Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v3.1
 
   1/*
   2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
 
   3 *
   4 *  SCSI queueing library.
   5 *      Initial versions: Eric Youngdale (eric@andante.org).
   6 *                        Based upon conversations with large numbers
   7 *                        of people at Linux Expo.
   8 */
   9
  10#include <linux/bio.h>
  11#include <linux/bitops.h>
  12#include <linux/blkdev.h>
  13#include <linux/completion.h>
  14#include <linux/kernel.h>
  15#include <linux/mempool.h>
  16#include <linux/slab.h>
  17#include <linux/init.h>
  18#include <linux/pci.h>
  19#include <linux/delay.h>
  20#include <linux/hardirq.h>
  21#include <linux/scatterlist.h>
 
 
 
  22
  23#include <scsi/scsi.h>
  24#include <scsi/scsi_cmnd.h>
  25#include <scsi/scsi_dbg.h>
  26#include <scsi/scsi_device.h>
  27#include <scsi/scsi_driver.h>
  28#include <scsi/scsi_eh.h>
  29#include <scsi/scsi_host.h>
 
 
  30
 
 
 
  31#include "scsi_priv.h"
  32#include "scsi_logging.h"
  33
 
 
 
 
 
 
 
 
 
 
 
  34
  35#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
  36#define SG_MEMPOOL_SIZE		2
 
 
  37
  38struct scsi_host_sg_pool {
  39	size_t		size;
  40	char		*name;
  41	struct kmem_cache	*slab;
  42	mempool_t	*pool;
  43};
  44
  45#define SP(x) { x, "sgpool-" __stringify(x) }
  46#if (SCSI_MAX_SG_SEGMENTS < 32)
  47#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
  48#endif
  49static struct scsi_host_sg_pool scsi_sg_pools[] = {
  50	SP(8),
  51	SP(16),
  52#if (SCSI_MAX_SG_SEGMENTS > 32)
  53	SP(32),
  54#if (SCSI_MAX_SG_SEGMENTS > 64)
  55	SP(64),
  56#if (SCSI_MAX_SG_SEGMENTS > 128)
  57	SP(128),
  58#if (SCSI_MAX_SG_SEGMENTS > 256)
  59#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
  60#endif
  61#endif
  62#endif
  63#endif
  64	SP(SCSI_MAX_SG_SEGMENTS)
  65};
  66#undef SP
  67
  68struct kmem_cache *scsi_sdb_cache;
 
 
 
 
 
  69
  70/*
  71 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
  72 * not change behaviour from the previous unplug mechanism, experimentation
  73 * may prove this needs changing.
  74 */
  75#define SCSI_QUEUE_DELAY	3
  76
  77/*
  78 * Function:	scsi_unprep_request()
  79 *
  80 * Purpose:	Remove all preparation done for a request, including its
  81 *		associated scsi_cmnd, so that it can be requeued.
  82 *
  83 * Arguments:	req	- request to unprepare
  84 *
  85 * Lock status:	Assumed that no locks are held upon entry.
  86 *
  87 * Returns:	Nothing.
  88 */
  89static void scsi_unprep_request(struct request *req)
  90{
  91	struct scsi_cmnd *cmd = req->special;
 
  92
  93	blk_unprep_request(req);
  94	req->special = NULL;
 
 
  95
  96	scsi_put_command(cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97}
  98
  99/**
 100 * __scsi_queue_insert - private queue insertion
 101 * @cmd: The SCSI command being requeued
 102 * @reason:  The reason for the requeue
 103 * @unbusy: Whether the queue should be unbusied
 104 *
 105 * This is a private queue insertion.  The public interface
 106 * scsi_queue_insert() always assumes the queue should be unbusied
 107 * because it's always called before the completion.  This function is
 108 * for a requeue after completion, which should only occur in this
 109 * file.
 110 */
 111static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
 
 
 
 112{
 113	struct Scsi_Host *host = cmd->device->host;
 114	struct scsi_device *device = cmd->device;
 115	struct scsi_target *starget = scsi_target(device);
 116	struct request_queue *q = device->request_queue;
 117	unsigned long flags;
 118
 119	SCSI_LOG_MLQUEUE(1,
 120		 printk("Inserting command %p into mlqueue\n", cmd));
 121
 122	/*
 123	 * Set the appropriate busy bit for the device/host.
 124	 *
 125	 * If the host/device isn't busy, assume that something actually
 126	 * completed, and that we should be able to queue a command now.
 127	 *
 128	 * Note that the prior mid-layer assumption that any host could
 129	 * always queue at least one command is now broken.  The mid-layer
 130	 * will implement a user specifiable stall (see
 131	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 132	 * if a command is requeued with no other commands outstanding
 133	 * either for the device or for the host.
 134	 */
 135	switch (reason) {
 136	case SCSI_MLQUEUE_HOST_BUSY:
 137		host->host_blocked = host->max_host_blocked;
 138		break;
 139	case SCSI_MLQUEUE_DEVICE_BUSY:
 140	case SCSI_MLQUEUE_EH_RETRY:
 141		device->device_blocked = device->max_device_blocked;
 
 142		break;
 143	case SCSI_MLQUEUE_TARGET_BUSY:
 144		starget->target_blocked = starget->max_target_blocked;
 
 145		break;
 146	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147
 148	/*
 149	 * Decrement the counters, since these commands are no longer
 150	 * active on the host/device.
 151	 */
 152	if (unbusy)
 153		scsi_device_unbusy(device);
 154
 155	/*
 156	 * Requeue this command.  It will go before all other commands
 157	 * that are already in the queue.
 
 
 158	 */
 159	spin_lock_irqsave(q->queue_lock, flags);
 160	blk_requeue_request(q, cmd->request);
 161	spin_unlock_irqrestore(q->queue_lock, flags);
 162
 163	kblockd_schedule_work(q, &device->requeue_work);
 164
 165	return 0;
 166}
 167
 168/*
 169 * Function:    scsi_queue_insert()
 170 *
 171 * Purpose:     Insert a command in the midlevel queue.
 172 *
 173 * Arguments:   cmd    - command that we are adding to queue.
 174 *              reason - why we are inserting command to queue.
 175 *
 176 * Lock status: Assumed that lock is not held upon entry.
 177 *
 178 * Returns:     Nothing.
 179 *
 180 * Notes:       We do this for one of two cases.  Either the host is busy
 181 *              and it cannot accept any more commands for the time being,
 182 *              or the device returned QUEUE_FULL and can accept no more
 183 *              commands.
 184 * Notes:       This could be called either from an interrupt context or a
 185 *              normal process context.
 186 */
 187int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 188{
 189	return __scsi_queue_insert(cmd, reason, 1);
 190}
 
 
 191/**
 192 * scsi_execute - insert request and wait for the result
 193 * @sdev:	scsi device
 194 * @cmd:	scsi command
 195 * @data_direction: data direction
 196 * @buffer:	data buffer
 197 * @bufflen:	len of buffer
 198 * @sense:	optional sense buffer
 
 199 * @timeout:	request timeout in seconds
 200 * @retries:	number of times to retry request
 201 * @flags:	or into request flags;
 
 202 * @resid:	optional residual length
 203 *
 204 * returns the req->errors value which is the scsi_cmnd result
 205 * field.
 206 */
 207int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 208		 int data_direction, void *buffer, unsigned bufflen,
 209		 unsigned char *sense, int timeout, int retries, int flags,
 
 210		 int *resid)
 211{
 212	struct request *req;
 213	int write = (data_direction == DMA_TO_DEVICE);
 214	int ret = DRIVER_ERROR << 24;
 215
 216	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
 217	if (!req)
 
 
 218		return ret;
 
 219
 220	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
 221					buffer, bufflen, __GFP_WAIT))
 222		goto out;
 223
 224	req->cmd_len = COMMAND_SIZE(cmd[0]);
 225	memcpy(req->cmd, cmd, req->cmd_len);
 226	req->sense = sense;
 227	req->sense_len = 0;
 228	req->retries = retries;
 229	req->timeout = timeout;
 230	req->cmd_type = REQ_TYPE_BLOCK_PC;
 231	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
 232
 233	/*
 234	 * head injection *required* here otherwise quiesce won't work
 235	 */
 236	blk_execute_rq(req->q, NULL, req, 1);
 237
 238	/*
 239	 * Some devices (USB mass-storage in particular) may transfer
 240	 * garbage data together with a residue indicating that the data
 241	 * is invalid.  Prevent the garbage from being misinterpreted
 242	 * and prevent security leaks by zeroing out the excess data.
 243	 */
 244	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
 245		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
 246
 247	if (resid)
 248		*resid = req->resid_len;
 249	ret = req->errors;
 
 
 
 
 250 out:
 251	blk_put_request(req);
 252
 253	return ret;
 254}
 255EXPORT_SYMBOL(scsi_execute);
 256
 257
 258int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
 259		     int data_direction, void *buffer, unsigned bufflen,
 260		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
 261		     int *resid)
 262{
 263	char *sense = NULL;
 264	int result;
 265	
 266	if (sshdr) {
 267		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
 268		if (!sense)
 269			return DRIVER_ERROR << 24;
 270	}
 271	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
 272			      sense, timeout, retries, 0, resid);
 273	if (sshdr)
 274		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
 275
 276	kfree(sense);
 277	return result;
 278}
 279EXPORT_SYMBOL(scsi_execute_req);
 280
 281/*
 282 * Function:    scsi_init_cmd_errh()
 283 *
 284 * Purpose:     Initialize cmd fields related to error handling.
 285 *
 286 * Arguments:   cmd	- command that is ready to be queued.
 287 *
 288 * Notes:       This function has the job of initializing a number of
 289 *              fields related to error handling.   Typically this will
 290 *              be called once for each command, as required.
 291 */
 292static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 293{
 294	cmd->serial_number = 0;
 295	scsi_set_resid(cmd, 0);
 296	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 297	if (cmd->cmd_len == 0)
 298		cmd->cmd_len = scsi_command_size(cmd->cmnd);
 299}
 300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 301void scsi_device_unbusy(struct scsi_device *sdev)
 302{
 303	struct Scsi_Host *shost = sdev->host;
 304	struct scsi_target *starget = scsi_target(sdev);
 305	unsigned long flags;
 306
 307	spin_lock_irqsave(shost->host_lock, flags);
 308	shost->host_busy--;
 309	starget->target_busy--;
 310	if (unlikely(scsi_host_in_recovery(shost) &&
 311		     (shost->host_failed || shost->host_eh_scheduled)))
 312		scsi_eh_wakeup(shost);
 313	spin_unlock(shost->host_lock);
 314	spin_lock(sdev->request_queue->queue_lock);
 315	sdev->device_busy--;
 316	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
 
 317}
 318
 319/*
 320 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 321 * and call blk_run_queue for all the scsi_devices on the target -
 322 * including current_sdev first.
 323 *
 324 * Called with *no* scsi locks held.
 325 */
 326static void scsi_single_lun_run(struct scsi_device *current_sdev)
 327{
 328	struct Scsi_Host *shost = current_sdev->host;
 329	struct scsi_device *sdev, *tmp;
 330	struct scsi_target *starget = scsi_target(current_sdev);
 331	unsigned long flags;
 332
 333	spin_lock_irqsave(shost->host_lock, flags);
 334	starget->starget_sdev_user = NULL;
 335	spin_unlock_irqrestore(shost->host_lock, flags);
 336
 337	/*
 338	 * Call blk_run_queue for all LUNs on the target, starting with
 339	 * current_sdev. We race with others (to set starget_sdev_user),
 340	 * but in most cases, we will be first. Ideally, each LU on the
 341	 * target would get some limited time or requests on the target.
 342	 */
 343	blk_run_queue(current_sdev->request_queue);
 344
 345	spin_lock_irqsave(shost->host_lock, flags);
 346	if (starget->starget_sdev_user)
 347		goto out;
 348	list_for_each_entry_safe(sdev, tmp, &starget->devices,
 349			same_target_siblings) {
 350		if (sdev == current_sdev)
 351			continue;
 352		if (scsi_device_get(sdev))
 353			continue;
 354
 355		spin_unlock_irqrestore(shost->host_lock, flags);
 356		blk_run_queue(sdev->request_queue);
 357		spin_lock_irqsave(shost->host_lock, flags);
 358	
 359		scsi_device_put(sdev);
 360	}
 361 out:
 362	spin_unlock_irqrestore(shost->host_lock, flags);
 363}
 364
 365static inline int scsi_device_is_busy(struct scsi_device *sdev)
 366{
 367	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
 368		return 1;
 369
 370	return 0;
 
 371}
 372
 373static inline int scsi_target_is_busy(struct scsi_target *starget)
 374{
 375	return ((starget->can_queue > 0 &&
 376		 starget->target_busy >= starget->can_queue) ||
 377		 starget->target_blocked);
 
 
 
 
 378}
 379
 380static inline int scsi_host_is_busy(struct Scsi_Host *shost)
 381{
 382	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
 383	    shost->host_blocked || shost->host_self_blocked)
 384		return 1;
 385
 386	return 0;
 
 
 
 387}
 388
 389/*
 390 * Function:	scsi_run_queue()
 391 *
 392 * Purpose:	Select a proper request queue to serve next
 393 *
 394 * Arguments:	q	- last request's queue
 395 *
 396 * Returns:     Nothing
 397 *
 398 * Notes:	The previous command was completely finished, start
 399 *		a new one if possible.
 400 */
 401static void scsi_run_queue(struct request_queue *q)
 402{
 403	struct scsi_device *sdev = q->queuedata;
 404	struct Scsi_Host *shost;
 405	LIST_HEAD(starved_list);
 
 406	unsigned long flags;
 407
 408	/* if the device is dead, sdev will be NULL, so no queue to run */
 409	if (!sdev)
 410		return;
 411
 412	shost = sdev->host;
 413	if (scsi_target(sdev)->single_lun)
 414		scsi_single_lun_run(sdev);
 415
 416	spin_lock_irqsave(shost->host_lock, flags);
 417	list_splice_init(&shost->starved_list, &starved_list);
 418
 419	while (!list_empty(&starved_list)) {
 
 
 420		/*
 421		 * As long as shost is accepting commands and we have
 422		 * starved queues, call blk_run_queue. scsi_request_fn
 423		 * drops the queue_lock and can add us back to the
 424		 * starved_list.
 425		 *
 426		 * host_lock protects the starved_list and starved_entry.
 427		 * scsi_request_fn must get the host_lock before checking
 428		 * or modifying starved_list or starved_entry.
 429		 */
 430		if (scsi_host_is_busy(shost))
 431			break;
 432
 433		sdev = list_entry(starved_list.next,
 434				  struct scsi_device, starved_entry);
 435		list_del_init(&sdev->starved_entry);
 436		if (scsi_target_is_busy(scsi_target(sdev))) {
 437			list_move_tail(&sdev->starved_entry,
 438				       &shost->starved_list);
 439			continue;
 440		}
 441
 442		spin_unlock(shost->host_lock);
 443		spin_lock(sdev->request_queue->queue_lock);
 444		__blk_run_queue(sdev->request_queue);
 445		spin_unlock(sdev->request_queue->queue_lock);
 446		spin_lock(shost->host_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447	}
 448	/* put any unprocessed entries back */
 449	list_splice(&starved_list, &shost->starved_list);
 450	spin_unlock_irqrestore(shost->host_lock, flags);
 451
 452	blk_run_queue(q);
 453}
 454
 455void scsi_requeue_run_queue(struct work_struct *work)
 456{
 457	struct scsi_device *sdev;
 458	struct request_queue *q;
 459
 460	sdev = container_of(work, struct scsi_device, requeue_work);
 461	q = sdev->request_queue;
 462	scsi_run_queue(q);
 463}
 464
 465/*
 466 * Function:	scsi_requeue_command()
 467 *
 468 * Purpose:	Handle post-processing of completed commands.
 469 *
 470 * Arguments:	q	- queue to operate on
 471 *		cmd	- command that may need to be requeued.
 472 *
 473 * Returns:	Nothing
 474 *
 475 * Notes:	After command completion, there may be blocks left
 476 *		over which weren't finished by the previous command
 477 *		this can be for a number of reasons - the main one is
 478 *		I/O errors in the middle of the request, in which case
 479 *		we need to request the blocks that come after the bad
 480 *		sector.
 481 * Notes:	Upon return, cmd is a stale pointer.
 482 */
 483static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
 484{
 485	struct request *req = cmd->request;
 486	unsigned long flags;
 487
 488	spin_lock_irqsave(q->queue_lock, flags);
 489	scsi_unprep_request(req);
 490	blk_requeue_request(q, req);
 491	spin_unlock_irqrestore(q->queue_lock, flags);
 492
 493	scsi_run_queue(q);
 494}
 495
 496void scsi_next_command(struct scsi_cmnd *cmd)
 497{
 498	struct scsi_device *sdev = cmd->device;
 499	struct request_queue *q = sdev->request_queue;
 500
 501	/* need to hold a reference on the device before we let go of the cmd */
 502	get_device(&sdev->sdev_gendev);
 503
 504	scsi_put_command(cmd);
 
 505	scsi_run_queue(q);
 506
 507	/* ok to remove device now */
 508	put_device(&sdev->sdev_gendev);
 509}
 510
 511void scsi_run_host_queues(struct Scsi_Host *shost)
 512{
 513	struct scsi_device *sdev;
 514
 515	shost_for_each_device(sdev, shost)
 516		scsi_run_queue(sdev->request_queue);
 517}
 518
 519static void __scsi_release_buffers(struct scsi_cmnd *, int);
 520
 521/*
 522 * Function:    scsi_end_request()
 523 *
 524 * Purpose:     Post-processing of completed commands (usually invoked at end
 525 *		of upper level post-processing and scsi_io_completion).
 526 *
 527 * Arguments:   cmd	 - command that is complete.
 528 *              error    - 0 if I/O indicates success, < 0 for I/O error.
 529 *              bytes    - number of bytes of completed I/O
 530 *		requeue  - indicates whether we should requeue leftovers.
 531 *
 532 * Lock status: Assumed that lock is not held upon entry.
 533 *
 534 * Returns:     cmd if requeue required, NULL otherwise.
 535 *
 536 * Notes:       This is called for block device requests in order to
 537 *              mark some number of sectors as complete.
 538 * 
 539 *		We are guaranteeing that the request queue will be goosed
 540 *		at some point during this call.
 541 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
 542 */
 543static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
 544					  int bytes, int requeue)
 545{
 546	struct request_queue *q = cmd->device->request_queue;
 547	struct request *req = cmd->request;
 548
 549	/*
 550	 * If there are blocks left over at the end, set up the command
 551	 * to queue the remainder of them.
 552	 */
 553	if (blk_end_request(req, error, bytes)) {
 554		/* kill remainder if no retrys */
 555		if (error && scsi_noretry_cmd(cmd))
 556			blk_end_request_all(req, error);
 557		else {
 558			if (requeue) {
 559				/*
 560				 * Bleah.  Leftovers again.  Stick the
 561				 * leftovers in the front of the
 562				 * queue, and goose the queue again.
 563				 */
 564				scsi_release_buffers(cmd);
 565				scsi_requeue_command(q, cmd);
 566				cmd = NULL;
 567			}
 568			return cmd;
 569		}
 570	}
 571
 572	/*
 573	 * This will goose the queue request function at the end, so we don't
 574	 * need to worry about launching another command.
 575	 */
 576	__scsi_release_buffers(cmd, 0);
 577	scsi_next_command(cmd);
 578	return NULL;
 579}
 580
 581static inline unsigned int scsi_sgtable_index(unsigned short nents)
 582{
 583	unsigned int index;
 584
 585	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
 586
 587	if (nents <= 8)
 588		index = 0;
 589	else
 590		index = get_count_order(nents) - 3;
 591
 592	return index;
 593}
 594
 595static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
 596{
 597	struct scsi_host_sg_pool *sgp;
 598
 599	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 600	mempool_free(sgl, sgp->pool);
 
 
 601}
 602
 603static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
 604{
 605	struct scsi_host_sg_pool *sgp;
 606
 607	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 608	return mempool_alloc(sgp->pool, gfp_mask);
 609}
 610
 611static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
 612			      gfp_t gfp_mask)
 
 613{
 614	int ret;
 
 
 615
 616	BUG_ON(!nents);
 
 617
 618	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
 619			       gfp_mask, scsi_sg_alloc);
 620	if (unlikely(ret))
 621		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
 622				scsi_sg_free);
 623
 624	return ret;
 625}
 
 
 626
 627static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
 628{
 629	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
 630}
 
 
 
 631
 632static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
 633{
 
 
 
 
 
 
 634
 635	if (cmd->sdb.table.nents)
 636		scsi_free_sgtable(&cmd->sdb);
 
 
 
 637
 638	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 639
 640	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
 641		struct scsi_data_buffer *bidi_sdb =
 642			cmd->request->next_rq->special;
 643		scsi_free_sgtable(bidi_sdb);
 644		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
 645		cmd->request->next_rq->special = NULL;
 646	}
 647
 648	if (scsi_prot_sg_count(cmd))
 649		scsi_free_sgtable(cmd->prot_sdb);
 650}
 651
 652/*
 653 * Function:    scsi_release_buffers()
 654 *
 655 * Purpose:     Completion processing for block device I/O requests.
 656 *
 657 * Arguments:   cmd	- command that we are bailing.
 658 *
 659 * Lock status: Assumed that no lock is held upon entry.
 660 *
 661 * Returns:     Nothing
 662 *
 663 * Notes:       In the event that an upper level driver rejects a
 664 *		command, we must release resources allocated during
 665 *		the __init_io() function.  Primarily this would involve
 666 *		the scatter-gather table, and potentially any bounce
 667 *		buffers.
 668 */
 669void scsi_release_buffers(struct scsi_cmnd *cmd)
 670{
 671	__scsi_release_buffers(cmd, 1);
 672}
 673EXPORT_SYMBOL(scsi_release_buffers);
 674
 675static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
 676{
 677	int error = 0;
 678
 679	switch(host_byte(result)) {
 
 
 
 
 
 
 
 680	case DID_TRANSPORT_FAILFAST:
 681		error = -ENOLINK;
 682		break;
 683	case DID_TARGET_FAILURE:
 684		cmd->result |= (DID_OK << 16);
 685		error = -EREMOTEIO;
 686		break;
 687	case DID_NEXUS_FAILURE:
 688		cmd->result |= (DID_OK << 16);
 689		error = -EBADE;
 690		break;
 
 
 
 
 
 691	default:
 692		error = -EIO;
 693		break;
 694	}
 
 695
 696	return error;
 
 
 
 
 
 697}
 698
 699/*
 700 * Function:    scsi_io_completion()
 701 *
 702 * Purpose:     Completion processing for block device I/O requests.
 703 *
 704 * Arguments:   cmd   - command that is finished.
 705 *
 706 * Lock status: Assumed that no lock is held upon entry.
 707 *
 708 * Returns:     Nothing
 709 *
 710 * Notes:       This function is matched in terms of capabilities to
 711 *              the function that created the scatter-gather list.
 712 *              In other words, if there are no bounce buffers
 713 *              (the normal case for most drivers), we don't need
 714 *              the logic to deal with cleaning up afterwards.
 715 *
 716 *		We must call scsi_end_request().  This will finish off
 717 *		the specified number of sectors.  If we are done, the
 718 *		command block will be released and the queue function
 719 *		will be goosed.  If we are not done then we have to
 720 *		figure out what to do next:
 721 *
 722 *		a) We can call scsi_requeue_command().  The request
 723 *		   will be unprepared and put back on the queue.  Then
 724 *		   a new command will be created for it.  This should
 725 *		   be used if we made forward progress, or if we want
 726 *		   to switch from READ(10) to READ(6) for example.
 727 *
 728 *		b) We can call scsi_queue_insert().  The request will
 729 *		   be put back on the queue and retried using the same
 730 *		   command as before, possibly after a delay.
 731 *
 732 *		c) We can call blk_end_request() with -EIO to fail
 733 *		   the remainder of the request.
 734 */
 735void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 736{
 737	int result = cmd->result;
 738	struct request_queue *q = cmd->device->request_queue;
 739	struct request *req = cmd->request;
 740	int error = 0;
 741	struct scsi_sense_hdr sshdr;
 742	int sense_valid = 0;
 743	int sense_deferred = 0;
 744	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 745	      ACTION_DELAYED_RETRY} action;
 746	char *description = NULL;
 747
 748	if (result) {
 749		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 750		if (sense_valid)
 751			sense_deferred = scsi_sense_is_deferred(&sshdr);
 752	}
 753
 754	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
 755		req->errors = result;
 756		if (result) {
 757			if (sense_valid && req->sense) {
 758				/*
 759				 * SG_IO wants current and deferred errors
 760				 */
 761				int len = 8 + cmd->sense_buffer[7];
 762
 763				if (len > SCSI_SENSE_BUFFERSIZE)
 764					len = SCSI_SENSE_BUFFERSIZE;
 765				memcpy(req->sense, cmd->sense_buffer,  len);
 766				req->sense_len = len;
 767			}
 768			if (!sense_deferred)
 769				error = __scsi_error_from_host_byte(cmd, result);
 770		}
 771
 772		req->resid_len = scsi_get_resid(cmd);
 773
 774		if (scsi_bidi_cmnd(cmd)) {
 775			/*
 776			 * Bidi commands Must be complete as a whole,
 777			 * both sides at once.
 778			 */
 779			req->next_rq->resid_len = scsi_in(cmd)->resid;
 780
 781			scsi_release_buffers(cmd);
 782			blk_end_request_all(req, 0);
 783
 784			scsi_next_command(cmd);
 785			return;
 786		}
 787	}
 788
 789	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
 790	BUG_ON(blk_bidi_rq(req));
 791
 792	/*
 793	 * Next deal with any sectors which we were able to correctly
 794	 * handle.
 795	 */
 796	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
 797				      "%d bytes done.\n",
 798				      blk_rq_sectors(req), good_bytes));
 799
 800	/*
 801	 * Recovered errors need reporting, but they're always treated
 802	 * as success, so fiddle the result code here.  For BLOCK_PC
 803	 * we already took a copy of the original into rq->errors which
 804	 * is what gets returned to the user
 805	 */
 806	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 807		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
 808		 * print since caller wants ATA registers. Only occurs on
 809		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
 810		 */
 811		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 812			;
 813		else if (!(req->cmd_flags & REQ_QUIET))
 814			scsi_print_sense("", cmd);
 815		result = 0;
 816		/* BLOCK_PC may have set error */
 817		error = 0;
 818	}
 819
 820	/*
 821	 * A number of bytes were successfully read.  If there
 822	 * are leftovers and there is some kind of error
 823	 * (result != 0), retry the rest.
 824	 */
 825	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
 826		return;
 827
 828	error = __scsi_error_from_host_byte(cmd, result);
 829
 830	if (host_byte(result) == DID_RESET) {
 831		/* Third party bus reset or reset for error recovery
 832		 * reasons.  Just retry the command and see what
 833		 * happens.
 834		 */
 835		action = ACTION_RETRY;
 836	} else if (sense_valid && !sense_deferred) {
 837		switch (sshdr.sense_key) {
 838		case UNIT_ATTENTION:
 839			if (cmd->device->removable) {
 840				/* Detected disc change.  Set a bit
 841				 * and quietly refuse further access.
 842				 */
 843				cmd->device->changed = 1;
 844				description = "Media Changed";
 845				action = ACTION_FAIL;
 846			} else {
 847				/* Must have been a power glitch, or a
 848				 * bus reset.  Could not have been a
 849				 * media change, so we just retry the
 850				 * command and see what happens.
 851				 */
 852				action = ACTION_RETRY;
 853			}
 854			break;
 855		case ILLEGAL_REQUEST:
 856			/* If we had an ILLEGAL REQUEST returned, then
 857			 * we may have performed an unsupported
 858			 * command.  The only thing this should be
 859			 * would be a ten byte read where only a six
 860			 * byte read was supported.  Also, on a system
 861			 * where READ CAPACITY failed, we may have
 862			 * read past the end of the disk.
 863			 */
 864			if ((cmd->device->use_10_for_rw &&
 865			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 866			    (cmd->cmnd[0] == READ_10 ||
 867			     cmd->cmnd[0] == WRITE_10)) {
 868				/* This will issue a new 6-byte command. */
 869				cmd->device->use_10_for_rw = 0;
 870				action = ACTION_REPREP;
 871			} else if (sshdr.asc == 0x10) /* DIX */ {
 872				description = "Host Data Integrity Failure";
 873				action = ACTION_FAIL;
 874				error = -EILSEQ;
 875			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 876			} else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
 877				   (cmd->cmnd[0] == UNMAP ||
 878				    cmd->cmnd[0] == WRITE_SAME_16 ||
 879				    cmd->cmnd[0] == WRITE_SAME)) {
 880				description = "Discard failure";
 881				action = ACTION_FAIL;
 
 882			} else
 883				action = ACTION_FAIL;
 884			break;
 885		case ABORTED_COMMAND:
 886			action = ACTION_FAIL;
 887			if (sshdr.asc == 0x10) { /* DIF */
 888				description = "Target Data Integrity Failure";
 889				error = -EILSEQ;
 890			}
 891			break;
 892		case NOT_READY:
 893			/* If the device is in the process of becoming
 894			 * ready, or has a temporary blockage, retry.
 895			 */
 896			if (sshdr.asc == 0x04) {
 897				switch (sshdr.ascq) {
 898				case 0x01: /* becoming ready */
 899				case 0x04: /* format in progress */
 900				case 0x05: /* rebuild in progress */
 901				case 0x06: /* recalculation in progress */
 902				case 0x07: /* operation in progress */
 903				case 0x08: /* Long write in progress */
 904				case 0x09: /* self test in progress */
 905				case 0x14: /* space allocation in progress */
 
 
 
 
 906					action = ACTION_DELAYED_RETRY;
 907					break;
 908				default:
 909					description = "Device not ready";
 910					action = ACTION_FAIL;
 911					break;
 912				}
 913			} else {
 914				description = "Device not ready";
 915				action = ACTION_FAIL;
 916			}
 917			break;
 918		case VOLUME_OVERFLOW:
 919			/* See SSC3rXX or current. */
 920			action = ACTION_FAIL;
 921			break;
 922		default:
 923			description = "Unhandled sense code";
 924			action = ACTION_FAIL;
 925			break;
 926		}
 927	} else {
 928		description = "Unhandled error code";
 
 
 
 929		action = ACTION_FAIL;
 930	}
 931
 932	switch (action) {
 933	case ACTION_FAIL:
 934		/* Give up and fail the remainder of the request */
 935		scsi_release_buffers(cmd);
 936		if (!(req->cmd_flags & REQ_QUIET)) {
 937			if (description)
 938				scmd_printk(KERN_INFO, cmd, "%s\n",
 939					    description);
 940			scsi_print_result(cmd);
 941			if (driver_byte(result) & DRIVER_SENSE)
 942				scsi_print_sense("", cmd);
 943			scsi_print_command(cmd);
 
 
 
 
 
 
 
 
 
 
 
 944		}
 945		if (blk_end_request_err(req, error))
 946			scsi_requeue_command(q, cmd);
 947		else
 948			scsi_next_command(cmd);
 949		break;
 950	case ACTION_REPREP:
 951		/* Unprep the request and put it back at the head of the queue.
 952		 * A new command will be prepared and issued.
 953		 */
 954		scsi_release_buffers(cmd);
 955		scsi_requeue_command(q, cmd);
 956		break;
 957	case ACTION_RETRY:
 958		/* Retry the same command immediately */
 959		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
 960		break;
 961	case ACTION_DELAYED_RETRY:
 962		/* Retry the same command after a delay */
 963		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
 964		break;
 965	}
 966}
 967
 968static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
 969			     gfp_t gfp_mask)
 
 
 
 
 
 970{
 971	int count;
 
 
 
 972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 973	/*
 974	 * If sg table allocation fails, requeue request later.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 975	 */
 976	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
 977					gfp_mask))) {
 978		return BLKPREP_DEFER;
 979	}
 980
 981	req->buffer = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982
 983	/* 
 984	 * Next, walk the list, and fill in the addresses and sizes of
 985	 * each segment.
 986	 */
 987	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
 988	BUG_ON(count > sdb->table.nents);
 989	sdb->table.nents = count;
 990	sdb->length = blk_rq_bytes(req);
 991	return BLKPREP_OK;
 992}
 993
 994/*
 995 * Function:    scsi_init_io()
 996 *
 997 * Purpose:     SCSI I/O initialize function.
 998 *
 999 * Arguments:   cmd   - Command descriptor we wish to initialize
1000 *
1001 * Returns:     0 on success
1002 *		BLKPREP_DEFER if the failure is retryable
1003 *		BLKPREP_KILL if the failure is fatal
1004 */
1005int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1006{
1007	struct request *rq = cmd->request;
 
1008
1009	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1010	if (error)
1011		goto err_exit;
1012
1013	if (blk_bidi_rq(rq)) {
1014		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1015			scsi_sdb_cache, GFP_ATOMIC);
1016		if (!bidi_sdb) {
1017			error = BLKPREP_DEFER;
1018			goto err_exit;
1019		}
1020
1021		rq->next_rq->special = bidi_sdb;
1022		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1023		if (error)
1024			goto err_exit;
1025	}
1026
1027	if (blk_integrity_rq(rq)) {
1028		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1029		int ivecs, count;
1030
1031		BUG_ON(prot_sdb == NULL);
 
 
 
 
 
 
 
 
 
1032		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1033
1034		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1035			error = BLKPREP_DEFER;
1036			goto err_exit;
 
 
1037		}
1038
1039		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1040						prot_sdb->table.sgl);
1041		BUG_ON(unlikely(count > ivecs));
1042		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1043
1044		cmd->prot_sdb = prot_sdb;
1045		cmd->prot_sdb->table.nents = count;
1046	}
1047
1048	return BLKPREP_OK ;
1049
1050err_exit:
1051	scsi_release_buffers(cmd);
1052	cmd->request->special = NULL;
1053	scsi_put_command(cmd);
1054	return error;
1055}
1056EXPORT_SYMBOL(scsi_init_io);
1057
1058static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1059		struct request *req)
 
 
 
 
 
 
 
 
 
 
1060{
1061	struct scsi_cmnd *cmd;
1062
1063	if (!req->special) {
1064		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1065		if (unlikely(!cmd))
1066			return NULL;
1067		req->special = cmd;
1068	} else {
1069		cmd = req->special;
 
 
 
 
 
 
 
 
1070	}
 
1071
1072	/* pull a tag out of the request if we have one */
1073	cmd->tag = req->tag;
1074	cmd->request = req;
 
 
 
1075
1076	cmd->cmnd = req->cmd;
1077	cmd->prot_op = SCSI_PROT_NORMAL;
 
 
 
 
 
 
 
 
 
 
 
1078
1079	return cmd;
 
 
 
 
 
1080}
1081
1082int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
 
1083{
1084	struct scsi_cmnd *cmd;
1085	int ret = scsi_prep_state_check(sdev, req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086
1087	if (ret != BLKPREP_OK)
1088		return ret;
1089
1090	cmd = scsi_get_cmd_from_req(sdev, req);
1091	if (unlikely(!cmd))
1092		return BLKPREP_DEFER;
 
1093
1094	/*
1095	 * BLOCK_PC requests may transfer data, in which case they must
1096	 * a bio attached to them.  Or they might contain a SCSI command
1097	 * that does not transfer data, in which case they may optionally
1098	 * submit a request without an attached bio.
1099	 */
1100	if (req->bio) {
1101		int ret;
1102
1103		BUG_ON(!req->nr_phys_segments);
1104
1105		ret = scsi_init_io(cmd, GFP_ATOMIC);
1106		if (unlikely(ret))
1107			return ret;
1108	} else {
1109		BUG_ON(blk_rq_bytes(req));
1110
1111		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1112		req->buffer = NULL;
1113	}
1114
1115	cmd->cmd_len = req->cmd_len;
1116	if (!blk_rq_bytes(req))
1117		cmd->sc_data_direction = DMA_NONE;
1118	else if (rq_data_dir(req) == WRITE)
1119		cmd->sc_data_direction = DMA_TO_DEVICE;
1120	else
1121		cmd->sc_data_direction = DMA_FROM_DEVICE;
1122	
1123	cmd->transfersize = blk_rq_bytes(req);
1124	cmd->allowed = req->retries;
1125	return BLKPREP_OK;
1126}
1127EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1128
1129/*
1130 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1131 * from filesystems that still need to be translated to SCSI CDBs from
1132 * the ULD.
1133 */
1134int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
 
1135{
1136	struct scsi_cmnd *cmd;
1137	int ret = scsi_prep_state_check(sdev, req);
1138
1139	if (ret != BLKPREP_OK)
1140		return ret;
1141
1142	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1143			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1144		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1145		if (ret != BLKPREP_OK)
1146			return ret;
1147	}
1148
1149	/*
1150	 * Filesystem requests must transfer data.
1151	 */
1152	BUG_ON(!req->nr_phys_segments);
1153
1154	cmd = scsi_get_cmd_from_req(sdev, req);
1155	if (unlikely(!cmd))
1156		return BLKPREP_DEFER;
1157
1158	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1159	return scsi_init_io(cmd, GFP_ATOMIC);
1160}
1161EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1162
1163int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
 
1164{
1165	int ret = BLKPREP_OK;
1166
1167	/*
1168	 * If the device is not in running state we will reject some
1169	 * or all commands.
1170	 */
1171	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1172		switch (sdev->sdev_state) {
1173		case SDEV_OFFLINE:
1174			/*
1175			 * If the device is offline we refuse to process any
1176			 * commands.  The device must be brought online
1177			 * before trying any recovery commands.
1178			 */
1179			sdev_printk(KERN_ERR, sdev,
1180				    "rejecting I/O to offline device\n");
1181			ret = BLKPREP_KILL;
1182			break;
1183		case SDEV_DEL:
1184			/*
1185			 * If the device is fully deleted, we refuse to
1186			 * process any commands as well.
1187			 */
1188			sdev_printk(KERN_ERR, sdev,
1189				    "rejecting I/O to dead device\n");
1190			ret = BLKPREP_KILL;
1191			break;
1192		case SDEV_QUIESCE:
1193		case SDEV_BLOCK:
1194		case SDEV_CREATED_BLOCK:
1195			/*
1196			 * If the devices is blocked we defer normal commands.
1197			 */
1198			if (!(req->cmd_flags & REQ_PREEMPT))
1199				ret = BLKPREP_DEFER;
1200			break;
1201		default:
1202			/*
1203			 * For any other not fully online state we only allow
1204			 * special commands.  In particular any user initiated
1205			 * command is not allowed.
1206			 */
1207			if (!(req->cmd_flags & REQ_PREEMPT))
1208				ret = BLKPREP_KILL;
1209			break;
1210		}
1211	}
1212	return ret;
1213}
1214EXPORT_SYMBOL(scsi_prep_state_check);
1215
1216int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
 
1217{
1218	struct scsi_device *sdev = q->queuedata;
1219
1220	switch (ret) {
1221	case BLKPREP_KILL:
1222		req->errors = DID_NO_CONNECT << 16;
1223		/* release the command and kill it */
1224		if (req->special) {
1225			struct scsi_cmnd *cmd = req->special;
1226			scsi_release_buffers(cmd);
1227			scsi_put_command(cmd);
1228			req->special = NULL;
1229		}
1230		break;
1231	case BLKPREP_DEFER:
1232		/*
1233		 * If we defer, the blk_peek_request() returns NULL, but the
1234		 * queue must be restarted, so we schedule a callback to happen
1235		 * shortly.
1236		 */
1237		if (sdev->device_busy == 0)
1238			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1239		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1240	default:
1241		req->cmd_flags |= REQ_DONTPREP;
 
 
 
 
 
 
 
1242	}
1243
1244	return ret;
1245}
1246EXPORT_SYMBOL(scsi_prep_return);
1247
1248int scsi_prep_fn(struct request_queue *q, struct request *req)
1249{
1250	struct scsi_device *sdev = q->queuedata;
1251	int ret = BLKPREP_KILL;
1252
1253	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1254		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1255	return scsi_prep_return(q, req, ret);
1256}
1257EXPORT_SYMBOL(scsi_prep_fn);
1258
1259/*
1260 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1261 * return 0.
1262 *
1263 * Called with the queue_lock held.
1264 */
1265static inline int scsi_dev_queue_ready(struct request_queue *q,
1266				  struct scsi_device *sdev)
1267{
1268	if (sdev->device_busy == 0 && sdev->device_blocked) {
 
 
 
 
 
 
1269		/*
1270		 * unblock after device_blocked iterates to zero
1271		 */
1272		if (--sdev->device_blocked == 0) {
1273			SCSI_LOG_MLQUEUE(3,
1274				   sdev_printk(KERN_INFO, sdev,
1275				   "unblocking device at zero depth\n"));
1276		} else {
1277			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1278			return 0;
1279		}
1280	}
1281	if (scsi_device_is_busy(sdev))
1282		return 0;
 
1283
1284	return 1;
 
 
 
1285}
1286
1287
1288/*
1289 * scsi_target_queue_ready: checks if there we can send commands to target
1290 * @sdev: scsi device on starget to check.
1291 *
1292 * Called with the host lock held.
1293 */
1294static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1295					   struct scsi_device *sdev)
1296{
1297	struct scsi_target *starget = scsi_target(sdev);
 
1298
1299	if (starget->single_lun) {
 
1300		if (starget->starget_sdev_user &&
1301		    starget->starget_sdev_user != sdev)
 
1302			return 0;
 
1303		starget->starget_sdev_user = sdev;
 
1304	}
1305
1306	if (starget->target_busy == 0 && starget->target_blocked) {
 
 
 
 
 
 
 
1307		/*
1308		 * unblock after target_blocked iterates to zero
1309		 */
1310		if (--starget->target_blocked == 0) {
1311			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1312					 "unblocking target at zero depth\n"));
1313		} else
1314			return 0;
1315	}
1316
1317	if (scsi_target_is_busy(starget)) {
1318		if (list_empty(&sdev->starved_entry))
1319			list_add_tail(&sdev->starved_entry,
1320				      &shost->starved_list);
1321		return 0;
1322	}
1323
1324	/* We're OK to process the command, so we can't be starved */
1325	if (!list_empty(&sdev->starved_entry))
1326		list_del_init(&sdev->starved_entry);
1327	return 1;
 
 
 
 
 
 
 
 
 
1328}
1329
1330/*
1331 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1332 * return 0. We must end up running the queue again whenever 0 is
1333 * returned, else IO can hang.
1334 *
1335 * Called with host_lock held.
1336 */
1337static inline int scsi_host_queue_ready(struct request_queue *q,
1338				   struct Scsi_Host *shost,
1339				   struct scsi_device *sdev)
1340{
 
 
1341	if (scsi_host_in_recovery(shost))
1342		return 0;
1343	if (shost->host_busy == 0 && shost->host_blocked) {
 
 
 
 
 
1344		/*
1345		 * unblock after host_blocked iterates to zero
1346		 */
1347		if (--shost->host_blocked == 0) {
1348			SCSI_LOG_MLQUEUE(3,
1349				printk("scsi%d unblocking host at zero depth\n",
1350					shost->host_no));
1351		} else {
1352			return 0;
1353		}
1354	}
1355	if (scsi_host_is_busy(shost)) {
1356		if (list_empty(&sdev->starved_entry))
1357			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1358		return 0;
1359	}
1360
 
 
 
 
 
1361	/* We're OK to process the command, so we can't be starved */
1362	if (!list_empty(&sdev->starved_entry))
1363		list_del_init(&sdev->starved_entry);
 
 
 
 
1364
1365	return 1;
 
 
 
 
 
 
 
 
 
1366}
1367
1368/*
1369 * Busy state exporting function for request stacking drivers.
1370 *
1371 * For efficiency, no lock is taken to check the busy state of
1372 * shost/starget/sdev, since the returned value is not guaranteed and
1373 * may be changed after request stacking drivers call the function,
1374 * regardless of taking lock or not.
1375 *
1376 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1377 * (e.g. !sdev), scsi needs to return 'not busy'.
1378 * Otherwise, request stacking drivers may hold requests forever.
1379 */
1380static int scsi_lld_busy(struct request_queue *q)
1381{
1382	struct scsi_device *sdev = q->queuedata;
1383	struct Scsi_Host *shost;
1384	struct scsi_target *starget;
1385
1386	if (!sdev)
1387		return 0;
1388
1389	shost = sdev->host;
1390	starget = scsi_target(sdev);
1391
1392	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1393	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1394		return 1;
1395
1396	return 0;
1397}
1398
1399/*
1400 * Kill a request for a dead device
1401 */
1402static void scsi_kill_request(struct request *req, struct request_queue *q)
1403{
1404	struct scsi_cmnd *cmd = req->special;
1405	struct scsi_device *sdev;
1406	struct scsi_target *starget;
1407	struct Scsi_Host *shost;
1408
1409	blk_start_request(req);
 
1410
1411	sdev = cmd->device;
1412	starget = scsi_target(sdev);
1413	shost = sdev->host;
1414	scsi_init_cmd_errh(cmd);
1415	cmd->result = DID_NO_CONNECT << 16;
1416	atomic_inc(&cmd->device->iorequest_cnt);
1417
1418	/*
1419	 * SCSI request completion path will do scsi_device_unbusy(),
1420	 * bump busy counts.  To bump the counters, we need to dance
1421	 * with the locks as normal issue path does.
1422	 */
1423	sdev->device_busy++;
1424	spin_unlock(sdev->request_queue->queue_lock);
1425	spin_lock(shost->host_lock);
1426	shost->host_busy++;
1427	starget->target_busy++;
1428	spin_unlock(shost->host_lock);
1429	spin_lock(sdev->request_queue->queue_lock);
1430
1431	blk_complete_request(req);
1432}
1433
1434static void scsi_softirq_done(struct request *rq)
1435{
1436	struct scsi_cmnd *cmd = rq->special;
1437	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1438	int disposition;
1439
1440	INIT_LIST_HEAD(&cmd->eh_entry);
1441
1442	atomic_inc(&cmd->device->iodone_cnt);
1443	if (cmd->result)
1444		atomic_inc(&cmd->device->ioerr_cnt);
1445
1446	disposition = scsi_decide_disposition(cmd);
1447	if (disposition != SUCCESS &&
1448	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1449		sdev_printk(KERN_ERR, cmd->device,
1450			    "timing out command, waited %lus\n",
1451			    wait_for/HZ);
1452		disposition = SUCCESS;
1453	}
1454			
1455	scsi_log_completion(cmd, disposition);
1456
1457	switch (disposition) {
1458		case SUCCESS:
1459			scsi_finish_command(cmd);
1460			break;
1461		case NEEDS_RETRY:
1462			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1463			break;
1464		case ADD_TO_MLQUEUE:
1465			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1466			break;
1467		default:
1468			if (!scsi_eh_scmd_add(cmd, 0))
1469				scsi_finish_command(cmd);
1470	}
1471}
1472
1473/*
1474 * Function:    scsi_request_fn()
1475 *
1476 * Purpose:     Main strategy routine for SCSI.
1477 *
1478 * Arguments:   q       - Pointer to actual queue.
1479 *
1480 * Returns:     Nothing
1481 *
1482 * Lock status: IO request lock assumed to be held when called.
 
1483 */
1484static void scsi_request_fn(struct request_queue *q)
1485{
1486	struct scsi_device *sdev = q->queuedata;
1487	struct Scsi_Host *shost;
1488	struct scsi_cmnd *cmd;
1489	struct request *req;
1490
1491	if (!sdev) {
1492		printk("scsi: killing requests for dead queue\n");
1493		while ((req = blk_peek_request(q)) != NULL)
1494			scsi_kill_request(req, q);
1495		return;
 
 
 
 
1496	}
1497
1498	if(!get_device(&sdev->sdev_gendev))
1499		/* We must be tearing the block queue down already */
1500		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1501
1502	/*
1503	 * To start with, we keep looping until the queue is empty, or until
1504	 * the host is no longer able to accept any more requests.
1505	 */
1506	shost = sdev->host;
1507	for (;;) {
1508		int rtn;
1509		/*
1510		 * get next queueable request.  We do this early to make sure
1511		 * that the request is fully prepared even if we cannot 
1512		 * accept it.
1513		 */
1514		req = blk_peek_request(q);
1515		if (!req || !scsi_dev_queue_ready(q, sdev))
1516			break;
1517
1518		if (unlikely(!scsi_device_online(sdev))) {
1519			sdev_printk(KERN_ERR, sdev,
1520				    "rejecting I/O to offline device\n");
1521			scsi_kill_request(req, q);
1522			continue;
1523		}
1524
 
1525
1526		/*
1527		 * Remove the request from the request list.
1528		 */
1529		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1530			blk_start_request(req);
1531		sdev->device_busy++;
1532
1533		spin_unlock(q->queue_lock);
1534		cmd = req->special;
1535		if (unlikely(cmd == NULL)) {
1536			printk(KERN_CRIT "impossible request in %s.\n"
1537					 "please mail a stack trace to "
1538					 "linux-scsi@vger.kernel.org\n",
1539					 __func__);
1540			blk_dump_rq_flags(req, "foo");
1541			BUG();
1542		}
1543		spin_lock(shost->host_lock);
1544
1545		/*
1546		 * We hit this when the driver is using a host wide
1547		 * tag map. For device level tag maps the queue_depth check
1548		 * in the device ready fn would prevent us from trying
1549		 * to allocate a tag. Since the map is a shared host resource
1550		 * we add the dev to the starved list so it eventually gets
1551		 * a run when a tag is freed.
1552		 */
1553		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1554			if (list_empty(&sdev->starved_entry))
1555				list_add_tail(&sdev->starved_entry,
1556					      &shost->starved_list);
1557			goto not_ready;
1558		}
1559
1560		if (!scsi_target_queue_ready(shost, sdev))
1561			goto not_ready;
 
 
 
1562
1563		if (!scsi_host_queue_ready(q, shost, sdev))
1564			goto not_ready;
 
 
 
 
1565
1566		scsi_target(sdev)->target_busy++;
1567		shost->host_busy++;
 
 
 
 
1568
1569		/*
1570		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1571		 *		take the lock again.
1572		 */
1573		spin_unlock_irq(shost->host_lock);
1574
1575		/*
1576		 * Finally, initialize any error handling parameters, and set up
1577		 * the timers for timeouts.
1578		 */
1579		scsi_init_cmd_errh(cmd);
1580
1581		/*
1582		 * Dispatch the command to the low-level driver.
1583		 */
1584		rtn = scsi_dispatch_cmd(cmd);
1585		spin_lock_irq(q->queue_lock);
1586		if (rtn)
1587			goto out_delay;
 
1588	}
1589
1590	goto out;
1591
1592 not_ready:
1593	spin_unlock_irq(shost->host_lock);
 
 
 
 
 
 
1594
1595	/*
1596	 * lock q, handle tag, requeue req, and decrement device_busy. We
1597	 * must return with queue_lock held.
1598	 *
1599	 * Decrementing device_busy without checking it is OK, as all such
1600	 * cases (host limits or settings) should run the queue at some
1601	 * later time.
1602	 */
1603	spin_lock_irq(q->queue_lock);
1604	blk_requeue_request(q, req);
1605	sdev->device_busy--;
1606out_delay:
1607	if (sdev->device_busy == 0)
1608		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1609out:
1610	/* must be careful here...if we trigger the ->remove() function
1611	 * we cannot be holding the q lock */
1612	spin_unlock_irq(q->queue_lock);
1613	put_device(&sdev->sdev_gendev);
1614	spin_lock_irq(q->queue_lock);
1615}
1616
1617u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1618{
1619	struct device *host_dev;
1620	u64 bounce_limit = 0xffffffff;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621
1622	if (shost->unchecked_isa_dma)
1623		return BLK_BOUNCE_ISA;
1624	/*
1625	 * Platforms with virtual-DMA translation
1626	 * hardware have no practical limit.
1627	 */
1628	if (!PCI_DMA_BUS_IS_PHYS)
1629		return BLK_BOUNCE_ANY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1630
1631	host_dev = scsi_get_device(shost);
1632	if (host_dev && host_dev->dma_mask)
1633		bounce_limit = *host_dev->dma_mask;
 
 
1634
1635	return bounce_limit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1636}
1637EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1638
1639struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1640					 request_fn_proc *request_fn)
1641{
1642	struct request_queue *q;
1643	struct device *dev = shost->shost_gendev.parent;
 
 
1644
1645	q = blk_init_queue(request_fn, NULL);
1646	if (!q)
1647		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1648
1649	/*
1650	 * this limit is imposed by hardware restrictions
1651	 */
1652	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1653					SCSI_MAX_SG_CHAIN_SEGMENTS));
1654
1655	if (scsi_host_prot_dma(shost)) {
1656		shost->sg_prot_tablesize =
1657			min_not_zero(shost->sg_prot_tablesize,
1658				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1659		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1660		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1661	}
1662
 
 
 
 
1663	blk_queue_max_hw_sectors(q, shost->max_sectors);
1664	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
 
1665	blk_queue_segment_boundary(q, shost->dma_boundary);
1666	dma_set_seg_boundary(dev, shost->dma_boundary);
1667
1668	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1669
1670	if (!shost->use_clustering)
1671		q->limits.cluster = 0;
1672
1673	/*
1674	 * set a reasonable default alignment on word boundaries: the
1675	 * host and device may alter it using
1676	 * blk_queue_update_dma_alignment() later.
 
 
1677	 */
1678	blk_queue_dma_alignment(q, 0x03);
1679
1680	return q;
1681}
1682EXPORT_SYMBOL(__scsi_alloc_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1683
1684struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
 
1685{
1686	struct request_queue *q;
 
 
1687
1688	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1689	if (!q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1690		return NULL;
1691
1692	blk_queue_prep_rq(q, scsi_prep_fn);
1693	blk_queue_softirq_done(q, scsi_softirq_done);
1694	blk_queue_rq_timed_out(q, scsi_times_out);
1695	blk_queue_lld_busy(q, scsi_lld_busy);
1696	return q;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1697}
1698
1699void scsi_free_queue(struct request_queue *q)
1700{
1701	blk_cleanup_queue(q);
1702}
1703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1704/*
1705 * Function:    scsi_block_requests()
1706 *
1707 * Purpose:     Utility function used by low-level drivers to prevent further
1708 *		commands from being queued to the device.
1709 *
1710 * Arguments:   shost       - Host in question
1711 *
1712 * Returns:     Nothing
1713 *
1714 * Lock status: No locks are assumed held.
1715 *
1716 * Notes:       There is no timer nor any other means by which the requests
1717 *		get unblocked other than the low-level driver calling
1718 *		scsi_unblock_requests().
1719 */
1720void scsi_block_requests(struct Scsi_Host *shost)
1721{
1722	shost->host_self_blocked = 1;
1723}
1724EXPORT_SYMBOL(scsi_block_requests);
1725
1726/*
1727 * Function:    scsi_unblock_requests()
1728 *
1729 * Purpose:     Utility function used by low-level drivers to allow further
1730 *		commands from being queued to the device.
1731 *
1732 * Arguments:   shost       - Host in question
1733 *
1734 * Returns:     Nothing
1735 *
1736 * Lock status: No locks are assumed held.
1737 *
1738 * Notes:       There is no timer nor any other means by which the requests
1739 *		get unblocked other than the low-level driver calling
1740 *		scsi_unblock_requests().
1741 *
1742 *		This is done as an API function so that changes to the
1743 *		internals of the scsi mid-layer won't require wholesale
1744 *		changes to drivers that use this feature.
1745 */
1746void scsi_unblock_requests(struct Scsi_Host *shost)
1747{
1748	shost->host_self_blocked = 0;
1749	scsi_run_host_queues(shost);
1750}
1751EXPORT_SYMBOL(scsi_unblock_requests);
1752
1753int __init scsi_init_queue(void)
1754{
1755	int i;
1756
1757	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1758					   sizeof(struct scsi_data_buffer),
1759					   0, 0, NULL);
1760	if (!scsi_sdb_cache) {
1761		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1762		return -ENOMEM;
1763	}
1764
1765	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1766		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1767		int size = sgp->size * sizeof(struct scatterlist);
1768
1769		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1770				SLAB_HWCACHE_ALIGN, NULL);
1771		if (!sgp->slab) {
1772			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1773					sgp->name);
1774			goto cleanup_sdb;
1775		}
1776
1777		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1778						     sgp->slab);
1779		if (!sgp->pool) {
1780			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1781					sgp->name);
1782			goto cleanup_sdb;
1783		}
1784	}
1785
1786	return 0;
1787
1788cleanup_sdb:
1789	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1790		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1791		if (sgp->pool)
1792			mempool_destroy(sgp->pool);
1793		if (sgp->slab)
1794			kmem_cache_destroy(sgp->slab);
1795	}
1796	kmem_cache_destroy(scsi_sdb_cache);
1797
1798	return -ENOMEM;
1799}
1800
1801void scsi_exit_queue(void)
1802{
1803	int i;
1804
1805	kmem_cache_destroy(scsi_sdb_cache);
1806
1807	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1808		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1809		mempool_destroy(sgp->pool);
1810		kmem_cache_destroy(sgp->slab);
1811	}
1812}
1813
1814/**
1815 *	scsi_mode_select - issue a mode select
1816 *	@sdev:	SCSI device to be queried
1817 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1818 *	@sp:	Save page bit (0 == don't save, 1 == save)
1819 *	@modepage: mode page being requested
1820 *	@buffer: request buffer (may not be smaller than eight bytes)
1821 *	@len:	length of request buffer.
1822 *	@timeout: command timeout
1823 *	@retries: number of retries before failing
1824 *	@data: returns a structure abstracting the mode header data
1825 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1826 *		must be SCSI_SENSE_BUFFERSIZE big.
1827 *
1828 *	Returns zero if successful; negative error number or scsi
1829 *	status on error
1830 *
1831 */
1832int
1833scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1834		 unsigned char *buffer, int len, int timeout, int retries,
1835		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1836{
1837	unsigned char cmd[10];
1838	unsigned char *real_buffer;
1839	int ret;
1840
1841	memset(cmd, 0, sizeof(cmd));
1842	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1843
1844	if (sdev->use_10_for_ms) {
1845		if (len > 65535)
1846			return -EINVAL;
1847		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1848		if (!real_buffer)
1849			return -ENOMEM;
1850		memcpy(real_buffer + 8, buffer, len);
1851		len += 8;
1852		real_buffer[0] = 0;
1853		real_buffer[1] = 0;
1854		real_buffer[2] = data->medium_type;
1855		real_buffer[3] = data->device_specific;
1856		real_buffer[4] = data->longlba ? 0x01 : 0;
1857		real_buffer[5] = 0;
1858		real_buffer[6] = data->block_descriptor_length >> 8;
1859		real_buffer[7] = data->block_descriptor_length;
1860
1861		cmd[0] = MODE_SELECT_10;
1862		cmd[7] = len >> 8;
1863		cmd[8] = len;
1864	} else {
1865		if (len > 255 || data->block_descriptor_length > 255 ||
1866		    data->longlba)
1867			return -EINVAL;
1868
1869		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1870		if (!real_buffer)
1871			return -ENOMEM;
1872		memcpy(real_buffer + 4, buffer, len);
1873		len += 4;
1874		real_buffer[0] = 0;
1875		real_buffer[1] = data->medium_type;
1876		real_buffer[2] = data->device_specific;
1877		real_buffer[3] = data->block_descriptor_length;
1878		
1879
1880		cmd[0] = MODE_SELECT;
1881		cmd[4] = len;
1882	}
1883
1884	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1885			       sshdr, timeout, retries, NULL);
1886	kfree(real_buffer);
1887	return ret;
1888}
1889EXPORT_SYMBOL_GPL(scsi_mode_select);
1890
1891/**
1892 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1893 *	@sdev:	SCSI device to be queried
1894 *	@dbd:	set if mode sense will allow block descriptors to be returned
1895 *	@modepage: mode page being requested
1896 *	@buffer: request buffer (may not be smaller than eight bytes)
1897 *	@len:	length of request buffer.
1898 *	@timeout: command timeout
1899 *	@retries: number of retries before failing
1900 *	@data: returns a structure abstracting the mode header data
1901 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1902 *		must be SCSI_SENSE_BUFFERSIZE big.
1903 *
1904 *	Returns zero if unsuccessful, or the header offset (either 4
1905 *	or 8 depending on whether a six or ten byte command was
1906 *	issued) if successful.
1907 */
1908int
1909scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1910		  unsigned char *buffer, int len, int timeout, int retries,
1911		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1912{
1913	unsigned char cmd[12];
1914	int use_10_for_ms;
1915	int header_length;
1916	int result;
1917	struct scsi_sense_hdr my_sshdr;
1918
1919	memset(data, 0, sizeof(*data));
1920	memset(&cmd[0], 0, 12);
1921	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1922	cmd[2] = modepage;
1923
1924	/* caller might not be interested in sense, but we need it */
1925	if (!sshdr)
1926		sshdr = &my_sshdr;
1927
1928 retry:
1929	use_10_for_ms = sdev->use_10_for_ms;
1930
1931	if (use_10_for_ms) {
1932		if (len < 8)
1933			len = 8;
1934
1935		cmd[0] = MODE_SENSE_10;
1936		cmd[8] = len;
1937		header_length = 8;
1938	} else {
1939		if (len < 4)
1940			len = 4;
1941
1942		cmd[0] = MODE_SENSE;
1943		cmd[4] = len;
1944		header_length = 4;
1945	}
1946
1947	memset(buffer, 0, len);
1948
1949	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1950				  sshdr, timeout, retries, NULL);
1951
1952	/* This code looks awful: what it's doing is making sure an
1953	 * ILLEGAL REQUEST sense return identifies the actual command
1954	 * byte as the problem.  MODE_SENSE commands can return
1955	 * ILLEGAL REQUEST if the code page isn't supported */
1956
1957	if (use_10_for_ms && !scsi_status_is_good(result) &&
1958	    (driver_byte(result) & DRIVER_SENSE)) {
1959		if (scsi_sense_valid(sshdr)) {
1960			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1961			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1962				/* 
1963				 * Invalid command operation code
1964				 */
1965				sdev->use_10_for_ms = 0;
1966				goto retry;
1967			}
1968		}
1969	}
1970
1971	if(scsi_status_is_good(result)) {
1972		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1973			     (modepage == 6 || modepage == 8))) {
1974			/* Initio breakage? */
1975			header_length = 0;
1976			data->length = 13;
1977			data->medium_type = 0;
1978			data->device_specific = 0;
1979			data->longlba = 0;
1980			data->block_descriptor_length = 0;
1981		} else if(use_10_for_ms) {
1982			data->length = buffer[0]*256 + buffer[1] + 2;
1983			data->medium_type = buffer[2];
1984			data->device_specific = buffer[3];
1985			data->longlba = buffer[4] & 0x01;
1986			data->block_descriptor_length = buffer[6]*256
1987				+ buffer[7];
1988		} else {
1989			data->length = buffer[0] + 1;
1990			data->medium_type = buffer[1];
1991			data->device_specific = buffer[2];
1992			data->block_descriptor_length = buffer[3];
1993		}
1994		data->header_length = header_length;
 
 
 
 
 
1995	}
1996
1997	return result;
1998}
1999EXPORT_SYMBOL(scsi_mode_sense);
2000
2001/**
2002 *	scsi_test_unit_ready - test if unit is ready
2003 *	@sdev:	scsi device to change the state of.
2004 *	@timeout: command timeout
2005 *	@retries: number of retries before failing
2006 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2007 *		returning sense. Make sure that this is cleared before passing
2008 *		in.
2009 *
2010 *	Returns zero if unsuccessful or an error if TUR failed.  For
2011 *	removable media, UNIT_ATTENTION sets ->changed flag.
2012 **/
2013int
2014scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2015		     struct scsi_sense_hdr *sshdr_external)
2016{
2017	char cmd[] = {
2018		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2019	};
2020	struct scsi_sense_hdr *sshdr;
2021	int result;
2022
2023	if (!sshdr_external)
2024		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2025	else
2026		sshdr = sshdr_external;
2027
2028	/* try to eat the UNIT_ATTENTION if there are enough retries */
2029	do {
2030		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2031					  timeout, retries, NULL);
2032		if (sdev->removable && scsi_sense_valid(sshdr) &&
2033		    sshdr->sense_key == UNIT_ATTENTION)
2034			sdev->changed = 1;
2035	} while (scsi_sense_valid(sshdr) &&
2036		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2037
2038	if (!sshdr_external)
2039		kfree(sshdr);
2040	return result;
2041}
2042EXPORT_SYMBOL(scsi_test_unit_ready);
2043
2044/**
2045 *	scsi_device_set_state - Take the given device through the device state model.
2046 *	@sdev:	scsi device to change the state of.
2047 *	@state:	state to change to.
2048 *
2049 *	Returns zero if unsuccessful or an error if the requested 
2050 *	transition is illegal.
2051 */
2052int
2053scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2054{
2055	enum scsi_device_state oldstate = sdev->sdev_state;
2056
2057	if (state == oldstate)
2058		return 0;
2059
2060	switch (state) {
2061	case SDEV_CREATED:
2062		switch (oldstate) {
2063		case SDEV_CREATED_BLOCK:
2064			break;
2065		default:
2066			goto illegal;
2067		}
2068		break;
2069			
2070	case SDEV_RUNNING:
2071		switch (oldstate) {
2072		case SDEV_CREATED:
2073		case SDEV_OFFLINE:
 
2074		case SDEV_QUIESCE:
2075		case SDEV_BLOCK:
2076			break;
2077		default:
2078			goto illegal;
2079		}
2080		break;
2081
2082	case SDEV_QUIESCE:
2083		switch (oldstate) {
2084		case SDEV_RUNNING:
2085		case SDEV_OFFLINE:
 
2086			break;
2087		default:
2088			goto illegal;
2089		}
2090		break;
2091
2092	case SDEV_OFFLINE:
 
2093		switch (oldstate) {
2094		case SDEV_CREATED:
2095		case SDEV_RUNNING:
2096		case SDEV_QUIESCE:
2097		case SDEV_BLOCK:
2098			break;
2099		default:
2100			goto illegal;
2101		}
2102		break;
2103
2104	case SDEV_BLOCK:
2105		switch (oldstate) {
2106		case SDEV_RUNNING:
2107		case SDEV_CREATED_BLOCK:
 
2108			break;
2109		default:
2110			goto illegal;
2111		}
2112		break;
2113
2114	case SDEV_CREATED_BLOCK:
2115		switch (oldstate) {
2116		case SDEV_CREATED:
2117			break;
2118		default:
2119			goto illegal;
2120		}
2121		break;
2122
2123	case SDEV_CANCEL:
2124		switch (oldstate) {
2125		case SDEV_CREATED:
2126		case SDEV_RUNNING:
2127		case SDEV_QUIESCE:
2128		case SDEV_OFFLINE:
2129		case SDEV_BLOCK:
2130			break;
2131		default:
2132			goto illegal;
2133		}
2134		break;
2135
2136	case SDEV_DEL:
2137		switch (oldstate) {
2138		case SDEV_CREATED:
2139		case SDEV_RUNNING:
2140		case SDEV_OFFLINE:
 
2141		case SDEV_CANCEL:
 
 
2142			break;
2143		default:
2144			goto illegal;
2145		}
2146		break;
2147
2148	}
2149	sdev->sdev_state = state;
2150	return 0;
2151
2152 illegal:
2153	SCSI_LOG_ERROR_RECOVERY(1, 
2154				sdev_printk(KERN_ERR, sdev,
2155					    "Illegal state transition %s->%s\n",
2156					    scsi_device_state_name(oldstate),
2157					    scsi_device_state_name(state))
2158				);
2159	return -EINVAL;
2160}
2161EXPORT_SYMBOL(scsi_device_set_state);
2162
2163/**
2164 * 	sdev_evt_emit - emit a single SCSI device uevent
2165 *	@sdev: associated SCSI device
2166 *	@evt: event to emit
2167 *
2168 *	Send a single uevent (scsi_event) to the associated scsi_device.
2169 */
2170static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2171{
2172	int idx = 0;
2173	char *envp[3];
2174
2175	switch (evt->evt_type) {
2176	case SDEV_EVT_MEDIA_CHANGE:
2177		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2178		break;
2179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2180	default:
2181		/* do nothing */
2182		break;
2183	}
2184
2185	envp[idx++] = NULL;
2186
2187	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2188}
2189
2190/**
2191 * 	sdev_evt_thread - send a uevent for each scsi event
2192 *	@work: work struct for scsi_device
2193 *
2194 *	Dispatch queued events to their associated scsi_device kobjects
2195 *	as uevents.
2196 */
2197void scsi_evt_thread(struct work_struct *work)
2198{
2199	struct scsi_device *sdev;
 
2200	LIST_HEAD(event_list);
2201
2202	sdev = container_of(work, struct scsi_device, event_work);
2203
 
 
 
 
2204	while (1) {
2205		struct scsi_event *evt;
2206		struct list_head *this, *tmp;
2207		unsigned long flags;
2208
2209		spin_lock_irqsave(&sdev->list_lock, flags);
2210		list_splice_init(&sdev->event_list, &event_list);
2211		spin_unlock_irqrestore(&sdev->list_lock, flags);
2212
2213		if (list_empty(&event_list))
2214			break;
2215
2216		list_for_each_safe(this, tmp, &event_list) {
2217			evt = list_entry(this, struct scsi_event, node);
2218			list_del(&evt->node);
2219			scsi_evt_emit(sdev, evt);
2220			kfree(evt);
2221		}
2222	}
2223}
2224
2225/**
2226 * 	sdev_evt_send - send asserted event to uevent thread
2227 *	@sdev: scsi_device event occurred on
2228 *	@evt: event to send
2229 *
2230 *	Assert scsi device event asynchronously.
2231 */
2232void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2233{
2234	unsigned long flags;
2235
2236#if 0
2237	/* FIXME: currently this check eliminates all media change events
2238	 * for polled devices.  Need to update to discriminate between AN
2239	 * and polled events */
2240	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2241		kfree(evt);
2242		return;
2243	}
2244#endif
2245
2246	spin_lock_irqsave(&sdev->list_lock, flags);
2247	list_add_tail(&evt->node, &sdev->event_list);
2248	schedule_work(&sdev->event_work);
2249	spin_unlock_irqrestore(&sdev->list_lock, flags);
2250}
2251EXPORT_SYMBOL_GPL(sdev_evt_send);
2252
2253/**
2254 * 	sdev_evt_alloc - allocate a new scsi event
2255 *	@evt_type: type of event to allocate
2256 *	@gfpflags: GFP flags for allocation
2257 *
2258 *	Allocates and returns a new scsi_event.
2259 */
2260struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2261				  gfp_t gfpflags)
2262{
2263	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2264	if (!evt)
2265		return NULL;
2266
2267	evt->evt_type = evt_type;
2268	INIT_LIST_HEAD(&evt->node);
2269
2270	/* evt_type-specific initialization, if any */
2271	switch (evt_type) {
2272	case SDEV_EVT_MEDIA_CHANGE:
 
 
 
 
 
 
 
2273	default:
2274		/* do nothing */
2275		break;
2276	}
2277
2278	return evt;
2279}
2280EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2281
2282/**
2283 * 	sdev_evt_send_simple - send asserted event to uevent thread
2284 *	@sdev: scsi_device event occurred on
2285 *	@evt_type: type of event to send
2286 *	@gfpflags: GFP flags for allocation
2287 *
2288 *	Assert scsi device event asynchronously, given an event type.
2289 */
2290void sdev_evt_send_simple(struct scsi_device *sdev,
2291			  enum scsi_device_event evt_type, gfp_t gfpflags)
2292{
2293	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2294	if (!evt) {
2295		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2296			    evt_type);
2297		return;
2298	}
2299
2300	sdev_evt_send(sdev, evt);
2301}
2302EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2303
2304/**
2305 *	scsi_device_quiesce - Block user issued commands.
2306 *	@sdev:	scsi device to quiesce.
2307 *
2308 *	This works by trying to transition to the SDEV_QUIESCE state
2309 *	(which must be a legal transition).  When the device is in this
2310 *	state, only special requests will be accepted, all others will
2311 *	be deferred.  Since special requests may also be requeued requests,
2312 *	a successful return doesn't guarantee the device will be 
2313 *	totally quiescent.
2314 *
2315 *	Must be called with user context, may sleep.
2316 *
2317 *	Returns zero if unsuccessful or an error if not.
2318 */
2319int
2320scsi_device_quiesce(struct scsi_device *sdev)
2321{
2322	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2323	if (err)
2324		return err;
2325
2326	scsi_run_queue(sdev->request_queue);
2327	while (sdev->device_busy) {
2328		msleep_interruptible(200);
2329		scsi_run_queue(sdev->request_queue);
2330	}
2331	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2332}
2333EXPORT_SYMBOL(scsi_device_quiesce);
2334
2335/**
2336 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2337 *	@sdev:	scsi device to resume.
2338 *
2339 *	Moves the device from quiesced back to running and restarts the
2340 *	queues.
2341 *
2342 *	Must be called with user context, may sleep.
2343 */
2344void
2345scsi_device_resume(struct scsi_device *sdev)
2346{
2347	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2348		return;
2349	scsi_run_queue(sdev->request_queue);
 
 
 
 
 
 
 
 
 
2350}
2351EXPORT_SYMBOL(scsi_device_resume);
2352
2353static void
2354device_quiesce_fn(struct scsi_device *sdev, void *data)
2355{
2356	scsi_device_quiesce(sdev);
2357}
2358
2359void
2360scsi_target_quiesce(struct scsi_target *starget)
2361{
2362	starget_for_each_device(starget, NULL, device_quiesce_fn);
2363}
2364EXPORT_SYMBOL(scsi_target_quiesce);
2365
2366static void
2367device_resume_fn(struct scsi_device *sdev, void *data)
2368{
2369	scsi_device_resume(sdev);
2370}
2371
2372void
2373scsi_target_resume(struct scsi_target *starget)
2374{
2375	starget_for_each_device(starget, NULL, device_resume_fn);
2376}
2377EXPORT_SYMBOL(scsi_target_resume);
2378
2379/**
2380 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2381 * @sdev:	device to block
2382 *
2383 * Block request made by scsi lld's to temporarily stop all
2384 * scsi commands on the specified device.  Called from interrupt
2385 * or normal process context.
2386 *
2387 * Returns zero if successful or error if not
2388 *
2389 * Notes:       
2390 *	This routine transitions the device to the SDEV_BLOCK state
2391 *	(which must be a legal transition).  When the device is in this
2392 *	state, all commands are deferred until the scsi lld reenables
2393 *	the device with scsi_device_unblock or device_block_tmo fires.
2394 *	This routine assumes the host_lock is held on entry.
2395 */
2396int
2397scsi_internal_device_block(struct scsi_device *sdev)
2398{
2399	struct request_queue *q = sdev->request_queue;
2400	unsigned long flags;
2401	int err = 0;
2402
2403	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2404	if (err) {
2405		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2406
2407		if (err)
2408			return err;
2409	}
2410
2411	/* 
2412	 * The device has transitioned to SDEV_BLOCK.  Stop the
2413	 * block layer from calling the midlayer with this device's
2414	 * request queue. 
2415	 */
2416	spin_lock_irqsave(q->queue_lock, flags);
2417	blk_stop_queue(q);
2418	spin_unlock_irqrestore(q->queue_lock, flags);
2419
2420	return 0;
2421}
2422EXPORT_SYMBOL_GPL(scsi_internal_device_block);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2423 
 
 
 
 
 
 
 
2424/**
2425 * scsi_internal_device_unblock - resume a device after a block request
2426 * @sdev:	device to resume
 
2427 *
2428 * Called by scsi lld's or the midlayer to restart the device queue
2429 * for the previously suspended scsi device.  Called from interrupt or
2430 * normal process context.
2431 *
2432 * Returns zero if successful or error if not.
2433 *
2434 * Notes:       
2435 *	This routine transitions the device to the SDEV_RUNNING state
2436 *	(which must be a legal transition) allowing the midlayer to
2437 *	goose the queue for this device.  This routine assumes the 
2438 *	host_lock is held upon entry.
2439 */
2440int
2441scsi_internal_device_unblock(struct scsi_device *sdev)
2442{
2443	struct request_queue *q = sdev->request_queue; 
2444	unsigned long flags;
2445	
2446	/* 
2447	 * Try to transition the scsi device to SDEV_RUNNING
2448	 * and goose the device queue if successful.  
2449	 */
2450	if (sdev->sdev_state == SDEV_BLOCK)
2451		sdev->sdev_state = SDEV_RUNNING;
2452	else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2453		sdev->sdev_state = SDEV_CREATED;
2454	else if (sdev->sdev_state != SDEV_CANCEL &&
2455		 sdev->sdev_state != SDEV_OFFLINE)
2456		return -EINVAL;
 
2457
2458	spin_lock_irqsave(q->queue_lock, flags);
2459	blk_start_queue(q);
2460	spin_unlock_irqrestore(q->queue_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2461
2462	return 0;
2463}
2464EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2465
2466static void
2467device_block(struct scsi_device *sdev, void *data)
2468{
2469	scsi_internal_device_block(sdev);
 
 
 
 
 
2470}
2471
2472static int
2473target_block(struct device *dev, void *data)
2474{
2475	if (scsi_is_target_device(dev))
2476		starget_for_each_device(to_scsi_target(dev), NULL,
2477					device_block);
2478	return 0;
2479}
2480
2481void
2482scsi_target_block(struct device *dev)
2483{
2484	if (scsi_is_target_device(dev))
2485		starget_for_each_device(to_scsi_target(dev), NULL,
2486					device_block);
2487	else
2488		device_for_each_child(dev, NULL, target_block);
2489}
2490EXPORT_SYMBOL_GPL(scsi_target_block);
2491
2492static void
2493device_unblock(struct scsi_device *sdev, void *data)
2494{
2495	scsi_internal_device_unblock(sdev);
2496}
2497
2498static int
2499target_unblock(struct device *dev, void *data)
2500{
2501	if (scsi_is_target_device(dev))
2502		starget_for_each_device(to_scsi_target(dev), NULL,
2503					device_unblock);
2504	return 0;
2505}
2506
2507void
2508scsi_target_unblock(struct device *dev)
2509{
2510	if (scsi_is_target_device(dev))
2511		starget_for_each_device(to_scsi_target(dev), NULL,
2512					device_unblock);
2513	else
2514		device_for_each_child(dev, NULL, target_unblock);
2515}
2516EXPORT_SYMBOL_GPL(scsi_target_unblock);
2517
2518/**
2519 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2520 * @sgl:	scatter-gather list
2521 * @sg_count:	number of segments in sg
2522 * @offset:	offset in bytes into sg, on return offset into the mapped area
2523 * @len:	bytes to map, on return number of bytes mapped
2524 *
2525 * Returns virtual address of the start of the mapped page
2526 */
2527void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2528			  size_t *offset, size_t *len)
2529{
2530	int i;
2531	size_t sg_len = 0, len_complete = 0;
2532	struct scatterlist *sg;
2533	struct page *page;
2534
2535	WARN_ON(!irqs_disabled());
2536
2537	for_each_sg(sgl, sg, sg_count, i) {
2538		len_complete = sg_len; /* Complete sg-entries */
2539		sg_len += sg->length;
2540		if (sg_len > *offset)
2541			break;
2542	}
2543
2544	if (unlikely(i == sg_count)) {
2545		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2546			"elements %d\n",
2547		       __func__, sg_len, *offset, sg_count);
2548		WARN_ON(1);
2549		return NULL;
2550	}
2551
2552	/* Offset starting from the beginning of first page in this sg-entry */
2553	*offset = *offset - len_complete + sg->offset;
2554
2555	/* Assumption: contiguous pages can be accessed as "page + i" */
2556	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2557	*offset &= ~PAGE_MASK;
2558
2559	/* Bytes in this sg-entry from *offset to the end of the page */
2560	sg_len = PAGE_SIZE - *offset;
2561	if (*len > sg_len)
2562		*len = sg_len;
2563
2564	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2565}
2566EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2567
2568/**
2569 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2570 * @virt:	virtual address to be unmapped
2571 */
2572void scsi_kunmap_atomic_sg(void *virt)
2573{
2574	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2575}
2576EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 1999 Eric Youngdale
   4 * Copyright (C) 2014 Christoph Hellwig
   5 *
   6 *  SCSI queueing library.
   7 *      Initial versions: Eric Youngdale (eric@andante.org).
   8 *                        Based upon conversations with large numbers
   9 *                        of people at Linux Expo.
  10 */
  11
  12#include <linux/bio.h>
  13#include <linux/bitops.h>
  14#include <linux/blkdev.h>
  15#include <linux/completion.h>
  16#include <linux/kernel.h>
  17#include <linux/export.h>
 
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
  23#include <linux/blk-mq.h>
  24#include <linux/ratelimit.h>
  25#include <asm/unaligned.h>
  26
  27#include <scsi/scsi.h>
  28#include <scsi/scsi_cmnd.h>
  29#include <scsi/scsi_dbg.h>
  30#include <scsi/scsi_device.h>
  31#include <scsi/scsi_driver.h>
  32#include <scsi/scsi_eh.h>
  33#include <scsi/scsi_host.h>
  34#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  35#include <scsi/scsi_dh.h>
  36
  37#include <trace/events/scsi.h>
  38
  39#include "scsi_debugfs.h"
  40#include "scsi_priv.h"
  41#include "scsi_logging.h"
  42
  43/*
  44 * Size of integrity metadata is usually small, 1 inline sg should
  45 * cover normal cases.
  46 */
  47#ifdef CONFIG_ARCH_NO_SG_CHAIN
  48#define  SCSI_INLINE_PROT_SG_CNT  0
  49#define  SCSI_INLINE_SG_CNT  0
  50#else
  51#define  SCSI_INLINE_PROT_SG_CNT  1
  52#define  SCSI_INLINE_SG_CNT  2
  53#endif
  54
  55static struct kmem_cache *scsi_sdb_cache;
  56static struct kmem_cache *scsi_sense_cache;
  57static struct kmem_cache *scsi_sense_isadma_cache;
  58static DEFINE_MUTEX(scsi_sense_cache_mutex);
  59
  60static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
 
 
 
 
 
  61
  62static inline struct kmem_cache *
  63scsi_select_sense_cache(bool unchecked_isa_dma)
  64{
  65	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
  66}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67
  68static void scsi_free_sense_buffer(bool unchecked_isa_dma,
  69				   unsigned char *sense_buffer)
  70{
  71	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
  72			sense_buffer);
  73}
  74
  75static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
  76	gfp_t gfp_mask, int numa_node)
  77{
  78	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
  79				     gfp_mask, numa_node);
  80}
  81
  82int scsi_init_sense_cache(struct Scsi_Host *shost)
 
 
 
 
 
 
 
 
 
 
 
 
  83{
  84	struct kmem_cache *cache;
  85	int ret = 0;
  86
  87	mutex_lock(&scsi_sense_cache_mutex);
  88	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
  89	if (cache)
  90		goto exit;
  91
  92	if (shost->unchecked_isa_dma) {
  93		scsi_sense_isadma_cache =
  94			kmem_cache_create("scsi_sense_cache(DMA)",
  95				SCSI_SENSE_BUFFERSIZE, 0,
  96				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
  97		if (!scsi_sense_isadma_cache)
  98			ret = -ENOMEM;
  99	} else {
 100		scsi_sense_cache =
 101			kmem_cache_create_usercopy("scsi_sense_cache",
 102				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
 103				0, SCSI_SENSE_BUFFERSIZE, NULL);
 104		if (!scsi_sense_cache)
 105			ret = -ENOMEM;
 106	}
 107 exit:
 108	mutex_unlock(&scsi_sense_cache_mutex);
 109	return ret;
 110}
 111
 112/*
 113 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
 114 * not change behaviour from the previous unplug mechanism, experimentation
 115 * may prove this needs changing.
 
 
 
 
 
 
 
 116 */
 117#define SCSI_QUEUE_DELAY	3
 118
 119static void
 120scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
 121{
 122	struct Scsi_Host *host = cmd->device->host;
 123	struct scsi_device *device = cmd->device;
 124	struct scsi_target *starget = scsi_target(device);
 
 
 
 
 
 125
 126	/*
 127	 * Set the appropriate busy bit for the device/host.
 128	 *
 129	 * If the host/device isn't busy, assume that something actually
 130	 * completed, and that we should be able to queue a command now.
 131	 *
 132	 * Note that the prior mid-layer assumption that any host could
 133	 * always queue at least one command is now broken.  The mid-layer
 134	 * will implement a user specifiable stall (see
 135	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 136	 * if a command is requeued with no other commands outstanding
 137	 * either for the device or for the host.
 138	 */
 139	switch (reason) {
 140	case SCSI_MLQUEUE_HOST_BUSY:
 141		atomic_set(&host->host_blocked, host->max_host_blocked);
 142		break;
 143	case SCSI_MLQUEUE_DEVICE_BUSY:
 144	case SCSI_MLQUEUE_EH_RETRY:
 145		atomic_set(&device->device_blocked,
 146			   device->max_device_blocked);
 147		break;
 148	case SCSI_MLQUEUE_TARGET_BUSY:
 149		atomic_set(&starget->target_blocked,
 150			   starget->max_target_blocked);
 151		break;
 152	}
 153}
 154
 155static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
 156{
 157	if (cmd->request->rq_flags & RQF_DONTPREP) {
 158		cmd->request->rq_flags &= ~RQF_DONTPREP;
 159		scsi_mq_uninit_cmd(cmd);
 160	} else {
 161		WARN_ON_ONCE(true);
 162	}
 163	blk_mq_requeue_request(cmd->request, true);
 164}
 165
 166/**
 167 * __scsi_queue_insert - private queue insertion
 168 * @cmd: The SCSI command being requeued
 169 * @reason:  The reason for the requeue
 170 * @unbusy: Whether the queue should be unbusied
 171 *
 172 * This is a private queue insertion.  The public interface
 173 * scsi_queue_insert() always assumes the queue should be unbusied
 174 * because it's always called before the completion.  This function is
 175 * for a requeue after completion, which should only occur in this
 176 * file.
 177 */
 178static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 179{
 180	struct scsi_device *device = cmd->device;
 181
 182	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 183		"Inserting command %p into mlqueue\n", cmd));
 184
 185	scsi_set_blocked(cmd, reason);
 186
 187	/*
 188	 * Decrement the counters, since these commands are no longer
 189	 * active on the host/device.
 190	 */
 191	if (unbusy)
 192		scsi_device_unbusy(device);
 193
 194	/*
 195	 * Requeue this command.  It will go before all other commands
 196	 * that are already in the queue. Schedule requeue work under
 197	 * lock such that the kblockd_schedule_work() call happens
 198	 * before blk_cleanup_queue() finishes.
 199	 */
 200	cmd->result = 0;
 
 
 
 
 201
 202	blk_mq_requeue_request(cmd->request, true);
 203}
 204
 205/*
 206 * Function:    scsi_queue_insert()
 207 *
 208 * Purpose:     Insert a command in the midlevel queue.
 209 *
 210 * Arguments:   cmd    - command that we are adding to queue.
 211 *              reason - why we are inserting command to queue.
 212 *
 213 * Lock status: Assumed that lock is not held upon entry.
 214 *
 215 * Returns:     Nothing.
 216 *
 217 * Notes:       We do this for one of two cases.  Either the host is busy
 218 *              and it cannot accept any more commands for the time being,
 219 *              or the device returned QUEUE_FULL and can accept no more
 220 *              commands.
 221 * Notes:       This could be called either from an interrupt context or a
 222 *              normal process context.
 223 */
 224void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 225{
 226	__scsi_queue_insert(cmd, reason, true);
 227}
 228
 229
 230/**
 231 * __scsi_execute - insert request and wait for the result
 232 * @sdev:	scsi device
 233 * @cmd:	scsi command
 234 * @data_direction: data direction
 235 * @buffer:	data buffer
 236 * @bufflen:	len of buffer
 237 * @sense:	optional sense buffer
 238 * @sshdr:	optional decoded sense header
 239 * @timeout:	request timeout in seconds
 240 * @retries:	number of times to retry request
 241 * @flags:	flags for ->cmd_flags
 242 * @rq_flags:	flags for ->rq_flags
 243 * @resid:	optional residual length
 244 *
 245 * Returns the scsi_cmnd result field if a command was executed, or a negative
 246 * Linux error code if we didn't get that far.
 247 */
 248int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 249		 int data_direction, void *buffer, unsigned bufflen,
 250		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
 251		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
 252		 int *resid)
 253{
 254	struct request *req;
 255	struct scsi_request *rq;
 256	int ret = DRIVER_ERROR << 24;
 257
 258	req = blk_get_request(sdev->request_queue,
 259			data_direction == DMA_TO_DEVICE ?
 260			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
 261	if (IS_ERR(req))
 262		return ret;
 263	rq = scsi_req(req);
 264
 265	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
 266					buffer, bufflen, GFP_NOIO))
 267		goto out;
 268
 269	rq->cmd_len = COMMAND_SIZE(cmd[0]);
 270	memcpy(rq->cmd, cmd, rq->cmd_len);
 271	rq->retries = retries;
 
 
 272	req->timeout = timeout;
 273	req->cmd_flags |= flags;
 274	req->rq_flags |= rq_flags | RQF_QUIET;
 275
 276	/*
 277	 * head injection *required* here otherwise quiesce won't work
 278	 */
 279	blk_execute_rq(req->q, NULL, req, 1);
 280
 281	/*
 282	 * Some devices (USB mass-storage in particular) may transfer
 283	 * garbage data together with a residue indicating that the data
 284	 * is invalid.  Prevent the garbage from being misinterpreted
 285	 * and prevent security leaks by zeroing out the excess data.
 286	 */
 287	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
 288		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
 289
 290	if (resid)
 291		*resid = rq->resid_len;
 292	if (sense && rq->sense_len)
 293		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
 294	if (sshdr)
 295		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
 296	ret = rq->result;
 297 out:
 298	blk_put_request(req);
 299
 300	return ret;
 301}
 302EXPORT_SYMBOL(__scsi_execute);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 303
 304/*
 305 * Function:    scsi_init_cmd_errh()
 306 *
 307 * Purpose:     Initialize cmd fields related to error handling.
 308 *
 309 * Arguments:   cmd	- command that is ready to be queued.
 310 *
 311 * Notes:       This function has the job of initializing a number of
 312 *              fields related to error handling.   Typically this will
 313 *              be called once for each command, as required.
 314 */
 315static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 316{
 
 317	scsi_set_resid(cmd, 0);
 318	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 319	if (cmd->cmd_len == 0)
 320		cmd->cmd_len = scsi_command_size(cmd->cmnd);
 321}
 322
 323/*
 324 * Decrement the host_busy counter and wake up the error handler if necessary.
 325 * Avoid as follows that the error handler is not woken up if shost->host_busy
 326 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 327 * with an RCU read lock in this function to ensure that this function in its
 328 * entirety either finishes before scsi_eh_scmd_add() increases the
 329 * host_failed counter or that it notices the shost state change made by
 330 * scsi_eh_scmd_add().
 331 */
 332static void scsi_dec_host_busy(struct Scsi_Host *shost)
 333{
 334	unsigned long flags;
 335
 336	rcu_read_lock();
 337	atomic_dec(&shost->host_busy);
 338	if (unlikely(scsi_host_in_recovery(shost))) {
 339		spin_lock_irqsave(shost->host_lock, flags);
 340		if (shost->host_failed || shost->host_eh_scheduled)
 341			scsi_eh_wakeup(shost);
 342		spin_unlock_irqrestore(shost->host_lock, flags);
 343	}
 344	rcu_read_unlock();
 345}
 346
 347void scsi_device_unbusy(struct scsi_device *sdev)
 348{
 349	struct Scsi_Host *shost = sdev->host;
 350	struct scsi_target *starget = scsi_target(sdev);
 
 351
 352	scsi_dec_host_busy(shost);
 353
 354	if (starget->can_queue > 0)
 355		atomic_dec(&starget->target_busy);
 356
 357	atomic_dec(&sdev->device_busy);
 358}
 359
 360static void scsi_kick_queue(struct request_queue *q)
 361{
 362	blk_mq_run_hw_queues(q, false);
 363}
 364
 365/*
 366 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 367 * and call blk_run_queue for all the scsi_devices on the target -
 368 * including current_sdev first.
 369 *
 370 * Called with *no* scsi locks held.
 371 */
 372static void scsi_single_lun_run(struct scsi_device *current_sdev)
 373{
 374	struct Scsi_Host *shost = current_sdev->host;
 375	struct scsi_device *sdev, *tmp;
 376	struct scsi_target *starget = scsi_target(current_sdev);
 377	unsigned long flags;
 378
 379	spin_lock_irqsave(shost->host_lock, flags);
 380	starget->starget_sdev_user = NULL;
 381	spin_unlock_irqrestore(shost->host_lock, flags);
 382
 383	/*
 384	 * Call blk_run_queue for all LUNs on the target, starting with
 385	 * current_sdev. We race with others (to set starget_sdev_user),
 386	 * but in most cases, we will be first. Ideally, each LU on the
 387	 * target would get some limited time or requests on the target.
 388	 */
 389	scsi_kick_queue(current_sdev->request_queue);
 390
 391	spin_lock_irqsave(shost->host_lock, flags);
 392	if (starget->starget_sdev_user)
 393		goto out;
 394	list_for_each_entry_safe(sdev, tmp, &starget->devices,
 395			same_target_siblings) {
 396		if (sdev == current_sdev)
 397			continue;
 398		if (scsi_device_get(sdev))
 399			continue;
 400
 401		spin_unlock_irqrestore(shost->host_lock, flags);
 402		scsi_kick_queue(sdev->request_queue);
 403		spin_lock_irqsave(shost->host_lock, flags);
 404	
 405		scsi_device_put(sdev);
 406	}
 407 out:
 408	spin_unlock_irqrestore(shost->host_lock, flags);
 409}
 410
 411static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 412{
 413	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
 414		return true;
 415	if (atomic_read(&sdev->device_blocked) > 0)
 416		return true;
 417	return false;
 418}
 419
 420static inline bool scsi_target_is_busy(struct scsi_target *starget)
 421{
 422	if (starget->can_queue > 0) {
 423		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 424			return true;
 425		if (atomic_read(&starget->target_blocked) > 0)
 426			return true;
 427	}
 428	return false;
 429}
 430
 431static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 432{
 433	if (shost->can_queue > 0 &&
 434	    atomic_read(&shost->host_busy) >= shost->can_queue)
 435		return true;
 436	if (atomic_read(&shost->host_blocked) > 0)
 437		return true;
 438	if (shost->host_self_blocked)
 439		return true;
 440	return false;
 441}
 442
 443static void scsi_starved_list_run(struct Scsi_Host *shost)
 
 
 
 
 
 
 
 
 
 
 
 
 444{
 
 
 445	LIST_HEAD(starved_list);
 446	struct scsi_device *sdev;
 447	unsigned long flags;
 448
 
 
 
 
 
 
 
 
 449	spin_lock_irqsave(shost->host_lock, flags);
 450	list_splice_init(&shost->starved_list, &starved_list);
 451
 452	while (!list_empty(&starved_list)) {
 453		struct request_queue *slq;
 454
 455		/*
 456		 * As long as shost is accepting commands and we have
 457		 * starved queues, call blk_run_queue. scsi_request_fn
 458		 * drops the queue_lock and can add us back to the
 459		 * starved_list.
 460		 *
 461		 * host_lock protects the starved_list and starved_entry.
 462		 * scsi_request_fn must get the host_lock before checking
 463		 * or modifying starved_list or starved_entry.
 464		 */
 465		if (scsi_host_is_busy(shost))
 466			break;
 467
 468		sdev = list_entry(starved_list.next,
 469				  struct scsi_device, starved_entry);
 470		list_del_init(&sdev->starved_entry);
 471		if (scsi_target_is_busy(scsi_target(sdev))) {
 472			list_move_tail(&sdev->starved_entry,
 473				       &shost->starved_list);
 474			continue;
 475		}
 476
 477		/*
 478		 * Once we drop the host lock, a racing scsi_remove_device()
 479		 * call may remove the sdev from the starved list and destroy
 480		 * it and the queue.  Mitigate by taking a reference to the
 481		 * queue and never touching the sdev again after we drop the
 482		 * host lock.  Note: if __scsi_remove_device() invokes
 483		 * blk_cleanup_queue() before the queue is run from this
 484		 * function then blk_run_queue() will return immediately since
 485		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 486		 */
 487		slq = sdev->request_queue;
 488		if (!blk_get_queue(slq))
 489			continue;
 490		spin_unlock_irqrestore(shost->host_lock, flags);
 491
 492		scsi_kick_queue(slq);
 493		blk_put_queue(slq);
 494
 495		spin_lock_irqsave(shost->host_lock, flags);
 496	}
 497	/* put any unprocessed entries back */
 498	list_splice(&starved_list, &shost->starved_list);
 499	spin_unlock_irqrestore(shost->host_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 500}
 501
 502/*
 503 * Function:   scsi_run_queue()
 504 *
 505 * Purpose:    Select a proper request queue to serve next
 506 *
 507 * Arguments:  q       - last request's queue
 
 508 *
 509 * Returns:     Nothing
 510 *
 511 * Notes:      The previous command was completely finished, start
 512 *             a new one if possible.
 
 
 
 
 
 513 */
 514static void scsi_run_queue(struct request_queue *q)
 515{
 516	struct scsi_device *sdev = q->queuedata;
 
 517
 518	if (scsi_target(sdev)->single_lun)
 519		scsi_single_lun_run(sdev);
 520	if (!list_empty(&sdev->host->starved_list))
 521		scsi_starved_list_run(sdev->host);
 522
 523	blk_mq_run_hw_queues(q, false);
 524}
 525
 526void scsi_requeue_run_queue(struct work_struct *work)
 527{
 528	struct scsi_device *sdev;
 529	struct request_queue *q;
 
 
 
 530
 531	sdev = container_of(work, struct scsi_device, requeue_work);
 532	q = sdev->request_queue;
 533	scsi_run_queue(q);
 
 
 
 534}
 535
 536void scsi_run_host_queues(struct Scsi_Host *shost)
 537{
 538	struct scsi_device *sdev;
 539
 540	shost_for_each_device(sdev, shost)
 541		scsi_run_queue(sdev->request_queue);
 542}
 543
 544static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545{
 546	if (!blk_rq_is_passthrough(cmd->request)) {
 547		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 548
 549		if (drv->uninit_command)
 550			drv->uninit_command(cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 551	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552}
 553
 554static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
 555{
 556	if (cmd->sdb.table.nents)
 557		sg_free_table_chained(&cmd->sdb.table,
 558				SCSI_INLINE_SG_CNT);
 559	if (scsi_prot_sg_count(cmd))
 560		sg_free_table_chained(&cmd->prot_sdb->table,
 561				SCSI_INLINE_PROT_SG_CNT);
 562}
 563
 564static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 565{
 566	scsi_mq_free_sgtables(cmd);
 567	scsi_uninit_cmd(cmd);
 568	scsi_del_cmd_from_list(cmd);
 
 569}
 570
 571/* Returns false when no more bytes to process, true if there are more */
 572static bool scsi_end_request(struct request *req, blk_status_t error,
 573		unsigned int bytes)
 574{
 575	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 576	struct scsi_device *sdev = cmd->device;
 577	struct request_queue *q = sdev->request_queue;
 578
 579	if (blk_update_request(req, error, bytes))
 580		return true;
 581
 582	if (blk_queue_add_random(q))
 583		add_disk_randomness(req->rq_disk);
 
 
 
 584
 585	if (!blk_rq_is_scsi(req)) {
 586		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
 587		cmd->flags &= ~SCMD_INITIALIZED;
 588	}
 589
 590	/*
 591	 * Calling rcu_barrier() is not necessary here because the
 592	 * SCSI error handler guarantees that the function called by
 593	 * call_rcu() has been called before scsi_end_request() is
 594	 * called.
 595	 */
 596	destroy_rcu_head(&cmd->rcu);
 597
 598	/*
 599	 * In the MQ case the command gets freed by __blk_mq_end_request,
 600	 * so we have to do all cleanup that depends on it earlier.
 601	 *
 602	 * We also can't kick the queues from irq context, so we
 603	 * will have to defer it to a workqueue.
 604	 */
 605	scsi_mq_uninit_cmd(cmd);
 606
 607	/*
 608	 * queue is still alive, so grab the ref for preventing it
 609	 * from being cleaned up during running queue.
 610	 */
 611	percpu_ref_get(&q->q_usage_counter);
 612
 613	__blk_mq_end_request(req, error);
 614
 615	if (scsi_target(sdev)->single_lun ||
 616	    !list_empty(&sdev->host->starved_list))
 617		kblockd_schedule_work(&sdev->requeue_work);
 618	else
 619		blk_mq_run_hw_queues(q, true);
 
 
 620
 621	percpu_ref_put(&q->q_usage_counter);
 622	return false;
 623}
 624
 625/**
 626 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 627 * @cmd:	SCSI command
 628 * @result:	scsi error code
 
 
 
 
 
 
 629 *
 630 * Translate a SCSI result code into a blk_status_t value. May reset the host
 631 * byte of @cmd->result.
 
 
 
 632 */
 633static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
 
 
 
 
 
 
 634{
 635	switch (host_byte(result)) {
 636	case DID_OK:
 637		/*
 638		 * Also check the other bytes than the status byte in result
 639		 * to handle the case when a SCSI LLD sets result to
 640		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
 641		 */
 642		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
 643			return BLK_STS_OK;
 644		return BLK_STS_IOERR;
 645	case DID_TRANSPORT_FAILFAST:
 646		return BLK_STS_TRANSPORT;
 
 647	case DID_TARGET_FAILURE:
 648		set_host_byte(cmd, DID_OK);
 649		return BLK_STS_TARGET;
 
 650	case DID_NEXUS_FAILURE:
 651		set_host_byte(cmd, DID_OK);
 652		return BLK_STS_NEXUS;
 653	case DID_ALLOC_FAILURE:
 654		set_host_byte(cmd, DID_OK);
 655		return BLK_STS_NOSPC;
 656	case DID_MEDIUM_ERROR:
 657		set_host_byte(cmd, DID_OK);
 658		return BLK_STS_MEDIUM;
 659	default:
 660		return BLK_STS_IOERR;
 
 661	}
 662}
 663
 664/* Helper for scsi_io_completion() when "reprep" action required. */
 665static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
 666				      struct request_queue *q)
 667{
 668	/* A new command will be prepared and issued. */
 669	scsi_mq_requeue_cmd(cmd);
 670}
 671
 672/* Helper for scsi_io_completion() when special action required. */
 673static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 674{
 
 675	struct request_queue *q = cmd->device->request_queue;
 676	struct request *req = cmd->request;
 677	int level = 0;
 
 
 
 678	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 679	      ACTION_DELAYED_RETRY} action;
 680	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
 681	struct scsi_sense_hdr sshdr;
 682	bool sense_valid;
 683	bool sense_current = true;      /* false implies "deferred sense" */
 684	blk_status_t blk_stat;
 685
 686	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 687	if (sense_valid)
 688		sense_current = !scsi_sense_is_deferred(&sshdr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 689
 690	blk_stat = scsi_result_to_blk_status(cmd, result);
 691
 692	if (host_byte(result) == DID_RESET) {
 693		/* Third party bus reset or reset for error recovery
 694		 * reasons.  Just retry the command and see what
 695		 * happens.
 696		 */
 697		action = ACTION_RETRY;
 698	} else if (sense_valid && sense_current) {
 699		switch (sshdr.sense_key) {
 700		case UNIT_ATTENTION:
 701			if (cmd->device->removable) {
 702				/* Detected disc change.  Set a bit
 703				 * and quietly refuse further access.
 704				 */
 705				cmd->device->changed = 1;
 
 706				action = ACTION_FAIL;
 707			} else {
 708				/* Must have been a power glitch, or a
 709				 * bus reset.  Could not have been a
 710				 * media change, so we just retry the
 711				 * command and see what happens.
 712				 */
 713				action = ACTION_RETRY;
 714			}
 715			break;
 716		case ILLEGAL_REQUEST:
 717			/* If we had an ILLEGAL REQUEST returned, then
 718			 * we may have performed an unsupported
 719			 * command.  The only thing this should be
 720			 * would be a ten byte read where only a six
 721			 * byte read was supported.  Also, on a system
 722			 * where READ CAPACITY failed, we may have
 723			 * read past the end of the disk.
 724			 */
 725			if ((cmd->device->use_10_for_rw &&
 726			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 727			    (cmd->cmnd[0] == READ_10 ||
 728			     cmd->cmnd[0] == WRITE_10)) {
 729				/* This will issue a new 6-byte command. */
 730				cmd->device->use_10_for_rw = 0;
 731				action = ACTION_REPREP;
 732			} else if (sshdr.asc == 0x10) /* DIX */ {
 
 733				action = ACTION_FAIL;
 734				blk_stat = BLK_STS_PROTECTION;
 735			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 736			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 
 
 
 
 737				action = ACTION_FAIL;
 738				blk_stat = BLK_STS_TARGET;
 739			} else
 740				action = ACTION_FAIL;
 741			break;
 742		case ABORTED_COMMAND:
 743			action = ACTION_FAIL;
 744			if (sshdr.asc == 0x10) /* DIF */
 745				blk_stat = BLK_STS_PROTECTION;
 
 
 746			break;
 747		case NOT_READY:
 748			/* If the device is in the process of becoming
 749			 * ready, or has a temporary blockage, retry.
 750			 */
 751			if (sshdr.asc == 0x04) {
 752				switch (sshdr.ascq) {
 753				case 0x01: /* becoming ready */
 754				case 0x04: /* format in progress */
 755				case 0x05: /* rebuild in progress */
 756				case 0x06: /* recalculation in progress */
 757				case 0x07: /* operation in progress */
 758				case 0x08: /* Long write in progress */
 759				case 0x09: /* self test in progress */
 760				case 0x14: /* space allocation in progress */
 761				case 0x1a: /* start stop unit in progress */
 762				case 0x1b: /* sanitize in progress */
 763				case 0x1d: /* configuration in progress */
 764				case 0x24: /* depopulation in progress */
 765					action = ACTION_DELAYED_RETRY;
 766					break;
 767				default:
 
 768					action = ACTION_FAIL;
 769					break;
 770				}
 771			} else
 
 772				action = ACTION_FAIL;
 
 773			break;
 774		case VOLUME_OVERFLOW:
 775			/* See SSC3rXX or current. */
 776			action = ACTION_FAIL;
 777			break;
 778		default:
 
 779			action = ACTION_FAIL;
 780			break;
 781		}
 782	} else
 783		action = ACTION_FAIL;
 784
 785	if (action != ACTION_FAIL &&
 786	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
 787		action = ACTION_FAIL;
 
 788
 789	switch (action) {
 790	case ACTION_FAIL:
 791		/* Give up and fail the remainder of the request */
 792		if (!(req->rq_flags & RQF_QUIET)) {
 793			static DEFINE_RATELIMIT_STATE(_rs,
 794					DEFAULT_RATELIMIT_INTERVAL,
 795					DEFAULT_RATELIMIT_BURST);
 796
 797			if (unlikely(scsi_logging_level))
 798				level =
 799				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 800						    SCSI_LOG_MLCOMPLETE_BITS);
 801
 802			/*
 803			 * if logging is enabled the failure will be printed
 804			 * in scsi_log_completion(), so avoid duplicate messages
 805			 */
 806			if (!level && __ratelimit(&_rs)) {
 807				scsi_print_result(cmd, NULL, FAILED);
 808				if (driver_byte(result) == DRIVER_SENSE)
 809					scsi_print_sense(cmd);
 810				scsi_print_command(cmd);
 811			}
 812		}
 813		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
 814			return;
 815		/*FALLTHRU*/
 
 
 816	case ACTION_REPREP:
 817		scsi_io_completion_reprep(cmd, q);
 
 
 
 
 818		break;
 819	case ACTION_RETRY:
 820		/* Retry the same command immediately */
 821		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
 822		break;
 823	case ACTION_DELAYED_RETRY:
 824		/* Retry the same command after a delay */
 825		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
 826		break;
 827	}
 828}
 829
 830/*
 831 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
 832 * new result that may suppress further error checking. Also modifies
 833 * *blk_statp in some cases.
 834 */
 835static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
 836					blk_status_t *blk_statp)
 837{
 838	bool sense_valid;
 839	bool sense_current = true;	/* false implies "deferred sense" */
 840	struct request *req = cmd->request;
 841	struct scsi_sense_hdr sshdr;
 842
 843	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 844	if (sense_valid)
 845		sense_current = !scsi_sense_is_deferred(&sshdr);
 846
 847	if (blk_rq_is_passthrough(req)) {
 848		if (sense_valid) {
 849			/*
 850			 * SG_IO wants current and deferred errors
 851			 */
 852			scsi_req(req)->sense_len =
 853				min(8 + cmd->sense_buffer[7],
 854				    SCSI_SENSE_BUFFERSIZE);
 855		}
 856		if (sense_current)
 857			*blk_statp = scsi_result_to_blk_status(cmd, result);
 858	} else if (blk_rq_bytes(req) == 0 && sense_current) {
 859		/*
 860		 * Flush commands do not transfers any data, and thus cannot use
 861		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 862		 * This sets *blk_statp explicitly for the problem case.
 863		 */
 864		*blk_statp = scsi_result_to_blk_status(cmd, result);
 865	}
 866	/*
 867	 * Recovered errors need reporting, but they're always treated as
 868	 * success, so fiddle the result code here.  For passthrough requests
 869	 * we already took a copy of the original into sreq->result which
 870	 * is what gets returned to the user
 871	 */
 872	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 873		bool do_print = true;
 874		/*
 875		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
 876		 * skip print since caller wants ATA registers. Only occurs
 877		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
 878		 */
 879		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 880			do_print = false;
 881		else if (req->rq_flags & RQF_QUIET)
 882			do_print = false;
 883		if (do_print)
 884			scsi_print_sense(cmd);
 885		result = 0;
 886		/* for passthrough, *blk_statp may be set */
 887		*blk_statp = BLK_STS_OK;
 888	}
 889	/*
 890	 * Another corner case: the SCSI status byte is non-zero but 'good'.
 891	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
 892	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
 893	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
 894	 * intermediate statuses (both obsolete in SAM-4) as good.
 895	 */
 896	if (status_byte(result) && scsi_status_is_good(result)) {
 897		result = 0;
 898		*blk_statp = BLK_STS_OK;
 899	}
 900	return result;
 901}
 902
 903/*
 904 * Function:    scsi_io_completion()
 905 *
 906 * Purpose:     Completion processing for block device I/O requests.
 907 *
 908 * Arguments:   cmd   - command that is finished.
 909 *
 910 * Lock status: Assumed that no lock is held upon entry.
 911 *
 912 * Returns:     Nothing
 913 *
 914 * Notes:       We will finish off the specified number of sectors.  If we
 915 *		are done, the command block will be released and the queue
 916 *		function will be goosed.  If we are not done then we have to
 917 *		figure out what to do next:
 918 *
 919 *		a) We can call scsi_requeue_command().  The request
 920 *		   will be unprepared and put back on the queue.  Then
 921 *		   a new command will be created for it.  This should
 922 *		   be used if we made forward progress, or if we want
 923 *		   to switch from READ(10) to READ(6) for example.
 924 *
 925 *		b) We can call __scsi_queue_insert().  The request will
 926 *		   be put back on the queue and retried using the same
 927 *		   command as before, possibly after a delay.
 928 *
 929 *		c) We can call scsi_end_request() with blk_stat other than
 930 *		   BLK_STS_OK, to fail the remainder of the request.
 931 */
 932void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 933{
 934	int result = cmd->result;
 935	struct request_queue *q = cmd->device->request_queue;
 936	struct request *req = cmd->request;
 937	blk_status_t blk_stat = BLK_STS_OK;
 938
 939	if (unlikely(result))	/* a nz result may or may not be an error */
 940		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
 941
 942	if (unlikely(blk_rq_is_passthrough(req))) {
 943		/*
 944		 * scsi_result_to_blk_status may have reset the host_byte
 945		 */
 946		scsi_req(req)->result = cmd->result;
 947	}
 948
 949	/*
 950	 * Next deal with any sectors which we were able to correctly
 951	 * handle.
 952	 */
 953	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 954		"%u sectors total, %d bytes done.\n",
 955		blk_rq_sectors(req), good_bytes));
 956
 957	/*
 958	 * Next deal with any sectors which we were able to correctly
 959	 * handle. Failed, zero length commands always need to drop down
 960	 * to retry code. Fast path should return in this block.
 961	 */
 962	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
 963		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
 964			return; /* no bytes remaining */
 965	}
 966
 967	/* Kill remainder if no retries. */
 968	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
 969		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
 970			WARN_ONCE(true,
 971			    "Bytes remaining after failed, no-retry command");
 972		return;
 973	}
 974
 975	/*
 976	 * If there had been no error, but we have leftover bytes in the
 977	 * requeues just queue the command up again.
 978	 */
 979	if (likely(result == 0))
 980		scsi_io_completion_reprep(cmd, q);
 981	else
 982		scsi_io_completion_action(cmd, result);
 983}
 984
 985static blk_status_t scsi_init_sgtable(struct request *req,
 986		struct scsi_data_buffer *sdb)
 987{
 988	int count;
 989
 990	/*
 991	 * If sg table allocation fails, requeue request later.
 992	 */
 993	if (unlikely(sg_alloc_table_chained(&sdb->table,
 994			blk_rq_nr_phys_segments(req), sdb->table.sgl,
 995			SCSI_INLINE_SG_CNT)))
 996		return BLK_STS_RESOURCE;
 997
 998	/* 
 999	 * Next, walk the list, and fill in the addresses and sizes of
1000	 * each segment.
1001	 */
1002	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1003	BUG_ON(count > sdb->table.nents);
1004	sdb->table.nents = count;
1005	sdb->length = blk_rq_payload_bytes(req);
1006	return BLK_STS_OK;
1007}
1008
1009/*
1010 * Function:    scsi_init_io()
1011 *
1012 * Purpose:     SCSI I/O initialize function.
1013 *
1014 * Arguments:   cmd   - Command descriptor we wish to initialize
1015 *
1016 * Returns:     BLK_STS_OK on success
1017 *		BLK_STS_RESOURCE if the failure is retryable
1018 *		BLK_STS_IOERR if the failure is fatal
1019 */
1020blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
1021{
1022	struct request *rq = cmd->request;
1023	blk_status_t ret;
1024
1025	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1026		return BLK_STS_IOERR;
 
 
 
 
 
 
 
 
 
1027
1028	ret = scsi_init_sgtable(rq, &cmd->sdb);
1029	if (ret)
1030		return ret;
 
 
1031
1032	if (blk_integrity_rq(rq)) {
1033		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1034		int ivecs, count;
1035
1036		if (WARN_ON_ONCE(!prot_sdb)) {
1037			/*
1038			 * This can happen if someone (e.g. multipath)
1039			 * queues a command to a device on an adapter
1040			 * that does not support DIX.
1041			 */
1042			ret = BLK_STS_IOERR;
1043			goto out_free_sgtables;
1044		}
1045
1046		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1047
1048		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1049				prot_sdb->table.sgl,
1050				SCSI_INLINE_PROT_SG_CNT)) {
1051			ret = BLK_STS_RESOURCE;
1052			goto out_free_sgtables;
1053		}
1054
1055		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1056						prot_sdb->table.sgl);
1057		BUG_ON(count > ivecs);
1058		BUG_ON(count > queue_max_integrity_segments(rq->q));
1059
1060		cmd->prot_sdb = prot_sdb;
1061		cmd->prot_sdb->table.nents = count;
1062	}
1063
1064	return BLK_STS_OK;
1065out_free_sgtables:
1066	scsi_mq_free_sgtables(cmd);
1067	return ret;
 
 
 
1068}
1069EXPORT_SYMBOL(scsi_init_io);
1070
1071/**
1072 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1073 * @rq: Request associated with the SCSI command to be initialized.
1074 *
1075 * This function initializes the members of struct scsi_cmnd that must be
1076 * initialized before request processing starts and that won't be
1077 * reinitialized if a SCSI command is requeued.
1078 *
1079 * Called from inside blk_get_request() for pass-through requests and from
1080 * inside scsi_init_command() for filesystem requests.
1081 */
1082static void scsi_initialize_rq(struct request *rq)
1083{
1084	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1085
1086	scsi_req_init(&cmd->req);
1087	init_rcu_head(&cmd->rcu);
1088	cmd->jiffies_at_alloc = jiffies;
1089	cmd->retries = 0;
1090}
1091
1092/*
1093 * Only called when the request isn't completed by SCSI, and not freed by
1094 * SCSI
1095 */
1096static void scsi_cleanup_rq(struct request *rq)
1097{
1098	if (rq->rq_flags & RQF_DONTPREP) {
1099		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1100		rq->rq_flags &= ~RQF_DONTPREP;
1101	}
1102}
1103
1104/* Add a command to the list used by the aacraid and dpt_i2o drivers */
1105void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1106{
1107	struct scsi_device *sdev = cmd->device;
1108	struct Scsi_Host *shost = sdev->host;
1109	unsigned long flags;
1110
1111	if (shost->use_cmd_list) {
1112		spin_lock_irqsave(&sdev->list_lock, flags);
1113		list_add_tail(&cmd->list, &sdev->cmd_list);
1114		spin_unlock_irqrestore(&sdev->list_lock, flags);
1115	}
1116}
1117
1118/* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1119void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1120{
1121	struct scsi_device *sdev = cmd->device;
1122	struct Scsi_Host *shost = sdev->host;
1123	unsigned long flags;
1124
1125	if (shost->use_cmd_list) {
1126		spin_lock_irqsave(&sdev->list_lock, flags);
1127		BUG_ON(list_empty(&cmd->list));
1128		list_del_init(&cmd->list);
1129		spin_unlock_irqrestore(&sdev->list_lock, flags);
1130	}
1131}
1132
1133/* Called after a request has been started. */
1134void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1135{
1136	void *buf = cmd->sense_buffer;
1137	void *prot = cmd->prot_sdb;
1138	struct request *rq = blk_mq_rq_from_pdu(cmd);
1139	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1140	unsigned long jiffies_at_alloc;
1141	int retries;
1142
1143	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1144		flags |= SCMD_INITIALIZED;
1145		scsi_initialize_rq(rq);
1146	}
1147
1148	jiffies_at_alloc = cmd->jiffies_at_alloc;
1149	retries = cmd->retries;
1150	/* zero out the cmd, except for the embedded scsi_request */
1151	memset((char *)cmd + sizeof(cmd->req), 0,
1152		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1153
1154	cmd->device = dev;
1155	cmd->sense_buffer = buf;
1156	cmd->prot_sdb = prot;
1157	cmd->flags = flags;
1158	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1159	cmd->jiffies_at_alloc = jiffies_at_alloc;
1160	cmd->retries = retries;
1161
1162	scsi_add_cmd_to_list(cmd);
1163}
1164
1165static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1166		struct request *req)
1167{
1168	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1169
1170	/*
1171	 * Passthrough requests may transfer data, in which case they must
1172	 * a bio attached to them.  Or they might contain a SCSI command
1173	 * that does not transfer data, in which case they may optionally
1174	 * submit a request without an attached bio.
1175	 */
1176	if (req->bio) {
1177		blk_status_t ret = scsi_init_io(cmd);
1178		if (unlikely(ret != BLK_STS_OK))
 
 
 
 
1179			return ret;
1180	} else {
1181		BUG_ON(blk_rq_bytes(req));
1182
1183		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 
1184	}
1185
1186	cmd->cmd_len = scsi_req(req)->cmd_len;
1187	cmd->cmnd = scsi_req(req)->cmd;
 
 
 
 
 
 
1188	cmd->transfersize = blk_rq_bytes(req);
1189	cmd->allowed = scsi_req(req)->retries;
1190	return BLK_STS_OK;
1191}
 
1192
1193/*
1194 * Setup a normal block command.  These are simple request from filesystems
1195 * that still need to be translated to SCSI CDBs from the ULD.
 
1196 */
1197static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1198		struct request *req)
1199{
1200	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 
1201
1202	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1203		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1204		if (ret != BLK_STS_OK)
 
 
 
 
1205			return ret;
1206	}
1207
1208	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
 
 
 
 
 
 
 
 
1209	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1210	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1211}
 
1212
1213static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1214		struct request *req)
1215{
1216	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1217
1218	if (!blk_rq_bytes(req))
1219		cmd->sc_data_direction = DMA_NONE;
1220	else if (rq_data_dir(req) == WRITE)
1221		cmd->sc_data_direction = DMA_TO_DEVICE;
1222	else
1223		cmd->sc_data_direction = DMA_FROM_DEVICE;
1224
1225	if (blk_rq_is_scsi(req))
1226		return scsi_setup_scsi_cmnd(sdev, req);
1227	else
1228		return scsi_setup_fs_cmnd(sdev, req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1229}
 
1230
1231static blk_status_t
1232scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1233{
1234	switch (sdev->sdev_state) {
1235	case SDEV_OFFLINE:
1236	case SDEV_TRANSPORT_OFFLINE:
 
 
 
 
 
 
 
 
 
 
 
1237		/*
1238		 * If the device is offline we refuse to process any
1239		 * commands.  The device must be brought online
1240		 * before trying any recovery commands.
1241		 */
1242		sdev_printk(KERN_ERR, sdev,
1243			    "rejecting I/O to offline device\n");
1244		return BLK_STS_IOERR;
1245	case SDEV_DEL:
1246		/*
1247		 * If the device is fully deleted, we refuse to
1248		 * process any commands as well.
1249		 */
1250		sdev_printk(KERN_ERR, sdev,
1251			    "rejecting I/O to dead device\n");
1252		return BLK_STS_IOERR;
1253	case SDEV_BLOCK:
1254	case SDEV_CREATED_BLOCK:
1255		return BLK_STS_RESOURCE;
1256	case SDEV_QUIESCE:
1257		/*
1258		 * If the devices is blocked we defer normal commands.
1259		 */
1260		if (req && !(req->rq_flags & RQF_PREEMPT))
1261			return BLK_STS_RESOURCE;
1262		return BLK_STS_OK;
1263	default:
1264		/*
1265		 * For any other not fully online state we only allow
1266		 * special commands.  In particular any user initiated
1267		 * command is not allowed.
1268		 */
1269		if (req && !(req->rq_flags & RQF_PREEMPT))
1270			return BLK_STS_IOERR;
1271		return BLK_STS_OK;
1272	}
 
 
1273}
 
 
 
 
 
 
 
 
 
 
 
 
1274
1275/*
1276 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1277 * return 0.
1278 *
1279 * Called with the queue_lock held.
1280 */
1281static inline int scsi_dev_queue_ready(struct request_queue *q,
1282				  struct scsi_device *sdev)
1283{
1284	unsigned int busy;
1285
1286	busy = atomic_inc_return(&sdev->device_busy) - 1;
1287	if (atomic_read(&sdev->device_blocked)) {
1288		if (busy)
1289			goto out_dec;
1290
1291		/*
1292		 * unblock after device_blocked iterates to zero
1293		 */
1294		if (atomic_dec_return(&sdev->device_blocked) > 0)
1295			goto out_dec;
1296		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1297				   "unblocking device at zero depth\n"));
 
 
 
 
1298	}
1299
1300	if (busy >= sdev->queue_depth)
1301		goto out_dec;
1302
1303	return 1;
1304out_dec:
1305	atomic_dec(&sdev->device_busy);
1306	return 0;
1307}
1308
 
1309/*
1310 * scsi_target_queue_ready: checks if there we can send commands to target
1311 * @sdev: scsi device on starget to check.
 
 
1312 */
1313static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1314					   struct scsi_device *sdev)
1315{
1316	struct scsi_target *starget = scsi_target(sdev);
1317	unsigned int busy;
1318
1319	if (starget->single_lun) {
1320		spin_lock_irq(shost->host_lock);
1321		if (starget->starget_sdev_user &&
1322		    starget->starget_sdev_user != sdev) {
1323			spin_unlock_irq(shost->host_lock);
1324			return 0;
1325		}
1326		starget->starget_sdev_user = sdev;
1327		spin_unlock_irq(shost->host_lock);
1328	}
1329
1330	if (starget->can_queue <= 0)
1331		return 1;
1332
1333	busy = atomic_inc_return(&starget->target_busy) - 1;
1334	if (atomic_read(&starget->target_blocked) > 0) {
1335		if (busy)
1336			goto starved;
1337
1338		/*
1339		 * unblock after target_blocked iterates to zero
1340		 */
1341		if (atomic_dec_return(&starget->target_blocked) > 0)
1342			goto out_dec;
 
 
 
 
1343
1344		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1345				 "unblocking target at zero depth\n"));
 
 
 
1346	}
1347
1348	if (busy >= starget->can_queue)
1349		goto starved;
1350
1351	return 1;
1352
1353starved:
1354	spin_lock_irq(shost->host_lock);
1355	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1356	spin_unlock_irq(shost->host_lock);
1357out_dec:
1358	if (starget->can_queue > 0)
1359		atomic_dec(&starget->target_busy);
1360	return 0;
1361}
1362
1363/*
1364 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1365 * return 0. We must end up running the queue again whenever 0 is
1366 * returned, else IO can hang.
 
 
1367 */
1368static inline int scsi_host_queue_ready(struct request_queue *q,
1369				   struct Scsi_Host *shost,
1370				   struct scsi_device *sdev)
1371{
1372	unsigned int busy;
1373
1374	if (scsi_host_in_recovery(shost))
1375		return 0;
1376
1377	busy = atomic_inc_return(&shost->host_busy) - 1;
1378	if (atomic_read(&shost->host_blocked) > 0) {
1379		if (busy)
1380			goto starved;
1381
1382		/*
1383		 * unblock after host_blocked iterates to zero
1384		 */
1385		if (atomic_dec_return(&shost->host_blocked) > 0)
1386			goto out_dec;
1387
1388		SCSI_LOG_MLQUEUE(3,
1389			shost_printk(KERN_INFO, shost,
1390				     "unblocking host at zero depth\n"));
 
 
 
 
 
 
1391	}
1392
1393	if (shost->can_queue > 0 && busy >= shost->can_queue)
1394		goto starved;
1395	if (shost->host_self_blocked)
1396		goto starved;
1397
1398	/* We're OK to process the command, so we can't be starved */
1399	if (!list_empty(&sdev->starved_entry)) {
1400		spin_lock_irq(shost->host_lock);
1401		if (!list_empty(&sdev->starved_entry))
1402			list_del_init(&sdev->starved_entry);
1403		spin_unlock_irq(shost->host_lock);
1404	}
1405
1406	return 1;
1407
1408starved:
1409	spin_lock_irq(shost->host_lock);
1410	if (list_empty(&sdev->starved_entry))
1411		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1412	spin_unlock_irq(shost->host_lock);
1413out_dec:
1414	scsi_dec_host_busy(shost);
1415	return 0;
1416}
1417
1418/*
1419 * Busy state exporting function for request stacking drivers.
1420 *
1421 * For efficiency, no lock is taken to check the busy state of
1422 * shost/starget/sdev, since the returned value is not guaranteed and
1423 * may be changed after request stacking drivers call the function,
1424 * regardless of taking lock or not.
1425 *
1426 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1427 * needs to return 'not busy'. Otherwise, request stacking drivers
1428 * may hold requests forever.
1429 */
1430static bool scsi_mq_lld_busy(struct request_queue *q)
1431{
1432	struct scsi_device *sdev = q->queuedata;
1433	struct Scsi_Host *shost;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1434
1435	if (blk_queue_dying(q))
1436		return false;
1437
 
 
1438	shost = sdev->host;
 
 
 
1439
1440	/*
1441	 * Ignore host/starget busy state.
1442	 * Since block layer does not have a concept of fairness across
1443	 * multiple queues, congestion of host/starget needs to be handled
1444	 * in SCSI layer.
1445	 */
1446	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1447		return true;
 
 
 
 
1448
1449	return false;
1450}
1451
1452static void scsi_softirq_done(struct request *rq)
1453{
1454	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1455	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1456	int disposition;
1457
1458	INIT_LIST_HEAD(&cmd->eh_entry);
1459
1460	atomic_inc(&cmd->device->iodone_cnt);
1461	if (cmd->result)
1462		atomic_inc(&cmd->device->ioerr_cnt);
1463
1464	disposition = scsi_decide_disposition(cmd);
1465	if (disposition != SUCCESS &&
1466	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1467		scmd_printk(KERN_ERR, cmd,
1468			    "timing out command, waited %lus\n",
1469			    wait_for/HZ);
1470		disposition = SUCCESS;
1471	}
1472
1473	scsi_log_completion(cmd, disposition);
1474
1475	switch (disposition) {
1476		case SUCCESS:
1477			scsi_finish_command(cmd);
1478			break;
1479		case NEEDS_RETRY:
1480			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1481			break;
1482		case ADD_TO_MLQUEUE:
1483			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1484			break;
1485		default:
1486			scsi_eh_scmd_add(cmd);
1487			break;
1488	}
1489}
1490
1491/**
1492 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1493 * @cmd: command block we are dispatching.
 
 
 
 
 
1494 *
1495 * Return: nonzero return request was rejected and device's queue needs to be
1496 * plugged.
1497 */
1498static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1499{
1500	struct Scsi_Host *host = cmd->device->host;
1501	int rtn = 0;
 
 
1502
1503	atomic_inc(&cmd->device->iorequest_cnt);
1504
1505	/* check if the device is still usable */
1506	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1507		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1508		 * returns an immediate error upwards, and signals
1509		 * that the device is no longer present */
1510		cmd->result = DID_NO_CONNECT << 16;
1511		goto done;
1512	}
1513
1514	/* Check to see if the scsi lld made this device blocked. */
1515	if (unlikely(scsi_device_blocked(cmd->device))) {
1516		/*
1517		 * in blocked state, the command is just put back on
1518		 * the device queue.  The suspend state has already
1519		 * blocked the queue so future requests should not
1520		 * occur until the device transitions out of the
1521		 * suspend state.
1522		 */
1523		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1524			"queuecommand : device blocked\n"));
1525		return SCSI_MLQUEUE_DEVICE_BUSY;
1526	}
1527
1528	/* Store the LUN value in cmnd, if needed. */
1529	if (cmd->device->lun_in_cdb)
1530		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1531			       (cmd->device->lun << 5 & 0xe0);
1532
1533	scsi_log_send(cmd);
1534
1535	/*
1536	 * Before we queue this command, check if the command
1537	 * length exceeds what the host adapter can handle.
1538	 */
1539	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1540		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1541			       "queuecommand : command too long. "
1542			       "cdb_size=%d host->max_cmd_len=%d\n",
1543			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1544		cmd->result = (DID_ABORT << 16);
1545		goto done;
1546	}
 
 
 
1547
1548	if (unlikely(host->shost_state == SHOST_DEL)) {
1549		cmd->result = (DID_NO_CONNECT << 16);
1550		goto done;
 
 
 
1551
1552	}
1553
1554	trace_scsi_dispatch_cmd_start(cmd);
1555	rtn = host->hostt->queuecommand(host, cmd);
1556	if (rtn) {
1557		trace_scsi_dispatch_cmd_error(cmd, rtn);
1558		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1559		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1560			rtn = SCSI_MLQUEUE_HOST_BUSY;
 
 
 
 
 
 
 
 
 
 
 
1561
1562		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1563			"queuecommand : request rejected\n"));
1564	}
 
 
 
 
 
 
 
 
 
 
 
1565
1566	return rtn;
1567 done:
1568	cmd->scsi_done(cmd);
1569	return 0;
1570}
1571
1572/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1573static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1574{
1575	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1576		sizeof(struct scatterlist);
1577}
1578
1579static blk_status_t scsi_mq_prep_fn(struct request *req)
1580{
1581	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1582	struct scsi_device *sdev = req->q->queuedata;
1583	struct Scsi_Host *shost = sdev->host;
1584	struct scatterlist *sg;
1585
1586	scsi_init_command(sdev, cmd);
 
 
 
 
1587
1588	cmd->request = req;
1589	cmd->tag = req->tag;
1590	cmd->prot_op = SCSI_PROT_NORMAL;
 
 
1591
1592	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1593	cmd->sdb.table.sgl = sg;
1594
1595	if (scsi_host_get_prot(shost)) {
1596		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1597
1598		cmd->prot_sdb->table.sgl =
1599			(struct scatterlist *)(cmd->prot_sdb + 1);
1600	}
1601
1602	blk_mq_start_request(req);
1603
1604	return scsi_setup_cmnd(sdev, req);
1605}
1606
1607static void scsi_mq_done(struct scsi_cmnd *cmd)
1608{
1609	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1610		return;
1611	trace_scsi_dispatch_cmd_done(cmd);
1612
1613	/*
1614	 * If the block layer didn't complete the request due to a timeout
1615	 * injection, scsi must clear its internal completed state so that the
1616	 * timeout handler will see it needs to escalate its own error
1617	 * recovery.
1618	 */
1619	if (unlikely(!blk_mq_complete_request(cmd->request)))
1620		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
 
 
 
 
 
 
 
 
 
 
 
 
1621}
1622
1623static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1624{
1625	struct request_queue *q = hctx->queue;
1626	struct scsi_device *sdev = q->queuedata;
1627
1628	atomic_dec(&sdev->device_busy);
1629}
1630
1631static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1632{
1633	struct request_queue *q = hctx->queue;
1634	struct scsi_device *sdev = q->queuedata;
1635
1636	if (scsi_dev_queue_ready(q, sdev))
1637		return true;
1638
1639	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
1640		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1641	return false;
1642}
1643
1644static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1645			 const struct blk_mq_queue_data *bd)
1646{
1647	struct request *req = bd->rq;
1648	struct request_queue *q = req->q;
1649	struct scsi_device *sdev = q->queuedata;
1650	struct Scsi_Host *shost = sdev->host;
1651	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1652	blk_status_t ret;
1653	int reason;
1654
 
 
1655	/*
1656	 * If the device is not in running state we will reject some or all
1657	 * commands.
1658	 */
1659	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1660		ret = scsi_prep_state_check(sdev, req);
1661		if (ret != BLK_STS_OK)
1662			goto out_put_budget;
1663	}
1664
1665	ret = BLK_STS_RESOURCE;
1666	if (!scsi_target_queue_ready(shost, sdev))
1667		goto out_put_budget;
1668	if (!scsi_host_queue_ready(q, shost, sdev))
1669		goto out_dec_target_busy;
1670
1671	if (!(req->rq_flags & RQF_DONTPREP)) {
1672		ret = scsi_mq_prep_fn(req);
1673		if (ret != BLK_STS_OK)
1674			goto out_dec_host_busy;
1675		req->rq_flags |= RQF_DONTPREP;
1676	} else {
1677		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1678		blk_mq_start_request(req);
1679	}
1680
1681	cmd->flags &= SCMD_PRESERVED_FLAGS;
1682	if (sdev->simple_tags)
1683		cmd->flags |= SCMD_TAGGED;
1684	if (bd->last)
1685		cmd->flags |= SCMD_LAST;
1686
1687	scsi_init_cmd_errh(cmd);
1688	cmd->scsi_done = scsi_mq_done;
1689
1690	reason = scsi_dispatch_cmd(cmd);
1691	if (reason) {
1692		scsi_set_blocked(cmd, reason);
1693		ret = BLK_STS_RESOURCE;
1694		goto out_dec_host_busy;
1695	}
1696
1697	return BLK_STS_OK;
1698
1699out_dec_host_busy:
1700	scsi_dec_host_busy(shost);
1701out_dec_target_busy:
1702	if (scsi_target(sdev)->can_queue > 0)
1703		atomic_dec(&scsi_target(sdev)->target_busy);
1704out_put_budget:
1705	scsi_mq_put_budget(hctx);
1706	switch (ret) {
1707	case BLK_STS_OK:
1708		break;
1709	case BLK_STS_RESOURCE:
1710		if (atomic_read(&sdev->device_busy) ||
1711		    scsi_device_blocked(sdev))
1712			ret = BLK_STS_DEV_RESOURCE;
1713		break;
1714	default:
1715		if (unlikely(!scsi_device_online(sdev)))
1716			scsi_req(req)->result = DID_NO_CONNECT << 16;
1717		else
1718			scsi_req(req)->result = DID_ERROR << 16;
1719		/*
1720		 * Make sure to release all allocated resources when
1721		 * we hit an error, as we will never see this command
1722		 * again.
1723		 */
1724		if (req->rq_flags & RQF_DONTPREP)
1725			scsi_mq_uninit_cmd(cmd);
1726		break;
1727	}
1728	return ret;
1729}
 
1730
1731static enum blk_eh_timer_return scsi_timeout(struct request *req,
1732		bool reserved)
1733{
1734	if (reserved)
1735		return BLK_EH_RESET_TIMER;
1736	return scsi_times_out(req);
1737}
1738
1739static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1740				unsigned int hctx_idx, unsigned int numa_node)
1741{
1742	struct Scsi_Host *shost = set->driver_data;
1743	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1744	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1745	struct scatterlist *sg;
1746
1747	if (unchecked_isa_dma)
1748		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1749	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1750						    GFP_KERNEL, numa_node);
1751	if (!cmd->sense_buffer)
1752		return -ENOMEM;
1753	cmd->req.sense = cmd->sense_buffer;
1754
1755	if (scsi_host_get_prot(shost)) {
1756		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1757			shost->hostt->cmd_size;
1758		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1759	}
1760
1761	return 0;
1762}
1763
1764static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1765				 unsigned int hctx_idx)
1766{
1767	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1768
1769	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1770			       cmd->sense_buffer);
1771}
1772
1773static int scsi_map_queues(struct blk_mq_tag_set *set)
1774{
1775	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1776
1777	if (shost->hostt->map_queues)
1778		return shost->hostt->map_queues(shost);
1779	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1780}
1781
1782void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1783{
1784	struct device *dev = shost->dma_dev;
1785
1786	/*
1787	 * this limit is imposed by hardware restrictions
1788	 */
1789	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1790					SG_MAX_SEGMENTS));
1791
1792	if (scsi_host_prot_dma(shost)) {
1793		shost->sg_prot_tablesize =
1794			min_not_zero(shost->sg_prot_tablesize,
1795				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1796		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1797		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1798	}
1799
1800	if (dev->dma_mask) {
1801		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1802				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1803	}
1804	blk_queue_max_hw_sectors(q, shost->max_sectors);
1805	if (shost->unchecked_isa_dma)
1806		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1807	blk_queue_segment_boundary(q, shost->dma_boundary);
1808	dma_set_seg_boundary(dev, shost->dma_boundary);
1809
1810	blk_queue_max_segment_size(q, shost->max_segment_size);
1811	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1812	dma_set_max_seg_size(dev, queue_max_segment_size(q));
 
1813
1814	/*
1815	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1816	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1817	 * which is set by the platform.
1818	 *
1819	 * Devices that require a bigger alignment can increase it later.
1820	 */
1821	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
 
 
1822}
1823EXPORT_SYMBOL_GPL(__scsi_init_queue);
1824
1825static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1826	.get_budget	= scsi_mq_get_budget,
1827	.put_budget	= scsi_mq_put_budget,
1828	.queue_rq	= scsi_queue_rq,
1829	.complete	= scsi_softirq_done,
1830	.timeout	= scsi_timeout,
1831#ifdef CONFIG_BLK_DEBUG_FS
1832	.show_rq	= scsi_show_rq,
1833#endif
1834	.init_request	= scsi_mq_init_request,
1835	.exit_request	= scsi_mq_exit_request,
1836	.initialize_rq_fn = scsi_initialize_rq,
1837	.cleanup_rq	= scsi_cleanup_rq,
1838	.busy		= scsi_mq_lld_busy,
1839	.map_queues	= scsi_map_queues,
1840};
1841
1842
1843static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1844{
1845	struct request_queue *q = hctx->queue;
1846	struct scsi_device *sdev = q->queuedata;
1847	struct Scsi_Host *shost = sdev->host;
1848
1849	shost->hostt->commit_rqs(shost, hctx->queue_num);
1850}
1851
1852static const struct blk_mq_ops scsi_mq_ops = {
1853	.get_budget	= scsi_mq_get_budget,
1854	.put_budget	= scsi_mq_put_budget,
1855	.queue_rq	= scsi_queue_rq,
1856	.commit_rqs	= scsi_commit_rqs,
1857	.complete	= scsi_softirq_done,
1858	.timeout	= scsi_timeout,
1859#ifdef CONFIG_BLK_DEBUG_FS
1860	.show_rq	= scsi_show_rq,
1861#endif
1862	.init_request	= scsi_mq_init_request,
1863	.exit_request	= scsi_mq_exit_request,
1864	.initialize_rq_fn = scsi_initialize_rq,
1865	.cleanup_rq	= scsi_cleanup_rq,
1866	.busy		= scsi_mq_lld_busy,
1867	.map_queues	= scsi_map_queues,
1868};
1869
1870struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1871{
1872	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1873	if (IS_ERR(sdev->request_queue))
1874		return NULL;
1875
1876	sdev->request_queue->queuedata = sdev;
1877	__scsi_init_queue(sdev->host, sdev->request_queue);
1878	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1879	return sdev->request_queue;
1880}
1881
1882int scsi_mq_setup_tags(struct Scsi_Host *shost)
1883{
1884	unsigned int cmd_size, sgl_size;
1885
1886	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1887				scsi_mq_inline_sgl_size(shost));
1888	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1889	if (scsi_host_get_prot(shost))
1890		cmd_size += sizeof(struct scsi_data_buffer) +
1891			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1892
1893	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
1894	if (shost->hostt->commit_rqs)
1895		shost->tag_set.ops = &scsi_mq_ops;
1896	else
1897		shost->tag_set.ops = &scsi_mq_ops_no_commit;
1898	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
1899	shost->tag_set.queue_depth = shost->can_queue;
1900	shost->tag_set.cmd_size = cmd_size;
1901	shost->tag_set.numa_node = NUMA_NO_NODE;
1902	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1903	shost->tag_set.flags |=
1904		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1905	shost->tag_set.driver_data = shost;
1906
1907	return blk_mq_alloc_tag_set(&shost->tag_set);
1908}
1909
1910void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1911{
1912	blk_mq_free_tag_set(&shost->tag_set);
1913}
1914
1915/**
1916 * scsi_device_from_queue - return sdev associated with a request_queue
1917 * @q: The request queue to return the sdev from
1918 *
1919 * Return the sdev associated with a request queue or NULL if the
1920 * request_queue does not reference a SCSI device.
1921 */
1922struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1923{
1924	struct scsi_device *sdev = NULL;
1925
1926	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1927	    q->mq_ops == &scsi_mq_ops)
1928		sdev = q->queuedata;
1929	if (!sdev || !get_device(&sdev->sdev_gendev))
1930		sdev = NULL;
1931
1932	return sdev;
1933}
1934EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1935
1936/*
1937 * Function:    scsi_block_requests()
1938 *
1939 * Purpose:     Utility function used by low-level drivers to prevent further
1940 *		commands from being queued to the device.
1941 *
1942 * Arguments:   shost       - Host in question
1943 *
1944 * Returns:     Nothing
1945 *
1946 * Lock status: No locks are assumed held.
1947 *
1948 * Notes:       There is no timer nor any other means by which the requests
1949 *		get unblocked other than the low-level driver calling
1950 *		scsi_unblock_requests().
1951 */
1952void scsi_block_requests(struct Scsi_Host *shost)
1953{
1954	shost->host_self_blocked = 1;
1955}
1956EXPORT_SYMBOL(scsi_block_requests);
1957
1958/*
1959 * Function:    scsi_unblock_requests()
1960 *
1961 * Purpose:     Utility function used by low-level drivers to allow further
1962 *		commands from being queued to the device.
1963 *
1964 * Arguments:   shost       - Host in question
1965 *
1966 * Returns:     Nothing
1967 *
1968 * Lock status: No locks are assumed held.
1969 *
1970 * Notes:       There is no timer nor any other means by which the requests
1971 *		get unblocked other than the low-level driver calling
1972 *		scsi_unblock_requests().
1973 *
1974 *		This is done as an API function so that changes to the
1975 *		internals of the scsi mid-layer won't require wholesale
1976 *		changes to drivers that use this feature.
1977 */
1978void scsi_unblock_requests(struct Scsi_Host *shost)
1979{
1980	shost->host_self_blocked = 0;
1981	scsi_run_host_queues(shost);
1982}
1983EXPORT_SYMBOL(scsi_unblock_requests);
1984
1985int __init scsi_init_queue(void)
1986{
 
 
1987	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1988					   sizeof(struct scsi_data_buffer),
1989					   0, 0, NULL);
1990	if (!scsi_sdb_cache) {
1991		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1992		return -ENOMEM;
1993	}
1994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1995	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1996}
1997
1998void scsi_exit_queue(void)
1999{
2000	kmem_cache_destroy(scsi_sense_cache);
2001	kmem_cache_destroy(scsi_sense_isadma_cache);
2002	kmem_cache_destroy(scsi_sdb_cache);
 
 
 
 
 
 
2003}
2004
2005/**
2006 *	scsi_mode_select - issue a mode select
2007 *	@sdev:	SCSI device to be queried
2008 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2009 *	@sp:	Save page bit (0 == don't save, 1 == save)
2010 *	@modepage: mode page being requested
2011 *	@buffer: request buffer (may not be smaller than eight bytes)
2012 *	@len:	length of request buffer.
2013 *	@timeout: command timeout
2014 *	@retries: number of retries before failing
2015 *	@data: returns a structure abstracting the mode header data
2016 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2017 *		must be SCSI_SENSE_BUFFERSIZE big.
2018 *
2019 *	Returns zero if successful; negative error number or scsi
2020 *	status on error
2021 *
2022 */
2023int
2024scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2025		 unsigned char *buffer, int len, int timeout, int retries,
2026		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2027{
2028	unsigned char cmd[10];
2029	unsigned char *real_buffer;
2030	int ret;
2031
2032	memset(cmd, 0, sizeof(cmd));
2033	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2034
2035	if (sdev->use_10_for_ms) {
2036		if (len > 65535)
2037			return -EINVAL;
2038		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2039		if (!real_buffer)
2040			return -ENOMEM;
2041		memcpy(real_buffer + 8, buffer, len);
2042		len += 8;
2043		real_buffer[0] = 0;
2044		real_buffer[1] = 0;
2045		real_buffer[2] = data->medium_type;
2046		real_buffer[3] = data->device_specific;
2047		real_buffer[4] = data->longlba ? 0x01 : 0;
2048		real_buffer[5] = 0;
2049		real_buffer[6] = data->block_descriptor_length >> 8;
2050		real_buffer[7] = data->block_descriptor_length;
2051
2052		cmd[0] = MODE_SELECT_10;
2053		cmd[7] = len >> 8;
2054		cmd[8] = len;
2055	} else {
2056		if (len > 255 || data->block_descriptor_length > 255 ||
2057		    data->longlba)
2058			return -EINVAL;
2059
2060		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2061		if (!real_buffer)
2062			return -ENOMEM;
2063		memcpy(real_buffer + 4, buffer, len);
2064		len += 4;
2065		real_buffer[0] = 0;
2066		real_buffer[1] = data->medium_type;
2067		real_buffer[2] = data->device_specific;
2068		real_buffer[3] = data->block_descriptor_length;
2069		
2070
2071		cmd[0] = MODE_SELECT;
2072		cmd[4] = len;
2073	}
2074
2075	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2076			       sshdr, timeout, retries, NULL);
2077	kfree(real_buffer);
2078	return ret;
2079}
2080EXPORT_SYMBOL_GPL(scsi_mode_select);
2081
2082/**
2083 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2084 *	@sdev:	SCSI device to be queried
2085 *	@dbd:	set if mode sense will allow block descriptors to be returned
2086 *	@modepage: mode page being requested
2087 *	@buffer: request buffer (may not be smaller than eight bytes)
2088 *	@len:	length of request buffer.
2089 *	@timeout: command timeout
2090 *	@retries: number of retries before failing
2091 *	@data: returns a structure abstracting the mode header data
2092 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2093 *		must be SCSI_SENSE_BUFFERSIZE big.
2094 *
2095 *	Returns zero if unsuccessful, or the header offset (either 4
2096 *	or 8 depending on whether a six or ten byte command was
2097 *	issued) if successful.
2098 */
2099int
2100scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2101		  unsigned char *buffer, int len, int timeout, int retries,
2102		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2103{
2104	unsigned char cmd[12];
2105	int use_10_for_ms;
2106	int header_length;
2107	int result, retry_count = retries;
2108	struct scsi_sense_hdr my_sshdr;
2109
2110	memset(data, 0, sizeof(*data));
2111	memset(&cmd[0], 0, 12);
2112	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2113	cmd[2] = modepage;
2114
2115	/* caller might not be interested in sense, but we need it */
2116	if (!sshdr)
2117		sshdr = &my_sshdr;
2118
2119 retry:
2120	use_10_for_ms = sdev->use_10_for_ms;
2121
2122	if (use_10_for_ms) {
2123		if (len < 8)
2124			len = 8;
2125
2126		cmd[0] = MODE_SENSE_10;
2127		cmd[8] = len;
2128		header_length = 8;
2129	} else {
2130		if (len < 4)
2131			len = 4;
2132
2133		cmd[0] = MODE_SENSE;
2134		cmd[4] = len;
2135		header_length = 4;
2136	}
2137
2138	memset(buffer, 0, len);
2139
2140	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2141				  sshdr, timeout, retries, NULL);
2142
2143	/* This code looks awful: what it's doing is making sure an
2144	 * ILLEGAL REQUEST sense return identifies the actual command
2145	 * byte as the problem.  MODE_SENSE commands can return
2146	 * ILLEGAL REQUEST if the code page isn't supported */
2147
2148	if (use_10_for_ms && !scsi_status_is_good(result) &&
2149	    driver_byte(result) == DRIVER_SENSE) {
2150		if (scsi_sense_valid(sshdr)) {
2151			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2152			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2153				/* 
2154				 * Invalid command operation code
2155				 */
2156				sdev->use_10_for_ms = 0;
2157				goto retry;
2158			}
2159		}
2160	}
2161
2162	if(scsi_status_is_good(result)) {
2163		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2164			     (modepage == 6 || modepage == 8))) {
2165			/* Initio breakage? */
2166			header_length = 0;
2167			data->length = 13;
2168			data->medium_type = 0;
2169			data->device_specific = 0;
2170			data->longlba = 0;
2171			data->block_descriptor_length = 0;
2172		} else if(use_10_for_ms) {
2173			data->length = buffer[0]*256 + buffer[1] + 2;
2174			data->medium_type = buffer[2];
2175			data->device_specific = buffer[3];
2176			data->longlba = buffer[4] & 0x01;
2177			data->block_descriptor_length = buffer[6]*256
2178				+ buffer[7];
2179		} else {
2180			data->length = buffer[0] + 1;
2181			data->medium_type = buffer[1];
2182			data->device_specific = buffer[2];
2183			data->block_descriptor_length = buffer[3];
2184		}
2185		data->header_length = header_length;
2186	} else if ((status_byte(result) == CHECK_CONDITION) &&
2187		   scsi_sense_valid(sshdr) &&
2188		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2189		retry_count--;
2190		goto retry;
2191	}
2192
2193	return result;
2194}
2195EXPORT_SYMBOL(scsi_mode_sense);
2196
2197/**
2198 *	scsi_test_unit_ready - test if unit is ready
2199 *	@sdev:	scsi device to change the state of.
2200 *	@timeout: command timeout
2201 *	@retries: number of retries before failing
2202 *	@sshdr: outpout pointer for decoded sense information.
 
 
2203 *
2204 *	Returns zero if unsuccessful or an error if TUR failed.  For
2205 *	removable media, UNIT_ATTENTION sets ->changed flag.
2206 **/
2207int
2208scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2209		     struct scsi_sense_hdr *sshdr)
2210{
2211	char cmd[] = {
2212		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2213	};
 
2214	int result;
2215
 
 
 
 
 
2216	/* try to eat the UNIT_ATTENTION if there are enough retries */
2217	do {
2218		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2219					  timeout, 1, NULL);
2220		if (sdev->removable && scsi_sense_valid(sshdr) &&
2221		    sshdr->sense_key == UNIT_ATTENTION)
2222			sdev->changed = 1;
2223	} while (scsi_sense_valid(sshdr) &&
2224		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2225
 
 
2226	return result;
2227}
2228EXPORT_SYMBOL(scsi_test_unit_ready);
2229
2230/**
2231 *	scsi_device_set_state - Take the given device through the device state model.
2232 *	@sdev:	scsi device to change the state of.
2233 *	@state:	state to change to.
2234 *
2235 *	Returns zero if successful or an error if the requested
2236 *	transition is illegal.
2237 */
2238int
2239scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2240{
2241	enum scsi_device_state oldstate = sdev->sdev_state;
2242
2243	if (state == oldstate)
2244		return 0;
2245
2246	switch (state) {
2247	case SDEV_CREATED:
2248		switch (oldstate) {
2249		case SDEV_CREATED_BLOCK:
2250			break;
2251		default:
2252			goto illegal;
2253		}
2254		break;
2255			
2256	case SDEV_RUNNING:
2257		switch (oldstate) {
2258		case SDEV_CREATED:
2259		case SDEV_OFFLINE:
2260		case SDEV_TRANSPORT_OFFLINE:
2261		case SDEV_QUIESCE:
2262		case SDEV_BLOCK:
2263			break;
2264		default:
2265			goto illegal;
2266		}
2267		break;
2268
2269	case SDEV_QUIESCE:
2270		switch (oldstate) {
2271		case SDEV_RUNNING:
2272		case SDEV_OFFLINE:
2273		case SDEV_TRANSPORT_OFFLINE:
2274			break;
2275		default:
2276			goto illegal;
2277		}
2278		break;
2279
2280	case SDEV_OFFLINE:
2281	case SDEV_TRANSPORT_OFFLINE:
2282		switch (oldstate) {
2283		case SDEV_CREATED:
2284		case SDEV_RUNNING:
2285		case SDEV_QUIESCE:
2286		case SDEV_BLOCK:
2287			break;
2288		default:
2289			goto illegal;
2290		}
2291		break;
2292
2293	case SDEV_BLOCK:
2294		switch (oldstate) {
2295		case SDEV_RUNNING:
2296		case SDEV_CREATED_BLOCK:
2297		case SDEV_OFFLINE:
2298			break;
2299		default:
2300			goto illegal;
2301		}
2302		break;
2303
2304	case SDEV_CREATED_BLOCK:
2305		switch (oldstate) {
2306		case SDEV_CREATED:
2307			break;
2308		default:
2309			goto illegal;
2310		}
2311		break;
2312
2313	case SDEV_CANCEL:
2314		switch (oldstate) {
2315		case SDEV_CREATED:
2316		case SDEV_RUNNING:
2317		case SDEV_QUIESCE:
2318		case SDEV_OFFLINE:
2319		case SDEV_TRANSPORT_OFFLINE:
2320			break;
2321		default:
2322			goto illegal;
2323		}
2324		break;
2325
2326	case SDEV_DEL:
2327		switch (oldstate) {
2328		case SDEV_CREATED:
2329		case SDEV_RUNNING:
2330		case SDEV_OFFLINE:
2331		case SDEV_TRANSPORT_OFFLINE:
2332		case SDEV_CANCEL:
2333		case SDEV_BLOCK:
2334		case SDEV_CREATED_BLOCK:
2335			break;
2336		default:
2337			goto illegal;
2338		}
2339		break;
2340
2341	}
2342	sdev->sdev_state = state;
2343	return 0;
2344
2345 illegal:
2346	SCSI_LOG_ERROR_RECOVERY(1,
2347				sdev_printk(KERN_ERR, sdev,
2348					    "Illegal state transition %s->%s",
2349					    scsi_device_state_name(oldstate),
2350					    scsi_device_state_name(state))
2351				);
2352	return -EINVAL;
2353}
2354EXPORT_SYMBOL(scsi_device_set_state);
2355
2356/**
2357 * 	sdev_evt_emit - emit a single SCSI device uevent
2358 *	@sdev: associated SCSI device
2359 *	@evt: event to emit
2360 *
2361 *	Send a single uevent (scsi_event) to the associated scsi_device.
2362 */
2363static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2364{
2365	int idx = 0;
2366	char *envp[3];
2367
2368	switch (evt->evt_type) {
2369	case SDEV_EVT_MEDIA_CHANGE:
2370		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2371		break;
2372	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2373		scsi_rescan_device(&sdev->sdev_gendev);
2374		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2375		break;
2376	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2377		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2378		break;
2379	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2380	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2381		break;
2382	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2383		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2384		break;
2385	case SDEV_EVT_LUN_CHANGE_REPORTED:
2386		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2387		break;
2388	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2389		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2390		break;
2391	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2392		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2393		break;
2394	default:
2395		/* do nothing */
2396		break;
2397	}
2398
2399	envp[idx++] = NULL;
2400
2401	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2402}
2403
2404/**
2405 * 	sdev_evt_thread - send a uevent for each scsi event
2406 *	@work: work struct for scsi_device
2407 *
2408 *	Dispatch queued events to their associated scsi_device kobjects
2409 *	as uevents.
2410 */
2411void scsi_evt_thread(struct work_struct *work)
2412{
2413	struct scsi_device *sdev;
2414	enum scsi_device_event evt_type;
2415	LIST_HEAD(event_list);
2416
2417	sdev = container_of(work, struct scsi_device, event_work);
2418
2419	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2420		if (test_and_clear_bit(evt_type, sdev->pending_events))
2421			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2422
2423	while (1) {
2424		struct scsi_event *evt;
2425		struct list_head *this, *tmp;
2426		unsigned long flags;
2427
2428		spin_lock_irqsave(&sdev->list_lock, flags);
2429		list_splice_init(&sdev->event_list, &event_list);
2430		spin_unlock_irqrestore(&sdev->list_lock, flags);
2431
2432		if (list_empty(&event_list))
2433			break;
2434
2435		list_for_each_safe(this, tmp, &event_list) {
2436			evt = list_entry(this, struct scsi_event, node);
2437			list_del(&evt->node);
2438			scsi_evt_emit(sdev, evt);
2439			kfree(evt);
2440		}
2441	}
2442}
2443
2444/**
2445 * 	sdev_evt_send - send asserted event to uevent thread
2446 *	@sdev: scsi_device event occurred on
2447 *	@evt: event to send
2448 *
2449 *	Assert scsi device event asynchronously.
2450 */
2451void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2452{
2453	unsigned long flags;
2454
2455#if 0
2456	/* FIXME: currently this check eliminates all media change events
2457	 * for polled devices.  Need to update to discriminate between AN
2458	 * and polled events */
2459	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2460		kfree(evt);
2461		return;
2462	}
2463#endif
2464
2465	spin_lock_irqsave(&sdev->list_lock, flags);
2466	list_add_tail(&evt->node, &sdev->event_list);
2467	schedule_work(&sdev->event_work);
2468	spin_unlock_irqrestore(&sdev->list_lock, flags);
2469}
2470EXPORT_SYMBOL_GPL(sdev_evt_send);
2471
2472/**
2473 * 	sdev_evt_alloc - allocate a new scsi event
2474 *	@evt_type: type of event to allocate
2475 *	@gfpflags: GFP flags for allocation
2476 *
2477 *	Allocates and returns a new scsi_event.
2478 */
2479struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2480				  gfp_t gfpflags)
2481{
2482	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2483	if (!evt)
2484		return NULL;
2485
2486	evt->evt_type = evt_type;
2487	INIT_LIST_HEAD(&evt->node);
2488
2489	/* evt_type-specific initialization, if any */
2490	switch (evt_type) {
2491	case SDEV_EVT_MEDIA_CHANGE:
2492	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2493	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2494	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2495	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2496	case SDEV_EVT_LUN_CHANGE_REPORTED:
2497	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2498	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2499	default:
2500		/* do nothing */
2501		break;
2502	}
2503
2504	return evt;
2505}
2506EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2507
2508/**
2509 * 	sdev_evt_send_simple - send asserted event to uevent thread
2510 *	@sdev: scsi_device event occurred on
2511 *	@evt_type: type of event to send
2512 *	@gfpflags: GFP flags for allocation
2513 *
2514 *	Assert scsi device event asynchronously, given an event type.
2515 */
2516void sdev_evt_send_simple(struct scsi_device *sdev,
2517			  enum scsi_device_event evt_type, gfp_t gfpflags)
2518{
2519	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2520	if (!evt) {
2521		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2522			    evt_type);
2523		return;
2524	}
2525
2526	sdev_evt_send(sdev, evt);
2527}
2528EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2529
2530/**
2531 *	scsi_device_quiesce - Block user issued commands.
2532 *	@sdev:	scsi device to quiesce.
2533 *
2534 *	This works by trying to transition to the SDEV_QUIESCE state
2535 *	(which must be a legal transition).  When the device is in this
2536 *	state, only special requests will be accepted, all others will
2537 *	be deferred.  Since special requests may also be requeued requests,
2538 *	a successful return doesn't guarantee the device will be 
2539 *	totally quiescent.
2540 *
2541 *	Must be called with user context, may sleep.
2542 *
2543 *	Returns zero if unsuccessful or an error if not.
2544 */
2545int
2546scsi_device_quiesce(struct scsi_device *sdev)
2547{
2548	struct request_queue *q = sdev->request_queue;
2549	int err;
2550
2551	/*
2552	 * It is allowed to call scsi_device_quiesce() multiple times from
2553	 * the same context but concurrent scsi_device_quiesce() calls are
2554	 * not allowed.
2555	 */
2556	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2557
2558	if (sdev->quiesced_by == current)
2559		return 0;
2560
2561	blk_set_pm_only(q);
2562
2563	blk_mq_freeze_queue(q);
2564	/*
2565	 * Ensure that the effect of blk_set_pm_only() will be visible
2566	 * for percpu_ref_tryget() callers that occur after the queue
2567	 * unfreeze even if the queue was already frozen before this function
2568	 * was called. See also https://lwn.net/Articles/573497/.
2569	 */
2570	synchronize_rcu();
2571	blk_mq_unfreeze_queue(q);
2572
2573	mutex_lock(&sdev->state_mutex);
2574	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2575	if (err == 0)
2576		sdev->quiesced_by = current;
2577	else
2578		blk_clear_pm_only(q);
2579	mutex_unlock(&sdev->state_mutex);
2580
2581	return err;
2582}
2583EXPORT_SYMBOL(scsi_device_quiesce);
2584
2585/**
2586 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2587 *	@sdev:	scsi device to resume.
2588 *
2589 *	Moves the device from quiesced back to running and restarts the
2590 *	queues.
2591 *
2592 *	Must be called with user context, may sleep.
2593 */
2594void scsi_device_resume(struct scsi_device *sdev)
 
2595{
2596	/* check if the device state was mutated prior to resume, and if
2597	 * so assume the state is being managed elsewhere (for example
2598	 * device deleted during suspend)
2599	 */
2600	mutex_lock(&sdev->state_mutex);
2601	if (sdev->quiesced_by) {
2602		sdev->quiesced_by = NULL;
2603		blk_clear_pm_only(sdev->request_queue);
2604	}
2605	if (sdev->sdev_state == SDEV_QUIESCE)
2606		scsi_device_set_state(sdev, SDEV_RUNNING);
2607	mutex_unlock(&sdev->state_mutex);
2608}
2609EXPORT_SYMBOL(scsi_device_resume);
2610
2611static void
2612device_quiesce_fn(struct scsi_device *sdev, void *data)
2613{
2614	scsi_device_quiesce(sdev);
2615}
2616
2617void
2618scsi_target_quiesce(struct scsi_target *starget)
2619{
2620	starget_for_each_device(starget, NULL, device_quiesce_fn);
2621}
2622EXPORT_SYMBOL(scsi_target_quiesce);
2623
2624static void
2625device_resume_fn(struct scsi_device *sdev, void *data)
2626{
2627	scsi_device_resume(sdev);
2628}
2629
2630void
2631scsi_target_resume(struct scsi_target *starget)
2632{
2633	starget_for_each_device(starget, NULL, device_resume_fn);
2634}
2635EXPORT_SYMBOL(scsi_target_resume);
2636
2637/**
2638 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2639 * @sdev: device to block
2640 *
2641 * Pause SCSI command processing on the specified device. Does not sleep.
 
 
2642 *
2643 * Returns zero if successful or a negative error code upon failure.
2644 *
2645 * Notes:
2646 * This routine transitions the device to the SDEV_BLOCK state (which must be
2647 * a legal transition). When the device is in this state, command processing
2648 * is paused until the device leaves the SDEV_BLOCK state. See also
2649 * scsi_internal_device_unblock_nowait().
 
2650 */
2651int scsi_internal_device_block_nowait(struct scsi_device *sdev)
 
2652{
2653	struct request_queue *q = sdev->request_queue;
 
2654	int err = 0;
2655
2656	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2657	if (err) {
2658		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2659
2660		if (err)
2661			return err;
2662	}
2663
2664	/* 
2665	 * The device has transitioned to SDEV_BLOCK.  Stop the
2666	 * block layer from calling the midlayer with this device's
2667	 * request queue. 
2668	 */
2669	blk_mq_quiesce_queue_nowait(q);
 
 
 
2670	return 0;
2671}
2672EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2673
2674/**
2675 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2676 * @sdev: device to block
2677 *
2678 * Pause SCSI command processing on the specified device and wait until all
2679 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2680 *
2681 * Returns zero if successful or a negative error code upon failure.
2682 *
2683 * Note:
2684 * This routine transitions the device to the SDEV_BLOCK state (which must be
2685 * a legal transition). When the device is in this state, command processing
2686 * is paused until the device leaves the SDEV_BLOCK state. See also
2687 * scsi_internal_device_unblock().
2688 */
2689static int scsi_internal_device_block(struct scsi_device *sdev)
2690{
2691	struct request_queue *q = sdev->request_queue;
2692	int err;
2693
2694	mutex_lock(&sdev->state_mutex);
2695	err = scsi_internal_device_block_nowait(sdev);
2696	if (err == 0)
2697		blk_mq_quiesce_queue(q);
2698	mutex_unlock(&sdev->state_mutex);
2699
2700	return err;
2701}
2702 
2703void scsi_start_queue(struct scsi_device *sdev)
2704{
2705	struct request_queue *q = sdev->request_queue;
2706
2707	blk_mq_unquiesce_queue(q);
2708}
2709
2710/**
2711 * scsi_internal_device_unblock_nowait - resume a device after a block request
2712 * @sdev:	device to resume
2713 * @new_state:	state to set the device to after unblocking
2714 *
2715 * Restart the device queue for a previously suspended SCSI device. Does not
2716 * sleep.
2717 *
2718 * Returns zero if successful or a negative error code upon failure.
2719 *
2720 * Notes:
2721 * This routine transitions the device to the SDEV_RUNNING state or to one of
2722 * the offline states (which must be a legal transition) allowing the midlayer
2723 * to goose the queue for this device.
 
 
2724 */
2725int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2726					enum scsi_device_state new_state)
2727{
2728	switch (new_state) {
2729	case SDEV_RUNNING:
2730	case SDEV_TRANSPORT_OFFLINE:
2731		break;
2732	default:
 
 
 
 
 
 
 
 
2733		return -EINVAL;
2734	}
2735
2736	/*
2737	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2738	 * offlined states and goose the device queue if successful.
2739	 */
2740	switch (sdev->sdev_state) {
2741	case SDEV_BLOCK:
2742	case SDEV_TRANSPORT_OFFLINE:
2743		sdev->sdev_state = new_state;
2744		break;
2745	case SDEV_CREATED_BLOCK:
2746		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2747		    new_state == SDEV_OFFLINE)
2748			sdev->sdev_state = new_state;
2749		else
2750			sdev->sdev_state = SDEV_CREATED;
2751		break;
2752	case SDEV_CANCEL:
2753	case SDEV_OFFLINE:
2754		break;
2755	default:
2756		return -EINVAL;
2757	}
2758	scsi_start_queue(sdev);
2759
2760	return 0;
2761}
2762EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2763
2764/**
2765 * scsi_internal_device_unblock - resume a device after a block request
2766 * @sdev:	device to resume
2767 * @new_state:	state to set the device to after unblocking
2768 *
2769 * Restart the device queue for a previously suspended SCSI device. May sleep.
2770 *
2771 * Returns zero if successful or a negative error code upon failure.
2772 *
2773 * Notes:
2774 * This routine transitions the device to the SDEV_RUNNING state or to one of
2775 * the offline states (which must be a legal transition) allowing the midlayer
2776 * to goose the queue for this device.
2777 */
2778static int scsi_internal_device_unblock(struct scsi_device *sdev,
2779					enum scsi_device_state new_state)
2780{
2781	int ret;
2782
2783	mutex_lock(&sdev->state_mutex);
2784	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2785	mutex_unlock(&sdev->state_mutex);
2786
2787	return ret;
2788}
2789
2790static void
2791device_block(struct scsi_device *sdev, void *data)
2792{
2793	int ret;
2794
2795	ret = scsi_internal_device_block(sdev);
2796
2797	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2798		  dev_name(&sdev->sdev_gendev), ret);
2799}
2800
2801static int
2802target_block(struct device *dev, void *data)
2803{
2804	if (scsi_is_target_device(dev))
2805		starget_for_each_device(to_scsi_target(dev), NULL,
2806					device_block);
2807	return 0;
2808}
2809
2810void
2811scsi_target_block(struct device *dev)
2812{
2813	if (scsi_is_target_device(dev))
2814		starget_for_each_device(to_scsi_target(dev), NULL,
2815					device_block);
2816	else
2817		device_for_each_child(dev, NULL, target_block);
2818}
2819EXPORT_SYMBOL_GPL(scsi_target_block);
2820
2821static void
2822device_unblock(struct scsi_device *sdev, void *data)
2823{
2824	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2825}
2826
2827static int
2828target_unblock(struct device *dev, void *data)
2829{
2830	if (scsi_is_target_device(dev))
2831		starget_for_each_device(to_scsi_target(dev), data,
2832					device_unblock);
2833	return 0;
2834}
2835
2836void
2837scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2838{
2839	if (scsi_is_target_device(dev))
2840		starget_for_each_device(to_scsi_target(dev), &new_state,
2841					device_unblock);
2842	else
2843		device_for_each_child(dev, &new_state, target_unblock);
2844}
2845EXPORT_SYMBOL_GPL(scsi_target_unblock);
2846
2847/**
2848 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2849 * @sgl:	scatter-gather list
2850 * @sg_count:	number of segments in sg
2851 * @offset:	offset in bytes into sg, on return offset into the mapped area
2852 * @len:	bytes to map, on return number of bytes mapped
2853 *
2854 * Returns virtual address of the start of the mapped page
2855 */
2856void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2857			  size_t *offset, size_t *len)
2858{
2859	int i;
2860	size_t sg_len = 0, len_complete = 0;
2861	struct scatterlist *sg;
2862	struct page *page;
2863
2864	WARN_ON(!irqs_disabled());
2865
2866	for_each_sg(sgl, sg, sg_count, i) {
2867		len_complete = sg_len; /* Complete sg-entries */
2868		sg_len += sg->length;
2869		if (sg_len > *offset)
2870			break;
2871	}
2872
2873	if (unlikely(i == sg_count)) {
2874		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2875			"elements %d\n",
2876		       __func__, sg_len, *offset, sg_count);
2877		WARN_ON(1);
2878		return NULL;
2879	}
2880
2881	/* Offset starting from the beginning of first page in this sg-entry */
2882	*offset = *offset - len_complete + sg->offset;
2883
2884	/* Assumption: contiguous pages can be accessed as "page + i" */
2885	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2886	*offset &= ~PAGE_MASK;
2887
2888	/* Bytes in this sg-entry from *offset to the end of the page */
2889	sg_len = PAGE_SIZE - *offset;
2890	if (*len > sg_len)
2891		*len = sg_len;
2892
2893	return kmap_atomic(page);
2894}
2895EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2896
2897/**
2898 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2899 * @virt:	virtual address to be unmapped
2900 */
2901void scsi_kunmap_atomic_sg(void *virt)
2902{
2903	kunmap_atomic(virt);
2904}
2905EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2906
2907void sdev_disable_disk_events(struct scsi_device *sdev)
2908{
2909	atomic_inc(&sdev->disk_events_disable_depth);
2910}
2911EXPORT_SYMBOL(sdev_disable_disk_events);
2912
2913void sdev_enable_disk_events(struct scsi_device *sdev)
2914{
2915	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2916		return;
2917	atomic_dec(&sdev->disk_events_disable_depth);
2918}
2919EXPORT_SYMBOL(sdev_enable_disk_events);
2920
2921/**
2922 * scsi_vpd_lun_id - return a unique device identification
2923 * @sdev: SCSI device
2924 * @id:   buffer for the identification
2925 * @id_len:  length of the buffer
2926 *
2927 * Copies a unique device identification into @id based
2928 * on the information in the VPD page 0x83 of the device.
2929 * The string will be formatted as a SCSI name string.
2930 *
2931 * Returns the length of the identification or error on failure.
2932 * If the identifier is longer than the supplied buffer the actual
2933 * identifier length is returned and the buffer is not zero-padded.
2934 */
2935int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2936{
2937	u8 cur_id_type = 0xff;
2938	u8 cur_id_size = 0;
2939	const unsigned char *d, *cur_id_str;
2940	const struct scsi_vpd *vpd_pg83;
2941	int id_size = -EINVAL;
2942
2943	rcu_read_lock();
2944	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2945	if (!vpd_pg83) {
2946		rcu_read_unlock();
2947		return -ENXIO;
2948	}
2949
2950	/*
2951	 * Look for the correct descriptor.
2952	 * Order of preference for lun descriptor:
2953	 * - SCSI name string
2954	 * - NAA IEEE Registered Extended
2955	 * - EUI-64 based 16-byte
2956	 * - EUI-64 based 12-byte
2957	 * - NAA IEEE Registered
2958	 * - NAA IEEE Extended
2959	 * - T10 Vendor ID
2960	 * as longer descriptors reduce the likelyhood
2961	 * of identification clashes.
2962	 */
2963
2964	/* The id string must be at least 20 bytes + terminating NULL byte */
2965	if (id_len < 21) {
2966		rcu_read_unlock();
2967		return -EINVAL;
2968	}
2969
2970	memset(id, 0, id_len);
2971	d = vpd_pg83->data + 4;
2972	while (d < vpd_pg83->data + vpd_pg83->len) {
2973		/* Skip designators not referring to the LUN */
2974		if ((d[1] & 0x30) != 0x00)
2975			goto next_desig;
2976
2977		switch (d[1] & 0xf) {
2978		case 0x1:
2979			/* T10 Vendor ID */
2980			if (cur_id_size > d[3])
2981				break;
2982			/* Prefer anything */
2983			if (cur_id_type > 0x01 && cur_id_type != 0xff)
2984				break;
2985			cur_id_size = d[3];
2986			if (cur_id_size + 4 > id_len)
2987				cur_id_size = id_len - 4;
2988			cur_id_str = d + 4;
2989			cur_id_type = d[1] & 0xf;
2990			id_size = snprintf(id, id_len, "t10.%*pE",
2991					   cur_id_size, cur_id_str);
2992			break;
2993		case 0x2:
2994			/* EUI-64 */
2995			if (cur_id_size > d[3])
2996				break;
2997			/* Prefer NAA IEEE Registered Extended */
2998			if (cur_id_type == 0x3 &&
2999			    cur_id_size == d[3])
3000				break;
3001			cur_id_size = d[3];
3002			cur_id_str = d + 4;
3003			cur_id_type = d[1] & 0xf;
3004			switch (cur_id_size) {
3005			case 8:
3006				id_size = snprintf(id, id_len,
3007						   "eui.%8phN",
3008						   cur_id_str);
3009				break;
3010			case 12:
3011				id_size = snprintf(id, id_len,
3012						   "eui.%12phN",
3013						   cur_id_str);
3014				break;
3015			case 16:
3016				id_size = snprintf(id, id_len,
3017						   "eui.%16phN",
3018						   cur_id_str);
3019				break;
3020			default:
3021				cur_id_size = 0;
3022				break;
3023			}
3024			break;
3025		case 0x3:
3026			/* NAA */
3027			if (cur_id_size > d[3])
3028				break;
3029			cur_id_size = d[3];
3030			cur_id_str = d + 4;
3031			cur_id_type = d[1] & 0xf;
3032			switch (cur_id_size) {
3033			case 8:
3034				id_size = snprintf(id, id_len,
3035						   "naa.%8phN",
3036						   cur_id_str);
3037				break;
3038			case 16:
3039				id_size = snprintf(id, id_len,
3040						   "naa.%16phN",
3041						   cur_id_str);
3042				break;
3043			default:
3044				cur_id_size = 0;
3045				break;
3046			}
3047			break;
3048		case 0x8:
3049			/* SCSI name string */
3050			if (cur_id_size + 4 > d[3])
3051				break;
3052			/* Prefer others for truncated descriptor */
3053			if (cur_id_size && d[3] > id_len)
3054				break;
3055			cur_id_size = id_size = d[3];
3056			cur_id_str = d + 4;
3057			cur_id_type = d[1] & 0xf;
3058			if (cur_id_size >= id_len)
3059				cur_id_size = id_len - 1;
3060			memcpy(id, cur_id_str, cur_id_size);
3061			/* Decrease priority for truncated descriptor */
3062			if (cur_id_size != id_size)
3063				cur_id_size = 6;
3064			break;
3065		default:
3066			break;
3067		}
3068next_desig:
3069		d += d[3] + 4;
3070	}
3071	rcu_read_unlock();
3072
3073	return id_size;
3074}
3075EXPORT_SYMBOL(scsi_vpd_lun_id);
3076
3077/*
3078 * scsi_vpd_tpg_id - return a target port group identifier
3079 * @sdev: SCSI device
3080 *
3081 * Returns the Target Port Group identifier from the information
3082 * froom VPD page 0x83 of the device.
3083 *
3084 * Returns the identifier or error on failure.
3085 */
3086int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3087{
3088	const unsigned char *d;
3089	const struct scsi_vpd *vpd_pg83;
3090	int group_id = -EAGAIN, rel_port = -1;
3091
3092	rcu_read_lock();
3093	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3094	if (!vpd_pg83) {
3095		rcu_read_unlock();
3096		return -ENXIO;
3097	}
3098
3099	d = vpd_pg83->data + 4;
3100	while (d < vpd_pg83->data + vpd_pg83->len) {
3101		switch (d[1] & 0xf) {
3102		case 0x4:
3103			/* Relative target port */
3104			rel_port = get_unaligned_be16(&d[6]);
3105			break;
3106		case 0x5:
3107			/* Target port group */
3108			group_id = get_unaligned_be16(&d[6]);
3109			break;
3110		default:
3111			break;
3112		}
3113		d += d[3] + 4;
3114	}
3115	rcu_read_unlock();
3116
3117	if (group_id >= 0 && rel_id && rel_port != -1)
3118		*rel_id = rel_port;
3119
3120	return group_id;
3121}
3122EXPORT_SYMBOL(scsi_vpd_tpg_id);