1424		req->special = cmd;
1425	}
1426
1427	cmd->tag = req->tag;
1428	cmd->request = req;
1429	cmd->prot_op = SCSI_PROT_NORMAL;
1430
1431	ret = scsi_setup_cmnd(sdev, req);
1432out:
1433	return scsi_prep_return(q, req, ret);
1434}
1435
1436static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1437{
1438	scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1439}
1440
1441/*
1442 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1443 * return 0.
1444 *
1445 * Called with the queue_lock held.
1446 */
1447static inline int scsi_dev_queue_ready(struct request_queue *q,
1448				  struct scsi_device *sdev)
1449{
1450	unsigned int busy;
1451
1452	busy = atomic_inc_return(&sdev->device_busy) - 1;
1453	if (atomic_read(&sdev->device_blocked)) {
1454		if (busy)
1455			goto out_dec;
1456
1457		/*
1458		 * unblock after device_blocked iterates to zero
1459		 */
1460		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1461			/*
1462			 * For the MQ case we take care of this in the caller.
1463			 */
1464			if (!q->mq_ops)
1465				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1466			goto out_dec;
1467		}
1468		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1469				   "unblocking device at zero depth\n"));
1470	}
1471
1472	if (busy >= sdev->queue_depth)
1473		goto out_dec;
1474
1475	return 1;
1476out_dec:
1477	atomic_dec(&sdev->device_busy);
1478	return 0;
1479}
1480
 
1481/*
1482 * scsi_target_queue_ready: checks if there we can send commands to target
1483 * @sdev: scsi device on starget to check.
 
 
1484 */
1485static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1486					   struct scsi_device *sdev)
1487{
1488	struct scsi_target *starget = scsi_target(sdev);
1489	unsigned int busy;
1490
1491	if (starget->single_lun) {
1492		spin_lock_irq(shost->host_lock);
1493		if (starget->starget_sdev_user &&
1494		    starget->starget_sdev_user != sdev) {
1495			spin_unlock_irq(shost->host_lock);
1496			return 0;
1497		}
1498		starget->starget_sdev_user = sdev;
1499		spin_unlock_irq(shost->host_lock);
1500	}
1501
1502	if (starget->can_queue <= 0)
1503		return 1;
1504
1505	busy = atomic_inc_return(&starget->target_busy) - 1;
1506	if (atomic_read(&starget->target_blocked) > 0) {
1507		if (busy)
1508			goto starved;
1509
1510		/*
1511		 * unblock after target_blocked iterates to zero
1512		 */
1513		if (atomic_dec_return(&starget->target_blocked) > 0)
1514			goto out_dec;
 
 
 
 
1515
1516		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1517				 "unblocking target at zero depth\n"));
 
 
 
1518	}
1519
1520	if (busy >= starget->can_queue)
1521		goto starved;
1522
1523	return 1;
1524
1525starved:
1526	spin_lock_irq(shost->host_lock);
1527	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1528	spin_unlock_irq(shost->host_lock);
1529out_dec:
1530	if (starget->can_queue > 0)
1531		atomic_dec(&starget->target_busy);
1532	return 0;
1533}
1534
1535/*
1536 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1537 * return 0. We must end up running the queue again whenever 0 is
1538 * returned, else IO can hang.
 
 
1539 */
1540static inline int scsi_host_queue_ready(struct request_queue *q,
1541				   struct Scsi_Host *shost,
1542				   struct scsi_device *sdev)
1543{
1544	unsigned int busy;
1545
1546	if (scsi_host_in_recovery(shost))
1547		return 0;
1548
1549	busy = atomic_inc_return(&shost->host_busy) - 1;
1550	if (atomic_read(&shost->host_blocked) > 0) {
1551		if (busy)
1552			goto starved;
1553
1554		/*
1555		 * unblock after host_blocked iterates to zero
1556		 */
1557		if (atomic_dec_return(&shost->host_blocked) > 0)
1558			goto out_dec;
1559
1560		SCSI_LOG_MLQUEUE(3,
1561			shost_printk(KERN_INFO, shost,
1562				     "unblocking host at zero depth\n"));
 
 
 
 
 
 
1563	}
1564
1565	if (shost->can_queue > 0 && busy >= shost->can_queue)
1566		goto starved;
1567	if (shost->host_self_blocked)
1568		goto starved;
1569
1570	/* We're OK to process the command, so we can't be starved */
1571	if (!list_empty(&sdev->starved_entry)) {
1572		spin_lock_irq(shost->host_lock);
1573		if (!list_empty(&sdev->starved_entry))
1574			list_del_init(&sdev->starved_entry);
1575		spin_unlock_irq(shost->host_lock);
1576	}
1577
1578	return 1;
1579
1580starved:
1581	spin_lock_irq(shost->host_lock);
1582	if (list_empty(&sdev->starved_entry))
1583		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1584	spin_unlock_irq(shost->host_lock);
1585out_dec:
1586	scsi_dec_host_busy(shost);
1587	return 0;
1588}
1589
1590/*
1591 * Busy state exporting function for request stacking drivers.
1592 *
1593 * For efficiency, no lock is taken to check the busy state of
1594 * shost/starget/sdev, since the returned value is not guaranteed and
1595 * may be changed after request stacking drivers call the function,
1596 * regardless of taking lock or not.
1597 *
1598 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1599 * needs to return 'not busy'. Otherwise, request stacking drivers
1600 * may hold requests forever.
1601 */
1602static int scsi_lld_busy(struct request_queue *q)
1603{
1604	struct scsi_device *sdev = q->queuedata;
1605	struct Scsi_Host *shost;
 
1606
1607	if (blk_queue_dying(q))
1608		return 0;
1609
1610	shost = sdev->host;
 
1611
1612	/*
1613	 * Ignore host/starget busy state.
1614	 * Since block layer does not have a concept of fairness across
1615	 * multiple queues, congestion of host/starget needs to be handled
1616	 * in SCSI layer.
1617	 */
1618	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1619		return 1;
1620
1621	return 0;
1622}
1623
1624/*
1625 * Kill a request for a dead device
1626 */
1627static void scsi_kill_request(struct request *req, struct request_queue *q)
1628{
1629	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1630	struct scsi_device *sdev;
1631	struct scsi_target *starget;
1632	struct Scsi_Host *shost;
1633
1634	blk_start_request(req);
1635
1636	scmd_printk(KERN_INFO, cmd, "killing request\n");
1637
1638	sdev = cmd->device;
1639	starget = scsi_target(sdev);
1640	shost = sdev->host;
1641	scsi_init_cmd_errh(cmd);
1642	cmd->result = DID_NO_CONNECT << 16;
1643	atomic_inc(&cmd->device->iorequest_cnt);
1644
1645	/*
1646	 * SCSI request completion path will do scsi_device_unbusy(),
1647	 * bump busy counts.  To bump the counters, we need to dance
1648	 * with the locks as normal issue path does.
1649	 */
1650	atomic_inc(&sdev->device_busy);
1651	atomic_inc(&shost->host_busy);
1652	if (starget->can_queue > 0)
1653		atomic_inc(&starget->target_busy);
 
 
 
1654
1655	blk_complete_request(req);
1656}
1657
1658static void scsi_softirq_done(struct request *rq)
1659{
1660	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1661	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1662	int disposition;
1663
1664	INIT_LIST_HEAD(&cmd->eh_entry);
1665
1666	atomic_inc(&cmd->device->iodone_cnt);
1667	if (cmd->result)
1668		atomic_inc(&cmd->device->ioerr_cnt);
1669
1670	disposition = scsi_decide_disposition(cmd);
1671	if (disposition != SUCCESS &&
1672	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1673		sdev_printk(KERN_ERR, cmd->device,
1674			    "timing out command, waited %lus\n",
1675			    wait_for/HZ);
1676		disposition = SUCCESS;
1677	}
1678
1679	scsi_log_completion(cmd, disposition);
1680
1681	switch (disposition) {
1682		case SUCCESS:
1683			scsi_finish_command(cmd);
1684			break;
1685		case NEEDS_RETRY:
1686			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1687			break;
1688		case ADD_TO_MLQUEUE:
1689			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1690			break;
1691		default:
1692			scsi_eh_scmd_add(cmd);
1693			break;
1694	}
1695}
1696
1697/**
1698 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1699 * @cmd: command block we are dispatching.
1700 *
1701 * Return: nonzero return request was rejected and device's queue needs to be
1702 * plugged.
1703 */
1704static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1705{
1706	struct Scsi_Host *host = cmd->device->host;
1707	int rtn = 0;
1708
1709	atomic_inc(&cmd->device->iorequest_cnt);
1710
1711	/* check if the device is still usable */
1712	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1713		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1714		 * returns an immediate error upwards, and signals
1715		 * that the device is no longer present */
1716		cmd->result = DID_NO_CONNECT << 16;
1717		goto done;
1718	}
1719
1720	/* Check to see if the scsi lld made this device blocked. */
1721	if (unlikely(scsi_device_blocked(cmd->device))) {
1722		/*
1723		 * in blocked state, the command is just put back on
1724		 * the device queue.  The suspend state has already
1725		 * blocked the queue so future requests should not
1726		 * occur until the device transitions out of the
1727		 * suspend state.
1728		 */
1729		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1730			"queuecommand : device blocked\n"));
1731		return SCSI_MLQUEUE_DEVICE_BUSY;
1732	}
1733
1734	/* Store the LUN value in cmnd, if needed. */
1735	if (cmd->device->lun_in_cdb)
1736		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1737			       (cmd->device->lun << 5 & 0xe0);
1738
1739	scsi_log_send(cmd);
1740
1741	/*
1742	 * Before we queue this command, check if the command
1743	 * length exceeds what the host adapter can handle.
1744	 */
1745	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1746		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1747			       "queuecommand : command too long. "
1748			       "cdb_size=%d host->max_cmd_len=%d\n",
1749			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1750		cmd->result = (DID_ABORT << 16);
1751		goto done;
1752	}
1753
1754	if (unlikely(host->shost_state == SHOST_DEL)) {
1755		cmd->result = (DID_NO_CONNECT << 16);
1756		goto done;
1757
1758	}
1759
1760	trace_scsi_dispatch_cmd_start(cmd);
1761	rtn = host->hostt->queuecommand(host, cmd);
1762	if (rtn) {
1763		trace_scsi_dispatch_cmd_error(cmd, rtn);
1764		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1765		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1766			rtn = SCSI_MLQUEUE_HOST_BUSY;
1767
1768		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1769			"queuecommand : request rejected\n"));
1770	}
1771
1772	return rtn;
1773 done:
1774	cmd->scsi_done(cmd);
1775	return 0;
1776}
1777
1778/**
1779 * scsi_done - Invoke completion on finished SCSI command.
1780 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1781 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1782 *
1783 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1784 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1785 * calls blk_complete_request() for further processing.
1786 *
1787 * This function is interrupt context safe.
1788 */
1789static void scsi_done(struct scsi_cmnd *cmd)
1790{
1791	trace_scsi_dispatch_cmd_done(cmd);
1792	blk_complete_request(cmd->request);
1793}
1794
1795/*
1796 * Function:    scsi_request_fn()
1797 *
1798 * Purpose:     Main strategy routine for SCSI.
1799 *
1800 * Arguments:   q       - Pointer to actual queue.
1801 *
1802 * Returns:     Nothing
1803 *
1804 * Lock status: request queue lock assumed to be held when called.
1805 *
1806 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1807 * protection for ZBC disks.
1808 */
1809static void scsi_request_fn(struct request_queue *q)
1810	__releases(q->queue_lock)
1811	__acquires(q->queue_lock)
1812{
1813	struct scsi_device *sdev = q->queuedata;
1814	struct Scsi_Host *shost;
1815	struct scsi_cmnd *cmd;
1816	struct request *req;
1817
 
 
 
 
 
 
 
 
 
 
 
1818	/*
1819	 * To start with, we keep looping until the queue is empty, or until
1820	 * the host is no longer able to accept any more requests.
1821	 */
1822	shost = sdev->host;
1823	for (;;) {
1824		int rtn;
1825		/*
1826		 * get next queueable request.  We do this early to make sure
1827		 * that the request is fully prepared even if we cannot
1828		 * accept it.
1829		 */
1830		req = blk_peek_request(q);
1831		if (!req)
1832			break;
1833
1834		if (unlikely(!scsi_device_online(sdev))) {
1835			sdev_printk(KERN_ERR, sdev,
1836				    "rejecting I/O to offline device\n");
1837			scsi_kill_request(req, q);
1838			continue;
1839		}
1840
1841		if (!scsi_dev_queue_ready(q, sdev))
1842			break;
1843
1844		/*
1845		 * Remove the request from the request list.
1846		 */
1847		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1848			blk_start_request(req);
 
1849
1850		spin_unlock_irq(q->queue_lock);
1851		cmd = blk_mq_rq_to_pdu(req);
1852		if (cmd != req->special) {
1853			printk(KERN_CRIT "impossible request in %s.\n"
1854					 "please mail a stack trace to "
1855					 "linux-scsi@vger.kernel.org\n",
1856					 __func__);
1857			blk_dump_rq_flags(req, "foo");
1858			BUG();
1859		}
 
1860
1861		/*
1862		 * We hit this when the driver is using a host wide
1863		 * tag map. For device level tag maps the queue_depth check
1864		 * in the device ready fn would prevent us from trying
1865		 * to allocate a tag. Since the map is a shared host resource
1866		 * we add the dev to the starved list so it eventually gets
1867		 * a run when a tag is freed.
1868		 */
1869		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1870			spin_lock_irq(shost->host_lock);
1871			if (list_empty(&sdev->starved_entry))
1872				list_add_tail(&sdev->starved_entry,
1873					      &shost->starved_list);
1874			spin_unlock_irq(shost->host_lock);
1875			goto not_ready;
1876		}
1877
1878		if (!scsi_target_queue_ready(shost, sdev))
1879			goto not_ready;
1880
1881		if (!scsi_host_queue_ready(q, shost, sdev))
1882			goto host_not_ready;
1883	
1884		if (sdev->simple_tags)
1885			cmd->flags |= SCMD_TAGGED;
1886		else
1887			cmd->flags &= ~SCMD_TAGGED;
 
 
 
 
1888
1889		/*
1890		 * Finally, initialize any error handling parameters, and set up
1891		 * the timers for timeouts.
1892		 */
1893		scsi_init_cmd_errh(cmd);
1894
1895		/*
1896		 * Dispatch the command to the low-level driver.
1897		 */
1898		cmd->scsi_done = scsi_done;
1899		rtn = scsi_dispatch_cmd(cmd);
1900		if (rtn) {
1901			scsi_queue_insert(cmd, rtn);
1902			spin_lock_irq(q->queue_lock);
1903			goto out_delay;
1904		}
1905		spin_lock_irq(q->queue_lock);
1906	}
1907
1908	return;
1909
1910 host_not_ready:
1911	if (scsi_target(sdev)->can_queue > 0)
1912		atomic_dec(&scsi_target(sdev)->target_busy);
1913 not_ready:
 
 
1914	/*
1915	 * lock q, handle tag, requeue req, and decrement device_busy. We
1916	 * must return with queue_lock held.
1917	 *
1918	 * Decrementing device_busy without checking it is OK, as all such
1919	 * cases (host limits or settings) should run the queue at some
1920	 * later time.
1921	 */
1922	spin_lock_irq(q->queue_lock);
1923	blk_requeue_request(q, req);
1924	atomic_dec(&sdev->device_busy);
1925out_delay:
1926	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1927		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1928}
1929
1930static inline blk_status_t prep_to_mq(int ret)
1931{
1932	switch (ret) {
1933	case BLKPREP_OK:
1934		return BLK_STS_OK;
1935	case BLKPREP_DEFER:
1936		return BLK_STS_RESOURCE;
1937	default:
1938		return BLK_STS_IOERR;
1939	}
1940}
1941
1942/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1943static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1944{
1945	return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1946		sizeof(struct scatterlist);
1947}
1948
1949static int scsi_mq_prep_fn(struct request *req)
1950{
1951	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1952	struct scsi_device *sdev = req->q->queuedata;
1953	struct Scsi_Host *shost = sdev->host;
1954	struct scatterlist *sg;
1955
1956	scsi_init_command(sdev, cmd);
1957
1958	req->special = cmd;
1959
1960	cmd->request = req;
1961
1962	cmd->tag = req->tag;
1963	cmd->prot_op = SCSI_PROT_NORMAL;
1964
1965	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1966	cmd->sdb.table.sgl = sg;
1967
1968	if (scsi_host_get_prot(shost)) {
1969		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1970
1971		cmd->prot_sdb->table.sgl =
1972			(struct scatterlist *)(cmd->prot_sdb + 1);
1973	}
1974
1975	if (blk_bidi_rq(req)) {
1976		struct request *next_rq = req->next_rq;
1977		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1978
1979		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1980		bidi_sdb->table.sgl =
1981			(struct scatterlist *)(bidi_sdb + 1);
1982
1983		next_rq->special = bidi_sdb;
1984	}
1985
1986	blk_mq_start_request(req);
1987
1988	return scsi_setup_cmnd(sdev, req);
1989}
1990
1991static void scsi_mq_done(struct scsi_cmnd *cmd)
1992{
1993	trace_scsi_dispatch_cmd_done(cmd);
1994	blk_mq_complete_request(cmd->request);
1995}
1996
1997static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1998{
1999	struct request_queue *q = hctx->queue;
2000	struct scsi_device *sdev = q->queuedata;
2001
2002	atomic_dec(&sdev->device_busy);
2003	put_device(&sdev->sdev_gendev);
 
2004}
2005
2006static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
2007{
2008	struct request_queue *q = hctx->queue;
2009	struct scsi_device *sdev = q->queuedata;
2010
2011	if (!get_device(&sdev->sdev_gendev))
2012		goto out;
2013	if (!scsi_dev_queue_ready(q, sdev))
2014		goto out_put_device;
2015
2016	return true;
2017
2018out_put_device:
2019	put_device(&sdev->sdev_gendev);
2020out:
2021	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
2022		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2023	return false;
2024}
2025
2026static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
2027			 const struct blk_mq_queue_data *bd)
2028{
2029	struct request *req = bd->rq;
2030	struct request_queue *q = req->q;
2031	struct scsi_device *sdev = q->queuedata;
2032	struct Scsi_Host *shost = sdev->host;
2033	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2034	blk_status_t ret;
2035	int reason;
2036
2037	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2038	if (ret != BLK_STS_OK)
2039		goto out_put_budget;
2040
2041	ret = BLK_STS_RESOURCE;
2042	if (!scsi_target_queue_ready(shost, sdev))
2043		goto out_put_budget;
2044	if (!scsi_host_queue_ready(q, shost, sdev))
2045		goto out_dec_target_busy;
2046
2047	if (!(req->rq_flags & RQF_DONTPREP)) {
2048		ret = prep_to_mq(scsi_mq_prep_fn(req));
2049		if (ret != BLK_STS_OK)
2050			goto out_dec_host_busy;
2051		req->rq_flags |= RQF_DONTPREP;
2052	} else {
2053		blk_mq_start_request(req);
2054	}
2055
2056	if (sdev->simple_tags)
2057		cmd->flags |= SCMD_TAGGED;
2058	else
2059		cmd->flags &= ~SCMD_TAGGED;
2060
2061	scsi_init_cmd_errh(cmd);
2062	cmd->scsi_done = scsi_mq_done;
2063
2064	reason = scsi_dispatch_cmd(cmd);
2065	if (reason) {
2066		scsi_set_blocked(cmd, reason);
2067		ret = BLK_STS_RESOURCE;
2068		goto out_dec_host_busy;
2069	}
2070
2071	return BLK_STS_OK;
2072
2073out_dec_host_busy:
2074	scsi_dec_host_busy(shost);
2075out_dec_target_busy:
2076	if (scsi_target(sdev)->can_queue > 0)
2077		atomic_dec(&scsi_target(sdev)->target_busy);
2078out_put_budget:
2079	scsi_mq_put_budget(hctx);
2080	switch (ret) {
2081	case BLK_STS_OK:
2082		break;
2083	case BLK_STS_RESOURCE:
2084		if (atomic_read(&sdev->device_busy) ||
2085		    scsi_device_blocked(sdev))
2086			ret = BLK_STS_DEV_RESOURCE;
2087		break;
2088	default:
2089		/*
2090		 * Make sure to release all allocated ressources when
2091		 * we hit an error, as we will never see this command
2092		 * again.
2093		 */
2094		if (req->rq_flags & RQF_DONTPREP)
2095			scsi_mq_uninit_cmd(cmd);
2096		break;
2097	}
2098	return ret;
2099}
2100
2101static enum blk_eh_timer_return scsi_timeout(struct request *req,
2102		bool reserved)
2103{
2104	if (reserved)
2105		return BLK_EH_RESET_TIMER;
2106	return scsi_times_out(req);
2107}
2108
2109static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2110				unsigned int hctx_idx, unsigned int numa_node)
2111{
2112	struct Scsi_Host *shost = set->driver_data;
2113	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2114	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2115	struct scatterlist *sg;
2116
2117	if (unchecked_isa_dma)
2118		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2119	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2120						    GFP_KERNEL, numa_node);
2121	if (!cmd->sense_buffer)
2122		return -ENOMEM;
2123	cmd->req.sense = cmd->sense_buffer;
2124
2125	if (scsi_host_get_prot(shost)) {
2126		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2127			shost->hostt->cmd_size;
2128		cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2129	}
2130
2131	return 0;
2132}
2133
2134static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2135				 unsigned int hctx_idx)
2136{
2137	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2138
2139	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2140			       cmd->sense_buffer);
2141}
2142
2143static int scsi_map_queues(struct blk_mq_tag_set *set)
2144{
2145	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2146
2147	if (shost->hostt->map_queues)
2148		return shost->hostt->map_queues(shost);
2149	return blk_mq_map_queues(set);
2150}
2151
2152static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2153{
2154	struct device *host_dev;
2155	u64 bounce_limit = 0xffffffff;
2156
2157	if (shost->unchecked_isa_dma)
2158		return BLK_BOUNCE_ISA;
2159	/*
2160	 * Platforms with virtual-DMA translation
2161	 * hardware have no practical limit.
2162	 */
2163	if (!PCI_DMA_BUS_IS_PHYS)
2164		return BLK_BOUNCE_ANY;
2165
2166	host_dev = scsi_get_device(shost);
2167	if (host_dev && host_dev->dma_mask)
2168		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2169
2170	return bounce_limit;
2171}
 
2172
2173void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
 
2174{
2175	struct device *dev = shost->dma_dev;
 
 
 
 
 
2176
2177	/*
2178	 * this limit is imposed by hardware restrictions
2179	 */
2180	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2181					SG_MAX_SEGMENTS));
2182
2183	if (scsi_host_prot_dma(shost)) {
2184		shost->sg_prot_tablesize =
2185			min_not_zero(shost->sg_prot_tablesize,
2186				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2187		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2188		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2189	}
2190
2191	blk_queue_max_hw_sectors(q, shost->max_sectors);
2192	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2193	blk_queue_segment_boundary(q, shost->dma_boundary);
2194	dma_set_seg_boundary(dev, shost->dma_boundary);
2195
2196	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2197
2198	if (!shost->use_clustering)
2199		q->limits.cluster = 0;
2200
2201	/*
2202	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
2203	 * which is a common minimum for HBAs, and the minimum DMA alignment,
2204	 * which is set by the platform.
2205	 *
2206	 * Devices that require a bigger alignment can increase it later.
2207	 */
2208	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2209}
2210EXPORT_SYMBOL_GPL(__scsi_init_queue);
2211
2212static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2213			    gfp_t gfp)
2214{
2215	struct Scsi_Host *shost = q->rq_alloc_data;
2216	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2217	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2218
2219	memset(cmd, 0, sizeof(*cmd));
2220
2221	if (unchecked_isa_dma)
2222		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2223	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2224						    NUMA_NO_NODE);
2225	if (!cmd->sense_buffer)
2226		goto fail;
2227	cmd->req.sense = cmd->sense_buffer;
2228
2229	if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2230		cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2231		if (!cmd->prot_sdb)
2232			goto fail_free_sense;
2233	}
2234
2235	return 0;
2236
2237fail_free_sense:
2238	scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2239fail:
2240	return -ENOMEM;
2241}
2242
2243static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2244{
2245	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2246
2247	if (cmd->prot_sdb)
2248		kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2249	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2250			       cmd->sense_buffer);
2251}
 
2252
2253struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2254{
2255	struct Scsi_Host *shost = sdev->host;
2256	struct request_queue *q;
2257
2258	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL);
2259	if (!q)
2260		return NULL;
2261	q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2262	q->rq_alloc_data = shost;
2263	q->request_fn = scsi_request_fn;
2264	q->init_rq_fn = scsi_old_init_rq;
2265	q->exit_rq_fn = scsi_old_exit_rq;
2266	q->initialize_rq_fn = scsi_initialize_rq;
2267
2268	if (blk_init_allocated_queue(q) < 0) {
2269		blk_cleanup_queue(q);
2270		return NULL;
2271	}
2272
2273	__scsi_init_queue(shost, q);
2274	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2275	blk_queue_prep_rq(q, scsi_prep_fn);
2276	blk_queue_unprep_rq(q, scsi_unprep_fn);
2277	blk_queue_softirq_done(q, scsi_softirq_done);
2278	blk_queue_rq_timed_out(q, scsi_times_out);
2279	blk_queue_lld_busy(q, scsi_lld_busy);
2280	return q;
2281}
2282
2283static const struct blk_mq_ops scsi_mq_ops = {
2284	.get_budget	= scsi_mq_get_budget,
2285	.put_budget	= scsi_mq_put_budget,
2286	.queue_rq	= scsi_queue_rq,
2287	.complete	= scsi_softirq_done,
2288	.timeout	= scsi_timeout,
2289#ifdef CONFIG_BLK_DEBUG_FS
2290	.show_rq	= scsi_show_rq,
2291#endif
2292	.init_request	= scsi_mq_init_request,
2293	.exit_request	= scsi_mq_exit_request,
2294	.initialize_rq_fn = scsi_initialize_rq,
2295	.map_queues	= scsi_map_queues,
2296};
2297
2298struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2299{
2300	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2301	if (IS_ERR(sdev->request_queue))
2302		return NULL;
2303
2304	sdev->request_queue->queuedata = sdev;
2305	__scsi_init_queue(sdev->host, sdev->request_queue);
2306	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
2307	return sdev->request_queue;
2308}
2309
2310int scsi_mq_setup_tags(struct Scsi_Host *shost)
2311{
2312	unsigned int cmd_size, sgl_size;
2313
2314	sgl_size = scsi_mq_sgl_size(shost);
2315	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2316	if (scsi_host_get_prot(shost))
2317		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2318
2319	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2320	shost->tag_set.ops = &scsi_mq_ops;
2321	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2322	shost->tag_set.queue_depth = shost->can_queue;
2323	shost->tag_set.cmd_size = cmd_size;
2324	shost->tag_set.numa_node = NUMA_NO_NODE;
2325	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2326	shost->tag_set.flags |=
2327		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2328	shost->tag_set.driver_data = shost;
2329
2330	return blk_mq_alloc_tag_set(&shost->tag_set);
2331}
2332
2333void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2334{
2335	blk_mq_free_tag_set(&shost->tag_set);
2336}
2337
2338/**
2339 * scsi_device_from_queue - return sdev associated with a request_queue
2340 * @q: The request queue to return the sdev from
2341 *
2342 * Return the sdev associated with a request queue or NULL if the
2343 * request_queue does not reference a SCSI device.
2344 */
2345struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2346{
2347	struct scsi_device *sdev = NULL;
2348
2349	if (q->mq_ops) {
2350		if (q->mq_ops == &scsi_mq_ops)
2351			sdev = q->queuedata;
2352	} else if (q->request_fn == scsi_request_fn)
2353		sdev = q->queuedata;
2354	if (!sdev || !get_device(&sdev->sdev_gendev))
2355		sdev = NULL;
2356
2357	return sdev;
2358}
2359EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2360
2361/*
2362 * Function:    scsi_block_requests()
2363 *
2364 * Purpose:     Utility function used by low-level drivers to prevent further
2365 *		commands from being queued to the device.
2366 *
2367 * Arguments:   shost       - Host in question
2368 *
2369 * Returns:     Nothing
2370 *
2371 * Lock status: No locks are assumed held.
2372 *
2373 * Notes:       There is no timer nor any other means by which the requests
2374 *		get unblocked other than the low-level driver calling
2375 *		scsi_unblock_requests().
2376 */
2377void scsi_block_requests(struct Scsi_Host *shost)
2378{
2379	shost->host_self_blocked = 1;
2380}
2381EXPORT_SYMBOL(scsi_block_requests);
2382
2383/*
2384 * Function:    scsi_unblock_requests()
2385 *
2386 * Purpose:     Utility function used by low-level drivers to allow further
2387 *		commands from being queued to the device.
2388 *
2389 * Arguments:   shost       - Host in question
2390 *
2391 * Returns:     Nothing
2392 *
2393 * Lock status: No locks are assumed held.
2394 *
2395 * Notes:       There is no timer nor any other means by which the requests
2396 *		get unblocked other than the low-level driver calling
2397 *		scsi_unblock_requests().
2398 *
2399 *		This is done as an API function so that changes to the
2400 *		internals of the scsi mid-layer won't require wholesale
2401 *		changes to drivers that use this feature.
2402 */
2403void scsi_unblock_requests(struct Scsi_Host *shost)
2404{
2405	shost->host_self_blocked = 0;
2406	scsi_run_host_queues(shost);
2407}
2408EXPORT_SYMBOL(scsi_unblock_requests);
2409
2410int __init scsi_init_queue(void)
2411{
 
 
2412	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2413					   sizeof(struct scsi_data_buffer),
2414					   0, 0, NULL);
2415	if (!scsi_sdb_cache) {
2416		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2417		return -ENOMEM;
2418	}
2419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2420	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
2421}
2422
2423void scsi_exit_queue(void)
2424{
2425	kmem_cache_destroy(scsi_sense_cache);
2426	kmem_cache_destroy(scsi_sense_isadma_cache);
2427	kmem_cache_destroy(scsi_sdb_cache);
 
 
 
 
 
 
2428}
2429
2430/**
2431 *	scsi_mode_select - issue a mode select
2432 *	@sdev:	SCSI device to be queried
2433 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2434 *	@sp:	Save page bit (0 == don't save, 1 == save)
2435 *	@modepage: mode page being requested
2436 *	@buffer: request buffer (may not be smaller than eight bytes)
2437 *	@len:	length of request buffer.
2438 *	@timeout: command timeout
2439 *	@retries: number of retries before failing
2440 *	@data: returns a structure abstracting the mode header data
2441 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2442 *		must be SCSI_SENSE_BUFFERSIZE big.
2443 *
2444 *	Returns zero if successful; negative error number or scsi
2445 *	status on error
2446 *
2447 */
2448int
2449scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2450		 unsigned char *buffer, int len, int timeout, int retries,
2451		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2452{
2453	unsigned char cmd[10];
2454	unsigned char *real_buffer;
2455	int ret;
2456
2457	memset(cmd, 0, sizeof(cmd));
2458	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2459
2460	if (sdev->use_10_for_ms) {
2461		if (len > 65535)
2462			return -EINVAL;
2463		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2464		if (!real_buffer)
2465			return -ENOMEM;
2466		memcpy(real_buffer + 8, buffer, len);
2467		len += 8;
2468		real_buffer[0] = 0;
2469		real_buffer[1] = 0;
2470		real_buffer[2] = data->medium_type;
2471		real_buffer[3] = data->device_specific;
2472		real_buffer[4] = data->longlba ? 0x01 : 0;
2473		real_buffer[5] = 0;
2474		real_buffer[6] = data->block_descriptor_length >> 8;
2475		real_buffer[7] = data->block_descriptor_length;
2476
2477		cmd[0] = MODE_SELECT_10;
2478		cmd[7] = len >> 8;
2479		cmd[8] = len;
2480	} else {
2481		if (len > 255 || data->block_descriptor_length > 255 ||
2482		    data->longlba)
2483			return -EINVAL;
2484
2485		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2486		if (!real_buffer)
2487			return -ENOMEM;
2488		memcpy(real_buffer + 4, buffer, len);
2489		len += 4;
2490		real_buffer[0] = 0;
2491		real_buffer[1] = data->medium_type;
2492		real_buffer[2] = data->device_specific;
2493		real_buffer[3] = data->block_descriptor_length;
2494		
2495
2496		cmd[0] = MODE_SELECT;
2497		cmd[4] = len;
2498	}
2499
2500	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2501			       sshdr, timeout, retries, NULL);
2502	kfree(real_buffer);
2503	return ret;
2504}
2505EXPORT_SYMBOL_GPL(scsi_mode_select);
2506
2507/**
2508 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2509 *	@sdev:	SCSI device to be queried
2510 *	@dbd:	set if mode sense will allow block descriptors to be returned
2511 *	@modepage: mode page being requested
2512 *	@buffer: request buffer (may not be smaller than eight bytes)
2513 *	@len:	length of request buffer.
2514 *	@timeout: command timeout
2515 *	@retries: number of retries before failing
2516 *	@data: returns a structure abstracting the mode header data
2517 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2518 *		must be SCSI_SENSE_BUFFERSIZE big.
2519 *
2520 *	Returns zero if unsuccessful, or the header offset (either 4
2521 *	or 8 depending on whether a six or ten byte command was
2522 *	issued) if successful.
2523 */
2524int
2525scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2526		  unsigned char *buffer, int len, int timeout, int retries,
2527		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2528{
2529	unsigned char cmd[12];
2530	int use_10_for_ms;
2531	int header_length;
2532	int result, retry_count = retries;
2533	struct scsi_sense_hdr my_sshdr;
2534
2535	memset(data, 0, sizeof(*data));
2536	memset(&cmd[0], 0, 12);
2537	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2538	cmd[2] = modepage;
2539
2540	/* caller might not be interested in sense, but we need it */
2541	if (!sshdr)
2542		sshdr = &my_sshdr;
2543
2544 retry:
2545	use_10_for_ms = sdev->use_10_for_ms;
2546
2547	if (use_10_for_ms) {
2548		if (len < 8)
2549			len = 8;
2550
2551		cmd[0] = MODE_SENSE_10;
2552		cmd[8] = len;
2553		header_length = 8;
2554	} else {
2555		if (len < 4)
2556			len = 4;
2557
2558		cmd[0] = MODE_SENSE;
2559		cmd[4] = len;
2560		header_length = 4;
2561	}
2562
2563	memset(buffer, 0, len);
2564
2565	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2566				  sshdr, timeout, retries, NULL);
2567
2568	/* This code looks awful: what it's doing is making sure an
2569	 * ILLEGAL REQUEST sense return identifies the actual command
2570	 * byte as the problem.  MODE_SENSE commands can return
2571	 * ILLEGAL REQUEST if the code page isn't supported */
2572
2573	if (use_10_for_ms && !scsi_status_is_good(result) &&
2574	    (driver_byte(result) & DRIVER_SENSE)) {
2575		if (scsi_sense_valid(sshdr)) {
2576			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2577			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2578				/* 
2579				 * Invalid command operation code
2580				 */
2581				sdev->use_10_for_ms = 0;
2582				goto retry;
2583			}
2584		}
2585	}
2586
2587	if(scsi_status_is_good(result)) {
2588		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2589			     (modepage == 6 || modepage == 8))) {
2590			/* Initio breakage? */
2591			header_length = 0;
2592			data->length = 13;
2593			data->medium_type = 0;
2594			data->device_specific = 0;
2595			data->longlba = 0;
2596			data->block_descriptor_length = 0;
2597		} else if(use_10_for_ms) {
2598			data->length = buffer[0]*256 + buffer[1] + 2;
2599			data->medium_type = buffer[2];
2600			data->device_specific = buffer[3];
2601			data->longlba = buffer[4] & 0x01;
2602			data->block_descriptor_length = buffer[6]*256
2603				+ buffer[7];
2604		} else {
2605			data->length = buffer[0] + 1;
2606			data->medium_type = buffer[1];
2607			data->device_specific = buffer[2];
2608			data->block_descriptor_length = buffer[3];
2609		}
2610		data->header_length = header_length;
2611	} else if ((status_byte(result) == CHECK_CONDITION) &&
2612		   scsi_sense_valid(sshdr) &&
2613		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2614		retry_count--;
2615		goto retry;
2616	}
2617
2618	return result;
2619}
2620EXPORT_SYMBOL(scsi_mode_sense);
2621
2622/**
2623 *	scsi_test_unit_ready - test if unit is ready
2624 *	@sdev:	scsi device to change the state of.
2625 *	@timeout: command timeout
2626 *	@retries: number of retries before failing
2627 *	@sshdr: outpout pointer for decoded sense information.
 
 
2628 *
2629 *	Returns zero if unsuccessful or an error if TUR failed.  For
2630 *	removable media, UNIT_ATTENTION sets ->changed flag.
2631 **/
2632int
2633scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2634		     struct scsi_sense_hdr *sshdr)
2635{
2636	char cmd[] = {
2637		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2638	};
 
2639	int result;
2640
 
 
 
 
 
2641	/* try to eat the UNIT_ATTENTION if there are enough retries */
2642	do {
2643		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2644					  timeout, 1, NULL);
2645		if (sdev->removable && scsi_sense_valid(sshdr) &&
2646		    sshdr->sense_key == UNIT_ATTENTION)
2647			sdev->changed = 1;
2648	} while (scsi_sense_valid(sshdr) &&
2649		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2650
 
 
2651	return result;
2652}
2653EXPORT_SYMBOL(scsi_test_unit_ready);
2654
2655/**
2656 *	scsi_device_set_state - Take the given device through the device state model.
2657 *	@sdev:	scsi device to change the state of.
2658 *	@state:	state to change to.
2659 *
2660 *	Returns zero if successful or an error if the requested
2661 *	transition is illegal.
2662 */
2663int
2664scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2665{
2666	enum scsi_device_state oldstate = sdev->sdev_state;
2667
2668	if (state == oldstate)
2669		return 0;
2670
2671	switch (state) {
2672	case SDEV_CREATED:
2673		switch (oldstate) {
2674		case SDEV_CREATED_BLOCK:
2675			break;
2676		default:
2677			goto illegal;
2678		}
2679		break;
2680			
2681	case SDEV_RUNNING:
2682		switch (oldstate) {
2683		case SDEV_CREATED:
2684		case SDEV_OFFLINE:
2685		case SDEV_TRANSPORT_OFFLINE:
2686		case SDEV_QUIESCE:
2687		case SDEV_BLOCK:
2688			break;
2689		default:
2690			goto illegal;
2691		}
2692		break;
2693
2694	case SDEV_QUIESCE:
2695		switch (oldstate) {
2696		case SDEV_RUNNING:
2697		case SDEV_OFFLINE:
2698		case SDEV_TRANSPORT_OFFLINE:
2699			break;
2700		default:
2701			goto illegal;
2702		}
2703		break;
2704
2705	case SDEV_OFFLINE:
2706	case SDEV_TRANSPORT_OFFLINE:
2707		switch (oldstate) {
2708		case SDEV_CREATED:
2709		case SDEV_RUNNING:
2710		case SDEV_QUIESCE:
2711		case SDEV_BLOCK:
2712			break;
2713		default:
2714			goto illegal;
2715		}
2716		break;
2717
2718	case SDEV_BLOCK:
2719		switch (oldstate) {
2720		case SDEV_RUNNING:
2721		case SDEV_CREATED_BLOCK:
2722			break;
2723		default:
2724			goto illegal;
2725		}
2726		break;
2727
2728	case SDEV_CREATED_BLOCK:
2729		switch (oldstate) {
2730		case SDEV_CREATED:
2731			break;
2732		default:
2733			goto illegal;
2734		}
2735		break;
2736
2737	case SDEV_CANCEL:
2738		switch (oldstate) {
2739		case SDEV_CREATED:
2740		case SDEV_RUNNING:
2741		case SDEV_QUIESCE:
2742		case SDEV_OFFLINE:
2743		case SDEV_TRANSPORT_OFFLINE:
2744			break;
2745		default:
2746			goto illegal;
2747		}
2748		break;
2749
2750	case SDEV_DEL:
2751		switch (oldstate) {
2752		case SDEV_CREATED:
2753		case SDEV_RUNNING:
2754		case SDEV_OFFLINE:
2755		case SDEV_TRANSPORT_OFFLINE:
2756		case SDEV_CANCEL:
2757		case SDEV_BLOCK:
2758		case SDEV_CREATED_BLOCK:
2759			break;
2760		default:
2761			goto illegal;
2762		}
2763		break;
2764
2765	}
2766	sdev->sdev_state = state;
2767	return 0;
2768
2769 illegal:
2770	SCSI_LOG_ERROR_RECOVERY(1,
2771				sdev_printk(KERN_ERR, sdev,
2772					    "Illegal state transition %s->%s",
2773					    scsi_device_state_name(oldstate),
2774					    scsi_device_state_name(state))
2775				);
2776	return -EINVAL;
2777}
2778EXPORT_SYMBOL(scsi_device_set_state);
2779
2780/**
2781 * 	sdev_evt_emit - emit a single SCSI device uevent
2782 *	@sdev: associated SCSI device
2783 *	@evt: event to emit
2784 *
2785 *	Send a single uevent (scsi_event) to the associated scsi_device.
2786 */
2787static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2788{
2789	int idx = 0;
2790	char *envp[3];
2791
2792	switch (evt->evt_type) {
2793	case SDEV_EVT_MEDIA_CHANGE:
2794		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2795		break;
2796	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2797		scsi_rescan_device(&sdev->sdev_gendev);
2798		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2799		break;
2800	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2801		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2802		break;
2803	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2804	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2805		break;
2806	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2807		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2808		break;
2809	case SDEV_EVT_LUN_CHANGE_REPORTED:
2810		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2811		break;
2812	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2813		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2814		break;
2815	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2816		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2817		break;
2818	default:
2819		/* do nothing */
2820		break;
2821	}
2822
2823	envp[idx++] = NULL;
2824
2825	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2826}
2827
2828/**
2829 * 	sdev_evt_thread - send a uevent for each scsi event
2830 *	@work: work struct for scsi_device
2831 *
2832 *	Dispatch queued events to their associated scsi_device kobjects
2833 *	as uevents.
2834 */
2835void scsi_evt_thread(struct work_struct *work)
2836{
2837	struct scsi_device *sdev;
2838	enum scsi_device_event evt_type;
2839	LIST_HEAD(event_list);
2840
2841	sdev = container_of(work, struct scsi_device, event_work);
2842
2843	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2844		if (test_and_clear_bit(evt_type, sdev->pending_events))
2845			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2846
2847	while (1) {
2848		struct scsi_event *evt;
2849		struct list_head *this, *tmp;
2850		unsigned long flags;
2851
2852		spin_lock_irqsave(&sdev->list_lock, flags);
2853		list_splice_init(&sdev->event_list, &event_list);
2854		spin_unlock_irqrestore(&sdev->list_lock, flags);
2855
2856		if (list_empty(&event_list))
2857			break;
2858
2859		list_for_each_safe(this, tmp, &event_list) {
2860			evt = list_entry(this, struct scsi_event, node);
2861			list_del(&evt->node);
2862			scsi_evt_emit(sdev, evt);
2863			kfree(evt);
2864		}
2865	}
2866}
2867
2868/**
2869 * 	sdev_evt_send - send asserted event to uevent thread
2870 *	@sdev: scsi_device event occurred on
2871 *	@evt: event to send
2872 *
2873 *	Assert scsi device event asynchronously.
2874 */
2875void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2876{
2877	unsigned long flags;
2878
2879#if 0
2880	/* FIXME: currently this check eliminates all media change events
2881	 * for polled devices.  Need to update to discriminate between AN
2882	 * and polled events */
2883	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2884		kfree(evt);
2885		return;
2886	}
2887#endif
2888
2889	spin_lock_irqsave(&sdev->list_lock, flags);
2890	list_add_tail(&evt->node, &sdev->event_list);
2891	schedule_work(&sdev->event_work);
2892	spin_unlock_irqrestore(&sdev->list_lock, flags);
2893}
2894EXPORT_SYMBOL_GPL(sdev_evt_send);
2895
2896/**
2897 * 	sdev_evt_alloc - allocate a new scsi event
2898 *	@evt_type: type of event to allocate
2899 *	@gfpflags: GFP flags for allocation
2900 *
2901 *	Allocates and returns a new scsi_event.
2902 */
2903struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2904				  gfp_t gfpflags)
2905{
2906	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2907	if (!evt)
2908		return NULL;
2909
2910	evt->evt_type = evt_type;
2911	INIT_LIST_HEAD(&evt->node);
2912
2913	/* evt_type-specific initialization, if any */
2914	switch (evt_type) {
2915	case SDEV_EVT_MEDIA_CHANGE:
2916	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2917	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2918	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2919	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2920	case SDEV_EVT_LUN_CHANGE_REPORTED:
2921	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2922	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2923	default:
2924		/* do nothing */
2925		break;
2926	}
2927
2928	return evt;
2929}
2930EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2931
2932/**
2933 * 	sdev_evt_send_simple - send asserted event to uevent thread
2934 *	@sdev: scsi_device event occurred on
2935 *	@evt_type: type of event to send
2936 *	@gfpflags: GFP flags for allocation
2937 *
2938 *	Assert scsi device event asynchronously, given an event type.
2939 */
2940void sdev_evt_send_simple(struct scsi_device *sdev,
2941			  enum scsi_device_event evt_type, gfp_t gfpflags)
2942{
2943	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2944	if (!evt) {
2945		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2946			    evt_type);
2947		return;
2948	}
2949
2950	sdev_evt_send(sdev, evt);
2951}
2952EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2953
2954/**
2955 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2956 * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2957 */
2958static int scsi_request_fn_active(struct scsi_device *sdev)
2959{
2960	struct request_queue *q = sdev->request_queue;
2961	int request_fn_active;
2962
2963	WARN_ON_ONCE(sdev->host->use_blk_mq);
2964
2965	spin_lock_irq(q->queue_lock);
2966	request_fn_active = q->request_fn_active;
2967	spin_unlock_irq(q->queue_lock);
2968
2969	return request_fn_active;
2970}
2971
2972/**
2973 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2974 * @sdev: SCSI device pointer.
2975 *
2976 * Wait until the ongoing shost->hostt->queuecommand() calls that are
2977 * invoked from scsi_request_fn() have finished.
2978 */
2979static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2980{
2981	WARN_ON_ONCE(sdev->host->use_blk_mq);
2982
2983	while (scsi_request_fn_active(sdev))
2984		msleep(20);
2985}
2986
2987/**
2988 *	scsi_device_quiesce - Block user issued commands.
2989 *	@sdev:	scsi device to quiesce.
2990 *
2991 *	This works by trying to transition to the SDEV_QUIESCE state
2992 *	(which must be a legal transition).  When the device is in this
2993 *	state, only special requests will be accepted, all others will
2994 *	be deferred.  Since special requests may also be requeued requests,
2995 *	a successful return doesn't guarantee the device will be 
2996 *	totally quiescent.
2997 *
2998 *	Must be called with user context, may sleep.
2999 *
3000 *	Returns zero if unsuccessful or an error if not.
3001 */
3002int
3003scsi_device_quiesce(struct scsi_device *sdev)
3004{
3005	struct request_queue *q = sdev->request_queue;
3006	int err;
3007
3008	/*
3009	 * It is allowed to call scsi_device_quiesce() multiple times from
3010	 * the same context but concurrent scsi_device_quiesce() calls are
3011	 * not allowed.
3012	 */
3013	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
3014
3015	blk_set_preempt_only(q);
3016
3017	blk_mq_freeze_queue(q);
3018	/*
3019	 * Ensure that the effect of blk_set_preempt_only() will be visible
3020	 * for percpu_ref_tryget() callers that occur after the queue
3021	 * unfreeze even if the queue was already frozen before this function
3022	 * was called. See also https://lwn.net/Articles/573497/.
3023	 */
3024	synchronize_rcu();
3025	blk_mq_unfreeze_queue(q);
3026
3027	mutex_lock(&sdev->state_mutex);
3028	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
3029	if (err == 0)
3030		sdev->quiesced_by = current;
3031	else
3032		blk_clear_preempt_only(q);
3033	mutex_unlock(&sdev->state_mutex);
3034
3035	return err;
3036}
3037EXPORT_SYMBOL(scsi_device_quiesce);
3038
3039/**
3040 *	scsi_device_resume - Restart user issued commands to a quiesced device.
3041 *	@sdev:	scsi device to resume.
3042 *
3043 *	Moves the device from quiesced back to running and restarts the
3044 *	queues.
3045 *
3046 *	Must be called with user context, may sleep.
3047 */
3048void scsi_device_resume(struct scsi_device *sdev)
 
3049{
3050	/* check if the device state was mutated prior to resume, and if
3051	 * so assume the state is being managed elsewhere (for example
3052	 * device deleted during suspend)
3053	 */
3054	mutex_lock(&sdev->state_mutex);
3055	WARN_ON_ONCE(!sdev->quiesced_by);
3056	sdev->quiesced_by = NULL;
3057	blk_clear_preempt_only(sdev->request_queue);
3058	if (sdev->sdev_state == SDEV_QUIESCE)
3059		scsi_device_set_state(sdev, SDEV_RUNNING);
3060	mutex_unlock(&sdev->state_mutex);
3061}
3062EXPORT_SYMBOL(scsi_device_resume);
3063
3064static void
3065device_quiesce_fn(struct scsi_device *sdev, void *data)
3066{
3067	scsi_device_quiesce(sdev);
3068}
3069
3070void
3071scsi_target_quiesce(struct scsi_target *starget)
3072{
3073	starget_for_each_device(starget, NULL, device_quiesce_fn);
3074}
3075EXPORT_SYMBOL(scsi_target_quiesce);
3076
3077static void
3078device_resume_fn(struct scsi_device *sdev, void *data)
3079{
3080	scsi_device_resume(sdev);
3081}
3082
3083void
3084scsi_target_resume(struct scsi_target *starget)
3085{
3086	starget_for_each_device(starget, NULL, device_resume_fn);
3087}
3088EXPORT_SYMBOL(scsi_target_resume);
3089
3090/**
3091 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3092 * @sdev: device to block
3093 *
3094 * Pause SCSI command processing on the specified device. Does not sleep.
 
 
3095 *
3096 * Returns zero if successful or a negative error code upon failure.
3097 *
3098 * Notes:
3099 * This routine transitions the device to the SDEV_BLOCK state (which must be
3100 * a legal transition). When the device is in this state, command processing
3101 * is paused until the device leaves the SDEV_BLOCK state. See also
3102 * scsi_internal_device_unblock_nowait().
 
3103 */
3104int scsi_internal_device_block_nowait(struct scsi_device *sdev)
 
3105{
3106	struct request_queue *q = sdev->request_queue;
3107	unsigned long flags;
3108	int err = 0;
3109
3110	err = scsi_device_set_state(sdev, SDEV_BLOCK);
3111	if (err) {
3112		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3113
3114		if (err)
3115			return err;
3116	}
3117
3118	/* 
3119	 * The device has transitioned to SDEV_BLOCK.  Stop the
3120	 * block layer from calling the midlayer with this device's
3121	 * request queue. 
3122	 */
3123	if (q->mq_ops) {
3124		blk_mq_quiesce_queue_nowait(q);
3125	} else {
3126		spin_lock_irqsave(q->queue_lock, flags);
3127		blk_stop_queue(q);
3128		spin_unlock_irqrestore(q->queue_lock, flags);
3129	}
3130
3131	return 0;
3132}
3133EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3134
3135/**
3136 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3137 * @sdev: device to block
3138 *
3139 * Pause SCSI command processing on the specified device and wait until all
3140 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3141 *
3142 * Returns zero if successful or a negative error code upon failure.
3143 *
3144 * Note:
3145 * This routine transitions the device to the SDEV_BLOCK state (which must be
3146 * a legal transition). When the device is in this state, command processing
3147 * is paused until the device leaves the SDEV_BLOCK state. See also
3148 * scsi_internal_device_unblock().
3149 *
3150 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3151 * scsi_internal_device_block() has blocked a SCSI device and also
3152 * remove the rport mutex lock and unlock calls from srp_queuecommand().
3153 */
3154static int scsi_internal_device_block(struct scsi_device *sdev)
3155{
3156	struct request_queue *q = sdev->request_queue;
3157	int err;
3158
3159	mutex_lock(&sdev->state_mutex);
3160	err = scsi_internal_device_block_nowait(sdev);
3161	if (err == 0) {
3162		if (q->mq_ops)
3163			blk_mq_quiesce_queue(q);
3164		else
3165			scsi_wait_for_queuecommand(sdev);
3166	}
3167	mutex_unlock(&sdev->state_mutex);
3168
3169	return err;
3170}
3171 
3172void scsi_start_queue(struct scsi_device *sdev)
3173{
3174	struct request_queue *q = sdev->request_queue;
3175	unsigned long flags;
3176
3177	if (q->mq_ops) {
3178		blk_mq_unquiesce_queue(q);
3179	} else {
3180		spin_lock_irqsave(q->queue_lock, flags);
3181		blk_start_queue(q);
3182		spin_unlock_irqrestore(q->queue_lock, flags);
3183	}
3184}
3185
3186/**
3187 * scsi_internal_device_unblock_nowait - resume a device after a block request
3188 * @sdev:	device to resume
3189 * @new_state:	state to set the device to after unblocking
3190 *
3191 * Restart the device queue for a previously suspended SCSI device. Does not
3192 * sleep.
3193 *
3194 * Returns zero if successful or a negative error code upon failure.
3195 *
3196 * Notes:
3197 * This routine transitions the device to the SDEV_RUNNING state or to one of
3198 * the offline states (which must be a legal transition) allowing the midlayer
3199 * to goose the queue for this device.
 
 
 
 
 
3200 */
3201int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3202					enum scsi_device_state new_state)
3203{
3204	/*
3205	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3206	 * offlined states and goose the device queue if successful.
 
 
 
3207	 */
3208	switch (sdev->sdev_state) {
3209	case SDEV_BLOCK:
3210	case SDEV_TRANSPORT_OFFLINE:
3211		sdev->sdev_state = new_state;
3212		break;
3213	case SDEV_CREATED_BLOCK:
3214		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3215		    new_state == SDEV_OFFLINE)
3216			sdev->sdev_state = new_state;
3217		else
3218			sdev->sdev_state = SDEV_CREATED;
3219		break;
3220	case SDEV_CANCEL:
3221	case SDEV_OFFLINE:
3222		break;
3223	default:
3224		return -EINVAL;
3225	}
3226	scsi_start_queue(sdev);
 
 
3227
3228	return 0;
3229}
3230EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3231
3232/**
3233 * scsi_internal_device_unblock - resume a device after a block request
3234 * @sdev:	device to resume
3235 * @new_state:	state to set the device to after unblocking
3236 *
3237 * Restart the device queue for a previously suspended SCSI device. May sleep.
3238 *
3239 * Returns zero if successful or a negative error code upon failure.
3240 *
3241 * Notes:
3242 * This routine transitions the device to the SDEV_RUNNING state or to one of
3243 * the offline states (which must be a legal transition) allowing the midlayer
3244 * to goose the queue for this device.
3245 */
3246static int scsi_internal_device_unblock(struct scsi_device *sdev,
3247					enum scsi_device_state new_state)
3248{
3249	int ret;
3250
3251	mutex_lock(&sdev->state_mutex);
3252	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3253	mutex_unlock(&sdev->state_mutex);
3254
3255	return ret;
3256}
3257
3258static void
3259device_block(struct scsi_device *sdev, void *data)
3260{
3261	scsi_internal_device_block(sdev);
3262}
3263
3264static int
3265target_block(struct device *dev, void *data)
3266{
3267	if (scsi_is_target_device(dev))
3268		starget_for_each_device(to_scsi_target(dev), NULL,
3269					device_block);
3270	return 0;
3271}
3272
3273void
3274scsi_target_block(struct device *dev)
3275{
3276	if (scsi_is_target_device(dev))
3277		starget_for_each_device(to_scsi_target(dev), NULL,
3278					device_block);
3279	else
3280		device_for_each_child(dev, NULL, target_block);
3281}
3282EXPORT_SYMBOL_GPL(scsi_target_block);
3283
3284static void
3285device_unblock(struct scsi_device *sdev, void *data)
3286{
3287	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3288}
3289
3290static int
3291target_unblock(struct device *dev, void *data)
3292{
3293	if (scsi_is_target_device(dev))
3294		starget_for_each_device(to_scsi_target(dev), data,
3295					device_unblock);
3296	return 0;
3297}
3298
3299void
3300scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3301{
3302	if (scsi_is_target_device(dev))
3303		starget_for_each_device(to_scsi_target(dev), &new_state,
3304					device_unblock);
3305	else
3306		device_for_each_child(dev, &new_state, target_unblock);
3307}
3308EXPORT_SYMBOL_GPL(scsi_target_unblock);
3309
3310/**
3311 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3312 * @sgl:	scatter-gather list
3313 * @sg_count:	number of segments in sg
3314 * @offset:	offset in bytes into sg, on return offset into the mapped area
3315 * @len:	bytes to map, on return number of bytes mapped
3316 *
3317 * Returns virtual address of the start of the mapped page
3318 */
3319void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3320			  size_t *offset, size_t *len)
3321{
3322	int i;
3323	size_t sg_len = 0, len_complete = 0;
3324	struct scatterlist *sg;
3325	struct page *page;
3326
3327	WARN_ON(!irqs_disabled());
3328
3329	for_each_sg(sgl, sg, sg_count, i) {
3330		len_complete = sg_len; /* Complete sg-entries */
3331		sg_len += sg->length;
3332		if (sg_len > *offset)
3333			break;
3334	}
3335
3336	if (unlikely(i == sg_count)) {
3337		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3338			"elements %d\n",
3339		       __func__, sg_len, *offset, sg_count);
3340		WARN_ON(1);
3341		return NULL;
3342	}
3343
3344	/* Offset starting from the beginning of first page in this sg-entry */
3345	*offset = *offset - len_complete + sg->offset;
3346
3347	/* Assumption: contiguous pages can be accessed as "page + i" */
3348	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3349	*offset &= ~PAGE_MASK;
3350
3351	/* Bytes in this sg-entry from *offset to the end of the page */
3352	sg_len = PAGE_SIZE - *offset;
3353	if (*len > sg_len)
3354		*len = sg_len;
3355
3356	return kmap_atomic(page);
3357}
3358EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3359
3360/**
3361 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3362 * @virt:	virtual address to be unmapped
3363 */
3364void scsi_kunmap_atomic_sg(void *virt)
3365{
3366	kunmap_atomic(virt);
3367}
3368EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3369
3370void sdev_disable_disk_events(struct scsi_device *sdev)
3371{
3372	atomic_inc(&sdev->disk_events_disable_depth);
3373}
3374EXPORT_SYMBOL(sdev_disable_disk_events);
3375
3376void sdev_enable_disk_events(struct scsi_device *sdev)
3377{
3378	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3379		return;
3380	atomic_dec(&sdev->disk_events_disable_depth);
3381}
3382EXPORT_SYMBOL(sdev_enable_disk_events);
3383
3384/**
3385 * scsi_vpd_lun_id - return a unique device identification
3386 * @sdev: SCSI device
3387 * @id:   buffer for the identification
3388 * @id_len:  length of the buffer
3389 *
3390 * Copies a unique device identification into @id based
3391 * on the information in the VPD page 0x83 of the device.
3392 * The string will be formatted as a SCSI name string.
3393 *
3394 * Returns the length of the identification or error on failure.
3395 * If the identifier is longer than the supplied buffer the actual
3396 * identifier length is returned and the buffer is not zero-padded.
3397 */
3398int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3399{
3400	u8 cur_id_type = 0xff;
3401	u8 cur_id_size = 0;
3402	const unsigned char *d, *cur_id_str;
3403	const struct scsi_vpd *vpd_pg83;
3404	int id_size = -EINVAL;
3405
3406	rcu_read_lock();
3407	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3408	if (!vpd_pg83) {
3409		rcu_read_unlock();
3410		return -ENXIO;
3411	}
3412
3413	/*
3414	 * Look for the correct descriptor.
3415	 * Order of preference for lun descriptor:
3416	 * - SCSI name string
3417	 * - NAA IEEE Registered Extended
3418	 * - EUI-64 based 16-byte
3419	 * - EUI-64 based 12-byte
3420	 * - NAA IEEE Registered
3421	 * - NAA IEEE Extended
3422	 * - T10 Vendor ID
3423	 * as longer descriptors reduce the likelyhood
3424	 * of identification clashes.
3425	 */
3426
3427	/* The id string must be at least 20 bytes + terminating NULL byte */
3428	if (id_len < 21) {
3429		rcu_read_unlock();
3430		return -EINVAL;
3431	}
3432
3433	memset(id, 0, id_len);
3434	d = vpd_pg83->data + 4;
3435	while (d < vpd_pg83->data + vpd_pg83->len) {
3436		/* Skip designators not referring to the LUN */
3437		if ((d[1] & 0x30) != 0x00)
3438			goto next_desig;
3439
3440		switch (d[1] & 0xf) {
3441		case 0x1:
3442			/* T10 Vendor ID */
3443			if (cur_id_size > d[3])
3444				break;
3445			/* Prefer anything */
3446			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3447				break;
3448			cur_id_size = d[3];
3449			if (cur_id_size + 4 > id_len)
3450				cur_id_size = id_len - 4;
3451			cur_id_str = d + 4;
3452			cur_id_type = d[1] & 0xf;
3453			id_size = snprintf(id, id_len, "t10.%*pE",
3454					   cur_id_size, cur_id_str);
3455			break;
3456		case 0x2:
3457			/* EUI-64 */
3458			if (cur_id_size > d[3])
3459				break;
3460			/* Prefer NAA IEEE Registered Extended */
3461			if (cur_id_type == 0x3 &&
3462			    cur_id_size == d[3])
3463				break;
3464			cur_id_size = d[3];
3465			cur_id_str = d + 4;
3466			cur_id_type = d[1] & 0xf;
3467			switch (cur_id_size) {
3468			case 8:
3469				id_size = snprintf(id, id_len,
3470						   "eui.%8phN",
3471						   cur_id_str);
3472				break;
3473			case 12:
3474				id_size = snprintf(id, id_len,
3475						   "eui.%12phN",
3476						   cur_id_str);
3477				break;
3478			case 16:
3479				id_size = snprintf(id, id_len,
3480						   "eui.%16phN",
3481						   cur_id_str);
3482				break;
3483			default:
3484				cur_id_size = 0;
3485				break;
3486			}
3487			break;
3488		case 0x3:
3489			/* NAA */
3490			if (cur_id_size > d[3])
3491				break;
3492			cur_id_size = d[3];
3493			cur_id_str = d + 4;
3494			cur_id_type = d[1] & 0xf;
3495			switch (cur_id_size) {
3496			case 8:
3497				id_size = snprintf(id, id_len,
3498						   "naa.%8phN",
3499						   cur_id_str);
3500				break;
3501			case 16:
3502				id_size = snprintf(id, id_len,
3503						   "naa.%16phN",
3504						   cur_id_str);
3505				break;
3506			default:
3507				cur_id_size = 0;
3508				break;
3509			}
3510			break;
3511		case 0x8:
3512			/* SCSI name string */
3513			if (cur_id_size + 4 > d[3])
3514				break;
3515			/* Prefer others for truncated descriptor */
3516			if (cur_id_size && d[3] > id_len)
3517				break;
3518			cur_id_size = id_size = d[3];
3519			cur_id_str = d + 4;
3520			cur_id_type = d[1] & 0xf;
3521			if (cur_id_size >= id_len)
3522				cur_id_size = id_len - 1;
3523			memcpy(id, cur_id_str, cur_id_size);
3524			/* Decrease priority for truncated descriptor */
3525			if (cur_id_size != id_size)
3526				cur_id_size = 6;
3527			break;
3528		default:
3529			break;
3530		}
3531next_desig:
3532		d += d[3] + 4;
3533	}
3534	rcu_read_unlock();
3535
3536	return id_size;
3537}
3538EXPORT_SYMBOL(scsi_vpd_lun_id);
3539
3540/*
3541 * scsi_vpd_tpg_id - return a target port group identifier
3542 * @sdev: SCSI device
3543 *
3544 * Returns the Target Port Group identifier from the information
3545 * froom VPD page 0x83 of the device.
3546 *
3547 * Returns the identifier or error on failure.
3548 */
3549int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3550{
3551	const unsigned char *d;
3552	const struct scsi_vpd *vpd_pg83;
3553	int group_id = -EAGAIN, rel_port = -1;
3554
3555	rcu_read_lock();
3556	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3557	if (!vpd_pg83) {
3558		rcu_read_unlock();
3559		return -ENXIO;
3560	}
3561
3562	d = vpd_pg83->data + 4;
3563	while (d < vpd_pg83->data + vpd_pg83->len) {
3564		switch (d[1] & 0xf) {
3565		case 0x4:
3566			/* Relative target port */
3567			rel_port = get_unaligned_be16(&d[6]);
3568			break;
3569		case 0x5:
3570			/* Target port group */
3571			group_id = get_unaligned_be16(&d[6]);
3572			break;
3573		default:
3574			break;
3575		}
3576		d += d[3] + 4;
3577	}
3578	rcu_read_unlock();
3579
3580	if (group_id >= 0 && rel_id && rel_port != -1)
3581		*rel_id = rel_port;
3582
3583	return group_id;
3584}
3585EXPORT_SYMBOL(scsi_vpd_tpg_id);