Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12 * the GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 *
  18 * Author: Artem Bityutskiy (Битюцкий Артём)
  19 */
  20
  21/*
  22 * UBI attaching sub-system.
  23 *
  24 * This sub-system is responsible for attaching MTD devices and it also
  25 * implements flash media scanning.
  26 *
  27 * The attaching information is represented by a &struct ubi_attach_info'
  28 * object. Information about volumes is represented by &struct ubi_ainf_volume
  29 * objects which are kept in volume RB-tree with root at the @volumes field.
  30 * The RB-tree is indexed by the volume ID.
  31 *
  32 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
  33 * objects are kept in per-volume RB-trees with the root at the corresponding
  34 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
  35 * per-volume objects and each of these objects is the root of RB-tree of
  36 * per-LEB objects.
  37 *
  38 * Corrupted physical eraseblocks are put to the @corr list, free physical
  39 * eraseblocks are put to the @free list and the physical eraseblock to be
  40 * erased are put to the @erase list.
  41 *
  42 * About corruptions
  43 * ~~~~~~~~~~~~~~~~~
  44 *
  45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
  46 * whether the headers are corrupted or not. Sometimes UBI also protects the
  47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
  48 * when it moves the contents of a PEB for wear-leveling purposes.
  49 *
  50 * UBI tries to distinguish between 2 types of corruptions.
  51 *
  52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
  53 * tries to handle them gracefully, without printing too many warnings and
  54 * error messages. The idea is that we do not lose important data in these
  55 * cases - we may lose only the data which were being written to the media just
  56 * before the power cut happened, and the upper layers (e.g., UBIFS) are
  57 * supposed to handle such data losses (e.g., by using the FS journal).
  58 *
  59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
  60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
  61 * PEBs in the @erase list are scheduled for erasure later.
  62 *
  63 * 2. Unexpected corruptions which are not caused by power cuts. During
  64 * attaching, such PEBs are put to the @corr list and UBI preserves them.
  65 * Obviously, this lessens the amount of available PEBs, and if at some  point
  66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
  67 * about such PEBs every time the MTD device is attached.
  68 *
  69 * However, it is difficult to reliably distinguish between these types of
  70 * corruptions and UBI's strategy is as follows (in case of attaching by
  71 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
  72 * the data area does not contain all 0xFFs, and there were no bit-flips or
  73 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
  74 * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
  75 * are as follows.
  76 *   o If the data area contains only 0xFFs, there are no data, and it is safe
  77 *     to just erase this PEB - this is corruption type 1.
  78 *   o If the data area has bit-flips or data integrity errors (ECC errors on
  79 *     NAND), it is probably a PEB which was being erased when power cut
  80 *     happened, so this is corruption type 1. However, this is just a guess,
  81 *     which might be wrong.
  82 *   o Otherwise this is corruption type 2.
  83 */
  84
  85#include <linux/err.h>
  86#include <linux/slab.h>
  87#include <linux/crc32.h>
  88#include <linux/math64.h>
  89#include <linux/random.h>
  90#include "ubi.h"
  91
  92static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
  93
  94/* Temporary variables used during scanning */
  95static struct ubi_ec_hdr *ech;
  96static struct ubi_vid_hdr *vidh;
  97
  98/**
  99 * add_to_list - add physical eraseblock to a list.
 100 * @ai: attaching information
 101 * @pnum: physical eraseblock number to add
 102 * @vol_id: the last used volume id for the PEB
 103 * @lnum: the last used LEB number for the PEB
 104 * @ec: erase counter of the physical eraseblock
 105 * @to_head: if not zero, add to the head of the list
 106 * @list: the list to add to
 107 *
 108 * This function allocates a 'struct ubi_ainf_peb' object for physical
 109 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
 110 * It stores the @lnum and @vol_id alongside, which can both be
 111 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
 112 * If @to_head is not zero, PEB will be added to the head of the list, which
 113 * basically means it will be processed first later. E.g., we add corrupted
 114 * PEBs (corrupted due to power cuts) to the head of the erase list to make
 115 * sure we erase them first and get rid of corruptions ASAP. This function
 116 * returns zero in case of success and a negative error code in case of
 117 * failure.
 118 */
 119static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
 120		       int lnum, int ec, int to_head, struct list_head *list)
 121{
 122	struct ubi_ainf_peb *aeb;
 123
 124	if (list == &ai->free) {
 125		dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
 126	} else if (list == &ai->erase) {
 127		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
 128	} else if (list == &ai->alien) {
 129		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
 130		ai->alien_peb_count += 1;
 131	} else
 132		BUG();
 133
 134	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 135	if (!aeb)
 136		return -ENOMEM;
 137
 138	aeb->pnum = pnum;
 139	aeb->vol_id = vol_id;
 140	aeb->lnum = lnum;
 141	aeb->ec = ec;
 142	if (to_head)
 143		list_add(&aeb->u.list, list);
 144	else
 145		list_add_tail(&aeb->u.list, list);
 146	return 0;
 147}
 148
 149/**
 150 * add_corrupted - add a corrupted physical eraseblock.
 151 * @ai: attaching information
 152 * @pnum: physical eraseblock number to add
 153 * @ec: erase counter of the physical eraseblock
 154 *
 155 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
 156 * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
 157 * was presumably not caused by a power cut. Returns zero in case of success
 158 * and a negative error code in case of failure.
 159 */
 160static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
 161{
 162	struct ubi_ainf_peb *aeb;
 163
 164	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
 165
 166	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 167	if (!aeb)
 168		return -ENOMEM;
 169
 170	ai->corr_peb_count += 1;
 171	aeb->pnum = pnum;
 172	aeb->ec = ec;
 173	list_add(&aeb->u.list, &ai->corr);
 174	return 0;
 175}
 176
 177/**
 178 * validate_vid_hdr - check volume identifier header.
 179 * @ubi: UBI device description object
 180 * @vid_hdr: the volume identifier header to check
 181 * @av: information about the volume this logical eraseblock belongs to
 182 * @pnum: physical eraseblock number the VID header came from
 183 *
 184 * This function checks that data stored in @vid_hdr is consistent. Returns
 185 * non-zero if an inconsistency was found and zero if not.
 186 *
 187 * Note, UBI does sanity check of everything it reads from the flash media.
 188 * Most of the checks are done in the I/O sub-system. Here we check that the
 189 * information in the VID header is consistent to the information in other VID
 190 * headers of the same volume.
 191 */
 192static int validate_vid_hdr(const struct ubi_device *ubi,
 193			    const struct ubi_vid_hdr *vid_hdr,
 194			    const struct ubi_ainf_volume *av, int pnum)
 195{
 196	int vol_type = vid_hdr->vol_type;
 197	int vol_id = be32_to_cpu(vid_hdr->vol_id);
 198	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 199	int data_pad = be32_to_cpu(vid_hdr->data_pad);
 200
 201	if (av->leb_count != 0) {
 202		int av_vol_type;
 203
 204		/*
 205		 * This is not the first logical eraseblock belonging to this
 206		 * volume. Ensure that the data in its VID header is consistent
 207		 * to the data in previous logical eraseblock headers.
 208		 */
 209
 210		if (vol_id != av->vol_id) {
 211			ubi_err(ubi, "inconsistent vol_id");
 212			goto bad;
 213		}
 214
 215		if (av->vol_type == UBI_STATIC_VOLUME)
 216			av_vol_type = UBI_VID_STATIC;
 217		else
 218			av_vol_type = UBI_VID_DYNAMIC;
 219
 220		if (vol_type != av_vol_type) {
 221			ubi_err(ubi, "inconsistent vol_type");
 222			goto bad;
 223		}
 224
 225		if (used_ebs != av->used_ebs) {
 226			ubi_err(ubi, "inconsistent used_ebs");
 227			goto bad;
 228		}
 229
 230		if (data_pad != av->data_pad) {
 231			ubi_err(ubi, "inconsistent data_pad");
 232			goto bad;
 233		}
 234	}
 235
 236	return 0;
 237
 238bad:
 239	ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
 240	ubi_dump_vid_hdr(vid_hdr);
 241	ubi_dump_av(av);
 242	return -EINVAL;
 243}
 244
 245/**
 246 * add_volume - add volume to the attaching information.
 247 * @ai: attaching information
 248 * @vol_id: ID of the volume to add
 249 * @pnum: physical eraseblock number
 250 * @vid_hdr: volume identifier header
 251 *
 252 * If the volume corresponding to the @vid_hdr logical eraseblock is already
 253 * present in the attaching information, this function does nothing. Otherwise
 254 * it adds corresponding volume to the attaching information. Returns a pointer
 255 * to the allocated "av" object in case of success and a negative error code in
 256 * case of failure.
 257 */
 258static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
 259					  int vol_id, int pnum,
 260					  const struct ubi_vid_hdr *vid_hdr)
 261{
 262	struct ubi_ainf_volume *av;
 263	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
 264
 265	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
 266
 267	/* Walk the volume RB-tree to look if this volume is already present */
 268	while (*p) {
 269		parent = *p;
 270		av = rb_entry(parent, struct ubi_ainf_volume, rb);
 271
 272		if (vol_id == av->vol_id)
 273			return av;
 274
 275		if (vol_id > av->vol_id)
 276			p = &(*p)->rb_left;
 277		else
 278			p = &(*p)->rb_right;
 279	}
 280
 281	/* The volume is absent - add it */
 282	av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
 283	if (!av)
 284		return ERR_PTR(-ENOMEM);
 285
 286	av->highest_lnum = av->leb_count = 0;
 287	av->vol_id = vol_id;
 288	av->root = RB_ROOT;
 289	av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 290	av->data_pad = be32_to_cpu(vid_hdr->data_pad);
 291	av->compat = vid_hdr->compat;
 292	av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
 293							    : UBI_STATIC_VOLUME;
 294	if (vol_id > ai->highest_vol_id)
 295		ai->highest_vol_id = vol_id;
 296
 297	rb_link_node(&av->rb, parent, p);
 298	rb_insert_color(&av->rb, &ai->volumes);
 299	ai->vols_found += 1;
 300	dbg_bld("added volume %d", vol_id);
 301	return av;
 302}
 303
 304/**
 305 * ubi_compare_lebs - find out which logical eraseblock is newer.
 306 * @ubi: UBI device description object
 307 * @aeb: first logical eraseblock to compare
 308 * @pnum: physical eraseblock number of the second logical eraseblock to
 309 * compare
 310 * @vid_hdr: volume identifier header of the second logical eraseblock
 311 *
 312 * This function compares 2 copies of a LEB and informs which one is newer. In
 313 * case of success this function returns a positive value, in case of failure, a
 314 * negative error code is returned. The success return codes use the following
 315 * bits:
 316 *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
 317 *       second PEB (described by @pnum and @vid_hdr);
 318 *     o bit 0 is set: the second PEB is newer;
 319 *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
 320 *     o bit 1 is set: bit-flips were detected in the newer LEB;
 321 *     o bit 2 is cleared: the older LEB is not corrupted;
 322 *     o bit 2 is set: the older LEB is corrupted.
 323 */
 324int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
 325			int pnum, const struct ubi_vid_hdr *vid_hdr)
 326{
 327	int len, err, second_is_newer, bitflips = 0, corrupted = 0;
 328	uint32_t data_crc, crc;
 329	struct ubi_vid_hdr *vh = NULL;
 330	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
 331
 332	if (sqnum2 == aeb->sqnum) {
 333		/*
 334		 * This must be a really ancient UBI image which has been
 335		 * created before sequence numbers support has been added. At
 336		 * that times we used 32-bit LEB versions stored in logical
 337		 * eraseblocks. That was before UBI got into mainline. We do not
 338		 * support these images anymore. Well, those images still work,
 339		 * but only if no unclean reboots happened.
 340		 */
 341		ubi_err(ubi, "unsupported on-flash UBI format");
 342		return -EINVAL;
 343	}
 344
 345	/* Obviously the LEB with lower sequence counter is older */
 346	second_is_newer = (sqnum2 > aeb->sqnum);
 347
 348	/*
 349	 * Now we know which copy is newer. If the copy flag of the PEB with
 350	 * newer version is not set, then we just return, otherwise we have to
 351	 * check data CRC. For the second PEB we already have the VID header,
 352	 * for the first one - we'll need to re-read it from flash.
 353	 *
 354	 * Note: this may be optimized so that we wouldn't read twice.
 355	 */
 356
 357	if (second_is_newer) {
 358		if (!vid_hdr->copy_flag) {
 359			/* It is not a copy, so it is newer */
 360			dbg_bld("second PEB %d is newer, copy_flag is unset",
 361				pnum);
 362			return 1;
 363		}
 364	} else {
 365		if (!aeb->copy_flag) {
 366			/* It is not a copy, so it is newer */
 367			dbg_bld("first PEB %d is newer, copy_flag is unset",
 368				pnum);
 369			return bitflips << 1;
 370		}
 371
 372		vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 373		if (!vh)
 374			return -ENOMEM;
 375
 376		pnum = aeb->pnum;
 377		err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
 378		if (err) {
 379			if (err == UBI_IO_BITFLIPS)
 380				bitflips = 1;
 381			else {
 382				ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
 383					pnum, err);
 384				if (err > 0)
 385					err = -EIO;
 386
 387				goto out_free_vidh;
 388			}
 389		}
 390
 391		vid_hdr = vh;
 392	}
 393
 394	/* Read the data of the copy and check the CRC */
 395
 396	len = be32_to_cpu(vid_hdr->data_size);
 397
 398	mutex_lock(&ubi->buf_mutex);
 399	err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
 400	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
 401		goto out_unlock;
 402
 403	data_crc = be32_to_cpu(vid_hdr->data_crc);
 404	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
 405	if (crc != data_crc) {
 406		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
 407			pnum, crc, data_crc);
 408		corrupted = 1;
 409		bitflips = 0;
 410		second_is_newer = !second_is_newer;
 411	} else {
 412		dbg_bld("PEB %d CRC is OK", pnum);
 413		bitflips |= !!err;
 414	}
 415	mutex_unlock(&ubi->buf_mutex);
 416
 417	ubi_free_vid_hdr(ubi, vh);
 418
 419	if (second_is_newer)
 420		dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
 421	else
 422		dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
 423
 424	return second_is_newer | (bitflips << 1) | (corrupted << 2);
 425
 426out_unlock:
 427	mutex_unlock(&ubi->buf_mutex);
 428out_free_vidh:
 429	ubi_free_vid_hdr(ubi, vh);
 430	return err;
 431}
 432
 433/**
 434 * ubi_add_to_av - add used physical eraseblock to the attaching information.
 435 * @ubi: UBI device description object
 436 * @ai: attaching information
 437 * @pnum: the physical eraseblock number
 438 * @ec: erase counter
 439 * @vid_hdr: the volume identifier header
 440 * @bitflips: if bit-flips were detected when this physical eraseblock was read
 441 *
 442 * This function adds information about a used physical eraseblock to the
 443 * 'used' tree of the corresponding volume. The function is rather complex
 444 * because it has to handle cases when this is not the first physical
 445 * eraseblock belonging to the same logical eraseblock, and the newer one has
 446 * to be picked, while the older one has to be dropped. This function returns
 447 * zero in case of success and a negative error code in case of failure.
 448 */
 449int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
 450		  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
 451{
 452	int err, vol_id, lnum;
 453	unsigned long long sqnum;
 454	struct ubi_ainf_volume *av;
 455	struct ubi_ainf_peb *aeb;
 456	struct rb_node **p, *parent = NULL;
 457
 458	vol_id = be32_to_cpu(vid_hdr->vol_id);
 459	lnum = be32_to_cpu(vid_hdr->lnum);
 460	sqnum = be64_to_cpu(vid_hdr->sqnum);
 461
 462	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
 463		pnum, vol_id, lnum, ec, sqnum, bitflips);
 464
 465	av = add_volume(ai, vol_id, pnum, vid_hdr);
 466	if (IS_ERR(av))
 467		return PTR_ERR(av);
 468
 469	if (ai->max_sqnum < sqnum)
 470		ai->max_sqnum = sqnum;
 471
 472	/*
 473	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
 474	 * if this is the first instance of this logical eraseblock or not.
 475	 */
 476	p = &av->root.rb_node;
 477	while (*p) {
 478		int cmp_res;
 479
 480		parent = *p;
 481		aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
 482		if (lnum != aeb->lnum) {
 483			if (lnum < aeb->lnum)
 484				p = &(*p)->rb_left;
 485			else
 486				p = &(*p)->rb_right;
 487			continue;
 488		}
 489
 490		/*
 491		 * There is already a physical eraseblock describing the same
 492		 * logical eraseblock present.
 493		 */
 494
 495		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
 496			aeb->pnum, aeb->sqnum, aeb->ec);
 497
 498		/*
 499		 * Make sure that the logical eraseblocks have different
 500		 * sequence numbers. Otherwise the image is bad.
 501		 *
 502		 * However, if the sequence number is zero, we assume it must
 503		 * be an ancient UBI image from the era when UBI did not have
 504		 * sequence numbers. We still can attach these images, unless
 505		 * there is a need to distinguish between old and new
 506		 * eraseblocks, in which case we'll refuse the image in
 507		 * 'ubi_compare_lebs()'. In other words, we attach old clean
 508		 * images, but refuse attaching old images with duplicated
 509		 * logical eraseblocks because there was an unclean reboot.
 510		 */
 511		if (aeb->sqnum == sqnum && sqnum != 0) {
 512			ubi_err(ubi, "two LEBs with same sequence number %llu",
 513				sqnum);
 514			ubi_dump_aeb(aeb, 0);
 515			ubi_dump_vid_hdr(vid_hdr);
 516			return -EINVAL;
 517		}
 518
 519		/*
 520		 * Now we have to drop the older one and preserve the newer
 521		 * one.
 522		 */
 523		cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
 524		if (cmp_res < 0)
 525			return cmp_res;
 526
 527		if (cmp_res & 1) {
 528			/*
 529			 * This logical eraseblock is newer than the one
 530			 * found earlier.
 531			 */
 532			err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
 533			if (err)
 534				return err;
 535
 536			err = add_to_list(ai, aeb->pnum, aeb->vol_id,
 537					  aeb->lnum, aeb->ec, cmp_res & 4,
 538					  &ai->erase);
 539			if (err)
 540				return err;
 541
 542			aeb->ec = ec;
 543			aeb->pnum = pnum;
 544			aeb->vol_id = vol_id;
 545			aeb->lnum = lnum;
 546			aeb->scrub = ((cmp_res & 2) || bitflips);
 547			aeb->copy_flag = vid_hdr->copy_flag;
 548			aeb->sqnum = sqnum;
 549
 550			if (av->highest_lnum == lnum)
 551				av->last_data_size =
 552					be32_to_cpu(vid_hdr->data_size);
 553
 554			return 0;
 555		} else {
 556			/*
 557			 * This logical eraseblock is older than the one found
 558			 * previously.
 559			 */
 560			return add_to_list(ai, pnum, vol_id, lnum, ec,
 561					   cmp_res & 4, &ai->erase);
 562		}
 563	}
 564
 565	/*
 566	 * We've met this logical eraseblock for the first time, add it to the
 567	 * attaching information.
 568	 */
 569
 570	err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
 571	if (err)
 572		return err;
 573
 574	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 575	if (!aeb)
 576		return -ENOMEM;
 577
 578	aeb->ec = ec;
 579	aeb->pnum = pnum;
 580	aeb->vol_id = vol_id;
 581	aeb->lnum = lnum;
 582	aeb->scrub = bitflips;
 583	aeb->copy_flag = vid_hdr->copy_flag;
 584	aeb->sqnum = sqnum;
 585
 586	if (av->highest_lnum <= lnum) {
 587		av->highest_lnum = lnum;
 588		av->last_data_size = be32_to_cpu(vid_hdr->data_size);
 589	}
 590
 591	av->leb_count += 1;
 592	rb_link_node(&aeb->u.rb, parent, p);
 593	rb_insert_color(&aeb->u.rb, &av->root);
 594	return 0;
 595}
 596
 597/**
 598 * ubi_find_av - find volume in the attaching information.
 599 * @ai: attaching information
 600 * @vol_id: the requested volume ID
 601 *
 602 * This function returns a pointer to the volume description or %NULL if there
 603 * are no data about this volume in the attaching information.
 604 */
 605struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
 606				    int vol_id)
 607{
 608	struct ubi_ainf_volume *av;
 609	struct rb_node *p = ai->volumes.rb_node;
 610
 611	while (p) {
 612		av = rb_entry(p, struct ubi_ainf_volume, rb);
 613
 614		if (vol_id == av->vol_id)
 615			return av;
 616
 617		if (vol_id > av->vol_id)
 618			p = p->rb_left;
 619		else
 620			p = p->rb_right;
 621	}
 622
 623	return NULL;
 624}
 625
 626/**
 627 * ubi_remove_av - delete attaching information about a volume.
 628 * @ai: attaching information
 629 * @av: the volume attaching information to delete
 630 */
 631void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
 632{
 633	struct rb_node *rb;
 634	struct ubi_ainf_peb *aeb;
 635
 636	dbg_bld("remove attaching information about volume %d", av->vol_id);
 637
 638	while ((rb = rb_first(&av->root))) {
 639		aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
 640		rb_erase(&aeb->u.rb, &av->root);
 641		list_add_tail(&aeb->u.list, &ai->erase);
 642	}
 643
 644	rb_erase(&av->rb, &ai->volumes);
 645	kfree(av);
 646	ai->vols_found -= 1;
 647}
 648
 649/**
 650 * early_erase_peb - erase a physical eraseblock.
 651 * @ubi: UBI device description object
 652 * @ai: attaching information
 653 * @pnum: physical eraseblock number to erase;
 654 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
 655 *
 656 * This function erases physical eraseblock 'pnum', and writes the erase
 657 * counter header to it. This function should only be used on UBI device
 658 * initialization stages, when the EBA sub-system had not been yet initialized.
 659 * This function returns zero in case of success and a negative error code in
 660 * case of failure.
 661 */
 662static int early_erase_peb(struct ubi_device *ubi,
 663			   const struct ubi_attach_info *ai, int pnum, int ec)
 664{
 665	int err;
 666	struct ubi_ec_hdr *ec_hdr;
 667
 668	if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
 669		/*
 670		 * Erase counter overflow. Upgrade UBI and use 64-bit
 671		 * erase counters internally.
 672		 */
 673		ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
 674			pnum, ec);
 675		return -EINVAL;
 676	}
 677
 678	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 679	if (!ec_hdr)
 680		return -ENOMEM;
 681
 682	ec_hdr->ec = cpu_to_be64(ec);
 683
 684	err = ubi_io_sync_erase(ubi, pnum, 0);
 685	if (err < 0)
 686		goto out_free;
 687
 688	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
 689
 690out_free:
 691	kfree(ec_hdr);
 692	return err;
 693}
 694
 695/**
 696 * ubi_early_get_peb - get a free physical eraseblock.
 697 * @ubi: UBI device description object
 698 * @ai: attaching information
 699 *
 700 * This function returns a free physical eraseblock. It is supposed to be
 701 * called on the UBI initialization stages when the wear-leveling sub-system is
 702 * not initialized yet. This function picks a physical eraseblocks from one of
 703 * the lists, writes the EC header if it is needed, and removes it from the
 704 * list.
 705 *
 706 * This function returns a pointer to the "aeb" of the found free PEB in case
 707 * of success and an error code in case of failure.
 708 */
 709struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
 710				       struct ubi_attach_info *ai)
 711{
 712	int err = 0;
 713	struct ubi_ainf_peb *aeb, *tmp_aeb;
 714
 715	if (!list_empty(&ai->free)) {
 716		aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
 717		list_del(&aeb->u.list);
 718		dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
 719		return aeb;
 720	}
 721
 722	/*
 723	 * We try to erase the first physical eraseblock from the erase list
 724	 * and pick it if we succeed, or try to erase the next one if not. And
 725	 * so forth. We don't want to take care about bad eraseblocks here -
 726	 * they'll be handled later.
 727	 */
 728	list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
 729		if (aeb->ec == UBI_UNKNOWN)
 730			aeb->ec = ai->mean_ec;
 731
 732		err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
 733		if (err)
 734			continue;
 735
 736		aeb->ec += 1;
 737		list_del(&aeb->u.list);
 738		dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
 739		return aeb;
 740	}
 741
 742	ubi_err(ubi, "no free eraseblocks");
 743	return ERR_PTR(-ENOSPC);
 744}
 745
 746/**
 747 * check_corruption - check the data area of PEB.
 748 * @ubi: UBI device description object
 749 * @vid_hdr: the (corrupted) VID header of this PEB
 750 * @pnum: the physical eraseblock number to check
 751 *
 752 * This is a helper function which is used to distinguish between VID header
 753 * corruptions caused by power cuts and other reasons. If the PEB contains only
 754 * 0xFF bytes in the data area, the VID header is most probably corrupted
 755 * because of a power cut (%0 is returned in this case). Otherwise, it was
 756 * probably corrupted for some other reasons (%1 is returned in this case). A
 757 * negative error code is returned if a read error occurred.
 758 *
 759 * If the corruption reason was a power cut, UBI can safely erase this PEB.
 760 * Otherwise, it should preserve it to avoid possibly destroying important
 761 * information.
 762 */
 763static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
 764			    int pnum)
 765{
 766	int err;
 767
 768	mutex_lock(&ubi->buf_mutex);
 769	memset(ubi->peb_buf, 0x00, ubi->leb_size);
 770
 771	err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
 772			  ubi->leb_size);
 773	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
 774		/*
 775		 * Bit-flips or integrity errors while reading the data area.
 776		 * It is difficult to say for sure what type of corruption is
 777		 * this, but presumably a power cut happened while this PEB was
 778		 * erased, so it became unstable and corrupted, and should be
 779		 * erased.
 780		 */
 781		err = 0;
 782		goto out_unlock;
 783	}
 784
 785	if (err)
 786		goto out_unlock;
 787
 788	if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
 789		goto out_unlock;
 790
 791	ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
 792		pnum);
 793	ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
 794	ubi_dump_vid_hdr(vid_hdr);
 795	pr_err("hexdump of PEB %d offset %d, length %d",
 796	       pnum, ubi->leb_start, ubi->leb_size);
 797	ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
 798			       ubi->peb_buf, ubi->leb_size, 1);
 799	err = 1;
 800
 801out_unlock:
 802	mutex_unlock(&ubi->buf_mutex);
 803	return err;
 804}
 805
 806/**
 807 * scan_peb - scan and process UBI headers of a PEB.
 808 * @ubi: UBI device description object
 809 * @ai: attaching information
 810 * @pnum: the physical eraseblock number
 811 * @vid: The volume ID of the found volume will be stored in this pointer
 812 * @sqnum: The sqnum of the found volume will be stored in this pointer
 813 *
 814 * This function reads UBI headers of PEB @pnum, checks them, and adds
 815 * information about this PEB to the corresponding list or RB-tree in the
 816 * "attaching info" structure. Returns zero if the physical eraseblock was
 817 * successfully handled and a negative error code in case of failure.
 818 */
 819static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
 820		    int pnum, int *vid, unsigned long long *sqnum)
 821{
 822	long long uninitialized_var(ec);
 823	int err, bitflips = 0, vol_id = -1, ec_err = 0;
 824
 825	dbg_bld("scan PEB %d", pnum);
 826
 827	/* Skip bad physical eraseblocks */
 828	err = ubi_io_is_bad(ubi, pnum);
 829	if (err < 0)
 830		return err;
 831	else if (err) {
 832		ai->bad_peb_count += 1;
 833		return 0;
 834	}
 835
 836	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
 837	if (err < 0)
 838		return err;
 839	switch (err) {
 840	case 0:
 841		break;
 842	case UBI_IO_BITFLIPS:
 843		bitflips = 1;
 844		break;
 845	case UBI_IO_FF:
 846		ai->empty_peb_count += 1;
 847		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 848				   UBI_UNKNOWN, 0, &ai->erase);
 849	case UBI_IO_FF_BITFLIPS:
 850		ai->empty_peb_count += 1;
 851		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 852				   UBI_UNKNOWN, 1, &ai->erase);
 853	case UBI_IO_BAD_HDR_EBADMSG:
 854	case UBI_IO_BAD_HDR:
 855		/*
 856		 * We have to also look at the VID header, possibly it is not
 857		 * corrupted. Set %bitflips flag in order to make this PEB be
 858		 * moved and EC be re-created.
 859		 */
 860		ec_err = err;
 861		ec = UBI_UNKNOWN;
 862		bitflips = 1;
 863		break;
 864	default:
 865		ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
 866			err);
 867		return -EINVAL;
 868	}
 869
 870	if (!ec_err) {
 871		int image_seq;
 872
 873		/* Make sure UBI version is OK */
 874		if (ech->version != UBI_VERSION) {
 875			ubi_err(ubi, "this UBI version is %d, image version is %d",
 876				UBI_VERSION, (int)ech->version);
 877			return -EINVAL;
 878		}
 879
 880		ec = be64_to_cpu(ech->ec);
 881		if (ec > UBI_MAX_ERASECOUNTER) {
 882			/*
 883			 * Erase counter overflow. The EC headers have 64 bits
 884			 * reserved, but we anyway make use of only 31 bit
 885			 * values, as this seems to be enough for any existing
 886			 * flash. Upgrade UBI and use 64-bit erase counters
 887			 * internally.
 888			 */
 889			ubi_err(ubi, "erase counter overflow, max is %d",
 890				UBI_MAX_ERASECOUNTER);
 891			ubi_dump_ec_hdr(ech);
 892			return -EINVAL;
 893		}
 894
 895		/*
 896		 * Make sure that all PEBs have the same image sequence number.
 897		 * This allows us to detect situations when users flash UBI
 898		 * images incorrectly, so that the flash has the new UBI image
 899		 * and leftovers from the old one. This feature was added
 900		 * relatively recently, and the sequence number was always
 901		 * zero, because old UBI implementations always set it to zero.
 902		 * For this reasons, we do not panic if some PEBs have zero
 903		 * sequence number, while other PEBs have non-zero sequence
 904		 * number.
 905		 */
 906		image_seq = be32_to_cpu(ech->image_seq);
 907		if (!ubi->image_seq)
 908			ubi->image_seq = image_seq;
 909		if (image_seq && ubi->image_seq != image_seq) {
 910			ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
 911				image_seq, pnum, ubi->image_seq);
 912			ubi_dump_ec_hdr(ech);
 913			return -EINVAL;
 914		}
 915	}
 916
 917	/* OK, we've done with the EC header, let's look at the VID header */
 918
 919	err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
 920	if (err < 0)
 921		return err;
 922	switch (err) {
 923	case 0:
 924		break;
 925	case UBI_IO_BITFLIPS:
 926		bitflips = 1;
 927		break;
 928	case UBI_IO_BAD_HDR_EBADMSG:
 929		if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
 930			/*
 931			 * Both EC and VID headers are corrupted and were read
 932			 * with data integrity error, probably this is a bad
 933			 * PEB, bit it is not marked as bad yet. This may also
 934			 * be a result of power cut during erasure.
 935			 */
 936			ai->maybe_bad_peb_count += 1;
 937	case UBI_IO_BAD_HDR:
 938		if (ec_err)
 939			/*
 940			 * Both headers are corrupted. There is a possibility
 941			 * that this a valid UBI PEB which has corresponding
 942			 * LEB, but the headers are corrupted. However, it is
 943			 * impossible to distinguish it from a PEB which just
 944			 * contains garbage because of a power cut during erase
 945			 * operation. So we just schedule this PEB for erasure.
 946			 *
 947			 * Besides, in case of NOR flash, we deliberately
 948			 * corrupt both headers because NOR flash erasure is
 949			 * slow and can start from the end.
 950			 */
 951			err = 0;
 952		else
 953			/*
 954			 * The EC was OK, but the VID header is corrupted. We
 955			 * have to check what is in the data area.
 956			 */
 957			err = check_corruption(ubi, vidh, pnum);
 958
 959		if (err < 0)
 960			return err;
 961		else if (!err)
 962			/* This corruption is caused by a power cut */
 963			err = add_to_list(ai, pnum, UBI_UNKNOWN,
 964					  UBI_UNKNOWN, ec, 1, &ai->erase);
 965		else
 966			/* This is an unexpected corruption */
 967			err = add_corrupted(ai, pnum, ec);
 968		if (err)
 969			return err;
 970		goto adjust_mean_ec;
 971	case UBI_IO_FF_BITFLIPS:
 972		err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 973				  ec, 1, &ai->erase);
 974		if (err)
 975			return err;
 976		goto adjust_mean_ec;
 977	case UBI_IO_FF:
 978		if (ec_err || bitflips)
 979			err = add_to_list(ai, pnum, UBI_UNKNOWN,
 980					  UBI_UNKNOWN, ec, 1, &ai->erase);
 981		else
 982			err = add_to_list(ai, pnum, UBI_UNKNOWN,
 983					  UBI_UNKNOWN, ec, 0, &ai->free);
 984		if (err)
 985			return err;
 986		goto adjust_mean_ec;
 987	default:
 988		ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
 989			err);
 990		return -EINVAL;
 991	}
 992
 993	vol_id = be32_to_cpu(vidh->vol_id);
 994	if (vid)
 995		*vid = vol_id;
 996	if (sqnum)
 997		*sqnum = be64_to_cpu(vidh->sqnum);
 998	if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
 999		int lnum = be32_to_cpu(vidh->lnum);
1000
1001		/* Unsupported internal volume */
1002		switch (vidh->compat) {
1003		case UBI_COMPAT_DELETE:
1004			if (vol_id != UBI_FM_SB_VOLUME_ID
1005			    && vol_id != UBI_FM_DATA_VOLUME_ID) {
1006				ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
1007					vol_id, lnum);
1008			}
1009			err = add_to_list(ai, pnum, vol_id, lnum,
1010					  ec, 1, &ai->erase);
1011			if (err)
1012				return err;
1013			return 0;
1014
1015		case UBI_COMPAT_RO:
1016			ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
1017				vol_id, lnum);
1018			ubi->ro_mode = 1;
1019			break;
1020
1021		case UBI_COMPAT_PRESERVE:
1022			ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
1023				vol_id, lnum);
1024			err = add_to_list(ai, pnum, vol_id, lnum,
1025					  ec, 0, &ai->alien);
1026			if (err)
1027				return err;
1028			return 0;
1029
1030		case UBI_COMPAT_REJECT:
1031			ubi_err(ubi, "incompatible internal volume %d:%d found",
1032				vol_id, lnum);
1033			return -EINVAL;
1034		}
1035	}
1036
1037	if (ec_err)
1038		ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
1039			 pnum);
1040	err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1041	if (err)
1042		return err;
1043
1044adjust_mean_ec:
1045	if (!ec_err) {
1046		ai->ec_sum += ec;
1047		ai->ec_count += 1;
1048		if (ec > ai->max_ec)
1049			ai->max_ec = ec;
1050		if (ec < ai->min_ec)
1051			ai->min_ec = ec;
1052	}
1053
1054	return 0;
1055}
1056
1057/**
1058 * late_analysis - analyze the overall situation with PEB.
1059 * @ubi: UBI device description object
1060 * @ai: attaching information
1061 *
1062 * This is a helper function which takes a look what PEBs we have after we
1063 * gather information about all of them ("ai" is compete). It decides whether
1064 * the flash is empty and should be formatted of whether there are too many
1065 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1066 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1067 */
1068static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1069{
1070	struct ubi_ainf_peb *aeb;
1071	int max_corr, peb_count;
1072
1073	peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1074	max_corr = peb_count / 20 ?: 8;
1075
1076	/*
1077	 * Few corrupted PEBs is not a problem and may be just a result of
1078	 * unclean reboots. However, many of them may indicate some problems
1079	 * with the flash HW or driver.
1080	 */
1081	if (ai->corr_peb_count) {
1082		ubi_err(ubi, "%d PEBs are corrupted and preserved",
1083			ai->corr_peb_count);
1084		pr_err("Corrupted PEBs are:");
1085		list_for_each_entry(aeb, &ai->corr, u.list)
1086			pr_cont(" %d", aeb->pnum);
1087		pr_cont("\n");
1088
1089		/*
1090		 * If too many PEBs are corrupted, we refuse attaching,
1091		 * otherwise, only print a warning.
1092		 */
1093		if (ai->corr_peb_count >= max_corr) {
1094			ubi_err(ubi, "too many corrupted PEBs, refusing");
1095			return -EINVAL;
1096		}
1097	}
1098
1099	if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1100		/*
1101		 * All PEBs are empty, or almost all - a couple PEBs look like
1102		 * they may be bad PEBs which were not marked as bad yet.
1103		 *
1104		 * This piece of code basically tries to distinguish between
1105		 * the following situations:
1106		 *
1107		 * 1. Flash is empty, but there are few bad PEBs, which are not
1108		 *    marked as bad so far, and which were read with error. We
1109		 *    want to go ahead and format this flash. While formatting,
1110		 *    the faulty PEBs will probably be marked as bad.
1111		 *
1112		 * 2. Flash contains non-UBI data and we do not want to format
1113		 *    it and destroy possibly important information.
1114		 */
1115		if (ai->maybe_bad_peb_count <= 2) {
1116			ai->is_empty = 1;
1117			ubi_msg(ubi, "empty MTD device detected");
1118			get_random_bytes(&ubi->image_seq,
1119					 sizeof(ubi->image_seq));
1120		} else {
1121			ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1122			return -EINVAL;
1123		}
1124
1125	}
1126
1127	return 0;
1128}
1129
1130/**
1131 * destroy_av - free volume attaching information.
1132 * @av: volume attaching information
1133 * @ai: attaching information
1134 *
1135 * This function destroys the volume attaching information.
1136 */
1137static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1138{
1139	struct ubi_ainf_peb *aeb;
1140	struct rb_node *this = av->root.rb_node;
1141
1142	while (this) {
1143		if (this->rb_left)
1144			this = this->rb_left;
1145		else if (this->rb_right)
1146			this = this->rb_right;
1147		else {
1148			aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1149			this = rb_parent(this);
1150			if (this) {
1151				if (this->rb_left == &aeb->u.rb)
1152					this->rb_left = NULL;
1153				else
1154					this->rb_right = NULL;
1155			}
1156
1157			kmem_cache_free(ai->aeb_slab_cache, aeb);
1158		}
1159	}
1160	kfree(av);
1161}
1162
1163/**
1164 * destroy_ai - destroy attaching information.
1165 * @ai: attaching information
1166 */
1167static void destroy_ai(struct ubi_attach_info *ai)
1168{
1169	struct ubi_ainf_peb *aeb, *aeb_tmp;
1170	struct ubi_ainf_volume *av;
1171	struct rb_node *rb;
1172
1173	list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1174		list_del(&aeb->u.list);
1175		kmem_cache_free(ai->aeb_slab_cache, aeb);
1176	}
1177	list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1178		list_del(&aeb->u.list);
1179		kmem_cache_free(ai->aeb_slab_cache, aeb);
1180	}
1181	list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1182		list_del(&aeb->u.list);
1183		kmem_cache_free(ai->aeb_slab_cache, aeb);
1184	}
1185	list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1186		list_del(&aeb->u.list);
1187		kmem_cache_free(ai->aeb_slab_cache, aeb);
1188	}
1189
1190	/* Destroy the volume RB-tree */
1191	rb = ai->volumes.rb_node;
1192	while (rb) {
1193		if (rb->rb_left)
1194			rb = rb->rb_left;
1195		else if (rb->rb_right)
1196			rb = rb->rb_right;
1197		else {
1198			av = rb_entry(rb, struct ubi_ainf_volume, rb);
1199
1200			rb = rb_parent(rb);
1201			if (rb) {
1202				if (rb->rb_left == &av->rb)
1203					rb->rb_left = NULL;
1204				else
1205					rb->rb_right = NULL;
1206			}
1207
1208			destroy_av(ai, av);
1209		}
1210	}
1211
1212	kmem_cache_destroy(ai->aeb_slab_cache);
1213	kfree(ai);
1214}
1215
1216/**
1217 * scan_all - scan entire MTD device.
1218 * @ubi: UBI device description object
1219 * @ai: attach info object
1220 * @start: start scanning at this PEB
1221 *
1222 * This function does full scanning of an MTD device and returns complete
1223 * information about it in form of a "struct ubi_attach_info" object. In case
1224 * of failure, an error code is returned.
1225 */
1226static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1227		    int start)
1228{
1229	int err, pnum;
1230	struct rb_node *rb1, *rb2;
1231	struct ubi_ainf_volume *av;
1232	struct ubi_ainf_peb *aeb;
1233
1234	err = -ENOMEM;
1235
1236	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1237	if (!ech)
1238		return err;
1239
1240	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1241	if (!vidh)
1242		goto out_ech;
1243
1244	for (pnum = start; pnum < ubi->peb_count; pnum++) {
1245		cond_resched();
1246
1247		dbg_gen("process PEB %d", pnum);
1248		err = scan_peb(ubi, ai, pnum, NULL, NULL);
1249		if (err < 0)
1250			goto out_vidh;
1251	}
1252
1253	ubi_msg(ubi, "scanning is finished");
1254
1255	/* Calculate mean erase counter */
1256	if (ai->ec_count)
1257		ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1258
1259	err = late_analysis(ubi, ai);
1260	if (err)
1261		goto out_vidh;
1262
1263	/*
1264	 * In case of unknown erase counter we use the mean erase counter
1265	 * value.
1266	 */
1267	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1268		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1269			if (aeb->ec == UBI_UNKNOWN)
1270				aeb->ec = ai->mean_ec;
1271	}
1272
1273	list_for_each_entry(aeb, &ai->free, u.list) {
1274		if (aeb->ec == UBI_UNKNOWN)
1275			aeb->ec = ai->mean_ec;
1276	}
1277
1278	list_for_each_entry(aeb, &ai->corr, u.list)
1279		if (aeb->ec == UBI_UNKNOWN)
1280			aeb->ec = ai->mean_ec;
1281
1282	list_for_each_entry(aeb, &ai->erase, u.list)
1283		if (aeb->ec == UBI_UNKNOWN)
1284			aeb->ec = ai->mean_ec;
1285
1286	err = self_check_ai(ubi, ai);
1287	if (err)
1288		goto out_vidh;
1289
1290	ubi_free_vid_hdr(ubi, vidh);
1291	kfree(ech);
1292
1293	return 0;
1294
1295out_vidh:
1296	ubi_free_vid_hdr(ubi, vidh);
1297out_ech:
1298	kfree(ech);
1299	return err;
1300}
1301
1302static struct ubi_attach_info *alloc_ai(void)
1303{
1304	struct ubi_attach_info *ai;
1305
1306	ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1307	if (!ai)
1308		return ai;
1309
1310	INIT_LIST_HEAD(&ai->corr);
1311	INIT_LIST_HEAD(&ai->free);
1312	INIT_LIST_HEAD(&ai->erase);
1313	INIT_LIST_HEAD(&ai->alien);
1314	ai->volumes = RB_ROOT;
1315	ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1316					       sizeof(struct ubi_ainf_peb),
1317					       0, 0, NULL);
1318	if (!ai->aeb_slab_cache) {
1319		kfree(ai);
1320		ai = NULL;
1321	}
1322
1323	return ai;
1324}
1325
1326#ifdef CONFIG_MTD_UBI_FASTMAP
1327
1328/**
1329 * scan_fastmap - try to find a fastmap and attach from it.
1330 * @ubi: UBI device description object
1331 * @ai: attach info object
1332 *
1333 * Returns 0 on success, negative return values indicate an internal
1334 * error.
1335 * UBI_NO_FASTMAP denotes that no fastmap was found.
1336 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1337 */
1338static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
1339{
1340	int err, pnum, fm_anchor = -1;
1341	unsigned long long max_sqnum = 0;
1342
1343	err = -ENOMEM;
1344
1345	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1346	if (!ech)
1347		goto out;
1348
1349	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1350	if (!vidh)
1351		goto out_ech;
1352
1353	for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1354		int vol_id = -1;
1355		unsigned long long sqnum = -1;
1356		cond_resched();
1357
1358		dbg_gen("process PEB %d", pnum);
1359		err = scan_peb(ubi, *ai, pnum, &vol_id, &sqnum);
1360		if (err < 0)
1361			goto out_vidh;
1362
1363		if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1364			max_sqnum = sqnum;
1365			fm_anchor = pnum;
1366		}
1367	}
1368
1369	ubi_free_vid_hdr(ubi, vidh);
1370	kfree(ech);
1371
1372	if (fm_anchor < 0)
1373		return UBI_NO_FASTMAP;
1374
1375	destroy_ai(*ai);
1376	*ai = alloc_ai();
1377	if (!*ai)
1378		return -ENOMEM;
1379
1380	return ubi_scan_fastmap(ubi, *ai, fm_anchor);
1381
1382out_vidh:
1383	ubi_free_vid_hdr(ubi, vidh);
1384out_ech:
1385	kfree(ech);
1386out:
1387	return err;
1388}
1389
1390#endif
1391
1392/**
1393 * ubi_attach - attach an MTD device.
1394 * @ubi: UBI device descriptor
1395 * @force_scan: if set to non-zero attach by scanning
1396 *
1397 * This function returns zero in case of success and a negative error code in
1398 * case of failure.
1399 */
1400int ubi_attach(struct ubi_device *ubi, int force_scan)
1401{
1402	int err;
1403	struct ubi_attach_info *ai;
1404
1405	ai = alloc_ai();
1406	if (!ai)
1407		return -ENOMEM;
1408
1409#ifdef CONFIG_MTD_UBI_FASTMAP
1410	/* On small flash devices we disable fastmap in any case. */
1411	if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1412		ubi->fm_disabled = 1;
1413		force_scan = 1;
1414	}
1415
1416	if (force_scan)
1417		err = scan_all(ubi, ai, 0);
1418	else {
1419		err = scan_fast(ubi, &ai);
1420		if (err > 0 || mtd_is_eccerr(err)) {
1421			if (err != UBI_NO_FASTMAP) {
1422				destroy_ai(ai);
1423				ai = alloc_ai();
1424				if (!ai)
1425					return -ENOMEM;
1426
1427				err = scan_all(ubi, ai, 0);
1428			} else {
1429				err = scan_all(ubi, ai, UBI_FM_MAX_START);
1430			}
1431		}
1432	}
1433#else
1434	err = scan_all(ubi, ai, 0);
1435#endif
1436	if (err)
1437		goto out_ai;
1438
1439	ubi->bad_peb_count = ai->bad_peb_count;
1440	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1441	ubi->corr_peb_count = ai->corr_peb_count;
1442	ubi->max_ec = ai->max_ec;
1443	ubi->mean_ec = ai->mean_ec;
1444	dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1445
1446	err = ubi_read_volume_table(ubi, ai);
1447	if (err)
1448		goto out_ai;
1449
1450	err = ubi_wl_init(ubi, ai);
1451	if (err)
1452		goto out_vtbl;
1453
1454	err = ubi_eba_init(ubi, ai);
1455	if (err)
1456		goto out_wl;
1457
1458#ifdef CONFIG_MTD_UBI_FASTMAP
1459	if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
1460		struct ubi_attach_info *scan_ai;
1461
1462		scan_ai = alloc_ai();
1463		if (!scan_ai) {
1464			err = -ENOMEM;
1465			goto out_wl;
1466		}
1467
1468		err = scan_all(ubi, scan_ai, 0);
1469		if (err) {
1470			destroy_ai(scan_ai);
1471			goto out_wl;
1472		}
1473
1474		err = self_check_eba(ubi, ai, scan_ai);
1475		destroy_ai(scan_ai);
1476
1477		if (err)
1478			goto out_wl;
1479	}
1480#endif
1481
1482	destroy_ai(ai);
1483	return 0;
1484
1485out_wl:
1486	ubi_wl_close(ubi);
1487out_vtbl:
1488	ubi_free_internal_volumes(ubi);
1489	vfree(ubi->vtbl);
1490out_ai:
1491	destroy_ai(ai);
1492	return err;
1493}
1494
1495/**
1496 * self_check_ai - check the attaching information.
1497 * @ubi: UBI device description object
1498 * @ai: attaching information
1499 *
1500 * This function returns zero if the attaching information is all right, and a
1501 * negative error code if not or if an error occurred.
1502 */
1503static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1504{
1505	int pnum, err, vols_found = 0;
1506	struct rb_node *rb1, *rb2;
1507	struct ubi_ainf_volume *av;
1508	struct ubi_ainf_peb *aeb, *last_aeb;
1509	uint8_t *buf;
1510
1511	if (!ubi_dbg_chk_gen(ubi))
1512		return 0;
1513
1514	/*
1515	 * At first, check that attaching information is OK.
1516	 */
1517	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1518		int leb_count = 0;
1519
1520		cond_resched();
1521
1522		vols_found += 1;
1523
1524		if (ai->is_empty) {
1525			ubi_err(ubi, "bad is_empty flag");
1526			goto bad_av;
1527		}
1528
1529		if (av->vol_id < 0 || av->highest_lnum < 0 ||
1530		    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1531		    av->data_pad < 0 || av->last_data_size < 0) {
1532			ubi_err(ubi, "negative values");
1533			goto bad_av;
1534		}
1535
1536		if (av->vol_id >= UBI_MAX_VOLUMES &&
1537		    av->vol_id < UBI_INTERNAL_VOL_START) {
1538			ubi_err(ubi, "bad vol_id");
1539			goto bad_av;
1540		}
1541
1542		if (av->vol_id > ai->highest_vol_id) {
1543			ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
1544				ai->highest_vol_id, av->vol_id);
1545			goto out;
1546		}
1547
1548		if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1549		    av->vol_type != UBI_STATIC_VOLUME) {
1550			ubi_err(ubi, "bad vol_type");
1551			goto bad_av;
1552		}
1553
1554		if (av->data_pad > ubi->leb_size / 2) {
1555			ubi_err(ubi, "bad data_pad");
1556			goto bad_av;
1557		}
1558
1559		last_aeb = NULL;
1560		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1561			cond_resched();
1562
1563			last_aeb = aeb;
1564			leb_count += 1;
1565
1566			if (aeb->pnum < 0 || aeb->ec < 0) {
1567				ubi_err(ubi, "negative values");
1568				goto bad_aeb;
1569			}
1570
1571			if (aeb->ec < ai->min_ec) {
1572				ubi_err(ubi, "bad ai->min_ec (%d), %d found",
1573					ai->min_ec, aeb->ec);
1574				goto bad_aeb;
1575			}
1576
1577			if (aeb->ec > ai->max_ec) {
1578				ubi_err(ubi, "bad ai->max_ec (%d), %d found",
1579					ai->max_ec, aeb->ec);
1580				goto bad_aeb;
1581			}
1582
1583			if (aeb->pnum >= ubi->peb_count) {
1584				ubi_err(ubi, "too high PEB number %d, total PEBs %d",
1585					aeb->pnum, ubi->peb_count);
1586				goto bad_aeb;
1587			}
1588
1589			if (av->vol_type == UBI_STATIC_VOLUME) {
1590				if (aeb->lnum >= av->used_ebs) {
1591					ubi_err(ubi, "bad lnum or used_ebs");
1592					goto bad_aeb;
1593				}
1594			} else {
1595				if (av->used_ebs != 0) {
1596					ubi_err(ubi, "non-zero used_ebs");
1597					goto bad_aeb;
1598				}
1599			}
1600
1601			if (aeb->lnum > av->highest_lnum) {
1602				ubi_err(ubi, "incorrect highest_lnum or lnum");
1603				goto bad_aeb;
1604			}
1605		}
1606
1607		if (av->leb_count != leb_count) {
1608			ubi_err(ubi, "bad leb_count, %d objects in the tree",
1609				leb_count);
1610			goto bad_av;
1611		}
1612
1613		if (!last_aeb)
1614			continue;
1615
1616		aeb = last_aeb;
1617
1618		if (aeb->lnum != av->highest_lnum) {
1619			ubi_err(ubi, "bad highest_lnum");
1620			goto bad_aeb;
1621		}
1622	}
1623
1624	if (vols_found != ai->vols_found) {
1625		ubi_err(ubi, "bad ai->vols_found %d, should be %d",
1626			ai->vols_found, vols_found);
1627		goto out;
1628	}
1629
1630	/* Check that attaching information is correct */
1631	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1632		last_aeb = NULL;
1633		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1634			int vol_type;
1635
1636			cond_resched();
1637
1638			last_aeb = aeb;
1639
1640			err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1641			if (err && err != UBI_IO_BITFLIPS) {
1642				ubi_err(ubi, "VID header is not OK (%d)",
1643					err);
1644				if (err > 0)
1645					err = -EIO;
1646				return err;
1647			}
1648
1649			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1650				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1651			if (av->vol_type != vol_type) {
1652				ubi_err(ubi, "bad vol_type");
1653				goto bad_vid_hdr;
1654			}
1655
1656			if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1657				ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
1658				goto bad_vid_hdr;
1659			}
1660
1661			if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1662				ubi_err(ubi, "bad vol_id %d", av->vol_id);
1663				goto bad_vid_hdr;
1664			}
1665
1666			if (av->compat != vidh->compat) {
1667				ubi_err(ubi, "bad compat %d", vidh->compat);
1668				goto bad_vid_hdr;
1669			}
1670
1671			if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1672				ubi_err(ubi, "bad lnum %d", aeb->lnum);
1673				goto bad_vid_hdr;
1674			}
1675
1676			if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1677				ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
1678				goto bad_vid_hdr;
1679			}
1680
1681			if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1682				ubi_err(ubi, "bad data_pad %d", av->data_pad);
1683				goto bad_vid_hdr;
1684			}
1685		}
1686
1687		if (!last_aeb)
1688			continue;
1689
1690		if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1691			ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
1692			goto bad_vid_hdr;
1693		}
1694
1695		if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1696			ubi_err(ubi, "bad last_data_size %d",
1697				av->last_data_size);
1698			goto bad_vid_hdr;
1699		}
1700	}
1701
1702	/*
1703	 * Make sure that all the physical eraseblocks are in one of the lists
1704	 * or trees.
1705	 */
1706	buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1707	if (!buf)
1708		return -ENOMEM;
1709
1710	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1711		err = ubi_io_is_bad(ubi, pnum);
1712		if (err < 0) {
1713			kfree(buf);
1714			return err;
1715		} else if (err)
1716			buf[pnum] = 1;
1717	}
1718
1719	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1720		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1721			buf[aeb->pnum] = 1;
1722
1723	list_for_each_entry(aeb, &ai->free, u.list)
1724		buf[aeb->pnum] = 1;
1725
1726	list_for_each_entry(aeb, &ai->corr, u.list)
1727		buf[aeb->pnum] = 1;
1728
1729	list_for_each_entry(aeb, &ai->erase, u.list)
1730		buf[aeb->pnum] = 1;
1731
1732	list_for_each_entry(aeb, &ai->alien, u.list)
1733		buf[aeb->pnum] = 1;
1734
1735	err = 0;
1736	for (pnum = 0; pnum < ubi->peb_count; pnum++)
1737		if (!buf[pnum]) {
1738			ubi_err(ubi, "PEB %d is not referred", pnum);
1739			err = 1;
1740		}
1741
1742	kfree(buf);
1743	if (err)
1744		goto out;
1745	return 0;
1746
1747bad_aeb:
1748	ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
1749	ubi_dump_aeb(aeb, 0);
1750	ubi_dump_av(av);
1751	goto out;
1752
1753bad_av:
1754	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1755	ubi_dump_av(av);
1756	goto out;
1757
1758bad_vid_hdr:
1759	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1760	ubi_dump_av(av);
1761	ubi_dump_vid_hdr(vidh);
1762
1763out:
1764	dump_stack();
1765	return -EINVAL;
1766}