Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12 * the GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 *
  18 * Author: Artem Bityutskiy (Битюцкий Артём)
  19 */
  20
  21/*
  22 * UBI attaching sub-system.
  23 *
  24 * This sub-system is responsible for attaching MTD devices and it also
  25 * implements flash media scanning.
  26 *
  27 * The attaching information is represented by a &struct ubi_attach_info'
  28 * object. Information about volumes is represented by &struct ubi_ainf_volume
  29 * objects which are kept in volume RB-tree with root at the @volumes field.
  30 * The RB-tree is indexed by the volume ID.
  31 *
  32 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
  33 * objects are kept in per-volume RB-trees with the root at the corresponding
  34 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
  35 * per-volume objects and each of these objects is the root of RB-tree of
  36 * per-LEB objects.
  37 *
  38 * Corrupted physical eraseblocks are put to the @corr list, free physical
  39 * eraseblocks are put to the @free list and the physical eraseblock to be
  40 * erased are put to the @erase list.
  41 *
  42 * About corruptions
  43 * ~~~~~~~~~~~~~~~~~
  44 *
  45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
  46 * whether the headers are corrupted or not. Sometimes UBI also protects the
  47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
  48 * when it moves the contents of a PEB for wear-leveling purposes.
  49 *
  50 * UBI tries to distinguish between 2 types of corruptions.
  51 *
  52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
  53 * tries to handle them gracefully, without printing too many warnings and
  54 * error messages. The idea is that we do not lose important data in these
  55 * cases - we may lose only the data which were being written to the media just
  56 * before the power cut happened, and the upper layers (e.g., UBIFS) are
  57 * supposed to handle such data losses (e.g., by using the FS journal).
  58 *
  59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
  60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
  61 * PEBs in the @erase list are scheduled for erasure later.
  62 *
  63 * 2. Unexpected corruptions which are not caused by power cuts. During
  64 * attaching, such PEBs are put to the @corr list and UBI preserves them.
  65 * Obviously, this lessens the amount of available PEBs, and if at some  point
  66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
  67 * about such PEBs every time the MTD device is attached.
  68 *
  69 * However, it is difficult to reliably distinguish between these types of
  70 * corruptions and UBI's strategy is as follows (in case of attaching by
  71 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
  72 * the data area does not contain all 0xFFs, and there were no bit-flips or
  73 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
  74 * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
  75 * are as follows.
  76 *   o If the data area contains only 0xFFs, there are no data, and it is safe
  77 *     to just erase this PEB - this is corruption type 1.
  78 *   o If the data area has bit-flips or data integrity errors (ECC errors on
  79 *     NAND), it is probably a PEB which was being erased when power cut
  80 *     happened, so this is corruption type 1. However, this is just a guess,
  81 *     which might be wrong.
  82 *   o Otherwise this is corruption type 2.
  83 */
  84
  85#include <linux/err.h>
  86#include <linux/slab.h>
  87#include <linux/crc32.h>
  88#include <linux/math64.h>
  89#include <linux/random.h>
  90#include "ubi.h"
  91
  92static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
  93
  94#define AV_FIND		BIT(0)
  95#define AV_ADD		BIT(1)
  96#define AV_FIND_OR_ADD	(AV_FIND | AV_ADD)
  97
  98/**
  99 * find_or_add_av - internal function to find a volume, add a volume or do
 100 *		    both (find and add if missing).
 101 * @ai: attaching information
 102 * @vol_id: the requested volume ID
 103 * @flags: a combination of the %AV_FIND and %AV_ADD flags describing the
 104 *	   expected operation. If only %AV_ADD is set, -EEXIST is returned
 105 *	   if the volume already exists. If only %AV_FIND is set, NULL is
 106 *	   returned if the volume does not exist. And if both flags are
 107 *	   set, the helper first tries to find an existing volume, and if
 108 *	   it does not exist it creates a new one.
 109 * @created: in value used to inform the caller whether it"s a newly created
 110 *	     volume or not.
 111 *
 112 * This function returns a pointer to a volume description or an ERR_PTR if
 113 * the operation failed. It can also return NULL if only %AV_FIND is set and
 114 * the volume does not exist.
 115 */
 116static struct ubi_ainf_volume *find_or_add_av(struct ubi_attach_info *ai,
 117					      int vol_id, unsigned int flags,
 118					      bool *created)
 119{
 120	struct ubi_ainf_volume *av;
 121	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
 122
 123	/* Walk the volume RB-tree to look if this volume is already present */
 124	while (*p) {
 125		parent = *p;
 126		av = rb_entry(parent, struct ubi_ainf_volume, rb);
 127
 128		if (vol_id == av->vol_id) {
 129			*created = false;
 130
 131			if (!(flags & AV_FIND))
 132				return ERR_PTR(-EEXIST);
 133
 134			return av;
 135		}
 136
 137		if (vol_id > av->vol_id)
 138			p = &(*p)->rb_left;
 139		else
 140			p = &(*p)->rb_right;
 141	}
 142
 143	if (!(flags & AV_ADD))
 144		return NULL;
 145
 146	/* The volume is absent - add it */
 147	av = kzalloc(sizeof(*av), GFP_KERNEL);
 148	if (!av)
 149		return ERR_PTR(-ENOMEM);
 150
 151	av->vol_id = vol_id;
 152
 153	if (vol_id > ai->highest_vol_id)
 154		ai->highest_vol_id = vol_id;
 155
 156	rb_link_node(&av->rb, parent, p);
 157	rb_insert_color(&av->rb, &ai->volumes);
 158	ai->vols_found += 1;
 159	*created = true;
 160	dbg_bld("added volume %d", vol_id);
 161	return av;
 162}
 163
 164/**
 165 * ubi_find_or_add_av - search for a volume in the attaching information and
 166 *			add one if it does not exist.
 167 * @ai: attaching information
 168 * @vol_id: the requested volume ID
 169 * @created: whether the volume has been created or not
 170 *
 171 * This function returns a pointer to the new volume description or an
 172 * ERR_PTR if the operation failed.
 173 */
 174static struct ubi_ainf_volume *ubi_find_or_add_av(struct ubi_attach_info *ai,
 175						  int vol_id, bool *created)
 176{
 177	return find_or_add_av(ai, vol_id, AV_FIND_OR_ADD, created);
 178}
 179
 180/**
 181 * ubi_alloc_aeb - allocate an aeb element
 182 * @ai: attaching information
 183 * @pnum: physical eraseblock number
 184 * @ec: erase counter of the physical eraseblock
 185 *
 186 * Allocate an aeb object and initialize the pnum and ec information.
 187 * vol_id and lnum are set to UBI_UNKNOWN, and the other fields are
 188 * initialized to zero.
 189 * Note that the element is not added in any list or RB tree.
 190 */
 191struct ubi_ainf_peb *ubi_alloc_aeb(struct ubi_attach_info *ai, int pnum,
 192				   int ec)
 193{
 194	struct ubi_ainf_peb *aeb;
 195
 196	aeb = kmem_cache_zalloc(ai->aeb_slab_cache, GFP_KERNEL);
 197	if (!aeb)
 198		return NULL;
 199
 200	aeb->pnum = pnum;
 201	aeb->ec = ec;
 202	aeb->vol_id = UBI_UNKNOWN;
 203	aeb->lnum = UBI_UNKNOWN;
 204
 205	return aeb;
 206}
 207
 208/**
 209 * ubi_free_aeb - free an aeb element
 210 * @ai: attaching information
 211 * @aeb: the element to free
 212 *
 213 * Free an aeb object. The caller must have removed the element from any list
 214 * or RB tree.
 215 */
 216void ubi_free_aeb(struct ubi_attach_info *ai, struct ubi_ainf_peb *aeb)
 217{
 218	kmem_cache_free(ai->aeb_slab_cache, aeb);
 219}
 220
 221/**
 222 * add_to_list - add physical eraseblock to a list.
 223 * @ai: attaching information
 224 * @pnum: physical eraseblock number to add
 225 * @vol_id: the last used volume id for the PEB
 226 * @lnum: the last used LEB number for the PEB
 227 * @ec: erase counter of the physical eraseblock
 228 * @to_head: if not zero, add to the head of the list
 229 * @list: the list to add to
 230 *
 231 * This function allocates a 'struct ubi_ainf_peb' object for physical
 232 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
 233 * It stores the @lnum and @vol_id alongside, which can both be
 234 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
 235 * If @to_head is not zero, PEB will be added to the head of the list, which
 236 * basically means it will be processed first later. E.g., we add corrupted
 237 * PEBs (corrupted due to power cuts) to the head of the erase list to make
 238 * sure we erase them first and get rid of corruptions ASAP. This function
 239 * returns zero in case of success and a negative error code in case of
 240 * failure.
 241 */
 242static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
 243		       int lnum, int ec, int to_head, struct list_head *list)
 244{
 245	struct ubi_ainf_peb *aeb;
 246
 247	if (list == &ai->free) {
 248		dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
 249	} else if (list == &ai->erase) {
 250		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
 251	} else if (list == &ai->alien) {
 252		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
 253		ai->alien_peb_count += 1;
 254	} else
 255		BUG();
 256
 257	aeb = ubi_alloc_aeb(ai, pnum, ec);
 258	if (!aeb)
 259		return -ENOMEM;
 260
 261	aeb->vol_id = vol_id;
 262	aeb->lnum = lnum;
 263	if (to_head)
 264		list_add(&aeb->u.list, list);
 265	else
 266		list_add_tail(&aeb->u.list, list);
 267	return 0;
 268}
 269
 270/**
 271 * add_corrupted - add a corrupted physical eraseblock.
 272 * @ai: attaching information
 273 * @pnum: physical eraseblock number to add
 274 * @ec: erase counter of the physical eraseblock
 275 *
 276 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
 277 * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
 278 * was presumably not caused by a power cut. Returns zero in case of success
 279 * and a negative error code in case of failure.
 280 */
 281static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
 282{
 283	struct ubi_ainf_peb *aeb;
 284
 285	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
 286
 287	aeb = ubi_alloc_aeb(ai, pnum, ec);
 288	if (!aeb)
 289		return -ENOMEM;
 290
 291	ai->corr_peb_count += 1;
 292	list_add(&aeb->u.list, &ai->corr);
 293	return 0;
 294}
 295
 296/**
 297 * add_fastmap - add a Fastmap related physical eraseblock.
 298 * @ai: attaching information
 299 * @pnum: physical eraseblock number the VID header came from
 300 * @vid_hdr: the volume identifier header
 301 * @ec: erase counter of the physical eraseblock
 302 *
 303 * This function allocates a 'struct ubi_ainf_peb' object for a Fastamp
 304 * physical eraseblock @pnum and adds it to the 'fastmap' list.
 305 * Such blocks can be Fastmap super and data blocks from both the most
 306 * recent Fastmap we're attaching from or from old Fastmaps which will
 307 * be erased.
 308 */
 309static int add_fastmap(struct ubi_attach_info *ai, int pnum,
 310		       struct ubi_vid_hdr *vid_hdr, int ec)
 311{
 312	struct ubi_ainf_peb *aeb;
 313
 314	aeb = ubi_alloc_aeb(ai, pnum, ec);
 315	if (!aeb)
 316		return -ENOMEM;
 317
 318	aeb->vol_id = be32_to_cpu(vid_hdr->vol_id);
 319	aeb->sqnum = be64_to_cpu(vid_hdr->sqnum);
 320	list_add(&aeb->u.list, &ai->fastmap);
 321
 322	dbg_bld("add to fastmap list: PEB %d, vol_id %d, sqnum: %llu", pnum,
 323		aeb->vol_id, aeb->sqnum);
 324
 325	return 0;
 326}
 327
 328/**
 329 * validate_vid_hdr - check volume identifier header.
 330 * @ubi: UBI device description object
 331 * @vid_hdr: the volume identifier header to check
 332 * @av: information about the volume this logical eraseblock belongs to
 333 * @pnum: physical eraseblock number the VID header came from
 334 *
 335 * This function checks that data stored in @vid_hdr is consistent. Returns
 336 * non-zero if an inconsistency was found and zero if not.
 337 *
 338 * Note, UBI does sanity check of everything it reads from the flash media.
 339 * Most of the checks are done in the I/O sub-system. Here we check that the
 340 * information in the VID header is consistent to the information in other VID
 341 * headers of the same volume.
 342 */
 343static int validate_vid_hdr(const struct ubi_device *ubi,
 344			    const struct ubi_vid_hdr *vid_hdr,
 345			    const struct ubi_ainf_volume *av, int pnum)
 346{
 347	int vol_type = vid_hdr->vol_type;
 348	int vol_id = be32_to_cpu(vid_hdr->vol_id);
 349	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 350	int data_pad = be32_to_cpu(vid_hdr->data_pad);
 351
 352	if (av->leb_count != 0) {
 353		int av_vol_type;
 354
 355		/*
 356		 * This is not the first logical eraseblock belonging to this
 357		 * volume. Ensure that the data in its VID header is consistent
 358		 * to the data in previous logical eraseblock headers.
 359		 */
 360
 361		if (vol_id != av->vol_id) {
 362			ubi_err(ubi, "inconsistent vol_id");
 363			goto bad;
 364		}
 365
 366		if (av->vol_type == UBI_STATIC_VOLUME)
 367			av_vol_type = UBI_VID_STATIC;
 368		else
 369			av_vol_type = UBI_VID_DYNAMIC;
 370
 371		if (vol_type != av_vol_type) {
 372			ubi_err(ubi, "inconsistent vol_type");
 373			goto bad;
 374		}
 375
 376		if (used_ebs != av->used_ebs) {
 377			ubi_err(ubi, "inconsistent used_ebs");
 378			goto bad;
 379		}
 380
 381		if (data_pad != av->data_pad) {
 382			ubi_err(ubi, "inconsistent data_pad");
 383			goto bad;
 384		}
 385	}
 386
 387	return 0;
 388
 389bad:
 390	ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
 391	ubi_dump_vid_hdr(vid_hdr);
 392	ubi_dump_av(av);
 393	return -EINVAL;
 394}
 395
 396/**
 397 * add_volume - add volume to the attaching information.
 398 * @ai: attaching information
 399 * @vol_id: ID of the volume to add
 400 * @pnum: physical eraseblock number
 401 * @vid_hdr: volume identifier header
 402 *
 403 * If the volume corresponding to the @vid_hdr logical eraseblock is already
 404 * present in the attaching information, this function does nothing. Otherwise
 405 * it adds corresponding volume to the attaching information. Returns a pointer
 406 * to the allocated "av" object in case of success and a negative error code in
 407 * case of failure.
 408 */
 409static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
 410					  int vol_id, int pnum,
 411					  const struct ubi_vid_hdr *vid_hdr)
 412{
 413	struct ubi_ainf_volume *av;
 414	bool created;
 415
 416	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
 417
 418	av = ubi_find_or_add_av(ai, vol_id, &created);
 419	if (IS_ERR(av) || !created)
 420		return av;
 421
 422	av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 423	av->data_pad = be32_to_cpu(vid_hdr->data_pad);
 424	av->compat = vid_hdr->compat;
 425	av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
 426							    : UBI_STATIC_VOLUME;
 427
 428	return av;
 429}
 430
 431/**
 432 * ubi_compare_lebs - find out which logical eraseblock is newer.
 433 * @ubi: UBI device description object
 434 * @aeb: first logical eraseblock to compare
 435 * @pnum: physical eraseblock number of the second logical eraseblock to
 436 * compare
 437 * @vid_hdr: volume identifier header of the second logical eraseblock
 438 *
 439 * This function compares 2 copies of a LEB and informs which one is newer. In
 440 * case of success this function returns a positive value, in case of failure, a
 441 * negative error code is returned. The success return codes use the following
 442 * bits:
 443 *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
 444 *       second PEB (described by @pnum and @vid_hdr);
 445 *     o bit 0 is set: the second PEB is newer;
 446 *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
 447 *     o bit 1 is set: bit-flips were detected in the newer LEB;
 448 *     o bit 2 is cleared: the older LEB is not corrupted;
 449 *     o bit 2 is set: the older LEB is corrupted.
 450 */
 451int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
 452			int pnum, const struct ubi_vid_hdr *vid_hdr)
 453{
 454	int len, err, second_is_newer, bitflips = 0, corrupted = 0;
 455	uint32_t data_crc, crc;
 456	struct ubi_vid_io_buf *vidb = NULL;
 457	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
 458
 459	if (sqnum2 == aeb->sqnum) {
 460		/*
 461		 * This must be a really ancient UBI image which has been
 462		 * created before sequence numbers support has been added. At
 463		 * that times we used 32-bit LEB versions stored in logical
 464		 * eraseblocks. That was before UBI got into mainline. We do not
 465		 * support these images anymore. Well, those images still work,
 466		 * but only if no unclean reboots happened.
 467		 */
 468		ubi_err(ubi, "unsupported on-flash UBI format");
 469		return -EINVAL;
 470	}
 471
 472	/* Obviously the LEB with lower sequence counter is older */
 473	second_is_newer = (sqnum2 > aeb->sqnum);
 474
 475	/*
 476	 * Now we know which copy is newer. If the copy flag of the PEB with
 477	 * newer version is not set, then we just return, otherwise we have to
 478	 * check data CRC. For the second PEB we already have the VID header,
 479	 * for the first one - we'll need to re-read it from flash.
 480	 *
 481	 * Note: this may be optimized so that we wouldn't read twice.
 482	 */
 483
 484	if (second_is_newer) {
 485		if (!vid_hdr->copy_flag) {
 486			/* It is not a copy, so it is newer */
 487			dbg_bld("second PEB %d is newer, copy_flag is unset",
 488				pnum);
 489			return 1;
 490		}
 491	} else {
 492		if (!aeb->copy_flag) {
 493			/* It is not a copy, so it is newer */
 494			dbg_bld("first PEB %d is newer, copy_flag is unset",
 495				pnum);
 496			return bitflips << 1;
 497		}
 498
 499		vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL);
 500		if (!vidb)
 501			return -ENOMEM;
 502
 503		pnum = aeb->pnum;
 504		err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 0);
 505		if (err) {
 506			if (err == UBI_IO_BITFLIPS)
 507				bitflips = 1;
 508			else {
 509				ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
 510					pnum, err);
 511				if (err > 0)
 512					err = -EIO;
 513
 514				goto out_free_vidh;
 515			}
 516		}
 517
 518		vid_hdr = ubi_get_vid_hdr(vidb);
 519	}
 520
 521	/* Read the data of the copy and check the CRC */
 522
 523	len = be32_to_cpu(vid_hdr->data_size);
 524
 525	mutex_lock(&ubi->buf_mutex);
 526	err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
 527	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
 528		goto out_unlock;
 529
 530	data_crc = be32_to_cpu(vid_hdr->data_crc);
 531	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
 532	if (crc != data_crc) {
 533		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
 534			pnum, crc, data_crc);
 535		corrupted = 1;
 536		bitflips = 0;
 537		second_is_newer = !second_is_newer;
 538	} else {
 539		dbg_bld("PEB %d CRC is OK", pnum);
 540		bitflips |= !!err;
 541	}
 542	mutex_unlock(&ubi->buf_mutex);
 543
 544	ubi_free_vid_buf(vidb);
 545
 546	if (second_is_newer)
 547		dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
 548	else
 549		dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
 550
 551	return second_is_newer | (bitflips << 1) | (corrupted << 2);
 552
 553out_unlock:
 554	mutex_unlock(&ubi->buf_mutex);
 555out_free_vidh:
 556	ubi_free_vid_buf(vidb);
 557	return err;
 558}
 559
 560/**
 561 * ubi_add_to_av - add used physical eraseblock to the attaching information.
 562 * @ubi: UBI device description object
 563 * @ai: attaching information
 564 * @pnum: the physical eraseblock number
 565 * @ec: erase counter
 566 * @vid_hdr: the volume identifier header
 567 * @bitflips: if bit-flips were detected when this physical eraseblock was read
 568 *
 569 * This function adds information about a used physical eraseblock to the
 570 * 'used' tree of the corresponding volume. The function is rather complex
 571 * because it has to handle cases when this is not the first physical
 572 * eraseblock belonging to the same logical eraseblock, and the newer one has
 573 * to be picked, while the older one has to be dropped. This function returns
 574 * zero in case of success and a negative error code in case of failure.
 575 */
 576int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
 577		  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
 578{
 579	int err, vol_id, lnum;
 580	unsigned long long sqnum;
 581	struct ubi_ainf_volume *av;
 582	struct ubi_ainf_peb *aeb;
 583	struct rb_node **p, *parent = NULL;
 584
 585	vol_id = be32_to_cpu(vid_hdr->vol_id);
 586	lnum = be32_to_cpu(vid_hdr->lnum);
 587	sqnum = be64_to_cpu(vid_hdr->sqnum);
 588
 589	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
 590		pnum, vol_id, lnum, ec, sqnum, bitflips);
 591
 592	av = add_volume(ai, vol_id, pnum, vid_hdr);
 593	if (IS_ERR(av))
 594		return PTR_ERR(av);
 595
 596	if (ai->max_sqnum < sqnum)
 597		ai->max_sqnum = sqnum;
 598
 599	/*
 600	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
 601	 * if this is the first instance of this logical eraseblock or not.
 602	 */
 603	p = &av->root.rb_node;
 604	while (*p) {
 605		int cmp_res;
 606
 607		parent = *p;
 608		aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
 609		if (lnum != aeb->lnum) {
 610			if (lnum < aeb->lnum)
 611				p = &(*p)->rb_left;
 612			else
 613				p = &(*p)->rb_right;
 614			continue;
 615		}
 616
 617		/*
 618		 * There is already a physical eraseblock describing the same
 619		 * logical eraseblock present.
 620		 */
 621
 622		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
 623			aeb->pnum, aeb->sqnum, aeb->ec);
 624
 625		/*
 626		 * Make sure that the logical eraseblocks have different
 627		 * sequence numbers. Otherwise the image is bad.
 628		 *
 629		 * However, if the sequence number is zero, we assume it must
 630		 * be an ancient UBI image from the era when UBI did not have
 631		 * sequence numbers. We still can attach these images, unless
 632		 * there is a need to distinguish between old and new
 633		 * eraseblocks, in which case we'll refuse the image in
 634		 * 'ubi_compare_lebs()'. In other words, we attach old clean
 635		 * images, but refuse attaching old images with duplicated
 636		 * logical eraseblocks because there was an unclean reboot.
 637		 */
 638		if (aeb->sqnum == sqnum && sqnum != 0) {
 639			ubi_err(ubi, "two LEBs with same sequence number %llu",
 640				sqnum);
 641			ubi_dump_aeb(aeb, 0);
 642			ubi_dump_vid_hdr(vid_hdr);
 643			return -EINVAL;
 644		}
 645
 646		/*
 647		 * Now we have to drop the older one and preserve the newer
 648		 * one.
 649		 */
 650		cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
 651		if (cmp_res < 0)
 652			return cmp_res;
 653
 654		if (cmp_res & 1) {
 655			/*
 656			 * This logical eraseblock is newer than the one
 657			 * found earlier.
 658			 */
 659			err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
 660			if (err)
 661				return err;
 662
 663			err = add_to_list(ai, aeb->pnum, aeb->vol_id,
 664					  aeb->lnum, aeb->ec, cmp_res & 4,
 665					  &ai->erase);
 666			if (err)
 667				return err;
 668
 669			aeb->ec = ec;
 670			aeb->pnum = pnum;
 671			aeb->vol_id = vol_id;
 672			aeb->lnum = lnum;
 673			aeb->scrub = ((cmp_res & 2) || bitflips);
 674			aeb->copy_flag = vid_hdr->copy_flag;
 675			aeb->sqnum = sqnum;
 676
 677			if (av->highest_lnum == lnum)
 678				av->last_data_size =
 679					be32_to_cpu(vid_hdr->data_size);
 680
 681			return 0;
 682		} else {
 683			/*
 684			 * This logical eraseblock is older than the one found
 685			 * previously.
 686			 */
 687			return add_to_list(ai, pnum, vol_id, lnum, ec,
 688					   cmp_res & 4, &ai->erase);
 689		}
 690	}
 691
 692	/*
 693	 * We've met this logical eraseblock for the first time, add it to the
 694	 * attaching information.
 695	 */
 696
 697	err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
 698	if (err)
 699		return err;
 700
 701	aeb = ubi_alloc_aeb(ai, pnum, ec);
 702	if (!aeb)
 703		return -ENOMEM;
 704
 705	aeb->vol_id = vol_id;
 706	aeb->lnum = lnum;
 707	aeb->scrub = bitflips;
 708	aeb->copy_flag = vid_hdr->copy_flag;
 709	aeb->sqnum = sqnum;
 710
 711	if (av->highest_lnum <= lnum) {
 712		av->highest_lnum = lnum;
 713		av->last_data_size = be32_to_cpu(vid_hdr->data_size);
 714	}
 715
 716	av->leb_count += 1;
 717	rb_link_node(&aeb->u.rb, parent, p);
 718	rb_insert_color(&aeb->u.rb, &av->root);
 719	return 0;
 720}
 721
 722/**
 723 * ubi_add_av - add volume to the attaching information.
 724 * @ai: attaching information
 725 * @vol_id: the requested volume ID
 726 *
 727 * This function returns a pointer to the new volume description or an
 728 * ERR_PTR if the operation failed.
 729 */
 730struct ubi_ainf_volume *ubi_add_av(struct ubi_attach_info *ai, int vol_id)
 731{
 732	bool created;
 733
 734	return find_or_add_av(ai, vol_id, AV_ADD, &created);
 735}
 736
 737/**
 738 * ubi_find_av - find volume in the attaching information.
 739 * @ai: attaching information
 740 * @vol_id: the requested volume ID
 741 *
 742 * This function returns a pointer to the volume description or %NULL if there
 743 * are no data about this volume in the attaching information.
 744 */
 745struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
 746				    int vol_id)
 747{
 748	bool created;
 749
 750	return find_or_add_av((struct ubi_attach_info *)ai, vol_id, AV_FIND,
 751			      &created);
 752}
 753
 754static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av,
 755		       struct list_head *list);
 756
 757/**
 758 * ubi_remove_av - delete attaching information about a volume.
 759 * @ai: attaching information
 760 * @av: the volume attaching information to delete
 761 */
 762void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
 763{
 764	dbg_bld("remove attaching information about volume %d", av->vol_id);
 765
 766	rb_erase(&av->rb, &ai->volumes);
 767	destroy_av(ai, av, &ai->erase);
 768	ai->vols_found -= 1;
 769}
 770
 771/**
 772 * early_erase_peb - erase a physical eraseblock.
 773 * @ubi: UBI device description object
 774 * @ai: attaching information
 775 * @pnum: physical eraseblock number to erase;
 776 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
 777 *
 778 * This function erases physical eraseblock 'pnum', and writes the erase
 779 * counter header to it. This function should only be used on UBI device
 780 * initialization stages, when the EBA sub-system had not been yet initialized.
 781 * This function returns zero in case of success and a negative error code in
 782 * case of failure.
 783 */
 784static int early_erase_peb(struct ubi_device *ubi,
 785			   const struct ubi_attach_info *ai, int pnum, int ec)
 786{
 787	int err;
 788	struct ubi_ec_hdr *ec_hdr;
 789
 790	if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
 791		/*
 792		 * Erase counter overflow. Upgrade UBI and use 64-bit
 793		 * erase counters internally.
 794		 */
 795		ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
 796			pnum, ec);
 797		return -EINVAL;
 798	}
 799
 800	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 801	if (!ec_hdr)
 802		return -ENOMEM;
 803
 804	ec_hdr->ec = cpu_to_be64(ec);
 805
 806	err = ubi_io_sync_erase(ubi, pnum, 0);
 807	if (err < 0)
 808		goto out_free;
 809
 810	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
 811
 812out_free:
 813	kfree(ec_hdr);
 814	return err;
 815}
 816
 817/**
 818 * ubi_early_get_peb - get a free physical eraseblock.
 819 * @ubi: UBI device description object
 820 * @ai: attaching information
 821 *
 822 * This function returns a free physical eraseblock. It is supposed to be
 823 * called on the UBI initialization stages when the wear-leveling sub-system is
 824 * not initialized yet. This function picks a physical eraseblocks from one of
 825 * the lists, writes the EC header if it is needed, and removes it from the
 826 * list.
 827 *
 828 * This function returns a pointer to the "aeb" of the found free PEB in case
 829 * of success and an error code in case of failure.
 830 */
 831struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
 832				       struct ubi_attach_info *ai)
 833{
 834	int err = 0;
 835	struct ubi_ainf_peb *aeb, *tmp_aeb;
 836
 837	if (!list_empty(&ai->free)) {
 838		aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
 839		list_del(&aeb->u.list);
 840		dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
 841		return aeb;
 842	}
 843
 844	/*
 845	 * We try to erase the first physical eraseblock from the erase list
 846	 * and pick it if we succeed, or try to erase the next one if not. And
 847	 * so forth. We don't want to take care about bad eraseblocks here -
 848	 * they'll be handled later.
 849	 */
 850	list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
 851		if (aeb->ec == UBI_UNKNOWN)
 852			aeb->ec = ai->mean_ec;
 853
 854		err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
 855		if (err)
 856			continue;
 857
 858		aeb->ec += 1;
 859		list_del(&aeb->u.list);
 860		dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
 861		return aeb;
 862	}
 863
 864	ubi_err(ubi, "no free eraseblocks");
 865	return ERR_PTR(-ENOSPC);
 866}
 867
 868/**
 869 * check_corruption - check the data area of PEB.
 870 * @ubi: UBI device description object
 871 * @vid_hdr: the (corrupted) VID header of this PEB
 872 * @pnum: the physical eraseblock number to check
 873 *
 874 * This is a helper function which is used to distinguish between VID header
 875 * corruptions caused by power cuts and other reasons. If the PEB contains only
 876 * 0xFF bytes in the data area, the VID header is most probably corrupted
 877 * because of a power cut (%0 is returned in this case). Otherwise, it was
 878 * probably corrupted for some other reasons (%1 is returned in this case). A
 879 * negative error code is returned if a read error occurred.
 880 *
 881 * If the corruption reason was a power cut, UBI can safely erase this PEB.
 882 * Otherwise, it should preserve it to avoid possibly destroying important
 883 * information.
 884 */
 885static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
 886			    int pnum)
 887{
 888	int err;
 889
 890	mutex_lock(&ubi->buf_mutex);
 891	memset(ubi->peb_buf, 0x00, ubi->leb_size);
 892
 893	err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
 894			  ubi->leb_size);
 895	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
 896		/*
 897		 * Bit-flips or integrity errors while reading the data area.
 898		 * It is difficult to say for sure what type of corruption is
 899		 * this, but presumably a power cut happened while this PEB was
 900		 * erased, so it became unstable and corrupted, and should be
 901		 * erased.
 902		 */
 903		err = 0;
 904		goto out_unlock;
 905	}
 906
 907	if (err)
 908		goto out_unlock;
 909
 910	if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
 911		goto out_unlock;
 912
 913	ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
 914		pnum);
 915	ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
 916	ubi_dump_vid_hdr(vid_hdr);
 917	pr_err("hexdump of PEB %d offset %d, length %d",
 918	       pnum, ubi->leb_start, ubi->leb_size);
 919	ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
 920			       ubi->peb_buf, ubi->leb_size, 1);
 921	err = 1;
 922
 923out_unlock:
 924	mutex_unlock(&ubi->buf_mutex);
 925	return err;
 926}
 927
 928static bool vol_ignored(int vol_id)
 929{
 930	switch (vol_id) {
 931		case UBI_LAYOUT_VOLUME_ID:
 932		return true;
 933	}
 934
 935#ifdef CONFIG_MTD_UBI_FASTMAP
 936	return ubi_is_fm_vol(vol_id);
 937#else
 938	return false;
 939#endif
 940}
 941
 942/**
 943 * scan_peb - scan and process UBI headers of a PEB.
 944 * @ubi: UBI device description object
 945 * @ai: attaching information
 946 * @pnum: the physical eraseblock number
 947 * @fast: true if we're scanning for a Fastmap
 948 *
 949 * This function reads UBI headers of PEB @pnum, checks them, and adds
 950 * information about this PEB to the corresponding list or RB-tree in the
 951 * "attaching info" structure. Returns zero if the physical eraseblock was
 952 * successfully handled and a negative error code in case of failure.
 953 */
 954static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
 955		    int pnum, bool fast)
 956{
 957	struct ubi_ec_hdr *ech = ai->ech;
 958	struct ubi_vid_io_buf *vidb = ai->vidb;
 959	struct ubi_vid_hdr *vidh = ubi_get_vid_hdr(vidb);
 960	long long ec;
 961	int err, bitflips = 0, vol_id = -1, ec_err = 0;
 962
 963	dbg_bld("scan PEB %d", pnum);
 964
 965	/* Skip bad physical eraseblocks */
 966	err = ubi_io_is_bad(ubi, pnum);
 967	if (err < 0)
 968		return err;
 969	else if (err) {
 970		ai->bad_peb_count += 1;
 971		return 0;
 972	}
 973
 974	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
 975	if (err < 0)
 976		return err;
 977	switch (err) {
 978	case 0:
 979		break;
 980	case UBI_IO_BITFLIPS:
 981		bitflips = 1;
 982		break;
 983	case UBI_IO_FF:
 984		ai->empty_peb_count += 1;
 985		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 986				   UBI_UNKNOWN, 0, &ai->erase);
 987	case UBI_IO_FF_BITFLIPS:
 988		ai->empty_peb_count += 1;
 989		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 990				   UBI_UNKNOWN, 1, &ai->erase);
 991	case UBI_IO_BAD_HDR_EBADMSG:
 992	case UBI_IO_BAD_HDR:
 993		/*
 994		 * We have to also look at the VID header, possibly it is not
 995		 * corrupted. Set %bitflips flag in order to make this PEB be
 996		 * moved and EC be re-created.
 997		 */
 998		ec_err = err;
 999		ec = UBI_UNKNOWN;
1000		bitflips = 1;
1001		break;
1002	default:
1003		ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
1004			err);
1005		return -EINVAL;
1006	}
1007
1008	if (!ec_err) {
1009		int image_seq;
1010
1011		/* Make sure UBI version is OK */
1012		if (ech->version != UBI_VERSION) {
1013			ubi_err(ubi, "this UBI version is %d, image version is %d",
1014				UBI_VERSION, (int)ech->version);
1015			return -EINVAL;
1016		}
1017
1018		ec = be64_to_cpu(ech->ec);
1019		if (ec > UBI_MAX_ERASECOUNTER) {
1020			/*
1021			 * Erase counter overflow. The EC headers have 64 bits
1022			 * reserved, but we anyway make use of only 31 bit
1023			 * values, as this seems to be enough for any existing
1024			 * flash. Upgrade UBI and use 64-bit erase counters
1025			 * internally.
1026			 */
1027			ubi_err(ubi, "erase counter overflow, max is %d",
1028				UBI_MAX_ERASECOUNTER);
1029			ubi_dump_ec_hdr(ech);
1030			return -EINVAL;
1031		}
1032
1033		/*
1034		 * Make sure that all PEBs have the same image sequence number.
1035		 * This allows us to detect situations when users flash UBI
1036		 * images incorrectly, so that the flash has the new UBI image
1037		 * and leftovers from the old one. This feature was added
1038		 * relatively recently, and the sequence number was always
1039		 * zero, because old UBI implementations always set it to zero.
1040		 * For this reasons, we do not panic if some PEBs have zero
1041		 * sequence number, while other PEBs have non-zero sequence
1042		 * number.
1043		 */
1044		image_seq = be32_to_cpu(ech->image_seq);
1045		if (!ubi->image_seq)
1046			ubi->image_seq = image_seq;
1047		if (image_seq && ubi->image_seq != image_seq) {
1048			ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
1049				image_seq, pnum, ubi->image_seq);
1050			ubi_dump_ec_hdr(ech);
1051			return -EINVAL;
1052		}
1053	}
1054
1055	/* OK, we've done with the EC header, let's look at the VID header */
1056
1057	err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 0);
1058	if (err < 0)
1059		return err;
1060	switch (err) {
1061	case 0:
1062		break;
1063	case UBI_IO_BITFLIPS:
1064		bitflips = 1;
1065		break;
1066	case UBI_IO_BAD_HDR_EBADMSG:
1067		if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
1068			/*
1069			 * Both EC and VID headers are corrupted and were read
1070			 * with data integrity error, probably this is a bad
1071			 * PEB, bit it is not marked as bad yet. This may also
1072			 * be a result of power cut during erasure.
1073			 */
1074			ai->maybe_bad_peb_count += 1;
1075	case UBI_IO_BAD_HDR:
1076			/*
1077			 * If we're facing a bad VID header we have to drop *all*
1078			 * Fastmap data structures we find. The most recent Fastmap
1079			 * could be bad and therefore there is a chance that we attach
1080			 * from an old one. On a fine MTD stack a PEB must not render
1081			 * bad all of a sudden, but the reality is different.
1082			 * So, let's be paranoid and help finding the root cause by
1083			 * falling back to scanning mode instead of attaching with a
1084			 * bad EBA table and cause data corruption which is hard to
1085			 * analyze.
1086			 */
1087			if (fast)
1088				ai->force_full_scan = 1;
1089
1090		if (ec_err)
1091			/*
1092			 * Both headers are corrupted. There is a possibility
1093			 * that this a valid UBI PEB which has corresponding
1094			 * LEB, but the headers are corrupted. However, it is
1095			 * impossible to distinguish it from a PEB which just
1096			 * contains garbage because of a power cut during erase
1097			 * operation. So we just schedule this PEB for erasure.
1098			 *
1099			 * Besides, in case of NOR flash, we deliberately
1100			 * corrupt both headers because NOR flash erasure is
1101			 * slow and can start from the end.
1102			 */
1103			err = 0;
1104		else
1105			/*
1106			 * The EC was OK, but the VID header is corrupted. We
1107			 * have to check what is in the data area.
1108			 */
1109			err = check_corruption(ubi, vidh, pnum);
1110
1111		if (err < 0)
1112			return err;
1113		else if (!err)
1114			/* This corruption is caused by a power cut */
1115			err = add_to_list(ai, pnum, UBI_UNKNOWN,
1116					  UBI_UNKNOWN, ec, 1, &ai->erase);
1117		else
1118			/* This is an unexpected corruption */
1119			err = add_corrupted(ai, pnum, ec);
1120		if (err)
1121			return err;
1122		goto adjust_mean_ec;
1123	case UBI_IO_FF_BITFLIPS:
1124		err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
1125				  ec, 1, &ai->erase);
1126		if (err)
1127			return err;
1128		goto adjust_mean_ec;
1129	case UBI_IO_FF:
1130		if (ec_err || bitflips)
1131			err = add_to_list(ai, pnum, UBI_UNKNOWN,
1132					  UBI_UNKNOWN, ec, 1, &ai->erase);
1133		else
1134			err = add_to_list(ai, pnum, UBI_UNKNOWN,
1135					  UBI_UNKNOWN, ec, 0, &ai->free);
1136		if (err)
1137			return err;
1138		goto adjust_mean_ec;
1139	default:
1140		ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
1141			err);
1142		return -EINVAL;
1143	}
1144
1145	vol_id = be32_to_cpu(vidh->vol_id);
1146	if (vol_id > UBI_MAX_VOLUMES && !vol_ignored(vol_id)) {
1147		int lnum = be32_to_cpu(vidh->lnum);
1148
1149		/* Unsupported internal volume */
1150		switch (vidh->compat) {
1151		case UBI_COMPAT_DELETE:
1152			ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
1153				vol_id, lnum);
1154
1155			err = add_to_list(ai, pnum, vol_id, lnum,
1156					  ec, 1, &ai->erase);
1157			if (err)
1158				return err;
1159			return 0;
1160
1161		case UBI_COMPAT_RO:
1162			ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
1163				vol_id, lnum);
1164			ubi->ro_mode = 1;
1165			break;
1166
1167		case UBI_COMPAT_PRESERVE:
1168			ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
1169				vol_id, lnum);
1170			err = add_to_list(ai, pnum, vol_id, lnum,
1171					  ec, 0, &ai->alien);
1172			if (err)
1173				return err;
1174			return 0;
1175
1176		case UBI_COMPAT_REJECT:
1177			ubi_err(ubi, "incompatible internal volume %d:%d found",
1178				vol_id, lnum);
1179			return -EINVAL;
1180		}
1181	}
1182
1183	if (ec_err)
1184		ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
1185			 pnum);
1186
1187	if (ubi_is_fm_vol(vol_id))
1188		err = add_fastmap(ai, pnum, vidh, ec);
1189	else
1190		err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1191
1192	if (err)
1193		return err;
1194
1195adjust_mean_ec:
1196	if (!ec_err) {
1197		ai->ec_sum += ec;
1198		ai->ec_count += 1;
1199		if (ec > ai->max_ec)
1200			ai->max_ec = ec;
1201		if (ec < ai->min_ec)
1202			ai->min_ec = ec;
1203	}
1204
1205	return 0;
1206}
1207
1208/**
1209 * late_analysis - analyze the overall situation with PEB.
1210 * @ubi: UBI device description object
1211 * @ai: attaching information
1212 *
1213 * This is a helper function which takes a look what PEBs we have after we
1214 * gather information about all of them ("ai" is compete). It decides whether
1215 * the flash is empty and should be formatted of whether there are too many
1216 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1217 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1218 */
1219static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1220{
1221	struct ubi_ainf_peb *aeb;
1222	int max_corr, peb_count;
1223
1224	peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1225	max_corr = peb_count / 20 ?: 8;
1226
1227	/*
1228	 * Few corrupted PEBs is not a problem and may be just a result of
1229	 * unclean reboots. However, many of them may indicate some problems
1230	 * with the flash HW or driver.
1231	 */
1232	if (ai->corr_peb_count) {
1233		ubi_err(ubi, "%d PEBs are corrupted and preserved",
1234			ai->corr_peb_count);
1235		pr_err("Corrupted PEBs are:");
1236		list_for_each_entry(aeb, &ai->corr, u.list)
1237			pr_cont(" %d", aeb->pnum);
1238		pr_cont("\n");
1239
1240		/*
1241		 * If too many PEBs are corrupted, we refuse attaching,
1242		 * otherwise, only print a warning.
1243		 */
1244		if (ai->corr_peb_count >= max_corr) {
1245			ubi_err(ubi, "too many corrupted PEBs, refusing");
1246			return -EINVAL;
1247		}
1248	}
1249
1250	if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1251		/*
1252		 * All PEBs are empty, or almost all - a couple PEBs look like
1253		 * they may be bad PEBs which were not marked as bad yet.
1254		 *
1255		 * This piece of code basically tries to distinguish between
1256		 * the following situations:
1257		 *
1258		 * 1. Flash is empty, but there are few bad PEBs, which are not
1259		 *    marked as bad so far, and which were read with error. We
1260		 *    want to go ahead and format this flash. While formatting,
1261		 *    the faulty PEBs will probably be marked as bad.
1262		 *
1263		 * 2. Flash contains non-UBI data and we do not want to format
1264		 *    it and destroy possibly important information.
1265		 */
1266		if (ai->maybe_bad_peb_count <= 2) {
1267			ai->is_empty = 1;
1268			ubi_msg(ubi, "empty MTD device detected");
1269			get_random_bytes(&ubi->image_seq,
1270					 sizeof(ubi->image_seq));
1271		} else {
1272			ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1273			return -EINVAL;
1274		}
1275
1276	}
1277
1278	return 0;
1279}
1280
1281/**
1282 * destroy_av - free volume attaching information.
1283 * @av: volume attaching information
1284 * @ai: attaching information
1285 * @list: put the aeb elements in there if !NULL, otherwise free them
1286 *
1287 * This function destroys the volume attaching information.
1288 */
1289static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av,
1290		       struct list_head *list)
1291{
1292	struct ubi_ainf_peb *aeb;
1293	struct rb_node *this = av->root.rb_node;
1294
1295	while (this) {
1296		if (this->rb_left)
1297			this = this->rb_left;
1298		else if (this->rb_right)
1299			this = this->rb_right;
1300		else {
1301			aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1302			this = rb_parent(this);
1303			if (this) {
1304				if (this->rb_left == &aeb->u.rb)
1305					this->rb_left = NULL;
1306				else
1307					this->rb_right = NULL;
1308			}
1309
1310			if (list)
1311				list_add_tail(&aeb->u.list, list);
1312			else
1313				ubi_free_aeb(ai, aeb);
1314		}
1315	}
1316	kfree(av);
1317}
1318
1319/**
1320 * destroy_ai - destroy attaching information.
1321 * @ai: attaching information
1322 */
1323static void destroy_ai(struct ubi_attach_info *ai)
1324{
1325	struct ubi_ainf_peb *aeb, *aeb_tmp;
1326	struct ubi_ainf_volume *av;
1327	struct rb_node *rb;
1328
1329	list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1330		list_del(&aeb->u.list);
1331		ubi_free_aeb(ai, aeb);
1332	}
1333	list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1334		list_del(&aeb->u.list);
1335		ubi_free_aeb(ai, aeb);
1336	}
1337	list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1338		list_del(&aeb->u.list);
1339		ubi_free_aeb(ai, aeb);
1340	}
1341	list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1342		list_del(&aeb->u.list);
1343		ubi_free_aeb(ai, aeb);
1344	}
1345	list_for_each_entry_safe(aeb, aeb_tmp, &ai->fastmap, u.list) {
1346		list_del(&aeb->u.list);
1347		ubi_free_aeb(ai, aeb);
1348	}
1349
1350	/* Destroy the volume RB-tree */
1351	rb = ai->volumes.rb_node;
1352	while (rb) {
1353		if (rb->rb_left)
1354			rb = rb->rb_left;
1355		else if (rb->rb_right)
1356			rb = rb->rb_right;
1357		else {
1358			av = rb_entry(rb, struct ubi_ainf_volume, rb);
1359
1360			rb = rb_parent(rb);
1361			if (rb) {
1362				if (rb->rb_left == &av->rb)
1363					rb->rb_left = NULL;
1364				else
1365					rb->rb_right = NULL;
1366			}
1367
1368			destroy_av(ai, av, NULL);
1369		}
1370	}
1371
1372	kmem_cache_destroy(ai->aeb_slab_cache);
1373	kfree(ai);
1374}
1375
1376/**
1377 * scan_all - scan entire MTD device.
1378 * @ubi: UBI device description object
1379 * @ai: attach info object
1380 * @start: start scanning at this PEB
1381 *
1382 * This function does full scanning of an MTD device and returns complete
1383 * information about it in form of a "struct ubi_attach_info" object. In case
1384 * of failure, an error code is returned.
1385 */
1386static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1387		    int start)
1388{
1389	int err, pnum;
1390	struct rb_node *rb1, *rb2;
1391	struct ubi_ainf_volume *av;
1392	struct ubi_ainf_peb *aeb;
1393
1394	err = -ENOMEM;
1395
1396	ai->ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1397	if (!ai->ech)
1398		return err;
1399
1400	ai->vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL);
1401	if (!ai->vidb)
1402		goto out_ech;
1403
1404	for (pnum = start; pnum < ubi->peb_count; pnum++) {
1405		cond_resched();
1406
1407		dbg_gen("process PEB %d", pnum);
1408		err = scan_peb(ubi, ai, pnum, false);
1409		if (err < 0)
1410			goto out_vidh;
1411	}
1412
1413	ubi_msg(ubi, "scanning is finished");
1414
1415	/* Calculate mean erase counter */
1416	if (ai->ec_count)
1417		ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1418
1419	err = late_analysis(ubi, ai);
1420	if (err)
1421		goto out_vidh;
1422
1423	/*
1424	 * In case of unknown erase counter we use the mean erase counter
1425	 * value.
1426	 */
1427	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1428		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1429			if (aeb->ec == UBI_UNKNOWN)
1430				aeb->ec = ai->mean_ec;
1431	}
1432
1433	list_for_each_entry(aeb, &ai->free, u.list) {
1434		if (aeb->ec == UBI_UNKNOWN)
1435			aeb->ec = ai->mean_ec;
1436	}
1437
1438	list_for_each_entry(aeb, &ai->corr, u.list)
1439		if (aeb->ec == UBI_UNKNOWN)
1440			aeb->ec = ai->mean_ec;
1441
1442	list_for_each_entry(aeb, &ai->erase, u.list)
1443		if (aeb->ec == UBI_UNKNOWN)
1444			aeb->ec = ai->mean_ec;
1445
1446	err = self_check_ai(ubi, ai);
1447	if (err)
1448		goto out_vidh;
1449
1450	ubi_free_vid_buf(ai->vidb);
1451	kfree(ai->ech);
1452
1453	return 0;
1454
1455out_vidh:
1456	ubi_free_vid_buf(ai->vidb);
1457out_ech:
1458	kfree(ai->ech);
1459	return err;
1460}
1461
1462static struct ubi_attach_info *alloc_ai(void)
1463{
1464	struct ubi_attach_info *ai;
1465
1466	ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1467	if (!ai)
1468		return ai;
1469
1470	INIT_LIST_HEAD(&ai->corr);
1471	INIT_LIST_HEAD(&ai->free);
1472	INIT_LIST_HEAD(&ai->erase);
1473	INIT_LIST_HEAD(&ai->alien);
1474	INIT_LIST_HEAD(&ai->fastmap);
1475	ai->volumes = RB_ROOT;
1476	ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1477					       sizeof(struct ubi_ainf_peb),
1478					       0, 0, NULL);
1479	if (!ai->aeb_slab_cache) {
1480		kfree(ai);
1481		ai = NULL;
1482	}
1483
1484	return ai;
1485}
1486
1487#ifdef CONFIG_MTD_UBI_FASTMAP
1488
1489/**
1490 * scan_fast - try to find a fastmap and attach from it.
1491 * @ubi: UBI device description object
1492 * @ai: attach info object
1493 *
1494 * Returns 0 on success, negative return values indicate an internal
1495 * error.
1496 * UBI_NO_FASTMAP denotes that no fastmap was found.
1497 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1498 */
1499static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
1500{
1501	int err, pnum;
1502	struct ubi_attach_info *scan_ai;
1503
1504	err = -ENOMEM;
1505
1506	scan_ai = alloc_ai();
1507	if (!scan_ai)
1508		goto out;
1509
1510	scan_ai->ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1511	if (!scan_ai->ech)
1512		goto out_ai;
1513
1514	scan_ai->vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL);
1515	if (!scan_ai->vidb)
1516		goto out_ech;
1517
1518	for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1519		cond_resched();
1520
1521		dbg_gen("process PEB %d", pnum);
1522		err = scan_peb(ubi, scan_ai, pnum, true);
1523		if (err < 0)
1524			goto out_vidh;
1525	}
1526
1527	ubi_free_vid_buf(scan_ai->vidb);
1528	kfree(scan_ai->ech);
1529
1530	if (scan_ai->force_full_scan)
1531		err = UBI_NO_FASTMAP;
1532	else
1533		err = ubi_scan_fastmap(ubi, *ai, scan_ai);
1534
1535	if (err) {
1536		/*
1537		 * Didn't attach via fastmap, do a full scan but reuse what
1538		 * we've aready scanned.
1539		 */
1540		destroy_ai(*ai);
1541		*ai = scan_ai;
1542	} else
1543		destroy_ai(scan_ai);
1544
1545	return err;
1546
1547out_vidh:
1548	ubi_free_vid_buf(scan_ai->vidb);
1549out_ech:
1550	kfree(scan_ai->ech);
1551out_ai:
1552	destroy_ai(scan_ai);
1553out:
1554	return err;
1555}
1556
1557#endif
1558
1559/**
1560 * ubi_attach - attach an MTD device.
1561 * @ubi: UBI device descriptor
1562 * @force_scan: if set to non-zero attach by scanning
1563 *
1564 * This function returns zero in case of success and a negative error code in
1565 * case of failure.
1566 */
1567int ubi_attach(struct ubi_device *ubi, int force_scan)
1568{
1569	int err;
1570	struct ubi_attach_info *ai;
1571
1572	ai = alloc_ai();
1573	if (!ai)
1574		return -ENOMEM;
1575
1576#ifdef CONFIG_MTD_UBI_FASTMAP
1577	/* On small flash devices we disable fastmap in any case. */
1578	if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1579		ubi->fm_disabled = 1;
1580		force_scan = 1;
1581	}
1582
1583	if (force_scan)
1584		err = scan_all(ubi, ai, 0);
1585	else {
1586		err = scan_fast(ubi, &ai);
1587		if (err > 0 || mtd_is_eccerr(err)) {
1588			if (err != UBI_NO_FASTMAP) {
1589				destroy_ai(ai);
1590				ai = alloc_ai();
1591				if (!ai)
1592					return -ENOMEM;
1593
1594				err = scan_all(ubi, ai, 0);
1595			} else {
1596				err = scan_all(ubi, ai, UBI_FM_MAX_START);
1597			}
1598		}
1599	}
1600#else
1601	err = scan_all(ubi, ai, 0);
1602#endif
1603	if (err)
1604		goto out_ai;
1605
1606	ubi->bad_peb_count = ai->bad_peb_count;
1607	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1608	ubi->corr_peb_count = ai->corr_peb_count;
1609	ubi->max_ec = ai->max_ec;
1610	ubi->mean_ec = ai->mean_ec;
1611	dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1612
1613	err = ubi_read_volume_table(ubi, ai);
1614	if (err)
1615		goto out_ai;
1616
1617	err = ubi_wl_init(ubi, ai);
1618	if (err)
1619		goto out_vtbl;
1620
1621	err = ubi_eba_init(ubi, ai);
1622	if (err)
1623		goto out_wl;
1624
1625#ifdef CONFIG_MTD_UBI_FASTMAP
1626	if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
1627		struct ubi_attach_info *scan_ai;
1628
1629		scan_ai = alloc_ai();
1630		if (!scan_ai) {
1631			err = -ENOMEM;
1632			goto out_wl;
1633		}
1634
1635		err = scan_all(ubi, scan_ai, 0);
1636		if (err) {
1637			destroy_ai(scan_ai);
1638			goto out_wl;
1639		}
1640
1641		err = self_check_eba(ubi, ai, scan_ai);
1642		destroy_ai(scan_ai);
1643
1644		if (err)
1645			goto out_wl;
1646	}
1647#endif
1648
1649	destroy_ai(ai);
1650	return 0;
1651
1652out_wl:
1653	ubi_wl_close(ubi);
1654out_vtbl:
1655	ubi_free_internal_volumes(ubi);
1656	vfree(ubi->vtbl);
1657out_ai:
1658	destroy_ai(ai);
1659	return err;
1660}
1661
1662/**
1663 * self_check_ai - check the attaching information.
1664 * @ubi: UBI device description object
1665 * @ai: attaching information
1666 *
1667 * This function returns zero if the attaching information is all right, and a
1668 * negative error code if not or if an error occurred.
1669 */
1670static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1671{
1672	struct ubi_vid_io_buf *vidb = ai->vidb;
1673	struct ubi_vid_hdr *vidh = ubi_get_vid_hdr(vidb);
1674	int pnum, err, vols_found = 0;
1675	struct rb_node *rb1, *rb2;
1676	struct ubi_ainf_volume *av;
1677	struct ubi_ainf_peb *aeb, *last_aeb;
1678	uint8_t *buf;
1679
1680	if (!ubi_dbg_chk_gen(ubi))
1681		return 0;
1682
1683	/*
1684	 * At first, check that attaching information is OK.
1685	 */
1686	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1687		int leb_count = 0;
1688
1689		cond_resched();
1690
1691		vols_found += 1;
1692
1693		if (ai->is_empty) {
1694			ubi_err(ubi, "bad is_empty flag");
1695			goto bad_av;
1696		}
1697
1698		if (av->vol_id < 0 || av->highest_lnum < 0 ||
1699		    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1700		    av->data_pad < 0 || av->last_data_size < 0) {
1701			ubi_err(ubi, "negative values");
1702			goto bad_av;
1703		}
1704
1705		if (av->vol_id >= UBI_MAX_VOLUMES &&
1706		    av->vol_id < UBI_INTERNAL_VOL_START) {
1707			ubi_err(ubi, "bad vol_id");
1708			goto bad_av;
1709		}
1710
1711		if (av->vol_id > ai->highest_vol_id) {
1712			ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
1713				ai->highest_vol_id, av->vol_id);
1714			goto out;
1715		}
1716
1717		if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1718		    av->vol_type != UBI_STATIC_VOLUME) {
1719			ubi_err(ubi, "bad vol_type");
1720			goto bad_av;
1721		}
1722
1723		if (av->data_pad > ubi->leb_size / 2) {
1724			ubi_err(ubi, "bad data_pad");
1725			goto bad_av;
1726		}
1727
1728		last_aeb = NULL;
1729		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1730			cond_resched();
1731
1732			last_aeb = aeb;
1733			leb_count += 1;
1734
1735			if (aeb->pnum < 0 || aeb->ec < 0) {
1736				ubi_err(ubi, "negative values");
1737				goto bad_aeb;
1738			}
1739
1740			if (aeb->ec < ai->min_ec) {
1741				ubi_err(ubi, "bad ai->min_ec (%d), %d found",
1742					ai->min_ec, aeb->ec);
1743				goto bad_aeb;
1744			}
1745
1746			if (aeb->ec > ai->max_ec) {
1747				ubi_err(ubi, "bad ai->max_ec (%d), %d found",
1748					ai->max_ec, aeb->ec);
1749				goto bad_aeb;
1750			}
1751
1752			if (aeb->pnum >= ubi->peb_count) {
1753				ubi_err(ubi, "too high PEB number %d, total PEBs %d",
1754					aeb->pnum, ubi->peb_count);
1755				goto bad_aeb;
1756			}
1757
1758			if (av->vol_type == UBI_STATIC_VOLUME) {
1759				if (aeb->lnum >= av->used_ebs) {
1760					ubi_err(ubi, "bad lnum or used_ebs");
1761					goto bad_aeb;
1762				}
1763			} else {
1764				if (av->used_ebs != 0) {
1765					ubi_err(ubi, "non-zero used_ebs");
1766					goto bad_aeb;
1767				}
1768			}
1769
1770			if (aeb->lnum > av->highest_lnum) {
1771				ubi_err(ubi, "incorrect highest_lnum or lnum");
1772				goto bad_aeb;
1773			}
1774		}
1775
1776		if (av->leb_count != leb_count) {
1777			ubi_err(ubi, "bad leb_count, %d objects in the tree",
1778				leb_count);
1779			goto bad_av;
1780		}
1781
1782		if (!last_aeb)
1783			continue;
1784
1785		aeb = last_aeb;
1786
1787		if (aeb->lnum != av->highest_lnum) {
1788			ubi_err(ubi, "bad highest_lnum");
1789			goto bad_aeb;
1790		}
1791	}
1792
1793	if (vols_found != ai->vols_found) {
1794		ubi_err(ubi, "bad ai->vols_found %d, should be %d",
1795			ai->vols_found, vols_found);
1796		goto out;
1797	}
1798
1799	/* Check that attaching information is correct */
1800	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1801		last_aeb = NULL;
1802		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1803			int vol_type;
1804
1805			cond_resched();
1806
1807			last_aeb = aeb;
1808
1809			err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidb, 1);
1810			if (err && err != UBI_IO_BITFLIPS) {
1811				ubi_err(ubi, "VID header is not OK (%d)",
1812					err);
1813				if (err > 0)
1814					err = -EIO;
1815				return err;
1816			}
1817
1818			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1819				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1820			if (av->vol_type != vol_type) {
1821				ubi_err(ubi, "bad vol_type");
1822				goto bad_vid_hdr;
1823			}
1824
1825			if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1826				ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
1827				goto bad_vid_hdr;
1828			}
1829
1830			if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1831				ubi_err(ubi, "bad vol_id %d", av->vol_id);
1832				goto bad_vid_hdr;
1833			}
1834
1835			if (av->compat != vidh->compat) {
1836				ubi_err(ubi, "bad compat %d", vidh->compat);
1837				goto bad_vid_hdr;
1838			}
1839
1840			if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1841				ubi_err(ubi, "bad lnum %d", aeb->lnum);
1842				goto bad_vid_hdr;
1843			}
1844
1845			if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1846				ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
1847				goto bad_vid_hdr;
1848			}
1849
1850			if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1851				ubi_err(ubi, "bad data_pad %d", av->data_pad);
1852				goto bad_vid_hdr;
1853			}
1854		}
1855
1856		if (!last_aeb)
1857			continue;
1858
1859		if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1860			ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
1861			goto bad_vid_hdr;
1862		}
1863
1864		if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1865			ubi_err(ubi, "bad last_data_size %d",
1866				av->last_data_size);
1867			goto bad_vid_hdr;
1868		}
1869	}
1870
1871	/*
1872	 * Make sure that all the physical eraseblocks are in one of the lists
1873	 * or trees.
1874	 */
1875	buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1876	if (!buf)
1877		return -ENOMEM;
1878
1879	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1880		err = ubi_io_is_bad(ubi, pnum);
1881		if (err < 0) {
1882			kfree(buf);
1883			return err;
1884		} else if (err)
1885			buf[pnum] = 1;
1886	}
1887
1888	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1889		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1890			buf[aeb->pnum] = 1;
1891
1892	list_for_each_entry(aeb, &ai->free, u.list)
1893		buf[aeb->pnum] = 1;
1894
1895	list_for_each_entry(aeb, &ai->corr, u.list)
1896		buf[aeb->pnum] = 1;
1897
1898	list_for_each_entry(aeb, &ai->erase, u.list)
1899		buf[aeb->pnum] = 1;
1900
1901	list_for_each_entry(aeb, &ai->alien, u.list)
1902		buf[aeb->pnum] = 1;
1903
1904	err = 0;
1905	for (pnum = 0; pnum < ubi->peb_count; pnum++)
1906		if (!buf[pnum]) {
1907			ubi_err(ubi, "PEB %d is not referred", pnum);
1908			err = 1;
1909		}
1910
1911	kfree(buf);
1912	if (err)
1913		goto out;
1914	return 0;
1915
1916bad_aeb:
1917	ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
1918	ubi_dump_aeb(aeb, 0);
1919	ubi_dump_av(av);
1920	goto out;
1921
1922bad_av:
1923	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1924	ubi_dump_av(av);
1925	goto out;
1926
1927bad_vid_hdr:
1928	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1929	ubi_dump_av(av);
1930	ubi_dump_vid_hdr(vidh);
1931
1932out:
1933	dump_stack();
1934	return -EINVAL;
1935}