Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file is the ADC part of the STM32 DFSDM driver
   4 *
   5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
   6 * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
   7 */
   8
   9#include <linux/dmaengine.h>
  10#include <linux/dma-mapping.h>
  11#include <linux/interrupt.h>
  12#include <linux/iio/buffer.h>
  13#include <linux/iio/hw-consumer.h>
  14#include <linux/iio/iio.h>
  15#include <linux/iio/sysfs.h>
  16#include <linux/module.h>
  17#include <linux/of_device.h>
  18#include <linux/platform_device.h>
  19#include <linux/regmap.h>
  20#include <linux/slab.h>
  21
  22#include "stm32-dfsdm.h"
  23
  24#define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
  25
  26/* Conversion timeout */
  27#define DFSDM_TIMEOUT_US 100000
  28#define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
  29
  30/* Oversampling attribute default */
  31#define DFSDM_DEFAULT_OVERSAMPLING  100
  32
  33/* Oversampling max values */
  34#define DFSDM_MAX_INT_OVERSAMPLING 256
  35#define DFSDM_MAX_FL_OVERSAMPLING 1024
  36
  37/* Max sample resolutions */
  38#define DFSDM_MAX_RES BIT(31)
  39#define DFSDM_DATA_RES BIT(23)
  40
  41enum sd_converter_type {
  42	DFSDM_AUDIO,
  43	DFSDM_IIO,
  44};
  45
  46struct stm32_dfsdm_dev_data {
  47	int type;
  48	int (*init)(struct iio_dev *indio_dev);
  49	unsigned int num_channels;
  50	const struct regmap_config *regmap_cfg;
  51};
  52
  53struct stm32_dfsdm_adc {
  54	struct stm32_dfsdm *dfsdm;
  55	const struct stm32_dfsdm_dev_data *dev_data;
  56	unsigned int fl_id;
  57
  58	/* ADC specific */
  59	unsigned int oversamp;
  60	struct iio_hw_consumer *hwc;
  61	struct completion completion;
  62	u32 *buffer;
  63
  64	/* Audio specific */
  65	unsigned int spi_freq;  /* SPI bus clock frequency */
  66	unsigned int sample_freq; /* Sample frequency after filter decimation */
  67	int (*cb)(const void *data, size_t size, void *cb_priv);
  68	void *cb_priv;
  69
  70	/* DMA */
  71	u8 *rx_buf;
  72	unsigned int bufi; /* Buffer current position */
  73	unsigned int buf_sz; /* Buffer size */
  74	struct dma_chan	*dma_chan;
  75	dma_addr_t dma_buf;
  76};
  77
  78struct stm32_dfsdm_str2field {
  79	const char	*name;
  80	unsigned int	val;
  81};
  82
  83/* DFSDM channel serial interface type */
  84static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
  85	{ "SPI_R", 0 }, /* SPI with data on rising edge */
  86	{ "SPI_F", 1 }, /* SPI with data on falling edge */
  87	{ "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
  88	{ "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
  89	{},
  90};
  91
  92/* DFSDM channel clock source */
  93static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
  94	/* External SPI clock (CLKIN x) */
  95	{ "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
  96	/* Internal SPI clock (CLKOUT) */
  97	{ "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
  98	/* Internal SPI clock divided by 2 (falling edge) */
  99	{ "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
 100	/* Internal SPI clock divided by 2 (falling edge) */
 101	{ "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
 102	{},
 103};
 104
 105static int stm32_dfsdm_str2val(const char *str,
 106			       const struct stm32_dfsdm_str2field *list)
 107{
 108	const struct stm32_dfsdm_str2field *p = list;
 109
 110	for (p = list; p && p->name; p++)
 111		if (!strcmp(p->name, str))
 112			return p->val;
 113
 114	return -EINVAL;
 115}
 116
 117static int stm32_dfsdm_set_osrs(struct stm32_dfsdm_filter *fl,
 118				unsigned int fast, unsigned int oversamp)
 119{
 120	unsigned int i, d, fosr, iosr;
 121	u64 res;
 122	s64 delta;
 123	unsigned int m = 1;	/* multiplication factor */
 124	unsigned int p = fl->ford;	/* filter order (ford) */
 125
 126	pr_debug("%s: Requested oversampling: %d\n",  __func__, oversamp);
 127	/*
 128	 * This function tries to compute filter oversampling and integrator
 129	 * oversampling, base on oversampling ratio requested by user.
 130	 *
 131	 * Decimation d depends on the filter order and the oversampling ratios.
 132	 * ford: filter order
 133	 * fosr: filter over sampling ratio
 134	 * iosr: integrator over sampling ratio
 135	 */
 136	if (fl->ford == DFSDM_FASTSINC_ORDER) {
 137		m = 2;
 138		p = 2;
 139	}
 140
 141	/*
 142	 * Look for filter and integrator oversampling ratios which allows
 143	 * to reach 24 bits data output resolution.
 144	 * Leave as soon as if exact resolution if reached.
 145	 * Otherwise the higher resolution below 32 bits is kept.
 146	 */
 147	fl->res = 0;
 148	for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
 149		for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
 150			if (fast)
 151				d = fosr * iosr;
 152			else if (fl->ford == DFSDM_FASTSINC_ORDER)
 153				d = fosr * (iosr + 3) + 2;
 154			else
 155				d = fosr * (iosr - 1 + p) + p;
 156
 157			if (d > oversamp)
 158				break;
 159			else if (d != oversamp)
 160				continue;
 161			/*
 162			 * Check resolution (limited to signed 32 bits)
 163			 *   res <= 2^31
 164			 * Sincx filters:
 165			 *   res = m * fosr^p x iosr (with m=1, p=ford)
 166			 * FastSinc filter
 167			 *   res = m * fosr^p x iosr (with m=2, p=2)
 168			 */
 169			res = fosr;
 170			for (i = p - 1; i > 0; i--) {
 171				res = res * (u64)fosr;
 172				if (res > DFSDM_MAX_RES)
 173					break;
 174			}
 175			if (res > DFSDM_MAX_RES)
 176				continue;
 177			res = res * (u64)m * (u64)iosr;
 178			if (res > DFSDM_MAX_RES)
 179				continue;
 180
 181			delta = res - DFSDM_DATA_RES;
 182
 183			if (res >= fl->res) {
 184				fl->res = res;
 185				fl->fosr = fosr;
 186				fl->iosr = iosr;
 187				fl->fast = fast;
 188				pr_debug("%s: fosr = %d, iosr = %d\n",
 189					 __func__, fl->fosr, fl->iosr);
 190			}
 191
 192			if (!delta)
 193				return 0;
 194		}
 195	}
 196
 197	if (!fl->res)
 198		return -EINVAL;
 199
 200	return 0;
 201}
 202
 203static int stm32_dfsdm_start_channel(struct stm32_dfsdm *dfsdm,
 204				     unsigned int ch_id)
 205{
 206	return regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(ch_id),
 207				  DFSDM_CHCFGR1_CHEN_MASK,
 208				  DFSDM_CHCFGR1_CHEN(1));
 209}
 210
 211static void stm32_dfsdm_stop_channel(struct stm32_dfsdm *dfsdm,
 212				     unsigned int ch_id)
 213{
 214	regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(ch_id),
 215			   DFSDM_CHCFGR1_CHEN_MASK, DFSDM_CHCFGR1_CHEN(0));
 216}
 217
 218static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
 219				      struct stm32_dfsdm_channel *ch)
 220{
 221	unsigned int id = ch->id;
 222	struct regmap *regmap = dfsdm->regmap;
 223	int ret;
 224
 225	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 226				 DFSDM_CHCFGR1_SITP_MASK,
 227				 DFSDM_CHCFGR1_SITP(ch->type));
 228	if (ret < 0)
 229		return ret;
 230	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 231				 DFSDM_CHCFGR1_SPICKSEL_MASK,
 232				 DFSDM_CHCFGR1_SPICKSEL(ch->src));
 233	if (ret < 0)
 234		return ret;
 235	return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
 236				  DFSDM_CHCFGR1_CHINSEL_MASK,
 237				  DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
 238}
 239
 240static int stm32_dfsdm_start_filter(struct stm32_dfsdm *dfsdm,
 241				    unsigned int fl_id)
 242{
 243	int ret;
 244
 245	/* Enable filter */
 246	ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 247				 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
 248	if (ret < 0)
 249		return ret;
 250
 251	/* Start conversion */
 252	return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 253				  DFSDM_CR1_RSWSTART_MASK,
 254				  DFSDM_CR1_RSWSTART(1));
 255}
 256
 257static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm, unsigned int fl_id)
 258{
 259	/* Disable conversion */
 260	regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
 261			   DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
 262}
 263
 264static int stm32_dfsdm_filter_configure(struct stm32_dfsdm *dfsdm,
 265					unsigned int fl_id, unsigned int ch_id)
 266{
 267	struct regmap *regmap = dfsdm->regmap;
 268	struct stm32_dfsdm_filter *fl = &dfsdm->fl_list[fl_id];
 269	int ret;
 270
 271	/* Average integrator oversampling */
 272	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
 273				 DFSDM_FCR_IOSR(fl->iosr - 1));
 274	if (ret)
 275		return ret;
 276
 277	/* Filter order and Oversampling */
 278	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
 279				 DFSDM_FCR_FOSR(fl->fosr - 1));
 280	if (ret)
 281		return ret;
 282
 283	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
 284				 DFSDM_FCR_FORD(fl->ford));
 285	if (ret)
 286		return ret;
 287
 288	/* No scan mode supported for the moment */
 289	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_RCH_MASK,
 290				 DFSDM_CR1_RCH(ch_id));
 291	if (ret)
 292		return ret;
 293
 294	return regmap_update_bits(regmap, DFSDM_CR1(fl_id),
 295				  DFSDM_CR1_RSYNC_MASK,
 296				  DFSDM_CR1_RSYNC(fl->sync_mode));
 297}
 298
 299static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
 300					struct iio_dev *indio_dev,
 301					struct iio_chan_spec *ch)
 302{
 303	struct stm32_dfsdm_channel *df_ch;
 304	const char *of_str;
 305	int chan_idx = ch->scan_index;
 306	int ret, val;
 307
 308	ret = of_property_read_u32_index(indio_dev->dev.of_node,
 309					 "st,adc-channels", chan_idx,
 310					 &ch->channel);
 311	if (ret < 0) {
 312		dev_err(&indio_dev->dev,
 313			" Error parsing 'st,adc-channels' for idx %d\n",
 314			chan_idx);
 315		return ret;
 316	}
 317	if (ch->channel >= dfsdm->num_chs) {
 318		dev_err(&indio_dev->dev,
 319			" Error bad channel number %d (max = %d)\n",
 320			ch->channel, dfsdm->num_chs);
 321		return -EINVAL;
 322	}
 323
 324	ret = of_property_read_string_index(indio_dev->dev.of_node,
 325					    "st,adc-channel-names", chan_idx,
 326					    &ch->datasheet_name);
 327	if (ret < 0) {
 328		dev_err(&indio_dev->dev,
 329			" Error parsing 'st,adc-channel-names' for idx %d\n",
 330			chan_idx);
 331		return ret;
 332	}
 333
 334	df_ch =  &dfsdm->ch_list[ch->channel];
 335	df_ch->id = ch->channel;
 336
 337	ret = of_property_read_string_index(indio_dev->dev.of_node,
 338					    "st,adc-channel-types", chan_idx,
 339					    &of_str);
 340	if (!ret) {
 341		val  = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
 342		if (val < 0)
 343			return val;
 344	} else {
 345		val = 0;
 346	}
 347	df_ch->type = val;
 348
 349	ret = of_property_read_string_index(indio_dev->dev.of_node,
 350					    "st,adc-channel-clk-src", chan_idx,
 351					    &of_str);
 352	if (!ret) {
 353		val  = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
 354		if (val < 0)
 355			return val;
 356	} else {
 357		val = 0;
 358	}
 359	df_ch->src = val;
 360
 361	ret = of_property_read_u32_index(indio_dev->dev.of_node,
 362					 "st,adc-alt-channel", chan_idx,
 363					 &df_ch->alt_si);
 364	if (ret < 0)
 365		df_ch->alt_si = 0;
 366
 367	return 0;
 368}
 369
 370static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
 371					  uintptr_t priv,
 372					  const struct iio_chan_spec *chan,
 373					  char *buf)
 374{
 375	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 376
 377	return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
 378}
 379
 380static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
 381					  uintptr_t priv,
 382					  const struct iio_chan_spec *chan,
 383					  const char *buf, size_t len)
 384{
 385	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 386	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
 387	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
 388	unsigned int sample_freq = adc->sample_freq;
 389	unsigned int spi_freq;
 390	int ret;
 391
 392	dev_err(&indio_dev->dev, "enter %s\n", __func__);
 393	/* If DFSDM is master on SPI, SPI freq can not be updated */
 394	if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
 395		return -EPERM;
 396
 397	ret = kstrtoint(buf, 0, &spi_freq);
 398	if (ret)
 399		return ret;
 400
 401	if (!spi_freq)
 402		return -EINVAL;
 403
 404	if (sample_freq) {
 405		if (spi_freq % sample_freq)
 406			dev_warn(&indio_dev->dev,
 407				 "Sampling rate not accurate (%d)\n",
 408				 spi_freq / (spi_freq / sample_freq));
 409
 410		ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / sample_freq));
 411		if (ret < 0) {
 412			dev_err(&indio_dev->dev,
 413				"No filter parameters that match!\n");
 414			return ret;
 415		}
 416	}
 417	adc->spi_freq = spi_freq;
 418
 419	return len;
 420}
 421
 422static int stm32_dfsdm_start_conv(struct stm32_dfsdm_adc *adc,
 423				  const struct iio_chan_spec *chan,
 424				  bool dma)
 425{
 426	struct regmap *regmap = adc->dfsdm->regmap;
 427	int ret;
 428	unsigned int dma_en = 0, cont_en = 0;
 429
 430	ret = stm32_dfsdm_start_channel(adc->dfsdm, chan->channel);
 431	if (ret < 0)
 432		return ret;
 433
 434	ret = stm32_dfsdm_filter_configure(adc->dfsdm, adc->fl_id,
 435					   chan->channel);
 436	if (ret < 0)
 437		goto stop_channels;
 438
 439	if (dma) {
 440		/* Enable DMA transfer*/
 441		dma_en =  DFSDM_CR1_RDMAEN(1);
 442		/* Enable conversion triggered by SPI clock*/
 443		cont_en = DFSDM_CR1_RCONT(1);
 444	}
 445	/* Enable DMA transfer*/
 446	ret = regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
 447				 DFSDM_CR1_RDMAEN_MASK, dma_en);
 448	if (ret < 0)
 449		goto stop_channels;
 450
 451	/* Enable conversion triggered by SPI clock*/
 452	ret = regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
 453				 DFSDM_CR1_RCONT_MASK, cont_en);
 454	if (ret < 0)
 455		goto stop_channels;
 456
 457	ret = stm32_dfsdm_start_filter(adc->dfsdm, adc->fl_id);
 458	if (ret < 0)
 459		goto stop_channels;
 460
 461	return 0;
 462
 463stop_channels:
 464	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
 465			   DFSDM_CR1_RDMAEN_MASK, 0);
 466
 467	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
 468			   DFSDM_CR1_RCONT_MASK, 0);
 469	stm32_dfsdm_stop_channel(adc->dfsdm, chan->channel);
 470
 471	return ret;
 472}
 473
 474static void stm32_dfsdm_stop_conv(struct stm32_dfsdm_adc *adc,
 475				  const struct iio_chan_spec *chan)
 476{
 477	struct regmap *regmap = adc->dfsdm->regmap;
 478
 479	stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
 480
 481	/* Clean conversion options */
 482	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
 483			   DFSDM_CR1_RDMAEN_MASK, 0);
 484
 485	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
 486			   DFSDM_CR1_RCONT_MASK, 0);
 487
 488	stm32_dfsdm_stop_channel(adc->dfsdm, chan->channel);
 489}
 490
 491static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
 492				     unsigned int val)
 493{
 494	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 495	unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
 496
 497	/*
 498	 * DMA cyclic transfers are used, buffer is split into two periods.
 499	 * There should be :
 500	 * - always one buffer (period) DMA is working on
 501	 * - one buffer (period) driver pushed to ASoC side.
 502	 */
 503	watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
 504	adc->buf_sz = watermark * 2;
 505
 506	return 0;
 507}
 508
 509static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
 510{
 511	struct dma_tx_state state;
 512	enum dma_status status;
 513
 514	status = dmaengine_tx_status(adc->dma_chan,
 515				     adc->dma_chan->cookie,
 516				     &state);
 517	if (status == DMA_IN_PROGRESS) {
 518		/* Residue is size in bytes from end of buffer */
 519		unsigned int i = adc->buf_sz - state.residue;
 520		unsigned int size;
 521
 522		/* Return available bytes */
 523		if (i >= adc->bufi)
 524			size = i - adc->bufi;
 525		else
 526			size = adc->buf_sz + i - adc->bufi;
 527
 528		return size;
 529	}
 530
 531	return 0;
 532}
 533
 534static void stm32_dfsdm_audio_dma_buffer_done(void *data)
 535{
 536	struct iio_dev *indio_dev = data;
 537	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 538	int available = stm32_dfsdm_adc_dma_residue(adc);
 539	size_t old_pos;
 540
 541	/*
 542	 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
 543	 * offers only an interface to push data samples per samples.
 544	 * For this reason IIO buffer interface is not used and interface is
 545	 * bypassed using a private callback registered by ASoC.
 546	 * This should be a temporary solution waiting a cyclic DMA engine
 547	 * support in IIO.
 548	 */
 549
 550	dev_dbg(&indio_dev->dev, "%s: pos = %d, available = %d\n", __func__,
 551		adc->bufi, available);
 552	old_pos = adc->bufi;
 553
 554	while (available >= indio_dev->scan_bytes) {
 555		u32 *buffer = (u32 *)&adc->rx_buf[adc->bufi];
 556
 557		/* Mask 8 LSB that contains the channel ID */
 558		*buffer = (*buffer & 0xFFFFFF00) << 8;
 559		available -= indio_dev->scan_bytes;
 560		adc->bufi += indio_dev->scan_bytes;
 561		if (adc->bufi >= adc->buf_sz) {
 562			if (adc->cb)
 563				adc->cb(&adc->rx_buf[old_pos],
 564					 adc->buf_sz - old_pos, adc->cb_priv);
 565			adc->bufi = 0;
 566			old_pos = 0;
 567		}
 568	}
 569	if (adc->cb)
 570		adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
 571			adc->cb_priv);
 572}
 573
 574static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
 575{
 576	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 577	struct dma_async_tx_descriptor *desc;
 578	dma_cookie_t cookie;
 579	int ret;
 580
 581	if (!adc->dma_chan)
 582		return -EINVAL;
 583
 584	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
 585		adc->buf_sz, adc->buf_sz / 2);
 586
 587	/* Prepare a DMA cyclic transaction */
 588	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
 589					 adc->dma_buf,
 590					 adc->buf_sz, adc->buf_sz / 2,
 591					 DMA_DEV_TO_MEM,
 592					 DMA_PREP_INTERRUPT);
 593	if (!desc)
 594		return -EBUSY;
 595
 596	desc->callback = stm32_dfsdm_audio_dma_buffer_done;
 597	desc->callback_param = indio_dev;
 598
 599	cookie = dmaengine_submit(desc);
 600	ret = dma_submit_error(cookie);
 601	if (ret) {
 602		dmaengine_terminate_all(adc->dma_chan);
 603		return ret;
 604	}
 605
 606	/* Issue pending DMA requests */
 607	dma_async_issue_pending(adc->dma_chan);
 608
 609	return 0;
 610}
 611
 612static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
 613{
 614	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 615	const struct iio_chan_spec *chan = &indio_dev->channels[0];
 616	int ret;
 617
 618	/* Reset adc buffer index */
 619	adc->bufi = 0;
 620
 621	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
 622	if (ret < 0)
 623		return ret;
 624
 625	ret = stm32_dfsdm_start_conv(adc, chan, true);
 626	if (ret) {
 627		dev_err(&indio_dev->dev, "Can't start conversion\n");
 628		goto stop_dfsdm;
 629	}
 630
 631	if (adc->dma_chan) {
 632		ret = stm32_dfsdm_adc_dma_start(indio_dev);
 633		if (ret) {
 634			dev_err(&indio_dev->dev, "Can't start DMA\n");
 635			goto err_stop_conv;
 636		}
 637	}
 638
 639	return 0;
 640
 641err_stop_conv:
 642	stm32_dfsdm_stop_conv(adc, chan);
 643stop_dfsdm:
 644	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
 645
 646	return ret;
 647}
 648
 649static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
 650{
 651	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 652	const struct iio_chan_spec *chan = &indio_dev->channels[0];
 653
 654	if (adc->dma_chan)
 655		dmaengine_terminate_all(adc->dma_chan);
 656
 657	stm32_dfsdm_stop_conv(adc, chan);
 658
 659	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
 660
 661	return 0;
 662}
 663
 664static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
 665	.postenable = &stm32_dfsdm_postenable,
 666	.predisable = &stm32_dfsdm_predisable,
 667};
 668
 669/**
 670 * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
 671 *                             DMA transfer period is achieved.
 672 *
 673 * @iio_dev: Handle to IIO device.
 674 * @cb: Pointer to callback function:
 675 *      - data: pointer to data buffer
 676 *      - size: size in byte of the data buffer
 677 *      - private: pointer to consumer private structure.
 678 * @private: Pointer to consumer private structure.
 679 */
 680int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
 681			    int (*cb)(const void *data, size_t size,
 682				      void *private),
 683			    void *private)
 684{
 685	struct stm32_dfsdm_adc *adc;
 686
 687	if (!iio_dev)
 688		return -EINVAL;
 689	adc = iio_priv(iio_dev);
 690
 691	adc->cb = cb;
 692	adc->cb_priv = private;
 693
 694	return 0;
 695}
 696EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
 697
 698/**
 699 * stm32_dfsdm_release_buff_cb - unregister buffer callback
 700 *
 701 * @iio_dev: Handle to IIO device.
 702 */
 703int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
 704{
 705	struct stm32_dfsdm_adc *adc;
 706
 707	if (!iio_dev)
 708		return -EINVAL;
 709	adc = iio_priv(iio_dev);
 710
 711	adc->cb = NULL;
 712	adc->cb_priv = NULL;
 713
 714	return 0;
 715}
 716EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
 717
 718static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
 719				   const struct iio_chan_spec *chan, int *res)
 720{
 721	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 722	long timeout;
 723	int ret;
 724
 725	reinit_completion(&adc->completion);
 726
 727	adc->buffer = res;
 728
 729	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
 730	if (ret < 0)
 731		return ret;
 732
 733	ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
 734				 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
 735	if (ret < 0)
 736		goto stop_dfsdm;
 737
 738	ret = stm32_dfsdm_start_conv(adc, chan, false);
 739	if (ret < 0) {
 740		regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
 741				   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
 742		goto stop_dfsdm;
 743	}
 744
 745	timeout = wait_for_completion_interruptible_timeout(&adc->completion,
 746							    DFSDM_TIMEOUT);
 747
 748	/* Mask IRQ for regular conversion achievement*/
 749	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
 750			   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
 751
 752	if (timeout == 0)
 753		ret = -ETIMEDOUT;
 754	else if (timeout < 0)
 755		ret = timeout;
 756	else
 757		ret = IIO_VAL_INT;
 758
 759	stm32_dfsdm_stop_conv(adc, chan);
 760
 761stop_dfsdm:
 762	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
 763
 764	return ret;
 765}
 766
 767static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
 768				 struct iio_chan_spec const *chan,
 769				 int val, int val2, long mask)
 770{
 771	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 772	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
 773	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
 774	unsigned int spi_freq;
 775	int ret = -EINVAL;
 776
 777	switch (mask) {
 778	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
 779		ret = stm32_dfsdm_set_osrs(fl, 0, val);
 780		if (!ret)
 781			adc->oversamp = val;
 782
 783		return ret;
 784
 785	case IIO_CHAN_INFO_SAMP_FREQ:
 786		if (!val)
 787			return -EINVAL;
 788
 789		switch (ch->src) {
 790		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
 791			spi_freq = adc->dfsdm->spi_master_freq;
 792			break;
 793		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
 794		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
 795			spi_freq = adc->dfsdm->spi_master_freq / 2;
 796			break;
 797		default:
 798			spi_freq = adc->spi_freq;
 799		}
 800
 801		if (spi_freq % val)
 802			dev_warn(&indio_dev->dev,
 803				 "Sampling rate not accurate (%d)\n",
 804				 spi_freq / (spi_freq / val));
 805
 806		ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / val));
 807		if (ret < 0) {
 808			dev_err(&indio_dev->dev,
 809				"Not able to find parameter that match!\n");
 810			return ret;
 811		}
 812		adc->sample_freq = val;
 813
 814		return 0;
 815	}
 816
 817	return -EINVAL;
 818}
 819
 820static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
 821				struct iio_chan_spec const *chan, int *val,
 822				int *val2, long mask)
 823{
 824	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 825	int ret;
 826
 827	switch (mask) {
 828	case IIO_CHAN_INFO_RAW:
 829		ret = iio_hw_consumer_enable(adc->hwc);
 830		if (ret < 0) {
 831			dev_err(&indio_dev->dev,
 832				"%s: IIO enable failed (channel %d)\n",
 833				__func__, chan->channel);
 834			return ret;
 835		}
 836		ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
 837		iio_hw_consumer_disable(adc->hwc);
 838		if (ret < 0) {
 839			dev_err(&indio_dev->dev,
 840				"%s: Conversion failed (channel %d)\n",
 841				__func__, chan->channel);
 842			return ret;
 843		}
 844		return IIO_VAL_INT;
 845
 846	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
 847		*val = adc->oversamp;
 848
 849		return IIO_VAL_INT;
 850
 851	case IIO_CHAN_INFO_SAMP_FREQ:
 852		*val = adc->sample_freq;
 853
 854		return IIO_VAL_INT;
 855	}
 856
 857	return -EINVAL;
 858}
 859
 860static const struct iio_info stm32_dfsdm_info_audio = {
 861	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
 862	.read_raw = stm32_dfsdm_read_raw,
 863	.write_raw = stm32_dfsdm_write_raw,
 864};
 865
 866static const struct iio_info stm32_dfsdm_info_adc = {
 867	.read_raw = stm32_dfsdm_read_raw,
 868	.write_raw = stm32_dfsdm_write_raw,
 869};
 870
 871static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
 872{
 873	struct stm32_dfsdm_adc *adc = arg;
 874	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 875	struct regmap *regmap = adc->dfsdm->regmap;
 876	unsigned int status, int_en;
 877
 878	regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
 879	regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
 880
 881	if (status & DFSDM_ISR_REOCF_MASK) {
 882		/* Read the data register clean the IRQ status */
 883		regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
 884		complete(&adc->completion);
 885	}
 886
 887	if (status & DFSDM_ISR_ROVRF_MASK) {
 888		if (int_en & DFSDM_CR2_ROVRIE_MASK)
 889			dev_warn(&indio_dev->dev, "Overrun detected\n");
 890		regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
 891				   DFSDM_ICR_CLRROVRF_MASK,
 892				   DFSDM_ICR_CLRROVRF_MASK);
 893	}
 894
 895	return IRQ_HANDLED;
 896}
 897
 898/*
 899 * Define external info for SPI Frequency and audio sampling rate that can be
 900 * configured by ASoC driver through consumer.h API
 901 */
 902static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
 903	/* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
 904	{
 905		.name = "spi_clk_freq",
 906		.shared = IIO_SHARED_BY_TYPE,
 907		.read = dfsdm_adc_audio_get_spiclk,
 908		.write = dfsdm_adc_audio_set_spiclk,
 909	},
 910	{},
 911};
 912
 913static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
 914{
 915	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 916
 917	if (adc->dma_chan) {
 918		dma_free_coherent(adc->dma_chan->device->dev,
 919				  DFSDM_DMA_BUFFER_SIZE,
 920				  adc->rx_buf, adc->dma_buf);
 921		dma_release_channel(adc->dma_chan);
 922	}
 923}
 924
 925static int stm32_dfsdm_dma_request(struct iio_dev *indio_dev)
 926{
 927	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 928	struct dma_slave_config config = {
 929		.src_addr = (dma_addr_t)adc->dfsdm->phys_base +
 930			DFSDM_RDATAR(adc->fl_id),
 931		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 932	};
 933	int ret;
 934
 935	adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
 936	if (!adc->dma_chan)
 937		return -EINVAL;
 938
 939	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
 940					 DFSDM_DMA_BUFFER_SIZE,
 941					 &adc->dma_buf, GFP_KERNEL);
 942	if (!adc->rx_buf) {
 943		ret = -ENOMEM;
 944		goto err_release;
 945	}
 946
 947	ret = dmaengine_slave_config(adc->dma_chan, &config);
 948	if (ret)
 949		goto err_free;
 950
 951	return 0;
 952
 953err_free:
 954	dma_free_coherent(adc->dma_chan->device->dev, DFSDM_DMA_BUFFER_SIZE,
 955			  adc->rx_buf, adc->dma_buf);
 956err_release:
 957	dma_release_channel(adc->dma_chan);
 958
 959	return ret;
 960}
 961
 962static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
 963					 struct iio_chan_spec *ch)
 964{
 965	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 966	int ret;
 967
 968	ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
 969	if (ret < 0)
 970		return ret;
 971
 972	ch->type = IIO_VOLTAGE;
 973	ch->indexed = 1;
 974
 975	/*
 976	 * IIO_CHAN_INFO_RAW: used to compute regular conversion
 977	 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
 978	 */
 979	ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
 980	ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO);
 981
 982	if (adc->dev_data->type == DFSDM_AUDIO) {
 983		ch->scan_type.sign = 's';
 984		ch->ext_info = dfsdm_adc_audio_ext_info;
 985	} else {
 986		ch->scan_type.sign = 'u';
 987	}
 988	ch->scan_type.realbits = 24;
 989	ch->scan_type.storagebits = 32;
 990
 991	return stm32_dfsdm_chan_configure(adc->dfsdm,
 992					  &adc->dfsdm->ch_list[ch->channel]);
 993}
 994
 995static int stm32_dfsdm_audio_init(struct iio_dev *indio_dev)
 996{
 997	struct iio_chan_spec *ch;
 998	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
 999	struct stm32_dfsdm_channel *d_ch;
1000	int ret;
1001
1002	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1003	indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1004
1005	ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1006	if (!ch)
1007		return -ENOMEM;
1008
1009	ch->scan_index = 0;
1010
1011	ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1012	if (ret < 0) {
1013		dev_err(&indio_dev->dev, "Channels init failed\n");
1014		return ret;
1015	}
1016	ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1017
1018	d_ch = &adc->dfsdm->ch_list[ch->channel];
1019	if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1020		adc->spi_freq = adc->dfsdm->spi_master_freq;
1021
1022	indio_dev->num_channels = 1;
1023	indio_dev->channels = ch;
1024
1025	return stm32_dfsdm_dma_request(indio_dev);
1026}
1027
1028static int stm32_dfsdm_adc_init(struct iio_dev *indio_dev)
1029{
1030	struct iio_chan_spec *ch;
1031	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1032	int num_ch;
1033	int ret, chan_idx;
1034
1035	adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1036	ret = stm32_dfsdm_set_osrs(&adc->dfsdm->fl_list[adc->fl_id], 0,
1037				   adc->oversamp);
1038	if (ret < 0)
1039		return ret;
1040
1041	num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1042					     "st,adc-channels");
1043	if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1044		dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1045		return num_ch < 0 ? num_ch : -EINVAL;
1046	}
1047
1048	/* Bind to SD modulator IIO device */
1049	adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1050	if (IS_ERR(adc->hwc))
1051		return -EPROBE_DEFER;
1052
1053	ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1054			  GFP_KERNEL);
1055	if (!ch)
1056		return -ENOMEM;
1057
1058	for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1059		ch[chan_idx].scan_index = chan_idx;
1060		ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1061		if (ret < 0) {
1062			dev_err(&indio_dev->dev, "Channels init failed\n");
1063			return ret;
1064		}
1065	}
1066
1067	indio_dev->num_channels = num_ch;
1068	indio_dev->channels = ch;
1069
1070	init_completion(&adc->completion);
1071
1072	return 0;
1073}
1074
1075static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1076	.type = DFSDM_IIO,
1077	.init = stm32_dfsdm_adc_init,
1078};
1079
1080static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1081	.type = DFSDM_AUDIO,
1082	.init = stm32_dfsdm_audio_init,
1083};
1084
1085static const struct of_device_id stm32_dfsdm_adc_match[] = {
1086	{
1087		.compatible = "st,stm32-dfsdm-adc",
1088		.data = &stm32h7_dfsdm_adc_data,
1089	},
1090	{
1091		.compatible = "st,stm32-dfsdm-dmic",
1092		.data = &stm32h7_dfsdm_audio_data,
1093	},
1094	{}
1095};
1096
1097static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1098{
1099	struct device *dev = &pdev->dev;
1100	struct stm32_dfsdm_adc *adc;
1101	struct device_node *np = dev->of_node;
1102	const struct stm32_dfsdm_dev_data *dev_data;
1103	struct iio_dev *iio;
1104	char *name;
1105	int ret, irq, val;
1106
1107
1108	dev_data = of_device_get_match_data(dev);
1109	iio = devm_iio_device_alloc(dev, sizeof(*adc));
1110	if (!iio) {
1111		dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1112		return -ENOMEM;
1113	}
1114
1115	adc = iio_priv(iio);
1116	adc->dfsdm = dev_get_drvdata(dev->parent);
1117
1118	iio->dev.parent = dev;
1119	iio->dev.of_node = np;
1120	iio->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
1121
1122	platform_set_drvdata(pdev, adc);
1123
1124	ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1125	if (ret != 0) {
1126		dev_err(dev, "Missing reg property\n");
1127		return -EINVAL;
1128	}
1129
1130	name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1131	if (!name)
1132		return -ENOMEM;
1133	if (dev_data->type == DFSDM_AUDIO) {
1134		iio->info = &stm32_dfsdm_info_audio;
1135		snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1136	} else {
1137		iio->info = &stm32_dfsdm_info_adc;
1138		snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1139	}
1140	iio->name = name;
1141
1142	/*
1143	 * In a first step IRQs generated for channels are not treated.
1144	 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1145	 */
1146	irq = platform_get_irq(pdev, 0);
1147	ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1148			       0, pdev->name, adc);
1149	if (ret < 0) {
1150		dev_err(dev, "Failed to request IRQ\n");
1151		return ret;
1152	}
1153
1154	ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1155	if (ret < 0) {
1156		dev_err(dev, "Failed to set filter order\n");
1157		return ret;
1158	}
1159
1160	adc->dfsdm->fl_list[adc->fl_id].ford = val;
1161
1162	ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1163	if (!ret)
1164		adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1165
1166	adc->dev_data = dev_data;
1167	ret = dev_data->init(iio);
1168	if (ret < 0)
1169		return ret;
1170
1171	ret = iio_device_register(iio);
1172	if (ret < 0)
1173		goto err_cleanup;
1174
1175	dev_err(dev, "of_platform_populate\n");
1176	if (dev_data->type == DFSDM_AUDIO) {
1177		ret = of_platform_populate(np, NULL, NULL, dev);
1178		if (ret < 0) {
1179			dev_err(dev, "Failed to find an audio DAI\n");
1180			goto err_unregister;
1181		}
1182	}
1183
1184	return 0;
1185
1186err_unregister:
1187	iio_device_unregister(iio);
1188err_cleanup:
1189	stm32_dfsdm_dma_release(iio);
1190
1191	return ret;
1192}
1193
1194static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1195{
1196	struct stm32_dfsdm_adc *adc = platform_get_drvdata(pdev);
1197	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1198
1199	if (adc->dev_data->type == DFSDM_AUDIO)
1200		of_platform_depopulate(&pdev->dev);
1201	iio_device_unregister(indio_dev);
1202	stm32_dfsdm_dma_release(indio_dev);
1203
1204	return 0;
1205}
1206
1207static struct platform_driver stm32_dfsdm_adc_driver = {
1208	.driver = {
1209		.name = "stm32-dfsdm-adc",
1210		.of_match_table = stm32_dfsdm_adc_match,
1211	},
1212	.probe = stm32_dfsdm_adc_probe,
1213	.remove = stm32_dfsdm_adc_remove,
1214};
1215module_platform_driver(stm32_dfsdm_adc_driver);
1216
1217MODULE_DESCRIPTION("STM32 sigma delta ADC");
1218MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1219MODULE_LICENSE("GPL v2");