Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
 
  11#include <linux/kernel.h>
  12#include <linux/stddef.h>
  13#include <linux/ioport.h>
  14#include <linux/delay.h>
  15#include <linux/utsname.h>
  16#include <linux/initrd.h>
  17#include <linux/console.h>
  18#include <linux/bootmem.h>
  19#include <linux/seq_file.h>
  20#include <linux/screen_info.h>
 
  21#include <linux/init.h>
  22#include <linux/kexec.h>
  23#include <linux/of_fdt.h>
  24#include <linux/crash_dump.h>
  25#include <linux/root_dev.h>
  26#include <linux/cpu.h>
  27#include <linux/interrupt.h>
  28#include <linux/smp.h>
  29#include <linux/fs.h>
  30#include <linux/proc_fs.h>
  31#include <linux/memblock.h>
 
 
 
 
  32
  33#include <asm/unified.h>
 
  34#include <asm/cpu.h>
  35#include <asm/cputype.h>
 
  36#include <asm/elf.h>
 
 
  37#include <asm/procinfo.h>
 
  38#include <asm/sections.h>
  39#include <asm/setup.h>
  40#include <asm/smp_plat.h>
  41#include <asm/mach-types.h>
  42#include <asm/cacheflush.h>
  43#include <asm/cachetype.h>
  44#include <asm/tlbflush.h>
 
  45
  46#include <asm/prom.h>
  47#include <asm/mach/arch.h>
  48#include <asm/mach/irq.h>
  49#include <asm/mach/time.h>
 
 
  50#include <asm/traps.h>
  51#include <asm/unwind.h>
 
 
  52
  53#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
  54#include "compat.h"
  55#endif
  56#include "atags.h"
  57#include "tcm.h"
  58
  59#ifndef MEM_SIZE
  60#define MEM_SIZE	(16*1024*1024)
  61#endif
  62
  63#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  64char fpe_type[8];
  65
  66static int __init fpe_setup(char *line)
  67{
  68	memcpy(fpe_type, line, 8);
  69	return 1;
  70}
  71
  72__setup("fpe=", fpe_setup);
  73#endif
  74
  75extern void paging_init(struct machine_desc *desc);
  76extern void sanity_check_meminfo(void);
  77extern void reboot_setup(char *str);
 
 
 
  78
  79unsigned int processor_id;
  80EXPORT_SYMBOL(processor_id);
  81unsigned int __machine_arch_type __read_mostly;
  82EXPORT_SYMBOL(__machine_arch_type);
  83unsigned int cacheid __read_mostly;
  84EXPORT_SYMBOL(cacheid);
  85
  86unsigned int __atags_pointer __initdata;
  87
  88unsigned int system_rev;
  89EXPORT_SYMBOL(system_rev);
  90
 
 
 
  91unsigned int system_serial_low;
  92EXPORT_SYMBOL(system_serial_low);
  93
  94unsigned int system_serial_high;
  95EXPORT_SYMBOL(system_serial_high);
  96
  97unsigned int elf_hwcap __read_mostly;
  98EXPORT_SYMBOL(elf_hwcap);
  99
 
 
 
 100
 101#ifdef MULTI_CPU
 102struct processor processor __read_mostly;
 103#endif
 104#ifdef MULTI_TLB
 105struct cpu_tlb_fns cpu_tlb __read_mostly;
 106#endif
 107#ifdef MULTI_USER
 108struct cpu_user_fns cpu_user __read_mostly;
 109#endif
 110#ifdef MULTI_CACHE
 111struct cpu_cache_fns cpu_cache __read_mostly;
 112#endif
 113#ifdef CONFIG_OUTER_CACHE
 114struct outer_cache_fns outer_cache __read_mostly;
 115EXPORT_SYMBOL(outer_cache);
 116#endif
 117
 
 
 
 
 
 
 
 118struct stack {
 119	u32 irq[3];
 120	u32 abt[3];
 121	u32 und[3];
 
 122} ____cacheline_aligned;
 123
 
 124static struct stack stacks[NR_CPUS];
 
 125
 126char elf_platform[ELF_PLATFORM_SIZE];
 127EXPORT_SYMBOL(elf_platform);
 128
 129static const char *cpu_name;
 130static const char *machine_name;
 131static char __initdata cmd_line[COMMAND_LINE_SIZE];
 132struct machine_desc *machine_desc __initdata;
 133
 134static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
 135static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 136#define ENDIANNESS ((char)endian_test.l)
 137
 138DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 139
 140/*
 141 * Standard memory resources
 142 */
 143static struct resource mem_res[] = {
 144	{
 145		.name = "Video RAM",
 146		.start = 0,
 147		.end = 0,
 148		.flags = IORESOURCE_MEM
 149	},
 150	{
 151		.name = "Kernel text",
 152		.start = 0,
 153		.end = 0,
 154		.flags = IORESOURCE_MEM
 155	},
 156	{
 157		.name = "Kernel data",
 158		.start = 0,
 159		.end = 0,
 160		.flags = IORESOURCE_MEM
 161	}
 162};
 163
 164#define video_ram   mem_res[0]
 165#define kernel_code mem_res[1]
 166#define kernel_data mem_res[2]
 167
 168static struct resource io_res[] = {
 169	{
 170		.name = "reserved",
 171		.start = 0x3bc,
 172		.end = 0x3be,
 173		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 174	},
 175	{
 176		.name = "reserved",
 177		.start = 0x378,
 178		.end = 0x37f,
 179		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 180	},
 181	{
 182		.name = "reserved",
 183		.start = 0x278,
 184		.end = 0x27f,
 185		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 186	}
 187};
 188
 189#define lp0 io_res[0]
 190#define lp1 io_res[1]
 191#define lp2 io_res[2]
 192
 193static const char *proc_arch[] = {
 194	"undefined/unknown",
 195	"3",
 196	"4",
 197	"4T",
 198	"5",
 199	"5T",
 200	"5TE",
 201	"5TEJ",
 202	"6TEJ",
 203	"7",
 204	"?(11)",
 205	"?(12)",
 206	"?(13)",
 207	"?(14)",
 208	"?(15)",
 209	"?(16)",
 210	"?(17)",
 211};
 212
 213int cpu_architecture(void)
 
 
 
 
 
 
 214{
 215	int cpu_arch;
 216
 217	if ((read_cpuid_id() & 0x0008f000) == 0) {
 218		cpu_arch = CPU_ARCH_UNKNOWN;
 219	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 220		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 221	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 222		cpu_arch = (read_cpuid_id() >> 16) & 7;
 223		if (cpu_arch)
 224			cpu_arch += CPU_ARCH_ARMv3;
 225	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 226		unsigned int mmfr0;
 227
 228		/* Revised CPUID format. Read the Memory Model Feature
 229		 * Register 0 and check for VMSAv7 or PMSAv7 */
 230		asm("mrc	p15, 0, %0, c0, c1, 4"
 231		    : "=r" (mmfr0));
 232		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 233		    (mmfr0 & 0x000000f0) >= 0x00000030)
 234			cpu_arch = CPU_ARCH_ARMv7;
 235		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 236			 (mmfr0 & 0x000000f0) == 0x00000020)
 237			cpu_arch = CPU_ARCH_ARMv6;
 238		else
 239			cpu_arch = CPU_ARCH_UNKNOWN;
 240	} else
 241		cpu_arch = CPU_ARCH_UNKNOWN;
 242
 243	return cpu_arch;
 244}
 
 
 
 
 
 
 
 
 245
 246static int cpu_has_aliasing_icache(unsigned int arch)
 247{
 248	int aliasing_icache;
 249	unsigned int id_reg, num_sets, line_size;
 250
 
 
 
 
 251	/* arch specifies the register format */
 252	switch (arch) {
 253	case CPU_ARCH_ARMv7:
 254		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
 255		    : /* No output operands */
 256		    : "r" (1));
 257		isb();
 258		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
 259		    : "=r" (id_reg));
 260		line_size = 4 << ((id_reg & 0x7) + 2);
 261		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 262		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 263		break;
 264	case CPU_ARCH_ARMv6:
 265		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 266		break;
 267	default:
 268		/* I-cache aliases will be handled by D-cache aliasing code */
 269		aliasing_icache = 0;
 270	}
 271
 272	return aliasing_icache;
 273}
 274
 275static void __init cacheid_init(void)
 276{
 277	unsigned int cachetype = read_cpuid_cachetype();
 278	unsigned int arch = cpu_architecture();
 279
 280	if (arch >= CPU_ARCH_ARMv6) {
 281		if ((cachetype & (7 << 29)) == 4 << 29) {
 
 
 
 
 282			/* ARMv7 register format */
 283			arch = CPU_ARCH_ARMv7;
 284			cacheid = CACHEID_VIPT_NONALIASING;
 285			if ((cachetype & (3 << 14)) == 1 << 14)
 
 286				cacheid |= CACHEID_ASID_TAGGED;
 
 
 
 
 
 287		} else {
 288			arch = CPU_ARCH_ARMv6;
 289			if (cachetype & (1 << 23))
 290				cacheid = CACHEID_VIPT_ALIASING;
 291			else
 292				cacheid = CACHEID_VIPT_NONALIASING;
 293		}
 294		if (cpu_has_aliasing_icache(arch))
 295			cacheid |= CACHEID_VIPT_I_ALIASING;
 296	} else {
 297		cacheid = CACHEID_VIVT;
 298	}
 299
 300	printk("CPU: %s data cache, %s instruction cache\n",
 301		cache_is_vivt() ? "VIVT" :
 302		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 303		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown",
 304		cache_is_vivt() ? "VIVT" :
 305		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 306		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 
 307		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 308}
 309
 310/*
 311 * These functions re-use the assembly code in head.S, which
 312 * already provide the required functionality.
 313 */
 314extern struct proc_info_list *lookup_processor_type(unsigned int);
 315
 316void __init early_print(const char *str, ...)
 317{
 318	extern void printascii(const char *);
 319	char buf[256];
 320	va_list ap;
 321
 322	va_start(ap, str);
 323	vsnprintf(buf, sizeof(buf), str, ap);
 324	va_end(ap);
 325
 326#ifdef CONFIG_DEBUG_LL
 327	printascii(buf);
 328#endif
 329	printk("%s", buf);
 330}
 331
 332static void __init feat_v6_fixup(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333{
 334	int id = read_cpuid_id();
 
 
 
 335
 336	if ((id & 0xff0f0000) != 0x41070000)
 
 337		return;
 338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 339	/*
 340	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 341	 * see also kuser_get_tls_init.
 342	 */
 343	if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
 
 344		elf_hwcap &= ~HWCAP_TLS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 345}
 346
 347/*
 348 * cpu_init - initialise one CPU.
 349 *
 350 * cpu_init sets up the per-CPU stacks.
 351 */
 352void cpu_init(void)
 353{
 
 354	unsigned int cpu = smp_processor_id();
 355	struct stack *stk = &stacks[cpu];
 356
 357	if (cpu >= NR_CPUS) {
 358		printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
 359		BUG();
 360	}
 361
 
 
 
 
 
 
 362	cpu_proc_init();
 363
 364	/*
 365	 * Define the placement constraint for the inline asm directive below.
 366	 * In Thumb-2, msr with an immediate value is not allowed.
 367	 */
 368#ifdef CONFIG_THUMB2_KERNEL
 369#define PLC	"r"
 370#else
 371#define PLC	"I"
 372#endif
 373
 374	/*
 375	 * setup stacks for re-entrant exception handlers
 376	 */
 377	__asm__ (
 378	"msr	cpsr_c, %1\n\t"
 379	"add	r14, %0, %2\n\t"
 380	"mov	sp, r14\n\t"
 381	"msr	cpsr_c, %3\n\t"
 382	"add	r14, %0, %4\n\t"
 383	"mov	sp, r14\n\t"
 384	"msr	cpsr_c, %5\n\t"
 385	"add	r14, %0, %6\n\t"
 386	"mov	sp, r14\n\t"
 387	"msr	cpsr_c, %7"
 
 
 
 388	    :
 389	    : "r" (stk),
 390	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 391	      "I" (offsetof(struct stack, irq[0])),
 392	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 393	      "I" (offsetof(struct stack, abt[0])),
 394	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 395	      "I" (offsetof(struct stack, und[0])),
 
 
 396	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 397	    : "r14");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398}
 399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 400static void __init setup_processor(void)
 401{
 402	struct proc_info_list *list;
 403
 404	/*
 405	 * locate processor in the list of supported processor
 406	 * types.  The linker builds this table for us from the
 407	 * entries in arch/arm/mm/proc-*.S
 408	 */
 409	list = lookup_processor_type(read_cpuid_id());
 410	if (!list) {
 411		printk("CPU configuration botched (ID %08x), unable "
 412		       "to continue.\n", read_cpuid_id());
 413		while (1);
 414	}
 415
 416	cpu_name = list->cpu_name;
 
 417
 418#ifdef MULTI_CPU
 419	processor = *list->proc;
 420#endif
 421#ifdef MULTI_TLB
 422	cpu_tlb = *list->tlb;
 423#endif
 424#ifdef MULTI_USER
 425	cpu_user = *list->user;
 426#endif
 427#ifdef MULTI_CACHE
 428	cpu_cache = *list->cache;
 429#endif
 430
 431	printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 432	       cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 433	       proc_arch[cpu_architecture()], cr_alignment);
 434
 435	sprintf(init_utsname()->machine, "%s%c", list->arch_name, ENDIANNESS);
 436	sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS);
 
 
 437	elf_hwcap = list->elf_hwcap;
 
 
 
 
 438#ifndef CONFIG_ARM_THUMB
 439	elf_hwcap &= ~HWCAP_THUMB;
 
 
 
 440#endif
 
 441
 442	feat_v6_fixup();
 443
 444	cacheid_init();
 445	cpu_init();
 446}
 447
 448void __init dump_machine_table(void)
 449{
 450	struct machine_desc *p;
 451
 452	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 453	for_each_machine_desc(p)
 454		early_print("%08x\t%s\n", p->nr, p->name);
 455
 456	early_print("\nPlease check your kernel config and/or bootloader.\n");
 457
 458	while (true)
 459		/* can't use cpu_relax() here as it may require MMU setup */;
 460}
 461
 462int __init arm_add_memory(phys_addr_t start, unsigned long size)
 463{
 464	struct membank *bank = &meminfo.bank[meminfo.nr_banks];
 465
 466	if (meminfo.nr_banks >= NR_BANKS) {
 467		printk(KERN_CRIT "NR_BANKS too low, "
 468			"ignoring memory at 0x%08llx\n", (long long)start);
 469		return -EINVAL;
 470	}
 471
 472	/*
 473	 * Ensure that start/size are aligned to a page boundary.
 474	 * Size is appropriately rounded down, start is rounded up.
 475	 */
 476	size -= start & ~PAGE_MASK;
 477	bank->start = PAGE_ALIGN(start);
 478	bank->size  = size & PAGE_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 479
 480	/*
 481	 * Check whether this memory region has non-zero size or
 482	 * invalid node number.
 483	 */
 484	if (bank->size == 0)
 485		return -EINVAL;
 486
 487	meminfo.nr_banks++;
 488	return 0;
 489}
 490
 491/*
 492 * Pick out the memory size.  We look for mem=size@start,
 493 * where start and size are "size[KkMm]"
 494 */
 
 495static int __init early_mem(char *p)
 496{
 497	static int usermem __initdata = 0;
 498	unsigned long size;
 499	phys_addr_t start;
 500	char *endp;
 501
 502	/*
 503	 * If the user specifies memory size, we
 504	 * blow away any automatically generated
 505	 * size.
 506	 */
 507	if (usermem == 0) {
 508		usermem = 1;
 509		meminfo.nr_banks = 0;
 
 510	}
 511
 512	start = PHYS_OFFSET;
 513	size  = memparse(p, &endp);
 514	if (*endp == '@')
 515		start = memparse(endp + 1, NULL);
 516
 517	arm_add_memory(start, size);
 518
 519	return 0;
 520}
 521early_param("mem", early_mem);
 522
 523static void __init
 524setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
 525{
 526#ifdef CONFIG_BLK_DEV_RAM
 527	extern int rd_size, rd_image_start, rd_prompt, rd_doload;
 528
 529	rd_image_start = image_start;
 530	rd_prompt = prompt;
 531	rd_doload = doload;
 532
 533	if (rd_sz)
 534		rd_size = rd_sz;
 535#endif
 536}
 537
 538static void __init request_standard_resources(struct machine_desc *mdesc)
 539{
 540	struct memblock_region *region;
 541	struct resource *res;
 542
 543	kernel_code.start   = virt_to_phys(_text);
 544	kernel_code.end     = virt_to_phys(_etext - 1);
 545	kernel_data.start   = virt_to_phys(_sdata);
 546	kernel_data.end     = virt_to_phys(_end - 1);
 547
 548	for_each_memblock(memory, region) {
 549		res = alloc_bootmem_low(sizeof(*res));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 550		res->name  = "System RAM";
 551		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 552		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 553		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 554
 555		request_resource(&iomem_resource, res);
 556
 557		if (kernel_code.start >= res->start &&
 558		    kernel_code.end <= res->end)
 559			request_resource(res, &kernel_code);
 560		if (kernel_data.start >= res->start &&
 561		    kernel_data.end <= res->end)
 562			request_resource(res, &kernel_data);
 563	}
 564
 565	if (mdesc->video_start) {
 566		video_ram.start = mdesc->video_start;
 567		video_ram.end   = mdesc->video_end;
 568		request_resource(&iomem_resource, &video_ram);
 569	}
 570
 571	/*
 572	 * Some machines don't have the possibility of ever
 573	 * possessing lp0, lp1 or lp2
 574	 */
 575	if (mdesc->reserve_lp0)
 576		request_resource(&ioport_resource, &lp0);
 577	if (mdesc->reserve_lp1)
 578		request_resource(&ioport_resource, &lp1);
 579	if (mdesc->reserve_lp2)
 580		request_resource(&ioport_resource, &lp2);
 581}
 582
 583/*
 584 *  Tag parsing.
 585 *
 586 * This is the new way of passing data to the kernel at boot time.  Rather
 587 * than passing a fixed inflexible structure to the kernel, we pass a list
 588 * of variable-sized tags to the kernel.  The first tag must be a ATAG_CORE
 589 * tag for the list to be recognised (to distinguish the tagged list from
 590 * a param_struct).  The list is terminated with a zero-length tag (this tag
 591 * is not parsed in any way).
 592 */
 593static int __init parse_tag_core(const struct tag *tag)
 594{
 595	if (tag->hdr.size > 2) {
 596		if ((tag->u.core.flags & 1) == 0)
 597			root_mountflags &= ~MS_RDONLY;
 598		ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
 599	}
 600	return 0;
 601}
 602
 603__tagtable(ATAG_CORE, parse_tag_core);
 604
 605static int __init parse_tag_mem32(const struct tag *tag)
 606{
 607	return arm_add_memory(tag->u.mem.start, tag->u.mem.size);
 608}
 609
 610__tagtable(ATAG_MEM, parse_tag_mem32);
 611
 612#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
 613struct screen_info screen_info = {
 614 .orig_video_lines	= 30,
 615 .orig_video_cols	= 80,
 616 .orig_video_mode	= 0,
 617 .orig_video_ega_bx	= 0,
 618 .orig_video_isVGA	= 1,
 619 .orig_video_points	= 8
 620};
 621
 622static int __init parse_tag_videotext(const struct tag *tag)
 623{
 624	screen_info.orig_x            = tag->u.videotext.x;
 625	screen_info.orig_y            = tag->u.videotext.y;
 626	screen_info.orig_video_page   = tag->u.videotext.video_page;
 627	screen_info.orig_video_mode   = tag->u.videotext.video_mode;
 628	screen_info.orig_video_cols   = tag->u.videotext.video_cols;
 629	screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
 630	screen_info.orig_video_lines  = tag->u.videotext.video_lines;
 631	screen_info.orig_video_isVGA  = tag->u.videotext.video_isvga;
 632	screen_info.orig_video_points = tag->u.videotext.video_points;
 633	return 0;
 634}
 635
 636__tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
 637#endif
 638
 639static int __init parse_tag_ramdisk(const struct tag *tag)
 640{
 641	setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
 642		      (tag->u.ramdisk.flags & 2) == 0,
 643		      tag->u.ramdisk.start, tag->u.ramdisk.size);
 644	return 0;
 645}
 646
 647__tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
 648
 649static int __init parse_tag_serialnr(const struct tag *tag)
 650{
 651	system_serial_low = tag->u.serialnr.low;
 652	system_serial_high = tag->u.serialnr.high;
 653	return 0;
 654}
 655
 656__tagtable(ATAG_SERIAL, parse_tag_serialnr);
 
 
 657
 658static int __init parse_tag_revision(const struct tag *tag)
 659{
 660	system_rev = tag->u.revision.rev;
 661	return 0;
 662}
 
 663
 664__tagtable(ATAG_REVISION, parse_tag_revision);
 665
 666static int __init parse_tag_cmdline(const struct tag *tag)
 667{
 668#if defined(CONFIG_CMDLINE_EXTEND)
 669	strlcat(default_command_line, " ", COMMAND_LINE_SIZE);
 670	strlcat(default_command_line, tag->u.cmdline.cmdline,
 671		COMMAND_LINE_SIZE);
 672#elif defined(CONFIG_CMDLINE_FORCE)
 673	pr_warning("Ignoring tag cmdline (using the default kernel command line)\n");
 674#else
 675	strlcpy(default_command_line, tag->u.cmdline.cmdline,
 676		COMMAND_LINE_SIZE);
 677#endif
 678	return 0;
 679}
 680
 681__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
 682
 683/*
 684 * Scan the tag table for this tag, and call its parse function.
 685 * The tag table is built by the linker from all the __tagtable
 686 * declarations.
 687 */
 688static int __init parse_tag(const struct tag *tag)
 689{
 690	extern struct tagtable __tagtable_begin, __tagtable_end;
 691	struct tagtable *t;
 692
 693	for (t = &__tagtable_begin; t < &__tagtable_end; t++)
 694		if (tag->hdr.tag == t->tag) {
 695			t->parse(tag);
 696			break;
 697		}
 
 
 698
 699	return t < &__tagtable_end;
 700}
 
 
 701
 702/*
 703 * Parse all tags in the list, checking both the global and architecture
 704 * specific tag tables.
 705 */
 706static void __init parse_tags(const struct tag *t)
 707{
 708	for (; t->hdr.size; t = tag_next(t))
 709		if (!parse_tag(t))
 710			printk(KERN_WARNING
 711				"Ignoring unrecognised tag 0x%08x\n",
 712				t->hdr.tag);
 713}
 
 714
 
 715/*
 716 * This holds our defaults.
 
 717 */
 718static struct init_tags {
 719	struct tag_header hdr1;
 720	struct tag_core   core;
 721	struct tag_header hdr2;
 722	struct tag_mem32  mem;
 723	struct tag_header hdr3;
 724} init_tags __initdata = {
 725	{ tag_size(tag_core), ATAG_CORE },
 726	{ 1, PAGE_SIZE, 0xff },
 727	{ tag_size(tag_mem32), ATAG_MEM },
 728	{ MEM_SIZE },
 729	{ 0, ATAG_NONE }
 730};
 731
 732static int __init customize_machine(void)
 733{
 734	/* customizes platform devices, or adds new ones */
 735	if (machine_desc->init_machine)
 736		machine_desc->init_machine();
 737	return 0;
 738}
 739arch_initcall(customize_machine);
 740
 741#ifdef CONFIG_KEXEC
 742static inline unsigned long long get_total_mem(void)
 743{
 744	unsigned long total;
 745
 746	total = max_low_pfn - min_low_pfn;
 747	return total << PAGE_SHIFT;
 748}
 749
 750/**
 751 * reserve_crashkernel() - reserves memory are for crash kernel
 752 *
 753 * This function reserves memory area given in "crashkernel=" kernel command
 754 * line parameter. The memory reserved is used by a dump capture kernel when
 755 * primary kernel is crashing.
 756 */
 757static void __init reserve_crashkernel(void)
 758{
 759	unsigned long long crash_size, crash_base;
 760	unsigned long long total_mem;
 761	int ret;
 762
 763	total_mem = get_total_mem();
 764	ret = parse_crashkernel(boot_command_line, total_mem,
 765				&crash_size, &crash_base);
 766	if (ret)
 767		return;
 768
 769	ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 770	if (ret < 0) {
 771		printk(KERN_WARNING "crashkernel reservation failed - "
 772		       "memory is in use (0x%lx)\n", (unsigned long)crash_base);
 773		return;
 774	}
 775
 776	printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
 777	       "for crashkernel (System RAM: %ldMB)\n",
 778	       (unsigned long)(crash_size >> 20),
 779	       (unsigned long)(crash_base >> 20),
 780	       (unsigned long)(total_mem >> 20));
 781
 
 782	crashk_res.start = crash_base;
 783	crashk_res.end = crash_base + crash_size - 1;
 784	insert_resource(&iomem_resource, &crashk_res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785}
 786#else
 787static inline void reserve_crashkernel(void) {}
 788#endif /* CONFIG_KEXEC */
 789
 790static void __init squash_mem_tags(struct tag *tag)
 791{
 792	for (; tag->hdr.size; tag = tag_next(tag))
 793		if (tag->hdr.tag == ATAG_MEM)
 794			tag->hdr.tag = ATAG_NONE;
 795}
 796
 797static struct machine_desc * __init setup_machine_tags(unsigned int nr)
 798{
 799	struct tag *tags = (struct tag *)&init_tags;
 800	struct machine_desc *mdesc = NULL, *p;
 801	char *from = default_command_line;
 802
 803	init_tags.mem.start = PHYS_OFFSET;
 804
 805	/*
 806	 * locate machine in the list of supported machines.
 807	 */
 808	for_each_machine_desc(p)
 809		if (nr == p->nr) {
 810			printk("Machine: %s\n", p->name);
 811			mdesc = p;
 812			break;
 813		}
 814
 815	if (!mdesc) {
 816		early_print("\nError: unrecognized/unsupported machine ID"
 817			" (r1 = 0x%08x).\n\n", nr);
 818		dump_machine_table(); /* does not return */
 819	}
 820
 821	if (__atags_pointer)
 822		tags = phys_to_virt(__atags_pointer);
 823	else if (mdesc->boot_params) {
 824#ifdef CONFIG_MMU
 825		/*
 826		 * We still are executing with a minimal MMU mapping created
 827		 * with the presumption that the machine default for this
 828		 * is located in the first MB of RAM.  Anything else will
 829		 * fault and silently hang the kernel at this point.
 830		 */
 831		if (mdesc->boot_params < PHYS_OFFSET ||
 832		    mdesc->boot_params >= PHYS_OFFSET + SZ_1M) {
 833			printk(KERN_WARNING
 834			       "Default boot params at physical 0x%08lx out of reach\n",
 835			       mdesc->boot_params);
 836		} else
 837#endif
 838		{
 839			tags = phys_to_virt(mdesc->boot_params);
 840		}
 841	}
 842
 843#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
 844	/*
 845	 * If we have the old style parameters, convert them to
 846	 * a tag list.
 847	 */
 848	if (tags->hdr.tag != ATAG_CORE)
 849		convert_to_tag_list(tags);
 850#endif
 851
 852	if (tags->hdr.tag != ATAG_CORE) {
 853#if defined(CONFIG_OF)
 854		/*
 855		 * If CONFIG_OF is set, then assume this is a reasonably
 856		 * modern system that should pass boot parameters
 857		 */
 858		early_print("Warning: Neither atags nor dtb found\n");
 859#endif
 860		tags = (struct tag *)&init_tags;
 861	}
 862
 863	if (mdesc->fixup)
 864		mdesc->fixup(mdesc, tags, &from, &meminfo);
 865
 866	if (tags->hdr.tag == ATAG_CORE) {
 867		if (meminfo.nr_banks != 0)
 868			squash_mem_tags(tags);
 869		save_atags(tags);
 870		parse_tags(tags);
 871	}
 872
 873	/* parse_early_param needs a boot_command_line */
 874	strlcpy(boot_command_line, from, COMMAND_LINE_SIZE);
 875
 876	return mdesc;
 877}
 878
 879
 880void __init setup_arch(char **cmdline_p)
 881{
 882	struct machine_desc *mdesc;
 883
 884	unwind_init();
 885
 886	setup_processor();
 887	mdesc = setup_machine_fdt(__atags_pointer);
 888	if (!mdesc)
 889		mdesc = setup_machine_tags(machine_arch_type);
 
 
 
 
 
 
 
 
 
 
 890	machine_desc = mdesc;
 891	machine_name = mdesc->name;
 
 892
 893	if (mdesc->soft_reboot)
 894		reboot_setup("s");
 895
 896	init_mm.start_code = (unsigned long) _text;
 897	init_mm.end_code   = (unsigned long) _etext;
 898	init_mm.end_data   = (unsigned long) _edata;
 899	init_mm.brk	   = (unsigned long) _end;
 900
 901	/* populate cmd_line too for later use, preserving boot_command_line */
 902	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
 903	*cmdline_p = cmd_line;
 904
 
 
 
 905	parse_early_param();
 906
 907	sanity_check_meminfo();
 908	arm_memblock_init(&meminfo, mdesc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909
 910	paging_init(mdesc);
 911	request_standard_resources(mdesc);
 912
 
 
 
 913	unflatten_device_tree();
 914
 
 
 915#ifdef CONFIG_SMP
 916	if (is_smp())
 
 
 
 
 
 
 917		smp_init_cpus();
 
 
 918#endif
 919	reserve_crashkernel();
 920
 921	tcm_init();
 
 
 
 922
 923#ifdef CONFIG_ZONE_DMA
 924	if (mdesc->dma_zone_size) {
 925		extern unsigned long arm_dma_zone_size;
 926		arm_dma_zone_size = mdesc->dma_zone_size;
 927	}
 928#endif
 929#ifdef CONFIG_MULTI_IRQ_HANDLER
 930	handle_arch_irq = mdesc->handle_irq;
 931#endif
 932
 933#ifdef CONFIG_VT
 934#if defined(CONFIG_VGA_CONSOLE)
 935	conswitchp = &vga_con;
 936#elif defined(CONFIG_DUMMY_CONSOLE)
 937	conswitchp = &dummy_con;
 938#endif
 939#endif
 940	early_trap_init();
 941
 942	if (mdesc->init_early)
 943		mdesc->init_early();
 944}
 945
 946
 947static int __init topology_init(void)
 948{
 949	int cpu;
 950
 951	for_each_possible_cpu(cpu) {
 952		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
 953		cpuinfo->cpu.hotpluggable = 1;
 954		register_cpu(&cpuinfo->cpu, cpu);
 955	}
 956
 957	return 0;
 958}
 959subsys_initcall(topology_init);
 960
 961#ifdef CONFIG_HAVE_PROC_CPU
 962static int __init proc_cpu_init(void)
 963{
 964	struct proc_dir_entry *res;
 965
 966	res = proc_mkdir("cpu", NULL);
 967	if (!res)
 968		return -ENOMEM;
 969	return 0;
 970}
 971fs_initcall(proc_cpu_init);
 972#endif
 973
 974static const char *hwcap_str[] = {
 975	"swp",
 976	"half",
 977	"thumb",
 978	"26bit",
 979	"fastmult",
 980	"fpa",
 981	"vfp",
 982	"edsp",
 983	"java",
 984	"iwmmxt",
 985	"crunch",
 986	"thumbee",
 987	"neon",
 988	"vfpv3",
 989	"vfpv3d16",
 990	"tls",
 991	"vfpv4",
 992	"idiva",
 993	"idivt",
 
 
 
 
 
 
 
 
 
 
 
 
 994	NULL
 995};
 996
 997static int c_show(struct seq_file *m, void *v)
 998{
 999	int i;
1000
1001	seq_printf(m, "Processor\t: %s rev %d (%s)\n",
1002		   cpu_name, read_cpuid_id() & 15, elf_platform);
1003
1004#if defined(CONFIG_SMP)
1005	for_each_online_cpu(i) {
1006		/*
1007		 * glibc reads /proc/cpuinfo to determine the number of
1008		 * online processors, looking for lines beginning with
1009		 * "processor".  Give glibc what it expects.
1010		 */
1011		seq_printf(m, "processor\t: %d\n", i);
1012		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
 
 
 
 
 
1013			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1014			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1015	}
1016#else /* CONFIG_SMP */
1017	seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1018		   loops_per_jiffy / (500000/HZ),
1019		   (loops_per_jiffy / (5000/HZ)) % 100);
1020#endif
1021
1022	/* dump out the processor features */
1023	seq_puts(m, "Features\t: ");
1024
1025	for (i = 0; hwcap_str[i]; i++)
1026		if (elf_hwcap & (1 << i))
1027			seq_printf(m, "%s ", hwcap_str[i]);
1028
1029	seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
1030	seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
1031
1032	if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
1033		/* pre-ARM7 */
1034		seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
1035	} else {
1036		if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
1037			/* ARM7 */
1038			seq_printf(m, "CPU variant\t: 0x%02x\n",
1039				   (read_cpuid_id() >> 16) & 127);
1040		} else {
1041			/* post-ARM7 */
1042			seq_printf(m, "CPU variant\t: 0x%x\n",
1043				   (read_cpuid_id() >> 20) & 15);
 
 
 
 
 
 
 
 
1044		}
1045		seq_printf(m, "CPU part\t: 0x%03x\n",
1046			   (read_cpuid_id() >> 4) & 0xfff);
1047	}
1048	seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
1049
1050	seq_puts(m, "\n");
1051
1052	seq_printf(m, "Hardware\t: %s\n", machine_name);
1053	seq_printf(m, "Revision\t: %04x\n", system_rev);
1054	seq_printf(m, "Serial\t\t: %08x%08x\n",
1055		   system_serial_high, system_serial_low);
1056
1057	return 0;
1058}
1059
1060static void *c_start(struct seq_file *m, loff_t *pos)
1061{
1062	return *pos < 1 ? (void *)1 : NULL;
1063}
1064
1065static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1066{
1067	++*pos;
1068	return NULL;
1069}
1070
1071static void c_stop(struct seq_file *m, void *v)
1072{
1073}
1074
1075const struct seq_operations cpuinfo_op = {
1076	.start	= c_start,
1077	.next	= c_next,
1078	.stop	= c_stop,
1079	.show	= c_show
1080};
v4.17
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/efi.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/stddef.h>
  14#include <linux/ioport.h>
  15#include <linux/delay.h>
  16#include <linux/utsname.h>
  17#include <linux/initrd.h>
  18#include <linux/console.h>
  19#include <linux/bootmem.h>
  20#include <linux/seq_file.h>
  21#include <linux/screen_info.h>
  22#include <linux/of_platform.h>
  23#include <linux/init.h>
  24#include <linux/kexec.h>
  25#include <linux/of_fdt.h>
 
 
  26#include <linux/cpu.h>
  27#include <linux/interrupt.h>
  28#include <linux/smp.h>
 
  29#include <linux/proc_fs.h>
  30#include <linux/memblock.h>
  31#include <linux/bug.h>
  32#include <linux/compiler.h>
  33#include <linux/sort.h>
  34#include <linux/psci.h>
  35
  36#include <asm/unified.h>
  37#include <asm/cp15.h>
  38#include <asm/cpu.h>
  39#include <asm/cputype.h>
  40#include <asm/efi.h>
  41#include <asm/elf.h>
  42#include <asm/early_ioremap.h>
  43#include <asm/fixmap.h>
  44#include <asm/procinfo.h>
  45#include <asm/psci.h>
  46#include <asm/sections.h>
  47#include <asm/setup.h>
  48#include <asm/smp_plat.h>
  49#include <asm/mach-types.h>
  50#include <asm/cacheflush.h>
  51#include <asm/cachetype.h>
  52#include <asm/tlbflush.h>
  53#include <asm/xen/hypervisor.h>
  54
  55#include <asm/prom.h>
  56#include <asm/mach/arch.h>
  57#include <asm/mach/irq.h>
  58#include <asm/mach/time.h>
  59#include <asm/system_info.h>
  60#include <asm/system_misc.h>
  61#include <asm/traps.h>
  62#include <asm/unwind.h>
  63#include <asm/memblock.h>
  64#include <asm/virt.h>
  65
 
 
 
  66#include "atags.h"
 
  67
 
 
 
  68
  69#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  70char fpe_type[8];
  71
  72static int __init fpe_setup(char *line)
  73{
  74	memcpy(fpe_type, line, 8);
  75	return 1;
  76}
  77
  78__setup("fpe=", fpe_setup);
  79#endif
  80
  81extern void init_default_cache_policy(unsigned long);
  82extern void paging_init(const struct machine_desc *desc);
  83extern void early_mm_init(const struct machine_desc *);
  84extern void adjust_lowmem_bounds(void);
  85extern enum reboot_mode reboot_mode;
  86extern void setup_dma_zone(const struct machine_desc *desc);
  87
  88unsigned int processor_id;
  89EXPORT_SYMBOL(processor_id);
  90unsigned int __machine_arch_type __read_mostly;
  91EXPORT_SYMBOL(__machine_arch_type);
  92unsigned int cacheid __read_mostly;
  93EXPORT_SYMBOL(cacheid);
  94
  95unsigned int __atags_pointer __initdata;
  96
  97unsigned int system_rev;
  98EXPORT_SYMBOL(system_rev);
  99
 100const char *system_serial;
 101EXPORT_SYMBOL(system_serial);
 102
 103unsigned int system_serial_low;
 104EXPORT_SYMBOL(system_serial_low);
 105
 106unsigned int system_serial_high;
 107EXPORT_SYMBOL(system_serial_high);
 108
 109unsigned int elf_hwcap __read_mostly;
 110EXPORT_SYMBOL(elf_hwcap);
 111
 112unsigned int elf_hwcap2 __read_mostly;
 113EXPORT_SYMBOL(elf_hwcap2);
 114
 115
 116#ifdef MULTI_CPU
 117struct processor processor __ro_after_init;
 118#endif
 119#ifdef MULTI_TLB
 120struct cpu_tlb_fns cpu_tlb __ro_after_init;
 121#endif
 122#ifdef MULTI_USER
 123struct cpu_user_fns cpu_user __ro_after_init;
 124#endif
 125#ifdef MULTI_CACHE
 126struct cpu_cache_fns cpu_cache __ro_after_init;
 127#endif
 128#ifdef CONFIG_OUTER_CACHE
 129struct outer_cache_fns outer_cache __ro_after_init;
 130EXPORT_SYMBOL(outer_cache);
 131#endif
 132
 133/*
 134 * Cached cpu_architecture() result for use by assembler code.
 135 * C code should use the cpu_architecture() function instead of accessing this
 136 * variable directly.
 137 */
 138int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 139
 140struct stack {
 141	u32 irq[3];
 142	u32 abt[3];
 143	u32 und[3];
 144	u32 fiq[3];
 145} ____cacheline_aligned;
 146
 147#ifndef CONFIG_CPU_V7M
 148static struct stack stacks[NR_CPUS];
 149#endif
 150
 151char elf_platform[ELF_PLATFORM_SIZE];
 152EXPORT_SYMBOL(elf_platform);
 153
 154static const char *cpu_name;
 155static const char *machine_name;
 156static char __initdata cmd_line[COMMAND_LINE_SIZE];
 157const struct machine_desc *machine_desc __initdata;
 158
 
 159static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 160#define ENDIANNESS ((char)endian_test.l)
 161
 162DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 163
 164/*
 165 * Standard memory resources
 166 */
 167static struct resource mem_res[] = {
 168	{
 169		.name = "Video RAM",
 170		.start = 0,
 171		.end = 0,
 172		.flags = IORESOURCE_MEM
 173	},
 174	{
 175		.name = "Kernel code",
 176		.start = 0,
 177		.end = 0,
 178		.flags = IORESOURCE_SYSTEM_RAM
 179	},
 180	{
 181		.name = "Kernel data",
 182		.start = 0,
 183		.end = 0,
 184		.flags = IORESOURCE_SYSTEM_RAM
 185	}
 186};
 187
 188#define video_ram   mem_res[0]
 189#define kernel_code mem_res[1]
 190#define kernel_data mem_res[2]
 191
 192static struct resource io_res[] = {
 193	{
 194		.name = "reserved",
 195		.start = 0x3bc,
 196		.end = 0x3be,
 197		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 198	},
 199	{
 200		.name = "reserved",
 201		.start = 0x378,
 202		.end = 0x37f,
 203		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 204	},
 205	{
 206		.name = "reserved",
 207		.start = 0x278,
 208		.end = 0x27f,
 209		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 210	}
 211};
 212
 213#define lp0 io_res[0]
 214#define lp1 io_res[1]
 215#define lp2 io_res[2]
 216
 217static const char *proc_arch[] = {
 218	"undefined/unknown",
 219	"3",
 220	"4",
 221	"4T",
 222	"5",
 223	"5T",
 224	"5TE",
 225	"5TEJ",
 226	"6TEJ",
 227	"7",
 228	"7M",
 229	"?(12)",
 230	"?(13)",
 231	"?(14)",
 232	"?(15)",
 233	"?(16)",
 234	"?(17)",
 235};
 236
 237#ifdef CONFIG_CPU_V7M
 238static int __get_cpu_architecture(void)
 239{
 240	return CPU_ARCH_ARMv7M;
 241}
 242#else
 243static int __get_cpu_architecture(void)
 244{
 245	int cpu_arch;
 246
 247	if ((read_cpuid_id() & 0x0008f000) == 0) {
 248		cpu_arch = CPU_ARCH_UNKNOWN;
 249	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 250		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 251	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 252		cpu_arch = (read_cpuid_id() >> 16) & 7;
 253		if (cpu_arch)
 254			cpu_arch += CPU_ARCH_ARMv3;
 255	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 
 
 256		/* Revised CPUID format. Read the Memory Model Feature
 257		 * Register 0 and check for VMSAv7 or PMSAv7 */
 258		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
 
 259		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 260		    (mmfr0 & 0x000000f0) >= 0x00000030)
 261			cpu_arch = CPU_ARCH_ARMv7;
 262		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 263			 (mmfr0 & 0x000000f0) == 0x00000020)
 264			cpu_arch = CPU_ARCH_ARMv6;
 265		else
 266			cpu_arch = CPU_ARCH_UNKNOWN;
 267	} else
 268		cpu_arch = CPU_ARCH_UNKNOWN;
 269
 270	return cpu_arch;
 271}
 272#endif
 273
 274int __pure cpu_architecture(void)
 275{
 276	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 277
 278	return __cpu_architecture;
 279}
 280
 281static int cpu_has_aliasing_icache(unsigned int arch)
 282{
 283	int aliasing_icache;
 284	unsigned int id_reg, num_sets, line_size;
 285
 286	/* PIPT caches never alias. */
 287	if (icache_is_pipt())
 288		return 0;
 289
 290	/* arch specifies the register format */
 291	switch (arch) {
 292	case CPU_ARCH_ARMv7:
 293		set_csselr(CSSELR_ICACHE | CSSELR_L1);
 
 
 294		isb();
 295		id_reg = read_ccsidr();
 
 296		line_size = 4 << ((id_reg & 0x7) + 2);
 297		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 298		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 299		break;
 300	case CPU_ARCH_ARMv6:
 301		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 302		break;
 303	default:
 304		/* I-cache aliases will be handled by D-cache aliasing code */
 305		aliasing_icache = 0;
 306	}
 307
 308	return aliasing_icache;
 309}
 310
 311static void __init cacheid_init(void)
 312{
 
 313	unsigned int arch = cpu_architecture();
 314
 315	if (arch >= CPU_ARCH_ARMv6) {
 316		unsigned int cachetype = read_cpuid_cachetype();
 317
 318		if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
 319			cacheid = 0;
 320		} else if ((cachetype & (7 << 29)) == 4 << 29) {
 321			/* ARMv7 register format */
 322			arch = CPU_ARCH_ARMv7;
 323			cacheid = CACHEID_VIPT_NONALIASING;
 324			switch (cachetype & (3 << 14)) {
 325			case (1 << 14):
 326				cacheid |= CACHEID_ASID_TAGGED;
 327				break;
 328			case (3 << 14):
 329				cacheid |= CACHEID_PIPT;
 330				break;
 331			}
 332		} else {
 333			arch = CPU_ARCH_ARMv6;
 334			if (cachetype & (1 << 23))
 335				cacheid = CACHEID_VIPT_ALIASING;
 336			else
 337				cacheid = CACHEID_VIPT_NONALIASING;
 338		}
 339		if (cpu_has_aliasing_icache(arch))
 340			cacheid |= CACHEID_VIPT_I_ALIASING;
 341	} else {
 342		cacheid = CACHEID_VIVT;
 343	}
 344
 345	pr_info("CPU: %s data cache, %s instruction cache\n",
 346		cache_is_vivt() ? "VIVT" :
 347		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 348		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 349		cache_is_vivt() ? "VIVT" :
 350		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 351		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 352		icache_is_pipt() ? "PIPT" :
 353		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 354}
 355
 356/*
 357 * These functions re-use the assembly code in head.S, which
 358 * already provide the required functionality.
 359 */
 360extern struct proc_info_list *lookup_processor_type(unsigned int);
 361
 362void __init early_print(const char *str, ...)
 363{
 364	extern void printascii(const char *);
 365	char buf[256];
 366	va_list ap;
 367
 368	va_start(ap, str);
 369	vsnprintf(buf, sizeof(buf), str, ap);
 370	va_end(ap);
 371
 372#ifdef CONFIG_DEBUG_LL
 373	printascii(buf);
 374#endif
 375	printk("%s", buf);
 376}
 377
 378#ifdef CONFIG_ARM_PATCH_IDIV
 379
 380static inline u32 __attribute_const__ sdiv_instruction(void)
 381{
 382	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 383		/* "sdiv r0, r0, r1" */
 384		u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
 385		return __opcode_to_mem_thumb32(insn);
 386	}
 387
 388	/* "sdiv r0, r0, r1" */
 389	return __opcode_to_mem_arm(0xe710f110);
 390}
 391
 392static inline u32 __attribute_const__ udiv_instruction(void)
 393{
 394	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 395		/* "udiv r0, r0, r1" */
 396		u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
 397		return __opcode_to_mem_thumb32(insn);
 398	}
 399
 400	/* "udiv r0, r0, r1" */
 401	return __opcode_to_mem_arm(0xe730f110);
 402}
 403
 404static inline u32 __attribute_const__ bx_lr_instruction(void)
 405{
 406	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 407		/* "bx lr; nop" */
 408		u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
 409		return __opcode_to_mem_thumb32(insn);
 410	}
 411
 412	/* "bx lr" */
 413	return __opcode_to_mem_arm(0xe12fff1e);
 414}
 415
 416static void __init patch_aeabi_idiv(void)
 417{
 418	extern void __aeabi_uidiv(void);
 419	extern void __aeabi_idiv(void);
 420	uintptr_t fn_addr;
 421	unsigned int mask;
 422
 423	mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
 424	if (!(elf_hwcap & mask))
 425		return;
 426
 427	pr_info("CPU: div instructions available: patching division code\n");
 428
 429	fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
 430	asm ("" : "+g" (fn_addr));
 431	((u32 *)fn_addr)[0] = udiv_instruction();
 432	((u32 *)fn_addr)[1] = bx_lr_instruction();
 433	flush_icache_range(fn_addr, fn_addr + 8);
 434
 435	fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
 436	asm ("" : "+g" (fn_addr));
 437	((u32 *)fn_addr)[0] = sdiv_instruction();
 438	((u32 *)fn_addr)[1] = bx_lr_instruction();
 439	flush_icache_range(fn_addr, fn_addr + 8);
 440}
 441
 442#else
 443static inline void patch_aeabi_idiv(void) { }
 444#endif
 445
 446static void __init cpuid_init_hwcaps(void)
 447{
 448	int block;
 449	u32 isar5;
 450
 451	if (cpu_architecture() < CPU_ARCH_ARMv7)
 452		return;
 453
 454	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
 455	if (block >= 2)
 456		elf_hwcap |= HWCAP_IDIVA;
 457	if (block >= 1)
 458		elf_hwcap |= HWCAP_IDIVT;
 459
 460	/* LPAE implies atomic ldrd/strd instructions */
 461	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 462	if (block >= 5)
 463		elf_hwcap |= HWCAP_LPAE;
 464
 465	/* check for supported v8 Crypto instructions */
 466	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
 467
 468	block = cpuid_feature_extract_field(isar5, 4);
 469	if (block >= 2)
 470		elf_hwcap2 |= HWCAP2_PMULL;
 471	if (block >= 1)
 472		elf_hwcap2 |= HWCAP2_AES;
 473
 474	block = cpuid_feature_extract_field(isar5, 8);
 475	if (block >= 1)
 476		elf_hwcap2 |= HWCAP2_SHA1;
 477
 478	block = cpuid_feature_extract_field(isar5, 12);
 479	if (block >= 1)
 480		elf_hwcap2 |= HWCAP2_SHA2;
 481
 482	block = cpuid_feature_extract_field(isar5, 16);
 483	if (block >= 1)
 484		elf_hwcap2 |= HWCAP2_CRC32;
 485}
 486
 487static void __init elf_hwcap_fixup(void)
 488{
 489	unsigned id = read_cpuid_id();
 490
 491	/*
 492	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 493	 * see also kuser_get_tls_init.
 494	 */
 495	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
 496	    ((id >> 20) & 3) == 0) {
 497		elf_hwcap &= ~HWCAP_TLS;
 498		return;
 499	}
 500
 501	/* Verify if CPUID scheme is implemented */
 502	if ((id & 0x000f0000) != 0x000f0000)
 503		return;
 504
 505	/*
 506	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
 507	 * avoid advertising SWP; it may not be atomic with
 508	 * multiprocessing cores.
 509	 */
 510	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
 511	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
 512	     cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
 513		elf_hwcap &= ~HWCAP_SWP;
 514}
 515
 516/*
 517 * cpu_init - initialise one CPU.
 518 *
 519 * cpu_init sets up the per-CPU stacks.
 520 */
 521void notrace cpu_init(void)
 522{
 523#ifndef CONFIG_CPU_V7M
 524	unsigned int cpu = smp_processor_id();
 525	struct stack *stk = &stacks[cpu];
 526
 527	if (cpu >= NR_CPUS) {
 528		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 529		BUG();
 530	}
 531
 532	/*
 533	 * This only works on resume and secondary cores. For booting on the
 534	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 535	 */
 536	set_my_cpu_offset(per_cpu_offset(cpu));
 537
 538	cpu_proc_init();
 539
 540	/*
 541	 * Define the placement constraint for the inline asm directive below.
 542	 * In Thumb-2, msr with an immediate value is not allowed.
 543	 */
 544#ifdef CONFIG_THUMB2_KERNEL
 545#define PLC	"r"
 546#else
 547#define PLC	"I"
 548#endif
 549
 550	/*
 551	 * setup stacks for re-entrant exception handlers
 552	 */
 553	__asm__ (
 554	"msr	cpsr_c, %1\n\t"
 555	"add	r14, %0, %2\n\t"
 556	"mov	sp, r14\n\t"
 557	"msr	cpsr_c, %3\n\t"
 558	"add	r14, %0, %4\n\t"
 559	"mov	sp, r14\n\t"
 560	"msr	cpsr_c, %5\n\t"
 561	"add	r14, %0, %6\n\t"
 562	"mov	sp, r14\n\t"
 563	"msr	cpsr_c, %7\n\t"
 564	"add	r14, %0, %8\n\t"
 565	"mov	sp, r14\n\t"
 566	"msr	cpsr_c, %9"
 567	    :
 568	    : "r" (stk),
 569	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 570	      "I" (offsetof(struct stack, irq[0])),
 571	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 572	      "I" (offsetof(struct stack, abt[0])),
 573	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 574	      "I" (offsetof(struct stack, und[0])),
 575	      PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
 576	      "I" (offsetof(struct stack, fiq[0])),
 577	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 578	    : "r14");
 579#endif
 580}
 581
 582u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 583
 584void __init smp_setup_processor_id(void)
 585{
 586	int i;
 587	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 588	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 589
 590	cpu_logical_map(0) = cpu;
 591	for (i = 1; i < nr_cpu_ids; ++i)
 592		cpu_logical_map(i) = i == cpu ? 0 : i;
 593
 594	/*
 595	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 596	 * using percpu variable early, for example, lockdep will
 597	 * access percpu variable inside lock_release
 598	 */
 599	set_my_cpu_offset(0);
 600
 601	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 602}
 603
 604struct mpidr_hash mpidr_hash;
 605#ifdef CONFIG_SMP
 606/**
 607 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 608 *			  level in order to build a linear index from an
 609 *			  MPIDR value. Resulting algorithm is a collision
 610 *			  free hash carried out through shifting and ORing
 611 */
 612static void __init smp_build_mpidr_hash(void)
 613{
 614	u32 i, affinity;
 615	u32 fs[3], bits[3], ls, mask = 0;
 616	/*
 617	 * Pre-scan the list of MPIDRS and filter out bits that do
 618	 * not contribute to affinity levels, ie they never toggle.
 619	 */
 620	for_each_possible_cpu(i)
 621		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 622	pr_debug("mask of set bits 0x%x\n", mask);
 623	/*
 624	 * Find and stash the last and first bit set at all affinity levels to
 625	 * check how many bits are required to represent them.
 626	 */
 627	for (i = 0; i < 3; i++) {
 628		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 629		/*
 630		 * Find the MSB bit and LSB bits position
 631		 * to determine how many bits are required
 632		 * to express the affinity level.
 633		 */
 634		ls = fls(affinity);
 635		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 636		bits[i] = ls - fs[i];
 637	}
 638	/*
 639	 * An index can be created from the MPIDR by isolating the
 640	 * significant bits at each affinity level and by shifting
 641	 * them in order to compress the 24 bits values space to a
 642	 * compressed set of values. This is equivalent to hashing
 643	 * the MPIDR through shifting and ORing. It is a collision free
 644	 * hash though not minimal since some levels might contain a number
 645	 * of CPUs that is not an exact power of 2 and their bit
 646	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 647	 */
 648	mpidr_hash.shift_aff[0] = fs[0];
 649	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 650	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 651						(bits[1] + bits[0]);
 652	mpidr_hash.mask = mask;
 653	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 654	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 655				mpidr_hash.shift_aff[0],
 656				mpidr_hash.shift_aff[1],
 657				mpidr_hash.shift_aff[2],
 658				mpidr_hash.mask,
 659				mpidr_hash.bits);
 660	/*
 661	 * 4x is an arbitrary value used to warn on a hash table much bigger
 662	 * than expected on most systems.
 663	 */
 664	if (mpidr_hash_size() > 4 * num_possible_cpus())
 665		pr_warn("Large number of MPIDR hash buckets detected\n");
 666	sync_cache_w(&mpidr_hash);
 667}
 668#endif
 669
 670static void __init setup_processor(void)
 671{
 672	struct proc_info_list *list;
 673
 674	/*
 675	 * locate processor in the list of supported processor
 676	 * types.  The linker builds this table for us from the
 677	 * entries in arch/arm/mm/proc-*.S
 678	 */
 679	list = lookup_processor_type(read_cpuid_id());
 680	if (!list) {
 681		pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
 682		       read_cpuid_id());
 683		while (1);
 684	}
 685
 686	cpu_name = list->cpu_name;
 687	__cpu_architecture = __get_cpu_architecture();
 688
 689#ifdef MULTI_CPU
 690	processor = *list->proc;
 691#endif
 692#ifdef MULTI_TLB
 693	cpu_tlb = *list->tlb;
 694#endif
 695#ifdef MULTI_USER
 696	cpu_user = *list->user;
 697#endif
 698#ifdef MULTI_CACHE
 699	cpu_cache = *list->cache;
 700#endif
 701
 702	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 703		cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 704		proc_arch[cpu_architecture()], get_cr());
 705
 706	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 707		 list->arch_name, ENDIANNESS);
 708	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 709		 list->elf_name, ENDIANNESS);
 710	elf_hwcap = list->elf_hwcap;
 711
 712	cpuid_init_hwcaps();
 713	patch_aeabi_idiv();
 714
 715#ifndef CONFIG_ARM_THUMB
 716	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 717#endif
 718#ifdef CONFIG_MMU
 719	init_default_cache_policy(list->__cpu_mm_mmu_flags);
 720#endif
 721	erratum_a15_798181_init();
 722
 723	elf_hwcap_fixup();
 724
 725	cacheid_init();
 726	cpu_init();
 727}
 728
 729void __init dump_machine_table(void)
 730{
 731	const struct machine_desc *p;
 732
 733	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 734	for_each_machine_desc(p)
 735		early_print("%08x\t%s\n", p->nr, p->name);
 736
 737	early_print("\nPlease check your kernel config and/or bootloader.\n");
 738
 739	while (true)
 740		/* can't use cpu_relax() here as it may require MMU setup */;
 741}
 742
 743int __init arm_add_memory(u64 start, u64 size)
 744{
 745	u64 aligned_start;
 
 
 
 
 
 
 746
 747	/*
 748	 * Ensure that start/size are aligned to a page boundary.
 749	 * Size is rounded down, start is rounded up.
 750	 */
 751	aligned_start = PAGE_ALIGN(start);
 752	if (aligned_start > start + size)
 753		size = 0;
 754	else
 755		size -= aligned_start - start;
 756
 757#ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
 758	if (aligned_start > ULONG_MAX) {
 759		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 760			(long long)start);
 761		return -EINVAL;
 762	}
 763
 764	if (aligned_start + size > ULONG_MAX) {
 765		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 766			(long long)start);
 767		/*
 768		 * To ensure bank->start + bank->size is representable in
 769		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 770		 * This means we lose a page after masking.
 771		 */
 772		size = ULONG_MAX - aligned_start;
 773	}
 774#endif
 775
 776	if (aligned_start < PHYS_OFFSET) {
 777		if (aligned_start + size <= PHYS_OFFSET) {
 778			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 779				aligned_start, aligned_start + size);
 780			return -EINVAL;
 781		}
 782
 783		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 784			aligned_start, (u64)PHYS_OFFSET);
 785
 786		size -= PHYS_OFFSET - aligned_start;
 787		aligned_start = PHYS_OFFSET;
 788	}
 789
 790	start = aligned_start;
 791	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 792
 793	/*
 794	 * Check whether this memory region has non-zero size or
 795	 * invalid node number.
 796	 */
 797	if (size == 0)
 798		return -EINVAL;
 799
 800	memblock_add(start, size);
 801	return 0;
 802}
 803
 804/*
 805 * Pick out the memory size.  We look for mem=size@start,
 806 * where start and size are "size[KkMm]"
 807 */
 808
 809static int __init early_mem(char *p)
 810{
 811	static int usermem __initdata = 0;
 812	u64 size;
 813	u64 start;
 814	char *endp;
 815
 816	/*
 817	 * If the user specifies memory size, we
 818	 * blow away any automatically generated
 819	 * size.
 820	 */
 821	if (usermem == 0) {
 822		usermem = 1;
 823		memblock_remove(memblock_start_of_DRAM(),
 824			memblock_end_of_DRAM() - memblock_start_of_DRAM());
 825	}
 826
 827	start = PHYS_OFFSET;
 828	size  = memparse(p, &endp);
 829	if (*endp == '@')
 830		start = memparse(endp + 1, NULL);
 831
 832	arm_add_memory(start, size);
 833
 834	return 0;
 835}
 836early_param("mem", early_mem);
 837
 838static void __init request_standard_resources(const struct machine_desc *mdesc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 839{
 840	struct memblock_region *region;
 841	struct resource *res;
 842
 843	kernel_code.start   = virt_to_phys(_text);
 844	kernel_code.end     = virt_to_phys(__init_begin - 1);
 845	kernel_data.start   = virt_to_phys(_sdata);
 846	kernel_data.end     = virt_to_phys(_end - 1);
 847
 848	for_each_memblock(memory, region) {
 849		phys_addr_t start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 850		phys_addr_t end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 851		unsigned long boot_alias_start;
 852
 853		/*
 854		 * Some systems have a special memory alias which is only
 855		 * used for booting.  We need to advertise this region to
 856		 * kexec-tools so they know where bootable RAM is located.
 857		 */
 858		boot_alias_start = phys_to_idmap(start);
 859		if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
 860			res = memblock_virt_alloc(sizeof(*res), 0);
 861			res->name = "System RAM (boot alias)";
 862			res->start = boot_alias_start;
 863			res->end = phys_to_idmap(end);
 864			res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 865			request_resource(&iomem_resource, res);
 866		}
 867
 868		res = memblock_virt_alloc(sizeof(*res), 0);
 869		res->name  = "System RAM";
 870		res->start = start;
 871		res->end = end;
 872		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 873
 874		request_resource(&iomem_resource, res);
 875
 876		if (kernel_code.start >= res->start &&
 877		    kernel_code.end <= res->end)
 878			request_resource(res, &kernel_code);
 879		if (kernel_data.start >= res->start &&
 880		    kernel_data.end <= res->end)
 881			request_resource(res, &kernel_data);
 882	}
 883
 884	if (mdesc->video_start) {
 885		video_ram.start = mdesc->video_start;
 886		video_ram.end   = mdesc->video_end;
 887		request_resource(&iomem_resource, &video_ram);
 888	}
 889
 890	/*
 891	 * Some machines don't have the possibility of ever
 892	 * possessing lp0, lp1 or lp2
 893	 */
 894	if (mdesc->reserve_lp0)
 895		request_resource(&ioport_resource, &lp0);
 896	if (mdesc->reserve_lp1)
 897		request_resource(&ioport_resource, &lp1);
 898	if (mdesc->reserve_lp2)
 899		request_resource(&ioport_resource, &lp2);
 900}
 901
 902#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
 903    defined(CONFIG_EFI)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 904struct screen_info screen_info = {
 905 .orig_video_lines	= 30,
 906 .orig_video_cols	= 80,
 907 .orig_video_mode	= 0,
 908 .orig_video_ega_bx	= 0,
 909 .orig_video_isVGA	= 1,
 910 .orig_video_points	= 8
 911};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912#endif
 913
 914static int __init customize_machine(void)
 
 
 
 
 
 
 
 
 
 
 915{
 916	/*
 917	 * customizes platform devices, or adds new ones
 918	 * On DT based machines, we fall back to populating the
 919	 * machine from the device tree, if no callback is provided,
 920	 * otherwise we would always need an init_machine callback.
 921	 */
 922	if (machine_desc->init_machine)
 923		machine_desc->init_machine();
 924
 
 
 
 925	return 0;
 926}
 927arch_initcall(customize_machine);
 928
 929static int __init init_machine_late(void)
 
 
 930{
 931	struct device_node *root;
 932	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 933
 934	if (machine_desc->init_late)
 935		machine_desc->init_late();
 
 
 
 
 
 
 
 936
 937	root = of_find_node_by_path("/");
 938	if (root) {
 939		ret = of_property_read_string(root, "serial-number",
 940					      &system_serial);
 941		if (ret)
 942			system_serial = NULL;
 943	}
 944
 945	if (!system_serial)
 946		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
 947					  system_serial_high,
 948					  system_serial_low);
 949
 950	return 0;
 
 
 
 
 
 
 
 
 
 
 951}
 952late_initcall(init_machine_late);
 953
 954#ifdef CONFIG_KEXEC
 955/*
 956 * The crash region must be aligned to 128MB to avoid
 957 * zImage relocating below the reserved region.
 958 */
 959#define CRASH_ALIGN	(128 << 20)
 
 
 
 
 
 
 
 
 
 
 
 
 960
 
 
 
 
 
 
 
 
 
 
 961static inline unsigned long long get_total_mem(void)
 962{
 963	unsigned long total;
 964
 965	total = max_low_pfn - min_low_pfn;
 966	return total << PAGE_SHIFT;
 967}
 968
 969/**
 970 * reserve_crashkernel() - reserves memory are for crash kernel
 971 *
 972 * This function reserves memory area given in "crashkernel=" kernel command
 973 * line parameter. The memory reserved is used by a dump capture kernel when
 974 * primary kernel is crashing.
 975 */
 976static void __init reserve_crashkernel(void)
 977{
 978	unsigned long long crash_size, crash_base;
 979	unsigned long long total_mem;
 980	int ret;
 981
 982	total_mem = get_total_mem();
 983	ret = parse_crashkernel(boot_command_line, total_mem,
 984				&crash_size, &crash_base);
 985	if (ret)
 986		return;
 987
 988	if (crash_base <= 0) {
 989		unsigned long long crash_max = idmap_to_phys((u32)~0);
 990		unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
 991		if (crash_max > lowmem_max)
 992			crash_max = lowmem_max;
 993		crash_base = memblock_find_in_range(CRASH_ALIGN, crash_max,
 994						    crash_size, CRASH_ALIGN);
 995		if (!crash_base) {
 996			pr_err("crashkernel reservation failed - No suitable area found.\n");
 997			return;
 998		}
 999	} else {
1000		unsigned long long start;
1001
1002		start = memblock_find_in_range(crash_base,
1003					       crash_base + crash_size,
1004					       crash_size, SECTION_SIZE);
1005		if (start != crash_base) {
1006			pr_err("crashkernel reservation failed - memory is in use.\n");
1007			return;
1008		}
1009	}
1010
1011	ret = memblock_reserve(crash_base, crash_size);
1012	if (ret < 0) {
1013		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
1014			(unsigned long)crash_base);
1015		return;
1016	}
1017
1018	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1019		(unsigned long)(crash_size >> 20),
1020		(unsigned long)(crash_base >> 20),
1021		(unsigned long)(total_mem >> 20));
 
1022
1023	/* The crashk resource must always be located in normal mem */
1024	crashk_res.start = crash_base;
1025	crashk_res.end = crash_base + crash_size - 1;
1026	insert_resource(&iomem_resource, &crashk_res);
1027
1028	if (arm_has_idmap_alias()) {
1029		/*
1030		 * If we have a special RAM alias for use at boot, we
1031		 * need to advertise to kexec tools where the alias is.
1032		 */
1033		static struct resource crashk_boot_res = {
1034			.name = "Crash kernel (boot alias)",
1035			.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1036		};
1037
1038		crashk_boot_res.start = phys_to_idmap(crash_base);
1039		crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1040		insert_resource(&iomem_resource, &crashk_boot_res);
1041	}
1042}
1043#else
1044static inline void reserve_crashkernel(void) {}
1045#endif /* CONFIG_KEXEC */
1046
1047void __init hyp_mode_check(void)
 
 
 
 
 
 
 
1048{
1049#ifdef CONFIG_ARM_VIRT_EXT
1050	sync_boot_mode();
 
1051
1052	if (is_hyp_mode_available()) {
1053		pr_info("CPU: All CPU(s) started in HYP mode.\n");
1054		pr_info("CPU: Virtualization extensions available.\n");
1055	} else if (is_hyp_mode_mismatched()) {
1056		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1057			__boot_cpu_mode & MODE_MASK);
1058		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1059	} else
1060		pr_info("CPU: All CPU(s) started in SVC mode.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1061#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062}
1063
 
1064void __init setup_arch(char **cmdline_p)
1065{
1066	const struct machine_desc *mdesc;
 
 
1067
1068	setup_processor();
1069	mdesc = setup_machine_fdt(__atags_pointer);
1070	if (!mdesc)
1071		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
1072	if (!mdesc) {
1073		early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1074		early_print("  r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1075			    __atags_pointer);
1076		if (__atags_pointer)
1077			early_print("  r2[]=%*ph\n", 16,
1078				    phys_to_virt(__atags_pointer));
1079		dump_machine_table();
1080	}
1081
1082	machine_desc = mdesc;
1083	machine_name = mdesc->name;
1084	dump_stack_set_arch_desc("%s", mdesc->name);
1085
1086	if (mdesc->reboot_mode != REBOOT_HARD)
1087		reboot_mode = mdesc->reboot_mode;
1088
1089	init_mm.start_code = (unsigned long) _text;
1090	init_mm.end_code   = (unsigned long) _etext;
1091	init_mm.end_data   = (unsigned long) _edata;
1092	init_mm.brk	   = (unsigned long) _end;
1093
1094	/* populate cmd_line too for later use, preserving boot_command_line */
1095	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1096	*cmdline_p = cmd_line;
1097
1098	early_fixmap_init();
1099	early_ioremap_init();
1100
1101	parse_early_param();
1102
1103#ifdef CONFIG_MMU
1104	early_mm_init(mdesc);
1105#endif
1106	setup_dma_zone(mdesc);
1107	xen_early_init();
1108	efi_init();
1109	/*
1110	 * Make sure the calculation for lowmem/highmem is set appropriately
1111	 * before reserving/allocating any mmeory
1112	 */
1113	adjust_lowmem_bounds();
1114	arm_memblock_init(mdesc);
1115	/* Memory may have been removed so recalculate the bounds. */
1116	adjust_lowmem_bounds();
1117
1118	early_ioremap_reset();
1119
1120	paging_init(mdesc);
1121	request_standard_resources(mdesc);
1122
1123	if (mdesc->restart)
1124		arm_pm_restart = mdesc->restart;
1125
1126	unflatten_device_tree();
1127
1128	arm_dt_init_cpu_maps();
1129	psci_dt_init();
1130#ifdef CONFIG_SMP
1131	if (is_smp()) {
1132		if (!mdesc->smp_init || !mdesc->smp_init()) {
1133			if (psci_smp_available())
1134				smp_set_ops(&psci_smp_ops);
1135			else if (mdesc->smp)
1136				smp_set_ops(mdesc->smp);
1137		}
1138		smp_init_cpus();
1139		smp_build_mpidr_hash();
1140	}
1141#endif
 
1142
1143	if (!is_smp())
1144		hyp_mode_check();
1145
1146	reserve_crashkernel();
1147
 
 
 
 
 
 
1148#ifdef CONFIG_MULTI_IRQ_HANDLER
1149	handle_arch_irq = mdesc->handle_irq;
1150#endif
1151
1152#ifdef CONFIG_VT
1153#if defined(CONFIG_VGA_CONSOLE)
1154	conswitchp = &vga_con;
1155#elif defined(CONFIG_DUMMY_CONSOLE)
1156	conswitchp = &dummy_con;
1157#endif
1158#endif
 
1159
1160	if (mdesc->init_early)
1161		mdesc->init_early();
1162}
1163
1164
1165static int __init topology_init(void)
1166{
1167	int cpu;
1168
1169	for_each_possible_cpu(cpu) {
1170		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1171		cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1172		register_cpu(&cpuinfo->cpu, cpu);
1173	}
1174
1175	return 0;
1176}
1177subsys_initcall(topology_init);
1178
1179#ifdef CONFIG_HAVE_PROC_CPU
1180static int __init proc_cpu_init(void)
1181{
1182	struct proc_dir_entry *res;
1183
1184	res = proc_mkdir("cpu", NULL);
1185	if (!res)
1186		return -ENOMEM;
1187	return 0;
1188}
1189fs_initcall(proc_cpu_init);
1190#endif
1191
1192static const char *hwcap_str[] = {
1193	"swp",
1194	"half",
1195	"thumb",
1196	"26bit",
1197	"fastmult",
1198	"fpa",
1199	"vfp",
1200	"edsp",
1201	"java",
1202	"iwmmxt",
1203	"crunch",
1204	"thumbee",
1205	"neon",
1206	"vfpv3",
1207	"vfpv3d16",
1208	"tls",
1209	"vfpv4",
1210	"idiva",
1211	"idivt",
1212	"vfpd32",
1213	"lpae",
1214	"evtstrm",
1215	NULL
1216};
1217
1218static const char *hwcap2_str[] = {
1219	"aes",
1220	"pmull",
1221	"sha1",
1222	"sha2",
1223	"crc32",
1224	NULL
1225};
1226
1227static int c_show(struct seq_file *m, void *v)
1228{
1229	int i, j;
1230	u32 cpuid;
 
 
1231
 
1232	for_each_online_cpu(i) {
1233		/*
1234		 * glibc reads /proc/cpuinfo to determine the number of
1235		 * online processors, looking for lines beginning with
1236		 * "processor".  Give glibc what it expects.
1237		 */
1238		seq_printf(m, "processor\t: %d\n", i);
1239		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1240		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1241			   cpu_name, cpuid & 15, elf_platform);
1242
1243#if defined(CONFIG_SMP)
1244		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1245			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1246			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1247#else
1248		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1249			   loops_per_jiffy / (500000/HZ),
1250			   (loops_per_jiffy / (5000/HZ)) % 100);
1251#endif
1252		/* dump out the processor features */
1253		seq_puts(m, "Features\t: ");
1254
1255		for (j = 0; hwcap_str[j]; j++)
1256			if (elf_hwcap & (1 << j))
1257				seq_printf(m, "%s ", hwcap_str[j]);
1258
1259		for (j = 0; hwcap2_str[j]; j++)
1260			if (elf_hwcap2 & (1 << j))
1261				seq_printf(m, "%s ", hwcap2_str[j]);
1262
1263		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1264		seq_printf(m, "CPU architecture: %s\n",
1265			   proc_arch[cpu_architecture()]);
1266
1267		if ((cpuid & 0x0008f000) == 0x00000000) {
1268			/* pre-ARM7 */
1269			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
 
 
1270		} else {
1271			if ((cpuid & 0x0008f000) == 0x00007000) {
1272				/* ARM7 */
1273				seq_printf(m, "CPU variant\t: 0x%02x\n",
1274					   (cpuid >> 16) & 127);
1275			} else {
1276				/* post-ARM7 */
1277				seq_printf(m, "CPU variant\t: 0x%x\n",
1278					   (cpuid >> 20) & 15);
1279			}
1280			seq_printf(m, "CPU part\t: 0x%03x\n",
1281				   (cpuid >> 4) & 0xfff);
1282		}
1283		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
 
1284	}
 
 
 
1285
1286	seq_printf(m, "Hardware\t: %s\n", machine_name);
1287	seq_printf(m, "Revision\t: %04x\n", system_rev);
1288	seq_printf(m, "Serial\t\t: %s\n", system_serial);
 
1289
1290	return 0;
1291}
1292
1293static void *c_start(struct seq_file *m, loff_t *pos)
1294{
1295	return *pos < 1 ? (void *)1 : NULL;
1296}
1297
1298static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1299{
1300	++*pos;
1301	return NULL;
1302}
1303
1304static void c_stop(struct seq_file *m, void *v)
1305{
1306}
1307
1308const struct seq_operations cpuinfo_op = {
1309	.start	= c_start,
1310	.next	= c_next,
1311	.stop	= c_stop,
1312	.show	= c_show
1313};