Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12 * the GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 *
  18 * Author: Artem Bityutskiy (Битюцкий Артём)
  19 */
  20
  21/*
  22 * UBI attaching sub-system.
  23 *
  24 * This sub-system is responsible for attaching MTD devices and it also
  25 * implements flash media scanning.
  26 *
  27 * The attaching information is represented by a &struct ubi_attach_info'
  28 * object. Information about volumes is represented by &struct ubi_ainf_volume
  29 * objects which are kept in volume RB-tree with root at the @volumes field.
  30 * The RB-tree is indexed by the volume ID.
  31 *
  32 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
  33 * objects are kept in per-volume RB-trees with the root at the corresponding
  34 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
  35 * per-volume objects and each of these objects is the root of RB-tree of
  36 * per-LEB objects.
  37 *
  38 * Corrupted physical eraseblocks are put to the @corr list, free physical
  39 * eraseblocks are put to the @free list and the physical eraseblock to be
  40 * erased are put to the @erase list.
  41 *
  42 * About corruptions
  43 * ~~~~~~~~~~~~~~~~~
  44 *
  45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
  46 * whether the headers are corrupted or not. Sometimes UBI also protects the
  47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
  48 * when it moves the contents of a PEB for wear-leveling purposes.
  49 *
  50 * UBI tries to distinguish between 2 types of corruptions.
  51 *
  52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
  53 * tries to handle them gracefully, without printing too many warnings and
  54 * error messages. The idea is that we do not lose important data in these
  55 * cases - we may lose only the data which were being written to the media just
  56 * before the power cut happened, and the upper layers (e.g., UBIFS) are
  57 * supposed to handle such data losses (e.g., by using the FS journal).
  58 *
  59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
  60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
  61 * PEBs in the @erase list are scheduled for erasure later.
  62 *
  63 * 2. Unexpected corruptions which are not caused by power cuts. During
  64 * attaching, such PEBs are put to the @corr list and UBI preserves them.
  65 * Obviously, this lessens the amount of available PEBs, and if at some  point
  66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
  67 * about such PEBs every time the MTD device is attached.
  68 *
  69 * However, it is difficult to reliably distinguish between these types of
  70 * corruptions and UBI's strategy is as follows (in case of attaching by
  71 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
  72 * the data area does not contain all 0xFFs, and there were no bit-flips or
  73 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
  74 * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
  75 * are as follows.
  76 *   o If the data area contains only 0xFFs, there are no data, and it is safe
  77 *     to just erase this PEB - this is corruption type 1.
  78 *   o If the data area has bit-flips or data integrity errors (ECC errors on
  79 *     NAND), it is probably a PEB which was being erased when power cut
  80 *     happened, so this is corruption type 1. However, this is just a guess,
  81 *     which might be wrong.
  82 *   o Otherwise this is corruption type 2.
  83 */
  84
  85#include <linux/err.h>
  86#include <linux/slab.h>
  87#include <linux/crc32.h>
  88#include <linux/math64.h>
  89#include <linux/random.h>
  90#include "ubi.h"
  91
  92static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
  93
  94/* Temporary variables used during scanning */
  95static struct ubi_ec_hdr *ech;
  96static struct ubi_vid_hdr *vidh;
  97
  98/**
  99 * add_to_list - add physical eraseblock to a list.
 100 * @ai: attaching information
 101 * @pnum: physical eraseblock number to add
 102 * @vol_id: the last used volume id for the PEB
 103 * @lnum: the last used LEB number for the PEB
 104 * @ec: erase counter of the physical eraseblock
 105 * @to_head: if not zero, add to the head of the list
 106 * @list: the list to add to
 107 *
 108 * This function allocates a 'struct ubi_ainf_peb' object for physical
 109 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
 110 * It stores the @lnum and @vol_id alongside, which can both be
 111 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
 112 * If @to_head is not zero, PEB will be added to the head of the list, which
 113 * basically means it will be processed first later. E.g., we add corrupted
 114 * PEBs (corrupted due to power cuts) to the head of the erase list to make
 115 * sure we erase them first and get rid of corruptions ASAP. This function
 116 * returns zero in case of success and a negative error code in case of
 117 * failure.
 118 */
 119static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
 120		       int lnum, int ec, int to_head, struct list_head *list)
 121{
 122	struct ubi_ainf_peb *aeb;
 123
 124	if (list == &ai->free) {
 125		dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
 126	} else if (list == &ai->erase) {
 127		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
 128	} else if (list == &ai->alien) {
 129		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
 130		ai->alien_peb_count += 1;
 131	} else
 132		BUG();
 133
 134	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 135	if (!aeb)
 136		return -ENOMEM;
 137
 138	aeb->pnum = pnum;
 139	aeb->vol_id = vol_id;
 140	aeb->lnum = lnum;
 141	aeb->ec = ec;
 142	if (to_head)
 143		list_add(&aeb->u.list, list);
 144	else
 145		list_add_tail(&aeb->u.list, list);
 146	return 0;
 147}
 148
 149/**
 150 * add_corrupted - add a corrupted physical eraseblock.
 151 * @ai: attaching information
 152 * @pnum: physical eraseblock number to add
 153 * @ec: erase counter of the physical eraseblock
 154 *
 155 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
 156 * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
 157 * was presumably not caused by a power cut. Returns zero in case of success
 158 * and a negative error code in case of failure.
 159 */
 160static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
 161{
 162	struct ubi_ainf_peb *aeb;
 163
 164	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
 165
 166	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 167	if (!aeb)
 168		return -ENOMEM;
 169
 170	ai->corr_peb_count += 1;
 171	aeb->pnum = pnum;
 172	aeb->ec = ec;
 173	list_add(&aeb->u.list, &ai->corr);
 174	return 0;
 175}
 176
 177/**
 178 * validate_vid_hdr - check volume identifier header.
 179 * @vid_hdr: the volume identifier header to check
 180 * @av: information about the volume this logical eraseblock belongs to
 181 * @pnum: physical eraseblock number the VID header came from
 182 *
 183 * This function checks that data stored in @vid_hdr is consistent. Returns
 184 * non-zero if an inconsistency was found and zero if not.
 185 *
 186 * Note, UBI does sanity check of everything it reads from the flash media.
 187 * Most of the checks are done in the I/O sub-system. Here we check that the
 188 * information in the VID header is consistent to the information in other VID
 189 * headers of the same volume.
 190 */
 191static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
 192			    const struct ubi_ainf_volume *av, int pnum)
 193{
 194	int vol_type = vid_hdr->vol_type;
 195	int vol_id = be32_to_cpu(vid_hdr->vol_id);
 196	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 197	int data_pad = be32_to_cpu(vid_hdr->data_pad);
 198
 199	if (av->leb_count != 0) {
 200		int av_vol_type;
 201
 202		/*
 203		 * This is not the first logical eraseblock belonging to this
 204		 * volume. Ensure that the data in its VID header is consistent
 205		 * to the data in previous logical eraseblock headers.
 206		 */
 207
 208		if (vol_id != av->vol_id) {
 209			ubi_err("inconsistent vol_id");
 210			goto bad;
 211		}
 212
 213		if (av->vol_type == UBI_STATIC_VOLUME)
 214			av_vol_type = UBI_VID_STATIC;
 215		else
 216			av_vol_type = UBI_VID_DYNAMIC;
 217
 218		if (vol_type != av_vol_type) {
 219			ubi_err("inconsistent vol_type");
 220			goto bad;
 221		}
 222
 223		if (used_ebs != av->used_ebs) {
 224			ubi_err("inconsistent used_ebs");
 225			goto bad;
 226		}
 227
 228		if (data_pad != av->data_pad) {
 229			ubi_err("inconsistent data_pad");
 230			goto bad;
 231		}
 232	}
 233
 234	return 0;
 235
 236bad:
 237	ubi_err("inconsistent VID header at PEB %d", pnum);
 238	ubi_dump_vid_hdr(vid_hdr);
 239	ubi_dump_av(av);
 240	return -EINVAL;
 241}
 242
 243/**
 244 * add_volume - add volume to the attaching information.
 245 * @ai: attaching information
 246 * @vol_id: ID of the volume to add
 247 * @pnum: physical eraseblock number
 248 * @vid_hdr: volume identifier header
 249 *
 250 * If the volume corresponding to the @vid_hdr logical eraseblock is already
 251 * present in the attaching information, this function does nothing. Otherwise
 252 * it adds corresponding volume to the attaching information. Returns a pointer
 253 * to the allocated "av" object in case of success and a negative error code in
 254 * case of failure.
 255 */
 256static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
 257					  int vol_id, int pnum,
 258					  const struct ubi_vid_hdr *vid_hdr)
 259{
 260	struct ubi_ainf_volume *av;
 261	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
 262
 263	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
 264
 265	/* Walk the volume RB-tree to look if this volume is already present */
 266	while (*p) {
 267		parent = *p;
 268		av = rb_entry(parent, struct ubi_ainf_volume, rb);
 269
 270		if (vol_id == av->vol_id)
 271			return av;
 272
 273		if (vol_id > av->vol_id)
 274			p = &(*p)->rb_left;
 275		else
 276			p = &(*p)->rb_right;
 277	}
 278
 279	/* The volume is absent - add it */
 280	av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
 281	if (!av)
 282		return ERR_PTR(-ENOMEM);
 283
 284	av->highest_lnum = av->leb_count = 0;
 285	av->vol_id = vol_id;
 286	av->root = RB_ROOT;
 287	av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 288	av->data_pad = be32_to_cpu(vid_hdr->data_pad);
 289	av->compat = vid_hdr->compat;
 290	av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
 291							    : UBI_STATIC_VOLUME;
 292	if (vol_id > ai->highest_vol_id)
 293		ai->highest_vol_id = vol_id;
 294
 295	rb_link_node(&av->rb, parent, p);
 296	rb_insert_color(&av->rb, &ai->volumes);
 297	ai->vols_found += 1;
 298	dbg_bld("added volume %d", vol_id);
 299	return av;
 300}
 301
 302/**
 303 * ubi_compare_lebs - find out which logical eraseblock is newer.
 304 * @ubi: UBI device description object
 305 * @aeb: first logical eraseblock to compare
 306 * @pnum: physical eraseblock number of the second logical eraseblock to
 307 * compare
 308 * @vid_hdr: volume identifier header of the second logical eraseblock
 309 *
 310 * This function compares 2 copies of a LEB and informs which one is newer. In
 311 * case of success this function returns a positive value, in case of failure, a
 312 * negative error code is returned. The success return codes use the following
 313 * bits:
 314 *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
 315 *       second PEB (described by @pnum and @vid_hdr);
 316 *     o bit 0 is set: the second PEB is newer;
 317 *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
 318 *     o bit 1 is set: bit-flips were detected in the newer LEB;
 319 *     o bit 2 is cleared: the older LEB is not corrupted;
 320 *     o bit 2 is set: the older LEB is corrupted.
 321 */
 322int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
 323			int pnum, const struct ubi_vid_hdr *vid_hdr)
 324{
 325	int len, err, second_is_newer, bitflips = 0, corrupted = 0;
 326	uint32_t data_crc, crc;
 327	struct ubi_vid_hdr *vh = NULL;
 328	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
 329
 330	if (sqnum2 == aeb->sqnum) {
 331		/*
 332		 * This must be a really ancient UBI image which has been
 333		 * created before sequence numbers support has been added. At
 334		 * that times we used 32-bit LEB versions stored in logical
 335		 * eraseblocks. That was before UBI got into mainline. We do not
 336		 * support these images anymore. Well, those images still work,
 337		 * but only if no unclean reboots happened.
 338		 */
 339		ubi_err("unsupported on-flash UBI format");
 340		return -EINVAL;
 341	}
 342
 343	/* Obviously the LEB with lower sequence counter is older */
 344	second_is_newer = (sqnum2 > aeb->sqnum);
 345
 346	/*
 347	 * Now we know which copy is newer. If the copy flag of the PEB with
 348	 * newer version is not set, then we just return, otherwise we have to
 349	 * check data CRC. For the second PEB we already have the VID header,
 350	 * for the first one - we'll need to re-read it from flash.
 351	 *
 352	 * Note: this may be optimized so that we wouldn't read twice.
 353	 */
 354
 355	if (second_is_newer) {
 356		if (!vid_hdr->copy_flag) {
 357			/* It is not a copy, so it is newer */
 358			dbg_bld("second PEB %d is newer, copy_flag is unset",
 359				pnum);
 360			return 1;
 361		}
 362	} else {
 363		if (!aeb->copy_flag) {
 364			/* It is not a copy, so it is newer */
 365			dbg_bld("first PEB %d is newer, copy_flag is unset",
 366				pnum);
 367			return bitflips << 1;
 368		}
 369
 370		vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 371		if (!vh)
 372			return -ENOMEM;
 373
 374		pnum = aeb->pnum;
 375		err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
 376		if (err) {
 377			if (err == UBI_IO_BITFLIPS)
 378				bitflips = 1;
 379			else {
 380				ubi_err("VID of PEB %d header is bad, but it was OK earlier, err %d",
 381					pnum, err);
 382				if (err > 0)
 383					err = -EIO;
 384
 385				goto out_free_vidh;
 386			}
 387		}
 388
 389		vid_hdr = vh;
 390	}
 391
 392	/* Read the data of the copy and check the CRC */
 393
 394	len = be32_to_cpu(vid_hdr->data_size);
 395
 396	mutex_lock(&ubi->buf_mutex);
 397	err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
 398	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
 399		goto out_unlock;
 400
 401	data_crc = be32_to_cpu(vid_hdr->data_crc);
 402	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
 403	if (crc != data_crc) {
 404		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
 405			pnum, crc, data_crc);
 406		corrupted = 1;
 407		bitflips = 0;
 408		second_is_newer = !second_is_newer;
 409	} else {
 410		dbg_bld("PEB %d CRC is OK", pnum);
 411		bitflips = !!err;
 412	}
 413	mutex_unlock(&ubi->buf_mutex);
 414
 415	ubi_free_vid_hdr(ubi, vh);
 416
 417	if (second_is_newer)
 418		dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
 419	else
 420		dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
 421
 422	return second_is_newer | (bitflips << 1) | (corrupted << 2);
 423
 424out_unlock:
 425	mutex_unlock(&ubi->buf_mutex);
 426out_free_vidh:
 427	ubi_free_vid_hdr(ubi, vh);
 428	return err;
 429}
 430
 431/**
 432 * ubi_add_to_av - add used physical eraseblock to the attaching information.
 433 * @ubi: UBI device description object
 434 * @ai: attaching information
 435 * @pnum: the physical eraseblock number
 436 * @ec: erase counter
 437 * @vid_hdr: the volume identifier header
 438 * @bitflips: if bit-flips were detected when this physical eraseblock was read
 439 *
 440 * This function adds information about a used physical eraseblock to the
 441 * 'used' tree of the corresponding volume. The function is rather complex
 442 * because it has to handle cases when this is not the first physical
 443 * eraseblock belonging to the same logical eraseblock, and the newer one has
 444 * to be picked, while the older one has to be dropped. This function returns
 445 * zero in case of success and a negative error code in case of failure.
 446 */
 447int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
 448		  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
 449{
 450	int err, vol_id, lnum;
 451	unsigned long long sqnum;
 452	struct ubi_ainf_volume *av;
 453	struct ubi_ainf_peb *aeb;
 454	struct rb_node **p, *parent = NULL;
 455
 456	vol_id = be32_to_cpu(vid_hdr->vol_id);
 457	lnum = be32_to_cpu(vid_hdr->lnum);
 458	sqnum = be64_to_cpu(vid_hdr->sqnum);
 459
 460	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
 461		pnum, vol_id, lnum, ec, sqnum, bitflips);
 462
 463	av = add_volume(ai, vol_id, pnum, vid_hdr);
 464	if (IS_ERR(av))
 465		return PTR_ERR(av);
 466
 467	if (ai->max_sqnum < sqnum)
 468		ai->max_sqnum = sqnum;
 469
 470	/*
 471	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
 472	 * if this is the first instance of this logical eraseblock or not.
 473	 */
 474	p = &av->root.rb_node;
 475	while (*p) {
 476		int cmp_res;
 477
 478		parent = *p;
 479		aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
 480		if (lnum != aeb->lnum) {
 481			if (lnum < aeb->lnum)
 482				p = &(*p)->rb_left;
 483			else
 484				p = &(*p)->rb_right;
 485			continue;
 486		}
 487
 488		/*
 489		 * There is already a physical eraseblock describing the same
 490		 * logical eraseblock present.
 491		 */
 492
 493		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
 494			aeb->pnum, aeb->sqnum, aeb->ec);
 495
 496		/*
 497		 * Make sure that the logical eraseblocks have different
 498		 * sequence numbers. Otherwise the image is bad.
 499		 *
 500		 * However, if the sequence number is zero, we assume it must
 501		 * be an ancient UBI image from the era when UBI did not have
 502		 * sequence numbers. We still can attach these images, unless
 503		 * there is a need to distinguish between old and new
 504		 * eraseblocks, in which case we'll refuse the image in
 505		 * 'ubi_compare_lebs()'. In other words, we attach old clean
 506		 * images, but refuse attaching old images with duplicated
 507		 * logical eraseblocks because there was an unclean reboot.
 508		 */
 509		if (aeb->sqnum == sqnum && sqnum != 0) {
 510			ubi_err("two LEBs with same sequence number %llu",
 511				sqnum);
 512			ubi_dump_aeb(aeb, 0);
 513			ubi_dump_vid_hdr(vid_hdr);
 514			return -EINVAL;
 515		}
 516
 517		/*
 518		 * Now we have to drop the older one and preserve the newer
 519		 * one.
 520		 */
 521		cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
 522		if (cmp_res < 0)
 523			return cmp_res;
 524
 525		if (cmp_res & 1) {
 526			/*
 527			 * This logical eraseblock is newer than the one
 528			 * found earlier.
 529			 */
 530			err = validate_vid_hdr(vid_hdr, av, pnum);
 531			if (err)
 532				return err;
 533
 534			err = add_to_list(ai, aeb->pnum, aeb->vol_id,
 535					  aeb->lnum, aeb->ec, cmp_res & 4,
 536					  &ai->erase);
 537			if (err)
 538				return err;
 539
 540			aeb->ec = ec;
 541			aeb->pnum = pnum;
 542			aeb->vol_id = vol_id;
 543			aeb->lnum = lnum;
 544			aeb->scrub = ((cmp_res & 2) || bitflips);
 545			aeb->copy_flag = vid_hdr->copy_flag;
 546			aeb->sqnum = sqnum;
 547
 548			if (av->highest_lnum == lnum)
 549				av->last_data_size =
 550					be32_to_cpu(vid_hdr->data_size);
 551
 552			return 0;
 553		} else {
 554			/*
 555			 * This logical eraseblock is older than the one found
 556			 * previously.
 557			 */
 558			return add_to_list(ai, pnum, vol_id, lnum, ec,
 559					   cmp_res & 4, &ai->erase);
 560		}
 561	}
 562
 563	/*
 564	 * We've met this logical eraseblock for the first time, add it to the
 565	 * attaching information.
 566	 */
 567
 568	err = validate_vid_hdr(vid_hdr, av, pnum);
 569	if (err)
 570		return err;
 571
 572	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 573	if (!aeb)
 574		return -ENOMEM;
 575
 576	aeb->ec = ec;
 577	aeb->pnum = pnum;
 578	aeb->vol_id = vol_id;
 579	aeb->lnum = lnum;
 580	aeb->scrub = bitflips;
 581	aeb->copy_flag = vid_hdr->copy_flag;
 582	aeb->sqnum = sqnum;
 583
 584	if (av->highest_lnum <= lnum) {
 585		av->highest_lnum = lnum;
 586		av->last_data_size = be32_to_cpu(vid_hdr->data_size);
 587	}
 588
 589	av->leb_count += 1;
 590	rb_link_node(&aeb->u.rb, parent, p);
 591	rb_insert_color(&aeb->u.rb, &av->root);
 592	return 0;
 593}
 594
 595/**
 596 * ubi_find_av - find volume in the attaching information.
 597 * @ai: attaching information
 598 * @vol_id: the requested volume ID
 599 *
 600 * This function returns a pointer to the volume description or %NULL if there
 601 * are no data about this volume in the attaching information.
 602 */
 603struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
 604				    int vol_id)
 605{
 606	struct ubi_ainf_volume *av;
 607	struct rb_node *p = ai->volumes.rb_node;
 608
 609	while (p) {
 610		av = rb_entry(p, struct ubi_ainf_volume, rb);
 611
 612		if (vol_id == av->vol_id)
 613			return av;
 614
 615		if (vol_id > av->vol_id)
 616			p = p->rb_left;
 617		else
 618			p = p->rb_right;
 619	}
 620
 621	return NULL;
 622}
 623
 624/**
 625 * ubi_remove_av - delete attaching information about a volume.
 626 * @ai: attaching information
 627 * @av: the volume attaching information to delete
 628 */
 629void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
 630{
 631	struct rb_node *rb;
 632	struct ubi_ainf_peb *aeb;
 633
 634	dbg_bld("remove attaching information about volume %d", av->vol_id);
 635
 636	while ((rb = rb_first(&av->root))) {
 637		aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
 638		rb_erase(&aeb->u.rb, &av->root);
 639		list_add_tail(&aeb->u.list, &ai->erase);
 640	}
 641
 642	rb_erase(&av->rb, &ai->volumes);
 643	kfree(av);
 644	ai->vols_found -= 1;
 645}
 646
 647/**
 648 * early_erase_peb - erase a physical eraseblock.
 649 * @ubi: UBI device description object
 650 * @ai: attaching information
 651 * @pnum: physical eraseblock number to erase;
 652 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
 653 *
 654 * This function erases physical eraseblock 'pnum', and writes the erase
 655 * counter header to it. This function should only be used on UBI device
 656 * initialization stages, when the EBA sub-system had not been yet initialized.
 657 * This function returns zero in case of success and a negative error code in
 658 * case of failure.
 659 */
 660static int early_erase_peb(struct ubi_device *ubi,
 661			   const struct ubi_attach_info *ai, int pnum, int ec)
 662{
 663	int err;
 664	struct ubi_ec_hdr *ec_hdr;
 665
 666	if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
 667		/*
 668		 * Erase counter overflow. Upgrade UBI and use 64-bit
 669		 * erase counters internally.
 670		 */
 671		ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
 672		return -EINVAL;
 673	}
 674
 675	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 676	if (!ec_hdr)
 677		return -ENOMEM;
 678
 679	ec_hdr->ec = cpu_to_be64(ec);
 680
 681	err = ubi_io_sync_erase(ubi, pnum, 0);
 682	if (err < 0)
 683		goto out_free;
 684
 685	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
 686
 687out_free:
 688	kfree(ec_hdr);
 689	return err;
 690}
 691
 692/**
 693 * ubi_early_get_peb - get a free physical eraseblock.
 694 * @ubi: UBI device description object
 695 * @ai: attaching information
 696 *
 697 * This function returns a free physical eraseblock. It is supposed to be
 698 * called on the UBI initialization stages when the wear-leveling sub-system is
 699 * not initialized yet. This function picks a physical eraseblocks from one of
 700 * the lists, writes the EC header if it is needed, and removes it from the
 701 * list.
 702 *
 703 * This function returns a pointer to the "aeb" of the found free PEB in case
 704 * of success and an error code in case of failure.
 705 */
 706struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
 707				       struct ubi_attach_info *ai)
 708{
 709	int err = 0;
 710	struct ubi_ainf_peb *aeb, *tmp_aeb;
 711
 712	if (!list_empty(&ai->free)) {
 713		aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
 714		list_del(&aeb->u.list);
 715		dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
 716		return aeb;
 717	}
 718
 719	/*
 720	 * We try to erase the first physical eraseblock from the erase list
 721	 * and pick it if we succeed, or try to erase the next one if not. And
 722	 * so forth. We don't want to take care about bad eraseblocks here -
 723	 * they'll be handled later.
 724	 */
 725	list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
 726		if (aeb->ec == UBI_UNKNOWN)
 727			aeb->ec = ai->mean_ec;
 728
 729		err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
 730		if (err)
 731			continue;
 732
 733		aeb->ec += 1;
 734		list_del(&aeb->u.list);
 735		dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
 736		return aeb;
 737	}
 738
 739	ubi_err("no free eraseblocks");
 740	return ERR_PTR(-ENOSPC);
 741}
 742
 743/**
 744 * check_corruption - check the data area of PEB.
 745 * @ubi: UBI device description object
 746 * @vid_hdr: the (corrupted) VID header of this PEB
 747 * @pnum: the physical eraseblock number to check
 748 *
 749 * This is a helper function which is used to distinguish between VID header
 750 * corruptions caused by power cuts and other reasons. If the PEB contains only
 751 * 0xFF bytes in the data area, the VID header is most probably corrupted
 752 * because of a power cut (%0 is returned in this case). Otherwise, it was
 753 * probably corrupted for some other reasons (%1 is returned in this case). A
 754 * negative error code is returned if a read error occurred.
 755 *
 756 * If the corruption reason was a power cut, UBI can safely erase this PEB.
 757 * Otherwise, it should preserve it to avoid possibly destroying important
 758 * information.
 759 */
 760static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
 761			    int pnum)
 762{
 763	int err;
 764
 765	mutex_lock(&ubi->buf_mutex);
 766	memset(ubi->peb_buf, 0x00, ubi->leb_size);
 767
 768	err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
 769			  ubi->leb_size);
 770	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
 771		/*
 772		 * Bit-flips or integrity errors while reading the data area.
 773		 * It is difficult to say for sure what type of corruption is
 774		 * this, but presumably a power cut happened while this PEB was
 775		 * erased, so it became unstable and corrupted, and should be
 776		 * erased.
 777		 */
 778		err = 0;
 779		goto out_unlock;
 780	}
 781
 782	if (err)
 783		goto out_unlock;
 784
 785	if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
 786		goto out_unlock;
 787
 788	ubi_err("PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
 789		pnum);
 790	ubi_err("this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
 791	ubi_dump_vid_hdr(vid_hdr);
 792	pr_err("hexdump of PEB %d offset %d, length %d",
 793	       pnum, ubi->leb_start, ubi->leb_size);
 794	ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
 795			       ubi->peb_buf, ubi->leb_size, 1);
 796	err = 1;
 797
 798out_unlock:
 799	mutex_unlock(&ubi->buf_mutex);
 800	return err;
 801}
 802
 803/**
 804 * scan_peb - scan and process UBI headers of a PEB.
 805 * @ubi: UBI device description object
 806 * @ai: attaching information
 807 * @pnum: the physical eraseblock number
 808 * @vid: The volume ID of the found volume will be stored in this pointer
 809 * @sqnum: The sqnum of the found volume will be stored in this pointer
 810 *
 811 * This function reads UBI headers of PEB @pnum, checks them, and adds
 812 * information about this PEB to the corresponding list or RB-tree in the
 813 * "attaching info" structure. Returns zero if the physical eraseblock was
 814 * successfully handled and a negative error code in case of failure.
 815 */
 816static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
 817		    int pnum, int *vid, unsigned long long *sqnum)
 818{
 819	long long uninitialized_var(ec);
 820	int err, bitflips = 0, vol_id = -1, ec_err = 0;
 821
 822	dbg_bld("scan PEB %d", pnum);
 823
 824	/* Skip bad physical eraseblocks */
 825	err = ubi_io_is_bad(ubi, pnum);
 826	if (err < 0)
 827		return err;
 828	else if (err) {
 829		ai->bad_peb_count += 1;
 830		return 0;
 831	}
 832
 833	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
 834	if (err < 0)
 835		return err;
 836	switch (err) {
 837	case 0:
 838		break;
 839	case UBI_IO_BITFLIPS:
 840		bitflips = 1;
 841		break;
 842	case UBI_IO_FF:
 843		ai->empty_peb_count += 1;
 844		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 845				   UBI_UNKNOWN, 0, &ai->erase);
 846	case UBI_IO_FF_BITFLIPS:
 847		ai->empty_peb_count += 1;
 848		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 849				   UBI_UNKNOWN, 1, &ai->erase);
 850	case UBI_IO_BAD_HDR_EBADMSG:
 851	case UBI_IO_BAD_HDR:
 852		/*
 853		 * We have to also look at the VID header, possibly it is not
 854		 * corrupted. Set %bitflips flag in order to make this PEB be
 855		 * moved and EC be re-created.
 856		 */
 857		ec_err = err;
 858		ec = UBI_UNKNOWN;
 859		bitflips = 1;
 860		break;
 861	default:
 862		ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
 863		return -EINVAL;
 864	}
 865
 866	if (!ec_err) {
 867		int image_seq;
 868
 869		/* Make sure UBI version is OK */
 870		if (ech->version != UBI_VERSION) {
 871			ubi_err("this UBI version is %d, image version is %d",
 872				UBI_VERSION, (int)ech->version);
 873			return -EINVAL;
 874		}
 875
 876		ec = be64_to_cpu(ech->ec);
 877		if (ec > UBI_MAX_ERASECOUNTER) {
 878			/*
 879			 * Erase counter overflow. The EC headers have 64 bits
 880			 * reserved, but we anyway make use of only 31 bit
 881			 * values, as this seems to be enough for any existing
 882			 * flash. Upgrade UBI and use 64-bit erase counters
 883			 * internally.
 884			 */
 885			ubi_err("erase counter overflow, max is %d",
 886				UBI_MAX_ERASECOUNTER);
 887			ubi_dump_ec_hdr(ech);
 888			return -EINVAL;
 889		}
 890
 891		/*
 892		 * Make sure that all PEBs have the same image sequence number.
 893		 * This allows us to detect situations when users flash UBI
 894		 * images incorrectly, so that the flash has the new UBI image
 895		 * and leftovers from the old one. This feature was added
 896		 * relatively recently, and the sequence number was always
 897		 * zero, because old UBI implementations always set it to zero.
 898		 * For this reasons, we do not panic if some PEBs have zero
 899		 * sequence number, while other PEBs have non-zero sequence
 900		 * number.
 901		 */
 902		image_seq = be32_to_cpu(ech->image_seq);
 903		if (!ubi->image_seq)
 904			ubi->image_seq = image_seq;
 905		if (image_seq && ubi->image_seq != image_seq) {
 906			ubi_err("bad image sequence number %d in PEB %d, expected %d",
 907				image_seq, pnum, ubi->image_seq);
 908			ubi_dump_ec_hdr(ech);
 909			return -EINVAL;
 910		}
 911	}
 912
 913	/* OK, we've done with the EC header, let's look at the VID header */
 914
 915	err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
 916	if (err < 0)
 917		return err;
 918	switch (err) {
 919	case 0:
 920		break;
 921	case UBI_IO_BITFLIPS:
 922		bitflips = 1;
 923		break;
 924	case UBI_IO_BAD_HDR_EBADMSG:
 925		if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
 926			/*
 927			 * Both EC and VID headers are corrupted and were read
 928			 * with data integrity error, probably this is a bad
 929			 * PEB, bit it is not marked as bad yet. This may also
 930			 * be a result of power cut during erasure.
 931			 */
 932			ai->maybe_bad_peb_count += 1;
 933	case UBI_IO_BAD_HDR:
 934		if (ec_err)
 935			/*
 936			 * Both headers are corrupted. There is a possibility
 937			 * that this a valid UBI PEB which has corresponding
 938			 * LEB, but the headers are corrupted. However, it is
 939			 * impossible to distinguish it from a PEB which just
 940			 * contains garbage because of a power cut during erase
 941			 * operation. So we just schedule this PEB for erasure.
 942			 *
 943			 * Besides, in case of NOR flash, we deliberately
 944			 * corrupt both headers because NOR flash erasure is
 945			 * slow and can start from the end.
 946			 */
 947			err = 0;
 948		else
 949			/*
 950			 * The EC was OK, but the VID header is corrupted. We
 951			 * have to check what is in the data area.
 952			 */
 953			err = check_corruption(ubi, vidh, pnum);
 954
 955		if (err < 0)
 956			return err;
 957		else if (!err)
 958			/* This corruption is caused by a power cut */
 959			err = add_to_list(ai, pnum, UBI_UNKNOWN,
 960					  UBI_UNKNOWN, ec, 1, &ai->erase);
 961		else
 962			/* This is an unexpected corruption */
 963			err = add_corrupted(ai, pnum, ec);
 964		if (err)
 965			return err;
 966		goto adjust_mean_ec;
 967	case UBI_IO_FF_BITFLIPS:
 968		err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 969				  ec, 1, &ai->erase);
 970		if (err)
 971			return err;
 972		goto adjust_mean_ec;
 973	case UBI_IO_FF:
 974		if (ec_err || bitflips)
 975			err = add_to_list(ai, pnum, UBI_UNKNOWN,
 976					  UBI_UNKNOWN, ec, 1, &ai->erase);
 977		else
 978			err = add_to_list(ai, pnum, UBI_UNKNOWN,
 979					  UBI_UNKNOWN, ec, 0, &ai->free);
 980		if (err)
 981			return err;
 982		goto adjust_mean_ec;
 983	default:
 984		ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
 985			err);
 986		return -EINVAL;
 987	}
 988
 989	vol_id = be32_to_cpu(vidh->vol_id);
 990	if (vid)
 991		*vid = vol_id;
 992	if (sqnum)
 993		*sqnum = be64_to_cpu(vidh->sqnum);
 994	if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
 995		int lnum = be32_to_cpu(vidh->lnum);
 996
 997		/* Unsupported internal volume */
 998		switch (vidh->compat) {
 999		case UBI_COMPAT_DELETE:
1000			if (vol_id != UBI_FM_SB_VOLUME_ID
1001			    && vol_id != UBI_FM_DATA_VOLUME_ID) {
1002				ubi_msg("\"delete\" compatible internal volume %d:%d found, will remove it",
1003					vol_id, lnum);
1004			}
1005			err = add_to_list(ai, pnum, vol_id, lnum,
1006					  ec, 1, &ai->erase);
1007			if (err)
1008				return err;
1009			return 0;
1010
1011		case UBI_COMPAT_RO:
1012			ubi_msg("read-only compatible internal volume %d:%d found, switch to read-only mode",
1013				vol_id, lnum);
1014			ubi->ro_mode = 1;
1015			break;
1016
1017		case UBI_COMPAT_PRESERVE:
1018			ubi_msg("\"preserve\" compatible internal volume %d:%d found",
1019				vol_id, lnum);
1020			err = add_to_list(ai, pnum, vol_id, lnum,
1021					  ec, 0, &ai->alien);
1022			if (err)
1023				return err;
1024			return 0;
1025
1026		case UBI_COMPAT_REJECT:
1027			ubi_err("incompatible internal volume %d:%d found",
1028				vol_id, lnum);
1029			return -EINVAL;
1030		}
1031	}
1032
1033	if (ec_err)
1034		ubi_warn("valid VID header but corrupted EC header at PEB %d",
1035			 pnum);
1036	err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1037	if (err)
1038		return err;
1039
1040adjust_mean_ec:
1041	if (!ec_err) {
1042		ai->ec_sum += ec;
1043		ai->ec_count += 1;
1044		if (ec > ai->max_ec)
1045			ai->max_ec = ec;
1046		if (ec < ai->min_ec)
1047			ai->min_ec = ec;
1048	}
1049
1050	return 0;
1051}
1052
1053/**
1054 * late_analysis - analyze the overall situation with PEB.
1055 * @ubi: UBI device description object
1056 * @ai: attaching information
1057 *
1058 * This is a helper function which takes a look what PEBs we have after we
1059 * gather information about all of them ("ai" is compete). It decides whether
1060 * the flash is empty and should be formatted of whether there are too many
1061 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1062 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1063 */
1064static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1065{
1066	struct ubi_ainf_peb *aeb;
1067	int max_corr, peb_count;
1068
1069	peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1070	max_corr = peb_count / 20 ?: 8;
1071
1072	/*
1073	 * Few corrupted PEBs is not a problem and may be just a result of
1074	 * unclean reboots. However, many of them may indicate some problems
1075	 * with the flash HW or driver.
1076	 */
1077	if (ai->corr_peb_count) {
1078		ubi_err("%d PEBs are corrupted and preserved",
1079			ai->corr_peb_count);
1080		pr_err("Corrupted PEBs are:");
1081		list_for_each_entry(aeb, &ai->corr, u.list)
1082			pr_cont(" %d", aeb->pnum);
1083		pr_cont("\n");
1084
1085		/*
1086		 * If too many PEBs are corrupted, we refuse attaching,
1087		 * otherwise, only print a warning.
1088		 */
1089		if (ai->corr_peb_count >= max_corr) {
1090			ubi_err("too many corrupted PEBs, refusing");
1091			return -EINVAL;
1092		}
1093	}
1094
1095	if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1096		/*
1097		 * All PEBs are empty, or almost all - a couple PEBs look like
1098		 * they may be bad PEBs which were not marked as bad yet.
1099		 *
1100		 * This piece of code basically tries to distinguish between
1101		 * the following situations:
1102		 *
1103		 * 1. Flash is empty, but there are few bad PEBs, which are not
1104		 *    marked as bad so far, and which were read with error. We
1105		 *    want to go ahead and format this flash. While formatting,
1106		 *    the faulty PEBs will probably be marked as bad.
1107		 *
1108		 * 2. Flash contains non-UBI data and we do not want to format
1109		 *    it and destroy possibly important information.
1110		 */
1111		if (ai->maybe_bad_peb_count <= 2) {
1112			ai->is_empty = 1;
1113			ubi_msg("empty MTD device detected");
1114			get_random_bytes(&ubi->image_seq,
1115					 sizeof(ubi->image_seq));
1116		} else {
1117			ubi_err("MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1118			return -EINVAL;
1119		}
1120
1121	}
1122
1123	return 0;
1124}
1125
1126/**
1127 * destroy_av - free volume attaching information.
1128 * @av: volume attaching information
1129 * @ai: attaching information
1130 *
1131 * This function destroys the volume attaching information.
1132 */
1133static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1134{
1135	struct ubi_ainf_peb *aeb;
1136	struct rb_node *this = av->root.rb_node;
1137
1138	while (this) {
1139		if (this->rb_left)
1140			this = this->rb_left;
1141		else if (this->rb_right)
1142			this = this->rb_right;
1143		else {
1144			aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1145			this = rb_parent(this);
1146			if (this) {
1147				if (this->rb_left == &aeb->u.rb)
1148					this->rb_left = NULL;
1149				else
1150					this->rb_right = NULL;
1151			}
1152
1153			kmem_cache_free(ai->aeb_slab_cache, aeb);
1154		}
1155	}
1156	kfree(av);
1157}
1158
1159/**
1160 * destroy_ai - destroy attaching information.
1161 * @ai: attaching information
1162 */
1163static void destroy_ai(struct ubi_attach_info *ai)
1164{
1165	struct ubi_ainf_peb *aeb, *aeb_tmp;
1166	struct ubi_ainf_volume *av;
1167	struct rb_node *rb;
1168
1169	list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1170		list_del(&aeb->u.list);
1171		kmem_cache_free(ai->aeb_slab_cache, aeb);
1172	}
1173	list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1174		list_del(&aeb->u.list);
1175		kmem_cache_free(ai->aeb_slab_cache, aeb);
1176	}
1177	list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1178		list_del(&aeb->u.list);
1179		kmem_cache_free(ai->aeb_slab_cache, aeb);
1180	}
1181	list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1182		list_del(&aeb->u.list);
1183		kmem_cache_free(ai->aeb_slab_cache, aeb);
1184	}
1185
1186	/* Destroy the volume RB-tree */
1187	rb = ai->volumes.rb_node;
1188	while (rb) {
1189		if (rb->rb_left)
1190			rb = rb->rb_left;
1191		else if (rb->rb_right)
1192			rb = rb->rb_right;
1193		else {
1194			av = rb_entry(rb, struct ubi_ainf_volume, rb);
1195
1196			rb = rb_parent(rb);
1197			if (rb) {
1198				if (rb->rb_left == &av->rb)
1199					rb->rb_left = NULL;
1200				else
1201					rb->rb_right = NULL;
1202			}
1203
1204			destroy_av(ai, av);
1205		}
1206	}
1207
1208	if (ai->aeb_slab_cache)
1209		kmem_cache_destroy(ai->aeb_slab_cache);
1210
1211	kfree(ai);
1212}
1213
1214/**
1215 * scan_all - scan entire MTD device.
1216 * @ubi: UBI device description object
1217 * @ai: attach info object
1218 * @start: start scanning at this PEB
1219 *
1220 * This function does full scanning of an MTD device and returns complete
1221 * information about it in form of a "struct ubi_attach_info" object. In case
1222 * of failure, an error code is returned.
1223 */
1224static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1225		    int start)
1226{
1227	int err, pnum;
1228	struct rb_node *rb1, *rb2;
1229	struct ubi_ainf_volume *av;
1230	struct ubi_ainf_peb *aeb;
1231
1232	err = -ENOMEM;
1233
1234	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1235	if (!ech)
1236		return err;
1237
1238	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1239	if (!vidh)
1240		goto out_ech;
1241
1242	for (pnum = start; pnum < ubi->peb_count; pnum++) {
1243		cond_resched();
1244
1245		dbg_gen("process PEB %d", pnum);
1246		err = scan_peb(ubi, ai, pnum, NULL, NULL);
1247		if (err < 0)
1248			goto out_vidh;
1249	}
1250
1251	ubi_msg("scanning is finished");
1252
1253	/* Calculate mean erase counter */
1254	if (ai->ec_count)
1255		ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1256
1257	err = late_analysis(ubi, ai);
1258	if (err)
1259		goto out_vidh;
1260
1261	/*
1262	 * In case of unknown erase counter we use the mean erase counter
1263	 * value.
1264	 */
1265	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1266		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1267			if (aeb->ec == UBI_UNKNOWN)
1268				aeb->ec = ai->mean_ec;
1269	}
1270
1271	list_for_each_entry(aeb, &ai->free, u.list) {
1272		if (aeb->ec == UBI_UNKNOWN)
1273			aeb->ec = ai->mean_ec;
1274	}
1275
1276	list_for_each_entry(aeb, &ai->corr, u.list)
1277		if (aeb->ec == UBI_UNKNOWN)
1278			aeb->ec = ai->mean_ec;
1279
1280	list_for_each_entry(aeb, &ai->erase, u.list)
1281		if (aeb->ec == UBI_UNKNOWN)
1282			aeb->ec = ai->mean_ec;
1283
1284	err = self_check_ai(ubi, ai);
1285	if (err)
1286		goto out_vidh;
1287
1288	ubi_free_vid_hdr(ubi, vidh);
1289	kfree(ech);
1290
1291	return 0;
1292
1293out_vidh:
1294	ubi_free_vid_hdr(ubi, vidh);
1295out_ech:
1296	kfree(ech);
1297	return err;
1298}
1299
1300#ifdef CONFIG_MTD_UBI_FASTMAP
1301
1302/**
1303 * scan_fastmap - try to find a fastmap and attach from it.
1304 * @ubi: UBI device description object
1305 * @ai: attach info object
1306 *
1307 * Returns 0 on success, negative return values indicate an internal
1308 * error.
1309 * UBI_NO_FASTMAP denotes that no fastmap was found.
1310 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1311 */
1312static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info *ai)
1313{
1314	int err, pnum, fm_anchor = -1;
1315	unsigned long long max_sqnum = 0;
1316
1317	err = -ENOMEM;
1318
1319	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1320	if (!ech)
1321		goto out;
1322
1323	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1324	if (!vidh)
1325		goto out_ech;
1326
1327	for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1328		int vol_id = -1;
1329		unsigned long long sqnum = -1;
1330		cond_resched();
1331
1332		dbg_gen("process PEB %d", pnum);
1333		err = scan_peb(ubi, ai, pnum, &vol_id, &sqnum);
1334		if (err < 0)
1335			goto out_vidh;
1336
1337		if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1338			max_sqnum = sqnum;
1339			fm_anchor = pnum;
1340		}
1341	}
1342
1343	ubi_free_vid_hdr(ubi, vidh);
1344	kfree(ech);
1345
1346	if (fm_anchor < 0)
1347		return UBI_NO_FASTMAP;
1348
1349	return ubi_scan_fastmap(ubi, ai, fm_anchor);
1350
1351out_vidh:
1352	ubi_free_vid_hdr(ubi, vidh);
1353out_ech:
1354	kfree(ech);
1355out:
1356	return err;
1357}
1358
1359#endif
1360
1361static struct ubi_attach_info *alloc_ai(const char *slab_name)
1362{
1363	struct ubi_attach_info *ai;
1364
1365	ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1366	if (!ai)
1367		return ai;
1368
1369	INIT_LIST_HEAD(&ai->corr);
1370	INIT_LIST_HEAD(&ai->free);
1371	INIT_LIST_HEAD(&ai->erase);
1372	INIT_LIST_HEAD(&ai->alien);
1373	ai->volumes = RB_ROOT;
1374	ai->aeb_slab_cache = kmem_cache_create(slab_name,
1375					       sizeof(struct ubi_ainf_peb),
1376					       0, 0, NULL);
1377	if (!ai->aeb_slab_cache) {
1378		kfree(ai);
1379		ai = NULL;
1380	}
1381
1382	return ai;
1383}
1384
1385/**
1386 * ubi_attach - attach an MTD device.
1387 * @ubi: UBI device descriptor
1388 * @force_scan: if set to non-zero attach by scanning
1389 *
1390 * This function returns zero in case of success and a negative error code in
1391 * case of failure.
1392 */
1393int ubi_attach(struct ubi_device *ubi, int force_scan)
1394{
1395	int err;
1396	struct ubi_attach_info *ai;
1397
1398	ai = alloc_ai("ubi_aeb_slab_cache");
1399	if (!ai)
1400		return -ENOMEM;
1401
1402#ifdef CONFIG_MTD_UBI_FASTMAP
1403	/* On small flash devices we disable fastmap in any case. */
1404	if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1405		ubi->fm_disabled = 1;
1406		force_scan = 1;
1407	}
1408
1409	if (force_scan)
1410		err = scan_all(ubi, ai, 0);
1411	else {
1412		err = scan_fast(ubi, ai);
1413		if (err > 0) {
1414			if (err != UBI_NO_FASTMAP) {
1415				destroy_ai(ai);
1416				ai = alloc_ai("ubi_aeb_slab_cache2");
1417				if (!ai)
1418					return -ENOMEM;
1419
1420				err = scan_all(ubi, ai, 0);
1421			} else {
1422				err = scan_all(ubi, ai, UBI_FM_MAX_START);
1423			}
1424		}
1425	}
1426#else
1427	err = scan_all(ubi, ai, 0);
1428#endif
1429	if (err)
1430		goto out_ai;
1431
1432	ubi->bad_peb_count = ai->bad_peb_count;
1433	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1434	ubi->corr_peb_count = ai->corr_peb_count;
1435	ubi->max_ec = ai->max_ec;
1436	ubi->mean_ec = ai->mean_ec;
1437	dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1438
1439	err = ubi_read_volume_table(ubi, ai);
1440	if (err)
1441		goto out_ai;
1442
1443	err = ubi_wl_init(ubi, ai);
1444	if (err)
1445		goto out_vtbl;
1446
1447	err = ubi_eba_init(ubi, ai);
1448	if (err)
1449		goto out_wl;
1450
1451#ifdef CONFIG_MTD_UBI_FASTMAP
1452	if (ubi->fm && ubi_dbg_chk_gen(ubi)) {
1453		struct ubi_attach_info *scan_ai;
1454
1455		scan_ai = alloc_ai("ubi_ckh_aeb_slab_cache");
1456		if (!scan_ai) {
1457			err = -ENOMEM;
1458			goto out_wl;
1459		}
1460
1461		err = scan_all(ubi, scan_ai, 0);
1462		if (err) {
1463			destroy_ai(scan_ai);
1464			goto out_wl;
1465		}
1466
1467		err = self_check_eba(ubi, ai, scan_ai);
1468		destroy_ai(scan_ai);
1469
1470		if (err)
1471			goto out_wl;
1472	}
1473#endif
1474
1475	destroy_ai(ai);
1476	return 0;
1477
1478out_wl:
1479	ubi_wl_close(ubi);
1480out_vtbl:
1481	ubi_free_internal_volumes(ubi);
1482	vfree(ubi->vtbl);
1483out_ai:
1484	destroy_ai(ai);
1485	return err;
1486}
1487
1488/**
1489 * self_check_ai - check the attaching information.
1490 * @ubi: UBI device description object
1491 * @ai: attaching information
1492 *
1493 * This function returns zero if the attaching information is all right, and a
1494 * negative error code if not or if an error occurred.
1495 */
1496static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1497{
1498	int pnum, err, vols_found = 0;
1499	struct rb_node *rb1, *rb2;
1500	struct ubi_ainf_volume *av;
1501	struct ubi_ainf_peb *aeb, *last_aeb;
1502	uint8_t *buf;
1503
1504	if (!ubi_dbg_chk_gen(ubi))
1505		return 0;
1506
1507	/*
1508	 * At first, check that attaching information is OK.
1509	 */
1510	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1511		int leb_count = 0;
1512
1513		cond_resched();
1514
1515		vols_found += 1;
1516
1517		if (ai->is_empty) {
1518			ubi_err("bad is_empty flag");
1519			goto bad_av;
1520		}
1521
1522		if (av->vol_id < 0 || av->highest_lnum < 0 ||
1523		    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1524		    av->data_pad < 0 || av->last_data_size < 0) {
1525			ubi_err("negative values");
1526			goto bad_av;
1527		}
1528
1529		if (av->vol_id >= UBI_MAX_VOLUMES &&
1530		    av->vol_id < UBI_INTERNAL_VOL_START) {
1531			ubi_err("bad vol_id");
1532			goto bad_av;
1533		}
1534
1535		if (av->vol_id > ai->highest_vol_id) {
1536			ubi_err("highest_vol_id is %d, but vol_id %d is there",
1537				ai->highest_vol_id, av->vol_id);
1538			goto out;
1539		}
1540
1541		if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1542		    av->vol_type != UBI_STATIC_VOLUME) {
1543			ubi_err("bad vol_type");
1544			goto bad_av;
1545		}
1546
1547		if (av->data_pad > ubi->leb_size / 2) {
1548			ubi_err("bad data_pad");
1549			goto bad_av;
1550		}
1551
1552		last_aeb = NULL;
1553		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1554			cond_resched();
1555
1556			last_aeb = aeb;
1557			leb_count += 1;
1558
1559			if (aeb->pnum < 0 || aeb->ec < 0) {
1560				ubi_err("negative values");
1561				goto bad_aeb;
1562			}
1563
1564			if (aeb->ec < ai->min_ec) {
1565				ubi_err("bad ai->min_ec (%d), %d found",
1566					ai->min_ec, aeb->ec);
1567				goto bad_aeb;
1568			}
1569
1570			if (aeb->ec > ai->max_ec) {
1571				ubi_err("bad ai->max_ec (%d), %d found",
1572					ai->max_ec, aeb->ec);
1573				goto bad_aeb;
1574			}
1575
1576			if (aeb->pnum >= ubi->peb_count) {
1577				ubi_err("too high PEB number %d, total PEBs %d",
1578					aeb->pnum, ubi->peb_count);
1579				goto bad_aeb;
1580			}
1581
1582			if (av->vol_type == UBI_STATIC_VOLUME) {
1583				if (aeb->lnum >= av->used_ebs) {
1584					ubi_err("bad lnum or used_ebs");
1585					goto bad_aeb;
1586				}
1587			} else {
1588				if (av->used_ebs != 0) {
1589					ubi_err("non-zero used_ebs");
1590					goto bad_aeb;
1591				}
1592			}
1593
1594			if (aeb->lnum > av->highest_lnum) {
1595				ubi_err("incorrect highest_lnum or lnum");
1596				goto bad_aeb;
1597			}
1598		}
1599
1600		if (av->leb_count != leb_count) {
1601			ubi_err("bad leb_count, %d objects in the tree",
1602				leb_count);
1603			goto bad_av;
1604		}
1605
1606		if (!last_aeb)
1607			continue;
1608
1609		aeb = last_aeb;
1610
1611		if (aeb->lnum != av->highest_lnum) {
1612			ubi_err("bad highest_lnum");
1613			goto bad_aeb;
1614		}
1615	}
1616
1617	if (vols_found != ai->vols_found) {
1618		ubi_err("bad ai->vols_found %d, should be %d",
1619			ai->vols_found, vols_found);
1620		goto out;
1621	}
1622
1623	/* Check that attaching information is correct */
1624	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1625		last_aeb = NULL;
1626		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1627			int vol_type;
1628
1629			cond_resched();
1630
1631			last_aeb = aeb;
1632
1633			err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1634			if (err && err != UBI_IO_BITFLIPS) {
1635				ubi_err("VID header is not OK (%d)", err);
1636				if (err > 0)
1637					err = -EIO;
1638				return err;
1639			}
1640
1641			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1642				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1643			if (av->vol_type != vol_type) {
1644				ubi_err("bad vol_type");
1645				goto bad_vid_hdr;
1646			}
1647
1648			if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1649				ubi_err("bad sqnum %llu", aeb->sqnum);
1650				goto bad_vid_hdr;
1651			}
1652
1653			if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1654				ubi_err("bad vol_id %d", av->vol_id);
1655				goto bad_vid_hdr;
1656			}
1657
1658			if (av->compat != vidh->compat) {
1659				ubi_err("bad compat %d", vidh->compat);
1660				goto bad_vid_hdr;
1661			}
1662
1663			if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1664				ubi_err("bad lnum %d", aeb->lnum);
1665				goto bad_vid_hdr;
1666			}
1667
1668			if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1669				ubi_err("bad used_ebs %d", av->used_ebs);
1670				goto bad_vid_hdr;
1671			}
1672
1673			if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1674				ubi_err("bad data_pad %d", av->data_pad);
1675				goto bad_vid_hdr;
1676			}
1677		}
1678
1679		if (!last_aeb)
1680			continue;
1681
1682		if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1683			ubi_err("bad highest_lnum %d", av->highest_lnum);
1684			goto bad_vid_hdr;
1685		}
1686
1687		if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1688			ubi_err("bad last_data_size %d", av->last_data_size);
1689			goto bad_vid_hdr;
1690		}
1691	}
1692
1693	/*
1694	 * Make sure that all the physical eraseblocks are in one of the lists
1695	 * or trees.
1696	 */
1697	buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1698	if (!buf)
1699		return -ENOMEM;
1700
1701	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1702		err = ubi_io_is_bad(ubi, pnum);
1703		if (err < 0) {
1704			kfree(buf);
1705			return err;
1706		} else if (err)
1707			buf[pnum] = 1;
1708	}
1709
1710	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1711		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1712			buf[aeb->pnum] = 1;
1713
1714	list_for_each_entry(aeb, &ai->free, u.list)
1715		buf[aeb->pnum] = 1;
1716
1717	list_for_each_entry(aeb, &ai->corr, u.list)
1718		buf[aeb->pnum] = 1;
1719
1720	list_for_each_entry(aeb, &ai->erase, u.list)
1721		buf[aeb->pnum] = 1;
1722
1723	list_for_each_entry(aeb, &ai->alien, u.list)
1724		buf[aeb->pnum] = 1;
1725
1726	err = 0;
1727	for (pnum = 0; pnum < ubi->peb_count; pnum++)
1728		if (!buf[pnum]) {
1729			ubi_err("PEB %d is not referred", pnum);
1730			err = 1;
1731		}
1732
1733	kfree(buf);
1734	if (err)
1735		goto out;
1736	return 0;
1737
1738bad_aeb:
1739	ubi_err("bad attaching information about LEB %d", aeb->lnum);
1740	ubi_dump_aeb(aeb, 0);
1741	ubi_dump_av(av);
1742	goto out;
1743
1744bad_av:
1745	ubi_err("bad attaching information about volume %d", av->vol_id);
1746	ubi_dump_av(av);
1747	goto out;
1748
1749bad_vid_hdr:
1750	ubi_err("bad attaching information about volume %d", av->vol_id);
1751	ubi_dump_av(av);
1752	ubi_dump_vid_hdr(vidh);
1753
1754out:
1755	dump_stack();
1756	return -EINVAL;
1757}