Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * RTC subsystem, interface functions
  3 *
  4 * Copyright (C) 2005 Tower Technologies
  5 * Author: Alessandro Zummo <a.zummo@towertech.it>
  6 *
  7 * based on arch/arm/common/rtctime.c
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12*/
 13
 14#include <linux/rtc.h>
 15#include <linux/sched.h>
 
 16#include <linux/log2.h>
 17#include <linux/workqueue.h>
 18
 
 
 
 19static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
 20static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
 21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 22static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 23{
 24	int err;
 25	if (!rtc->ops)
 26		err = -ENODEV;
 27	else if (!rtc->ops->read_time)
 28		err = -EINVAL;
 29	else {
 30		memset(tm, 0, sizeof(struct rtc_time));
 31		err = rtc->ops->read_time(rtc->dev.parent, tm);
 
 
 
 
 
 
 
 
 
 
 
 32	}
 33	return err;
 34}
 35
 36int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 37{
 38	int err;
 39
 40	err = mutex_lock_interruptible(&rtc->ops_lock);
 41	if (err)
 42		return err;
 43
 44	err = __rtc_read_time(rtc, tm);
 45	mutex_unlock(&rtc->ops_lock);
 
 
 46	return err;
 47}
 48EXPORT_SYMBOL_GPL(rtc_read_time);
 49
 50int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 51{
 52	int err;
 53
 54	err = rtc_valid_tm(tm);
 55	if (err != 0)
 56		return err;
 57
 58	err = mutex_lock_interruptible(&rtc->ops_lock);
 59	if (err)
 60		return err;
 61
 62	if (!rtc->ops)
 63		err = -ENODEV;
 64	else if (rtc->ops->set_time)
 65		err = rtc->ops->set_time(rtc->dev.parent, tm);
 66	else if (rtc->ops->set_mmss) {
 67		unsigned long secs;
 68		err = rtc_tm_to_time(tm, &secs);
 69		if (err == 0)
 70			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
 71	} else
 72		err = -EINVAL;
 73
 74	mutex_unlock(&rtc->ops_lock);
 75	return err;
 76}
 77EXPORT_SYMBOL_GPL(rtc_set_time);
 78
 79int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
 80{
 81	int err;
 82
 83	err = mutex_lock_interruptible(&rtc->ops_lock);
 84	if (err)
 85		return err;
 86
 87	if (!rtc->ops)
 88		err = -ENODEV;
 89	else if (rtc->ops->set_mmss)
 90		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
 91	else if (rtc->ops->read_time && rtc->ops->set_time) {
 92		struct rtc_time new, old;
 93
 94		err = rtc->ops->read_time(rtc->dev.parent, &old);
 95		if (err == 0) {
 96			rtc_time_to_tm(secs, &new);
 97
 98			/*
 99			 * avoid writing when we're going to change the day of
100			 * the month. We will retry in the next minute. This
101			 * basically means that if the RTC must not drift
102			 * by more than 1 minute in 11 minutes.
103			 */
104			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
105				(new.tm_hour == 23 && new.tm_min == 59)))
106				err = rtc->ops->set_time(rtc->dev.parent,
107						&new);
108		}
109	}
110	else
111		err = -EINVAL;
112
 
113	mutex_unlock(&rtc->ops_lock);
 
 
114
 
115	return err;
116}
117EXPORT_SYMBOL_GPL(rtc_set_mmss);
118
119static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
120{
121	int err;
122
123	err = mutex_lock_interruptible(&rtc->ops_lock);
124	if (err)
125		return err;
126
127	if (rtc->ops == NULL)
128		err = -ENODEV;
129	else if (!rtc->ops->read_alarm)
130		err = -EINVAL;
131	else {
132		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 
 
 
 
 
 
 
 
 
 
133		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
134	}
135
136	mutex_unlock(&rtc->ops_lock);
 
 
137	return err;
138}
139
140int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
141{
142	int err;
143	struct rtc_time before, now;
144	int first_time = 1;
145	unsigned long t_now, t_alm;
146	enum { none, day, month, year } missing = none;
147	unsigned days;
148
149	/* The lower level RTC driver may return -1 in some fields,
150	 * creating invalid alarm->time values, for reasons like:
151	 *
152	 *   - The hardware may not be capable of filling them in;
153	 *     many alarms match only on time-of-day fields, not
154	 *     day/month/year calendar data.
155	 *
156	 *   - Some hardware uses illegal values as "wildcard" match
157	 *     values, which non-Linux firmware (like a BIOS) may try
158	 *     to set up as e.g. "alarm 15 minutes after each hour".
159	 *     Linux uses only oneshot alarms.
160	 *
161	 * When we see that here, we deal with it by using values from
162	 * a current RTC timestamp for any missing (-1) values.  The
163	 * RTC driver prevents "periodic alarm" modes.
164	 *
165	 * But this can be racey, because some fields of the RTC timestamp
166	 * may have wrapped in the interval since we read the RTC alarm,
167	 * which would lead to us inserting inconsistent values in place
168	 * of the -1 fields.
169	 *
170	 * Reading the alarm and timestamp in the reverse sequence
171	 * would have the same race condition, and not solve the issue.
172	 *
173	 * So, we must first read the RTC timestamp,
174	 * then read the RTC alarm value,
175	 * and then read a second RTC timestamp.
176	 *
177	 * If any fields of the second timestamp have changed
178	 * when compared with the first timestamp, then we know
179	 * our timestamp may be inconsistent with that used by
180	 * the low-level rtc_read_alarm_internal() function.
181	 *
182	 * So, when the two timestamps disagree, we just loop and do
183	 * the process again to get a fully consistent set of values.
184	 *
185	 * This could all instead be done in the lower level driver,
186	 * but since more than one lower level RTC implementation needs it,
187	 * then it's probably best best to do it here instead of there..
188	 */
189
190	/* Get the "before" timestamp */
191	err = rtc_read_time(rtc, &before);
192	if (err < 0)
193		return err;
194	do {
195		if (!first_time)
196			memcpy(&before, &now, sizeof(struct rtc_time));
197		first_time = 0;
198
199		/* get the RTC alarm values, which may be incomplete */
200		err = rtc_read_alarm_internal(rtc, alarm);
201		if (err)
202			return err;
203
204		/* full-function RTCs won't have such missing fields */
205		if (rtc_valid_tm(&alarm->time) == 0)
206			return 0;
207
208		/* get the "after" timestamp, to detect wrapped fields */
209		err = rtc_read_time(rtc, &now);
210		if (err < 0)
211			return err;
212
213		/* note that tm_sec is a "don't care" value here: */
214	} while (   before.tm_min   != now.tm_min
215		 || before.tm_hour  != now.tm_hour
216		 || before.tm_mon   != now.tm_mon
217		 || before.tm_year  != now.tm_year);
218
219	/* Fill in the missing alarm fields using the timestamp; we
220	 * know there's at least one since alarm->time is invalid.
221	 */
222	if (alarm->time.tm_sec == -1)
223		alarm->time.tm_sec = now.tm_sec;
224	if (alarm->time.tm_min == -1)
225		alarm->time.tm_min = now.tm_min;
226	if (alarm->time.tm_hour == -1)
227		alarm->time.tm_hour = now.tm_hour;
228
229	/* For simplicity, only support date rollover for now */
230	if (alarm->time.tm_mday == -1) {
231		alarm->time.tm_mday = now.tm_mday;
232		missing = day;
233	}
234	if (alarm->time.tm_mon == -1) {
235		alarm->time.tm_mon = now.tm_mon;
236		if (missing == none)
237			missing = month;
238	}
239	if (alarm->time.tm_year == -1) {
240		alarm->time.tm_year = now.tm_year;
241		if (missing == none)
242			missing = year;
243	}
244
 
 
 
 
 
 
 
245	/* with luck, no rollover is needed */
246	rtc_tm_to_time(&now, &t_now);
247	rtc_tm_to_time(&alarm->time, &t_alm);
248	if (t_now < t_alm)
249		goto done;
250
251	switch (missing) {
252
253	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
254	 * that will trigger at 5am will do so at 5am Tuesday, which
255	 * could also be in the next month or year.  This is a common
256	 * case, especially for PCs.
257	 */
258	case day:
259		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
260		t_alm += 24 * 60 * 60;
261		rtc_time_to_tm(t_alm, &alarm->time);
262		break;
263
264	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
265	 * be next month.  An alarm matching on the 30th, 29th, or 28th
266	 * may end up in the month after that!  Many newer PCs support
267	 * this type of alarm.
268	 */
269	case month:
270		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
271		do {
272			if (alarm->time.tm_mon < 11)
273				alarm->time.tm_mon++;
274			else {
275				alarm->time.tm_mon = 0;
276				alarm->time.tm_year++;
277			}
278			days = rtc_month_days(alarm->time.tm_mon,
279					alarm->time.tm_year);
280		} while (days < alarm->time.tm_mday);
281		break;
282
283	/* Year rollover ... easy except for leap years! */
284	case year:
285		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
286		do {
287			alarm->time.tm_year++;
288		} while (rtc_valid_tm(&alarm->time) != 0);
 
289		break;
290
291	default:
292		dev_warn(&rtc->dev, "alarm rollover not handled\n");
293	}
294
 
 
295done:
296	return 0;
 
 
 
 
 
 
 
297}
298
299int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
300{
301	int err;
302
303	err = mutex_lock_interruptible(&rtc->ops_lock);
304	if (err)
305		return err;
306	if (rtc->ops == NULL)
307		err = -ENODEV;
308	else if (!rtc->ops->read_alarm)
309		err = -EINVAL;
310	else {
311		memset(alarm, 0, sizeof(struct rtc_wkalrm));
312		alarm->enabled = rtc->aie_timer.enabled;
313		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
314	}
315	mutex_unlock(&rtc->ops_lock);
316
 
317	return err;
318}
319EXPORT_SYMBOL_GPL(rtc_read_alarm);
320
321static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
322{
323	struct rtc_time tm;
324	long now, scheduled;
325	int err;
326
327	err = rtc_valid_tm(&alarm->time);
328	if (err)
329		return err;
330	rtc_tm_to_time(&alarm->time, &scheduled);
 
 
331
332	/* Make sure we're not setting alarms in the past */
333	err = __rtc_read_time(rtc, &tm);
334	rtc_tm_to_time(&tm, &now);
 
 
335	if (scheduled <= now)
336		return -ETIME;
337	/*
338	 * XXX - We just checked to make sure the alarm time is not
339	 * in the past, but there is still a race window where if
340	 * the is alarm set for the next second and the second ticks
341	 * over right here, before we set the alarm.
342	 */
343
344	if (!rtc->ops)
345		err = -ENODEV;
346	else if (!rtc->ops->set_alarm)
347		err = -EINVAL;
348	else
349		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
350
 
351	return err;
352}
353
354int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
355{
356	int err;
357
358	err = rtc_valid_tm(&alarm->time);
359	if (err != 0)
360		return err;
361
 
 
 
 
362	err = mutex_lock_interruptible(&rtc->ops_lock);
363	if (err)
364		return err;
365	if (rtc->aie_timer.enabled) {
366		rtc_timer_remove(rtc, &rtc->aie_timer);
367	}
368	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
369	rtc->aie_timer.period = ktime_set(0, 0);
370	if (alarm->enabled) {
371		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
372	}
373	mutex_unlock(&rtc->ops_lock);
 
 
374	return err;
375}
376EXPORT_SYMBOL_GPL(rtc_set_alarm);
377
378/* Called once per device from rtc_device_register */
379int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
380{
381	int err;
 
382
383	err = rtc_valid_tm(&alarm->time);
384	if (err != 0)
385		return err;
386
 
 
 
 
387	err = mutex_lock_interruptible(&rtc->ops_lock);
388	if (err)
389		return err;
390
391	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
392	rtc->aie_timer.period = ktime_set(0, 0);
393	if (alarm->enabled) {
 
 
 
 
394		rtc->aie_timer.enabled = 1;
395		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 
396	}
397	mutex_unlock(&rtc->ops_lock);
398	return err;
399}
400EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
401
402
403
404int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
405{
406	int err = mutex_lock_interruptible(&rtc->ops_lock);
407	if (err)
408		return err;
409
410	if (rtc->aie_timer.enabled != enabled) {
411		if (enabled)
412			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
413		else
414			rtc_timer_remove(rtc, &rtc->aie_timer);
415	}
416
417	if (err)
418		/* nothing */;
419	else if (!rtc->ops)
420		err = -ENODEV;
421	else if (!rtc->ops->alarm_irq_enable)
422		err = -EINVAL;
423	else
424		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
425
426	mutex_unlock(&rtc->ops_lock);
 
 
427	return err;
428}
429EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
430
431int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
432{
433	int err = mutex_lock_interruptible(&rtc->ops_lock);
434	if (err)
435		return err;
436
437#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
438	if (enabled == 0 && rtc->uie_irq_active) {
439		mutex_unlock(&rtc->ops_lock);
440		return rtc_dev_update_irq_enable_emul(rtc, 0);
441	}
442#endif
443	/* make sure we're changing state */
444	if (rtc->uie_rtctimer.enabled == enabled)
445		goto out;
446
 
 
 
 
 
447	if (enabled) {
448		struct rtc_time tm;
449		ktime_t now, onesec;
450
451		__rtc_read_time(rtc, &tm);
452		onesec = ktime_set(1, 0);
453		now = rtc_tm_to_ktime(tm);
454		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
455		rtc->uie_rtctimer.period = ktime_set(1, 0);
456		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
457	} else
458		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
459
460out:
461	mutex_unlock(&rtc->ops_lock);
462#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
463	/*
464	 * Enable emulation if the driver did not provide
465	 * the update_irq_enable function pointer or if returned
466	 * -EINVAL to signal that it has been configured without
467	 * interrupts or that are not available at the moment.
468	 */
469	if (err == -EINVAL)
470		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
471#endif
472	return err;
473
474}
475EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
476
477
478/**
479 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
480 * @rtc: pointer to the rtc device
481 *
482 * This function is called when an AIE, UIE or PIE mode interrupt
483 * has occurred (or been emulated).
484 *
485 * Triggers the registered irq_task function callback.
486 */
487void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
488{
489	unsigned long flags;
490
491	/* mark one irq of the appropriate mode */
492	spin_lock_irqsave(&rtc->irq_lock, flags);
493	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
494	spin_unlock_irqrestore(&rtc->irq_lock, flags);
495
496	/* call the task func */
497	spin_lock_irqsave(&rtc->irq_task_lock, flags);
498	if (rtc->irq_task)
499		rtc->irq_task->func(rtc->irq_task->private_data);
500	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
501
502	wake_up_interruptible(&rtc->irq_queue);
503	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
504}
505
506
507/**
508 * rtc_aie_update_irq - AIE mode rtctimer hook
509 * @private: pointer to the rtc_device
510 *
511 * This functions is called when the aie_timer expires.
512 */
513void rtc_aie_update_irq(void *private)
514{
515	struct rtc_device *rtc = (struct rtc_device *)private;
516	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
517}
518
519
520/**
521 * rtc_uie_update_irq - UIE mode rtctimer hook
522 * @private: pointer to the rtc_device
523 *
524 * This functions is called when the uie_timer expires.
525 */
526void rtc_uie_update_irq(void *private)
527{
528	struct rtc_device *rtc = (struct rtc_device *)private;
529	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
530}
531
532
533/**
534 * rtc_pie_update_irq - PIE mode hrtimer hook
535 * @timer: pointer to the pie mode hrtimer
536 *
537 * This function is used to emulate PIE mode interrupts
538 * using an hrtimer. This function is called when the periodic
539 * hrtimer expires.
540 */
541enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
542{
543	struct rtc_device *rtc;
544	ktime_t period;
545	int count;
546	rtc = container_of(timer, struct rtc_device, pie_timer);
547
548	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
549	count = hrtimer_forward_now(timer, period);
550
551	rtc_handle_legacy_irq(rtc, count, RTC_PF);
552
553	return HRTIMER_RESTART;
554}
555
556/**
557 * rtc_update_irq - Triggered when a RTC interrupt occurs.
558 * @rtc: the rtc device
559 * @num: how many irqs are being reported (usually one)
560 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
561 * Context: any
562 */
563void rtc_update_irq(struct rtc_device *rtc,
564		unsigned long num, unsigned long events)
565{
 
 
 
 
566	schedule_work(&rtc->irqwork);
567}
568EXPORT_SYMBOL_GPL(rtc_update_irq);
569
570static int __rtc_match(struct device *dev, void *data)
571{
572	char *name = (char *)data;
573
574	if (strcmp(dev_name(dev), name) == 0)
575		return 1;
576	return 0;
577}
578
579struct rtc_device *rtc_class_open(char *name)
580{
581	struct device *dev;
582	struct rtc_device *rtc = NULL;
583
584	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
585	if (dev)
586		rtc = to_rtc_device(dev);
587
588	if (rtc) {
589		if (!try_module_get(rtc->owner)) {
590			put_device(dev);
591			rtc = NULL;
592		}
593	}
594
595	return rtc;
596}
597EXPORT_SYMBOL_GPL(rtc_class_open);
598
599void rtc_class_close(struct rtc_device *rtc)
600{
601	module_put(rtc->owner);
602	put_device(&rtc->dev);
603}
604EXPORT_SYMBOL_GPL(rtc_class_close);
605
606int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
607{
608	int retval = -EBUSY;
609
610	if (task == NULL || task->func == NULL)
611		return -EINVAL;
612
613	/* Cannot register while the char dev is in use */
614	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
615		return -EBUSY;
616
617	spin_lock_irq(&rtc->irq_task_lock);
618	if (rtc->irq_task == NULL) {
619		rtc->irq_task = task;
620		retval = 0;
621	}
622	spin_unlock_irq(&rtc->irq_task_lock);
623
624	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
625
626	return retval;
627}
628EXPORT_SYMBOL_GPL(rtc_irq_register);
629
630void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
631{
632	spin_lock_irq(&rtc->irq_task_lock);
633	if (rtc->irq_task == task)
634		rtc->irq_task = NULL;
635	spin_unlock_irq(&rtc->irq_task_lock);
636}
637EXPORT_SYMBOL_GPL(rtc_irq_unregister);
638
639static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
640{
641	/*
642	 * We always cancel the timer here first, because otherwise
643	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
644	 * when we manage to start the timer before the callback
645	 * returns HRTIMER_RESTART.
646	 *
647	 * We cannot use hrtimer_cancel() here as a running callback
648	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
649	 * would spin forever.
650	 */
651	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
652		return -1;
653
654	if (enabled) {
655		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
656
657		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
658	}
659	return 0;
660}
661
662/**
663 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
664 * @rtc: the rtc device
665 * @task: currently registered with rtc_irq_register()
666 * @enabled: true to enable periodic IRQs
667 * Context: any
668 *
669 * Note that rtc_irq_set_freq() should previously have been used to
670 * specify the desired frequency of periodic IRQ task->func() callbacks.
671 */
672int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
673{
674	int err = 0;
675	unsigned long flags;
676
677retry:
678	spin_lock_irqsave(&rtc->irq_task_lock, flags);
679	if (rtc->irq_task != NULL && task == NULL)
680		err = -EBUSY;
681	if (rtc->irq_task != task)
682		err = -EACCES;
683	if (!err) {
684		if (rtc_update_hrtimer(rtc, enabled) < 0) {
685			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
686			cpu_relax();
687			goto retry;
688		}
689		rtc->pie_enabled = enabled;
690	}
691	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 
 
692	return err;
693}
694EXPORT_SYMBOL_GPL(rtc_irq_set_state);
695
696/**
697 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
698 * @rtc: the rtc device
699 * @task: currently registered with rtc_irq_register()
700 * @freq: positive frequency with which task->func() will be called
701 * Context: any
702 *
703 * Note that rtc_irq_set_state() is used to enable or disable the
704 * periodic IRQs.
705 */
706int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
707{
708	int err = 0;
709	unsigned long flags;
710
711	if (freq <= 0 || freq > RTC_MAX_FREQ)
712		return -EINVAL;
713retry:
714	spin_lock_irqsave(&rtc->irq_task_lock, flags);
715	if (rtc->irq_task != NULL && task == NULL)
716		err = -EBUSY;
717	if (rtc->irq_task != task)
718		err = -EACCES;
719	if (!err) {
720		rtc->irq_freq = freq;
721		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
722			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
723			cpu_relax();
724			goto retry;
725		}
726	}
727	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 
 
728	return err;
729}
730EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
731
732/**
733 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
734 * @rtc rtc device
735 * @timer timer being added.
736 *
737 * Enqueues a timer onto the rtc devices timerqueue and sets
738 * the next alarm event appropriately.
739 *
740 * Sets the enabled bit on the added timer.
741 *
742 * Must hold ops_lock for proper serialization of timerqueue
743 */
744static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
745{
 
 
 
 
746	timer->enabled = 1;
 
 
 
 
 
 
 
 
 
 
747	timerqueue_add(&rtc->timerqueue, &timer->node);
748	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
 
749		struct rtc_wkalrm alarm;
750		int err;
751		alarm.time = rtc_ktime_to_tm(timer->node.expires);
752		alarm.enabled = 1;
753		err = __rtc_set_alarm(rtc, &alarm);
754		if (err == -ETIME)
 
755			schedule_work(&rtc->irqwork);
756		else if (err) {
757			timerqueue_del(&rtc->timerqueue, &timer->node);
 
758			timer->enabled = 0;
759			return err;
760		}
761	}
762	return 0;
763}
764
 
 
 
 
 
 
 
 
 
765/**
766 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
767 * @rtc rtc device
768 * @timer timer being removed.
769 *
770 * Removes a timer onto the rtc devices timerqueue and sets
771 * the next alarm event appropriately.
772 *
773 * Clears the enabled bit on the removed timer.
774 *
775 * Must hold ops_lock for proper serialization of timerqueue
776 */
777static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
778{
779	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
780	timerqueue_del(&rtc->timerqueue, &timer->node);
 
781	timer->enabled = 0;
782	if (next == &timer->node) {
783		struct rtc_wkalrm alarm;
784		int err;
785		next = timerqueue_getnext(&rtc->timerqueue);
786		if (!next)
 
787			return;
 
788		alarm.time = rtc_ktime_to_tm(next->expires);
789		alarm.enabled = 1;
790		err = __rtc_set_alarm(rtc, &alarm);
791		if (err == -ETIME)
 
792			schedule_work(&rtc->irqwork);
 
793	}
794}
795
796/**
797 * rtc_timer_do_work - Expires rtc timers
798 * @rtc rtc device
799 * @timer timer being removed.
800 *
801 * Expires rtc timers. Reprograms next alarm event if needed.
802 * Called via worktask.
803 *
804 * Serializes access to timerqueue via ops_lock mutex
805 */
806void rtc_timer_do_work(struct work_struct *work)
807{
808	struct rtc_timer *timer;
809	struct timerqueue_node *next;
810	ktime_t now;
811	struct rtc_time tm;
812
813	struct rtc_device *rtc =
814		container_of(work, struct rtc_device, irqwork);
815
816	mutex_lock(&rtc->ops_lock);
817again:
818	__rtc_read_time(rtc, &tm);
819	now = rtc_tm_to_ktime(tm);
820	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
821		if (next->expires.tv64 > now.tv64)
822			break;
823
824		/* expire timer */
825		timer = container_of(next, struct rtc_timer, node);
826		timerqueue_del(&rtc->timerqueue, &timer->node);
 
827		timer->enabled = 0;
828		if (timer->task.func)
829			timer->task.func(timer->task.private_data);
830
 
831		/* Re-add/fwd periodic timers */
832		if (ktime_to_ns(timer->period)) {
833			timer->node.expires = ktime_add(timer->node.expires,
834							timer->period);
835			timer->enabled = 1;
836			timerqueue_add(&rtc->timerqueue, &timer->node);
 
837		}
838	}
839
840	/* Set next alarm */
841	if (next) {
842		struct rtc_wkalrm alarm;
843		int err;
 
 
844		alarm.time = rtc_ktime_to_tm(next->expires);
845		alarm.enabled = 1;
 
846		err = __rtc_set_alarm(rtc, &alarm);
847		if (err == -ETIME)
848			goto again;
849	}
 
 
850
 
 
 
 
 
 
 
 
 
 
 
851	mutex_unlock(&rtc->ops_lock);
852}
853
854
855/* rtc_timer_init - Initializes an rtc_timer
856 * @timer: timer to be intiialized
857 * @f: function pointer to be called when timer fires
858 * @data: private data passed to function pointer
859 *
860 * Kernel interface to initializing an rtc_timer.
861 */
862void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
863{
864	timerqueue_init(&timer->node);
865	timer->enabled = 0;
866	timer->task.func = f;
867	timer->task.private_data = data;
868}
869
870/* rtc_timer_start - Sets an rtc_timer to fire in the future
871 * @ rtc: rtc device to be used
872 * @ timer: timer being set
873 * @ expires: time at which to expire the timer
874 * @ period: period that the timer will recur
875 *
876 * Kernel interface to set an rtc_timer
877 */
878int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
879			ktime_t expires, ktime_t period)
880{
881	int ret = 0;
882	mutex_lock(&rtc->ops_lock);
883	if (timer->enabled)
884		rtc_timer_remove(rtc, timer);
885
886	timer->node.expires = expires;
887	timer->period = period;
888
889	ret = rtc_timer_enqueue(rtc, timer);
890
891	mutex_unlock(&rtc->ops_lock);
892	return ret;
893}
894
895/* rtc_timer_cancel - Stops an rtc_timer
896 * @ rtc: rtc device to be used
897 * @ timer: timer being set
898 *
899 * Kernel interface to cancel an rtc_timer
900 */
901int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
902{
903	int ret = 0;
904	mutex_lock(&rtc->ops_lock);
905	if (timer->enabled)
906		rtc_timer_remove(rtc, timer);
907	mutex_unlock(&rtc->ops_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
908	return ret;
909}
910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
911
v4.17
   1/*
   2 * RTC subsystem, interface functions
   3 *
   4 * Copyright (C) 2005 Tower Technologies
   5 * Author: Alessandro Zummo <a.zummo@towertech.it>
   6 *
   7 * based on arch/arm/common/rtctime.c
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12*/
  13
  14#include <linux/rtc.h>
  15#include <linux/sched.h>
  16#include <linux/module.h>
  17#include <linux/log2.h>
  18#include <linux/workqueue.h>
  19
  20#define CREATE_TRACE_POINTS
  21#include <trace/events/rtc.h>
  22
  23static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
  24static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
  25
  26static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
  27{
  28	time64_t secs;
  29
  30	if (!rtc->offset_secs)
  31		return;
  32
  33	secs = rtc_tm_to_time64(tm);
  34
  35	/*
  36	 * Since the reading time values from RTC device are always in the RTC
  37	 * original valid range, but we need to skip the overlapped region
  38	 * between expanded range and original range, which is no need to add
  39	 * the offset.
  40	 */
  41	if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
  42	    (rtc->start_secs < rtc->range_min &&
  43	     secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
  44		return;
  45
  46	rtc_time64_to_tm(secs + rtc->offset_secs, tm);
  47}
  48
  49static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
  50{
  51	time64_t secs;
  52
  53	if (!rtc->offset_secs)
  54		return;
  55
  56	secs = rtc_tm_to_time64(tm);
  57
  58	/*
  59	 * If the setting time values are in the valid range of RTC hardware
  60	 * device, then no need to subtract the offset when setting time to RTC
  61	 * device. Otherwise we need to subtract the offset to make the time
  62	 * values are valid for RTC hardware device.
  63	 */
  64	if (secs >= rtc->range_min && secs <= rtc->range_max)
  65		return;
  66
  67	rtc_time64_to_tm(secs - rtc->offset_secs, tm);
  68}
  69
  70static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
  71{
  72	if (rtc->range_min != rtc->range_max) {
  73		time64_t time = rtc_tm_to_time64(tm);
  74		time64_t range_min = rtc->set_start_time ? rtc->start_secs :
  75			rtc->range_min;
  76		time64_t range_max = rtc->set_start_time ?
  77			(rtc->start_secs + rtc->range_max - rtc->range_min) :
  78			rtc->range_max;
  79
  80		if (time < range_min || time > range_max)
  81			return -ERANGE;
  82	}
  83
  84	return 0;
  85}
  86
  87static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  88{
  89	int err;
  90	if (!rtc->ops)
  91		err = -ENODEV;
  92	else if (!rtc->ops->read_time)
  93		err = -EINVAL;
  94	else {
  95		memset(tm, 0, sizeof(struct rtc_time));
  96		err = rtc->ops->read_time(rtc->dev.parent, tm);
  97		if (err < 0) {
  98			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
  99				err);
 100			return err;
 101		}
 102
 103		rtc_add_offset(rtc, tm);
 104
 105		err = rtc_valid_tm(tm);
 106		if (err < 0)
 107			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
 108	}
 109	return err;
 110}
 111
 112int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 113{
 114	int err;
 115
 116	err = mutex_lock_interruptible(&rtc->ops_lock);
 117	if (err)
 118		return err;
 119
 120	err = __rtc_read_time(rtc, tm);
 121	mutex_unlock(&rtc->ops_lock);
 122
 123	trace_rtc_read_time(rtc_tm_to_time64(tm), err);
 124	return err;
 125}
 126EXPORT_SYMBOL_GPL(rtc_read_time);
 127
 128int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 129{
 130	int err;
 131
 132	err = rtc_valid_tm(tm);
 133	if (err != 0)
 134		return err;
 135
 136	err = rtc_valid_range(rtc, tm);
 137	if (err)
 138		return err;
 139
 140	rtc_subtract_offset(rtc, tm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 141
 142	err = mutex_lock_interruptible(&rtc->ops_lock);
 143	if (err)
 144		return err;
 145
 146	if (!rtc->ops)
 147		err = -ENODEV;
 148	else if (rtc->ops->set_time)
 149		err = rtc->ops->set_time(rtc->dev.parent, tm);
 150	else if (rtc->ops->set_mmss64) {
 151		time64_t secs64 = rtc_tm_to_time64(tm);
 152
 153		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
 154	} else if (rtc->ops->set_mmss) {
 155		time64_t secs64 = rtc_tm_to_time64(tm);
 156		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
 157	} else
 
 
 
 
 
 
 
 
 
 
 
 
 158		err = -EINVAL;
 159
 160	pm_stay_awake(rtc->dev.parent);
 161	mutex_unlock(&rtc->ops_lock);
 162	/* A timer might have just expired */
 163	schedule_work(&rtc->irqwork);
 164
 165	trace_rtc_set_time(rtc_tm_to_time64(tm), err);
 166	return err;
 167}
 168EXPORT_SYMBOL_GPL(rtc_set_time);
 169
 170static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 171{
 172	int err;
 173
 174	err = mutex_lock_interruptible(&rtc->ops_lock);
 175	if (err)
 176		return err;
 177
 178	if (rtc->ops == NULL)
 179		err = -ENODEV;
 180	else if (!rtc->ops->read_alarm)
 181		err = -EINVAL;
 182	else {
 183		alarm->enabled = 0;
 184		alarm->pending = 0;
 185		alarm->time.tm_sec = -1;
 186		alarm->time.tm_min = -1;
 187		alarm->time.tm_hour = -1;
 188		alarm->time.tm_mday = -1;
 189		alarm->time.tm_mon = -1;
 190		alarm->time.tm_year = -1;
 191		alarm->time.tm_wday = -1;
 192		alarm->time.tm_yday = -1;
 193		alarm->time.tm_isdst = -1;
 194		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
 195	}
 196
 197	mutex_unlock(&rtc->ops_lock);
 198
 199	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 200	return err;
 201}
 202
 203int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 204{
 205	int err;
 206	struct rtc_time before, now;
 207	int first_time = 1;
 208	time64_t t_now, t_alm;
 209	enum { none, day, month, year } missing = none;
 210	unsigned days;
 211
 212	/* The lower level RTC driver may return -1 in some fields,
 213	 * creating invalid alarm->time values, for reasons like:
 214	 *
 215	 *   - The hardware may not be capable of filling them in;
 216	 *     many alarms match only on time-of-day fields, not
 217	 *     day/month/year calendar data.
 218	 *
 219	 *   - Some hardware uses illegal values as "wildcard" match
 220	 *     values, which non-Linux firmware (like a BIOS) may try
 221	 *     to set up as e.g. "alarm 15 minutes after each hour".
 222	 *     Linux uses only oneshot alarms.
 223	 *
 224	 * When we see that here, we deal with it by using values from
 225	 * a current RTC timestamp for any missing (-1) values.  The
 226	 * RTC driver prevents "periodic alarm" modes.
 227	 *
 228	 * But this can be racey, because some fields of the RTC timestamp
 229	 * may have wrapped in the interval since we read the RTC alarm,
 230	 * which would lead to us inserting inconsistent values in place
 231	 * of the -1 fields.
 232	 *
 233	 * Reading the alarm and timestamp in the reverse sequence
 234	 * would have the same race condition, and not solve the issue.
 235	 *
 236	 * So, we must first read the RTC timestamp,
 237	 * then read the RTC alarm value,
 238	 * and then read a second RTC timestamp.
 239	 *
 240	 * If any fields of the second timestamp have changed
 241	 * when compared with the first timestamp, then we know
 242	 * our timestamp may be inconsistent with that used by
 243	 * the low-level rtc_read_alarm_internal() function.
 244	 *
 245	 * So, when the two timestamps disagree, we just loop and do
 246	 * the process again to get a fully consistent set of values.
 247	 *
 248	 * This could all instead be done in the lower level driver,
 249	 * but since more than one lower level RTC implementation needs it,
 250	 * then it's probably best best to do it here instead of there..
 251	 */
 252
 253	/* Get the "before" timestamp */
 254	err = rtc_read_time(rtc, &before);
 255	if (err < 0)
 256		return err;
 257	do {
 258		if (!first_time)
 259			memcpy(&before, &now, sizeof(struct rtc_time));
 260		first_time = 0;
 261
 262		/* get the RTC alarm values, which may be incomplete */
 263		err = rtc_read_alarm_internal(rtc, alarm);
 264		if (err)
 265			return err;
 266
 267		/* full-function RTCs won't have such missing fields */
 268		if (rtc_valid_tm(&alarm->time) == 0)
 269			return 0;
 270
 271		/* get the "after" timestamp, to detect wrapped fields */
 272		err = rtc_read_time(rtc, &now);
 273		if (err < 0)
 274			return err;
 275
 276		/* note that tm_sec is a "don't care" value here: */
 277	} while (   before.tm_min   != now.tm_min
 278		 || before.tm_hour  != now.tm_hour
 279		 || before.tm_mon   != now.tm_mon
 280		 || before.tm_year  != now.tm_year);
 281
 282	/* Fill in the missing alarm fields using the timestamp; we
 283	 * know there's at least one since alarm->time is invalid.
 284	 */
 285	if (alarm->time.tm_sec == -1)
 286		alarm->time.tm_sec = now.tm_sec;
 287	if (alarm->time.tm_min == -1)
 288		alarm->time.tm_min = now.tm_min;
 289	if (alarm->time.tm_hour == -1)
 290		alarm->time.tm_hour = now.tm_hour;
 291
 292	/* For simplicity, only support date rollover for now */
 293	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
 294		alarm->time.tm_mday = now.tm_mday;
 295		missing = day;
 296	}
 297	if ((unsigned)alarm->time.tm_mon >= 12) {
 298		alarm->time.tm_mon = now.tm_mon;
 299		if (missing == none)
 300			missing = month;
 301	}
 302	if (alarm->time.tm_year == -1) {
 303		alarm->time.tm_year = now.tm_year;
 304		if (missing == none)
 305			missing = year;
 306	}
 307
 308	/* Can't proceed if alarm is still invalid after replacing
 309	 * missing fields.
 310	 */
 311	err = rtc_valid_tm(&alarm->time);
 312	if (err)
 313		goto done;
 314
 315	/* with luck, no rollover is needed */
 316	t_now = rtc_tm_to_time64(&now);
 317	t_alm = rtc_tm_to_time64(&alarm->time);
 318	if (t_now < t_alm)
 319		goto done;
 320
 321	switch (missing) {
 322
 323	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
 324	 * that will trigger at 5am will do so at 5am Tuesday, which
 325	 * could also be in the next month or year.  This is a common
 326	 * case, especially for PCs.
 327	 */
 328	case day:
 329		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
 330		t_alm += 24 * 60 * 60;
 331		rtc_time64_to_tm(t_alm, &alarm->time);
 332		break;
 333
 334	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
 335	 * be next month.  An alarm matching on the 30th, 29th, or 28th
 336	 * may end up in the month after that!  Many newer PCs support
 337	 * this type of alarm.
 338	 */
 339	case month:
 340		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
 341		do {
 342			if (alarm->time.tm_mon < 11)
 343				alarm->time.tm_mon++;
 344			else {
 345				alarm->time.tm_mon = 0;
 346				alarm->time.tm_year++;
 347			}
 348			days = rtc_month_days(alarm->time.tm_mon,
 349					alarm->time.tm_year);
 350		} while (days < alarm->time.tm_mday);
 351		break;
 352
 353	/* Year rollover ... easy except for leap years! */
 354	case year:
 355		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
 356		do {
 357			alarm->time.tm_year++;
 358		} while (!is_leap_year(alarm->time.tm_year + 1900)
 359			&& rtc_valid_tm(&alarm->time) != 0);
 360		break;
 361
 362	default:
 363		dev_warn(&rtc->dev, "alarm rollover not handled\n");
 364	}
 365
 366	err = rtc_valid_tm(&alarm->time);
 367
 368done:
 369	if (err) {
 370		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
 371			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
 372			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
 373			alarm->time.tm_sec);
 374	}
 375
 376	return err;
 377}
 378
 379int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 380{
 381	int err;
 382
 383	err = mutex_lock_interruptible(&rtc->ops_lock);
 384	if (err)
 385		return err;
 386	if (rtc->ops == NULL)
 387		err = -ENODEV;
 388	else if (!rtc->ops->read_alarm)
 389		err = -EINVAL;
 390	else {
 391		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 392		alarm->enabled = rtc->aie_timer.enabled;
 393		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
 394	}
 395	mutex_unlock(&rtc->ops_lock);
 396
 397	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 398	return err;
 399}
 400EXPORT_SYMBOL_GPL(rtc_read_alarm);
 401
 402static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 403{
 404	struct rtc_time tm;
 405	time64_t now, scheduled;
 406	int err;
 407
 408	err = rtc_valid_tm(&alarm->time);
 409	if (err)
 410		return err;
 411
 412	rtc_subtract_offset(rtc, &alarm->time);
 413	scheduled = rtc_tm_to_time64(&alarm->time);
 414
 415	/* Make sure we're not setting alarms in the past */
 416	err = __rtc_read_time(rtc, &tm);
 417	if (err)
 418		return err;
 419	now = rtc_tm_to_time64(&tm);
 420	if (scheduled <= now)
 421		return -ETIME;
 422	/*
 423	 * XXX - We just checked to make sure the alarm time is not
 424	 * in the past, but there is still a race window where if
 425	 * the is alarm set for the next second and the second ticks
 426	 * over right here, before we set the alarm.
 427	 */
 428
 429	if (!rtc->ops)
 430		err = -ENODEV;
 431	else if (!rtc->ops->set_alarm)
 432		err = -EINVAL;
 433	else
 434		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
 435
 436	trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
 437	return err;
 438}
 439
 440int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 441{
 442	int err;
 443
 444	err = rtc_valid_tm(&alarm->time);
 445	if (err != 0)
 446		return err;
 447
 448	err = rtc_valid_range(rtc, &alarm->time);
 449	if (err)
 450		return err;
 451
 452	err = mutex_lock_interruptible(&rtc->ops_lock);
 453	if (err)
 454		return err;
 455	if (rtc->aie_timer.enabled)
 456		rtc_timer_remove(rtc, &rtc->aie_timer);
 457
 458	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 459	rtc->aie_timer.period = 0;
 460	if (alarm->enabled)
 461		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 462
 463	mutex_unlock(&rtc->ops_lock);
 464
 465	rtc_add_offset(rtc, &alarm->time);
 466	return err;
 467}
 468EXPORT_SYMBOL_GPL(rtc_set_alarm);
 469
 470/* Called once per device from rtc_device_register */
 471int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 472{
 473	int err;
 474	struct rtc_time now;
 475
 476	err = rtc_valid_tm(&alarm->time);
 477	if (err != 0)
 478		return err;
 479
 480	err = rtc_read_time(rtc, &now);
 481	if (err)
 482		return err;
 483
 484	err = mutex_lock_interruptible(&rtc->ops_lock);
 485	if (err)
 486		return err;
 487
 488	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 489	rtc->aie_timer.period = 0;
 490
 491	/* Alarm has to be enabled & in the future for us to enqueue it */
 492	if (alarm->enabled && (rtc_tm_to_ktime(now) <
 493			 rtc->aie_timer.node.expires)) {
 494
 495		rtc->aie_timer.enabled = 1;
 496		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 497		trace_rtc_timer_enqueue(&rtc->aie_timer);
 498	}
 499	mutex_unlock(&rtc->ops_lock);
 500	return err;
 501}
 502EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
 503
 
 
 504int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 505{
 506	int err = mutex_lock_interruptible(&rtc->ops_lock);
 507	if (err)
 508		return err;
 509
 510	if (rtc->aie_timer.enabled != enabled) {
 511		if (enabled)
 512			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 513		else
 514			rtc_timer_remove(rtc, &rtc->aie_timer);
 515	}
 516
 517	if (err)
 518		/* nothing */;
 519	else if (!rtc->ops)
 520		err = -ENODEV;
 521	else if (!rtc->ops->alarm_irq_enable)
 522		err = -EINVAL;
 523	else
 524		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
 525
 526	mutex_unlock(&rtc->ops_lock);
 527
 528	trace_rtc_alarm_irq_enable(enabled, err);
 529	return err;
 530}
 531EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
 532
 533int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 534{
 535	int err = mutex_lock_interruptible(&rtc->ops_lock);
 536	if (err)
 537		return err;
 538
 539#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 540	if (enabled == 0 && rtc->uie_irq_active) {
 541		mutex_unlock(&rtc->ops_lock);
 542		return rtc_dev_update_irq_enable_emul(rtc, 0);
 543	}
 544#endif
 545	/* make sure we're changing state */
 546	if (rtc->uie_rtctimer.enabled == enabled)
 547		goto out;
 548
 549	if (rtc->uie_unsupported) {
 550		err = -EINVAL;
 551		goto out;
 552	}
 553
 554	if (enabled) {
 555		struct rtc_time tm;
 556		ktime_t now, onesec;
 557
 558		__rtc_read_time(rtc, &tm);
 559		onesec = ktime_set(1, 0);
 560		now = rtc_tm_to_ktime(tm);
 561		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
 562		rtc->uie_rtctimer.period = ktime_set(1, 0);
 563		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
 564	} else
 565		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 566
 567out:
 568	mutex_unlock(&rtc->ops_lock);
 569#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 570	/*
 571	 * Enable emulation if the driver did not provide
 572	 * the update_irq_enable function pointer or if returned
 573	 * -EINVAL to signal that it has been configured without
 574	 * interrupts or that are not available at the moment.
 575	 */
 576	if (err == -EINVAL)
 577		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
 578#endif
 579	return err;
 580
 581}
 582EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
 583
 584
 585/**
 586 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
 587 * @rtc: pointer to the rtc device
 588 *
 589 * This function is called when an AIE, UIE or PIE mode interrupt
 590 * has occurred (or been emulated).
 591 *
 592 * Triggers the registered irq_task function callback.
 593 */
 594void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
 595{
 596	unsigned long flags;
 597
 598	/* mark one irq of the appropriate mode */
 599	spin_lock_irqsave(&rtc->irq_lock, flags);
 600	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
 601	spin_unlock_irqrestore(&rtc->irq_lock, flags);
 602
 603	/* call the task func */
 604	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 605	if (rtc->irq_task)
 606		rtc->irq_task->func(rtc->irq_task->private_data);
 607	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 608
 609	wake_up_interruptible(&rtc->irq_queue);
 610	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
 611}
 612
 613
 614/**
 615 * rtc_aie_update_irq - AIE mode rtctimer hook
 616 * @private: pointer to the rtc_device
 617 *
 618 * This functions is called when the aie_timer expires.
 619 */
 620void rtc_aie_update_irq(void *private)
 621{
 622	struct rtc_device *rtc = (struct rtc_device *)private;
 623	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
 624}
 625
 626
 627/**
 628 * rtc_uie_update_irq - UIE mode rtctimer hook
 629 * @private: pointer to the rtc_device
 630 *
 631 * This functions is called when the uie_timer expires.
 632 */
 633void rtc_uie_update_irq(void *private)
 634{
 635	struct rtc_device *rtc = (struct rtc_device *)private;
 636	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
 637}
 638
 639
 640/**
 641 * rtc_pie_update_irq - PIE mode hrtimer hook
 642 * @timer: pointer to the pie mode hrtimer
 643 *
 644 * This function is used to emulate PIE mode interrupts
 645 * using an hrtimer. This function is called when the periodic
 646 * hrtimer expires.
 647 */
 648enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
 649{
 650	struct rtc_device *rtc;
 651	ktime_t period;
 652	int count;
 653	rtc = container_of(timer, struct rtc_device, pie_timer);
 654
 655	period = NSEC_PER_SEC / rtc->irq_freq;
 656	count = hrtimer_forward_now(timer, period);
 657
 658	rtc_handle_legacy_irq(rtc, count, RTC_PF);
 659
 660	return HRTIMER_RESTART;
 661}
 662
 663/**
 664 * rtc_update_irq - Triggered when a RTC interrupt occurs.
 665 * @rtc: the rtc device
 666 * @num: how many irqs are being reported (usually one)
 667 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 668 * Context: any
 669 */
 670void rtc_update_irq(struct rtc_device *rtc,
 671		unsigned long num, unsigned long events)
 672{
 673	if (IS_ERR_OR_NULL(rtc))
 674		return;
 675
 676	pm_stay_awake(rtc->dev.parent);
 677	schedule_work(&rtc->irqwork);
 678}
 679EXPORT_SYMBOL_GPL(rtc_update_irq);
 680
 681static int __rtc_match(struct device *dev, const void *data)
 682{
 683	const char *name = data;
 684
 685	if (strcmp(dev_name(dev), name) == 0)
 686		return 1;
 687	return 0;
 688}
 689
 690struct rtc_device *rtc_class_open(const char *name)
 691{
 692	struct device *dev;
 693	struct rtc_device *rtc = NULL;
 694
 695	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
 696	if (dev)
 697		rtc = to_rtc_device(dev);
 698
 699	if (rtc) {
 700		if (!try_module_get(rtc->owner)) {
 701			put_device(dev);
 702			rtc = NULL;
 703		}
 704	}
 705
 706	return rtc;
 707}
 708EXPORT_SYMBOL_GPL(rtc_class_open);
 709
 710void rtc_class_close(struct rtc_device *rtc)
 711{
 712	module_put(rtc->owner);
 713	put_device(&rtc->dev);
 714}
 715EXPORT_SYMBOL_GPL(rtc_class_close);
 716
 717int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
 718{
 719	int retval = -EBUSY;
 720
 721	if (task == NULL || task->func == NULL)
 722		return -EINVAL;
 723
 724	/* Cannot register while the char dev is in use */
 725	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
 726		return -EBUSY;
 727
 728	spin_lock_irq(&rtc->irq_task_lock);
 729	if (rtc->irq_task == NULL) {
 730		rtc->irq_task = task;
 731		retval = 0;
 732	}
 733	spin_unlock_irq(&rtc->irq_task_lock);
 734
 735	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
 736
 737	return retval;
 738}
 739EXPORT_SYMBOL_GPL(rtc_irq_register);
 740
 741void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
 742{
 743	spin_lock_irq(&rtc->irq_task_lock);
 744	if (rtc->irq_task == task)
 745		rtc->irq_task = NULL;
 746	spin_unlock_irq(&rtc->irq_task_lock);
 747}
 748EXPORT_SYMBOL_GPL(rtc_irq_unregister);
 749
 750static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
 751{
 752	/*
 753	 * We always cancel the timer here first, because otherwise
 754	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
 755	 * when we manage to start the timer before the callback
 756	 * returns HRTIMER_RESTART.
 757	 *
 758	 * We cannot use hrtimer_cancel() here as a running callback
 759	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
 760	 * would spin forever.
 761	 */
 762	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
 763		return -1;
 764
 765	if (enabled) {
 766		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
 767
 768		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
 769	}
 770	return 0;
 771}
 772
 773/**
 774 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 775 * @rtc: the rtc device
 776 * @task: currently registered with rtc_irq_register()
 777 * @enabled: true to enable periodic IRQs
 778 * Context: any
 779 *
 780 * Note that rtc_irq_set_freq() should previously have been used to
 781 * specify the desired frequency of periodic IRQ task->func() callbacks.
 782 */
 783int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
 784{
 785	int err = 0;
 786	unsigned long flags;
 787
 788retry:
 789	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 790	if (rtc->irq_task != NULL && task == NULL)
 791		err = -EBUSY;
 792	else if (rtc->irq_task != task)
 793		err = -EACCES;
 794	else {
 795		if (rtc_update_hrtimer(rtc, enabled) < 0) {
 796			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 797			cpu_relax();
 798			goto retry;
 799		}
 800		rtc->pie_enabled = enabled;
 801	}
 802	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 803
 804	trace_rtc_irq_set_state(enabled, err);
 805	return err;
 806}
 807EXPORT_SYMBOL_GPL(rtc_irq_set_state);
 808
 809/**
 810 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 811 * @rtc: the rtc device
 812 * @task: currently registered with rtc_irq_register()
 813 * @freq: positive frequency with which task->func() will be called
 814 * Context: any
 815 *
 816 * Note that rtc_irq_set_state() is used to enable or disable the
 817 * periodic IRQs.
 818 */
 819int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
 820{
 821	int err = 0;
 822	unsigned long flags;
 823
 824	if (freq <= 0 || freq > RTC_MAX_FREQ)
 825		return -EINVAL;
 826retry:
 827	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 828	if (rtc->irq_task != NULL && task == NULL)
 829		err = -EBUSY;
 830	else if (rtc->irq_task != task)
 831		err = -EACCES;
 832	else {
 833		rtc->irq_freq = freq;
 834		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
 835			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 836			cpu_relax();
 837			goto retry;
 838		}
 839	}
 840	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 841
 842	trace_rtc_irq_set_freq(freq, err);
 843	return err;
 844}
 845EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
 846
 847/**
 848 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 849 * @rtc rtc device
 850 * @timer timer being added.
 851 *
 852 * Enqueues a timer onto the rtc devices timerqueue and sets
 853 * the next alarm event appropriately.
 854 *
 855 * Sets the enabled bit on the added timer.
 856 *
 857 * Must hold ops_lock for proper serialization of timerqueue
 858 */
 859static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
 860{
 861	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 862	struct rtc_time tm;
 863	ktime_t now;
 864
 865	timer->enabled = 1;
 866	__rtc_read_time(rtc, &tm);
 867	now = rtc_tm_to_ktime(tm);
 868
 869	/* Skip over expired timers */
 870	while (next) {
 871		if (next->expires >= now)
 872			break;
 873		next = timerqueue_iterate_next(next);
 874	}
 875
 876	timerqueue_add(&rtc->timerqueue, &timer->node);
 877	trace_rtc_timer_enqueue(timer);
 878	if (!next || ktime_before(timer->node.expires, next->expires)) {
 879		struct rtc_wkalrm alarm;
 880		int err;
 881		alarm.time = rtc_ktime_to_tm(timer->node.expires);
 882		alarm.enabled = 1;
 883		err = __rtc_set_alarm(rtc, &alarm);
 884		if (err == -ETIME) {
 885			pm_stay_awake(rtc->dev.parent);
 886			schedule_work(&rtc->irqwork);
 887		} else if (err) {
 888			timerqueue_del(&rtc->timerqueue, &timer->node);
 889			trace_rtc_timer_dequeue(timer);
 890			timer->enabled = 0;
 891			return err;
 892		}
 893	}
 894	return 0;
 895}
 896
 897static void rtc_alarm_disable(struct rtc_device *rtc)
 898{
 899	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
 900		return;
 901
 902	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 903	trace_rtc_alarm_irq_enable(0, 0);
 904}
 905
 906/**
 907 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
 908 * @rtc rtc device
 909 * @timer timer being removed.
 910 *
 911 * Removes a timer onto the rtc devices timerqueue and sets
 912 * the next alarm event appropriately.
 913 *
 914 * Clears the enabled bit on the removed timer.
 915 *
 916 * Must hold ops_lock for proper serialization of timerqueue
 917 */
 918static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
 919{
 920	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 921	timerqueue_del(&rtc->timerqueue, &timer->node);
 922	trace_rtc_timer_dequeue(timer);
 923	timer->enabled = 0;
 924	if (next == &timer->node) {
 925		struct rtc_wkalrm alarm;
 926		int err;
 927		next = timerqueue_getnext(&rtc->timerqueue);
 928		if (!next) {
 929			rtc_alarm_disable(rtc);
 930			return;
 931		}
 932		alarm.time = rtc_ktime_to_tm(next->expires);
 933		alarm.enabled = 1;
 934		err = __rtc_set_alarm(rtc, &alarm);
 935		if (err == -ETIME) {
 936			pm_stay_awake(rtc->dev.parent);
 937			schedule_work(&rtc->irqwork);
 938		}
 939	}
 940}
 941
 942/**
 943 * rtc_timer_do_work - Expires rtc timers
 944 * @rtc rtc device
 945 * @timer timer being removed.
 946 *
 947 * Expires rtc timers. Reprograms next alarm event if needed.
 948 * Called via worktask.
 949 *
 950 * Serializes access to timerqueue via ops_lock mutex
 951 */
 952void rtc_timer_do_work(struct work_struct *work)
 953{
 954	struct rtc_timer *timer;
 955	struct timerqueue_node *next;
 956	ktime_t now;
 957	struct rtc_time tm;
 958
 959	struct rtc_device *rtc =
 960		container_of(work, struct rtc_device, irqwork);
 961
 962	mutex_lock(&rtc->ops_lock);
 963again:
 964	__rtc_read_time(rtc, &tm);
 965	now = rtc_tm_to_ktime(tm);
 966	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
 967		if (next->expires > now)
 968			break;
 969
 970		/* expire timer */
 971		timer = container_of(next, struct rtc_timer, node);
 972		timerqueue_del(&rtc->timerqueue, &timer->node);
 973		trace_rtc_timer_dequeue(timer);
 974		timer->enabled = 0;
 975		if (timer->task.func)
 976			timer->task.func(timer->task.private_data);
 977
 978		trace_rtc_timer_fired(timer);
 979		/* Re-add/fwd periodic timers */
 980		if (ktime_to_ns(timer->period)) {
 981			timer->node.expires = ktime_add(timer->node.expires,
 982							timer->period);
 983			timer->enabled = 1;
 984			timerqueue_add(&rtc->timerqueue, &timer->node);
 985			trace_rtc_timer_enqueue(timer);
 986		}
 987	}
 988
 989	/* Set next alarm */
 990	if (next) {
 991		struct rtc_wkalrm alarm;
 992		int err;
 993		int retry = 3;
 994
 995		alarm.time = rtc_ktime_to_tm(next->expires);
 996		alarm.enabled = 1;
 997reprogram:
 998		err = __rtc_set_alarm(rtc, &alarm);
 999		if (err == -ETIME)
1000			goto again;
1001		else if (err) {
1002			if (retry-- > 0)
1003				goto reprogram;
1004
1005			timer = container_of(next, struct rtc_timer, node);
1006			timerqueue_del(&rtc->timerqueue, &timer->node);
1007			trace_rtc_timer_dequeue(timer);
1008			timer->enabled = 0;
1009			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
1010			goto again;
1011		}
1012	} else
1013		rtc_alarm_disable(rtc);
1014
1015	pm_relax(rtc->dev.parent);
1016	mutex_unlock(&rtc->ops_lock);
1017}
1018
1019
1020/* rtc_timer_init - Initializes an rtc_timer
1021 * @timer: timer to be intiialized
1022 * @f: function pointer to be called when timer fires
1023 * @data: private data passed to function pointer
1024 *
1025 * Kernel interface to initializing an rtc_timer.
1026 */
1027void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
1028{
1029	timerqueue_init(&timer->node);
1030	timer->enabled = 0;
1031	timer->task.func = f;
1032	timer->task.private_data = data;
1033}
1034
1035/* rtc_timer_start - Sets an rtc_timer to fire in the future
1036 * @ rtc: rtc device to be used
1037 * @ timer: timer being set
1038 * @ expires: time at which to expire the timer
1039 * @ period: period that the timer will recur
1040 *
1041 * Kernel interface to set an rtc_timer
1042 */
1043int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
1044			ktime_t expires, ktime_t period)
1045{
1046	int ret = 0;
1047	mutex_lock(&rtc->ops_lock);
1048	if (timer->enabled)
1049		rtc_timer_remove(rtc, timer);
1050
1051	timer->node.expires = expires;
1052	timer->period = period;
1053
1054	ret = rtc_timer_enqueue(rtc, timer);
1055
1056	mutex_unlock(&rtc->ops_lock);
1057	return ret;
1058}
1059
1060/* rtc_timer_cancel - Stops an rtc_timer
1061 * @ rtc: rtc device to be used
1062 * @ timer: timer being set
1063 *
1064 * Kernel interface to cancel an rtc_timer
1065 */
1066void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1067{
 
1068	mutex_lock(&rtc->ops_lock);
1069	if (timer->enabled)
1070		rtc_timer_remove(rtc, timer);
1071	mutex_unlock(&rtc->ops_lock);
1072}
1073
1074/**
1075 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1076 * @ rtc: rtc device to be used
1077 * @ offset: the offset in parts per billion
1078 *
1079 * see below for details.
1080 *
1081 * Kernel interface to read rtc clock offset
1082 * Returns 0 on success, or a negative number on error.
1083 * If read_offset() is not implemented for the rtc, return -EINVAL
1084 */
1085int rtc_read_offset(struct rtc_device *rtc, long *offset)
1086{
1087	int ret;
1088
1089	if (!rtc->ops)
1090		return -ENODEV;
1091
1092	if (!rtc->ops->read_offset)
1093		return -EINVAL;
1094
1095	mutex_lock(&rtc->ops_lock);
1096	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1097	mutex_unlock(&rtc->ops_lock);
1098
1099	trace_rtc_read_offset(*offset, ret);
1100	return ret;
1101}
1102
1103/**
1104 * rtc_set_offset - Adjusts the duration of the average second
1105 * @ rtc: rtc device to be used
1106 * @ offset: the offset in parts per billion
1107 *
1108 * Some rtc's allow an adjustment to the average duration of a second
1109 * to compensate for differences in the actual clock rate due to temperature,
1110 * the crystal, capacitor, etc.
1111 *
1112 * The adjustment applied is as follows:
1113 *   t = t0 * (1 + offset * 1e-9)
1114 * where t0 is the measured length of 1 RTC second with offset = 0
1115 *
1116 * Kernel interface to adjust an rtc clock offset.
1117 * Return 0 on success, or a negative number on error.
1118 * If the rtc offset is not setable (or not implemented), return -EINVAL
1119 */
1120int rtc_set_offset(struct rtc_device *rtc, long offset)
1121{
1122	int ret;
1123
1124	if (!rtc->ops)
1125		return -ENODEV;
1126
1127	if (!rtc->ops->set_offset)
1128		return -EINVAL;
1129
1130	mutex_lock(&rtc->ops_lock);
1131	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1132	mutex_unlock(&rtc->ops_lock);
1133
1134	trace_rtc_set_offset(offset, ret);
1135	return ret;
1136}