Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * RTC subsystem, interface functions
  3 *
  4 * Copyright (C) 2005 Tower Technologies
  5 * Author: Alessandro Zummo <a.zummo@towertech.it>
  6 *
  7 * based on arch/arm/common/rtctime.c
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12*/
 13
 14#include <linux/rtc.h>
 15#include <linux/sched.h>
 
 16#include <linux/log2.h>
 17#include <linux/workqueue.h>
 18
 19static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
 20static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
 21
 22static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 23{
 24	int err;
 25	if (!rtc->ops)
 26		err = -ENODEV;
 27	else if (!rtc->ops->read_time)
 28		err = -EINVAL;
 29	else {
 30		memset(tm, 0, sizeof(struct rtc_time));
 31		err = rtc->ops->read_time(rtc->dev.parent, tm);
 
 
 
 
 
 
 
 
 
 32	}
 33	return err;
 34}
 35
 36int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 37{
 38	int err;
 39
 40	err = mutex_lock_interruptible(&rtc->ops_lock);
 41	if (err)
 42		return err;
 43
 44	err = __rtc_read_time(rtc, tm);
 45	mutex_unlock(&rtc->ops_lock);
 46	return err;
 47}
 48EXPORT_SYMBOL_GPL(rtc_read_time);
 49
 50int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 51{
 52	int err;
 53
 54	err = rtc_valid_tm(tm);
 55	if (err != 0)
 56		return err;
 57
 58	err = mutex_lock_interruptible(&rtc->ops_lock);
 59	if (err)
 60		return err;
 61
 62	if (!rtc->ops)
 63		err = -ENODEV;
 64	else if (rtc->ops->set_time)
 65		err = rtc->ops->set_time(rtc->dev.parent, tm);
 66	else if (rtc->ops->set_mmss) {
 67		unsigned long secs;
 68		err = rtc_tm_to_time(tm, &secs);
 69		if (err == 0)
 70			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
 
 
 71	} else
 72		err = -EINVAL;
 73
 
 74	mutex_unlock(&rtc->ops_lock);
 
 
 75	return err;
 76}
 77EXPORT_SYMBOL_GPL(rtc_set_time);
 78
 79int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
 80{
 81	int err;
 82
 83	err = mutex_lock_interruptible(&rtc->ops_lock);
 84	if (err)
 85		return err;
 86
 87	if (!rtc->ops)
 88		err = -ENODEV;
 89	else if (rtc->ops->set_mmss)
 90		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
 91	else if (rtc->ops->read_time && rtc->ops->set_time) {
 92		struct rtc_time new, old;
 93
 94		err = rtc->ops->read_time(rtc->dev.parent, &old);
 95		if (err == 0) {
 96			rtc_time_to_tm(secs, &new);
 97
 98			/*
 99			 * avoid writing when we're going to change the day of
100			 * the month. We will retry in the next minute. This
101			 * basically means that if the RTC must not drift
102			 * by more than 1 minute in 11 minutes.
103			 */
104			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
105				(new.tm_hour == 23 && new.tm_min == 59)))
106				err = rtc->ops->set_time(rtc->dev.parent,
107						&new);
108		}
109	}
110	else
111		err = -EINVAL;
112
113	mutex_unlock(&rtc->ops_lock);
114
115	return err;
116}
117EXPORT_SYMBOL_GPL(rtc_set_mmss);
118
119static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
120{
121	int err;
122
123	err = mutex_lock_interruptible(&rtc->ops_lock);
124	if (err)
125		return err;
126
127	if (rtc->ops == NULL)
128		err = -ENODEV;
129	else if (!rtc->ops->read_alarm)
130		err = -EINVAL;
131	else {
132		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 
 
 
 
 
 
 
 
 
 
133		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
134	}
135
136	mutex_unlock(&rtc->ops_lock);
137	return err;
138}
139
140int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
141{
142	int err;
143	struct rtc_time before, now;
144	int first_time = 1;
145	unsigned long t_now, t_alm;
146	enum { none, day, month, year } missing = none;
147	unsigned days;
148
149	/* The lower level RTC driver may return -1 in some fields,
150	 * creating invalid alarm->time values, for reasons like:
151	 *
152	 *   - The hardware may not be capable of filling them in;
153	 *     many alarms match only on time-of-day fields, not
154	 *     day/month/year calendar data.
155	 *
156	 *   - Some hardware uses illegal values as "wildcard" match
157	 *     values, which non-Linux firmware (like a BIOS) may try
158	 *     to set up as e.g. "alarm 15 minutes after each hour".
159	 *     Linux uses only oneshot alarms.
160	 *
161	 * When we see that here, we deal with it by using values from
162	 * a current RTC timestamp for any missing (-1) values.  The
163	 * RTC driver prevents "periodic alarm" modes.
164	 *
165	 * But this can be racey, because some fields of the RTC timestamp
166	 * may have wrapped in the interval since we read the RTC alarm,
167	 * which would lead to us inserting inconsistent values in place
168	 * of the -1 fields.
169	 *
170	 * Reading the alarm and timestamp in the reverse sequence
171	 * would have the same race condition, and not solve the issue.
172	 *
173	 * So, we must first read the RTC timestamp,
174	 * then read the RTC alarm value,
175	 * and then read a second RTC timestamp.
176	 *
177	 * If any fields of the second timestamp have changed
178	 * when compared with the first timestamp, then we know
179	 * our timestamp may be inconsistent with that used by
180	 * the low-level rtc_read_alarm_internal() function.
181	 *
182	 * So, when the two timestamps disagree, we just loop and do
183	 * the process again to get a fully consistent set of values.
184	 *
185	 * This could all instead be done in the lower level driver,
186	 * but since more than one lower level RTC implementation needs it,
187	 * then it's probably best best to do it here instead of there..
188	 */
189
190	/* Get the "before" timestamp */
191	err = rtc_read_time(rtc, &before);
192	if (err < 0)
193		return err;
194	do {
195		if (!first_time)
196			memcpy(&before, &now, sizeof(struct rtc_time));
197		first_time = 0;
198
199		/* get the RTC alarm values, which may be incomplete */
200		err = rtc_read_alarm_internal(rtc, alarm);
201		if (err)
202			return err;
203
204		/* full-function RTCs won't have such missing fields */
205		if (rtc_valid_tm(&alarm->time) == 0)
206			return 0;
207
208		/* get the "after" timestamp, to detect wrapped fields */
209		err = rtc_read_time(rtc, &now);
210		if (err < 0)
211			return err;
212
213		/* note that tm_sec is a "don't care" value here: */
214	} while (   before.tm_min   != now.tm_min
215		 || before.tm_hour  != now.tm_hour
216		 || before.tm_mon   != now.tm_mon
217		 || before.tm_year  != now.tm_year);
218
219	/* Fill in the missing alarm fields using the timestamp; we
220	 * know there's at least one since alarm->time is invalid.
221	 */
222	if (alarm->time.tm_sec == -1)
223		alarm->time.tm_sec = now.tm_sec;
224	if (alarm->time.tm_min == -1)
225		alarm->time.tm_min = now.tm_min;
226	if (alarm->time.tm_hour == -1)
227		alarm->time.tm_hour = now.tm_hour;
228
229	/* For simplicity, only support date rollover for now */
230	if (alarm->time.tm_mday == -1) {
231		alarm->time.tm_mday = now.tm_mday;
232		missing = day;
233	}
234	if (alarm->time.tm_mon == -1) {
235		alarm->time.tm_mon = now.tm_mon;
236		if (missing == none)
237			missing = month;
238	}
239	if (alarm->time.tm_year == -1) {
240		alarm->time.tm_year = now.tm_year;
241		if (missing == none)
242			missing = year;
243	}
244
245	/* with luck, no rollover is needed */
246	rtc_tm_to_time(&now, &t_now);
247	rtc_tm_to_time(&alarm->time, &t_alm);
248	if (t_now < t_alm)
249		goto done;
250
251	switch (missing) {
252
253	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
254	 * that will trigger at 5am will do so at 5am Tuesday, which
255	 * could also be in the next month or year.  This is a common
256	 * case, especially for PCs.
257	 */
258	case day:
259		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
260		t_alm += 24 * 60 * 60;
261		rtc_time_to_tm(t_alm, &alarm->time);
262		break;
263
264	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
265	 * be next month.  An alarm matching on the 30th, 29th, or 28th
266	 * may end up in the month after that!  Many newer PCs support
267	 * this type of alarm.
268	 */
269	case month:
270		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
271		do {
272			if (alarm->time.tm_mon < 11)
273				alarm->time.tm_mon++;
274			else {
275				alarm->time.tm_mon = 0;
276				alarm->time.tm_year++;
277			}
278			days = rtc_month_days(alarm->time.tm_mon,
279					alarm->time.tm_year);
280		} while (days < alarm->time.tm_mday);
281		break;
282
283	/* Year rollover ... easy except for leap years! */
284	case year:
285		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
286		do {
287			alarm->time.tm_year++;
288		} while (rtc_valid_tm(&alarm->time) != 0);
 
289		break;
290
291	default:
292		dev_warn(&rtc->dev, "alarm rollover not handled\n");
293	}
294
295done:
296	return 0;
 
 
 
 
 
 
 
 
 
297}
298
299int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
300{
301	int err;
302
303	err = mutex_lock_interruptible(&rtc->ops_lock);
304	if (err)
305		return err;
306	if (rtc->ops == NULL)
307		err = -ENODEV;
308	else if (!rtc->ops->read_alarm)
309		err = -EINVAL;
310	else {
311		memset(alarm, 0, sizeof(struct rtc_wkalrm));
312		alarm->enabled = rtc->aie_timer.enabled;
313		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
314	}
315	mutex_unlock(&rtc->ops_lock);
316
317	return err;
318}
319EXPORT_SYMBOL_GPL(rtc_read_alarm);
320
321static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
322{
323	struct rtc_time tm;
324	long now, scheduled;
325	int err;
326
327	err = rtc_valid_tm(&alarm->time);
328	if (err)
329		return err;
330	rtc_tm_to_time(&alarm->time, &scheduled);
331
332	/* Make sure we're not setting alarms in the past */
333	err = __rtc_read_time(rtc, &tm);
334	rtc_tm_to_time(&tm, &now);
 
 
335	if (scheduled <= now)
336		return -ETIME;
337	/*
338	 * XXX - We just checked to make sure the alarm time is not
339	 * in the past, but there is still a race window where if
340	 * the is alarm set for the next second and the second ticks
341	 * over right here, before we set the alarm.
342	 */
343
344	if (!rtc->ops)
345		err = -ENODEV;
346	else if (!rtc->ops->set_alarm)
347		err = -EINVAL;
348	else
349		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
350
351	return err;
352}
353
354int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
355{
356	int err;
357
358	err = rtc_valid_tm(&alarm->time);
359	if (err != 0)
360		return err;
361
362	err = mutex_lock_interruptible(&rtc->ops_lock);
363	if (err)
364		return err;
365	if (rtc->aie_timer.enabled) {
366		rtc_timer_remove(rtc, &rtc->aie_timer);
367	}
368	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
369	rtc->aie_timer.period = ktime_set(0, 0);
370	if (alarm->enabled) {
371		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
372	}
373	mutex_unlock(&rtc->ops_lock);
374	return err;
375}
376EXPORT_SYMBOL_GPL(rtc_set_alarm);
377
378/* Called once per device from rtc_device_register */
379int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
380{
381	int err;
 
382
383	err = rtc_valid_tm(&alarm->time);
384	if (err != 0)
385		return err;
386
 
 
 
 
387	err = mutex_lock_interruptible(&rtc->ops_lock);
388	if (err)
389		return err;
390
391	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
392	rtc->aie_timer.period = ktime_set(0, 0);
393	if (alarm->enabled) {
 
 
 
 
394		rtc->aie_timer.enabled = 1;
395		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
396	}
397	mutex_unlock(&rtc->ops_lock);
398	return err;
399}
400EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
401
402
403
404int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
405{
406	int err = mutex_lock_interruptible(&rtc->ops_lock);
407	if (err)
408		return err;
409
410	if (rtc->aie_timer.enabled != enabled) {
411		if (enabled)
412			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
413		else
414			rtc_timer_remove(rtc, &rtc->aie_timer);
415	}
416
417	if (err)
418		/* nothing */;
419	else if (!rtc->ops)
420		err = -ENODEV;
421	else if (!rtc->ops->alarm_irq_enable)
422		err = -EINVAL;
423	else
424		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
425
426	mutex_unlock(&rtc->ops_lock);
427	return err;
428}
429EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
430
431int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
432{
433	int err = mutex_lock_interruptible(&rtc->ops_lock);
434	if (err)
435		return err;
436
437#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
438	if (enabled == 0 && rtc->uie_irq_active) {
439		mutex_unlock(&rtc->ops_lock);
440		return rtc_dev_update_irq_enable_emul(rtc, 0);
441	}
442#endif
443	/* make sure we're changing state */
444	if (rtc->uie_rtctimer.enabled == enabled)
445		goto out;
446
 
 
 
 
 
447	if (enabled) {
448		struct rtc_time tm;
449		ktime_t now, onesec;
450
451		__rtc_read_time(rtc, &tm);
452		onesec = ktime_set(1, 0);
453		now = rtc_tm_to_ktime(tm);
454		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
455		rtc->uie_rtctimer.period = ktime_set(1, 0);
456		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
457	} else
458		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
459
460out:
461	mutex_unlock(&rtc->ops_lock);
462#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
463	/*
464	 * Enable emulation if the driver did not provide
465	 * the update_irq_enable function pointer or if returned
466	 * -EINVAL to signal that it has been configured without
467	 * interrupts or that are not available at the moment.
468	 */
469	if (err == -EINVAL)
470		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
471#endif
472	return err;
473
474}
475EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
476
477
478/**
479 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
480 * @rtc: pointer to the rtc device
481 *
482 * This function is called when an AIE, UIE or PIE mode interrupt
483 * has occurred (or been emulated).
484 *
485 * Triggers the registered irq_task function callback.
486 */
487void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
488{
489	unsigned long flags;
490
491	/* mark one irq of the appropriate mode */
492	spin_lock_irqsave(&rtc->irq_lock, flags);
493	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
494	spin_unlock_irqrestore(&rtc->irq_lock, flags);
495
496	/* call the task func */
497	spin_lock_irqsave(&rtc->irq_task_lock, flags);
498	if (rtc->irq_task)
499		rtc->irq_task->func(rtc->irq_task->private_data);
500	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
501
502	wake_up_interruptible(&rtc->irq_queue);
503	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
504}
505
506
507/**
508 * rtc_aie_update_irq - AIE mode rtctimer hook
509 * @private: pointer to the rtc_device
510 *
511 * This functions is called when the aie_timer expires.
512 */
513void rtc_aie_update_irq(void *private)
514{
515	struct rtc_device *rtc = (struct rtc_device *)private;
516	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
517}
518
519
520/**
521 * rtc_uie_update_irq - UIE mode rtctimer hook
522 * @private: pointer to the rtc_device
523 *
524 * This functions is called when the uie_timer expires.
525 */
526void rtc_uie_update_irq(void *private)
527{
528	struct rtc_device *rtc = (struct rtc_device *)private;
529	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
530}
531
532
533/**
534 * rtc_pie_update_irq - PIE mode hrtimer hook
535 * @timer: pointer to the pie mode hrtimer
536 *
537 * This function is used to emulate PIE mode interrupts
538 * using an hrtimer. This function is called when the periodic
539 * hrtimer expires.
540 */
541enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
542{
543	struct rtc_device *rtc;
544	ktime_t period;
545	int count;
546	rtc = container_of(timer, struct rtc_device, pie_timer);
547
548	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
549	count = hrtimer_forward_now(timer, period);
550
551	rtc_handle_legacy_irq(rtc, count, RTC_PF);
552
553	return HRTIMER_RESTART;
554}
555
556/**
557 * rtc_update_irq - Triggered when a RTC interrupt occurs.
558 * @rtc: the rtc device
559 * @num: how many irqs are being reported (usually one)
560 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
561 * Context: any
562 */
563void rtc_update_irq(struct rtc_device *rtc,
564		unsigned long num, unsigned long events)
565{
 
 
 
 
566	schedule_work(&rtc->irqwork);
567}
568EXPORT_SYMBOL_GPL(rtc_update_irq);
569
570static int __rtc_match(struct device *dev, void *data)
571{
572	char *name = (char *)data;
573
574	if (strcmp(dev_name(dev), name) == 0)
575		return 1;
576	return 0;
577}
578
579struct rtc_device *rtc_class_open(char *name)
580{
581	struct device *dev;
582	struct rtc_device *rtc = NULL;
583
584	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
585	if (dev)
586		rtc = to_rtc_device(dev);
587
588	if (rtc) {
589		if (!try_module_get(rtc->owner)) {
590			put_device(dev);
591			rtc = NULL;
592		}
593	}
594
595	return rtc;
596}
597EXPORT_SYMBOL_GPL(rtc_class_open);
598
599void rtc_class_close(struct rtc_device *rtc)
600{
601	module_put(rtc->owner);
602	put_device(&rtc->dev);
603}
604EXPORT_SYMBOL_GPL(rtc_class_close);
605
606int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
607{
608	int retval = -EBUSY;
609
610	if (task == NULL || task->func == NULL)
611		return -EINVAL;
612
613	/* Cannot register while the char dev is in use */
614	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
615		return -EBUSY;
616
617	spin_lock_irq(&rtc->irq_task_lock);
618	if (rtc->irq_task == NULL) {
619		rtc->irq_task = task;
620		retval = 0;
621	}
622	spin_unlock_irq(&rtc->irq_task_lock);
623
624	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
625
626	return retval;
627}
628EXPORT_SYMBOL_GPL(rtc_irq_register);
629
630void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
631{
632	spin_lock_irq(&rtc->irq_task_lock);
633	if (rtc->irq_task == task)
634		rtc->irq_task = NULL;
635	spin_unlock_irq(&rtc->irq_task_lock);
636}
637EXPORT_SYMBOL_GPL(rtc_irq_unregister);
638
639static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
640{
641	/*
642	 * We always cancel the timer here first, because otherwise
643	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
644	 * when we manage to start the timer before the callback
645	 * returns HRTIMER_RESTART.
646	 *
647	 * We cannot use hrtimer_cancel() here as a running callback
648	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
649	 * would spin forever.
650	 */
651	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
652		return -1;
653
654	if (enabled) {
655		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
656
657		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
658	}
659	return 0;
660}
661
662/**
663 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
664 * @rtc: the rtc device
665 * @task: currently registered with rtc_irq_register()
666 * @enabled: true to enable periodic IRQs
667 * Context: any
668 *
669 * Note that rtc_irq_set_freq() should previously have been used to
670 * specify the desired frequency of periodic IRQ task->func() callbacks.
671 */
672int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
673{
674	int err = 0;
675	unsigned long flags;
676
677retry:
678	spin_lock_irqsave(&rtc->irq_task_lock, flags);
679	if (rtc->irq_task != NULL && task == NULL)
680		err = -EBUSY;
681	if (rtc->irq_task != task)
682		err = -EACCES;
683	if (!err) {
684		if (rtc_update_hrtimer(rtc, enabled) < 0) {
685			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
686			cpu_relax();
687			goto retry;
688		}
689		rtc->pie_enabled = enabled;
690	}
691	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
692	return err;
693}
694EXPORT_SYMBOL_GPL(rtc_irq_set_state);
695
696/**
697 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
698 * @rtc: the rtc device
699 * @task: currently registered with rtc_irq_register()
700 * @freq: positive frequency with which task->func() will be called
701 * Context: any
702 *
703 * Note that rtc_irq_set_state() is used to enable or disable the
704 * periodic IRQs.
705 */
706int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
707{
708	int err = 0;
709	unsigned long flags;
710
711	if (freq <= 0 || freq > RTC_MAX_FREQ)
712		return -EINVAL;
713retry:
714	spin_lock_irqsave(&rtc->irq_task_lock, flags);
715	if (rtc->irq_task != NULL && task == NULL)
716		err = -EBUSY;
717	if (rtc->irq_task != task)
718		err = -EACCES;
719	if (!err) {
720		rtc->irq_freq = freq;
721		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
722			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
723			cpu_relax();
724			goto retry;
725		}
726	}
727	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
728	return err;
729}
730EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
731
732/**
733 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
734 * @rtc rtc device
735 * @timer timer being added.
736 *
737 * Enqueues a timer onto the rtc devices timerqueue and sets
738 * the next alarm event appropriately.
739 *
740 * Sets the enabled bit on the added timer.
741 *
742 * Must hold ops_lock for proper serialization of timerqueue
743 */
744static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
745{
 
 
 
 
746	timer->enabled = 1;
 
 
 
 
 
 
 
 
 
 
747	timerqueue_add(&rtc->timerqueue, &timer->node);
748	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
749		struct rtc_wkalrm alarm;
750		int err;
751		alarm.time = rtc_ktime_to_tm(timer->node.expires);
752		alarm.enabled = 1;
753		err = __rtc_set_alarm(rtc, &alarm);
754		if (err == -ETIME)
 
755			schedule_work(&rtc->irqwork);
756		else if (err) {
757			timerqueue_del(&rtc->timerqueue, &timer->node);
758			timer->enabled = 0;
759			return err;
760		}
761	}
762	return 0;
763}
764
 
 
 
 
 
 
 
 
765/**
766 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
767 * @rtc rtc device
768 * @timer timer being removed.
769 *
770 * Removes a timer onto the rtc devices timerqueue and sets
771 * the next alarm event appropriately.
772 *
773 * Clears the enabled bit on the removed timer.
774 *
775 * Must hold ops_lock for proper serialization of timerqueue
776 */
777static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
778{
779	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
780	timerqueue_del(&rtc->timerqueue, &timer->node);
781	timer->enabled = 0;
782	if (next == &timer->node) {
783		struct rtc_wkalrm alarm;
784		int err;
785		next = timerqueue_getnext(&rtc->timerqueue);
786		if (!next)
 
787			return;
 
788		alarm.time = rtc_ktime_to_tm(next->expires);
789		alarm.enabled = 1;
790		err = __rtc_set_alarm(rtc, &alarm);
791		if (err == -ETIME)
 
792			schedule_work(&rtc->irqwork);
 
793	}
794}
795
796/**
797 * rtc_timer_do_work - Expires rtc timers
798 * @rtc rtc device
799 * @timer timer being removed.
800 *
801 * Expires rtc timers. Reprograms next alarm event if needed.
802 * Called via worktask.
803 *
804 * Serializes access to timerqueue via ops_lock mutex
805 */
806void rtc_timer_do_work(struct work_struct *work)
807{
808	struct rtc_timer *timer;
809	struct timerqueue_node *next;
810	ktime_t now;
811	struct rtc_time tm;
812
813	struct rtc_device *rtc =
814		container_of(work, struct rtc_device, irqwork);
815
816	mutex_lock(&rtc->ops_lock);
817again:
818	__rtc_read_time(rtc, &tm);
819	now = rtc_tm_to_ktime(tm);
820	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
821		if (next->expires.tv64 > now.tv64)
822			break;
823
824		/* expire timer */
825		timer = container_of(next, struct rtc_timer, node);
826		timerqueue_del(&rtc->timerqueue, &timer->node);
827		timer->enabled = 0;
828		if (timer->task.func)
829			timer->task.func(timer->task.private_data);
830
831		/* Re-add/fwd periodic timers */
832		if (ktime_to_ns(timer->period)) {
833			timer->node.expires = ktime_add(timer->node.expires,
834							timer->period);
835			timer->enabled = 1;
836			timerqueue_add(&rtc->timerqueue, &timer->node);
837		}
838	}
839
840	/* Set next alarm */
841	if (next) {
842		struct rtc_wkalrm alarm;
843		int err;
 
 
844		alarm.time = rtc_ktime_to_tm(next->expires);
845		alarm.enabled = 1;
 
846		err = __rtc_set_alarm(rtc, &alarm);
847		if (err == -ETIME)
848			goto again;
849	}
 
 
 
 
 
 
 
 
 
 
 
850
 
851	mutex_unlock(&rtc->ops_lock);
852}
853
854
855/* rtc_timer_init - Initializes an rtc_timer
856 * @timer: timer to be intiialized
857 * @f: function pointer to be called when timer fires
858 * @data: private data passed to function pointer
859 *
860 * Kernel interface to initializing an rtc_timer.
861 */
862void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
863{
864	timerqueue_init(&timer->node);
865	timer->enabled = 0;
866	timer->task.func = f;
867	timer->task.private_data = data;
868}
869
870/* rtc_timer_start - Sets an rtc_timer to fire in the future
871 * @ rtc: rtc device to be used
872 * @ timer: timer being set
873 * @ expires: time at which to expire the timer
874 * @ period: period that the timer will recur
875 *
876 * Kernel interface to set an rtc_timer
877 */
878int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
879			ktime_t expires, ktime_t period)
880{
881	int ret = 0;
882	mutex_lock(&rtc->ops_lock);
883	if (timer->enabled)
884		rtc_timer_remove(rtc, timer);
885
886	timer->node.expires = expires;
887	timer->period = period;
888
889	ret = rtc_timer_enqueue(rtc, timer);
890
891	mutex_unlock(&rtc->ops_lock);
892	return ret;
893}
894
895/* rtc_timer_cancel - Stops an rtc_timer
896 * @ rtc: rtc device to be used
897 * @ timer: timer being set
898 *
899 * Kernel interface to cancel an rtc_timer
900 */
901int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
902{
903	int ret = 0;
904	mutex_lock(&rtc->ops_lock);
905	if (timer->enabled)
906		rtc_timer_remove(rtc, timer);
907	mutex_unlock(&rtc->ops_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
908	return ret;
909}
910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
911
v4.10.11
   1/*
   2 * RTC subsystem, interface functions
   3 *
   4 * Copyright (C) 2005 Tower Technologies
   5 * Author: Alessandro Zummo <a.zummo@towertech.it>
   6 *
   7 * based on arch/arm/common/rtctime.c
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12*/
  13
  14#include <linux/rtc.h>
  15#include <linux/sched.h>
  16#include <linux/module.h>
  17#include <linux/log2.h>
  18#include <linux/workqueue.h>
  19
  20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
  21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
  22
  23static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  24{
  25	int err;
  26	if (!rtc->ops)
  27		err = -ENODEV;
  28	else if (!rtc->ops->read_time)
  29		err = -EINVAL;
  30	else {
  31		memset(tm, 0, sizeof(struct rtc_time));
  32		err = rtc->ops->read_time(rtc->dev.parent, tm);
  33		if (err < 0) {
  34			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
  35				err);
  36			return err;
  37		}
  38
  39		err = rtc_valid_tm(tm);
  40		if (err < 0)
  41			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
  42	}
  43	return err;
  44}
  45
  46int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  47{
  48	int err;
  49
  50	err = mutex_lock_interruptible(&rtc->ops_lock);
  51	if (err)
  52		return err;
  53
  54	err = __rtc_read_time(rtc, tm);
  55	mutex_unlock(&rtc->ops_lock);
  56	return err;
  57}
  58EXPORT_SYMBOL_GPL(rtc_read_time);
  59
  60int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
  61{
  62	int err;
  63
  64	err = rtc_valid_tm(tm);
  65	if (err != 0)
  66		return err;
  67
  68	err = mutex_lock_interruptible(&rtc->ops_lock);
  69	if (err)
  70		return err;
  71
  72	if (!rtc->ops)
  73		err = -ENODEV;
  74	else if (rtc->ops->set_time)
  75		err = rtc->ops->set_time(rtc->dev.parent, tm);
  76	else if (rtc->ops->set_mmss64) {
  77		time64_t secs64 = rtc_tm_to_time64(tm);
  78
  79		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
  80	} else if (rtc->ops->set_mmss) {
  81		time64_t secs64 = rtc_tm_to_time64(tm);
  82		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
  83	} else
  84		err = -EINVAL;
  85
  86	pm_stay_awake(rtc->dev.parent);
  87	mutex_unlock(&rtc->ops_lock);
  88	/* A timer might have just expired */
  89	schedule_work(&rtc->irqwork);
  90	return err;
  91}
  92EXPORT_SYMBOL_GPL(rtc_set_time);
  93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
  95{
  96	int err;
  97
  98	err = mutex_lock_interruptible(&rtc->ops_lock);
  99	if (err)
 100		return err;
 101
 102	if (rtc->ops == NULL)
 103		err = -ENODEV;
 104	else if (!rtc->ops->read_alarm)
 105		err = -EINVAL;
 106	else {
 107		alarm->enabled = 0;
 108		alarm->pending = 0;
 109		alarm->time.tm_sec = -1;
 110		alarm->time.tm_min = -1;
 111		alarm->time.tm_hour = -1;
 112		alarm->time.tm_mday = -1;
 113		alarm->time.tm_mon = -1;
 114		alarm->time.tm_year = -1;
 115		alarm->time.tm_wday = -1;
 116		alarm->time.tm_yday = -1;
 117		alarm->time.tm_isdst = -1;
 118		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
 119	}
 120
 121	mutex_unlock(&rtc->ops_lock);
 122	return err;
 123}
 124
 125int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 126{
 127	int err;
 128	struct rtc_time before, now;
 129	int first_time = 1;
 130	time64_t t_now, t_alm;
 131	enum { none, day, month, year } missing = none;
 132	unsigned days;
 133
 134	/* The lower level RTC driver may return -1 in some fields,
 135	 * creating invalid alarm->time values, for reasons like:
 136	 *
 137	 *   - The hardware may not be capable of filling them in;
 138	 *     many alarms match only on time-of-day fields, not
 139	 *     day/month/year calendar data.
 140	 *
 141	 *   - Some hardware uses illegal values as "wildcard" match
 142	 *     values, which non-Linux firmware (like a BIOS) may try
 143	 *     to set up as e.g. "alarm 15 minutes after each hour".
 144	 *     Linux uses only oneshot alarms.
 145	 *
 146	 * When we see that here, we deal with it by using values from
 147	 * a current RTC timestamp for any missing (-1) values.  The
 148	 * RTC driver prevents "periodic alarm" modes.
 149	 *
 150	 * But this can be racey, because some fields of the RTC timestamp
 151	 * may have wrapped in the interval since we read the RTC alarm,
 152	 * which would lead to us inserting inconsistent values in place
 153	 * of the -1 fields.
 154	 *
 155	 * Reading the alarm and timestamp in the reverse sequence
 156	 * would have the same race condition, and not solve the issue.
 157	 *
 158	 * So, we must first read the RTC timestamp,
 159	 * then read the RTC alarm value,
 160	 * and then read a second RTC timestamp.
 161	 *
 162	 * If any fields of the second timestamp have changed
 163	 * when compared with the first timestamp, then we know
 164	 * our timestamp may be inconsistent with that used by
 165	 * the low-level rtc_read_alarm_internal() function.
 166	 *
 167	 * So, when the two timestamps disagree, we just loop and do
 168	 * the process again to get a fully consistent set of values.
 169	 *
 170	 * This could all instead be done in the lower level driver,
 171	 * but since more than one lower level RTC implementation needs it,
 172	 * then it's probably best best to do it here instead of there..
 173	 */
 174
 175	/* Get the "before" timestamp */
 176	err = rtc_read_time(rtc, &before);
 177	if (err < 0)
 178		return err;
 179	do {
 180		if (!first_time)
 181			memcpy(&before, &now, sizeof(struct rtc_time));
 182		first_time = 0;
 183
 184		/* get the RTC alarm values, which may be incomplete */
 185		err = rtc_read_alarm_internal(rtc, alarm);
 186		if (err)
 187			return err;
 188
 189		/* full-function RTCs won't have such missing fields */
 190		if (rtc_valid_tm(&alarm->time) == 0)
 191			return 0;
 192
 193		/* get the "after" timestamp, to detect wrapped fields */
 194		err = rtc_read_time(rtc, &now);
 195		if (err < 0)
 196			return err;
 197
 198		/* note that tm_sec is a "don't care" value here: */
 199	} while (   before.tm_min   != now.tm_min
 200		 || before.tm_hour  != now.tm_hour
 201		 || before.tm_mon   != now.tm_mon
 202		 || before.tm_year  != now.tm_year);
 203
 204	/* Fill in the missing alarm fields using the timestamp; we
 205	 * know there's at least one since alarm->time is invalid.
 206	 */
 207	if (alarm->time.tm_sec == -1)
 208		alarm->time.tm_sec = now.tm_sec;
 209	if (alarm->time.tm_min == -1)
 210		alarm->time.tm_min = now.tm_min;
 211	if (alarm->time.tm_hour == -1)
 212		alarm->time.tm_hour = now.tm_hour;
 213
 214	/* For simplicity, only support date rollover for now */
 215	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
 216		alarm->time.tm_mday = now.tm_mday;
 217		missing = day;
 218	}
 219	if ((unsigned)alarm->time.tm_mon >= 12) {
 220		alarm->time.tm_mon = now.tm_mon;
 221		if (missing == none)
 222			missing = month;
 223	}
 224	if (alarm->time.tm_year == -1) {
 225		alarm->time.tm_year = now.tm_year;
 226		if (missing == none)
 227			missing = year;
 228	}
 229
 230	/* with luck, no rollover is needed */
 231	t_now = rtc_tm_to_time64(&now);
 232	t_alm = rtc_tm_to_time64(&alarm->time);
 233	if (t_now < t_alm)
 234		goto done;
 235
 236	switch (missing) {
 237
 238	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
 239	 * that will trigger at 5am will do so at 5am Tuesday, which
 240	 * could also be in the next month or year.  This is a common
 241	 * case, especially for PCs.
 242	 */
 243	case day:
 244		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
 245		t_alm += 24 * 60 * 60;
 246		rtc_time64_to_tm(t_alm, &alarm->time);
 247		break;
 248
 249	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
 250	 * be next month.  An alarm matching on the 30th, 29th, or 28th
 251	 * may end up in the month after that!  Many newer PCs support
 252	 * this type of alarm.
 253	 */
 254	case month:
 255		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
 256		do {
 257			if (alarm->time.tm_mon < 11)
 258				alarm->time.tm_mon++;
 259			else {
 260				alarm->time.tm_mon = 0;
 261				alarm->time.tm_year++;
 262			}
 263			days = rtc_month_days(alarm->time.tm_mon,
 264					alarm->time.tm_year);
 265		} while (days < alarm->time.tm_mday);
 266		break;
 267
 268	/* Year rollover ... easy except for leap years! */
 269	case year:
 270		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
 271		do {
 272			alarm->time.tm_year++;
 273		} while (!is_leap_year(alarm->time.tm_year + 1900)
 274			&& rtc_valid_tm(&alarm->time) != 0);
 275		break;
 276
 277	default:
 278		dev_warn(&rtc->dev, "alarm rollover not handled\n");
 279	}
 280
 281done:
 282	err = rtc_valid_tm(&alarm->time);
 283
 284	if (err) {
 285		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
 286			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
 287			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
 288			alarm->time.tm_sec);
 289	}
 290
 291	return err;
 292}
 293
 294int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 295{
 296	int err;
 297
 298	err = mutex_lock_interruptible(&rtc->ops_lock);
 299	if (err)
 300		return err;
 301	if (rtc->ops == NULL)
 302		err = -ENODEV;
 303	else if (!rtc->ops->read_alarm)
 304		err = -EINVAL;
 305	else {
 306		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 307		alarm->enabled = rtc->aie_timer.enabled;
 308		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
 309	}
 310	mutex_unlock(&rtc->ops_lock);
 311
 312	return err;
 313}
 314EXPORT_SYMBOL_GPL(rtc_read_alarm);
 315
 316static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 317{
 318	struct rtc_time tm;
 319	time64_t now, scheduled;
 320	int err;
 321
 322	err = rtc_valid_tm(&alarm->time);
 323	if (err)
 324		return err;
 325	scheduled = rtc_tm_to_time64(&alarm->time);
 326
 327	/* Make sure we're not setting alarms in the past */
 328	err = __rtc_read_time(rtc, &tm);
 329	if (err)
 330		return err;
 331	now = rtc_tm_to_time64(&tm);
 332	if (scheduled <= now)
 333		return -ETIME;
 334	/*
 335	 * XXX - We just checked to make sure the alarm time is not
 336	 * in the past, but there is still a race window where if
 337	 * the is alarm set for the next second and the second ticks
 338	 * over right here, before we set the alarm.
 339	 */
 340
 341	if (!rtc->ops)
 342		err = -ENODEV;
 343	else if (!rtc->ops->set_alarm)
 344		err = -EINVAL;
 345	else
 346		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
 347
 348	return err;
 349}
 350
 351int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 352{
 353	int err;
 354
 355	err = rtc_valid_tm(&alarm->time);
 356	if (err != 0)
 357		return err;
 358
 359	err = mutex_lock_interruptible(&rtc->ops_lock);
 360	if (err)
 361		return err;
 362	if (rtc->aie_timer.enabled)
 363		rtc_timer_remove(rtc, &rtc->aie_timer);
 364
 365	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 366	rtc->aie_timer.period = 0;
 367	if (alarm->enabled)
 368		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 369
 370	mutex_unlock(&rtc->ops_lock);
 371	return err;
 372}
 373EXPORT_SYMBOL_GPL(rtc_set_alarm);
 374
 375/* Called once per device from rtc_device_register */
 376int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 377{
 378	int err;
 379	struct rtc_time now;
 380
 381	err = rtc_valid_tm(&alarm->time);
 382	if (err != 0)
 383		return err;
 384
 385	err = rtc_read_time(rtc, &now);
 386	if (err)
 387		return err;
 388
 389	err = mutex_lock_interruptible(&rtc->ops_lock);
 390	if (err)
 391		return err;
 392
 393	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 394	rtc->aie_timer.period = 0;
 395
 396	/* Alarm has to be enabled & in the future for us to enqueue it */
 397	if (alarm->enabled && (rtc_tm_to_ktime(now) <
 398			 rtc->aie_timer.node.expires)) {
 399
 400		rtc->aie_timer.enabled = 1;
 401		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 402	}
 403	mutex_unlock(&rtc->ops_lock);
 404	return err;
 405}
 406EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
 407
 
 
 408int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 409{
 410	int err = mutex_lock_interruptible(&rtc->ops_lock);
 411	if (err)
 412		return err;
 413
 414	if (rtc->aie_timer.enabled != enabled) {
 415		if (enabled)
 416			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 417		else
 418			rtc_timer_remove(rtc, &rtc->aie_timer);
 419	}
 420
 421	if (err)
 422		/* nothing */;
 423	else if (!rtc->ops)
 424		err = -ENODEV;
 425	else if (!rtc->ops->alarm_irq_enable)
 426		err = -EINVAL;
 427	else
 428		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
 429
 430	mutex_unlock(&rtc->ops_lock);
 431	return err;
 432}
 433EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
 434
 435int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 436{
 437	int err = mutex_lock_interruptible(&rtc->ops_lock);
 438	if (err)
 439		return err;
 440
 441#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 442	if (enabled == 0 && rtc->uie_irq_active) {
 443		mutex_unlock(&rtc->ops_lock);
 444		return rtc_dev_update_irq_enable_emul(rtc, 0);
 445	}
 446#endif
 447	/* make sure we're changing state */
 448	if (rtc->uie_rtctimer.enabled == enabled)
 449		goto out;
 450
 451	if (rtc->uie_unsupported) {
 452		err = -EINVAL;
 453		goto out;
 454	}
 455
 456	if (enabled) {
 457		struct rtc_time tm;
 458		ktime_t now, onesec;
 459
 460		__rtc_read_time(rtc, &tm);
 461		onesec = ktime_set(1, 0);
 462		now = rtc_tm_to_ktime(tm);
 463		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
 464		rtc->uie_rtctimer.period = ktime_set(1, 0);
 465		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
 466	} else
 467		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 468
 469out:
 470	mutex_unlock(&rtc->ops_lock);
 471#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 472	/*
 473	 * Enable emulation if the driver did not provide
 474	 * the update_irq_enable function pointer or if returned
 475	 * -EINVAL to signal that it has been configured without
 476	 * interrupts or that are not available at the moment.
 477	 */
 478	if (err == -EINVAL)
 479		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
 480#endif
 481	return err;
 482
 483}
 484EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
 485
 486
 487/**
 488 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
 489 * @rtc: pointer to the rtc device
 490 *
 491 * This function is called when an AIE, UIE or PIE mode interrupt
 492 * has occurred (or been emulated).
 493 *
 494 * Triggers the registered irq_task function callback.
 495 */
 496void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
 497{
 498	unsigned long flags;
 499
 500	/* mark one irq of the appropriate mode */
 501	spin_lock_irqsave(&rtc->irq_lock, flags);
 502	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
 503	spin_unlock_irqrestore(&rtc->irq_lock, flags);
 504
 505	/* call the task func */
 506	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 507	if (rtc->irq_task)
 508		rtc->irq_task->func(rtc->irq_task->private_data);
 509	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 510
 511	wake_up_interruptible(&rtc->irq_queue);
 512	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
 513}
 514
 515
 516/**
 517 * rtc_aie_update_irq - AIE mode rtctimer hook
 518 * @private: pointer to the rtc_device
 519 *
 520 * This functions is called when the aie_timer expires.
 521 */
 522void rtc_aie_update_irq(void *private)
 523{
 524	struct rtc_device *rtc = (struct rtc_device *)private;
 525	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
 526}
 527
 528
 529/**
 530 * rtc_uie_update_irq - UIE mode rtctimer hook
 531 * @private: pointer to the rtc_device
 532 *
 533 * This functions is called when the uie_timer expires.
 534 */
 535void rtc_uie_update_irq(void *private)
 536{
 537	struct rtc_device *rtc = (struct rtc_device *)private;
 538	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
 539}
 540
 541
 542/**
 543 * rtc_pie_update_irq - PIE mode hrtimer hook
 544 * @timer: pointer to the pie mode hrtimer
 545 *
 546 * This function is used to emulate PIE mode interrupts
 547 * using an hrtimer. This function is called when the periodic
 548 * hrtimer expires.
 549 */
 550enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
 551{
 552	struct rtc_device *rtc;
 553	ktime_t period;
 554	int count;
 555	rtc = container_of(timer, struct rtc_device, pie_timer);
 556
 557	period = NSEC_PER_SEC / rtc->irq_freq;
 558	count = hrtimer_forward_now(timer, period);
 559
 560	rtc_handle_legacy_irq(rtc, count, RTC_PF);
 561
 562	return HRTIMER_RESTART;
 563}
 564
 565/**
 566 * rtc_update_irq - Triggered when a RTC interrupt occurs.
 567 * @rtc: the rtc device
 568 * @num: how many irqs are being reported (usually one)
 569 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 570 * Context: any
 571 */
 572void rtc_update_irq(struct rtc_device *rtc,
 573		unsigned long num, unsigned long events)
 574{
 575	if (IS_ERR_OR_NULL(rtc))
 576		return;
 577
 578	pm_stay_awake(rtc->dev.parent);
 579	schedule_work(&rtc->irqwork);
 580}
 581EXPORT_SYMBOL_GPL(rtc_update_irq);
 582
 583static int __rtc_match(struct device *dev, const void *data)
 584{
 585	const char *name = data;
 586
 587	if (strcmp(dev_name(dev), name) == 0)
 588		return 1;
 589	return 0;
 590}
 591
 592struct rtc_device *rtc_class_open(const char *name)
 593{
 594	struct device *dev;
 595	struct rtc_device *rtc = NULL;
 596
 597	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
 598	if (dev)
 599		rtc = to_rtc_device(dev);
 600
 601	if (rtc) {
 602		if (!try_module_get(rtc->owner)) {
 603			put_device(dev);
 604			rtc = NULL;
 605		}
 606	}
 607
 608	return rtc;
 609}
 610EXPORT_SYMBOL_GPL(rtc_class_open);
 611
 612void rtc_class_close(struct rtc_device *rtc)
 613{
 614	module_put(rtc->owner);
 615	put_device(&rtc->dev);
 616}
 617EXPORT_SYMBOL_GPL(rtc_class_close);
 618
 619int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
 620{
 621	int retval = -EBUSY;
 622
 623	if (task == NULL || task->func == NULL)
 624		return -EINVAL;
 625
 626	/* Cannot register while the char dev is in use */
 627	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
 628		return -EBUSY;
 629
 630	spin_lock_irq(&rtc->irq_task_lock);
 631	if (rtc->irq_task == NULL) {
 632		rtc->irq_task = task;
 633		retval = 0;
 634	}
 635	spin_unlock_irq(&rtc->irq_task_lock);
 636
 637	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
 638
 639	return retval;
 640}
 641EXPORT_SYMBOL_GPL(rtc_irq_register);
 642
 643void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
 644{
 645	spin_lock_irq(&rtc->irq_task_lock);
 646	if (rtc->irq_task == task)
 647		rtc->irq_task = NULL;
 648	spin_unlock_irq(&rtc->irq_task_lock);
 649}
 650EXPORT_SYMBOL_GPL(rtc_irq_unregister);
 651
 652static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
 653{
 654	/*
 655	 * We always cancel the timer here first, because otherwise
 656	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
 657	 * when we manage to start the timer before the callback
 658	 * returns HRTIMER_RESTART.
 659	 *
 660	 * We cannot use hrtimer_cancel() here as a running callback
 661	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
 662	 * would spin forever.
 663	 */
 664	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
 665		return -1;
 666
 667	if (enabled) {
 668		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
 669
 670		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
 671	}
 672	return 0;
 673}
 674
 675/**
 676 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 677 * @rtc: the rtc device
 678 * @task: currently registered with rtc_irq_register()
 679 * @enabled: true to enable periodic IRQs
 680 * Context: any
 681 *
 682 * Note that rtc_irq_set_freq() should previously have been used to
 683 * specify the desired frequency of periodic IRQ task->func() callbacks.
 684 */
 685int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
 686{
 687	int err = 0;
 688	unsigned long flags;
 689
 690retry:
 691	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 692	if (rtc->irq_task != NULL && task == NULL)
 693		err = -EBUSY;
 694	else if (rtc->irq_task != task)
 695		err = -EACCES;
 696	else {
 697		if (rtc_update_hrtimer(rtc, enabled) < 0) {
 698			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 699			cpu_relax();
 700			goto retry;
 701		}
 702		rtc->pie_enabled = enabled;
 703	}
 704	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 705	return err;
 706}
 707EXPORT_SYMBOL_GPL(rtc_irq_set_state);
 708
 709/**
 710 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 711 * @rtc: the rtc device
 712 * @task: currently registered with rtc_irq_register()
 713 * @freq: positive frequency with which task->func() will be called
 714 * Context: any
 715 *
 716 * Note that rtc_irq_set_state() is used to enable or disable the
 717 * periodic IRQs.
 718 */
 719int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
 720{
 721	int err = 0;
 722	unsigned long flags;
 723
 724	if (freq <= 0 || freq > RTC_MAX_FREQ)
 725		return -EINVAL;
 726retry:
 727	spin_lock_irqsave(&rtc->irq_task_lock, flags);
 728	if (rtc->irq_task != NULL && task == NULL)
 729		err = -EBUSY;
 730	else if (rtc->irq_task != task)
 731		err = -EACCES;
 732	else {
 733		rtc->irq_freq = freq;
 734		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
 735			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 736			cpu_relax();
 737			goto retry;
 738		}
 739	}
 740	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 741	return err;
 742}
 743EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
 744
 745/**
 746 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 747 * @rtc rtc device
 748 * @timer timer being added.
 749 *
 750 * Enqueues a timer onto the rtc devices timerqueue and sets
 751 * the next alarm event appropriately.
 752 *
 753 * Sets the enabled bit on the added timer.
 754 *
 755 * Must hold ops_lock for proper serialization of timerqueue
 756 */
 757static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
 758{
 759	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 760	struct rtc_time tm;
 761	ktime_t now;
 762
 763	timer->enabled = 1;
 764	__rtc_read_time(rtc, &tm);
 765	now = rtc_tm_to_ktime(tm);
 766
 767	/* Skip over expired timers */
 768	while (next) {
 769		if (next->expires >= now)
 770			break;
 771		next = timerqueue_iterate_next(next);
 772	}
 773
 774	timerqueue_add(&rtc->timerqueue, &timer->node);
 775	if (!next) {
 776		struct rtc_wkalrm alarm;
 777		int err;
 778		alarm.time = rtc_ktime_to_tm(timer->node.expires);
 779		alarm.enabled = 1;
 780		err = __rtc_set_alarm(rtc, &alarm);
 781		if (err == -ETIME) {
 782			pm_stay_awake(rtc->dev.parent);
 783			schedule_work(&rtc->irqwork);
 784		} else if (err) {
 785			timerqueue_del(&rtc->timerqueue, &timer->node);
 786			timer->enabled = 0;
 787			return err;
 788		}
 789	}
 790	return 0;
 791}
 792
 793static void rtc_alarm_disable(struct rtc_device *rtc)
 794{
 795	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
 796		return;
 797
 798	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 799}
 800
 801/**
 802 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
 803 * @rtc rtc device
 804 * @timer timer being removed.
 805 *
 806 * Removes a timer onto the rtc devices timerqueue and sets
 807 * the next alarm event appropriately.
 808 *
 809 * Clears the enabled bit on the removed timer.
 810 *
 811 * Must hold ops_lock for proper serialization of timerqueue
 812 */
 813static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
 814{
 815	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 816	timerqueue_del(&rtc->timerqueue, &timer->node);
 817	timer->enabled = 0;
 818	if (next == &timer->node) {
 819		struct rtc_wkalrm alarm;
 820		int err;
 821		next = timerqueue_getnext(&rtc->timerqueue);
 822		if (!next) {
 823			rtc_alarm_disable(rtc);
 824			return;
 825		}
 826		alarm.time = rtc_ktime_to_tm(next->expires);
 827		alarm.enabled = 1;
 828		err = __rtc_set_alarm(rtc, &alarm);
 829		if (err == -ETIME) {
 830			pm_stay_awake(rtc->dev.parent);
 831			schedule_work(&rtc->irqwork);
 832		}
 833	}
 834}
 835
 836/**
 837 * rtc_timer_do_work - Expires rtc timers
 838 * @rtc rtc device
 839 * @timer timer being removed.
 840 *
 841 * Expires rtc timers. Reprograms next alarm event if needed.
 842 * Called via worktask.
 843 *
 844 * Serializes access to timerqueue via ops_lock mutex
 845 */
 846void rtc_timer_do_work(struct work_struct *work)
 847{
 848	struct rtc_timer *timer;
 849	struct timerqueue_node *next;
 850	ktime_t now;
 851	struct rtc_time tm;
 852
 853	struct rtc_device *rtc =
 854		container_of(work, struct rtc_device, irqwork);
 855
 856	mutex_lock(&rtc->ops_lock);
 857again:
 858	__rtc_read_time(rtc, &tm);
 859	now = rtc_tm_to_ktime(tm);
 860	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
 861		if (next->expires > now)
 862			break;
 863
 864		/* expire timer */
 865		timer = container_of(next, struct rtc_timer, node);
 866		timerqueue_del(&rtc->timerqueue, &timer->node);
 867		timer->enabled = 0;
 868		if (timer->task.func)
 869			timer->task.func(timer->task.private_data);
 870
 871		/* Re-add/fwd periodic timers */
 872		if (ktime_to_ns(timer->period)) {
 873			timer->node.expires = ktime_add(timer->node.expires,
 874							timer->period);
 875			timer->enabled = 1;
 876			timerqueue_add(&rtc->timerqueue, &timer->node);
 877		}
 878	}
 879
 880	/* Set next alarm */
 881	if (next) {
 882		struct rtc_wkalrm alarm;
 883		int err;
 884		int retry = 3;
 885
 886		alarm.time = rtc_ktime_to_tm(next->expires);
 887		alarm.enabled = 1;
 888reprogram:
 889		err = __rtc_set_alarm(rtc, &alarm);
 890		if (err == -ETIME)
 891			goto again;
 892		else if (err) {
 893			if (retry-- > 0)
 894				goto reprogram;
 895
 896			timer = container_of(next, struct rtc_timer, node);
 897			timerqueue_del(&rtc->timerqueue, &timer->node);
 898			timer->enabled = 0;
 899			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
 900			goto again;
 901		}
 902	} else
 903		rtc_alarm_disable(rtc);
 904
 905	pm_relax(rtc->dev.parent);
 906	mutex_unlock(&rtc->ops_lock);
 907}
 908
 909
 910/* rtc_timer_init - Initializes an rtc_timer
 911 * @timer: timer to be intiialized
 912 * @f: function pointer to be called when timer fires
 913 * @data: private data passed to function pointer
 914 *
 915 * Kernel interface to initializing an rtc_timer.
 916 */
 917void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
 918{
 919	timerqueue_init(&timer->node);
 920	timer->enabled = 0;
 921	timer->task.func = f;
 922	timer->task.private_data = data;
 923}
 924
 925/* rtc_timer_start - Sets an rtc_timer to fire in the future
 926 * @ rtc: rtc device to be used
 927 * @ timer: timer being set
 928 * @ expires: time at which to expire the timer
 929 * @ period: period that the timer will recur
 930 *
 931 * Kernel interface to set an rtc_timer
 932 */
 933int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
 934			ktime_t expires, ktime_t period)
 935{
 936	int ret = 0;
 937	mutex_lock(&rtc->ops_lock);
 938	if (timer->enabled)
 939		rtc_timer_remove(rtc, timer);
 940
 941	timer->node.expires = expires;
 942	timer->period = period;
 943
 944	ret = rtc_timer_enqueue(rtc, timer);
 945
 946	mutex_unlock(&rtc->ops_lock);
 947	return ret;
 948}
 949
 950/* rtc_timer_cancel - Stops an rtc_timer
 951 * @ rtc: rtc device to be used
 952 * @ timer: timer being set
 953 *
 954 * Kernel interface to cancel an rtc_timer
 955 */
 956void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
 957{
 
 958	mutex_lock(&rtc->ops_lock);
 959	if (timer->enabled)
 960		rtc_timer_remove(rtc, timer);
 961	mutex_unlock(&rtc->ops_lock);
 962}
 963
 964/**
 965 * rtc_read_offset - Read the amount of rtc offset in parts per billion
 966 * @ rtc: rtc device to be used
 967 * @ offset: the offset in parts per billion
 968 *
 969 * see below for details.
 970 *
 971 * Kernel interface to read rtc clock offset
 972 * Returns 0 on success, or a negative number on error.
 973 * If read_offset() is not implemented for the rtc, return -EINVAL
 974 */
 975int rtc_read_offset(struct rtc_device *rtc, long *offset)
 976{
 977	int ret;
 978
 979	if (!rtc->ops)
 980		return -ENODEV;
 981
 982	if (!rtc->ops->read_offset)
 983		return -EINVAL;
 984
 985	mutex_lock(&rtc->ops_lock);
 986	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
 987	mutex_unlock(&rtc->ops_lock);
 988	return ret;
 989}
 990
 991/**
 992 * rtc_set_offset - Adjusts the duration of the average second
 993 * @ rtc: rtc device to be used
 994 * @ offset: the offset in parts per billion
 995 *
 996 * Some rtc's allow an adjustment to the average duration of a second
 997 * to compensate for differences in the actual clock rate due to temperature,
 998 * the crystal, capacitor, etc.
 999 *
1000 * Kernel interface to adjust an rtc clock offset.
1001 * Return 0 on success, or a negative number on error.
1002 * If the rtc offset is not setable (or not implemented), return -EINVAL
1003 */
1004int rtc_set_offset(struct rtc_device *rtc, long offset)
1005{
1006	int ret;
1007
1008	if (!rtc->ops)
1009		return -ENODEV;
1010
1011	if (!rtc->ops->set_offset)
1012		return -EINVAL;
1013
1014	mutex_lock(&rtc->ops_lock);
1015	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1016	mutex_unlock(&rtc->ops_lock);
1017	return ret;
1018}