Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
 
   3 *
   4 *  SCSI queueing library.
   5 *      Initial versions: Eric Youngdale (eric@andante.org).
   6 *                        Based upon conversations with large numbers
   7 *                        of people at Linux Expo.
   8 */
   9
  10#include <linux/bio.h>
  11#include <linux/bitops.h>
  12#include <linux/blkdev.h>
  13#include <linux/completion.h>
  14#include <linux/kernel.h>
  15#include <linux/mempool.h>
  16#include <linux/slab.h>
  17#include <linux/init.h>
  18#include <linux/pci.h>
  19#include <linux/delay.h>
  20#include <linux/hardirq.h>
  21#include <linux/scatterlist.h>
 
 
 
 
  22
  23#include <scsi/scsi.h>
  24#include <scsi/scsi_cmnd.h>
  25#include <scsi/scsi_dbg.h>
  26#include <scsi/scsi_device.h>
  27#include <scsi/scsi_driver.h>
  28#include <scsi/scsi_eh.h>
  29#include <scsi/scsi_host.h>
 
 
  30
 
 
 
  31#include "scsi_priv.h"
  32#include "scsi_logging.h"
  33
  34
  35#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
  36#define SG_MEMPOOL_SIZE		2
  37
  38struct scsi_host_sg_pool {
  39	size_t		size;
  40	char		*name;
  41	struct kmem_cache	*slab;
  42	mempool_t	*pool;
  43};
  44
  45#define SP(x) { x, "sgpool-" __stringify(x) }
  46#if (SCSI_MAX_SG_SEGMENTS < 32)
  47#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
  48#endif
  49static struct scsi_host_sg_pool scsi_sg_pools[] = {
  50	SP(8),
  51	SP(16),
  52#if (SCSI_MAX_SG_SEGMENTS > 32)
  53	SP(32),
  54#if (SCSI_MAX_SG_SEGMENTS > 64)
  55	SP(64),
  56#if (SCSI_MAX_SG_SEGMENTS > 128)
  57	SP(128),
  58#if (SCSI_MAX_SG_SEGMENTS > 256)
  59#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
  60#endif
  61#endif
  62#endif
  63#endif
  64	SP(SCSI_MAX_SG_SEGMENTS)
  65};
  66#undef SP
  67
  68struct kmem_cache *scsi_sdb_cache;
 
  69
  70/*
  71 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
  72 * not change behaviour from the previous unplug mechanism, experimentation
  73 * may prove this needs changing.
  74 */
  75#define SCSI_QUEUE_DELAY	3
  76
  77/*
  78 * Function:	scsi_unprep_request()
  79 *
  80 * Purpose:	Remove all preparation done for a request, including its
  81 *		associated scsi_cmnd, so that it can be requeued.
  82 *
  83 * Arguments:	req	- request to unprepare
  84 *
  85 * Lock status:	Assumed that no locks are held upon entry.
  86 *
  87 * Returns:	Nothing.
  88 */
  89static void scsi_unprep_request(struct request *req)
  90{
  91	struct scsi_cmnd *cmd = req->special;
  92
  93	blk_unprep_request(req);
  94	req->special = NULL;
  95
  96	scsi_put_command(cmd);
 
 
 
 
 
 
 
 
 
 
  97}
  98
  99/**
 100 * __scsi_queue_insert - private queue insertion
 101 * @cmd: The SCSI command being requeued
 102 * @reason:  The reason for the requeue
 103 * @unbusy: Whether the queue should be unbusied
 104 *
 105 * This is a private queue insertion.  The public interface
 106 * scsi_queue_insert() always assumes the queue should be unbusied
 107 * because it's always called before the completion.  This function is
 108 * for a requeue after completion, which should only occur in this
 109 * file.
 110 */
 111static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
 112{
 113	struct Scsi_Host *host = cmd->device->host;
 114	struct scsi_device *device = cmd->device;
 115	struct scsi_target *starget = scsi_target(device);
 116	struct request_queue *q = device->request_queue;
 117	unsigned long flags;
 118
 119	SCSI_LOG_MLQUEUE(1,
 120		 printk("Inserting command %p into mlqueue\n", cmd));
 121
 122	/*
 123	 * Set the appropriate busy bit for the device/host.
 124	 *
 125	 * If the host/device isn't busy, assume that something actually
 126	 * completed, and that we should be able to queue a command now.
 127	 *
 128	 * Note that the prior mid-layer assumption that any host could
 129	 * always queue at least one command is now broken.  The mid-layer
 130	 * will implement a user specifiable stall (see
 131	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 132	 * if a command is requeued with no other commands outstanding
 133	 * either for the device or for the host.
 134	 */
 135	switch (reason) {
 136	case SCSI_MLQUEUE_HOST_BUSY:
 137		host->host_blocked = host->max_host_blocked;
 138		break;
 139	case SCSI_MLQUEUE_DEVICE_BUSY:
 140	case SCSI_MLQUEUE_EH_RETRY:
 141		device->device_blocked = device->max_device_blocked;
 
 142		break;
 143	case SCSI_MLQUEUE_TARGET_BUSY:
 144		starget->target_blocked = starget->max_target_blocked;
 
 145		break;
 146	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147
 148	/*
 149	 * Decrement the counters, since these commands are no longer
 150	 * active on the host/device.
 151	 */
 152	if (unbusy)
 153		scsi_device_unbusy(device);
 154
 155	/*
 156	 * Requeue this command.  It will go before all other commands
 157	 * that are already in the queue.
 
 
 158	 */
 159	spin_lock_irqsave(q->queue_lock, flags);
 160	blk_requeue_request(q, cmd->request);
 161	spin_unlock_irqrestore(q->queue_lock, flags);
 162
 163	kblockd_schedule_work(q, &device->requeue_work);
 164
 165	return 0;
 
 166}
 167
 168/*
 169 * Function:    scsi_queue_insert()
 170 *
 171 * Purpose:     Insert a command in the midlevel queue.
 172 *
 173 * Arguments:   cmd    - command that we are adding to queue.
 174 *              reason - why we are inserting command to queue.
 175 *
 176 * Lock status: Assumed that lock is not held upon entry.
 177 *
 178 * Returns:     Nothing.
 
 
 179 *
 180 * Notes:       We do this for one of two cases.  Either the host is busy
 181 *              and it cannot accept any more commands for the time being,
 182 *              or the device returned QUEUE_FULL and can accept no more
 183 *              commands.
 184 * Notes:       This could be called either from an interrupt context or a
 185 *              normal process context.
 186 */
 187int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 188{
 189	return __scsi_queue_insert(cmd, reason, 1);
 190}
 
 191/**
 192 * scsi_execute - insert request and wait for the result
 193 * @sdev:	scsi device
 194 * @cmd:	scsi command
 195 * @data_direction: data direction
 196 * @buffer:	data buffer
 197 * @bufflen:	len of buffer
 198 * @sense:	optional sense buffer
 199 * @timeout:	request timeout in seconds
 200 * @retries:	number of times to retry request
 201 * @flags:	or into request flags;
 202 * @resid:	optional residual length
 203 *
 204 * returns the req->errors value which is the scsi_cmnd result
 205 * field.
 206 */
 207int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 208		 int data_direction, void *buffer, unsigned bufflen,
 209		 unsigned char *sense, int timeout, int retries, int flags,
 210		 int *resid)
 211{
 
 212	struct request *req;
 213	int write = (data_direction == DMA_TO_DEVICE);
 214	int ret = DRIVER_ERROR << 24;
 215
 216	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
 217	if (!req)
 218		return ret;
 219
 220	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
 221					buffer, bufflen, __GFP_WAIT))
 222		goto out;
 223
 224	req->cmd_len = COMMAND_SIZE(cmd[0]);
 225	memcpy(req->cmd, cmd, req->cmd_len);
 226	req->sense = sense;
 227	req->sense_len = 0;
 228	req->retries = retries;
 
 
 
 
 
 
 
 
 229	req->timeout = timeout;
 230	req->cmd_type = REQ_TYPE_BLOCK_PC;
 231	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
 232
 233	/*
 234	 * head injection *required* here otherwise quiesce won't work
 235	 */
 236	blk_execute_rq(req->q, NULL, req, 1);
 237
 238	/*
 239	 * Some devices (USB mass-storage in particular) may transfer
 240	 * garbage data together with a residue indicating that the data
 241	 * is invalid.  Prevent the garbage from being misinterpreted
 242	 * and prevent security leaks by zeroing out the excess data.
 243	 */
 244	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
 245		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
 246
 247	if (resid)
 248		*resid = req->resid_len;
 249	ret = req->errors;
 
 
 
 
 
 
 250 out:
 251	blk_put_request(req);
 252
 253	return ret;
 254}
 255EXPORT_SYMBOL(scsi_execute);
 256
 257
 258int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
 259		     int data_direction, void *buffer, unsigned bufflen,
 260		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
 261		     int *resid)
 262{
 263	char *sense = NULL;
 264	int result;
 265	
 266	if (sshdr) {
 267		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
 268		if (!sense)
 269			return DRIVER_ERROR << 24;
 270	}
 271	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
 272			      sense, timeout, retries, 0, resid);
 273	if (sshdr)
 274		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
 275
 276	kfree(sense);
 277	return result;
 278}
 279EXPORT_SYMBOL(scsi_execute_req);
 280
 281/*
 282 * Function:    scsi_init_cmd_errh()
 283 *
 284 * Purpose:     Initialize cmd fields related to error handling.
 285 *
 286 * Arguments:   cmd	- command that is ready to be queued.
 287 *
 288 * Notes:       This function has the job of initializing a number of
 289 *              fields related to error handling.   Typically this will
 290 *              be called once for each command, as required.
 291 */
 292static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 293{
 294	cmd->serial_number = 0;
 295	scsi_set_resid(cmd, 0);
 296	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 297	if (cmd->cmd_len == 0)
 298		cmd->cmd_len = scsi_command_size(cmd->cmnd);
 
 
 
 
 
 
 
 
 299}
 300
 301void scsi_device_unbusy(struct scsi_device *sdev)
 302{
 303	struct Scsi_Host *shost = sdev->host;
 304	struct scsi_target *starget = scsi_target(sdev);
 305	unsigned long flags;
 306
 307	spin_lock_irqsave(shost->host_lock, flags);
 308	shost->host_busy--;
 309	starget->target_busy--;
 310	if (unlikely(scsi_host_in_recovery(shost) &&
 311		     (shost->host_failed || shost->host_eh_scheduled)))
 312		scsi_eh_wakeup(shost);
 313	spin_unlock(shost->host_lock);
 314	spin_lock(sdev->request_queue->queue_lock);
 315	sdev->device_busy--;
 316	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
 
 
 
 
 
 
 
 
 
 317}
 318
 319/*
 320 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 321 * and call blk_run_queue for all the scsi_devices on the target -
 322 * including current_sdev first.
 323 *
 324 * Called with *no* scsi locks held.
 325 */
 326static void scsi_single_lun_run(struct scsi_device *current_sdev)
 327{
 328	struct Scsi_Host *shost = current_sdev->host;
 329	struct scsi_device *sdev, *tmp;
 330	struct scsi_target *starget = scsi_target(current_sdev);
 331	unsigned long flags;
 332
 333	spin_lock_irqsave(shost->host_lock, flags);
 334	starget->starget_sdev_user = NULL;
 335	spin_unlock_irqrestore(shost->host_lock, flags);
 336
 337	/*
 338	 * Call blk_run_queue for all LUNs on the target, starting with
 339	 * current_sdev. We race with others (to set starget_sdev_user),
 340	 * but in most cases, we will be first. Ideally, each LU on the
 341	 * target would get some limited time or requests on the target.
 342	 */
 343	blk_run_queue(current_sdev->request_queue);
 
 344
 345	spin_lock_irqsave(shost->host_lock, flags);
 346	if (starget->starget_sdev_user)
 347		goto out;
 348	list_for_each_entry_safe(sdev, tmp, &starget->devices,
 349			same_target_siblings) {
 350		if (sdev == current_sdev)
 351			continue;
 352		if (scsi_device_get(sdev))
 353			continue;
 354
 355		spin_unlock_irqrestore(shost->host_lock, flags);
 356		blk_run_queue(sdev->request_queue);
 357		spin_lock_irqsave(shost->host_lock, flags);
 358	
 359		scsi_device_put(sdev);
 360	}
 361 out:
 362	spin_unlock_irqrestore(shost->host_lock, flags);
 363}
 364
 365static inline int scsi_device_is_busy(struct scsi_device *sdev)
 366{
 367	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
 368		return 1;
 369
 370	return 0;
 
 371}
 372
 373static inline int scsi_target_is_busy(struct scsi_target *starget)
 374{
 375	return ((starget->can_queue > 0 &&
 376		 starget->target_busy >= starget->can_queue) ||
 377		 starget->target_blocked);
 
 
 
 
 378}
 379
 380static inline int scsi_host_is_busy(struct Scsi_Host *shost)
 381{
 382	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
 383	    shost->host_blocked || shost->host_self_blocked)
 384		return 1;
 385
 386	return 0;
 387}
 388
 389/*
 390 * Function:	scsi_run_queue()
 391 *
 392 * Purpose:	Select a proper request queue to serve next
 393 *
 394 * Arguments:	q	- last request's queue
 395 *
 396 * Returns:     Nothing
 397 *
 398 * Notes:	The previous command was completely finished, start
 399 *		a new one if possible.
 400 */
 401static void scsi_run_queue(struct request_queue *q)
 402{
 403	struct scsi_device *sdev = q->queuedata;
 404	struct Scsi_Host *shost;
 405	LIST_HEAD(starved_list);
 
 406	unsigned long flags;
 407
 408	/* if the device is dead, sdev will be NULL, so no queue to run */
 409	if (!sdev)
 410		return;
 411
 412	shost = sdev->host;
 413	if (scsi_target(sdev)->single_lun)
 414		scsi_single_lun_run(sdev);
 415
 416	spin_lock_irqsave(shost->host_lock, flags);
 417	list_splice_init(&shost->starved_list, &starved_list);
 418
 419	while (!list_empty(&starved_list)) {
 
 
 420		/*
 421		 * As long as shost is accepting commands and we have
 422		 * starved queues, call blk_run_queue. scsi_request_fn
 423		 * drops the queue_lock and can add us back to the
 424		 * starved_list.
 425		 *
 426		 * host_lock protects the starved_list and starved_entry.
 427		 * scsi_request_fn must get the host_lock before checking
 428		 * or modifying starved_list or starved_entry.
 429		 */
 430		if (scsi_host_is_busy(shost))
 431			break;
 432
 433		sdev = list_entry(starved_list.next,
 434				  struct scsi_device, starved_entry);
 435		list_del_init(&sdev->starved_entry);
 436		if (scsi_target_is_busy(scsi_target(sdev))) {
 437			list_move_tail(&sdev->starved_entry,
 438				       &shost->starved_list);
 439			continue;
 440		}
 441
 442		spin_unlock(shost->host_lock);
 443		spin_lock(sdev->request_queue->queue_lock);
 444		__blk_run_queue(sdev->request_queue);
 445		spin_unlock(sdev->request_queue->queue_lock);
 446		spin_lock(shost->host_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447	}
 448	/* put any unprocessed entries back */
 449	list_splice(&starved_list, &shost->starved_list);
 450	spin_unlock_irqrestore(shost->host_lock, flags);
 451
 452	blk_run_queue(q);
 453}
 454
 455void scsi_requeue_run_queue(struct work_struct *work)
 456{
 457	struct scsi_device *sdev;
 458	struct request_queue *q;
 459
 460	sdev = container_of(work, struct scsi_device, requeue_work);
 461	q = sdev->request_queue;
 462	scsi_run_queue(q);
 463}
 464
 465/*
 466 * Function:	scsi_requeue_command()
 467 *
 468 * Purpose:	Handle post-processing of completed commands.
 469 *
 470 * Arguments:	q	- queue to operate on
 471 *		cmd	- command that may need to be requeued.
 472 *
 473 * Returns:	Nothing
 474 *
 475 * Notes:	After command completion, there may be blocks left
 476 *		over which weren't finished by the previous command
 477 *		this can be for a number of reasons - the main one is
 478 *		I/O errors in the middle of the request, in which case
 479 *		we need to request the blocks that come after the bad
 480 *		sector.
 481 * Notes:	Upon return, cmd is a stale pointer.
 482 */
 483static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
 484{
 485	struct request *req = cmd->request;
 486	unsigned long flags;
 487
 488	spin_lock_irqsave(q->queue_lock, flags);
 489	scsi_unprep_request(req);
 490	blk_requeue_request(q, req);
 491	spin_unlock_irqrestore(q->queue_lock, flags);
 492
 493	scsi_run_queue(q);
 
 494}
 495
 496void scsi_next_command(struct scsi_cmnd *cmd)
 497{
 498	struct scsi_device *sdev = cmd->device;
 499	struct request_queue *q = sdev->request_queue;
 500
 501	/* need to hold a reference on the device before we let go of the cmd */
 502	get_device(&sdev->sdev_gendev);
 503
 504	scsi_put_command(cmd);
 
 505	scsi_run_queue(q);
 506
 507	/* ok to remove device now */
 508	put_device(&sdev->sdev_gendev);
 509}
 510
 511void scsi_run_host_queues(struct Scsi_Host *shost)
 512{
 513	struct scsi_device *sdev;
 514
 515	shost_for_each_device(sdev, shost)
 516		scsi_run_queue(sdev->request_queue);
 517}
 518
 519static void __scsi_release_buffers(struct scsi_cmnd *, int);
 520
 521/*
 522 * Function:    scsi_end_request()
 523 *
 524 * Purpose:     Post-processing of completed commands (usually invoked at end
 525 *		of upper level post-processing and scsi_io_completion).
 526 *
 527 * Arguments:   cmd	 - command that is complete.
 528 *              error    - 0 if I/O indicates success, < 0 for I/O error.
 529 *              bytes    - number of bytes of completed I/O
 530 *		requeue  - indicates whether we should requeue leftovers.
 531 *
 532 * Lock status: Assumed that lock is not held upon entry.
 533 *
 534 * Returns:     cmd if requeue required, NULL otherwise.
 535 *
 536 * Notes:       This is called for block device requests in order to
 537 *              mark some number of sectors as complete.
 538 * 
 539 *		We are guaranteeing that the request queue will be goosed
 540 *		at some point during this call.
 541 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
 542 */
 543static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
 544					  int bytes, int requeue)
 545{
 546	struct request_queue *q = cmd->device->request_queue;
 547	struct request *req = cmd->request;
 548
 549	/*
 550	 * If there are blocks left over at the end, set up the command
 551	 * to queue the remainder of them.
 552	 */
 553	if (blk_end_request(req, error, bytes)) {
 554		/* kill remainder if no retrys */
 555		if (error && scsi_noretry_cmd(cmd))
 556			blk_end_request_all(req, error);
 557		else {
 558			if (requeue) {
 559				/*
 560				 * Bleah.  Leftovers again.  Stick the
 561				 * leftovers in the front of the
 562				 * queue, and goose the queue again.
 563				 */
 564				scsi_release_buffers(cmd);
 565				scsi_requeue_command(q, cmd);
 566				cmd = NULL;
 567			}
 568			return cmd;
 569		}
 570	}
 571
 572	/*
 573	 * This will goose the queue request function at the end, so we don't
 574	 * need to worry about launching another command.
 575	 */
 576	__scsi_release_buffers(cmd, 0);
 577	scsi_next_command(cmd);
 578	return NULL;
 579}
 580
 581static inline unsigned int scsi_sgtable_index(unsigned short nents)
 582{
 583	unsigned int index;
 584
 585	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
 586
 587	if (nents <= 8)
 588		index = 0;
 589	else
 590		index = get_count_order(nents) - 3;
 591
 592	return index;
 593}
 
 594
 595static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
 596{
 597	struct scsi_host_sg_pool *sgp;
 598
 599	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 600	mempool_free(sgl, sgp->pool);
 601}
 602
 603static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
 604{
 605	struct scsi_host_sg_pool *sgp;
 
 
 
 
 
 
 
 
 
 
 
 
 606
 607	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 608	return mempool_alloc(sgp->pool, gfp_mask);
 
 
 
 
 
 
 
 
 
 609}
 610
 611static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
 612			      gfp_t gfp_mask)
 
 613{
 614	int ret;
 
 
 615
 616	BUG_ON(!nents);
 
 617
 618	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
 619			       gfp_mask, scsi_sg_alloc);
 620	if (unlikely(ret))
 621		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
 622				scsi_sg_free);
 623
 624	return ret;
 625}
 
 
 626
 627static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
 628{
 629	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
 630}
 
 
 
 631
 632static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
 633{
 
 
 
 
 
 
 634
 635	if (cmd->sdb.table.nents)
 636		scsi_free_sgtable(&cmd->sdb);
 
 
 
 637
 638	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 639
 640	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
 641		struct scsi_data_buffer *bidi_sdb =
 642			cmd->request->next_rq->special;
 643		scsi_free_sgtable(bidi_sdb);
 644		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
 645		cmd->request->next_rq->special = NULL;
 646	}
 647
 648	if (scsi_prot_sg_count(cmd))
 649		scsi_free_sgtable(cmd->prot_sdb);
 650}
 651
 652/*
 653 * Function:    scsi_release_buffers()
 654 *
 655 * Purpose:     Completion processing for block device I/O requests.
 656 *
 657 * Arguments:   cmd	- command that we are bailing.
 658 *
 659 * Lock status: Assumed that no lock is held upon entry.
 660 *
 661 * Returns:     Nothing
 662 *
 663 * Notes:       In the event that an upper level driver rejects a
 664 *		command, we must release resources allocated during
 665 *		the __init_io() function.  Primarily this would involve
 666 *		the scatter-gather table, and potentially any bounce
 667 *		buffers.
 668 */
 669void scsi_release_buffers(struct scsi_cmnd *cmd)
 670{
 671	__scsi_release_buffers(cmd, 1);
 672}
 673EXPORT_SYMBOL(scsi_release_buffers);
 674
 675static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
 676{
 677	int error = 0;
 
 
 
 
 
 
 
 
 
 
 
 678
 679	switch(host_byte(result)) {
 
 
 
 
 680	case DID_TRANSPORT_FAILFAST:
 681		error = -ENOLINK;
 682		break;
 683	case DID_TARGET_FAILURE:
 684		cmd->result |= (DID_OK << 16);
 685		error = -EREMOTEIO;
 686		break;
 687	case DID_NEXUS_FAILURE:
 688		cmd->result |= (DID_OK << 16);
 689		error = -EBADE;
 690		break;
 691	default:
 692		error = -EIO;
 693		break;
 694	}
 695
 696	return error;
 697}
 698
 699/*
 700 * Function:    scsi_io_completion()
 701 *
 702 * Purpose:     Completion processing for block device I/O requests.
 703 *
 704 * Arguments:   cmd   - command that is finished.
 705 *
 706 * Lock status: Assumed that no lock is held upon entry.
 707 *
 708 * Returns:     Nothing
 709 *
 710 * Notes:       This function is matched in terms of capabilities to
 711 *              the function that created the scatter-gather list.
 712 *              In other words, if there are no bounce buffers
 713 *              (the normal case for most drivers), we don't need
 714 *              the logic to deal with cleaning up afterwards.
 715 *
 716 *		We must call scsi_end_request().  This will finish off
 717 *		the specified number of sectors.  If we are done, the
 718 *		command block will be released and the queue function
 719 *		will be goosed.  If we are not done then we have to
 720 *		figure out what to do next:
 721 *
 722 *		a) We can call scsi_requeue_command().  The request
 723 *		   will be unprepared and put back on the queue.  Then
 724 *		   a new command will be created for it.  This should
 725 *		   be used if we made forward progress, or if we want
 726 *		   to switch from READ(10) to READ(6) for example.
 727 *
 728 *		b) We can call scsi_queue_insert().  The request will
 729 *		   be put back on the queue and retried using the same
 730 *		   command as before, possibly after a delay.
 
 
 731 *
 732 *		c) We can call blk_end_request() with -EIO to fail
 733 *		   the remainder of the request.
 734 */
 735void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 736{
 737	int result = cmd->result;
 738	struct request_queue *q = cmd->device->request_queue;
 739	struct request *req = cmd->request;
 740	int error = 0;
 741	struct scsi_sense_hdr sshdr;
 742	int sense_valid = 0;
 743	int sense_deferred = 0;
 744	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 745	      ACTION_DELAYED_RETRY} action;
 746	char *description = NULL;
 747
 748	if (result) {
 749		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 750		if (sense_valid)
 751			sense_deferred = scsi_sense_is_deferred(&sshdr);
 752	}
 753
 754	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
 755		req->errors = result;
 756		if (result) {
 757			if (sense_valid && req->sense) {
 758				/*
 759				 * SG_IO wants current and deferred errors
 760				 */
 761				int len = 8 + cmd->sense_buffer[7];
 762
 763				if (len > SCSI_SENSE_BUFFERSIZE)
 764					len = SCSI_SENSE_BUFFERSIZE;
 765				memcpy(req->sense, cmd->sense_buffer,  len);
 766				req->sense_len = len;
 767			}
 768			if (!sense_deferred)
 769				error = __scsi_error_from_host_byte(cmd, result);
 770		}
 771
 772		req->resid_len = scsi_get_resid(cmd);
 773
 774		if (scsi_bidi_cmnd(cmd)) {
 775			/*
 776			 * Bidi commands Must be complete as a whole,
 777			 * both sides at once.
 778			 */
 779			req->next_rq->resid_len = scsi_in(cmd)->resid;
 780
 781			scsi_release_buffers(cmd);
 782			blk_end_request_all(req, 0);
 783
 784			scsi_next_command(cmd);
 785			return;
 786		}
 
 
 
 
 
 787	}
 788
 789	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
 790	BUG_ON(blk_bidi_rq(req));
 
 
 791
 792	/*
 793	 * Next deal with any sectors which we were able to correctly
 794	 * handle.
 795	 */
 796	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
 797				      "%d bytes done.\n",
 798				      blk_rq_sectors(req), good_bytes));
 799
 800	/*
 801	 * Recovered errors need reporting, but they're always treated
 802	 * as success, so fiddle the result code here.  For BLOCK_PC
 803	 * we already took a copy of the original into rq->errors which
 804	 * is what gets returned to the user
 805	 */
 806	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 807		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
 808		 * print since caller wants ATA registers. Only occurs on
 809		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
 810		 */
 811		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 812			;
 813		else if (!(req->cmd_flags & REQ_QUIET))
 814			scsi_print_sense("", cmd);
 815		result = 0;
 816		/* BLOCK_PC may have set error */
 817		error = 0;
 818	}
 
 
 819
 820	/*
 821	 * A number of bytes were successfully read.  If there
 822	 * are leftovers and there is some kind of error
 823	 * (result != 0), retry the rest.
 824	 */
 825	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
 826		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 827
 828	error = __scsi_error_from_host_byte(cmd, result);
 829
 830	if (host_byte(result) == DID_RESET) {
 831		/* Third party bus reset or reset for error recovery
 832		 * reasons.  Just retry the command and see what
 833		 * happens.
 834		 */
 835		action = ACTION_RETRY;
 836	} else if (sense_valid && !sense_deferred) {
 837		switch (sshdr.sense_key) {
 838		case UNIT_ATTENTION:
 839			if (cmd->device->removable) {
 840				/* Detected disc change.  Set a bit
 841				 * and quietly refuse further access.
 842				 */
 843				cmd->device->changed = 1;
 844				description = "Media Changed";
 845				action = ACTION_FAIL;
 846			} else {
 847				/* Must have been a power glitch, or a
 848				 * bus reset.  Could not have been a
 849				 * media change, so we just retry the
 850				 * command and see what happens.
 851				 */
 852				action = ACTION_RETRY;
 853			}
 854			break;
 855		case ILLEGAL_REQUEST:
 856			/* If we had an ILLEGAL REQUEST returned, then
 857			 * we may have performed an unsupported
 858			 * command.  The only thing this should be
 859			 * would be a ten byte read where only a six
 860			 * byte read was supported.  Also, on a system
 861			 * where READ CAPACITY failed, we may have
 862			 * read past the end of the disk.
 863			 */
 864			if ((cmd->device->use_10_for_rw &&
 865			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 866			    (cmd->cmnd[0] == READ_10 ||
 867			     cmd->cmnd[0] == WRITE_10)) {
 868				/* This will issue a new 6-byte command. */
 869				cmd->device->use_10_for_rw = 0;
 870				action = ACTION_REPREP;
 871			} else if (sshdr.asc == 0x10) /* DIX */ {
 872				description = "Host Data Integrity Failure";
 873				action = ACTION_FAIL;
 874				error = -EILSEQ;
 875			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 876			} else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
 877				   (cmd->cmnd[0] == UNMAP ||
 878				    cmd->cmnd[0] == WRITE_SAME_16 ||
 879				    cmd->cmnd[0] == WRITE_SAME)) {
 880				description = "Discard failure";
 881				action = ACTION_FAIL;
 
 882			} else
 883				action = ACTION_FAIL;
 884			break;
 885		case ABORTED_COMMAND:
 886			action = ACTION_FAIL;
 887			if (sshdr.asc == 0x10) { /* DIF */
 888				description = "Target Data Integrity Failure";
 889				error = -EILSEQ;
 890			}
 891			break;
 892		case NOT_READY:
 893			/* If the device is in the process of becoming
 894			 * ready, or has a temporary blockage, retry.
 895			 */
 896			if (sshdr.asc == 0x04) {
 897				switch (sshdr.ascq) {
 898				case 0x01: /* becoming ready */
 899				case 0x04: /* format in progress */
 900				case 0x05: /* rebuild in progress */
 901				case 0x06: /* recalculation in progress */
 902				case 0x07: /* operation in progress */
 903				case 0x08: /* Long write in progress */
 904				case 0x09: /* self test in progress */
 
 905				case 0x14: /* space allocation in progress */
 
 
 
 
 
 906					action = ACTION_DELAYED_RETRY;
 907					break;
 
 
 
 908				default:
 909					description = "Device not ready";
 910					action = ACTION_FAIL;
 911					break;
 912				}
 913			} else {
 914				description = "Device not ready";
 915				action = ACTION_FAIL;
 916			}
 917			break;
 918		case VOLUME_OVERFLOW:
 919			/* See SSC3rXX or current. */
 920			action = ACTION_FAIL;
 921			break;
 
 
 
 
 
 
 
 
 
 
 
 922		default:
 923			description = "Unhandled sense code";
 924			action = ACTION_FAIL;
 925			break;
 926		}
 927	} else {
 928		description = "Unhandled error code";
 
 
 929		action = ACTION_FAIL;
 930	}
 931
 932	switch (action) {
 933	case ACTION_FAIL:
 934		/* Give up and fail the remainder of the request */
 935		scsi_release_buffers(cmd);
 936		if (!(req->cmd_flags & REQ_QUIET)) {
 937			if (description)
 938				scmd_printk(KERN_INFO, cmd, "%s\n",
 939					    description);
 940			scsi_print_result(cmd);
 941			if (driver_byte(result) & DRIVER_SENSE)
 942				scsi_print_sense("", cmd);
 943			scsi_print_command(cmd);
 
 
 
 
 
 
 
 
 
 
 
 944		}
 945		if (blk_end_request_err(req, error))
 946			scsi_requeue_command(q, cmd);
 947		else
 948			scsi_next_command(cmd);
 949		break;
 950	case ACTION_REPREP:
 951		/* Unprep the request and put it back at the head of the queue.
 952		 * A new command will be prepared and issued.
 953		 */
 954		scsi_release_buffers(cmd);
 955		scsi_requeue_command(q, cmd);
 956		break;
 957	case ACTION_RETRY:
 958		/* Retry the same command immediately */
 959		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
 960		break;
 961	case ACTION_DELAYED_RETRY:
 962		/* Retry the same command after a delay */
 963		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
 964		break;
 965	}
 966}
 967
 968static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
 969			     gfp_t gfp_mask)
 
 
 
 
 
 970{
 971	int count;
 
 
 
 972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 973	/*
 974	 * If sg table allocation fails, requeue request later.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 975	 */
 976	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
 977					gfp_mask))) {
 978		return BLKPREP_DEFER;
 979	}
 980
 981	req->buffer = NULL;
 
 
 
 
 
 
 982
 983	/* 
 984	 * Next, walk the list, and fill in the addresses and sizes of
 985	 * each segment.
 986	 */
 987	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
 988	BUG_ON(count > sdb->table.nents);
 989	sdb->table.nents = count;
 990	sdb->length = blk_rq_bytes(req);
 991	return BLKPREP_OK;
 992}
 993
 994/*
 995 * Function:    scsi_init_io()
 996 *
 997 * Purpose:     SCSI I/O initialize function.
 
 
 
 
 
 
 
 998 *
 999 * Arguments:   cmd   - Command descriptor we wish to initialize
 
1000 *
1001 * Returns:     0 on success
1002 *		BLKPREP_DEFER if the failure is retryable
1003 *		BLKPREP_KILL if the failure is fatal
 
1004 */
1005int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1006{
1007	struct request *rq = cmd->request;
 
 
 
 
 
 
1008
1009	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1010	if (error)
1011		goto err_exit;
1012
1013	if (blk_bidi_rq(rq)) {
1014		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1015			scsi_sdb_cache, GFP_ATOMIC);
1016		if (!bidi_sdb) {
1017			error = BLKPREP_DEFER;
1018			goto err_exit;
1019		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1020
1021		rq->next_rq->special = bidi_sdb;
1022		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1023		if (error)
1024			goto err_exit;
1025	}
1026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1027	if (blk_integrity_rq(rq)) {
1028		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1029		int ivecs, count;
 
 
 
 
 
 
 
 
 
 
1030
1031		BUG_ON(prot_sdb == NULL);
1032		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1033
1034		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1035			error = BLKPREP_DEFER;
1036			goto err_exit;
 
 
1037		}
1038
1039		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1040						prot_sdb->table.sgl);
1041		BUG_ON(unlikely(count > ivecs));
1042		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1043
1044		cmd->prot_sdb = prot_sdb;
1045		cmd->prot_sdb->table.nents = count;
1046	}
1047
1048	return BLKPREP_OK ;
1049
1050err_exit:
1051	scsi_release_buffers(cmd);
1052	cmd->request->special = NULL;
1053	scsi_put_command(cmd);
1054	return error;
1055}
1056EXPORT_SYMBOL(scsi_init_io);
1057
1058static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1059		struct request *req)
 
 
 
 
 
 
 
1060{
1061	struct scsi_cmnd *cmd;
1062
1063	if (!req->special) {
1064		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1065		if (unlikely(!cmd))
1066			return NULL;
1067		req->special = cmd;
1068	} else {
1069		cmd = req->special;
1070	}
1071
1072	/* pull a tag out of the request if we have one */
1073	cmd->tag = req->tag;
1074	cmd->request = req;
 
1075
1076	cmd->cmnd = req->cmd;
1077	cmd->prot_op = SCSI_PROT_NORMAL;
 
 
 
 
1078
1079	return cmd;
 
 
 
 
 
 
 
 
 
1080}
1081
1082int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
 
1083{
1084	struct scsi_cmnd *cmd;
1085	int ret = scsi_prep_state_check(sdev, req);
1086
1087	if (ret != BLKPREP_OK)
1088		return ret;
 
 
 
 
 
 
 
1089
1090	cmd = scsi_get_cmd_from_req(sdev, req);
1091	if (unlikely(!cmd))
1092		return BLKPREP_DEFER;
 
1093
1094	/*
1095	 * BLOCK_PC requests may transfer data, in which case they must
1096	 * a bio attached to them.  Or they might contain a SCSI command
1097	 * that does not transfer data, in which case they may optionally
1098	 * submit a request without an attached bio.
1099	 */
1100	if (req->bio) {
1101		int ret;
1102
1103		BUG_ON(!req->nr_phys_segments);
1104
1105		ret = scsi_init_io(cmd, GFP_ATOMIC);
1106		if (unlikely(ret))
1107			return ret;
1108	} else {
1109		BUG_ON(blk_rq_bytes(req));
1110
1111		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1112		req->buffer = NULL;
1113	}
1114
1115	cmd->cmd_len = req->cmd_len;
1116	if (!blk_rq_bytes(req))
1117		cmd->sc_data_direction = DMA_NONE;
1118	else if (rq_data_dir(req) == WRITE)
1119		cmd->sc_data_direction = DMA_TO_DEVICE;
1120	else
1121		cmd->sc_data_direction = DMA_FROM_DEVICE;
1122	
1123	cmd->transfersize = blk_rq_bytes(req);
1124	cmd->allowed = req->retries;
1125	return BLKPREP_OK;
1126}
1127EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1128
1129/*
1130 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1131 * from filesystems that still need to be translated to SCSI CDBs from
1132 * the ULD.
1133 */
1134int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1135{
1136	struct scsi_cmnd *cmd;
1137	int ret = scsi_prep_state_check(sdev, req);
1138
1139	if (ret != BLKPREP_OK)
1140		return ret;
1141
1142	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1143			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1144		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1145		if (ret != BLKPREP_OK)
1146			return ret;
1147	}
1148
1149	/*
1150	 * Filesystem requests must transfer data.
1151	 */
1152	BUG_ON(!req->nr_phys_segments);
1153
1154	cmd = scsi_get_cmd_from_req(sdev, req);
1155	if (unlikely(!cmd))
1156		return BLKPREP_DEFER;
1157
1158	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1159	return scsi_init_io(cmd, GFP_ATOMIC);
1160}
1161EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1162
1163int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1164{
1165	int ret = BLKPREP_OK;
1166
1167	/*
1168	 * If the device is not in running state we will reject some
1169	 * or all commands.
1170	 */
1171	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1172		switch (sdev->sdev_state) {
1173		case SDEV_OFFLINE:
1174			/*
1175			 * If the device is offline we refuse to process any
1176			 * commands.  The device must be brought online
1177			 * before trying any recovery commands.
1178			 */
1179			sdev_printk(KERN_ERR, sdev,
1180				    "rejecting I/O to offline device\n");
1181			ret = BLKPREP_KILL;
1182			break;
1183		case SDEV_DEL:
1184			/*
1185			 * If the device is fully deleted, we refuse to
1186			 * process any commands as well.
1187			 */
1188			sdev_printk(KERN_ERR, sdev,
1189				    "rejecting I/O to dead device\n");
1190			ret = BLKPREP_KILL;
1191			break;
1192		case SDEV_QUIESCE:
1193		case SDEV_BLOCK:
1194		case SDEV_CREATED_BLOCK:
1195			/*
1196			 * If the devices is blocked we defer normal commands.
1197			 */
1198			if (!(req->cmd_flags & REQ_PREEMPT))
1199				ret = BLKPREP_DEFER;
1200			break;
1201		default:
1202			/*
1203			 * For any other not fully online state we only allow
1204			 * special commands.  In particular any user initiated
1205			 * command is not allowed.
1206			 */
1207			if (!(req->cmd_flags & REQ_PREEMPT))
1208				ret = BLKPREP_KILL;
1209			break;
1210		}
1211	}
1212	return ret;
1213}
1214EXPORT_SYMBOL(scsi_prep_state_check);
1215
1216int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1217{
1218	struct scsi_device *sdev = q->queuedata;
1219
1220	switch (ret) {
1221	case BLKPREP_KILL:
1222		req->errors = DID_NO_CONNECT << 16;
1223		/* release the command and kill it */
1224		if (req->special) {
1225			struct scsi_cmnd *cmd = req->special;
1226			scsi_release_buffers(cmd);
1227			scsi_put_command(cmd);
1228			req->special = NULL;
1229		}
1230		break;
1231	case BLKPREP_DEFER:
1232		/*
1233		 * If we defer, the blk_peek_request() returns NULL, but the
1234		 * queue must be restarted, so we schedule a callback to happen
1235		 * shortly.
1236		 */
1237		if (sdev->device_busy == 0)
1238			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1239		break;
 
 
 
 
 
 
 
 
 
 
 
1240	default:
1241		req->cmd_flags |= REQ_DONTPREP;
 
 
 
 
 
 
1242	}
1243
1244	return ret;
1245}
1246EXPORT_SYMBOL(scsi_prep_return);
1247
1248int scsi_prep_fn(struct request_queue *q, struct request *req)
1249{
1250	struct scsi_device *sdev = q->queuedata;
1251	int ret = BLKPREP_KILL;
1252
1253	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1254		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1255	return scsi_prep_return(q, req, ret);
1256}
1257EXPORT_SYMBOL(scsi_prep_fn);
1258
1259/*
1260 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1261 * return 0.
1262 *
1263 * Called with the queue_lock held.
1264 */
1265static inline int scsi_dev_queue_ready(struct request_queue *q,
1266				  struct scsi_device *sdev)
1267{
1268	if (sdev->device_busy == 0 && sdev->device_blocked) {
1269		/*
1270		 * unblock after device_blocked iterates to zero
1271		 */
1272		if (--sdev->device_blocked == 0) {
1273			SCSI_LOG_MLQUEUE(3,
1274				   sdev_printk(KERN_INFO, sdev,
1275				   "unblocking device at zero depth\n"));
1276		} else {
1277			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1278			return 0;
1279		}
 
 
 
 
 
1280	}
1281	if (scsi_device_is_busy(sdev))
1282		return 0;
1283
1284	return 1;
1285}
1286
 
 
1287
1288/*
1289 * scsi_target_queue_ready: checks if there we can send commands to target
1290 * @sdev: scsi device on starget to check.
1291 *
1292 * Called with the host lock held.
1293 */
1294static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1295					   struct scsi_device *sdev)
1296{
1297	struct scsi_target *starget = scsi_target(sdev);
 
1298
1299	if (starget->single_lun) {
 
1300		if (starget->starget_sdev_user &&
1301		    starget->starget_sdev_user != sdev)
 
1302			return 0;
 
1303		starget->starget_sdev_user = sdev;
 
1304	}
1305
1306	if (starget->target_busy == 0 && starget->target_blocked) {
 
 
 
 
 
 
 
1307		/*
1308		 * unblock after target_blocked iterates to zero
1309		 */
1310		if (--starget->target_blocked == 0) {
1311			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1312					 "unblocking target at zero depth\n"));
1313		} else
1314			return 0;
1315	}
1316
1317	if (scsi_target_is_busy(starget)) {
1318		if (list_empty(&sdev->starved_entry))
1319			list_add_tail(&sdev->starved_entry,
1320				      &shost->starved_list);
1321		return 0;
1322	}
1323
1324	/* We're OK to process the command, so we can't be starved */
1325	if (!list_empty(&sdev->starved_entry))
1326		list_del_init(&sdev->starved_entry);
1327	return 1;
 
 
 
 
 
 
 
 
 
1328}
1329
1330/*
1331 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1332 * return 0. We must end up running the queue again whenever 0 is
1333 * returned, else IO can hang.
1334 *
1335 * Called with host_lock held.
1336 */
1337static inline int scsi_host_queue_ready(struct request_queue *q,
1338				   struct Scsi_Host *shost,
1339				   struct scsi_device *sdev)
 
1340{
1341	if (scsi_host_in_recovery(shost))
1342		return 0;
1343	if (shost->host_busy == 0 && shost->host_blocked) {
 
1344		/*
1345		 * unblock after host_blocked iterates to zero
1346		 */
1347		if (--shost->host_blocked == 0) {
1348			SCSI_LOG_MLQUEUE(3,
1349				printk("scsi%d unblocking host at zero depth\n",
1350					shost->host_no));
1351		} else {
1352			return 0;
1353		}
1354	}
1355	if (scsi_host_is_busy(shost)) {
1356		if (list_empty(&sdev->starved_entry))
1357			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1358		return 0;
1359	}
1360
 
 
 
1361	/* We're OK to process the command, so we can't be starved */
1362	if (!list_empty(&sdev->starved_entry))
1363		list_del_init(&sdev->starved_entry);
 
 
 
 
 
 
1364
1365	return 1;
 
 
 
 
 
 
 
 
 
1366}
1367
1368/*
1369 * Busy state exporting function for request stacking drivers.
1370 *
1371 * For efficiency, no lock is taken to check the busy state of
1372 * shost/starget/sdev, since the returned value is not guaranteed and
1373 * may be changed after request stacking drivers call the function,
1374 * regardless of taking lock or not.
1375 *
1376 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1377 * (e.g. !sdev), scsi needs to return 'not busy'.
1378 * Otherwise, request stacking drivers may hold requests forever.
1379 */
1380static int scsi_lld_busy(struct request_queue *q)
1381{
1382	struct scsi_device *sdev = q->queuedata;
1383	struct Scsi_Host *shost;
1384	struct scsi_target *starget;
1385
1386	if (!sdev)
1387		return 0;
1388
1389	shost = sdev->host;
1390	starget = scsi_target(sdev);
1391
1392	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1393	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1394		return 1;
 
 
 
 
 
1395
1396	return 0;
1397}
1398
1399/*
1400 * Kill a request for a dead device
 
1401 */
1402static void scsi_kill_request(struct request *req, struct request_queue *q)
1403{
1404	struct scsi_cmnd *cmd = req->special;
1405	struct scsi_device *sdev;
1406	struct scsi_target *starget;
1407	struct Scsi_Host *shost;
1408
1409	blk_start_request(req);
1410
1411	sdev = cmd->device;
1412	starget = scsi_target(sdev);
1413	shost = sdev->host;
1414	scsi_init_cmd_errh(cmd);
1415	cmd->result = DID_NO_CONNECT << 16;
1416	atomic_inc(&cmd->device->iorequest_cnt);
1417
1418	/*
1419	 * SCSI request completion path will do scsi_device_unbusy(),
1420	 * bump busy counts.  To bump the counters, we need to dance
1421	 * with the locks as normal issue path does.
1422	 */
1423	sdev->device_busy++;
1424	spin_unlock(sdev->request_queue->queue_lock);
1425	spin_lock(shost->host_lock);
1426	shost->host_busy++;
1427	starget->target_busy++;
1428	spin_unlock(shost->host_lock);
1429	spin_lock(sdev->request_queue->queue_lock);
1430
1431	blk_complete_request(req);
1432}
1433
1434static void scsi_softirq_done(struct request *rq)
1435{
1436	struct scsi_cmnd *cmd = rq->special;
1437	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1438	int disposition;
1439
1440	INIT_LIST_HEAD(&cmd->eh_entry);
1441
1442	atomic_inc(&cmd->device->iodone_cnt);
1443	if (cmd->result)
1444		atomic_inc(&cmd->device->ioerr_cnt);
1445
1446	disposition = scsi_decide_disposition(cmd);
1447	if (disposition != SUCCESS &&
1448	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1449		sdev_printk(KERN_ERR, cmd->device,
1450			    "timing out command, waited %lus\n",
1451			    wait_for/HZ);
1452		disposition = SUCCESS;
1453	}
1454			
1455	scsi_log_completion(cmd, disposition);
1456
1457	switch (disposition) {
1458		case SUCCESS:
1459			scsi_finish_command(cmd);
1460			break;
1461		case NEEDS_RETRY:
1462			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1463			break;
1464		case ADD_TO_MLQUEUE:
1465			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1466			break;
1467		default:
1468			if (!scsi_eh_scmd_add(cmd, 0))
1469				scsi_finish_command(cmd);
1470	}
1471}
1472
1473/*
1474 * Function:    scsi_request_fn()
1475 *
1476 * Purpose:     Main strategy routine for SCSI.
1477 *
1478 * Arguments:   q       - Pointer to actual queue.
1479 *
1480 * Returns:     Nothing
1481 *
1482 * Lock status: IO request lock assumed to be held when called.
 
1483 */
1484static void scsi_request_fn(struct request_queue *q)
1485{
1486	struct scsi_device *sdev = q->queuedata;
1487	struct Scsi_Host *shost;
1488	struct scsi_cmnd *cmd;
1489	struct request *req;
1490
1491	if (!sdev) {
1492		printk("scsi: killing requests for dead queue\n");
1493		while ((req = blk_peek_request(q)) != NULL)
1494			scsi_kill_request(req, q);
1495		return;
 
 
 
 
1496	}
1497
1498	if(!get_device(&sdev->sdev_gendev))
1499		/* We must be tearing the block queue down already */
1500		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1501
1502	/*
1503	 * To start with, we keep looping until the queue is empty, or until
1504	 * the host is no longer able to accept any more requests.
1505	 */
1506	shost = sdev->host;
1507	for (;;) {
1508		int rtn;
1509		/*
1510		 * get next queueable request.  We do this early to make sure
1511		 * that the request is fully prepared even if we cannot 
1512		 * accept it.
1513		 */
1514		req = blk_peek_request(q);
1515		if (!req || !scsi_dev_queue_ready(q, sdev))
1516			break;
1517
1518		if (unlikely(!scsi_device_online(sdev))) {
1519			sdev_printk(KERN_ERR, sdev,
1520				    "rejecting I/O to offline device\n");
1521			scsi_kill_request(req, q);
1522			continue;
1523		}
1524
 
1525
1526		/*
1527		 * Remove the request from the request list.
1528		 */
1529		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1530			blk_start_request(req);
1531		sdev->device_busy++;
1532
1533		spin_unlock(q->queue_lock);
1534		cmd = req->special;
1535		if (unlikely(cmd == NULL)) {
1536			printk(KERN_CRIT "impossible request in %s.\n"
1537					 "please mail a stack trace to "
1538					 "linux-scsi@vger.kernel.org\n",
1539					 __func__);
1540			blk_dump_rq_flags(req, "foo");
1541			BUG();
1542		}
1543		spin_lock(shost->host_lock);
1544
1545		/*
1546		 * We hit this when the driver is using a host wide
1547		 * tag map. For device level tag maps the queue_depth check
1548		 * in the device ready fn would prevent us from trying
1549		 * to allocate a tag. Since the map is a shared host resource
1550		 * we add the dev to the starved list so it eventually gets
1551		 * a run when a tag is freed.
1552		 */
1553		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1554			if (list_empty(&sdev->starved_entry))
1555				list_add_tail(&sdev->starved_entry,
1556					      &shost->starved_list);
1557			goto not_ready;
1558		}
1559
1560		if (!scsi_target_queue_ready(shost, sdev))
1561			goto not_ready;
 
 
 
1562
1563		if (!scsi_host_queue_ready(q, shost, sdev))
1564			goto not_ready;
 
 
 
 
1565
1566		scsi_target(sdev)->target_busy++;
1567		shost->host_busy++;
 
 
 
 
 
1568
1569		/*
1570		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1571		 *		take the lock again.
1572		 */
1573		spin_unlock_irq(shost->host_lock);
1574
1575		/*
1576		 * Finally, initialize any error handling parameters, and set up
1577		 * the timers for timeouts.
1578		 */
1579		scsi_init_cmd_errh(cmd);
 
 
 
 
 
 
 
 
1580
1581		/*
1582		 * Dispatch the command to the low-level driver.
1583		 */
1584		rtn = scsi_dispatch_cmd(cmd);
1585		spin_lock_irq(q->queue_lock);
1586		if (rtn)
1587			goto out_delay;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1588	}
1589
1590	goto out;
 
 
 
 
 
1591
1592 not_ready:
1593	spin_unlock_irq(shost->host_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1594
1595	/*
1596	 * lock q, handle tag, requeue req, and decrement device_busy. We
1597	 * must return with queue_lock held.
1598	 *
1599	 * Decrementing device_busy without checking it is OK, as all such
1600	 * cases (host limits or settings) should run the queue at some
1601	 * later time.
 
 
 
 
 
 
 
1602	 */
1603	spin_lock_irq(q->queue_lock);
1604	blk_requeue_request(q, req);
1605	sdev->device_busy--;
1606out_delay:
1607	if (sdev->device_busy == 0)
1608		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1609out:
1610	/* must be careful here...if we trigger the ->remove() function
1611	 * we cannot be holding the q lock */
1612	spin_unlock_irq(q->queue_lock);
1613	put_device(&sdev->sdev_gendev);
1614	spin_lock_irq(q->queue_lock);
1615}
1616
1617u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1618{
1619	struct device *host_dev;
1620	u64 bounce_limit = 0xffffffff;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621
1622	if (shost->unchecked_isa_dma)
1623		return BLK_BOUNCE_ISA;
1624	/*
1625	 * Platforms with virtual-DMA translation
1626	 * hardware have no practical limit.
1627	 */
1628	if (!PCI_DMA_BUS_IS_PHYS)
1629		return BLK_BOUNCE_ANY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1630
1631	host_dev = scsi_get_device(shost);
1632	if (host_dev && host_dev->dma_mask)
1633		bounce_limit = *host_dev->dma_mask;
 
 
 
 
 
 
1634
1635	return bounce_limit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1636}
1637EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1638
1639struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1640					 request_fn_proc *request_fn)
1641{
1642	struct request_queue *q;
1643	struct device *dev = shost->shost_gendev.parent;
 
 
1644
1645	q = blk_init_queue(request_fn, NULL);
1646	if (!q)
1647		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1648
1649	/*
1650	 * this limit is imposed by hardware restrictions
1651	 */
1652	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1653					SCSI_MAX_SG_CHAIN_SEGMENTS));
1654
1655	if (scsi_host_prot_dma(shost)) {
1656		shost->sg_prot_tablesize =
1657			min_not_zero(shost->sg_prot_tablesize,
1658				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1659		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1660		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1661	}
1662
1663	blk_queue_max_hw_sectors(q, shost->max_sectors);
1664	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1665	blk_queue_segment_boundary(q, shost->dma_boundary);
1666	dma_set_seg_boundary(dev, shost->dma_boundary);
1667
1668	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1669
1670	if (!shost->use_clustering)
1671		q->limits.cluster = 0;
1672
1673	/*
1674	 * set a reasonable default alignment on word boundaries: the
1675	 * host and device may alter it using
1676	 * blk_queue_update_dma_alignment() later.
 
 
1677	 */
1678	blk_queue_dma_alignment(q, 0x03);
1679
1680	return q;
1681}
1682EXPORT_SYMBOL(__scsi_alloc_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1683
1684struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
 
1685{
1686	struct request_queue *q;
1687
1688	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1689	if (!q)
1690		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691
1692	blk_queue_prep_rq(q, scsi_prep_fn);
1693	blk_queue_softirq_done(q, scsi_softirq_done);
1694	blk_queue_rq_timed_out(q, scsi_times_out);
1695	blk_queue_lld_busy(q, scsi_lld_busy);
1696	return q;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1697}
1698
1699void scsi_free_queue(struct request_queue *q)
1700{
1701	blk_cleanup_queue(q);
 
 
 
 
1702}
1703
1704/*
1705 * Function:    scsi_block_requests()
1706 *
1707 * Purpose:     Utility function used by low-level drivers to prevent further
1708 *		commands from being queued to the device.
1709 *
1710 * Arguments:   shost       - Host in question
1711 *
1712 * Returns:     Nothing
1713 *
1714 * Lock status: No locks are assumed held.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715 *
1716 * Notes:       There is no timer nor any other means by which the requests
1717 *		get unblocked other than the low-level driver calling
1718 *		scsi_unblock_requests().
1719 */
1720void scsi_block_requests(struct Scsi_Host *shost)
1721{
1722	shost->host_self_blocked = 1;
1723}
1724EXPORT_SYMBOL(scsi_block_requests);
1725
1726/*
1727 * Function:    scsi_unblock_requests()
1728 *
1729 * Purpose:     Utility function used by low-level drivers to allow further
1730 *		commands from being queued to the device.
1731 *
1732 * Arguments:   shost       - Host in question
1733 *
1734 * Returns:     Nothing
1735 *
1736 * Lock status: No locks are assumed held.
1737 *
1738 * Notes:       There is no timer nor any other means by which the requests
1739 *		get unblocked other than the low-level driver calling
1740 *		scsi_unblock_requests().
1741 *
1742 *		This is done as an API function so that changes to the
1743 *		internals of the scsi mid-layer won't require wholesale
1744 *		changes to drivers that use this feature.
1745 */
1746void scsi_unblock_requests(struct Scsi_Host *shost)
1747{
1748	shost->host_self_blocked = 0;
1749	scsi_run_host_queues(shost);
1750}
1751EXPORT_SYMBOL(scsi_unblock_requests);
1752
1753int __init scsi_init_queue(void)
1754{
1755	int i;
1756
1757	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1758					   sizeof(struct scsi_data_buffer),
1759					   0, 0, NULL);
1760	if (!scsi_sdb_cache) {
1761		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1762		return -ENOMEM;
1763	}
1764
1765	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1766		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1767		int size = sgp->size * sizeof(struct scatterlist);
1768
1769		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1770				SLAB_HWCACHE_ALIGN, NULL);
1771		if (!sgp->slab) {
1772			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1773					sgp->name);
1774			goto cleanup_sdb;
1775		}
1776
1777		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1778						     sgp->slab);
1779		if (!sgp->pool) {
1780			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1781					sgp->name);
1782			goto cleanup_sdb;
1783		}
1784	}
1785
1786	return 0;
1787
1788cleanup_sdb:
1789	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1790		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1791		if (sgp->pool)
1792			mempool_destroy(sgp->pool);
1793		if (sgp->slab)
1794			kmem_cache_destroy(sgp->slab);
1795	}
1796	kmem_cache_destroy(scsi_sdb_cache);
1797
1798	return -ENOMEM;
1799}
1800
1801void scsi_exit_queue(void)
1802{
1803	int i;
1804
1805	kmem_cache_destroy(scsi_sdb_cache);
1806
1807	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1808		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1809		mempool_destroy(sgp->pool);
1810		kmem_cache_destroy(sgp->slab);
1811	}
1812}
1813
1814/**
1815 *	scsi_mode_select - issue a mode select
1816 *	@sdev:	SCSI device to be queried
1817 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1818 *	@sp:	Save page bit (0 == don't save, 1 == save)
1819 *	@modepage: mode page being requested
1820 *	@buffer: request buffer (may not be smaller than eight bytes)
1821 *	@len:	length of request buffer.
1822 *	@timeout: command timeout
1823 *	@retries: number of retries before failing
1824 *	@data: returns a structure abstracting the mode header data
1825 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1826 *		must be SCSI_SENSE_BUFFERSIZE big.
1827 *
1828 *	Returns zero if successful; negative error number or scsi
1829 *	status on error
1830 *
1831 */
1832int
1833scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1834		 unsigned char *buffer, int len, int timeout, int retries,
1835		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1836{
1837	unsigned char cmd[10];
1838	unsigned char *real_buffer;
 
 
 
1839	int ret;
1840
1841	memset(cmd, 0, sizeof(cmd));
1842	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1843
1844	if (sdev->use_10_for_ms) {
1845		if (len > 65535)
 
 
 
 
 
 
 
1846			return -EINVAL;
1847		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1848		if (!real_buffer)
1849			return -ENOMEM;
1850		memcpy(real_buffer + 8, buffer, len);
1851		len += 8;
1852		real_buffer[0] = 0;
1853		real_buffer[1] = 0;
1854		real_buffer[2] = data->medium_type;
1855		real_buffer[3] = data->device_specific;
1856		real_buffer[4] = data->longlba ? 0x01 : 0;
1857		real_buffer[5] = 0;
1858		real_buffer[6] = data->block_descriptor_length >> 8;
1859		real_buffer[7] = data->block_descriptor_length;
1860
1861		cmd[0] = MODE_SELECT_10;
1862		cmd[7] = len >> 8;
1863		cmd[8] = len;
1864	} else {
1865		if (len > 255 || data->block_descriptor_length > 255 ||
1866		    data->longlba)
1867			return -EINVAL;
1868
1869		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1870		if (!real_buffer)
1871			return -ENOMEM;
1872		memcpy(real_buffer + 4, buffer, len);
1873		len += 4;
1874		real_buffer[0] = 0;
1875		real_buffer[1] = data->medium_type;
1876		real_buffer[2] = data->device_specific;
1877		real_buffer[3] = data->block_descriptor_length;
1878		
1879
1880		cmd[0] = MODE_SELECT;
1881		cmd[4] = len;
1882	}
1883
1884	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1885			       sshdr, timeout, retries, NULL);
1886	kfree(real_buffer);
1887	return ret;
1888}
1889EXPORT_SYMBOL_GPL(scsi_mode_select);
1890
1891/**
1892 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1893 *	@sdev:	SCSI device to be queried
1894 *	@dbd:	set if mode sense will allow block descriptors to be returned
1895 *	@modepage: mode page being requested
 
1896 *	@buffer: request buffer (may not be smaller than eight bytes)
1897 *	@len:	length of request buffer.
1898 *	@timeout: command timeout
1899 *	@retries: number of retries before failing
1900 *	@data: returns a structure abstracting the mode header data
1901 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1902 *		must be SCSI_SENSE_BUFFERSIZE big.
1903 *
1904 *	Returns zero if unsuccessful, or the header offset (either 4
1905 *	or 8 depending on whether a six or ten byte command was
1906 *	issued) if successful.
1907 */
1908int
1909scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1910		  unsigned char *buffer, int len, int timeout, int retries,
1911		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1912{
1913	unsigned char cmd[12];
1914	int use_10_for_ms;
1915	int header_length;
1916	int result;
1917	struct scsi_sense_hdr my_sshdr;
 
 
 
 
1918
1919	memset(data, 0, sizeof(*data));
1920	memset(&cmd[0], 0, 12);
 
 
1921	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1922	cmd[2] = modepage;
 
1923
1924	/* caller might not be interested in sense, but we need it */
1925	if (!sshdr)
1926		sshdr = &my_sshdr;
1927
1928 retry:
1929	use_10_for_ms = sdev->use_10_for_ms;
1930
1931	if (use_10_for_ms) {
1932		if (len < 8)
1933			len = 8;
1934
1935		cmd[0] = MODE_SENSE_10;
1936		cmd[8] = len;
1937		header_length = 8;
1938	} else {
1939		if (len < 4)
1940			len = 4;
1941
1942		cmd[0] = MODE_SENSE;
1943		cmd[4] = len;
1944		header_length = 4;
1945	}
1946
1947	memset(buffer, 0, len);
1948
1949	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1950				  sshdr, timeout, retries, NULL);
 
 
1951
1952	/* This code looks awful: what it's doing is making sure an
1953	 * ILLEGAL REQUEST sense return identifies the actual command
1954	 * byte as the problem.  MODE_SENSE commands can return
1955	 * ILLEGAL REQUEST if the code page isn't supported */
1956
1957	if (use_10_for_ms && !scsi_status_is_good(result) &&
1958	    (driver_byte(result) & DRIVER_SENSE)) {
1959		if (scsi_sense_valid(sshdr)) {
1960			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1961			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1962				/* 
1963				 * Invalid command operation code
 
 
 
 
1964				 */
1965				sdev->use_10_for_ms = 0;
 
 
 
 
 
 
 
 
 
 
1966				goto retry;
1967			}
1968		}
 
1969	}
1970
1971	if(scsi_status_is_good(result)) {
1972		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1973			     (modepage == 6 || modepage == 8))) {
1974			/* Initio breakage? */
1975			header_length = 0;
1976			data->length = 13;
1977			data->medium_type = 0;
1978			data->device_specific = 0;
1979			data->longlba = 0;
1980			data->block_descriptor_length = 0;
1981		} else if(use_10_for_ms) {
1982			data->length = buffer[0]*256 + buffer[1] + 2;
1983			data->medium_type = buffer[2];
1984			data->device_specific = buffer[3];
1985			data->longlba = buffer[4] & 0x01;
1986			data->block_descriptor_length = buffer[6]*256
1987				+ buffer[7];
1988		} else {
1989			data->length = buffer[0] + 1;
1990			data->medium_type = buffer[1];
1991			data->device_specific = buffer[2];
1992			data->block_descriptor_length = buffer[3];
1993		}
1994		data->header_length = header_length;
1995	}
 
1996
1997	return result;
1998}
1999EXPORT_SYMBOL(scsi_mode_sense);
2000
2001/**
2002 *	scsi_test_unit_ready - test if unit is ready
2003 *	@sdev:	scsi device to change the state of.
2004 *	@timeout: command timeout
2005 *	@retries: number of retries before failing
2006 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2007 *		returning sense. Make sure that this is cleared before passing
2008 *		in.
2009 *
2010 *	Returns zero if unsuccessful or an error if TUR failed.  For
2011 *	removable media, UNIT_ATTENTION sets ->changed flag.
2012 **/
2013int
2014scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2015		     struct scsi_sense_hdr *sshdr_external)
2016{
2017	char cmd[] = {
2018		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2019	};
2020	struct scsi_sense_hdr *sshdr;
 
 
2021	int result;
2022
2023	if (!sshdr_external)
2024		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2025	else
2026		sshdr = sshdr_external;
2027
2028	/* try to eat the UNIT_ATTENTION if there are enough retries */
2029	do {
2030		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2031					  timeout, retries, NULL);
2032		if (sdev->removable && scsi_sense_valid(sshdr) &&
2033		    sshdr->sense_key == UNIT_ATTENTION)
2034			sdev->changed = 1;
2035	} while (scsi_sense_valid(sshdr) &&
2036		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2037
2038	if (!sshdr_external)
2039		kfree(sshdr);
2040	return result;
2041}
2042EXPORT_SYMBOL(scsi_test_unit_ready);
2043
2044/**
2045 *	scsi_device_set_state - Take the given device through the device state model.
2046 *	@sdev:	scsi device to change the state of.
2047 *	@state:	state to change to.
2048 *
2049 *	Returns zero if unsuccessful or an error if the requested 
2050 *	transition is illegal.
2051 */
2052int
2053scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2054{
2055	enum scsi_device_state oldstate = sdev->sdev_state;
2056
2057	if (state == oldstate)
2058		return 0;
2059
2060	switch (state) {
2061	case SDEV_CREATED:
2062		switch (oldstate) {
2063		case SDEV_CREATED_BLOCK:
2064			break;
2065		default:
2066			goto illegal;
2067		}
2068		break;
2069			
2070	case SDEV_RUNNING:
2071		switch (oldstate) {
2072		case SDEV_CREATED:
2073		case SDEV_OFFLINE:
 
2074		case SDEV_QUIESCE:
2075		case SDEV_BLOCK:
2076			break;
2077		default:
2078			goto illegal;
2079		}
2080		break;
2081
2082	case SDEV_QUIESCE:
2083		switch (oldstate) {
2084		case SDEV_RUNNING:
2085		case SDEV_OFFLINE:
 
2086			break;
2087		default:
2088			goto illegal;
2089		}
2090		break;
2091
2092	case SDEV_OFFLINE:
 
2093		switch (oldstate) {
2094		case SDEV_CREATED:
2095		case SDEV_RUNNING:
2096		case SDEV_QUIESCE:
2097		case SDEV_BLOCK:
2098			break;
2099		default:
2100			goto illegal;
2101		}
2102		break;
2103
2104	case SDEV_BLOCK:
2105		switch (oldstate) {
2106		case SDEV_RUNNING:
2107		case SDEV_CREATED_BLOCK:
 
 
2108			break;
2109		default:
2110			goto illegal;
2111		}
2112		break;
2113
2114	case SDEV_CREATED_BLOCK:
2115		switch (oldstate) {
2116		case SDEV_CREATED:
2117			break;
2118		default:
2119			goto illegal;
2120		}
2121		break;
2122
2123	case SDEV_CANCEL:
2124		switch (oldstate) {
2125		case SDEV_CREATED:
2126		case SDEV_RUNNING:
2127		case SDEV_QUIESCE:
2128		case SDEV_OFFLINE:
2129		case SDEV_BLOCK:
2130			break;
2131		default:
2132			goto illegal;
2133		}
2134		break;
2135
2136	case SDEV_DEL:
2137		switch (oldstate) {
2138		case SDEV_CREATED:
2139		case SDEV_RUNNING:
2140		case SDEV_OFFLINE:
 
2141		case SDEV_CANCEL:
 
 
2142			break;
2143		default:
2144			goto illegal;
2145		}
2146		break;
2147
2148	}
 
2149	sdev->sdev_state = state;
2150	return 0;
2151
2152 illegal:
2153	SCSI_LOG_ERROR_RECOVERY(1, 
2154				sdev_printk(KERN_ERR, sdev,
2155					    "Illegal state transition %s->%s\n",
2156					    scsi_device_state_name(oldstate),
2157					    scsi_device_state_name(state))
2158				);
2159	return -EINVAL;
2160}
2161EXPORT_SYMBOL(scsi_device_set_state);
2162
2163/**
2164 * 	sdev_evt_emit - emit a single SCSI device uevent
2165 *	@sdev: associated SCSI device
2166 *	@evt: event to emit
2167 *
2168 *	Send a single uevent (scsi_event) to the associated scsi_device.
2169 */
2170static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2171{
2172	int idx = 0;
2173	char *envp[3];
2174
2175	switch (evt->evt_type) {
2176	case SDEV_EVT_MEDIA_CHANGE:
2177		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2178		break;
2179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2180	default:
2181		/* do nothing */
2182		break;
2183	}
2184
2185	envp[idx++] = NULL;
2186
2187	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2188}
2189
2190/**
2191 * 	sdev_evt_thread - send a uevent for each scsi event
2192 *	@work: work struct for scsi_device
2193 *
2194 *	Dispatch queued events to their associated scsi_device kobjects
2195 *	as uevents.
2196 */
2197void scsi_evt_thread(struct work_struct *work)
2198{
2199	struct scsi_device *sdev;
 
2200	LIST_HEAD(event_list);
2201
2202	sdev = container_of(work, struct scsi_device, event_work);
2203
 
 
 
 
2204	while (1) {
2205		struct scsi_event *evt;
2206		struct list_head *this, *tmp;
2207		unsigned long flags;
2208
2209		spin_lock_irqsave(&sdev->list_lock, flags);
2210		list_splice_init(&sdev->event_list, &event_list);
2211		spin_unlock_irqrestore(&sdev->list_lock, flags);
2212
2213		if (list_empty(&event_list))
2214			break;
2215
2216		list_for_each_safe(this, tmp, &event_list) {
2217			evt = list_entry(this, struct scsi_event, node);
2218			list_del(&evt->node);
2219			scsi_evt_emit(sdev, evt);
2220			kfree(evt);
2221		}
2222	}
2223}
2224
2225/**
2226 * 	sdev_evt_send - send asserted event to uevent thread
2227 *	@sdev: scsi_device event occurred on
2228 *	@evt: event to send
2229 *
2230 *	Assert scsi device event asynchronously.
2231 */
2232void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2233{
2234	unsigned long flags;
2235
2236#if 0
2237	/* FIXME: currently this check eliminates all media change events
2238	 * for polled devices.  Need to update to discriminate between AN
2239	 * and polled events */
2240	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2241		kfree(evt);
2242		return;
2243	}
2244#endif
2245
2246	spin_lock_irqsave(&sdev->list_lock, flags);
2247	list_add_tail(&evt->node, &sdev->event_list);
2248	schedule_work(&sdev->event_work);
2249	spin_unlock_irqrestore(&sdev->list_lock, flags);
2250}
2251EXPORT_SYMBOL_GPL(sdev_evt_send);
2252
2253/**
2254 * 	sdev_evt_alloc - allocate a new scsi event
2255 *	@evt_type: type of event to allocate
2256 *	@gfpflags: GFP flags for allocation
2257 *
2258 *	Allocates and returns a new scsi_event.
2259 */
2260struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2261				  gfp_t gfpflags)
2262{
2263	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2264	if (!evt)
2265		return NULL;
2266
2267	evt->evt_type = evt_type;
2268	INIT_LIST_HEAD(&evt->node);
2269
2270	/* evt_type-specific initialization, if any */
2271	switch (evt_type) {
2272	case SDEV_EVT_MEDIA_CHANGE:
 
 
 
 
 
 
 
2273	default:
2274		/* do nothing */
2275		break;
2276	}
2277
2278	return evt;
2279}
2280EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2281
2282/**
2283 * 	sdev_evt_send_simple - send asserted event to uevent thread
2284 *	@sdev: scsi_device event occurred on
2285 *	@evt_type: type of event to send
2286 *	@gfpflags: GFP flags for allocation
2287 *
2288 *	Assert scsi device event asynchronously, given an event type.
2289 */
2290void sdev_evt_send_simple(struct scsi_device *sdev,
2291			  enum scsi_device_event evt_type, gfp_t gfpflags)
2292{
2293	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2294	if (!evt) {
2295		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2296			    evt_type);
2297		return;
2298	}
2299
2300	sdev_evt_send(sdev, evt);
2301}
2302EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2303
2304/**
2305 *	scsi_device_quiesce - Block user issued commands.
2306 *	@sdev:	scsi device to quiesce.
2307 *
2308 *	This works by trying to transition to the SDEV_QUIESCE state
2309 *	(which must be a legal transition).  When the device is in this
2310 *	state, only special requests will be accepted, all others will
2311 *	be deferred.  Since special requests may also be requeued requests,
2312 *	a successful return doesn't guarantee the device will be 
2313 *	totally quiescent.
2314 *
2315 *	Must be called with user context, may sleep.
2316 *
2317 *	Returns zero if unsuccessful or an error if not.
2318 */
2319int
2320scsi_device_quiesce(struct scsi_device *sdev)
2321{
2322	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2323	if (err)
2324		return err;
2325
2326	scsi_run_queue(sdev->request_queue);
2327	while (sdev->device_busy) {
2328		msleep_interruptible(200);
2329		scsi_run_queue(sdev->request_queue);
2330	}
2331	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2332}
2333EXPORT_SYMBOL(scsi_device_quiesce);
2334
2335/**
2336 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2337 *	@sdev:	scsi device to resume.
2338 *
2339 *	Moves the device from quiesced back to running and restarts the
2340 *	queues.
2341 *
2342 *	Must be called with user context, may sleep.
2343 */
2344void
2345scsi_device_resume(struct scsi_device *sdev)
2346{
2347	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2348		return;
2349	scsi_run_queue(sdev->request_queue);
 
 
 
 
 
 
 
 
 
2350}
2351EXPORT_SYMBOL(scsi_device_resume);
2352
2353static void
2354device_quiesce_fn(struct scsi_device *sdev, void *data)
2355{
2356	scsi_device_quiesce(sdev);
2357}
2358
2359void
2360scsi_target_quiesce(struct scsi_target *starget)
2361{
2362	starget_for_each_device(starget, NULL, device_quiesce_fn);
2363}
2364EXPORT_SYMBOL(scsi_target_quiesce);
2365
2366static void
2367device_resume_fn(struct scsi_device *sdev, void *data)
2368{
2369	scsi_device_resume(sdev);
2370}
2371
2372void
2373scsi_target_resume(struct scsi_target *starget)
2374{
2375	starget_for_each_device(starget, NULL, device_resume_fn);
2376}
2377EXPORT_SYMBOL(scsi_target_resume);
2378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2379/**
2380 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2381 * @sdev:	device to block
2382 *
2383 * Block request made by scsi lld's to temporarily stop all
2384 * scsi commands on the specified device.  Called from interrupt
2385 * or normal process context.
2386 *
2387 * Returns zero if successful or error if not
2388 *
2389 * Notes:       
2390 *	This routine transitions the device to the SDEV_BLOCK state
2391 *	(which must be a legal transition).  When the device is in this
2392 *	state, all commands are deferred until the scsi lld reenables
2393 *	the device with scsi_device_unblock or device_block_tmo fires.
2394 *	This routine assumes the host_lock is held on entry.
2395 */
2396int
2397scsi_internal_device_block(struct scsi_device *sdev)
2398{
2399	struct request_queue *q = sdev->request_queue;
2400	unsigned long flags;
2401	int err = 0;
2402
2403	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2404	if (err) {
2405		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2406
2407		if (err)
2408			return err;
2409	}
2410
2411	/* 
2412	 * The device has transitioned to SDEV_BLOCK.  Stop the
2413	 * block layer from calling the midlayer with this device's
2414	 * request queue. 
2415	 */
2416	spin_lock_irqsave(q->queue_lock, flags);
2417	blk_stop_queue(q);
2418	spin_unlock_irqrestore(q->queue_lock, flags);
 
 
2419
2420	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2421}
2422EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2423 
2424/**
2425 * scsi_internal_device_unblock - resume a device after a block request
2426 * @sdev:	device to resume
 
2427 *
2428 * Called by scsi lld's or the midlayer to restart the device queue
2429 * for the previously suspended scsi device.  Called from interrupt or
2430 * normal process context.
2431 *
2432 * Returns zero if successful or error if not.
2433 *
2434 * Notes:       
2435 *	This routine transitions the device to the SDEV_RUNNING state
2436 *	(which must be a legal transition) allowing the midlayer to
2437 *	goose the queue for this device.  This routine assumes the 
2438 *	host_lock is held upon entry.
2439 */
2440int
2441scsi_internal_device_unblock(struct scsi_device *sdev)
2442{
2443	struct request_queue *q = sdev->request_queue; 
2444	unsigned long flags;
2445	
2446	/* 
2447	 * Try to transition the scsi device to SDEV_RUNNING
2448	 * and goose the device queue if successful.  
2449	 */
2450	if (sdev->sdev_state == SDEV_BLOCK)
2451		sdev->sdev_state = SDEV_RUNNING;
2452	else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2453		sdev->sdev_state = SDEV_CREATED;
2454	else if (sdev->sdev_state != SDEV_CANCEL &&
2455		 sdev->sdev_state != SDEV_OFFLINE)
2456		return -EINVAL;
 
2457
2458	spin_lock_irqsave(q->queue_lock, flags);
2459	blk_start_queue(q);
2460	spin_unlock_irqrestore(q->queue_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2461
2462	return 0;
2463}
2464EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2465
2466static void
2467device_block(struct scsi_device *sdev, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2468{
2469	scsi_internal_device_block(sdev);
 
 
 
 
 
 
2470}
2471
2472static int
2473target_block(struct device *dev, void *data)
2474{
2475	if (scsi_is_target_device(dev))
2476		starget_for_each_device(to_scsi_target(dev), NULL,
2477					device_block);
2478	return 0;
2479}
2480
 
 
 
 
 
 
 
 
 
 
 
 
2481void
2482scsi_target_block(struct device *dev)
2483{
2484	if (scsi_is_target_device(dev))
2485		starget_for_each_device(to_scsi_target(dev), NULL,
2486					device_block);
2487	else
2488		device_for_each_child(dev, NULL, target_block);
2489}
2490EXPORT_SYMBOL_GPL(scsi_target_block);
2491
2492static void
2493device_unblock(struct scsi_device *sdev, void *data)
2494{
2495	scsi_internal_device_unblock(sdev);
2496}
2497
2498static int
2499target_unblock(struct device *dev, void *data)
2500{
2501	if (scsi_is_target_device(dev))
2502		starget_for_each_device(to_scsi_target(dev), NULL,
2503					device_unblock);
2504	return 0;
2505}
2506
2507void
2508scsi_target_unblock(struct device *dev)
2509{
2510	if (scsi_is_target_device(dev))
2511		starget_for_each_device(to_scsi_target(dev), NULL,
2512					device_unblock);
2513	else
2514		device_for_each_child(dev, NULL, target_unblock);
2515}
2516EXPORT_SYMBOL_GPL(scsi_target_unblock);
2517
2518/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2519 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2520 * @sgl:	scatter-gather list
2521 * @sg_count:	number of segments in sg
2522 * @offset:	offset in bytes into sg, on return offset into the mapped area
2523 * @len:	bytes to map, on return number of bytes mapped
2524 *
2525 * Returns virtual address of the start of the mapped page
2526 */
2527void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2528			  size_t *offset, size_t *len)
2529{
2530	int i;
2531	size_t sg_len = 0, len_complete = 0;
2532	struct scatterlist *sg;
2533	struct page *page;
2534
2535	WARN_ON(!irqs_disabled());
2536
2537	for_each_sg(sgl, sg, sg_count, i) {
2538		len_complete = sg_len; /* Complete sg-entries */
2539		sg_len += sg->length;
2540		if (sg_len > *offset)
2541			break;
2542	}
2543
2544	if (unlikely(i == sg_count)) {
2545		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2546			"elements %d\n",
2547		       __func__, sg_len, *offset, sg_count);
2548		WARN_ON(1);
2549		return NULL;
2550	}
2551
2552	/* Offset starting from the beginning of first page in this sg-entry */
2553	*offset = *offset - len_complete + sg->offset;
2554
2555	/* Assumption: contiguous pages can be accessed as "page + i" */
2556	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2557	*offset &= ~PAGE_MASK;
2558
2559	/* Bytes in this sg-entry from *offset to the end of the page */
2560	sg_len = PAGE_SIZE - *offset;
2561	if (*len > sg_len)
2562		*len = sg_len;
2563
2564	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2565}
2566EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2567
2568/**
2569 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2570 * @virt:	virtual address to be unmapped
2571 */
2572void scsi_kunmap_atomic_sg(void *virt)
2573{
2574	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2575}
2576EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 1999 Eric Youngdale
   4 * Copyright (C) 2014 Christoph Hellwig
   5 *
   6 *  SCSI queueing library.
   7 *      Initial versions: Eric Youngdale (eric@andante.org).
   8 *                        Based upon conversations with large numbers
   9 *                        of people at Linux Expo.
  10 */
  11
  12#include <linux/bio.h>
  13#include <linux/bitops.h>
  14#include <linux/blkdev.h>
  15#include <linux/completion.h>
  16#include <linux/kernel.h>
  17#include <linux/export.h>
 
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
  23#include <linux/blk-mq.h>
  24#include <linux/blk-integrity.h>
  25#include <linux/ratelimit.h>
  26#include <asm/unaligned.h>
  27
  28#include <scsi/scsi.h>
  29#include <scsi/scsi_cmnd.h>
  30#include <scsi/scsi_dbg.h>
  31#include <scsi/scsi_device.h>
  32#include <scsi/scsi_driver.h>
  33#include <scsi/scsi_eh.h>
  34#include <scsi/scsi_host.h>
  35#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  36#include <scsi/scsi_dh.h>
  37
  38#include <trace/events/scsi.h>
  39
  40#include "scsi_debugfs.h"
  41#include "scsi_priv.h"
  42#include "scsi_logging.h"
  43
  44/*
  45 * Size of integrity metadata is usually small, 1 inline sg should
  46 * cover normal cases.
  47 */
  48#ifdef CONFIG_ARCH_NO_SG_CHAIN
  49#define  SCSI_INLINE_PROT_SG_CNT  0
  50#define  SCSI_INLINE_SG_CNT  0
  51#else
  52#define  SCSI_INLINE_PROT_SG_CNT  1
  53#define  SCSI_INLINE_SG_CNT  2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54#endif
 
 
 
  55
  56static struct kmem_cache *scsi_sense_cache;
  57static DEFINE_MUTEX(scsi_sense_cache_mutex);
  58
  59static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
 
 
 
 
 
  60
  61int scsi_init_sense_cache(struct Scsi_Host *shost)
 
 
 
 
 
 
 
 
 
 
 
 
  62{
  63	int ret = 0;
 
 
 
  64
  65	mutex_lock(&scsi_sense_cache_mutex);
  66	if (!scsi_sense_cache) {
  67		scsi_sense_cache =
  68			kmem_cache_create_usercopy("scsi_sense_cache",
  69				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
  70				0, SCSI_SENSE_BUFFERSIZE, NULL);
  71		if (!scsi_sense_cache)
  72			ret = -ENOMEM;
  73	}
  74	mutex_unlock(&scsi_sense_cache_mutex);
  75	return ret;
  76}
  77
  78static void
  79scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
 
 
 
 
 
 
 
 
 
 
 
  80{
  81	struct Scsi_Host *host = cmd->device->host;
  82	struct scsi_device *device = cmd->device;
  83	struct scsi_target *starget = scsi_target(device);
 
 
 
 
 
  84
  85	/*
  86	 * Set the appropriate busy bit for the device/host.
  87	 *
  88	 * If the host/device isn't busy, assume that something actually
  89	 * completed, and that we should be able to queue a command now.
  90	 *
  91	 * Note that the prior mid-layer assumption that any host could
  92	 * always queue at least one command is now broken.  The mid-layer
  93	 * will implement a user specifiable stall (see
  94	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
  95	 * if a command is requeued with no other commands outstanding
  96	 * either for the device or for the host.
  97	 */
  98	switch (reason) {
  99	case SCSI_MLQUEUE_HOST_BUSY:
 100		atomic_set(&host->host_blocked, host->max_host_blocked);
 101		break;
 102	case SCSI_MLQUEUE_DEVICE_BUSY:
 103	case SCSI_MLQUEUE_EH_RETRY:
 104		atomic_set(&device->device_blocked,
 105			   device->max_device_blocked);
 106		break;
 107	case SCSI_MLQUEUE_TARGET_BUSY:
 108		atomic_set(&starget->target_blocked,
 109			   starget->max_target_blocked);
 110		break;
 111	}
 112}
 113
 114static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
 115{
 116	struct request *rq = scsi_cmd_to_rq(cmd);
 117
 118	if (rq->rq_flags & RQF_DONTPREP) {
 119		rq->rq_flags &= ~RQF_DONTPREP;
 120		scsi_mq_uninit_cmd(cmd);
 121	} else {
 122		WARN_ON_ONCE(true);
 123	}
 124
 125	blk_mq_requeue_request(rq, false);
 126	if (!scsi_host_in_recovery(cmd->device->host))
 127		blk_mq_delay_kick_requeue_list(rq->q, msecs);
 128}
 129
 130/**
 131 * __scsi_queue_insert - private queue insertion
 132 * @cmd: The SCSI command being requeued
 133 * @reason:  The reason for the requeue
 134 * @unbusy: Whether the queue should be unbusied
 135 *
 136 * This is a private queue insertion.  The public interface
 137 * scsi_queue_insert() always assumes the queue should be unbusied
 138 * because it's always called before the completion.  This function is
 139 * for a requeue after completion, which should only occur in this
 140 * file.
 141 */
 142static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 143{
 144	struct scsi_device *device = cmd->device;
 145
 146	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 147		"Inserting command %p into mlqueue\n", cmd));
 148
 149	scsi_set_blocked(cmd, reason);
 150
 151	/*
 152	 * Decrement the counters, since these commands are no longer
 153	 * active on the host/device.
 154	 */
 155	if (unbusy)
 156		scsi_device_unbusy(device, cmd);
 157
 158	/*
 159	 * Requeue this command.  It will go before all other commands
 160	 * that are already in the queue. Schedule requeue work under
 161	 * lock such that the kblockd_schedule_work() call happens
 162	 * before blk_mq_destroy_queue() finishes.
 163	 */
 164	cmd->result = 0;
 
 
 
 
 165
 166	blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
 167			       !scsi_host_in_recovery(cmd->device->host));
 168}
 169
 170/**
 171 * scsi_queue_insert - Reinsert a command in the queue.
 172 * @cmd:    command that we are adding to queue.
 173 * @reason: why we are inserting command to queue.
 
 
 
 
 
 174 *
 175 * We do this for one of two cases. Either the host is busy and it cannot accept
 176 * any more commands for the time being, or the device returned QUEUE_FULL and
 177 * can accept no more commands.
 178 *
 179 * Context: This could be called either from an interrupt context or a normal
 180 * process context.
 
 
 
 
 181 */
 182void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 183{
 184	__scsi_queue_insert(cmd, reason, true);
 185}
 186
 187/**
 188 * scsi_execute_cmd - insert request and wait for the result
 189 * @sdev:	scsi_device
 190 * @cmd:	scsi command
 191 * @opf:	block layer request cmd_flags
 192 * @buffer:	data buffer
 193 * @bufflen:	len of buffer
 194 * @timeout:	request timeout in HZ
 
 195 * @retries:	number of times to retry request
 196 * @args:	Optional args. See struct definition for field descriptions
 
 197 *
 198 * Returns the scsi_cmnd result field if a command was executed, or a negative
 199 * Linux error code if we didn't get that far.
 200 */
 201int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
 202		     blk_opf_t opf, void *buffer, unsigned int bufflen,
 203		     int timeout, int retries,
 204		     const struct scsi_exec_args *args)
 205{
 206	static const struct scsi_exec_args default_args;
 207	struct request *req;
 208	struct scsi_cmnd *scmd;
 209	int ret;
 210
 211	if (!args)
 212		args = &default_args;
 213	else if (WARN_ON_ONCE(args->sense &&
 214			      args->sense_len != SCSI_SENSE_BUFFERSIZE))
 215		return -EINVAL;
 216
 217	req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
 218	if (IS_ERR(req))
 219		return PTR_ERR(req);
 220
 221	if (bufflen) {
 222		ret = blk_rq_map_kern(sdev->request_queue, req,
 223				      buffer, bufflen, GFP_NOIO);
 224		if (ret)
 225			goto out;
 226	}
 227	scmd = blk_mq_rq_to_pdu(req);
 228	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
 229	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
 230	scmd->allowed = retries;
 231	scmd->flags |= args->scmd_flags;
 232	req->timeout = timeout;
 233	req->rq_flags |= RQF_QUIET;
 
 234
 235	/*
 236	 * head injection *required* here otherwise quiesce won't work
 237	 */
 238	blk_execute_rq(req, true);
 239
 240	/*
 241	 * Some devices (USB mass-storage in particular) may transfer
 242	 * garbage data together with a residue indicating that the data
 243	 * is invalid.  Prevent the garbage from being misinterpreted
 244	 * and prevent security leaks by zeroing out the excess data.
 245	 */
 246	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
 247		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
 248
 249	if (args->resid)
 250		*args->resid = scmd->resid_len;
 251	if (args->sense)
 252		memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
 253	if (args->sshdr)
 254		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
 255				     args->sshdr);
 256
 257	ret = scmd->result;
 258 out:
 259	blk_mq_free_request(req);
 260
 261	return ret;
 262}
 263EXPORT_SYMBOL(scsi_execute_cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 264
 265/*
 266 * Wake up the error handler if necessary. Avoid as follows that the error
 267 * handler is not woken up if host in-flight requests number ==
 268 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 269 * with an RCU read lock in this function to ensure that this function in
 270 * its entirety either finishes before scsi_eh_scmd_add() increases the
 271 * host_failed counter or that it notices the shost state change made by
 272 * scsi_eh_scmd_add().
 
 
 273 */
 274static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
 275{
 276	unsigned long flags;
 277
 278	rcu_read_lock();
 279	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
 280	if (unlikely(scsi_host_in_recovery(shost))) {
 281		unsigned int busy = scsi_host_busy(shost);
 282
 283		spin_lock_irqsave(shost->host_lock, flags);
 284		if (shost->host_failed || shost->host_eh_scheduled)
 285			scsi_eh_wakeup(shost, busy);
 286		spin_unlock_irqrestore(shost->host_lock, flags);
 287	}
 288	rcu_read_unlock();
 289}
 290
 291void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
 292{
 293	struct Scsi_Host *shost = sdev->host;
 294	struct scsi_target *starget = scsi_target(sdev);
 
 295
 296	scsi_dec_host_busy(shost, cmd);
 297
 298	if (starget->can_queue > 0)
 299		atomic_dec(&starget->target_busy);
 300
 301	sbitmap_put(&sdev->budget_map, cmd->budget_token);
 302	cmd->budget_token = -1;
 303}
 304
 305/*
 306 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
 307 * interrupts disabled.
 308 */
 309static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
 310{
 311	struct scsi_device *current_sdev = data;
 312
 313	if (sdev != current_sdev)
 314		blk_mq_run_hw_queues(sdev->request_queue, true);
 315}
 316
 317/*
 318 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 319 * and call blk_run_queue for all the scsi_devices on the target -
 320 * including current_sdev first.
 321 *
 322 * Called with *no* scsi locks held.
 323 */
 324static void scsi_single_lun_run(struct scsi_device *current_sdev)
 325{
 326	struct Scsi_Host *shost = current_sdev->host;
 
 327	struct scsi_target *starget = scsi_target(current_sdev);
 328	unsigned long flags;
 329
 330	spin_lock_irqsave(shost->host_lock, flags);
 331	starget->starget_sdev_user = NULL;
 332	spin_unlock_irqrestore(shost->host_lock, flags);
 333
 334	/*
 335	 * Call blk_run_queue for all LUNs on the target, starting with
 336	 * current_sdev. We race with others (to set starget_sdev_user),
 337	 * but in most cases, we will be first. Ideally, each LU on the
 338	 * target would get some limited time or requests on the target.
 339	 */
 340	blk_mq_run_hw_queues(current_sdev->request_queue,
 341			     shost->queuecommand_may_block);
 342
 343	spin_lock_irqsave(shost->host_lock, flags);
 344	if (!starget->starget_sdev_user)
 345		__starget_for_each_device(starget, current_sdev,
 346					  scsi_kick_sdev_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 347	spin_unlock_irqrestore(shost->host_lock, flags);
 348}
 349
 350static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 351{
 352	if (scsi_device_busy(sdev) >= sdev->queue_depth)
 353		return true;
 354	if (atomic_read(&sdev->device_blocked) > 0)
 355		return true;
 356	return false;
 357}
 358
 359static inline bool scsi_target_is_busy(struct scsi_target *starget)
 360{
 361	if (starget->can_queue > 0) {
 362		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 363			return true;
 364		if (atomic_read(&starget->target_blocked) > 0)
 365			return true;
 366	}
 367	return false;
 368}
 369
 370static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 371{
 372	if (atomic_read(&shost->host_blocked) > 0)
 373		return true;
 374	if (shost->host_self_blocked)
 375		return true;
 376	return false;
 377}
 378
 379static void scsi_starved_list_run(struct Scsi_Host *shost)
 
 
 
 
 
 
 
 
 
 
 
 
 380{
 
 
 381	LIST_HEAD(starved_list);
 382	struct scsi_device *sdev;
 383	unsigned long flags;
 384
 
 
 
 
 
 
 
 
 385	spin_lock_irqsave(shost->host_lock, flags);
 386	list_splice_init(&shost->starved_list, &starved_list);
 387
 388	while (!list_empty(&starved_list)) {
 389		struct request_queue *slq;
 390
 391		/*
 392		 * As long as shost is accepting commands and we have
 393		 * starved queues, call blk_run_queue. scsi_request_fn
 394		 * drops the queue_lock and can add us back to the
 395		 * starved_list.
 396		 *
 397		 * host_lock protects the starved_list and starved_entry.
 398		 * scsi_request_fn must get the host_lock before checking
 399		 * or modifying starved_list or starved_entry.
 400		 */
 401		if (scsi_host_is_busy(shost))
 402			break;
 403
 404		sdev = list_entry(starved_list.next,
 405				  struct scsi_device, starved_entry);
 406		list_del_init(&sdev->starved_entry);
 407		if (scsi_target_is_busy(scsi_target(sdev))) {
 408			list_move_tail(&sdev->starved_entry,
 409				       &shost->starved_list);
 410			continue;
 411		}
 412
 413		/*
 414		 * Once we drop the host lock, a racing scsi_remove_device()
 415		 * call may remove the sdev from the starved list and destroy
 416		 * it and the queue.  Mitigate by taking a reference to the
 417		 * queue and never touching the sdev again after we drop the
 418		 * host lock.  Note: if __scsi_remove_device() invokes
 419		 * blk_mq_destroy_queue() before the queue is run from this
 420		 * function then blk_run_queue() will return immediately since
 421		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
 422		 */
 423		slq = sdev->request_queue;
 424		if (!blk_get_queue(slq))
 425			continue;
 426		spin_unlock_irqrestore(shost->host_lock, flags);
 427
 428		blk_mq_run_hw_queues(slq, false);
 429		blk_put_queue(slq);
 430
 431		spin_lock_irqsave(shost->host_lock, flags);
 432	}
 433	/* put any unprocessed entries back */
 434	list_splice(&starved_list, &shost->starved_list);
 435	spin_unlock_irqrestore(shost->host_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 436}
 437
 438/**
 439 * scsi_run_queue - Select a proper request queue to serve next.
 440 * @q:  last request's queue
 
 
 
 
 
 
 441 *
 442 * The previous command was completely finished, start a new one if possible.
 
 
 
 
 
 
 443 */
 444static void scsi_run_queue(struct request_queue *q)
 445{
 446	struct scsi_device *sdev = q->queuedata;
 
 447
 448	if (scsi_target(sdev)->single_lun)
 449		scsi_single_lun_run(sdev);
 450	if (!list_empty(&sdev->host->starved_list))
 451		scsi_starved_list_run(sdev->host);
 452
 453	/* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
 454	blk_mq_kick_requeue_list(q);
 455}
 456
 457void scsi_requeue_run_queue(struct work_struct *work)
 458{
 459	struct scsi_device *sdev;
 460	struct request_queue *q;
 
 
 
 461
 462	sdev = container_of(work, struct scsi_device, requeue_work);
 463	q = sdev->request_queue;
 464	scsi_run_queue(q);
 
 
 
 465}
 466
 467void scsi_run_host_queues(struct Scsi_Host *shost)
 468{
 469	struct scsi_device *sdev;
 470
 471	shost_for_each_device(sdev, shost)
 472		scsi_run_queue(sdev->request_queue);
 473}
 474
 475static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476{
 477	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
 478		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 479
 480		if (drv->uninit_command)
 481			drv->uninit_command(cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482	}
 
 
 
 
 
 
 
 
 483}
 484
 485void scsi_free_sgtables(struct scsi_cmnd *cmd)
 486{
 487	if (cmd->sdb.table.nents)
 488		sg_free_table_chained(&cmd->sdb.table,
 489				SCSI_INLINE_SG_CNT);
 490	if (scsi_prot_sg_count(cmd))
 491		sg_free_table_chained(&cmd->prot_sdb->table,
 492				SCSI_INLINE_PROT_SG_CNT);
 
 
 
 
 493}
 494EXPORT_SYMBOL_GPL(scsi_free_sgtables);
 495
 496static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 497{
 498	scsi_free_sgtables(cmd);
 499	scsi_uninit_cmd(cmd);
 
 
 500}
 501
 502static void scsi_run_queue_async(struct scsi_device *sdev)
 503{
 504	if (scsi_host_in_recovery(sdev->host))
 505		return;
 506
 507	if (scsi_target(sdev)->single_lun ||
 508	    !list_empty(&sdev->host->starved_list)) {
 509		kblockd_schedule_work(&sdev->requeue_work);
 510	} else {
 511		/*
 512		 * smp_mb() present in sbitmap_queue_clear() or implied in
 513		 * .end_io is for ordering writing .device_busy in
 514		 * scsi_device_unbusy() and reading sdev->restarts.
 515		 */
 516		int old = atomic_read(&sdev->restarts);
 517
 518		/*
 519		 * ->restarts has to be kept as non-zero if new budget
 520		 *  contention occurs.
 521		 *
 522		 *  No need to run queue when either another re-run
 523		 *  queue wins in updating ->restarts or a new budget
 524		 *  contention occurs.
 525		 */
 526		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
 527			blk_mq_run_hw_queues(sdev->request_queue, true);
 528	}
 529}
 530
 531/* Returns false when no more bytes to process, true if there are more */
 532static bool scsi_end_request(struct request *req, blk_status_t error,
 533		unsigned int bytes)
 534{
 535	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 536	struct scsi_device *sdev = cmd->device;
 537	struct request_queue *q = sdev->request_queue;
 538
 539	if (blk_update_request(req, error, bytes))
 540		return true;
 541
 542	// XXX:
 543	if (blk_queue_add_random(q))
 544		add_disk_randomness(req->q->disk);
 
 
 545
 546	if (!blk_rq_is_passthrough(req)) {
 547		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
 548		cmd->flags &= ~SCMD_INITIALIZED;
 549	}
 550
 551	/*
 552	 * Calling rcu_barrier() is not necessary here because the
 553	 * SCSI error handler guarantees that the function called by
 554	 * call_rcu() has been called before scsi_end_request() is
 555	 * called.
 556	 */
 557	destroy_rcu_head(&cmd->rcu);
 558
 559	/*
 560	 * In the MQ case the command gets freed by __blk_mq_end_request,
 561	 * so we have to do all cleanup that depends on it earlier.
 562	 *
 563	 * We also can't kick the queues from irq context, so we
 564	 * will have to defer it to a workqueue.
 565	 */
 566	scsi_mq_uninit_cmd(cmd);
 567
 568	/*
 569	 * queue is still alive, so grab the ref for preventing it
 570	 * from being cleaned up during running queue.
 571	 */
 572	percpu_ref_get(&q->q_usage_counter);
 573
 574	__blk_mq_end_request(req, error);
 575
 576	scsi_run_queue_async(sdev);
 
 
 
 
 
 
 577
 578	percpu_ref_put(&q->q_usage_counter);
 579	return false;
 580}
 581
 582/**
 583 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 584 * @result:	scsi error code
 
 
 
 
 
 
 
 585 *
 586 * Translate a SCSI result code into a blk_status_t value.
 
 
 
 
 587 */
 588static blk_status_t scsi_result_to_blk_status(int result)
 589{
 590	/*
 591	 * Check the scsi-ml byte first in case we converted a host or status
 592	 * byte.
 593	 */
 594	switch (scsi_ml_byte(result)) {
 595	case SCSIML_STAT_OK:
 596		break;
 597	case SCSIML_STAT_RESV_CONFLICT:
 598		return BLK_STS_RESV_CONFLICT;
 599	case SCSIML_STAT_NOSPC:
 600		return BLK_STS_NOSPC;
 601	case SCSIML_STAT_MED_ERROR:
 602		return BLK_STS_MEDIUM;
 603	case SCSIML_STAT_TGT_FAILURE:
 604		return BLK_STS_TARGET;
 605	case SCSIML_STAT_DL_TIMEOUT:
 606		return BLK_STS_DURATION_LIMIT;
 607	}
 608
 609	switch (host_byte(result)) {
 610	case DID_OK:
 611		if (scsi_status_is_good(result))
 612			return BLK_STS_OK;
 613		return BLK_STS_IOERR;
 614	case DID_TRANSPORT_FAILFAST:
 615	case DID_TRANSPORT_MARGINAL:
 616		return BLK_STS_TRANSPORT;
 
 
 
 
 
 
 
 
 617	default:
 618		return BLK_STS_IOERR;
 
 619	}
 
 
 620}
 621
 622/**
 623 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
 624 * @rq: request to examine
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 625 *
 626 * Description:
 627 *     A request could be merge of IOs which require different failure
 628 *     handling.  This function determines the number of bytes which
 629 *     can be failed from the beginning of the request without
 630 *     crossing into area which need to be retried further.
 631 *
 632 * Return:
 633 *     The number of bytes to fail.
 634 */
 635static unsigned int scsi_rq_err_bytes(const struct request *rq)
 636{
 637	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
 638	unsigned int bytes = 0;
 639	struct bio *bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 640
 641	if (!(rq->rq_flags & RQF_MIXED_MERGE))
 642		return blk_rq_bytes(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643
 644	/*
 645	 * Currently the only 'mixing' which can happen is between
 646	 * different fastfail types.  We can safely fail portions
 647	 * which have all the failfast bits that the first one has -
 648	 * the ones which are at least as eager to fail as the first
 649	 * one.
 650	 */
 651	for (bio = rq->bio; bio; bio = bio->bi_next) {
 652		if ((bio->bi_opf & ff) != ff)
 653			break;
 654		bytes += bio->bi_iter.bi_size;
 655	}
 656
 657	/* this could lead to infinite loop */
 658	BUG_ON(blk_rq_bytes(rq) && !bytes);
 659	return bytes;
 660}
 661
 662static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
 663{
 664	struct request *req = scsi_cmd_to_rq(cmd);
 665	unsigned long wait_for;
 
 
 
 666
 667	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
 668		return false;
 669
 670	wait_for = (cmd->allowed + 1) * req->timeout;
 671	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
 672		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
 673			    wait_for/HZ);
 674		return true;
 
 
 
 
 
 
 
 
 
 
 675	}
 676	return false;
 677}
 678
 679/*
 680 * When ALUA transition state is returned, reprep the cmd to
 681 * use the ALUA handler's transition timeout. Delay the reprep
 682 * 1 sec to avoid aggressive retries of the target in that
 683 * state.
 684 */
 685#define ALUA_TRANSITION_REPREP_DELAY	1000
 686
 687/* Helper for scsi_io_completion() when special action required. */
 688static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
 689{
 690	struct request *req = scsi_cmd_to_rq(cmd);
 691	int level = 0;
 692	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
 693	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
 694	struct scsi_sense_hdr sshdr;
 695	bool sense_valid;
 696	bool sense_current = true;      /* false implies "deferred sense" */
 697	blk_status_t blk_stat;
 698
 699	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 700	if (sense_valid)
 701		sense_current = !scsi_sense_is_deferred(&sshdr);
 702
 703	blk_stat = scsi_result_to_blk_status(result);
 704
 705	if (host_byte(result) == DID_RESET) {
 706		/* Third party bus reset or reset for error recovery
 707		 * reasons.  Just retry the command and see what
 708		 * happens.
 709		 */
 710		action = ACTION_RETRY;
 711	} else if (sense_valid && sense_current) {
 712		switch (sshdr.sense_key) {
 713		case UNIT_ATTENTION:
 714			if (cmd->device->removable) {
 715				/* Detected disc change.  Set a bit
 716				 * and quietly refuse further access.
 717				 */
 718				cmd->device->changed = 1;
 
 719				action = ACTION_FAIL;
 720			} else {
 721				/* Must have been a power glitch, or a
 722				 * bus reset.  Could not have been a
 723				 * media change, so we just retry the
 724				 * command and see what happens.
 725				 */
 726				action = ACTION_RETRY;
 727			}
 728			break;
 729		case ILLEGAL_REQUEST:
 730			/* If we had an ILLEGAL REQUEST returned, then
 731			 * we may have performed an unsupported
 732			 * command.  The only thing this should be
 733			 * would be a ten byte read where only a six
 734			 * byte read was supported.  Also, on a system
 735			 * where READ CAPACITY failed, we may have
 736			 * read past the end of the disk.
 737			 */
 738			if ((cmd->device->use_10_for_rw &&
 739			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 740			    (cmd->cmnd[0] == READ_10 ||
 741			     cmd->cmnd[0] == WRITE_10)) {
 742				/* This will issue a new 6-byte command. */
 743				cmd->device->use_10_for_rw = 0;
 744				action = ACTION_REPREP;
 745			} else if (sshdr.asc == 0x10) /* DIX */ {
 
 746				action = ACTION_FAIL;
 747				blk_stat = BLK_STS_PROTECTION;
 748			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 749			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 
 
 
 
 750				action = ACTION_FAIL;
 751				blk_stat = BLK_STS_TARGET;
 752			} else
 753				action = ACTION_FAIL;
 754			break;
 755		case ABORTED_COMMAND:
 756			action = ACTION_FAIL;
 757			if (sshdr.asc == 0x10) /* DIF */
 758				blk_stat = BLK_STS_PROTECTION;
 
 
 759			break;
 760		case NOT_READY:
 761			/* If the device is in the process of becoming
 762			 * ready, or has a temporary blockage, retry.
 763			 */
 764			if (sshdr.asc == 0x04) {
 765				switch (sshdr.ascq) {
 766				case 0x01: /* becoming ready */
 767				case 0x04: /* format in progress */
 768				case 0x05: /* rebuild in progress */
 769				case 0x06: /* recalculation in progress */
 770				case 0x07: /* operation in progress */
 771				case 0x08: /* Long write in progress */
 772				case 0x09: /* self test in progress */
 773				case 0x11: /* notify (enable spinup) required */
 774				case 0x14: /* space allocation in progress */
 775				case 0x1a: /* start stop unit in progress */
 776				case 0x1b: /* sanitize in progress */
 777				case 0x1d: /* configuration in progress */
 778				case 0x24: /* depopulation in progress */
 779				case 0x25: /* depopulation restore in progress */
 780					action = ACTION_DELAYED_RETRY;
 781					break;
 782				case 0x0a: /* ALUA state transition */
 783					action = ACTION_DELAYED_REPREP;
 784					break;
 785				default:
 
 786					action = ACTION_FAIL;
 787					break;
 788				}
 789			} else
 
 790				action = ACTION_FAIL;
 
 791			break;
 792		case VOLUME_OVERFLOW:
 793			/* See SSC3rXX or current. */
 794			action = ACTION_FAIL;
 795			break;
 796		case DATA_PROTECT:
 797			action = ACTION_FAIL;
 798			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
 799			    (sshdr.asc == 0x55 &&
 800			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
 801				/* Insufficient zone resources */
 802				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
 803			}
 804			break;
 805		case COMPLETED:
 806			fallthrough;
 807		default:
 
 808			action = ACTION_FAIL;
 809			break;
 810		}
 811	} else
 812		action = ACTION_FAIL;
 813
 814	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
 815		action = ACTION_FAIL;
 
 816
 817	switch (action) {
 818	case ACTION_FAIL:
 819		/* Give up and fail the remainder of the request */
 820		if (!(req->rq_flags & RQF_QUIET)) {
 821			static DEFINE_RATELIMIT_STATE(_rs,
 822					DEFAULT_RATELIMIT_INTERVAL,
 823					DEFAULT_RATELIMIT_BURST);
 824
 825			if (unlikely(scsi_logging_level))
 826				level =
 827				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 828						    SCSI_LOG_MLCOMPLETE_BITS);
 829
 830			/*
 831			 * if logging is enabled the failure will be printed
 832			 * in scsi_log_completion(), so avoid duplicate messages
 833			 */
 834			if (!level && __ratelimit(&_rs)) {
 835				scsi_print_result(cmd, NULL, FAILED);
 836				if (sense_valid)
 837					scsi_print_sense(cmd);
 838				scsi_print_command(cmd);
 839			}
 840		}
 841		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
 842			return;
 843		fallthrough;
 
 
 844	case ACTION_REPREP:
 845		scsi_mq_requeue_cmd(cmd, 0);
 846		break;
 847	case ACTION_DELAYED_REPREP:
 848		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
 
 849		break;
 850	case ACTION_RETRY:
 851		/* Retry the same command immediately */
 852		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
 853		break;
 854	case ACTION_DELAYED_RETRY:
 855		/* Retry the same command after a delay */
 856		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
 857		break;
 858	}
 859}
 860
 861/*
 862 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
 863 * new result that may suppress further error checking. Also modifies
 864 * *blk_statp in some cases.
 865 */
 866static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
 867					blk_status_t *blk_statp)
 868{
 869	bool sense_valid;
 870	bool sense_current = true;	/* false implies "deferred sense" */
 871	struct request *req = scsi_cmd_to_rq(cmd);
 872	struct scsi_sense_hdr sshdr;
 873
 874	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 875	if (sense_valid)
 876		sense_current = !scsi_sense_is_deferred(&sshdr);
 877
 878	if (blk_rq_is_passthrough(req)) {
 879		if (sense_valid) {
 880			/*
 881			 * SG_IO wants current and deferred errors
 882			 */
 883			cmd->sense_len = min(8 + cmd->sense_buffer[7],
 884					     SCSI_SENSE_BUFFERSIZE);
 885		}
 886		if (sense_current)
 887			*blk_statp = scsi_result_to_blk_status(result);
 888	} else if (blk_rq_bytes(req) == 0 && sense_current) {
 889		/*
 890		 * Flush commands do not transfers any data, and thus cannot use
 891		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 892		 * This sets *blk_statp explicitly for the problem case.
 893		 */
 894		*blk_statp = scsi_result_to_blk_status(result);
 895	}
 896	/*
 897	 * Recovered errors need reporting, but they're always treated as
 898	 * success, so fiddle the result code here.  For passthrough requests
 899	 * we already took a copy of the original into sreq->result which
 900	 * is what gets returned to the user
 901	 */
 902	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 903		bool do_print = true;
 904		/*
 905		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
 906		 * skip print since caller wants ATA registers. Only occurs
 907		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
 908		 */
 909		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 910			do_print = false;
 911		else if (req->rq_flags & RQF_QUIET)
 912			do_print = false;
 913		if (do_print)
 914			scsi_print_sense(cmd);
 915		result = 0;
 916		/* for passthrough, *blk_statp may be set */
 917		*blk_statp = BLK_STS_OK;
 918	}
 919	/*
 920	 * Another corner case: the SCSI status byte is non-zero but 'good'.
 921	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
 922	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
 923	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
 924	 * intermediate statuses (both obsolete in SAM-4) as good.
 925	 */
 926	if ((result & 0xff) && scsi_status_is_good(result)) {
 927		result = 0;
 928		*blk_statp = BLK_STS_OK;
 929	}
 930	return result;
 931}
 932
 933/**
 934 * scsi_io_completion - Completion processing for SCSI commands.
 935 * @cmd:	command that is finished.
 936 * @good_bytes:	number of processed bytes.
 937 *
 938 * We will finish off the specified number of sectors. If we are done, the
 939 * command block will be released and the queue function will be goosed. If we
 940 * are not done then we have to figure out what to do next:
 941 *
 942 *   a) We can call scsi_mq_requeue_cmd().  The request will be
 943 *	unprepared and put back on the queue.  Then a new command will
 944 *	be created for it.  This should be used if we made forward
 945 *	progress, or if we want to switch from READ(10) to READ(6) for
 946 *	example.
 947 *
 948 *   b) We can call scsi_io_completion_action().  The request will be
 949 *	put back on the queue and retried using the same command as
 950 *	before, possibly after a delay.
 951 *
 952 *   c) We can call scsi_end_request() with blk_stat other than
 953 *	BLK_STS_OK, to fail the remainder of the request.
 954 */
 955void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 956{
 957	int result = cmd->result;
 958	struct request *req = scsi_cmd_to_rq(cmd);
 959	blk_status_t blk_stat = BLK_STS_OK;
 960
 961	if (unlikely(result))	/* a nz result may or may not be an error */
 962		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
 963
 964	/*
 965	 * Next deal with any sectors which we were able to correctly
 966	 * handle.
 967	 */
 968	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 969		"%u sectors total, %d bytes done.\n",
 970		blk_rq_sectors(req), good_bytes));
 971
 972	/*
 973	 * Failed, zero length commands always need to drop down
 974	 * to retry code. Fast path should return in this block.
 975	 */
 976	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
 977		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
 978			return; /* no bytes remaining */
 979	}
 980
 981	/* Kill remainder if no retries. */
 982	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
 983		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
 984			WARN_ONCE(true,
 985			    "Bytes remaining after failed, no-retry command");
 986		return;
 987	}
 988
 989	/*
 990	 * If there had been no error, but we have leftover bytes in the
 991	 * request just queue the command up again.
 992	 */
 993	if (likely(result == 0))
 994		scsi_mq_requeue_cmd(cmd, 0);
 995	else
 996		scsi_io_completion_action(cmd, result);
 
 997}
 998
 999static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1000		struct request *rq)
1001{
1002	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1003	       !op_is_write(req_op(rq)) &&
1004	       sdev->host->hostt->dma_need_drain(rq);
1005}
1006
1007/**
1008 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1009 * @cmd: SCSI command data structure to initialize.
1010 *
1011 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1012 * for @cmd.
1013 *
1014 * Returns:
1015 * * BLK_STS_OK       - on success
1016 * * BLK_STS_RESOURCE - if the failure is retryable
1017 * * BLK_STS_IOERR    - if the failure is fatal
1018 */
1019blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1020{
1021	struct scsi_device *sdev = cmd->device;
1022	struct request *rq = scsi_cmd_to_rq(cmd);
1023	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1024	struct scatterlist *last_sg = NULL;
1025	blk_status_t ret;
1026	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1027	int count;
1028
1029	if (WARN_ON_ONCE(!nr_segs))
1030		return BLK_STS_IOERR;
 
1031
1032	/*
1033	 * Make sure there is space for the drain.  The driver must adjust
1034	 * max_hw_segments to be prepared for this.
1035	 */
1036	if (need_drain)
1037		nr_segs++;
1038
1039	/*
1040	 * If sg table allocation fails, requeue request later.
1041	 */
1042	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1043			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1044		return BLK_STS_RESOURCE;
1045
1046	/*
1047	 * Next, walk the list, and fill in the addresses and sizes of
1048	 * each segment.
1049	 */
1050	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1051
1052	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1053		unsigned int pad_len =
1054			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1055
1056		last_sg->length += pad_len;
1057		cmd->extra_len += pad_len;
 
 
1058	}
1059
1060	if (need_drain) {
1061		sg_unmark_end(last_sg);
1062		last_sg = sg_next(last_sg);
1063		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1064		sg_mark_end(last_sg);
1065
1066		cmd->extra_len += sdev->dma_drain_len;
1067		count++;
1068	}
1069
1070	BUG_ON(count > cmd->sdb.table.nents);
1071	cmd->sdb.table.nents = count;
1072	cmd->sdb.length = blk_rq_payload_bytes(rq);
1073
1074	if (blk_integrity_rq(rq)) {
1075		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1076		int ivecs;
1077
1078		if (WARN_ON_ONCE(!prot_sdb)) {
1079			/*
1080			 * This can happen if someone (e.g. multipath)
1081			 * queues a command to a device on an adapter
1082			 * that does not support DIX.
1083			 */
1084			ret = BLK_STS_IOERR;
1085			goto out_free_sgtables;
1086		}
1087
 
1088		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1089
1090		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1091				prot_sdb->table.sgl,
1092				SCSI_INLINE_PROT_SG_CNT)) {
1093			ret = BLK_STS_RESOURCE;
1094			goto out_free_sgtables;
1095		}
1096
1097		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1098						prot_sdb->table.sgl);
1099		BUG_ON(count > ivecs);
1100		BUG_ON(count > queue_max_integrity_segments(rq->q));
1101
1102		cmd->prot_sdb = prot_sdb;
1103		cmd->prot_sdb->table.nents = count;
1104	}
1105
1106	return BLK_STS_OK;
1107out_free_sgtables:
1108	scsi_free_sgtables(cmd);
1109	return ret;
 
 
 
1110}
1111EXPORT_SYMBOL(scsi_alloc_sgtables);
1112
1113/**
1114 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1115 * @rq: Request associated with the SCSI command to be initialized.
1116 *
1117 * This function initializes the members of struct scsi_cmnd that must be
1118 * initialized before request processing starts and that won't be
1119 * reinitialized if a SCSI command is requeued.
1120 */
1121static void scsi_initialize_rq(struct request *rq)
1122{
1123	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1124
1125	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1126	cmd->cmd_len = MAX_COMMAND_SIZE;
1127	cmd->sense_len = 0;
1128	init_rcu_head(&cmd->rcu);
1129	cmd->jiffies_at_alloc = jiffies;
1130	cmd->retries = 0;
1131}
 
1132
1133struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1134				   blk_mq_req_flags_t flags)
1135{
1136	struct request *rq;
1137
1138	rq = blk_mq_alloc_request(q, opf, flags);
1139	if (!IS_ERR(rq))
1140		scsi_initialize_rq(rq);
1141	return rq;
1142}
1143EXPORT_SYMBOL_GPL(scsi_alloc_request);
1144
1145/*
1146 * Only called when the request isn't completed by SCSI, and not freed by
1147 * SCSI
1148 */
1149static void scsi_cleanup_rq(struct request *rq)
1150{
1151	if (rq->rq_flags & RQF_DONTPREP) {
1152		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1153		rq->rq_flags &= ~RQF_DONTPREP;
1154	}
1155}
1156
1157/* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1158void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1159{
1160	struct request *rq = scsi_cmd_to_rq(cmd);
 
1161
1162	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1163		cmd->flags |= SCMD_INITIALIZED;
1164		scsi_initialize_rq(rq);
1165	}
1166
1167	cmd->device = dev;
1168	INIT_LIST_HEAD(&cmd->eh_entry);
1169	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1170}
1171
1172static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1173		struct request *req)
1174{
1175	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1176
1177	/*
1178	 * Passthrough requests may transfer data, in which case they must
1179	 * a bio attached to them.  Or they might contain a SCSI command
1180	 * that does not transfer data, in which case they may optionally
1181	 * submit a request without an attached bio.
1182	 */
1183	if (req->bio) {
1184		blk_status_t ret = scsi_alloc_sgtables(cmd);
1185		if (unlikely(ret != BLK_STS_OK))
 
 
 
 
1186			return ret;
1187	} else {
1188		BUG_ON(blk_rq_bytes(req));
1189
1190		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 
1191	}
1192
 
 
 
 
 
 
 
 
1193	cmd->transfersize = blk_rq_bytes(req);
1194	return BLK_STS_OK;
 
1195}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196
1197static blk_status_t
1198scsi_device_state_check(struct scsi_device *sdev, struct request *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
1199{
1200	switch (sdev->sdev_state) {
1201	case SDEV_CREATED:
1202		return BLK_STS_OK;
1203	case SDEV_OFFLINE:
1204	case SDEV_TRANSPORT_OFFLINE:
1205		/*
1206		 * If the device is offline we refuse to process any
1207		 * commands.  The device must be brought online
1208		 * before trying any recovery commands.
1209		 */
1210		if (!sdev->offline_already) {
1211			sdev->offline_already = true;
 
 
1212			sdev_printk(KERN_ERR, sdev,
1213				    "rejecting I/O to offline device\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1214		}
1215		return BLK_STS_IOERR;
1216	case SDEV_DEL:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1217		/*
1218		 * If the device is fully deleted, we refuse to
1219		 * process any commands as well.
 
1220		 */
1221		sdev_printk(KERN_ERR, sdev,
1222			    "rejecting I/O to dead device\n");
1223		return BLK_STS_IOERR;
1224	case SDEV_BLOCK:
1225	case SDEV_CREATED_BLOCK:
1226		return BLK_STS_RESOURCE;
1227	case SDEV_QUIESCE:
1228		/*
1229		 * If the device is blocked we only accept power management
1230		 * commands.
1231		 */
1232		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1233			return BLK_STS_RESOURCE;
1234		return BLK_STS_OK;
1235	default:
1236		/*
1237		 * For any other not fully online state we only allow
1238		 * power management commands.
1239		 */
1240		if (req && !(req->rq_flags & RQF_PM))
1241			return BLK_STS_OFFLINE;
1242		return BLK_STS_OK;
1243	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1244}
 
1245
1246/*
1247 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1248 * and return the token else return -1.
 
 
1249 */
1250static inline int scsi_dev_queue_ready(struct request_queue *q,
1251				  struct scsi_device *sdev)
1252{
1253	int token;
1254
1255	token = sbitmap_get(&sdev->budget_map);
1256	if (token < 0)
1257		return -1;
1258
1259	if (!atomic_read(&sdev->device_blocked))
1260		return token;
1261
1262	/*
1263	 * Only unblock if no other commands are pending and
1264	 * if device_blocked has decreased to zero
1265	 */
1266	if (scsi_device_busy(sdev) > 1 ||
1267	    atomic_dec_return(&sdev->device_blocked) > 0) {
1268		sbitmap_put(&sdev->budget_map, token);
1269		return -1;
1270	}
 
 
1271
1272	SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1273			 "unblocking device at zero depth\n"));
1274
1275	return token;
1276}
1277
1278/*
1279 * scsi_target_queue_ready: checks if there we can send commands to target
1280 * @sdev: scsi device on starget to check.
 
 
1281 */
1282static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1283					   struct scsi_device *sdev)
1284{
1285	struct scsi_target *starget = scsi_target(sdev);
1286	unsigned int busy;
1287
1288	if (starget->single_lun) {
1289		spin_lock_irq(shost->host_lock);
1290		if (starget->starget_sdev_user &&
1291		    starget->starget_sdev_user != sdev) {
1292			spin_unlock_irq(shost->host_lock);
1293			return 0;
1294		}
1295		starget->starget_sdev_user = sdev;
1296		spin_unlock_irq(shost->host_lock);
1297	}
1298
1299	if (starget->can_queue <= 0)
1300		return 1;
1301
1302	busy = atomic_inc_return(&starget->target_busy) - 1;
1303	if (atomic_read(&starget->target_blocked) > 0) {
1304		if (busy)
1305			goto starved;
1306
1307		/*
1308		 * unblock after target_blocked iterates to zero
1309		 */
1310		if (atomic_dec_return(&starget->target_blocked) > 0)
1311			goto out_dec;
 
 
 
 
1312
1313		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1314				 "unblocking target at zero depth\n"));
 
 
 
1315	}
1316
1317	if (busy >= starget->can_queue)
1318		goto starved;
1319
1320	return 1;
1321
1322starved:
1323	spin_lock_irq(shost->host_lock);
1324	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1325	spin_unlock_irq(shost->host_lock);
1326out_dec:
1327	if (starget->can_queue > 0)
1328		atomic_dec(&starget->target_busy);
1329	return 0;
1330}
1331
1332/*
1333 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1334 * return 0. We must end up running the queue again whenever 0 is
1335 * returned, else IO can hang.
 
 
1336 */
1337static inline int scsi_host_queue_ready(struct request_queue *q,
1338				   struct Scsi_Host *shost,
1339				   struct scsi_device *sdev,
1340				   struct scsi_cmnd *cmd)
1341{
1342	if (atomic_read(&shost->host_blocked) > 0) {
1343		if (scsi_host_busy(shost) > 0)
1344			goto starved;
1345
1346		/*
1347		 * unblock after host_blocked iterates to zero
1348		 */
1349		if (atomic_dec_return(&shost->host_blocked) > 0)
1350			goto out_dec;
1351
1352		SCSI_LOG_MLQUEUE(3,
1353			shost_printk(KERN_INFO, shost,
1354				     "unblocking host at zero depth\n"));
 
 
 
 
 
 
1355	}
1356
1357	if (shost->host_self_blocked)
1358		goto starved;
1359
1360	/* We're OK to process the command, so we can't be starved */
1361	if (!list_empty(&sdev->starved_entry)) {
1362		spin_lock_irq(shost->host_lock);
1363		if (!list_empty(&sdev->starved_entry))
1364			list_del_init(&sdev->starved_entry);
1365		spin_unlock_irq(shost->host_lock);
1366	}
1367
1368	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1369
1370	return 1;
1371
1372starved:
1373	spin_lock_irq(shost->host_lock);
1374	if (list_empty(&sdev->starved_entry))
1375		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1376	spin_unlock_irq(shost->host_lock);
1377out_dec:
1378	scsi_dec_host_busy(shost, cmd);
1379	return 0;
1380}
1381
1382/*
1383 * Busy state exporting function for request stacking drivers.
1384 *
1385 * For efficiency, no lock is taken to check the busy state of
1386 * shost/starget/sdev, since the returned value is not guaranteed and
1387 * may be changed after request stacking drivers call the function,
1388 * regardless of taking lock or not.
1389 *
1390 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1391 * needs to return 'not busy'. Otherwise, request stacking drivers
1392 * may hold requests forever.
1393 */
1394static bool scsi_mq_lld_busy(struct request_queue *q)
1395{
1396	struct scsi_device *sdev = q->queuedata;
1397	struct Scsi_Host *shost;
 
1398
1399	if (blk_queue_dying(q))
1400		return false;
1401
1402	shost = sdev->host;
 
1403
1404	/*
1405	 * Ignore host/starget busy state.
1406	 * Since block layer does not have a concept of fairness across
1407	 * multiple queues, congestion of host/starget needs to be handled
1408	 * in SCSI layer.
1409	 */
1410	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1411		return true;
1412
1413	return false;
1414}
1415
1416/*
1417 * Block layer request completion callback. May be called from interrupt
1418 * context.
1419 */
1420static void scsi_complete(struct request *rq)
1421{
1422	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1423	enum scsi_disposition disposition;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424
1425	INIT_LIST_HEAD(&cmd->eh_entry);
1426
1427	atomic_inc(&cmd->device->iodone_cnt);
1428	if (cmd->result)
1429		atomic_inc(&cmd->device->ioerr_cnt);
1430
1431	disposition = scsi_decide_disposition(cmd);
1432	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
 
 
 
 
1433		disposition = SUCCESS;
1434
 
1435	scsi_log_completion(cmd, disposition);
1436
1437	switch (disposition) {
1438	case SUCCESS:
1439		scsi_finish_command(cmd);
1440		break;
1441	case NEEDS_RETRY:
1442		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1443		break;
1444	case ADD_TO_MLQUEUE:
1445		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1446		break;
1447	default:
1448		scsi_eh_scmd_add(cmd);
1449		break;
1450	}
1451}
1452
1453/**
1454 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1455 * @cmd: command block we are dispatching.
 
 
 
 
 
1456 *
1457 * Return: nonzero return request was rejected and device's queue needs to be
1458 * plugged.
1459 */
1460static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1461{
1462	struct Scsi_Host *host = cmd->device->host;
1463	int rtn = 0;
 
 
1464
1465	atomic_inc(&cmd->device->iorequest_cnt);
1466
1467	/* check if the device is still usable */
1468	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1469		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1470		 * returns an immediate error upwards, and signals
1471		 * that the device is no longer present */
1472		cmd->result = DID_NO_CONNECT << 16;
1473		goto done;
1474	}
1475
1476	/* Check to see if the scsi lld made this device blocked. */
1477	if (unlikely(scsi_device_blocked(cmd->device))) {
1478		/*
1479		 * in blocked state, the command is just put back on
1480		 * the device queue.  The suspend state has already
1481		 * blocked the queue so future requests should not
1482		 * occur until the device transitions out of the
1483		 * suspend state.
1484		 */
1485		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1486			"queuecommand : device blocked\n"));
1487		atomic_dec(&cmd->device->iorequest_cnt);
1488		return SCSI_MLQUEUE_DEVICE_BUSY;
1489	}
1490
1491	/* Store the LUN value in cmnd, if needed. */
1492	if (cmd->device->lun_in_cdb)
1493		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1494			       (cmd->device->lun << 5 & 0xe0);
1495
1496	scsi_log_send(cmd);
1497
1498	/*
1499	 * Before we queue this command, check if the command
1500	 * length exceeds what the host adapter can handle.
1501	 */
1502	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1503		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1504			       "queuecommand : command too long. "
1505			       "cdb_size=%d host->max_cmd_len=%d\n",
1506			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1507		cmd->result = (DID_ABORT << 16);
1508		goto done;
1509	}
 
 
 
1510
1511	if (unlikely(host->shost_state == SHOST_DEL)) {
1512		cmd->result = (DID_NO_CONNECT << 16);
1513		goto done;
 
 
 
1514
1515	}
1516
1517	trace_scsi_dispatch_cmd_start(cmd);
1518	rtn = host->hostt->queuecommand(host, cmd);
1519	if (rtn) {
1520		atomic_dec(&cmd->device->iorequest_cnt);
1521		trace_scsi_dispatch_cmd_error(cmd, rtn);
1522		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1523		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1524			rtn = SCSI_MLQUEUE_HOST_BUSY;
 
 
 
 
 
 
 
 
 
 
1525
1526		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1527			"queuecommand : request rejected\n"));
1528	}
 
 
 
 
 
 
 
 
 
 
 
1529
1530	return rtn;
1531 done:
1532	scsi_done(cmd);
1533	return 0;
1534}
1535
1536/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1537static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1538{
1539	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1540		sizeof(struct scatterlist);
1541}
1542
1543static blk_status_t scsi_prepare_cmd(struct request *req)
1544{
1545	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1546	struct scsi_device *sdev = req->q->queuedata;
1547	struct Scsi_Host *shost = sdev->host;
1548	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1549	struct scatterlist *sg;
1550
1551	scsi_init_command(sdev, cmd);
 
 
 
 
1552
1553	cmd->eh_eflags = 0;
1554	cmd->prot_type = 0;
1555	cmd->prot_flags = 0;
1556	cmd->submitter = 0;
1557	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1558	cmd->underflow = 0;
1559	cmd->transfersize = 0;
1560	cmd->host_scribble = NULL;
1561	cmd->result = 0;
1562	cmd->extra_len = 0;
1563	cmd->state = 0;
1564	if (in_flight)
1565		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1566
1567	/*
1568	 * Only clear the driver-private command data if the LLD does not supply
1569	 * a function to initialize that data.
1570	 */
1571	if (!shost->hostt->init_cmd_priv)
1572		memset(cmd + 1, 0, shost->hostt->cmd_size);
1573
1574	cmd->prot_op = SCSI_PROT_NORMAL;
1575	if (blk_rq_bytes(req))
1576		cmd->sc_data_direction = rq_dma_dir(req);
1577	else
1578		cmd->sc_data_direction = DMA_NONE;
1579
1580	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1581	cmd->sdb.table.sgl = sg;
1582
1583	if (scsi_host_get_prot(shost)) {
1584		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1585
1586		cmd->prot_sdb->table.sgl =
1587			(struct scatterlist *)(cmd->prot_sdb + 1);
1588	}
1589
1590	/*
1591	 * Special handling for passthrough commands, which don't go to the ULP
1592	 * at all:
1593	 */
1594	if (blk_rq_is_passthrough(req))
1595		return scsi_setup_scsi_cmnd(sdev, req);
1596
1597	if (sdev->handler && sdev->handler->prep_fn) {
1598		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1599
1600		if (ret != BLK_STS_OK)
1601			return ret;
1602	}
1603
1604	/* Usually overridden by the ULP */
1605	cmd->allowed = 0;
1606	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1607	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1608}
1609
1610static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1611{
1612	struct request *req = scsi_cmd_to_rq(cmd);
1613
1614	switch (cmd->submitter) {
1615	case SUBMITTED_BY_BLOCK_LAYER:
1616		break;
1617	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1618		return scsi_eh_done(cmd);
1619	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1620		return;
1621	}
1622
1623	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1624		return;
1625	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1626		return;
1627	trace_scsi_dispatch_cmd_done(cmd);
1628
1629	if (complete_directly)
1630		blk_mq_complete_request_direct(req, scsi_complete);
1631	else
1632		blk_mq_complete_request(req);
1633}
1634
1635void scsi_done(struct scsi_cmnd *cmd)
1636{
1637	scsi_done_internal(cmd, false);
1638}
1639EXPORT_SYMBOL(scsi_done);
1640
1641void scsi_done_direct(struct scsi_cmnd *cmd)
1642{
1643	scsi_done_internal(cmd, true);
1644}
1645EXPORT_SYMBOL(scsi_done_direct);
1646
1647static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1648{
1649	struct scsi_device *sdev = q->queuedata;
1650
1651	sbitmap_put(&sdev->budget_map, budget_token);
1652}
1653
1654/*
1655 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1656 * not change behaviour from the previous unplug mechanism, experimentation
1657 * may prove this needs changing.
1658 */
1659#define SCSI_QUEUE_DELAY 3
1660
1661static int scsi_mq_get_budget(struct request_queue *q)
1662{
1663	struct scsi_device *sdev = q->queuedata;
1664	int token = scsi_dev_queue_ready(q, sdev);
1665
1666	if (token >= 0)
1667		return token;
1668
1669	atomic_inc(&sdev->restarts);
1670
1671	/*
1672	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1673	 * .restarts must be incremented before .device_busy is read because the
1674	 * code in scsi_run_queue_async() depends on the order of these operations.
1675	 */
1676	smp_mb__after_atomic();
1677
1678	/*
1679	 * If all in-flight requests originated from this LUN are completed
1680	 * before reading .device_busy, sdev->device_busy will be observed as
1681	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1682	 * soon. Otherwise, completion of one of these requests will observe
1683	 * the .restarts flag, and the request queue will be run for handling
1684	 * this request, see scsi_end_request().
1685	 */
1686	if (unlikely(scsi_device_busy(sdev) == 0 &&
1687				!scsi_device_blocked(sdev)))
1688		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1689	return -1;
1690}
1691
1692static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1693{
1694	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1695
1696	cmd->budget_token = token;
 
1697}
1698
1699static int scsi_mq_get_rq_budget_token(struct request *req)
1700{
1701	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1702
1703	return cmd->budget_token;
1704}
1705
1706static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1707			 const struct blk_mq_queue_data *bd)
1708{
1709	struct request *req = bd->rq;
1710	struct request_queue *q = req->q;
1711	struct scsi_device *sdev = q->queuedata;
1712	struct Scsi_Host *shost = sdev->host;
1713	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1714	blk_status_t ret;
1715	int reason;
1716
1717	WARN_ON_ONCE(cmd->budget_token < 0);
1718
 
 
1719	/*
1720	 * If the device is not in running state we will reject some or all
1721	 * commands.
1722	 */
1723	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1724		ret = scsi_device_state_check(sdev, req);
1725		if (ret != BLK_STS_OK)
1726			goto out_put_budget;
1727	}
1728
1729	ret = BLK_STS_RESOURCE;
1730	if (!scsi_target_queue_ready(shost, sdev))
1731		goto out_put_budget;
1732	if (unlikely(scsi_host_in_recovery(shost))) {
1733		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1734			ret = BLK_STS_OFFLINE;
1735		goto out_dec_target_busy;
1736	}
1737	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1738		goto out_dec_target_busy;
1739
1740	if (!(req->rq_flags & RQF_DONTPREP)) {
1741		ret = scsi_prepare_cmd(req);
1742		if (ret != BLK_STS_OK)
1743			goto out_dec_host_busy;
1744		req->rq_flags |= RQF_DONTPREP;
1745	} else {
1746		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1747	}
1748
1749	cmd->flags &= SCMD_PRESERVED_FLAGS;
1750	if (sdev->simple_tags)
1751		cmd->flags |= SCMD_TAGGED;
1752	if (bd->last)
1753		cmd->flags |= SCMD_LAST;
1754
1755	scsi_set_resid(cmd, 0);
1756	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1757	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1758
1759	blk_mq_start_request(req);
1760	reason = scsi_dispatch_cmd(cmd);
1761	if (reason) {
1762		scsi_set_blocked(cmd, reason);
1763		ret = BLK_STS_RESOURCE;
1764		goto out_dec_host_busy;
1765	}
1766
1767	return BLK_STS_OK;
1768
1769out_dec_host_busy:
1770	scsi_dec_host_busy(shost, cmd);
1771out_dec_target_busy:
1772	if (scsi_target(sdev)->can_queue > 0)
1773		atomic_dec(&scsi_target(sdev)->target_busy);
1774out_put_budget:
1775	scsi_mq_put_budget(q, cmd->budget_token);
1776	cmd->budget_token = -1;
1777	switch (ret) {
1778	case BLK_STS_OK:
1779		break;
1780	case BLK_STS_RESOURCE:
1781	case BLK_STS_ZONE_RESOURCE:
1782		if (scsi_device_blocked(sdev))
1783			ret = BLK_STS_DEV_RESOURCE;
1784		break;
1785	case BLK_STS_AGAIN:
1786		cmd->result = DID_BUS_BUSY << 16;
1787		if (req->rq_flags & RQF_DONTPREP)
1788			scsi_mq_uninit_cmd(cmd);
1789		break;
1790	default:
1791		if (unlikely(!scsi_device_online(sdev)))
1792			cmd->result = DID_NO_CONNECT << 16;
1793		else
1794			cmd->result = DID_ERROR << 16;
1795		/*
1796		 * Make sure to release all allocated resources when
1797		 * we hit an error, as we will never see this command
1798		 * again.
1799		 */
1800		if (req->rq_flags & RQF_DONTPREP)
1801			scsi_mq_uninit_cmd(cmd);
1802		scsi_run_queue_async(sdev);
1803		break;
1804	}
1805	return ret;
1806}
 
1807
1808static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1809				unsigned int hctx_idx, unsigned int numa_node)
1810{
1811	struct Scsi_Host *shost = set->driver_data;
1812	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1813	struct scatterlist *sg;
1814	int ret = 0;
1815
1816	cmd->sense_buffer =
1817		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1818	if (!cmd->sense_buffer)
1819		return -ENOMEM;
1820
1821	if (scsi_host_get_prot(shost)) {
1822		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1823			shost->hostt->cmd_size;
1824		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1825	}
1826
1827	if (shost->hostt->init_cmd_priv) {
1828		ret = shost->hostt->init_cmd_priv(shost, cmd);
1829		if (ret < 0)
1830			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1831	}
1832
1833	return ret;
1834}
1835
1836static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1837				 unsigned int hctx_idx)
1838{
1839	struct Scsi_Host *shost = set->driver_data;
1840	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1841
1842	if (shost->hostt->exit_cmd_priv)
1843		shost->hostt->exit_cmd_priv(shost, cmd);
1844	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1845}
1846
1847
1848static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1849{
1850	struct Scsi_Host *shost = hctx->driver_data;
1851
1852	if (shost->hostt->mq_poll)
1853		return shost->hostt->mq_poll(shost, hctx->queue_num);
1854
1855	return 0;
1856}
1857
1858static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1859			  unsigned int hctx_idx)
1860{
1861	struct Scsi_Host *shost = data;
1862
1863	hctx->driver_data = shost;
1864	return 0;
1865}
1866
1867static void scsi_map_queues(struct blk_mq_tag_set *set)
1868{
1869	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1870
1871	if (shost->hostt->map_queues)
1872		return shost->hostt->map_queues(shost);
1873	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1874}
1875
1876void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1877{
1878	struct device *dev = shost->dma_dev;
1879
1880	/*
1881	 * this limit is imposed by hardware restrictions
1882	 */
1883	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1884					SG_MAX_SEGMENTS));
1885
1886	if (scsi_host_prot_dma(shost)) {
1887		shost->sg_prot_tablesize =
1888			min_not_zero(shost->sg_prot_tablesize,
1889				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1890		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1891		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1892	}
1893
1894	blk_queue_max_hw_sectors(q, shost->max_sectors);
 
1895	blk_queue_segment_boundary(q, shost->dma_boundary);
1896	dma_set_seg_boundary(dev, shost->dma_boundary);
1897
1898	blk_queue_max_segment_size(q, shost->max_segment_size);
1899	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1900	dma_set_max_seg_size(dev, queue_max_segment_size(q));
 
1901
1902	/*
1903	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1904	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1905	 * which is set by the platform.
1906	 *
1907	 * Devices that require a bigger alignment can increase it later.
1908	 */
1909	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
 
 
1910}
1911EXPORT_SYMBOL_GPL(__scsi_init_queue);
1912
1913static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1914	.get_budget	= scsi_mq_get_budget,
1915	.put_budget	= scsi_mq_put_budget,
1916	.queue_rq	= scsi_queue_rq,
1917	.complete	= scsi_complete,
1918	.timeout	= scsi_timeout,
1919#ifdef CONFIG_BLK_DEBUG_FS
1920	.show_rq	= scsi_show_rq,
1921#endif
1922	.init_request	= scsi_mq_init_request,
1923	.exit_request	= scsi_mq_exit_request,
1924	.cleanup_rq	= scsi_cleanup_rq,
1925	.busy		= scsi_mq_lld_busy,
1926	.map_queues	= scsi_map_queues,
1927	.init_hctx	= scsi_init_hctx,
1928	.poll		= scsi_mq_poll,
1929	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1930	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1931};
1932
1933
1934static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1935{
1936	struct Scsi_Host *shost = hctx->driver_data;
1937
1938	shost->hostt->commit_rqs(shost, hctx->queue_num);
1939}
1940
1941static const struct blk_mq_ops scsi_mq_ops = {
1942	.get_budget	= scsi_mq_get_budget,
1943	.put_budget	= scsi_mq_put_budget,
1944	.queue_rq	= scsi_queue_rq,
1945	.commit_rqs	= scsi_commit_rqs,
1946	.complete	= scsi_complete,
1947	.timeout	= scsi_timeout,
1948#ifdef CONFIG_BLK_DEBUG_FS
1949	.show_rq	= scsi_show_rq,
1950#endif
1951	.init_request	= scsi_mq_init_request,
1952	.exit_request	= scsi_mq_exit_request,
1953	.cleanup_rq	= scsi_cleanup_rq,
1954	.busy		= scsi_mq_lld_busy,
1955	.map_queues	= scsi_map_queues,
1956	.init_hctx	= scsi_init_hctx,
1957	.poll		= scsi_mq_poll,
1958	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1959	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1960};
1961
1962int scsi_mq_setup_tags(struct Scsi_Host *shost)
1963{
1964	unsigned int cmd_size, sgl_size;
1965	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1966
1967	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1968				scsi_mq_inline_sgl_size(shost));
1969	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1970	if (scsi_host_get_prot(shost))
1971		cmd_size += sizeof(struct scsi_data_buffer) +
1972			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1973
1974	memset(tag_set, 0, sizeof(*tag_set));
1975	if (shost->hostt->commit_rqs)
1976		tag_set->ops = &scsi_mq_ops;
1977	else
1978		tag_set->ops = &scsi_mq_ops_no_commit;
1979	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1980	tag_set->nr_maps = shost->nr_maps ? : 1;
1981	tag_set->queue_depth = shost->can_queue;
1982	tag_set->cmd_size = cmd_size;
1983	tag_set->numa_node = dev_to_node(shost->dma_dev);
1984	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1985	tag_set->flags |=
1986		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1987	if (shost->queuecommand_may_block)
1988		tag_set->flags |= BLK_MQ_F_BLOCKING;
1989	tag_set->driver_data = shost;
1990	if (shost->host_tagset)
1991		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1992
1993	return blk_mq_alloc_tag_set(tag_set);
1994}
1995
1996void scsi_mq_free_tags(struct kref *kref)
1997{
1998	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
1999					       tagset_refcnt);
2000
2001	blk_mq_free_tag_set(&shost->tag_set);
2002	complete(&shost->tagset_freed);
2003}
2004
2005/**
2006 * scsi_device_from_queue - return sdev associated with a request_queue
2007 * @q: The request queue to return the sdev from
 
 
 
 
 
 
2008 *
2009 * Return the sdev associated with a request queue or NULL if the
2010 * request_queue does not reference a SCSI device.
2011 */
2012struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2013{
2014	struct scsi_device *sdev = NULL;
2015
2016	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2017	    q->mq_ops == &scsi_mq_ops)
2018		sdev = q->queuedata;
2019	if (!sdev || !get_device(&sdev->sdev_gendev))
2020		sdev = NULL;
2021
2022	return sdev;
2023}
2024/*
2025 * pktcdvd should have been integrated into the SCSI layers, but for historical
2026 * reasons like the old IDE driver it isn't.  This export allows it to safely
2027 * probe if a given device is a SCSI one and only attach to that.
2028 */
2029#ifdef CONFIG_CDROM_PKTCDVD_MODULE
2030EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2031#endif
2032
2033/**
2034 * scsi_block_requests - Utility function used by low-level drivers to prevent
2035 * further commands from being queued to the device.
2036 * @shost:  host in question
2037 *
2038 * There is no timer nor any other means by which the requests get unblocked
2039 * other than the low-level driver calling scsi_unblock_requests().
 
2040 */
2041void scsi_block_requests(struct Scsi_Host *shost)
2042{
2043	shost->host_self_blocked = 1;
2044}
2045EXPORT_SYMBOL(scsi_block_requests);
2046
2047/**
2048 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2049 * further commands to be queued to the device.
2050 * @shost:  host in question
2051 *
2052 * There is no timer nor any other means by which the requests get unblocked
2053 * other than the low-level driver calling scsi_unblock_requests(). This is done
2054 * as an API function so that changes to the internals of the scsi mid-layer
2055 * won't require wholesale changes to drivers that use this feature.
 
 
 
 
 
 
 
 
 
 
2056 */
2057void scsi_unblock_requests(struct Scsi_Host *shost)
2058{
2059	shost->host_self_blocked = 0;
2060	scsi_run_host_queues(shost);
2061}
2062EXPORT_SYMBOL(scsi_unblock_requests);
2063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2064void scsi_exit_queue(void)
2065{
2066	kmem_cache_destroy(scsi_sense_cache);
 
 
 
 
 
 
 
 
2067}
2068
2069/**
2070 *	scsi_mode_select - issue a mode select
2071 *	@sdev:	SCSI device to be queried
2072 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2073 *	@sp:	Save page bit (0 == don't save, 1 == save)
 
2074 *	@buffer: request buffer (may not be smaller than eight bytes)
2075 *	@len:	length of request buffer.
2076 *	@timeout: command timeout
2077 *	@retries: number of retries before failing
2078 *	@data: returns a structure abstracting the mode header data
2079 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2080 *		must be SCSI_SENSE_BUFFERSIZE big.
2081 *
2082 *	Returns zero if successful; negative error number or scsi
2083 *	status on error
2084 *
2085 */
2086int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2087		     unsigned char *buffer, int len, int timeout, int retries,
2088		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
 
2089{
2090	unsigned char cmd[10];
2091	unsigned char *real_buffer;
2092	const struct scsi_exec_args exec_args = {
2093		.sshdr = sshdr,
2094	};
2095	int ret;
2096
2097	memset(cmd, 0, sizeof(cmd));
2098	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2099
2100	/*
2101	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2102	 * and the mode select header cannot fit within the maximumm 255 bytes
2103	 * of the MODE SELECT(6) command.
2104	 */
2105	if (sdev->use_10_for_ms ||
2106	    len + 4 > 255 ||
2107	    data->block_descriptor_length > 255) {
2108		if (len > 65535 - 8)
2109			return -EINVAL;
2110		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2111		if (!real_buffer)
2112			return -ENOMEM;
2113		memcpy(real_buffer + 8, buffer, len);
2114		len += 8;
2115		real_buffer[0] = 0;
2116		real_buffer[1] = 0;
2117		real_buffer[2] = data->medium_type;
2118		real_buffer[3] = data->device_specific;
2119		real_buffer[4] = data->longlba ? 0x01 : 0;
2120		real_buffer[5] = 0;
2121		put_unaligned_be16(data->block_descriptor_length,
2122				   &real_buffer[6]);
2123
2124		cmd[0] = MODE_SELECT_10;
2125		put_unaligned_be16(len, &cmd[7]);
 
2126	} else {
2127		if (data->longlba)
 
2128			return -EINVAL;
2129
2130		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2131		if (!real_buffer)
2132			return -ENOMEM;
2133		memcpy(real_buffer + 4, buffer, len);
2134		len += 4;
2135		real_buffer[0] = 0;
2136		real_buffer[1] = data->medium_type;
2137		real_buffer[2] = data->device_specific;
2138		real_buffer[3] = data->block_descriptor_length;
 
2139
2140		cmd[0] = MODE_SELECT;
2141		cmd[4] = len;
2142	}
2143
2144	ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2145			       timeout, retries, &exec_args);
2146	kfree(real_buffer);
2147	return ret;
2148}
2149EXPORT_SYMBOL_GPL(scsi_mode_select);
2150
2151/**
2152 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2153 *	@sdev:	SCSI device to be queried
2154 *	@dbd:	set to prevent mode sense from returning block descriptors
2155 *	@modepage: mode page being requested
2156 *	@subpage: sub-page of the mode page being requested
2157 *	@buffer: request buffer (may not be smaller than eight bytes)
2158 *	@len:	length of request buffer.
2159 *	@timeout: command timeout
2160 *	@retries: number of retries before failing
2161 *	@data: returns a structure abstracting the mode header data
2162 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2163 *		must be SCSI_SENSE_BUFFERSIZE big.
2164 *
2165 *	Returns zero if successful, or a negative error number on failure
 
 
2166 */
2167int
2168scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2169		  unsigned char *buffer, int len, int timeout, int retries,
2170		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2171{
2172	unsigned char cmd[12];
2173	int use_10_for_ms;
2174	int header_length;
2175	int result, retry_count = retries;
2176	struct scsi_sense_hdr my_sshdr;
2177	const struct scsi_exec_args exec_args = {
2178		/* caller might not be interested in sense, but we need it */
2179		.sshdr = sshdr ? : &my_sshdr,
2180	};
2181
2182	memset(data, 0, sizeof(*data));
2183	memset(&cmd[0], 0, 12);
2184
2185	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2186	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2187	cmd[2] = modepage;
2188	cmd[3] = subpage;
2189
2190	sshdr = exec_args.sshdr;
 
 
2191
2192 retry:
2193	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2194
2195	if (use_10_for_ms) {
2196		if (len < 8 || len > 65535)
2197			return -EINVAL;
2198
2199		cmd[0] = MODE_SENSE_10;
2200		put_unaligned_be16(len, &cmd[7]);
2201		header_length = 8;
2202	} else {
2203		if (len < 4)
2204			return -EINVAL;
2205
2206		cmd[0] = MODE_SENSE;
2207		cmd[4] = len;
2208		header_length = 4;
2209	}
2210
2211	memset(buffer, 0, len);
2212
2213	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2214				  timeout, retries, &exec_args);
2215	if (result < 0)
2216		return result;
2217
2218	/* This code looks awful: what it's doing is making sure an
2219	 * ILLEGAL REQUEST sense return identifies the actual command
2220	 * byte as the problem.  MODE_SENSE commands can return
2221	 * ILLEGAL REQUEST if the code page isn't supported */
2222
2223	if (!scsi_status_is_good(result)) {
 
2224		if (scsi_sense_valid(sshdr)) {
2225			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2226			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2227				/*
2228				 * Invalid command operation code: retry using
2229				 * MODE SENSE(6) if this was a MODE SENSE(10)
2230				 * request, except if the request mode page is
2231				 * too large for MODE SENSE single byte
2232				 * allocation length field.
2233				 */
2234				if (use_10_for_ms) {
2235					if (len > 255)
2236						return -EIO;
2237					sdev->use_10_for_ms = 0;
2238					goto retry;
2239				}
2240			}
2241			if (scsi_status_is_check_condition(result) &&
2242			    sshdr->sense_key == UNIT_ATTENTION &&
2243			    retry_count) {
2244				retry_count--;
2245				goto retry;
2246			}
2247		}
2248		return -EIO;
2249	}
2250	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2251		     (modepage == 6 || modepage == 8))) {
2252		/* Initio breakage? */
2253		header_length = 0;
2254		data->length = 13;
2255		data->medium_type = 0;
2256		data->device_specific = 0;
2257		data->longlba = 0;
2258		data->block_descriptor_length = 0;
2259	} else if (use_10_for_ms) {
2260		data->length = get_unaligned_be16(&buffer[0]) + 2;
2261		data->medium_type = buffer[2];
2262		data->device_specific = buffer[3];
2263		data->longlba = buffer[4] & 0x01;
2264		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2265	} else {
2266		data->length = buffer[0] + 1;
2267		data->medium_type = buffer[1];
2268		data->device_specific = buffer[2];
2269		data->block_descriptor_length = buffer[3];
 
 
 
 
 
2270	}
2271	data->header_length = header_length;
2272
2273	return 0;
2274}
2275EXPORT_SYMBOL(scsi_mode_sense);
2276
2277/**
2278 *	scsi_test_unit_ready - test if unit is ready
2279 *	@sdev:	scsi device to change the state of.
2280 *	@timeout: command timeout
2281 *	@retries: number of retries before failing
2282 *	@sshdr: outpout pointer for decoded sense information.
 
 
2283 *
2284 *	Returns zero if unsuccessful or an error if TUR failed.  For
2285 *	removable media, UNIT_ATTENTION sets ->changed flag.
2286 **/
2287int
2288scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2289		     struct scsi_sense_hdr *sshdr)
2290{
2291	char cmd[] = {
2292		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2293	};
2294	const struct scsi_exec_args exec_args = {
2295		.sshdr = sshdr,
2296	};
2297	int result;
2298
 
 
 
 
 
2299	/* try to eat the UNIT_ATTENTION if there are enough retries */
2300	do {
2301		result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2302					  timeout, 1, &exec_args);
2303		if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2304		    sshdr->sense_key == UNIT_ATTENTION)
2305			sdev->changed = 1;
2306	} while (result > 0 && scsi_sense_valid(sshdr) &&
2307		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2308
 
 
2309	return result;
2310}
2311EXPORT_SYMBOL(scsi_test_unit_ready);
2312
2313/**
2314 *	scsi_device_set_state - Take the given device through the device state model.
2315 *	@sdev:	scsi device to change the state of.
2316 *	@state:	state to change to.
2317 *
2318 *	Returns zero if successful or an error if the requested
2319 *	transition is illegal.
2320 */
2321int
2322scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2323{
2324	enum scsi_device_state oldstate = sdev->sdev_state;
2325
2326	if (state == oldstate)
2327		return 0;
2328
2329	switch (state) {
2330	case SDEV_CREATED:
2331		switch (oldstate) {
2332		case SDEV_CREATED_BLOCK:
2333			break;
2334		default:
2335			goto illegal;
2336		}
2337		break;
2338
2339	case SDEV_RUNNING:
2340		switch (oldstate) {
2341		case SDEV_CREATED:
2342		case SDEV_OFFLINE:
2343		case SDEV_TRANSPORT_OFFLINE:
2344		case SDEV_QUIESCE:
2345		case SDEV_BLOCK:
2346			break;
2347		default:
2348			goto illegal;
2349		}
2350		break;
2351
2352	case SDEV_QUIESCE:
2353		switch (oldstate) {
2354		case SDEV_RUNNING:
2355		case SDEV_OFFLINE:
2356		case SDEV_TRANSPORT_OFFLINE:
2357			break;
2358		default:
2359			goto illegal;
2360		}
2361		break;
2362
2363	case SDEV_OFFLINE:
2364	case SDEV_TRANSPORT_OFFLINE:
2365		switch (oldstate) {
2366		case SDEV_CREATED:
2367		case SDEV_RUNNING:
2368		case SDEV_QUIESCE:
2369		case SDEV_BLOCK:
2370			break;
2371		default:
2372			goto illegal;
2373		}
2374		break;
2375
2376	case SDEV_BLOCK:
2377		switch (oldstate) {
2378		case SDEV_RUNNING:
2379		case SDEV_CREATED_BLOCK:
2380		case SDEV_QUIESCE:
2381		case SDEV_OFFLINE:
2382			break;
2383		default:
2384			goto illegal;
2385		}
2386		break;
2387
2388	case SDEV_CREATED_BLOCK:
2389		switch (oldstate) {
2390		case SDEV_CREATED:
2391			break;
2392		default:
2393			goto illegal;
2394		}
2395		break;
2396
2397	case SDEV_CANCEL:
2398		switch (oldstate) {
2399		case SDEV_CREATED:
2400		case SDEV_RUNNING:
2401		case SDEV_QUIESCE:
2402		case SDEV_OFFLINE:
2403		case SDEV_TRANSPORT_OFFLINE:
2404			break;
2405		default:
2406			goto illegal;
2407		}
2408		break;
2409
2410	case SDEV_DEL:
2411		switch (oldstate) {
2412		case SDEV_CREATED:
2413		case SDEV_RUNNING:
2414		case SDEV_OFFLINE:
2415		case SDEV_TRANSPORT_OFFLINE:
2416		case SDEV_CANCEL:
2417		case SDEV_BLOCK:
2418		case SDEV_CREATED_BLOCK:
2419			break;
2420		default:
2421			goto illegal;
2422		}
2423		break;
2424
2425	}
2426	sdev->offline_already = false;
2427	sdev->sdev_state = state;
2428	return 0;
2429
2430 illegal:
2431	SCSI_LOG_ERROR_RECOVERY(1,
2432				sdev_printk(KERN_ERR, sdev,
2433					    "Illegal state transition %s->%s",
2434					    scsi_device_state_name(oldstate),
2435					    scsi_device_state_name(state))
2436				);
2437	return -EINVAL;
2438}
2439EXPORT_SYMBOL(scsi_device_set_state);
2440
2441/**
2442 *	scsi_evt_emit - emit a single SCSI device uevent
2443 *	@sdev: associated SCSI device
2444 *	@evt: event to emit
2445 *
2446 *	Send a single uevent (scsi_event) to the associated scsi_device.
2447 */
2448static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2449{
2450	int idx = 0;
2451	char *envp[3];
2452
2453	switch (evt->evt_type) {
2454	case SDEV_EVT_MEDIA_CHANGE:
2455		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2456		break;
2457	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2458		scsi_rescan_device(sdev);
2459		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2460		break;
2461	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2462		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2463		break;
2464	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2465	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2466		break;
2467	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2468		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2469		break;
2470	case SDEV_EVT_LUN_CHANGE_REPORTED:
2471		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2472		break;
2473	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2474		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2475		break;
2476	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2477		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2478		break;
2479	default:
2480		/* do nothing */
2481		break;
2482	}
2483
2484	envp[idx++] = NULL;
2485
2486	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2487}
2488
2489/**
2490 *	scsi_evt_thread - send a uevent for each scsi event
2491 *	@work: work struct for scsi_device
2492 *
2493 *	Dispatch queued events to their associated scsi_device kobjects
2494 *	as uevents.
2495 */
2496void scsi_evt_thread(struct work_struct *work)
2497{
2498	struct scsi_device *sdev;
2499	enum scsi_device_event evt_type;
2500	LIST_HEAD(event_list);
2501
2502	sdev = container_of(work, struct scsi_device, event_work);
2503
2504	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2505		if (test_and_clear_bit(evt_type, sdev->pending_events))
2506			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2507
2508	while (1) {
2509		struct scsi_event *evt;
2510		struct list_head *this, *tmp;
2511		unsigned long flags;
2512
2513		spin_lock_irqsave(&sdev->list_lock, flags);
2514		list_splice_init(&sdev->event_list, &event_list);
2515		spin_unlock_irqrestore(&sdev->list_lock, flags);
2516
2517		if (list_empty(&event_list))
2518			break;
2519
2520		list_for_each_safe(this, tmp, &event_list) {
2521			evt = list_entry(this, struct scsi_event, node);
2522			list_del(&evt->node);
2523			scsi_evt_emit(sdev, evt);
2524			kfree(evt);
2525		}
2526	}
2527}
2528
2529/**
2530 * 	sdev_evt_send - send asserted event to uevent thread
2531 *	@sdev: scsi_device event occurred on
2532 *	@evt: event to send
2533 *
2534 *	Assert scsi device event asynchronously.
2535 */
2536void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2537{
2538	unsigned long flags;
2539
2540#if 0
2541	/* FIXME: currently this check eliminates all media change events
2542	 * for polled devices.  Need to update to discriminate between AN
2543	 * and polled events */
2544	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2545		kfree(evt);
2546		return;
2547	}
2548#endif
2549
2550	spin_lock_irqsave(&sdev->list_lock, flags);
2551	list_add_tail(&evt->node, &sdev->event_list);
2552	schedule_work(&sdev->event_work);
2553	spin_unlock_irqrestore(&sdev->list_lock, flags);
2554}
2555EXPORT_SYMBOL_GPL(sdev_evt_send);
2556
2557/**
2558 * 	sdev_evt_alloc - allocate a new scsi event
2559 *	@evt_type: type of event to allocate
2560 *	@gfpflags: GFP flags for allocation
2561 *
2562 *	Allocates and returns a new scsi_event.
2563 */
2564struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2565				  gfp_t gfpflags)
2566{
2567	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2568	if (!evt)
2569		return NULL;
2570
2571	evt->evt_type = evt_type;
2572	INIT_LIST_HEAD(&evt->node);
2573
2574	/* evt_type-specific initialization, if any */
2575	switch (evt_type) {
2576	case SDEV_EVT_MEDIA_CHANGE:
2577	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2578	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2579	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2580	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2581	case SDEV_EVT_LUN_CHANGE_REPORTED:
2582	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2583	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2584	default:
2585		/* do nothing */
2586		break;
2587	}
2588
2589	return evt;
2590}
2591EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2592
2593/**
2594 * 	sdev_evt_send_simple - send asserted event to uevent thread
2595 *	@sdev: scsi_device event occurred on
2596 *	@evt_type: type of event to send
2597 *	@gfpflags: GFP flags for allocation
2598 *
2599 *	Assert scsi device event asynchronously, given an event type.
2600 */
2601void sdev_evt_send_simple(struct scsi_device *sdev,
2602			  enum scsi_device_event evt_type, gfp_t gfpflags)
2603{
2604	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2605	if (!evt) {
2606		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2607			    evt_type);
2608		return;
2609	}
2610
2611	sdev_evt_send(sdev, evt);
2612}
2613EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2614
2615/**
2616 *	scsi_device_quiesce - Block all commands except power management.
2617 *	@sdev:	scsi device to quiesce.
2618 *
2619 *	This works by trying to transition to the SDEV_QUIESCE state
2620 *	(which must be a legal transition).  When the device is in this
2621 *	state, only power management requests will be accepted, all others will
2622 *	be deferred.
 
 
2623 *
2624 *	Must be called with user context, may sleep.
2625 *
2626 *	Returns zero if unsuccessful or an error if not.
2627 */
2628int
2629scsi_device_quiesce(struct scsi_device *sdev)
2630{
2631	struct request_queue *q = sdev->request_queue;
2632	int err;
2633
2634	/*
2635	 * It is allowed to call scsi_device_quiesce() multiple times from
2636	 * the same context but concurrent scsi_device_quiesce() calls are
2637	 * not allowed.
2638	 */
2639	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2640
2641	if (sdev->quiesced_by == current)
2642		return 0;
2643
2644	blk_set_pm_only(q);
2645
2646	blk_mq_freeze_queue(q);
2647	/*
2648	 * Ensure that the effect of blk_set_pm_only() will be visible
2649	 * for percpu_ref_tryget() callers that occur after the queue
2650	 * unfreeze even if the queue was already frozen before this function
2651	 * was called. See also https://lwn.net/Articles/573497/.
2652	 */
2653	synchronize_rcu();
2654	blk_mq_unfreeze_queue(q);
2655
2656	mutex_lock(&sdev->state_mutex);
2657	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2658	if (err == 0)
2659		sdev->quiesced_by = current;
2660	else
2661		blk_clear_pm_only(q);
2662	mutex_unlock(&sdev->state_mutex);
2663
2664	return err;
2665}
2666EXPORT_SYMBOL(scsi_device_quiesce);
2667
2668/**
2669 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2670 *	@sdev:	scsi device to resume.
2671 *
2672 *	Moves the device from quiesced back to running and restarts the
2673 *	queues.
2674 *
2675 *	Must be called with user context, may sleep.
2676 */
2677void scsi_device_resume(struct scsi_device *sdev)
 
2678{
2679	/* check if the device state was mutated prior to resume, and if
2680	 * so assume the state is being managed elsewhere (for example
2681	 * device deleted during suspend)
2682	 */
2683	mutex_lock(&sdev->state_mutex);
2684	if (sdev->sdev_state == SDEV_QUIESCE)
2685		scsi_device_set_state(sdev, SDEV_RUNNING);
2686	if (sdev->quiesced_by) {
2687		sdev->quiesced_by = NULL;
2688		blk_clear_pm_only(sdev->request_queue);
2689	}
2690	mutex_unlock(&sdev->state_mutex);
2691}
2692EXPORT_SYMBOL(scsi_device_resume);
2693
2694static void
2695device_quiesce_fn(struct scsi_device *sdev, void *data)
2696{
2697	scsi_device_quiesce(sdev);
2698}
2699
2700void
2701scsi_target_quiesce(struct scsi_target *starget)
2702{
2703	starget_for_each_device(starget, NULL, device_quiesce_fn);
2704}
2705EXPORT_SYMBOL(scsi_target_quiesce);
2706
2707static void
2708device_resume_fn(struct scsi_device *sdev, void *data)
2709{
2710	scsi_device_resume(sdev);
2711}
2712
2713void
2714scsi_target_resume(struct scsi_target *starget)
2715{
2716	starget_for_each_device(starget, NULL, device_resume_fn);
2717}
2718EXPORT_SYMBOL(scsi_target_resume);
2719
2720static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2721{
2722	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2723		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2724
2725	return 0;
2726}
2727
2728void scsi_start_queue(struct scsi_device *sdev)
2729{
2730	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2731		blk_mq_unquiesce_queue(sdev->request_queue);
2732}
2733
2734static void scsi_stop_queue(struct scsi_device *sdev)
2735{
2736	/*
2737	 * The atomic variable of ->queue_stopped covers that
2738	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2739	 *
2740	 * The caller needs to wait until quiesce is done.
2741	 */
2742	if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2743		blk_mq_quiesce_queue_nowait(sdev->request_queue);
2744}
2745
2746/**
2747 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2748 * @sdev: device to block
2749 *
2750 * Pause SCSI command processing on the specified device. Does not sleep.
 
 
2751 *
2752 * Returns zero if successful or a negative error code upon failure.
2753 *
2754 * Notes:
2755 * This routine transitions the device to the SDEV_BLOCK state (which must be
2756 * a legal transition). When the device is in this state, command processing
2757 * is paused until the device leaves the SDEV_BLOCK state. See also
2758 * scsi_internal_device_unblock_nowait().
 
2759 */
2760int scsi_internal_device_block_nowait(struct scsi_device *sdev)
 
2761{
2762	int ret = __scsi_internal_device_block_nowait(sdev);
 
 
 
 
 
 
 
 
 
 
2763
2764	/*
2765	 * The device has transitioned to SDEV_BLOCK.  Stop the
2766	 * block layer from calling the midlayer with this device's
2767	 * request queue.
2768	 */
2769	if (!ret)
2770		scsi_stop_queue(sdev);
2771	return ret;
2772}
2773EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2774
2775/**
2776 * scsi_device_block - try to transition to the SDEV_BLOCK state
2777 * @sdev: device to block
2778 * @data: dummy argument, ignored
2779 *
2780 * Pause SCSI command processing on the specified device. Callers must wait
2781 * until all ongoing scsi_queue_rq() calls have finished after this function
2782 * returns.
2783 *
2784 * Note:
2785 * This routine transitions the device to the SDEV_BLOCK state (which must be
2786 * a legal transition). When the device is in this state, command processing
2787 * is paused until the device leaves the SDEV_BLOCK state. See also
2788 * scsi_internal_device_unblock().
2789 */
2790static void scsi_device_block(struct scsi_device *sdev, void *data)
2791{
2792	int err;
2793	enum scsi_device_state state;
2794
2795	mutex_lock(&sdev->state_mutex);
2796	err = __scsi_internal_device_block_nowait(sdev);
2797	state = sdev->sdev_state;
2798	if (err == 0)
2799		/*
2800		 * scsi_stop_queue() must be called with the state_mutex
2801		 * held. Otherwise a simultaneous scsi_start_queue() call
2802		 * might unquiesce the queue before we quiesce it.
2803		 */
2804		scsi_stop_queue(sdev);
2805
2806	mutex_unlock(&sdev->state_mutex);
2807
2808	WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2809		  __func__, dev_name(&sdev->sdev_gendev), state);
2810}
2811
 
2812/**
2813 * scsi_internal_device_unblock_nowait - resume a device after a block request
2814 * @sdev:	device to resume
2815 * @new_state:	state to set the device to after unblocking
2816 *
2817 * Restart the device queue for a previously suspended SCSI device. Does not
2818 * sleep.
2819 *
2820 * Returns zero if successful or a negative error code upon failure.
2821 *
2822 * Notes:
2823 * This routine transitions the device to the SDEV_RUNNING state or to one of
2824 * the offline states (which must be a legal transition) allowing the midlayer
2825 * to goose the queue for this device.
 
 
2826 */
2827int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2828					enum scsi_device_state new_state)
2829{
2830	switch (new_state) {
2831	case SDEV_RUNNING:
2832	case SDEV_TRANSPORT_OFFLINE:
2833		break;
2834	default:
 
 
 
 
 
 
 
 
2835		return -EINVAL;
2836	}
2837
2838	/*
2839	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2840	 * offlined states and goose the device queue if successful.
2841	 */
2842	switch (sdev->sdev_state) {
2843	case SDEV_BLOCK:
2844	case SDEV_TRANSPORT_OFFLINE:
2845		sdev->sdev_state = new_state;
2846		break;
2847	case SDEV_CREATED_BLOCK:
2848		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2849		    new_state == SDEV_OFFLINE)
2850			sdev->sdev_state = new_state;
2851		else
2852			sdev->sdev_state = SDEV_CREATED;
2853		break;
2854	case SDEV_CANCEL:
2855	case SDEV_OFFLINE:
2856		break;
2857	default:
2858		return -EINVAL;
2859	}
2860	scsi_start_queue(sdev);
2861
2862	return 0;
2863}
2864EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2865
2866/**
2867 * scsi_internal_device_unblock - resume a device after a block request
2868 * @sdev:	device to resume
2869 * @new_state:	state to set the device to after unblocking
2870 *
2871 * Restart the device queue for a previously suspended SCSI device. May sleep.
2872 *
2873 * Returns zero if successful or a negative error code upon failure.
2874 *
2875 * Notes:
2876 * This routine transitions the device to the SDEV_RUNNING state or to one of
2877 * the offline states (which must be a legal transition) allowing the midlayer
2878 * to goose the queue for this device.
2879 */
2880static int scsi_internal_device_unblock(struct scsi_device *sdev,
2881					enum scsi_device_state new_state)
2882{
2883	int ret;
2884
2885	mutex_lock(&sdev->state_mutex);
2886	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2887	mutex_unlock(&sdev->state_mutex);
2888
2889	return ret;
2890}
2891
2892static int
2893target_block(struct device *dev, void *data)
2894{
2895	if (scsi_is_target_device(dev))
2896		starget_for_each_device(to_scsi_target(dev), NULL,
2897					scsi_device_block);
2898	return 0;
2899}
2900
2901/**
2902 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
2903 * @dev: a parent device of one or more scsi_target devices
2904 * @shost: the Scsi_Host to which this device belongs
2905 *
2906 * Iterate over all children of @dev, which should be scsi_target devices,
2907 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
2908 * ongoing scsi_queue_rq() calls to finish. May sleep.
2909 *
2910 * Note:
2911 * @dev must not itself be a scsi_target device.
2912 */
2913void
2914scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
2915{
2916	WARN_ON_ONCE(scsi_is_target_device(dev));
2917	device_for_each_child(dev, NULL, target_block);
2918	blk_mq_wait_quiesce_done(&shost->tag_set);
 
 
2919}
2920EXPORT_SYMBOL_GPL(scsi_block_targets);
2921
2922static void
2923device_unblock(struct scsi_device *sdev, void *data)
2924{
2925	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2926}
2927
2928static int
2929target_unblock(struct device *dev, void *data)
2930{
2931	if (scsi_is_target_device(dev))
2932		starget_for_each_device(to_scsi_target(dev), data,
2933					device_unblock);
2934	return 0;
2935}
2936
2937void
2938scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2939{
2940	if (scsi_is_target_device(dev))
2941		starget_for_each_device(to_scsi_target(dev), &new_state,
2942					device_unblock);
2943	else
2944		device_for_each_child(dev, &new_state, target_unblock);
2945}
2946EXPORT_SYMBOL_GPL(scsi_target_unblock);
2947
2948/**
2949 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
2950 * @shost: device to block
2951 *
2952 * Pause SCSI command processing for all logical units associated with the SCSI
2953 * host and wait until pending scsi_queue_rq() calls have finished.
2954 *
2955 * Returns zero if successful or a negative error code upon failure.
2956 */
2957int
2958scsi_host_block(struct Scsi_Host *shost)
2959{
2960	struct scsi_device *sdev;
2961	int ret;
2962
2963	/*
2964	 * Call scsi_internal_device_block_nowait so we can avoid
2965	 * calling synchronize_rcu() for each LUN.
2966	 */
2967	shost_for_each_device(sdev, shost) {
2968		mutex_lock(&sdev->state_mutex);
2969		ret = scsi_internal_device_block_nowait(sdev);
2970		mutex_unlock(&sdev->state_mutex);
2971		if (ret) {
2972			scsi_device_put(sdev);
2973			return ret;
2974		}
2975	}
2976
2977	/* Wait for ongoing scsi_queue_rq() calls to finish. */
2978	blk_mq_wait_quiesce_done(&shost->tag_set);
2979
2980	return 0;
2981}
2982EXPORT_SYMBOL_GPL(scsi_host_block);
2983
2984int
2985scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2986{
2987	struct scsi_device *sdev;
2988	int ret = 0;
2989
2990	shost_for_each_device(sdev, shost) {
2991		ret = scsi_internal_device_unblock(sdev, new_state);
2992		if (ret) {
2993			scsi_device_put(sdev);
2994			break;
2995		}
2996	}
2997	return ret;
2998}
2999EXPORT_SYMBOL_GPL(scsi_host_unblock);
3000
3001/**
3002 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3003 * @sgl:	scatter-gather list
3004 * @sg_count:	number of segments in sg
3005 * @offset:	offset in bytes into sg, on return offset into the mapped area
3006 * @len:	bytes to map, on return number of bytes mapped
3007 *
3008 * Returns virtual address of the start of the mapped page
3009 */
3010void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3011			  size_t *offset, size_t *len)
3012{
3013	int i;
3014	size_t sg_len = 0, len_complete = 0;
3015	struct scatterlist *sg;
3016	struct page *page;
3017
3018	WARN_ON(!irqs_disabled());
3019
3020	for_each_sg(sgl, sg, sg_count, i) {
3021		len_complete = sg_len; /* Complete sg-entries */
3022		sg_len += sg->length;
3023		if (sg_len > *offset)
3024			break;
3025	}
3026
3027	if (unlikely(i == sg_count)) {
3028		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3029			"elements %d\n",
3030		       __func__, sg_len, *offset, sg_count);
3031		WARN_ON(1);
3032		return NULL;
3033	}
3034
3035	/* Offset starting from the beginning of first page in this sg-entry */
3036	*offset = *offset - len_complete + sg->offset;
3037
3038	/* Assumption: contiguous pages can be accessed as "page + i" */
3039	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3040	*offset &= ~PAGE_MASK;
3041
3042	/* Bytes in this sg-entry from *offset to the end of the page */
3043	sg_len = PAGE_SIZE - *offset;
3044	if (*len > sg_len)
3045		*len = sg_len;
3046
3047	return kmap_atomic(page);
3048}
3049EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3050
3051/**
3052 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3053 * @virt:	virtual address to be unmapped
3054 */
3055void scsi_kunmap_atomic_sg(void *virt)
3056{
3057	kunmap_atomic(virt);
3058}
3059EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3060
3061void sdev_disable_disk_events(struct scsi_device *sdev)
3062{
3063	atomic_inc(&sdev->disk_events_disable_depth);
3064}
3065EXPORT_SYMBOL(sdev_disable_disk_events);
3066
3067void sdev_enable_disk_events(struct scsi_device *sdev)
3068{
3069	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3070		return;
3071	atomic_dec(&sdev->disk_events_disable_depth);
3072}
3073EXPORT_SYMBOL(sdev_enable_disk_events);
3074
3075static unsigned char designator_prio(const unsigned char *d)
3076{
3077	if (d[1] & 0x30)
3078		/* not associated with LUN */
3079		return 0;
3080
3081	if (d[3] == 0)
3082		/* invalid length */
3083		return 0;
3084
3085	/*
3086	 * Order of preference for lun descriptor:
3087	 * - SCSI name string
3088	 * - NAA IEEE Registered Extended
3089	 * - EUI-64 based 16-byte
3090	 * - EUI-64 based 12-byte
3091	 * - NAA IEEE Registered
3092	 * - NAA IEEE Extended
3093	 * - EUI-64 based 8-byte
3094	 * - SCSI name string (truncated)
3095	 * - T10 Vendor ID
3096	 * as longer descriptors reduce the likelyhood
3097	 * of identification clashes.
3098	 */
3099
3100	switch (d[1] & 0xf) {
3101	case 8:
3102		/* SCSI name string, variable-length UTF-8 */
3103		return 9;
3104	case 3:
3105		switch (d[4] >> 4) {
3106		case 6:
3107			/* NAA registered extended */
3108			return 8;
3109		case 5:
3110			/* NAA registered */
3111			return 5;
3112		case 4:
3113			/* NAA extended */
3114			return 4;
3115		case 3:
3116			/* NAA locally assigned */
3117			return 1;
3118		default:
3119			break;
3120		}
3121		break;
3122	case 2:
3123		switch (d[3]) {
3124		case 16:
3125			/* EUI64-based, 16 byte */
3126			return 7;
3127		case 12:
3128			/* EUI64-based, 12 byte */
3129			return 6;
3130		case 8:
3131			/* EUI64-based, 8 byte */
3132			return 3;
3133		default:
3134			break;
3135		}
3136		break;
3137	case 1:
3138		/* T10 vendor ID */
3139		return 1;
3140	default:
3141		break;
3142	}
3143
3144	return 0;
3145}
3146
3147/**
3148 * scsi_vpd_lun_id - return a unique device identification
3149 * @sdev: SCSI device
3150 * @id:   buffer for the identification
3151 * @id_len:  length of the buffer
3152 *
3153 * Copies a unique device identification into @id based
3154 * on the information in the VPD page 0x83 of the device.
3155 * The string will be formatted as a SCSI name string.
3156 *
3157 * Returns the length of the identification or error on failure.
3158 * If the identifier is longer than the supplied buffer the actual
3159 * identifier length is returned and the buffer is not zero-padded.
3160 */
3161int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3162{
3163	u8 cur_id_prio = 0;
3164	u8 cur_id_size = 0;
3165	const unsigned char *d, *cur_id_str;
3166	const struct scsi_vpd *vpd_pg83;
3167	int id_size = -EINVAL;
3168
3169	rcu_read_lock();
3170	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3171	if (!vpd_pg83) {
3172		rcu_read_unlock();
3173		return -ENXIO;
3174	}
3175
3176	/* The id string must be at least 20 bytes + terminating NULL byte */
3177	if (id_len < 21) {
3178		rcu_read_unlock();
3179		return -EINVAL;
3180	}
3181
3182	memset(id, 0, id_len);
3183	for (d = vpd_pg83->data + 4;
3184	     d < vpd_pg83->data + vpd_pg83->len;
3185	     d += d[3] + 4) {
3186		u8 prio = designator_prio(d);
3187
3188		if (prio == 0 || cur_id_prio > prio)
3189			continue;
3190
3191		switch (d[1] & 0xf) {
3192		case 0x1:
3193			/* T10 Vendor ID */
3194			if (cur_id_size > d[3])
3195				break;
3196			cur_id_prio = prio;
3197			cur_id_size = d[3];
3198			if (cur_id_size + 4 > id_len)
3199				cur_id_size = id_len - 4;
3200			cur_id_str = d + 4;
3201			id_size = snprintf(id, id_len, "t10.%*pE",
3202					   cur_id_size, cur_id_str);
3203			break;
3204		case 0x2:
3205			/* EUI-64 */
3206			cur_id_prio = prio;
3207			cur_id_size = d[3];
3208			cur_id_str = d + 4;
3209			switch (cur_id_size) {
3210			case 8:
3211				id_size = snprintf(id, id_len,
3212						   "eui.%8phN",
3213						   cur_id_str);
3214				break;
3215			case 12:
3216				id_size = snprintf(id, id_len,
3217						   "eui.%12phN",
3218						   cur_id_str);
3219				break;
3220			case 16:
3221				id_size = snprintf(id, id_len,
3222						   "eui.%16phN",
3223						   cur_id_str);
3224				break;
3225			default:
3226				break;
3227			}
3228			break;
3229		case 0x3:
3230			/* NAA */
3231			cur_id_prio = prio;
3232			cur_id_size = d[3];
3233			cur_id_str = d + 4;
3234			switch (cur_id_size) {
3235			case 8:
3236				id_size = snprintf(id, id_len,
3237						   "naa.%8phN",
3238						   cur_id_str);
3239				break;
3240			case 16:
3241				id_size = snprintf(id, id_len,
3242						   "naa.%16phN",
3243						   cur_id_str);
3244				break;
3245			default:
3246				break;
3247			}
3248			break;
3249		case 0x8:
3250			/* SCSI name string */
3251			if (cur_id_size > d[3])
3252				break;
3253			/* Prefer others for truncated descriptor */
3254			if (d[3] > id_len) {
3255				prio = 2;
3256				if (cur_id_prio > prio)
3257					break;
3258			}
3259			cur_id_prio = prio;
3260			cur_id_size = id_size = d[3];
3261			cur_id_str = d + 4;
3262			if (cur_id_size >= id_len)
3263				cur_id_size = id_len - 1;
3264			memcpy(id, cur_id_str, cur_id_size);
3265			break;
3266		default:
3267			break;
3268		}
3269	}
3270	rcu_read_unlock();
3271
3272	return id_size;
3273}
3274EXPORT_SYMBOL(scsi_vpd_lun_id);
3275
3276/*
3277 * scsi_vpd_tpg_id - return a target port group identifier
3278 * @sdev: SCSI device
3279 *
3280 * Returns the Target Port Group identifier from the information
3281 * froom VPD page 0x83 of the device.
3282 *
3283 * Returns the identifier or error on failure.
3284 */
3285int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3286{
3287	const unsigned char *d;
3288	const struct scsi_vpd *vpd_pg83;
3289	int group_id = -EAGAIN, rel_port = -1;
3290
3291	rcu_read_lock();
3292	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3293	if (!vpd_pg83) {
3294		rcu_read_unlock();
3295		return -ENXIO;
3296	}
3297
3298	d = vpd_pg83->data + 4;
3299	while (d < vpd_pg83->data + vpd_pg83->len) {
3300		switch (d[1] & 0xf) {
3301		case 0x4:
3302			/* Relative target port */
3303			rel_port = get_unaligned_be16(&d[6]);
3304			break;
3305		case 0x5:
3306			/* Target port group */
3307			group_id = get_unaligned_be16(&d[6]);
3308			break;
3309		default:
3310			break;
3311		}
3312		d += d[3] + 4;
3313	}
3314	rcu_read_unlock();
3315
3316	if (group_id >= 0 && rel_id && rel_port != -1)
3317		*rel_id = rel_port;
3318
3319	return group_id;
3320}
3321EXPORT_SYMBOL(scsi_vpd_tpg_id);
3322
3323/**
3324 * scsi_build_sense - build sense data for a command
3325 * @scmd:	scsi command for which the sense should be formatted
3326 * @desc:	Sense format (non-zero == descriptor format,
3327 *              0 == fixed format)
3328 * @key:	Sense key
3329 * @asc:	Additional sense code
3330 * @ascq:	Additional sense code qualifier
3331 *
3332 **/
3333void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3334{
3335	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3336	scmd->result = SAM_STAT_CHECK_CONDITION;
3337}
3338EXPORT_SYMBOL_GPL(scsi_build_sense);