Loading...
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include <linux/stddef.h>
20#include <linux/errno.h>
21#include <linux/gfp.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/migrate.h>
34#include <linux/backing-dev.h>
35#include <linux/freezer.h>
36
37#include "xfs_sb.h"
38#include "xfs_inum.h"
39#include "xfs_log.h"
40#include "xfs_ag.h"
41#include "xfs_mount.h"
42#include "xfs_trace.h"
43
44static kmem_zone_t *xfs_buf_zone;
45STATIC int xfsbufd(void *);
46STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
47
48static struct workqueue_struct *xfslogd_workqueue;
49struct workqueue_struct *xfsdatad_workqueue;
50struct workqueue_struct *xfsconvertd_workqueue;
51
52#ifdef XFS_BUF_LOCK_TRACKING
53# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
54# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
55# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
56#else
57# define XB_SET_OWNER(bp) do { } while (0)
58# define XB_CLEAR_OWNER(bp) do { } while (0)
59# define XB_GET_OWNER(bp) do { } while (0)
60#endif
61
62#define xb_to_gfp(flags) \
63 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
64 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
65
66#define xb_to_km(flags) \
67 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
68
69#define xfs_buf_allocate(flags) \
70 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
71#define xfs_buf_deallocate(bp) \
72 kmem_zone_free(xfs_buf_zone, (bp));
73
74static inline int
75xfs_buf_is_vmapped(
76 struct xfs_buf *bp)
77{
78 /*
79 * Return true if the buffer is vmapped.
80 *
81 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
82 * code is clever enough to know it doesn't have to map a single page,
83 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
84 */
85 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
86}
87
88static inline int
89xfs_buf_vmap_len(
90 struct xfs_buf *bp)
91{
92 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
93}
94
95/*
96 * xfs_buf_lru_add - add a buffer to the LRU.
97 *
98 * The LRU takes a new reference to the buffer so that it will only be freed
99 * once the shrinker takes the buffer off the LRU.
100 */
101STATIC void
102xfs_buf_lru_add(
103 struct xfs_buf *bp)
104{
105 struct xfs_buftarg *btp = bp->b_target;
106
107 spin_lock(&btp->bt_lru_lock);
108 if (list_empty(&bp->b_lru)) {
109 atomic_inc(&bp->b_hold);
110 list_add_tail(&bp->b_lru, &btp->bt_lru);
111 btp->bt_lru_nr++;
112 }
113 spin_unlock(&btp->bt_lru_lock);
114}
115
116/*
117 * xfs_buf_lru_del - remove a buffer from the LRU
118 *
119 * The unlocked check is safe here because it only occurs when there are not
120 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
121 * to optimise the shrinker removing the buffer from the LRU and calling
122 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
123 * bt_lru_lock.
124 */
125STATIC void
126xfs_buf_lru_del(
127 struct xfs_buf *bp)
128{
129 struct xfs_buftarg *btp = bp->b_target;
130
131 if (list_empty(&bp->b_lru))
132 return;
133
134 spin_lock(&btp->bt_lru_lock);
135 if (!list_empty(&bp->b_lru)) {
136 list_del_init(&bp->b_lru);
137 btp->bt_lru_nr--;
138 }
139 spin_unlock(&btp->bt_lru_lock);
140}
141
142/*
143 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
144 * b_lru_ref count so that the buffer is freed immediately when the buffer
145 * reference count falls to zero. If the buffer is already on the LRU, we need
146 * to remove the reference that LRU holds on the buffer.
147 *
148 * This prevents build-up of stale buffers on the LRU.
149 */
150void
151xfs_buf_stale(
152 struct xfs_buf *bp)
153{
154 bp->b_flags |= XBF_STALE;
155 atomic_set(&(bp)->b_lru_ref, 0);
156 if (!list_empty(&bp->b_lru)) {
157 struct xfs_buftarg *btp = bp->b_target;
158
159 spin_lock(&btp->bt_lru_lock);
160 if (!list_empty(&bp->b_lru)) {
161 list_del_init(&bp->b_lru);
162 btp->bt_lru_nr--;
163 atomic_dec(&bp->b_hold);
164 }
165 spin_unlock(&btp->bt_lru_lock);
166 }
167 ASSERT(atomic_read(&bp->b_hold) >= 1);
168}
169
170STATIC void
171_xfs_buf_initialize(
172 xfs_buf_t *bp,
173 xfs_buftarg_t *target,
174 xfs_off_t range_base,
175 size_t range_length,
176 xfs_buf_flags_t flags)
177{
178 /*
179 * We don't want certain flags to appear in b_flags.
180 */
181 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
182
183 memset(bp, 0, sizeof(xfs_buf_t));
184 atomic_set(&bp->b_hold, 1);
185 atomic_set(&bp->b_lru_ref, 1);
186 init_completion(&bp->b_iowait);
187 INIT_LIST_HEAD(&bp->b_lru);
188 INIT_LIST_HEAD(&bp->b_list);
189 RB_CLEAR_NODE(&bp->b_rbnode);
190 sema_init(&bp->b_sema, 0); /* held, no waiters */
191 XB_SET_OWNER(bp);
192 bp->b_target = target;
193 bp->b_file_offset = range_base;
194 /*
195 * Set buffer_length and count_desired to the same value initially.
196 * I/O routines should use count_desired, which will be the same in
197 * most cases but may be reset (e.g. XFS recovery).
198 */
199 bp->b_buffer_length = bp->b_count_desired = range_length;
200 bp->b_flags = flags;
201 bp->b_bn = XFS_BUF_DADDR_NULL;
202 atomic_set(&bp->b_pin_count, 0);
203 init_waitqueue_head(&bp->b_waiters);
204
205 XFS_STATS_INC(xb_create);
206
207 trace_xfs_buf_init(bp, _RET_IP_);
208}
209
210/*
211 * Allocate a page array capable of holding a specified number
212 * of pages, and point the page buf at it.
213 */
214STATIC int
215_xfs_buf_get_pages(
216 xfs_buf_t *bp,
217 int page_count,
218 xfs_buf_flags_t flags)
219{
220 /* Make sure that we have a page list */
221 if (bp->b_pages == NULL) {
222 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
223 bp->b_page_count = page_count;
224 if (page_count <= XB_PAGES) {
225 bp->b_pages = bp->b_page_array;
226 } else {
227 bp->b_pages = kmem_alloc(sizeof(struct page *) *
228 page_count, xb_to_km(flags));
229 if (bp->b_pages == NULL)
230 return -ENOMEM;
231 }
232 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
233 }
234 return 0;
235}
236
237/*
238 * Frees b_pages if it was allocated.
239 */
240STATIC void
241_xfs_buf_free_pages(
242 xfs_buf_t *bp)
243{
244 if (bp->b_pages != bp->b_page_array) {
245 kmem_free(bp->b_pages);
246 bp->b_pages = NULL;
247 }
248}
249
250/*
251 * Releases the specified buffer.
252 *
253 * The modification state of any associated pages is left unchanged.
254 * The buffer most not be on any hash - use xfs_buf_rele instead for
255 * hashed and refcounted buffers
256 */
257void
258xfs_buf_free(
259 xfs_buf_t *bp)
260{
261 trace_xfs_buf_free(bp, _RET_IP_);
262
263 ASSERT(list_empty(&bp->b_lru));
264
265 if (bp->b_flags & _XBF_PAGES) {
266 uint i;
267
268 if (xfs_buf_is_vmapped(bp))
269 vm_unmap_ram(bp->b_addr - bp->b_offset,
270 bp->b_page_count);
271
272 for (i = 0; i < bp->b_page_count; i++) {
273 struct page *page = bp->b_pages[i];
274
275 __free_page(page);
276 }
277 } else if (bp->b_flags & _XBF_KMEM)
278 kmem_free(bp->b_addr);
279 _xfs_buf_free_pages(bp);
280 xfs_buf_deallocate(bp);
281}
282
283/*
284 * Allocates all the pages for buffer in question and builds it's page list.
285 */
286STATIC int
287xfs_buf_allocate_memory(
288 xfs_buf_t *bp,
289 uint flags)
290{
291 size_t size = bp->b_count_desired;
292 size_t nbytes, offset;
293 gfp_t gfp_mask = xb_to_gfp(flags);
294 unsigned short page_count, i;
295 xfs_off_t end;
296 int error;
297
298 /*
299 * for buffers that are contained within a single page, just allocate
300 * the memory from the heap - there's no need for the complexity of
301 * page arrays to keep allocation down to order 0.
302 */
303 if (bp->b_buffer_length < PAGE_SIZE) {
304 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
305 if (!bp->b_addr) {
306 /* low memory - use alloc_page loop instead */
307 goto use_alloc_page;
308 }
309
310 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
311 PAGE_MASK) !=
312 ((unsigned long)bp->b_addr & PAGE_MASK)) {
313 /* b_addr spans two pages - use alloc_page instead */
314 kmem_free(bp->b_addr);
315 bp->b_addr = NULL;
316 goto use_alloc_page;
317 }
318 bp->b_offset = offset_in_page(bp->b_addr);
319 bp->b_pages = bp->b_page_array;
320 bp->b_pages[0] = virt_to_page(bp->b_addr);
321 bp->b_page_count = 1;
322 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
323 return 0;
324 }
325
326use_alloc_page:
327 end = bp->b_file_offset + bp->b_buffer_length;
328 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
329 error = _xfs_buf_get_pages(bp, page_count, flags);
330 if (unlikely(error))
331 return error;
332
333 offset = bp->b_offset;
334 bp->b_flags |= _XBF_PAGES;
335
336 for (i = 0; i < bp->b_page_count; i++) {
337 struct page *page;
338 uint retries = 0;
339retry:
340 page = alloc_page(gfp_mask);
341 if (unlikely(page == NULL)) {
342 if (flags & XBF_READ_AHEAD) {
343 bp->b_page_count = i;
344 error = ENOMEM;
345 goto out_free_pages;
346 }
347
348 /*
349 * This could deadlock.
350 *
351 * But until all the XFS lowlevel code is revamped to
352 * handle buffer allocation failures we can't do much.
353 */
354 if (!(++retries % 100))
355 xfs_err(NULL,
356 "possible memory allocation deadlock in %s (mode:0x%x)",
357 __func__, gfp_mask);
358
359 XFS_STATS_INC(xb_page_retries);
360 congestion_wait(BLK_RW_ASYNC, HZ/50);
361 goto retry;
362 }
363
364 XFS_STATS_INC(xb_page_found);
365
366 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
367 size -= nbytes;
368 bp->b_pages[i] = page;
369 offset = 0;
370 }
371 return 0;
372
373out_free_pages:
374 for (i = 0; i < bp->b_page_count; i++)
375 __free_page(bp->b_pages[i]);
376 return error;
377}
378
379/*
380 * Map buffer into kernel address-space if necessary.
381 */
382STATIC int
383_xfs_buf_map_pages(
384 xfs_buf_t *bp,
385 uint flags)
386{
387 ASSERT(bp->b_flags & _XBF_PAGES);
388 if (bp->b_page_count == 1) {
389 /* A single page buffer is always mappable */
390 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
391 bp->b_flags |= XBF_MAPPED;
392 } else if (flags & XBF_MAPPED) {
393 int retried = 0;
394
395 do {
396 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
397 -1, PAGE_KERNEL);
398 if (bp->b_addr)
399 break;
400 vm_unmap_aliases();
401 } while (retried++ <= 1);
402
403 if (!bp->b_addr)
404 return -ENOMEM;
405 bp->b_addr += bp->b_offset;
406 bp->b_flags |= XBF_MAPPED;
407 }
408
409 return 0;
410}
411
412/*
413 * Finding and Reading Buffers
414 */
415
416/*
417 * Look up, and creates if absent, a lockable buffer for
418 * a given range of an inode. The buffer is returned
419 * locked. If other overlapping buffers exist, they are
420 * released before the new buffer is created and locked,
421 * which may imply that this call will block until those buffers
422 * are unlocked. No I/O is implied by this call.
423 */
424xfs_buf_t *
425_xfs_buf_find(
426 xfs_buftarg_t *btp, /* block device target */
427 xfs_off_t ioff, /* starting offset of range */
428 size_t isize, /* length of range */
429 xfs_buf_flags_t flags,
430 xfs_buf_t *new_bp)
431{
432 xfs_off_t range_base;
433 size_t range_length;
434 struct xfs_perag *pag;
435 struct rb_node **rbp;
436 struct rb_node *parent;
437 xfs_buf_t *bp;
438
439 range_base = (ioff << BBSHIFT);
440 range_length = (isize << BBSHIFT);
441
442 /* Check for IOs smaller than the sector size / not sector aligned */
443 ASSERT(!(range_length < (1 << btp->bt_sshift)));
444 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
445
446 /* get tree root */
447 pag = xfs_perag_get(btp->bt_mount,
448 xfs_daddr_to_agno(btp->bt_mount, ioff));
449
450 /* walk tree */
451 spin_lock(&pag->pag_buf_lock);
452 rbp = &pag->pag_buf_tree.rb_node;
453 parent = NULL;
454 bp = NULL;
455 while (*rbp) {
456 parent = *rbp;
457 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
458
459 if (range_base < bp->b_file_offset)
460 rbp = &(*rbp)->rb_left;
461 else if (range_base > bp->b_file_offset)
462 rbp = &(*rbp)->rb_right;
463 else {
464 /*
465 * found a block offset match. If the range doesn't
466 * match, the only way this is allowed is if the buffer
467 * in the cache is stale and the transaction that made
468 * it stale has not yet committed. i.e. we are
469 * reallocating a busy extent. Skip this buffer and
470 * continue searching to the right for an exact match.
471 */
472 if (bp->b_buffer_length != range_length) {
473 ASSERT(bp->b_flags & XBF_STALE);
474 rbp = &(*rbp)->rb_right;
475 continue;
476 }
477 atomic_inc(&bp->b_hold);
478 goto found;
479 }
480 }
481
482 /* No match found */
483 if (new_bp) {
484 _xfs_buf_initialize(new_bp, btp, range_base,
485 range_length, flags);
486 rb_link_node(&new_bp->b_rbnode, parent, rbp);
487 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
488 /* the buffer keeps the perag reference until it is freed */
489 new_bp->b_pag = pag;
490 spin_unlock(&pag->pag_buf_lock);
491 } else {
492 XFS_STATS_INC(xb_miss_locked);
493 spin_unlock(&pag->pag_buf_lock);
494 xfs_perag_put(pag);
495 }
496 return new_bp;
497
498found:
499 spin_unlock(&pag->pag_buf_lock);
500 xfs_perag_put(pag);
501
502 if (!xfs_buf_trylock(bp)) {
503 if (flags & XBF_TRYLOCK) {
504 xfs_buf_rele(bp);
505 XFS_STATS_INC(xb_busy_locked);
506 return NULL;
507 }
508 xfs_buf_lock(bp);
509 XFS_STATS_INC(xb_get_locked_waited);
510 }
511
512 /*
513 * if the buffer is stale, clear all the external state associated with
514 * it. We need to keep flags such as how we allocated the buffer memory
515 * intact here.
516 */
517 if (bp->b_flags & XBF_STALE) {
518 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
519 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
520 }
521
522 trace_xfs_buf_find(bp, flags, _RET_IP_);
523 XFS_STATS_INC(xb_get_locked);
524 return bp;
525}
526
527/*
528 * Assembles a buffer covering the specified range.
529 * Storage in memory for all portions of the buffer will be allocated,
530 * although backing storage may not be.
531 */
532xfs_buf_t *
533xfs_buf_get(
534 xfs_buftarg_t *target,/* target for buffer */
535 xfs_off_t ioff, /* starting offset of range */
536 size_t isize, /* length of range */
537 xfs_buf_flags_t flags)
538{
539 xfs_buf_t *bp, *new_bp;
540 int error = 0;
541
542 new_bp = xfs_buf_allocate(flags);
543 if (unlikely(!new_bp))
544 return NULL;
545
546 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
547 if (bp == new_bp) {
548 error = xfs_buf_allocate_memory(bp, flags);
549 if (error)
550 goto no_buffer;
551 } else {
552 xfs_buf_deallocate(new_bp);
553 if (unlikely(bp == NULL))
554 return NULL;
555 }
556
557 if (!(bp->b_flags & XBF_MAPPED)) {
558 error = _xfs_buf_map_pages(bp, flags);
559 if (unlikely(error)) {
560 xfs_warn(target->bt_mount,
561 "%s: failed to map pages\n", __func__);
562 goto no_buffer;
563 }
564 }
565
566 XFS_STATS_INC(xb_get);
567
568 /*
569 * Always fill in the block number now, the mapped cases can do
570 * their own overlay of this later.
571 */
572 bp->b_bn = ioff;
573 bp->b_count_desired = bp->b_buffer_length;
574
575 trace_xfs_buf_get(bp, flags, _RET_IP_);
576 return bp;
577
578 no_buffer:
579 if (flags & (XBF_LOCK | XBF_TRYLOCK))
580 xfs_buf_unlock(bp);
581 xfs_buf_rele(bp);
582 return NULL;
583}
584
585STATIC int
586_xfs_buf_read(
587 xfs_buf_t *bp,
588 xfs_buf_flags_t flags)
589{
590 int status;
591
592 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
593 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
594
595 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD);
596 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
597
598 status = xfs_buf_iorequest(bp);
599 if (status || bp->b_error || (flags & XBF_ASYNC))
600 return status;
601 return xfs_buf_iowait(bp);
602}
603
604xfs_buf_t *
605xfs_buf_read(
606 xfs_buftarg_t *target,
607 xfs_off_t ioff,
608 size_t isize,
609 xfs_buf_flags_t flags)
610{
611 xfs_buf_t *bp;
612
613 flags |= XBF_READ;
614
615 bp = xfs_buf_get(target, ioff, isize, flags);
616 if (bp) {
617 trace_xfs_buf_read(bp, flags, _RET_IP_);
618
619 if (!XFS_BUF_ISDONE(bp)) {
620 XFS_STATS_INC(xb_get_read);
621 _xfs_buf_read(bp, flags);
622 } else if (flags & XBF_ASYNC) {
623 /*
624 * Read ahead call which is already satisfied,
625 * drop the buffer
626 */
627 goto no_buffer;
628 } else {
629 /* We do not want read in the flags */
630 bp->b_flags &= ~XBF_READ;
631 }
632 }
633
634 return bp;
635
636 no_buffer:
637 if (flags & (XBF_LOCK | XBF_TRYLOCK))
638 xfs_buf_unlock(bp);
639 xfs_buf_rele(bp);
640 return NULL;
641}
642
643/*
644 * If we are not low on memory then do the readahead in a deadlock
645 * safe manner.
646 */
647void
648xfs_buf_readahead(
649 xfs_buftarg_t *target,
650 xfs_off_t ioff,
651 size_t isize)
652{
653 if (bdi_read_congested(target->bt_bdi))
654 return;
655
656 xfs_buf_read(target, ioff, isize,
657 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
658}
659
660/*
661 * Read an uncached buffer from disk. Allocates and returns a locked
662 * buffer containing the disk contents or nothing.
663 */
664struct xfs_buf *
665xfs_buf_read_uncached(
666 struct xfs_mount *mp,
667 struct xfs_buftarg *target,
668 xfs_daddr_t daddr,
669 size_t length,
670 int flags)
671{
672 xfs_buf_t *bp;
673 int error;
674
675 bp = xfs_buf_get_uncached(target, length, flags);
676 if (!bp)
677 return NULL;
678
679 /* set up the buffer for a read IO */
680 XFS_BUF_SET_ADDR(bp, daddr);
681 XFS_BUF_READ(bp);
682
683 xfsbdstrat(mp, bp);
684 error = xfs_buf_iowait(bp);
685 if (error || bp->b_error) {
686 xfs_buf_relse(bp);
687 return NULL;
688 }
689 return bp;
690}
691
692xfs_buf_t *
693xfs_buf_get_empty(
694 size_t len,
695 xfs_buftarg_t *target)
696{
697 xfs_buf_t *bp;
698
699 bp = xfs_buf_allocate(0);
700 if (bp)
701 _xfs_buf_initialize(bp, target, 0, len, 0);
702 return bp;
703}
704
705/*
706 * Return a buffer allocated as an empty buffer and associated to external
707 * memory via xfs_buf_associate_memory() back to it's empty state.
708 */
709void
710xfs_buf_set_empty(
711 struct xfs_buf *bp,
712 size_t len)
713{
714 if (bp->b_pages)
715 _xfs_buf_free_pages(bp);
716
717 bp->b_pages = NULL;
718 bp->b_page_count = 0;
719 bp->b_addr = NULL;
720 bp->b_file_offset = 0;
721 bp->b_buffer_length = bp->b_count_desired = len;
722 bp->b_bn = XFS_BUF_DADDR_NULL;
723 bp->b_flags &= ~XBF_MAPPED;
724}
725
726static inline struct page *
727mem_to_page(
728 void *addr)
729{
730 if ((!is_vmalloc_addr(addr))) {
731 return virt_to_page(addr);
732 } else {
733 return vmalloc_to_page(addr);
734 }
735}
736
737int
738xfs_buf_associate_memory(
739 xfs_buf_t *bp,
740 void *mem,
741 size_t len)
742{
743 int rval;
744 int i = 0;
745 unsigned long pageaddr;
746 unsigned long offset;
747 size_t buflen;
748 int page_count;
749
750 pageaddr = (unsigned long)mem & PAGE_MASK;
751 offset = (unsigned long)mem - pageaddr;
752 buflen = PAGE_ALIGN(len + offset);
753 page_count = buflen >> PAGE_SHIFT;
754
755 /* Free any previous set of page pointers */
756 if (bp->b_pages)
757 _xfs_buf_free_pages(bp);
758
759 bp->b_pages = NULL;
760 bp->b_addr = mem;
761
762 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
763 if (rval)
764 return rval;
765
766 bp->b_offset = offset;
767
768 for (i = 0; i < bp->b_page_count; i++) {
769 bp->b_pages[i] = mem_to_page((void *)pageaddr);
770 pageaddr += PAGE_SIZE;
771 }
772
773 bp->b_count_desired = len;
774 bp->b_buffer_length = buflen;
775 bp->b_flags |= XBF_MAPPED;
776
777 return 0;
778}
779
780xfs_buf_t *
781xfs_buf_get_uncached(
782 struct xfs_buftarg *target,
783 size_t len,
784 int flags)
785{
786 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
787 int error, i;
788 xfs_buf_t *bp;
789
790 bp = xfs_buf_allocate(0);
791 if (unlikely(bp == NULL))
792 goto fail;
793 _xfs_buf_initialize(bp, target, 0, len, 0);
794
795 error = _xfs_buf_get_pages(bp, page_count, 0);
796 if (error)
797 goto fail_free_buf;
798
799 for (i = 0; i < page_count; i++) {
800 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
801 if (!bp->b_pages[i])
802 goto fail_free_mem;
803 }
804 bp->b_flags |= _XBF_PAGES;
805
806 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
807 if (unlikely(error)) {
808 xfs_warn(target->bt_mount,
809 "%s: failed to map pages\n", __func__);
810 goto fail_free_mem;
811 }
812
813 trace_xfs_buf_get_uncached(bp, _RET_IP_);
814 return bp;
815
816 fail_free_mem:
817 while (--i >= 0)
818 __free_page(bp->b_pages[i]);
819 _xfs_buf_free_pages(bp);
820 fail_free_buf:
821 xfs_buf_deallocate(bp);
822 fail:
823 return NULL;
824}
825
826/*
827 * Increment reference count on buffer, to hold the buffer concurrently
828 * with another thread which may release (free) the buffer asynchronously.
829 * Must hold the buffer already to call this function.
830 */
831void
832xfs_buf_hold(
833 xfs_buf_t *bp)
834{
835 trace_xfs_buf_hold(bp, _RET_IP_);
836 atomic_inc(&bp->b_hold);
837}
838
839/*
840 * Releases a hold on the specified buffer. If the
841 * the hold count is 1, calls xfs_buf_free.
842 */
843void
844xfs_buf_rele(
845 xfs_buf_t *bp)
846{
847 struct xfs_perag *pag = bp->b_pag;
848
849 trace_xfs_buf_rele(bp, _RET_IP_);
850
851 if (!pag) {
852 ASSERT(list_empty(&bp->b_lru));
853 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
854 if (atomic_dec_and_test(&bp->b_hold))
855 xfs_buf_free(bp);
856 return;
857 }
858
859 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
860
861 ASSERT(atomic_read(&bp->b_hold) > 0);
862 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
863 if (!(bp->b_flags & XBF_STALE) &&
864 atomic_read(&bp->b_lru_ref)) {
865 xfs_buf_lru_add(bp);
866 spin_unlock(&pag->pag_buf_lock);
867 } else {
868 xfs_buf_lru_del(bp);
869 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
870 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
871 spin_unlock(&pag->pag_buf_lock);
872 xfs_perag_put(pag);
873 xfs_buf_free(bp);
874 }
875 }
876}
877
878
879/*
880 * Lock a buffer object, if it is not already locked.
881 *
882 * If we come across a stale, pinned, locked buffer, we know that we are
883 * being asked to lock a buffer that has been reallocated. Because it is
884 * pinned, we know that the log has not been pushed to disk and hence it
885 * will still be locked. Rather than continuing to have trylock attempts
886 * fail until someone else pushes the log, push it ourselves before
887 * returning. This means that the xfsaild will not get stuck trying
888 * to push on stale inode buffers.
889 */
890int
891xfs_buf_trylock(
892 struct xfs_buf *bp)
893{
894 int locked;
895
896 locked = down_trylock(&bp->b_sema) == 0;
897 if (locked)
898 XB_SET_OWNER(bp);
899 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
900 xfs_log_force(bp->b_target->bt_mount, 0);
901
902 trace_xfs_buf_trylock(bp, _RET_IP_);
903 return locked;
904}
905
906/*
907 * Lock a buffer object.
908 *
909 * If we come across a stale, pinned, locked buffer, we know that we
910 * are being asked to lock a buffer that has been reallocated. Because
911 * it is pinned, we know that the log has not been pushed to disk and
912 * hence it will still be locked. Rather than sleeping until someone
913 * else pushes the log, push it ourselves before trying to get the lock.
914 */
915void
916xfs_buf_lock(
917 struct xfs_buf *bp)
918{
919 trace_xfs_buf_lock(bp, _RET_IP_);
920
921 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
922 xfs_log_force(bp->b_target->bt_mount, 0);
923 down(&bp->b_sema);
924 XB_SET_OWNER(bp);
925
926 trace_xfs_buf_lock_done(bp, _RET_IP_);
927}
928
929/*
930 * Releases the lock on the buffer object.
931 * If the buffer is marked delwri but is not queued, do so before we
932 * unlock the buffer as we need to set flags correctly. We also need to
933 * take a reference for the delwri queue because the unlocker is going to
934 * drop their's and they don't know we just queued it.
935 */
936void
937xfs_buf_unlock(
938 struct xfs_buf *bp)
939{
940 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
941 atomic_inc(&bp->b_hold);
942 bp->b_flags |= XBF_ASYNC;
943 xfs_buf_delwri_queue(bp, 0);
944 }
945
946 XB_CLEAR_OWNER(bp);
947 up(&bp->b_sema);
948
949 trace_xfs_buf_unlock(bp, _RET_IP_);
950}
951
952STATIC void
953xfs_buf_wait_unpin(
954 xfs_buf_t *bp)
955{
956 DECLARE_WAITQUEUE (wait, current);
957
958 if (atomic_read(&bp->b_pin_count) == 0)
959 return;
960
961 add_wait_queue(&bp->b_waiters, &wait);
962 for (;;) {
963 set_current_state(TASK_UNINTERRUPTIBLE);
964 if (atomic_read(&bp->b_pin_count) == 0)
965 break;
966 io_schedule();
967 }
968 remove_wait_queue(&bp->b_waiters, &wait);
969 set_current_state(TASK_RUNNING);
970}
971
972/*
973 * Buffer Utility Routines
974 */
975
976STATIC void
977xfs_buf_iodone_work(
978 struct work_struct *work)
979{
980 xfs_buf_t *bp =
981 container_of(work, xfs_buf_t, b_iodone_work);
982
983 if (bp->b_iodone)
984 (*(bp->b_iodone))(bp);
985 else if (bp->b_flags & XBF_ASYNC)
986 xfs_buf_relse(bp);
987}
988
989void
990xfs_buf_ioend(
991 xfs_buf_t *bp,
992 int schedule)
993{
994 trace_xfs_buf_iodone(bp, _RET_IP_);
995
996 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
997 if (bp->b_error == 0)
998 bp->b_flags |= XBF_DONE;
999
1000 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1001 if (schedule) {
1002 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1003 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1004 } else {
1005 xfs_buf_iodone_work(&bp->b_iodone_work);
1006 }
1007 } else {
1008 complete(&bp->b_iowait);
1009 }
1010}
1011
1012void
1013xfs_buf_ioerror(
1014 xfs_buf_t *bp,
1015 int error)
1016{
1017 ASSERT(error >= 0 && error <= 0xffff);
1018 bp->b_error = (unsigned short)error;
1019 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1020}
1021
1022int
1023xfs_bwrite(
1024 struct xfs_mount *mp,
1025 struct xfs_buf *bp)
1026{
1027 int error;
1028
1029 bp->b_flags |= XBF_WRITE;
1030 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1031
1032 xfs_buf_delwri_dequeue(bp);
1033 xfs_bdstrat_cb(bp);
1034
1035 error = xfs_buf_iowait(bp);
1036 if (error)
1037 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1038 xfs_buf_relse(bp);
1039 return error;
1040}
1041
1042void
1043xfs_bdwrite(
1044 void *mp,
1045 struct xfs_buf *bp)
1046{
1047 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1048
1049 bp->b_flags &= ~XBF_READ;
1050 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1051
1052 xfs_buf_delwri_queue(bp, 1);
1053}
1054
1055/*
1056 * Called when we want to stop a buffer from getting written or read.
1057 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1058 * so that the proper iodone callbacks get called.
1059 */
1060STATIC int
1061xfs_bioerror(
1062 xfs_buf_t *bp)
1063{
1064#ifdef XFSERRORDEBUG
1065 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1066#endif
1067
1068 /*
1069 * No need to wait until the buffer is unpinned, we aren't flushing it.
1070 */
1071 xfs_buf_ioerror(bp, EIO);
1072
1073 /*
1074 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1075 */
1076 XFS_BUF_UNREAD(bp);
1077 XFS_BUF_UNDELAYWRITE(bp);
1078 XFS_BUF_UNDONE(bp);
1079 XFS_BUF_STALE(bp);
1080
1081 xfs_buf_ioend(bp, 0);
1082
1083 return EIO;
1084}
1085
1086/*
1087 * Same as xfs_bioerror, except that we are releasing the buffer
1088 * here ourselves, and avoiding the xfs_buf_ioend call.
1089 * This is meant for userdata errors; metadata bufs come with
1090 * iodone functions attached, so that we can track down errors.
1091 */
1092STATIC int
1093xfs_bioerror_relse(
1094 struct xfs_buf *bp)
1095{
1096 int64_t fl = bp->b_flags;
1097 /*
1098 * No need to wait until the buffer is unpinned.
1099 * We aren't flushing it.
1100 *
1101 * chunkhold expects B_DONE to be set, whether
1102 * we actually finish the I/O or not. We don't want to
1103 * change that interface.
1104 */
1105 XFS_BUF_UNREAD(bp);
1106 XFS_BUF_UNDELAYWRITE(bp);
1107 XFS_BUF_DONE(bp);
1108 XFS_BUF_STALE(bp);
1109 bp->b_iodone = NULL;
1110 if (!(fl & XBF_ASYNC)) {
1111 /*
1112 * Mark b_error and B_ERROR _both_.
1113 * Lot's of chunkcache code assumes that.
1114 * There's no reason to mark error for
1115 * ASYNC buffers.
1116 */
1117 xfs_buf_ioerror(bp, EIO);
1118 XFS_BUF_FINISH_IOWAIT(bp);
1119 } else {
1120 xfs_buf_relse(bp);
1121 }
1122
1123 return EIO;
1124}
1125
1126
1127/*
1128 * All xfs metadata buffers except log state machine buffers
1129 * get this attached as their b_bdstrat callback function.
1130 * This is so that we can catch a buffer
1131 * after prematurely unpinning it to forcibly shutdown the filesystem.
1132 */
1133int
1134xfs_bdstrat_cb(
1135 struct xfs_buf *bp)
1136{
1137 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1138 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1139 /*
1140 * Metadata write that didn't get logged but
1141 * written delayed anyway. These aren't associated
1142 * with a transaction, and can be ignored.
1143 */
1144 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1145 return xfs_bioerror_relse(bp);
1146 else
1147 return xfs_bioerror(bp);
1148 }
1149
1150 xfs_buf_iorequest(bp);
1151 return 0;
1152}
1153
1154/*
1155 * Wrapper around bdstrat so that we can stop data from going to disk in case
1156 * we are shutting down the filesystem. Typically user data goes thru this
1157 * path; one of the exceptions is the superblock.
1158 */
1159void
1160xfsbdstrat(
1161 struct xfs_mount *mp,
1162 struct xfs_buf *bp)
1163{
1164 if (XFS_FORCED_SHUTDOWN(mp)) {
1165 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1166 xfs_bioerror_relse(bp);
1167 return;
1168 }
1169
1170 xfs_buf_iorequest(bp);
1171}
1172
1173STATIC void
1174_xfs_buf_ioend(
1175 xfs_buf_t *bp,
1176 int schedule)
1177{
1178 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1179 xfs_buf_ioend(bp, schedule);
1180}
1181
1182STATIC void
1183xfs_buf_bio_end_io(
1184 struct bio *bio,
1185 int error)
1186{
1187 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1188
1189 xfs_buf_ioerror(bp, -error);
1190
1191 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1192 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1193
1194 _xfs_buf_ioend(bp, 1);
1195 bio_put(bio);
1196}
1197
1198STATIC void
1199_xfs_buf_ioapply(
1200 xfs_buf_t *bp)
1201{
1202 int rw, map_i, total_nr_pages, nr_pages;
1203 struct bio *bio;
1204 int offset = bp->b_offset;
1205 int size = bp->b_count_desired;
1206 sector_t sector = bp->b_bn;
1207
1208 total_nr_pages = bp->b_page_count;
1209 map_i = 0;
1210
1211 if (bp->b_flags & XBF_WRITE) {
1212 if (bp->b_flags & XBF_SYNCIO)
1213 rw = WRITE_SYNC;
1214 else
1215 rw = WRITE;
1216 if (bp->b_flags & XBF_FUA)
1217 rw |= REQ_FUA;
1218 if (bp->b_flags & XBF_FLUSH)
1219 rw |= REQ_FLUSH;
1220 } else if (bp->b_flags & XBF_READ_AHEAD) {
1221 rw = READA;
1222 } else {
1223 rw = READ;
1224 }
1225
1226 /* we only use the buffer cache for meta-data */
1227 rw |= REQ_META;
1228
1229next_chunk:
1230 atomic_inc(&bp->b_io_remaining);
1231 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1232 if (nr_pages > total_nr_pages)
1233 nr_pages = total_nr_pages;
1234
1235 bio = bio_alloc(GFP_NOIO, nr_pages);
1236 bio->bi_bdev = bp->b_target->bt_bdev;
1237 bio->bi_sector = sector;
1238 bio->bi_end_io = xfs_buf_bio_end_io;
1239 bio->bi_private = bp;
1240
1241
1242 for (; size && nr_pages; nr_pages--, map_i++) {
1243 int rbytes, nbytes = PAGE_SIZE - offset;
1244
1245 if (nbytes > size)
1246 nbytes = size;
1247
1248 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1249 if (rbytes < nbytes)
1250 break;
1251
1252 offset = 0;
1253 sector += nbytes >> BBSHIFT;
1254 size -= nbytes;
1255 total_nr_pages--;
1256 }
1257
1258 if (likely(bio->bi_size)) {
1259 if (xfs_buf_is_vmapped(bp)) {
1260 flush_kernel_vmap_range(bp->b_addr,
1261 xfs_buf_vmap_len(bp));
1262 }
1263 submit_bio(rw, bio);
1264 if (size)
1265 goto next_chunk;
1266 } else {
1267 xfs_buf_ioerror(bp, EIO);
1268 bio_put(bio);
1269 }
1270}
1271
1272int
1273xfs_buf_iorequest(
1274 xfs_buf_t *bp)
1275{
1276 trace_xfs_buf_iorequest(bp, _RET_IP_);
1277
1278 if (bp->b_flags & XBF_DELWRI) {
1279 xfs_buf_delwri_queue(bp, 1);
1280 return 0;
1281 }
1282
1283 if (bp->b_flags & XBF_WRITE) {
1284 xfs_buf_wait_unpin(bp);
1285 }
1286
1287 xfs_buf_hold(bp);
1288
1289 /* Set the count to 1 initially, this will stop an I/O
1290 * completion callout which happens before we have started
1291 * all the I/O from calling xfs_buf_ioend too early.
1292 */
1293 atomic_set(&bp->b_io_remaining, 1);
1294 _xfs_buf_ioapply(bp);
1295 _xfs_buf_ioend(bp, 0);
1296
1297 xfs_buf_rele(bp);
1298 return 0;
1299}
1300
1301/*
1302 * Waits for I/O to complete on the buffer supplied.
1303 * It returns immediately if no I/O is pending.
1304 * It returns the I/O error code, if any, or 0 if there was no error.
1305 */
1306int
1307xfs_buf_iowait(
1308 xfs_buf_t *bp)
1309{
1310 trace_xfs_buf_iowait(bp, _RET_IP_);
1311
1312 wait_for_completion(&bp->b_iowait);
1313
1314 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1315 return bp->b_error;
1316}
1317
1318xfs_caddr_t
1319xfs_buf_offset(
1320 xfs_buf_t *bp,
1321 size_t offset)
1322{
1323 struct page *page;
1324
1325 if (bp->b_flags & XBF_MAPPED)
1326 return bp->b_addr + offset;
1327
1328 offset += bp->b_offset;
1329 page = bp->b_pages[offset >> PAGE_SHIFT];
1330 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1331}
1332
1333/*
1334 * Move data into or out of a buffer.
1335 */
1336void
1337xfs_buf_iomove(
1338 xfs_buf_t *bp, /* buffer to process */
1339 size_t boff, /* starting buffer offset */
1340 size_t bsize, /* length to copy */
1341 void *data, /* data address */
1342 xfs_buf_rw_t mode) /* read/write/zero flag */
1343{
1344 size_t bend, cpoff, csize;
1345 struct page *page;
1346
1347 bend = boff + bsize;
1348 while (boff < bend) {
1349 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1350 cpoff = xfs_buf_poff(boff + bp->b_offset);
1351 csize = min_t(size_t,
1352 PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1353
1354 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1355
1356 switch (mode) {
1357 case XBRW_ZERO:
1358 memset(page_address(page) + cpoff, 0, csize);
1359 break;
1360 case XBRW_READ:
1361 memcpy(data, page_address(page) + cpoff, csize);
1362 break;
1363 case XBRW_WRITE:
1364 memcpy(page_address(page) + cpoff, data, csize);
1365 }
1366
1367 boff += csize;
1368 data += csize;
1369 }
1370}
1371
1372/*
1373 * Handling of buffer targets (buftargs).
1374 */
1375
1376/*
1377 * Wait for any bufs with callbacks that have been submitted but have not yet
1378 * returned. These buffers will have an elevated hold count, so wait on those
1379 * while freeing all the buffers only held by the LRU.
1380 */
1381void
1382xfs_wait_buftarg(
1383 struct xfs_buftarg *btp)
1384{
1385 struct xfs_buf *bp;
1386
1387restart:
1388 spin_lock(&btp->bt_lru_lock);
1389 while (!list_empty(&btp->bt_lru)) {
1390 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1391 if (atomic_read(&bp->b_hold) > 1) {
1392 spin_unlock(&btp->bt_lru_lock);
1393 delay(100);
1394 goto restart;
1395 }
1396 /*
1397 * clear the LRU reference count so the bufer doesn't get
1398 * ignored in xfs_buf_rele().
1399 */
1400 atomic_set(&bp->b_lru_ref, 0);
1401 spin_unlock(&btp->bt_lru_lock);
1402 xfs_buf_rele(bp);
1403 spin_lock(&btp->bt_lru_lock);
1404 }
1405 spin_unlock(&btp->bt_lru_lock);
1406}
1407
1408int
1409xfs_buftarg_shrink(
1410 struct shrinker *shrink,
1411 struct shrink_control *sc)
1412{
1413 struct xfs_buftarg *btp = container_of(shrink,
1414 struct xfs_buftarg, bt_shrinker);
1415 struct xfs_buf *bp;
1416 int nr_to_scan = sc->nr_to_scan;
1417 LIST_HEAD(dispose);
1418
1419 if (!nr_to_scan)
1420 return btp->bt_lru_nr;
1421
1422 spin_lock(&btp->bt_lru_lock);
1423 while (!list_empty(&btp->bt_lru)) {
1424 if (nr_to_scan-- <= 0)
1425 break;
1426
1427 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1428
1429 /*
1430 * Decrement the b_lru_ref count unless the value is already
1431 * zero. If the value is already zero, we need to reclaim the
1432 * buffer, otherwise it gets another trip through the LRU.
1433 */
1434 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1435 list_move_tail(&bp->b_lru, &btp->bt_lru);
1436 continue;
1437 }
1438
1439 /*
1440 * remove the buffer from the LRU now to avoid needing another
1441 * lock round trip inside xfs_buf_rele().
1442 */
1443 list_move(&bp->b_lru, &dispose);
1444 btp->bt_lru_nr--;
1445 }
1446 spin_unlock(&btp->bt_lru_lock);
1447
1448 while (!list_empty(&dispose)) {
1449 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1450 list_del_init(&bp->b_lru);
1451 xfs_buf_rele(bp);
1452 }
1453
1454 return btp->bt_lru_nr;
1455}
1456
1457void
1458xfs_free_buftarg(
1459 struct xfs_mount *mp,
1460 struct xfs_buftarg *btp)
1461{
1462 unregister_shrinker(&btp->bt_shrinker);
1463
1464 xfs_flush_buftarg(btp, 1);
1465 if (mp->m_flags & XFS_MOUNT_BARRIER)
1466 xfs_blkdev_issue_flush(btp);
1467
1468 kthread_stop(btp->bt_task);
1469 kmem_free(btp);
1470}
1471
1472STATIC int
1473xfs_setsize_buftarg_flags(
1474 xfs_buftarg_t *btp,
1475 unsigned int blocksize,
1476 unsigned int sectorsize,
1477 int verbose)
1478{
1479 btp->bt_bsize = blocksize;
1480 btp->bt_sshift = ffs(sectorsize) - 1;
1481 btp->bt_smask = sectorsize - 1;
1482
1483 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1484 xfs_warn(btp->bt_mount,
1485 "Cannot set_blocksize to %u on device %s\n",
1486 sectorsize, xfs_buf_target_name(btp));
1487 return EINVAL;
1488 }
1489
1490 return 0;
1491}
1492
1493/*
1494 * When allocating the initial buffer target we have not yet
1495 * read in the superblock, so don't know what sized sectors
1496 * are being used is at this early stage. Play safe.
1497 */
1498STATIC int
1499xfs_setsize_buftarg_early(
1500 xfs_buftarg_t *btp,
1501 struct block_device *bdev)
1502{
1503 return xfs_setsize_buftarg_flags(btp,
1504 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1505}
1506
1507int
1508xfs_setsize_buftarg(
1509 xfs_buftarg_t *btp,
1510 unsigned int blocksize,
1511 unsigned int sectorsize)
1512{
1513 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1514}
1515
1516STATIC int
1517xfs_alloc_delwrite_queue(
1518 xfs_buftarg_t *btp,
1519 const char *fsname)
1520{
1521 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1522 spin_lock_init(&btp->bt_delwrite_lock);
1523 btp->bt_flags = 0;
1524 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1525 if (IS_ERR(btp->bt_task))
1526 return PTR_ERR(btp->bt_task);
1527 return 0;
1528}
1529
1530xfs_buftarg_t *
1531xfs_alloc_buftarg(
1532 struct xfs_mount *mp,
1533 struct block_device *bdev,
1534 int external,
1535 const char *fsname)
1536{
1537 xfs_buftarg_t *btp;
1538
1539 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1540
1541 btp->bt_mount = mp;
1542 btp->bt_dev = bdev->bd_dev;
1543 btp->bt_bdev = bdev;
1544 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1545 if (!btp->bt_bdi)
1546 goto error;
1547
1548 INIT_LIST_HEAD(&btp->bt_lru);
1549 spin_lock_init(&btp->bt_lru_lock);
1550 if (xfs_setsize_buftarg_early(btp, bdev))
1551 goto error;
1552 if (xfs_alloc_delwrite_queue(btp, fsname))
1553 goto error;
1554 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1555 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1556 register_shrinker(&btp->bt_shrinker);
1557 return btp;
1558
1559error:
1560 kmem_free(btp);
1561 return NULL;
1562}
1563
1564
1565/*
1566 * Delayed write buffer handling
1567 */
1568STATIC void
1569xfs_buf_delwri_queue(
1570 xfs_buf_t *bp,
1571 int unlock)
1572{
1573 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1574 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1575
1576 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1577
1578 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1579
1580 spin_lock(dwlk);
1581 /* If already in the queue, dequeue and place at tail */
1582 if (!list_empty(&bp->b_list)) {
1583 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1584 if (unlock)
1585 atomic_dec(&bp->b_hold);
1586 list_del(&bp->b_list);
1587 }
1588
1589 if (list_empty(dwq)) {
1590 /* start xfsbufd as it is about to have something to do */
1591 wake_up_process(bp->b_target->bt_task);
1592 }
1593
1594 bp->b_flags |= _XBF_DELWRI_Q;
1595 list_add_tail(&bp->b_list, dwq);
1596 bp->b_queuetime = jiffies;
1597 spin_unlock(dwlk);
1598
1599 if (unlock)
1600 xfs_buf_unlock(bp);
1601}
1602
1603void
1604xfs_buf_delwri_dequeue(
1605 xfs_buf_t *bp)
1606{
1607 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1608 int dequeued = 0;
1609
1610 spin_lock(dwlk);
1611 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1612 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1613 list_del_init(&bp->b_list);
1614 dequeued = 1;
1615 }
1616 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1617 spin_unlock(dwlk);
1618
1619 if (dequeued)
1620 xfs_buf_rele(bp);
1621
1622 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1623}
1624
1625/*
1626 * If a delwri buffer needs to be pushed before it has aged out, then promote
1627 * it to the head of the delwri queue so that it will be flushed on the next
1628 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1629 * than the age currently needed to flush the buffer. Hence the next time the
1630 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1631 */
1632void
1633xfs_buf_delwri_promote(
1634 struct xfs_buf *bp)
1635{
1636 struct xfs_buftarg *btp = bp->b_target;
1637 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1638
1639 ASSERT(bp->b_flags & XBF_DELWRI);
1640 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1641
1642 /*
1643 * Check the buffer age before locking the delayed write queue as we
1644 * don't need to promote buffers that are already past the flush age.
1645 */
1646 if (bp->b_queuetime < jiffies - age)
1647 return;
1648 bp->b_queuetime = jiffies - age;
1649 spin_lock(&btp->bt_delwrite_lock);
1650 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1651 spin_unlock(&btp->bt_delwrite_lock);
1652}
1653
1654STATIC void
1655xfs_buf_runall_queues(
1656 struct workqueue_struct *queue)
1657{
1658 flush_workqueue(queue);
1659}
1660
1661/*
1662 * Move as many buffers as specified to the supplied list
1663 * idicating if we skipped any buffers to prevent deadlocks.
1664 */
1665STATIC int
1666xfs_buf_delwri_split(
1667 xfs_buftarg_t *target,
1668 struct list_head *list,
1669 unsigned long age)
1670{
1671 xfs_buf_t *bp, *n;
1672 struct list_head *dwq = &target->bt_delwrite_queue;
1673 spinlock_t *dwlk = &target->bt_delwrite_lock;
1674 int skipped = 0;
1675 int force;
1676
1677 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1678 INIT_LIST_HEAD(list);
1679 spin_lock(dwlk);
1680 list_for_each_entry_safe(bp, n, dwq, b_list) {
1681 ASSERT(bp->b_flags & XBF_DELWRI);
1682
1683 if (!xfs_buf_ispinned(bp) && xfs_buf_trylock(bp)) {
1684 if (!force &&
1685 time_before(jiffies, bp->b_queuetime + age)) {
1686 xfs_buf_unlock(bp);
1687 break;
1688 }
1689
1690 bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q);
1691 bp->b_flags |= XBF_WRITE;
1692 list_move_tail(&bp->b_list, list);
1693 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1694 } else
1695 skipped++;
1696 }
1697 spin_unlock(dwlk);
1698
1699 return skipped;
1700
1701}
1702
1703/*
1704 * Compare function is more complex than it needs to be because
1705 * the return value is only 32 bits and we are doing comparisons
1706 * on 64 bit values
1707 */
1708static int
1709xfs_buf_cmp(
1710 void *priv,
1711 struct list_head *a,
1712 struct list_head *b)
1713{
1714 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1715 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1716 xfs_daddr_t diff;
1717
1718 diff = ap->b_bn - bp->b_bn;
1719 if (diff < 0)
1720 return -1;
1721 if (diff > 0)
1722 return 1;
1723 return 0;
1724}
1725
1726STATIC int
1727xfsbufd(
1728 void *data)
1729{
1730 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1731
1732 current->flags |= PF_MEMALLOC;
1733
1734 set_freezable();
1735
1736 do {
1737 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1738 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1739 struct list_head tmp;
1740 struct blk_plug plug;
1741
1742 if (unlikely(freezing(current))) {
1743 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1744 refrigerator();
1745 } else {
1746 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1747 }
1748
1749 /* sleep for a long time if there is nothing to do. */
1750 if (list_empty(&target->bt_delwrite_queue))
1751 tout = MAX_SCHEDULE_TIMEOUT;
1752 schedule_timeout_interruptible(tout);
1753
1754 xfs_buf_delwri_split(target, &tmp, age);
1755 list_sort(NULL, &tmp, xfs_buf_cmp);
1756
1757 blk_start_plug(&plug);
1758 while (!list_empty(&tmp)) {
1759 struct xfs_buf *bp;
1760 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1761 list_del_init(&bp->b_list);
1762 xfs_bdstrat_cb(bp);
1763 }
1764 blk_finish_plug(&plug);
1765 } while (!kthread_should_stop());
1766
1767 return 0;
1768}
1769
1770/*
1771 * Go through all incore buffers, and release buffers if they belong to
1772 * the given device. This is used in filesystem error handling to
1773 * preserve the consistency of its metadata.
1774 */
1775int
1776xfs_flush_buftarg(
1777 xfs_buftarg_t *target,
1778 int wait)
1779{
1780 xfs_buf_t *bp;
1781 int pincount = 0;
1782 LIST_HEAD(tmp_list);
1783 LIST_HEAD(wait_list);
1784 struct blk_plug plug;
1785
1786 xfs_buf_runall_queues(xfsconvertd_workqueue);
1787 xfs_buf_runall_queues(xfsdatad_workqueue);
1788 xfs_buf_runall_queues(xfslogd_workqueue);
1789
1790 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1791 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1792
1793 /*
1794 * Dropped the delayed write list lock, now walk the temporary list.
1795 * All I/O is issued async and then if we need to wait for completion
1796 * we do that after issuing all the IO.
1797 */
1798 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1799
1800 blk_start_plug(&plug);
1801 while (!list_empty(&tmp_list)) {
1802 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1803 ASSERT(target == bp->b_target);
1804 list_del_init(&bp->b_list);
1805 if (wait) {
1806 bp->b_flags &= ~XBF_ASYNC;
1807 list_add(&bp->b_list, &wait_list);
1808 }
1809 xfs_bdstrat_cb(bp);
1810 }
1811 blk_finish_plug(&plug);
1812
1813 if (wait) {
1814 /* Wait for IO to complete. */
1815 while (!list_empty(&wait_list)) {
1816 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1817
1818 list_del_init(&bp->b_list);
1819 xfs_buf_iowait(bp);
1820 xfs_buf_relse(bp);
1821 }
1822 }
1823
1824 return pincount;
1825}
1826
1827int __init
1828xfs_buf_init(void)
1829{
1830 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1831 KM_ZONE_HWALIGN, NULL);
1832 if (!xfs_buf_zone)
1833 goto out;
1834
1835 xfslogd_workqueue = alloc_workqueue("xfslogd",
1836 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1837 if (!xfslogd_workqueue)
1838 goto out_free_buf_zone;
1839
1840 xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
1841 if (!xfsdatad_workqueue)
1842 goto out_destroy_xfslogd_workqueue;
1843
1844 xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1845 WQ_MEM_RECLAIM, 1);
1846 if (!xfsconvertd_workqueue)
1847 goto out_destroy_xfsdatad_workqueue;
1848
1849 return 0;
1850
1851 out_destroy_xfsdatad_workqueue:
1852 destroy_workqueue(xfsdatad_workqueue);
1853 out_destroy_xfslogd_workqueue:
1854 destroy_workqueue(xfslogd_workqueue);
1855 out_free_buf_zone:
1856 kmem_zone_destroy(xfs_buf_zone);
1857 out:
1858 return -ENOMEM;
1859}
1860
1861void
1862xfs_buf_terminate(void)
1863{
1864 destroy_workqueue(xfsconvertd_workqueue);
1865 destroy_workqueue(xfsdatad_workqueue);
1866 destroy_workqueue(xfslogd_workqueue);
1867 kmem_zone_destroy(xfs_buf_zone);
1868}
1869
1870#ifdef CONFIG_KDB_MODULES
1871struct list_head *
1872xfs_get_buftarg_list(void)
1873{
1874 return &xfs_buftarg_list;
1875}
1876#endif
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include <linux/stddef.h>
20#include <linux/errno.h>
21#include <linux/gfp.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/migrate.h>
34#include <linux/backing-dev.h>
35#include <linux/freezer.h>
36
37#include "xfs_format.h"
38#include "xfs_log_format.h"
39#include "xfs_trans_resv.h"
40#include "xfs_sb.h"
41#include "xfs_mount.h"
42#include "xfs_trace.h"
43#include "xfs_log.h"
44
45static kmem_zone_t *xfs_buf_zone;
46
47#ifdef XFS_BUF_LOCK_TRACKING
48# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51#else
52# define XB_SET_OWNER(bp) do { } while (0)
53# define XB_CLEAR_OWNER(bp) do { } while (0)
54# define XB_GET_OWNER(bp) do { } while (0)
55#endif
56
57#define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59
60
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
71 */
72 return bp->b_addr && bp->b_page_count > 1;
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80}
81
82/*
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
88 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
89 * in-flight buffers.
90 *
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
94 */
95static inline void
96xfs_buf_ioacct_inc(
97 struct xfs_buf *bp)
98{
99 if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT))
100 return;
101
102 ASSERT(bp->b_flags & XBF_ASYNC);
103 bp->b_flags |= _XBF_IN_FLIGHT;
104 percpu_counter_inc(&bp->b_target->bt_io_count);
105}
106
107/*
108 * Clear the in-flight state on a buffer about to be released to the LRU or
109 * freed and unaccount from the buftarg.
110 */
111static inline void
112xfs_buf_ioacct_dec(
113 struct xfs_buf *bp)
114{
115 if (!(bp->b_flags & _XBF_IN_FLIGHT))
116 return;
117
118 bp->b_flags &= ~_XBF_IN_FLIGHT;
119 percpu_counter_dec(&bp->b_target->bt_io_count);
120}
121
122/*
123 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
124 * b_lru_ref count so that the buffer is freed immediately when the buffer
125 * reference count falls to zero. If the buffer is already on the LRU, we need
126 * to remove the reference that LRU holds on the buffer.
127 *
128 * This prevents build-up of stale buffers on the LRU.
129 */
130void
131xfs_buf_stale(
132 struct xfs_buf *bp)
133{
134 ASSERT(xfs_buf_islocked(bp));
135
136 bp->b_flags |= XBF_STALE;
137
138 /*
139 * Clear the delwri status so that a delwri queue walker will not
140 * flush this buffer to disk now that it is stale. The delwri queue has
141 * a reference to the buffer, so this is safe to do.
142 */
143 bp->b_flags &= ~_XBF_DELWRI_Q;
144
145 /*
146 * Once the buffer is marked stale and unlocked, a subsequent lookup
147 * could reset b_flags. There is no guarantee that the buffer is
148 * unaccounted (released to LRU) before that occurs. Drop in-flight
149 * status now to preserve accounting consistency.
150 */
151 xfs_buf_ioacct_dec(bp);
152
153 spin_lock(&bp->b_lock);
154 atomic_set(&bp->b_lru_ref, 0);
155 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
156 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
157 atomic_dec(&bp->b_hold);
158
159 ASSERT(atomic_read(&bp->b_hold) >= 1);
160 spin_unlock(&bp->b_lock);
161}
162
163static int
164xfs_buf_get_maps(
165 struct xfs_buf *bp,
166 int map_count)
167{
168 ASSERT(bp->b_maps == NULL);
169 bp->b_map_count = map_count;
170
171 if (map_count == 1) {
172 bp->b_maps = &bp->__b_map;
173 return 0;
174 }
175
176 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
177 KM_NOFS);
178 if (!bp->b_maps)
179 return -ENOMEM;
180 return 0;
181}
182
183/*
184 * Frees b_pages if it was allocated.
185 */
186static void
187xfs_buf_free_maps(
188 struct xfs_buf *bp)
189{
190 if (bp->b_maps != &bp->__b_map) {
191 kmem_free(bp->b_maps);
192 bp->b_maps = NULL;
193 }
194}
195
196struct xfs_buf *
197_xfs_buf_alloc(
198 struct xfs_buftarg *target,
199 struct xfs_buf_map *map,
200 int nmaps,
201 xfs_buf_flags_t flags)
202{
203 struct xfs_buf *bp;
204 int error;
205 int i;
206
207 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
208 if (unlikely(!bp))
209 return NULL;
210
211 /*
212 * We don't want certain flags to appear in b_flags unless they are
213 * specifically set by later operations on the buffer.
214 */
215 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
216
217 atomic_set(&bp->b_hold, 1);
218 atomic_set(&bp->b_lru_ref, 1);
219 init_completion(&bp->b_iowait);
220 INIT_LIST_HEAD(&bp->b_lru);
221 INIT_LIST_HEAD(&bp->b_list);
222 sema_init(&bp->b_sema, 0); /* held, no waiters */
223 spin_lock_init(&bp->b_lock);
224 XB_SET_OWNER(bp);
225 bp->b_target = target;
226 bp->b_flags = flags;
227
228 /*
229 * Set length and io_length to the same value initially.
230 * I/O routines should use io_length, which will be the same in
231 * most cases but may be reset (e.g. XFS recovery).
232 */
233 error = xfs_buf_get_maps(bp, nmaps);
234 if (error) {
235 kmem_zone_free(xfs_buf_zone, bp);
236 return NULL;
237 }
238
239 bp->b_bn = map[0].bm_bn;
240 bp->b_length = 0;
241 for (i = 0; i < nmaps; i++) {
242 bp->b_maps[i].bm_bn = map[i].bm_bn;
243 bp->b_maps[i].bm_len = map[i].bm_len;
244 bp->b_length += map[i].bm_len;
245 }
246 bp->b_io_length = bp->b_length;
247
248 atomic_set(&bp->b_pin_count, 0);
249 init_waitqueue_head(&bp->b_waiters);
250
251 XFS_STATS_INC(target->bt_mount, xb_create);
252 trace_xfs_buf_init(bp, _RET_IP_);
253
254 return bp;
255}
256
257/*
258 * Allocate a page array capable of holding a specified number
259 * of pages, and point the page buf at it.
260 */
261STATIC int
262_xfs_buf_get_pages(
263 xfs_buf_t *bp,
264 int page_count)
265{
266 /* Make sure that we have a page list */
267 if (bp->b_pages == NULL) {
268 bp->b_page_count = page_count;
269 if (page_count <= XB_PAGES) {
270 bp->b_pages = bp->b_page_array;
271 } else {
272 bp->b_pages = kmem_alloc(sizeof(struct page *) *
273 page_count, KM_NOFS);
274 if (bp->b_pages == NULL)
275 return -ENOMEM;
276 }
277 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
278 }
279 return 0;
280}
281
282/*
283 * Frees b_pages if it was allocated.
284 */
285STATIC void
286_xfs_buf_free_pages(
287 xfs_buf_t *bp)
288{
289 if (bp->b_pages != bp->b_page_array) {
290 kmem_free(bp->b_pages);
291 bp->b_pages = NULL;
292 }
293}
294
295/*
296 * Releases the specified buffer.
297 *
298 * The modification state of any associated pages is left unchanged.
299 * The buffer must not be on any hash - use xfs_buf_rele instead for
300 * hashed and refcounted buffers
301 */
302void
303xfs_buf_free(
304 xfs_buf_t *bp)
305{
306 trace_xfs_buf_free(bp, _RET_IP_);
307
308 ASSERT(list_empty(&bp->b_lru));
309
310 if (bp->b_flags & _XBF_PAGES) {
311 uint i;
312
313 if (xfs_buf_is_vmapped(bp))
314 vm_unmap_ram(bp->b_addr - bp->b_offset,
315 bp->b_page_count);
316
317 for (i = 0; i < bp->b_page_count; i++) {
318 struct page *page = bp->b_pages[i];
319
320 __free_page(page);
321 }
322 } else if (bp->b_flags & _XBF_KMEM)
323 kmem_free(bp->b_addr);
324 _xfs_buf_free_pages(bp);
325 xfs_buf_free_maps(bp);
326 kmem_zone_free(xfs_buf_zone, bp);
327}
328
329/*
330 * Allocates all the pages for buffer in question and builds it's page list.
331 */
332STATIC int
333xfs_buf_allocate_memory(
334 xfs_buf_t *bp,
335 uint flags)
336{
337 size_t size;
338 size_t nbytes, offset;
339 gfp_t gfp_mask = xb_to_gfp(flags);
340 unsigned short page_count, i;
341 xfs_off_t start, end;
342 int error;
343
344 /*
345 * for buffers that are contained within a single page, just allocate
346 * the memory from the heap - there's no need for the complexity of
347 * page arrays to keep allocation down to order 0.
348 */
349 size = BBTOB(bp->b_length);
350 if (size < PAGE_SIZE) {
351 bp->b_addr = kmem_alloc(size, KM_NOFS);
352 if (!bp->b_addr) {
353 /* low memory - use alloc_page loop instead */
354 goto use_alloc_page;
355 }
356
357 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
358 ((unsigned long)bp->b_addr & PAGE_MASK)) {
359 /* b_addr spans two pages - use alloc_page instead */
360 kmem_free(bp->b_addr);
361 bp->b_addr = NULL;
362 goto use_alloc_page;
363 }
364 bp->b_offset = offset_in_page(bp->b_addr);
365 bp->b_pages = bp->b_page_array;
366 bp->b_pages[0] = virt_to_page(bp->b_addr);
367 bp->b_page_count = 1;
368 bp->b_flags |= _XBF_KMEM;
369 return 0;
370 }
371
372use_alloc_page:
373 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
374 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
375 >> PAGE_SHIFT;
376 page_count = end - start;
377 error = _xfs_buf_get_pages(bp, page_count);
378 if (unlikely(error))
379 return error;
380
381 offset = bp->b_offset;
382 bp->b_flags |= _XBF_PAGES;
383
384 for (i = 0; i < bp->b_page_count; i++) {
385 struct page *page;
386 uint retries = 0;
387retry:
388 page = alloc_page(gfp_mask);
389 if (unlikely(page == NULL)) {
390 if (flags & XBF_READ_AHEAD) {
391 bp->b_page_count = i;
392 error = -ENOMEM;
393 goto out_free_pages;
394 }
395
396 /*
397 * This could deadlock.
398 *
399 * But until all the XFS lowlevel code is revamped to
400 * handle buffer allocation failures we can't do much.
401 */
402 if (!(++retries % 100))
403 xfs_err(NULL,
404 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
405 current->comm, current->pid,
406 __func__, gfp_mask);
407
408 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
409 congestion_wait(BLK_RW_ASYNC, HZ/50);
410 goto retry;
411 }
412
413 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
414
415 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
416 size -= nbytes;
417 bp->b_pages[i] = page;
418 offset = 0;
419 }
420 return 0;
421
422out_free_pages:
423 for (i = 0; i < bp->b_page_count; i++)
424 __free_page(bp->b_pages[i]);
425 bp->b_flags &= ~_XBF_PAGES;
426 return error;
427}
428
429/*
430 * Map buffer into kernel address-space if necessary.
431 */
432STATIC int
433_xfs_buf_map_pages(
434 xfs_buf_t *bp,
435 uint flags)
436{
437 ASSERT(bp->b_flags & _XBF_PAGES);
438 if (bp->b_page_count == 1) {
439 /* A single page buffer is always mappable */
440 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
441 } else if (flags & XBF_UNMAPPED) {
442 bp->b_addr = NULL;
443 } else {
444 int retried = 0;
445 unsigned noio_flag;
446
447 /*
448 * vm_map_ram() will allocate auxillary structures (e.g.
449 * pagetables) with GFP_KERNEL, yet we are likely to be under
450 * GFP_NOFS context here. Hence we need to tell memory reclaim
451 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
452 * memory reclaim re-entering the filesystem here and
453 * potentially deadlocking.
454 */
455 noio_flag = memalloc_noio_save();
456 do {
457 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
458 -1, PAGE_KERNEL);
459 if (bp->b_addr)
460 break;
461 vm_unmap_aliases();
462 } while (retried++ <= 1);
463 memalloc_noio_restore(noio_flag);
464
465 if (!bp->b_addr)
466 return -ENOMEM;
467 bp->b_addr += bp->b_offset;
468 }
469
470 return 0;
471}
472
473/*
474 * Finding and Reading Buffers
475 */
476static int
477_xfs_buf_obj_cmp(
478 struct rhashtable_compare_arg *arg,
479 const void *obj)
480{
481 const struct xfs_buf_map *map = arg->key;
482 const struct xfs_buf *bp = obj;
483
484 /*
485 * The key hashing in the lookup path depends on the key being the
486 * first element of the compare_arg, make sure to assert this.
487 */
488 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
489
490 if (bp->b_bn != map->bm_bn)
491 return 1;
492
493 if (unlikely(bp->b_length != map->bm_len)) {
494 /*
495 * found a block number match. If the range doesn't
496 * match, the only way this is allowed is if the buffer
497 * in the cache is stale and the transaction that made
498 * it stale has not yet committed. i.e. we are
499 * reallocating a busy extent. Skip this buffer and
500 * continue searching for an exact match.
501 */
502 ASSERT(bp->b_flags & XBF_STALE);
503 return 1;
504 }
505 return 0;
506}
507
508static const struct rhashtable_params xfs_buf_hash_params = {
509 .min_size = 32, /* empty AGs have minimal footprint */
510 .nelem_hint = 16,
511 .key_len = sizeof(xfs_daddr_t),
512 .key_offset = offsetof(struct xfs_buf, b_bn),
513 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
514 .automatic_shrinking = true,
515 .obj_cmpfn = _xfs_buf_obj_cmp,
516};
517
518int
519xfs_buf_hash_init(
520 struct xfs_perag *pag)
521{
522 spin_lock_init(&pag->pag_buf_lock);
523 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
524}
525
526void
527xfs_buf_hash_destroy(
528 struct xfs_perag *pag)
529{
530 rhashtable_destroy(&pag->pag_buf_hash);
531}
532
533/*
534 * Look up, and creates if absent, a lockable buffer for
535 * a given range of an inode. The buffer is returned
536 * locked. No I/O is implied by this call.
537 */
538xfs_buf_t *
539_xfs_buf_find(
540 struct xfs_buftarg *btp,
541 struct xfs_buf_map *map,
542 int nmaps,
543 xfs_buf_flags_t flags,
544 xfs_buf_t *new_bp)
545{
546 struct xfs_perag *pag;
547 xfs_buf_t *bp;
548 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
549 xfs_daddr_t eofs;
550 int i;
551
552 for (i = 0; i < nmaps; i++)
553 cmap.bm_len += map[i].bm_len;
554
555 /* Check for IOs smaller than the sector size / not sector aligned */
556 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
557 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
558
559 /*
560 * Corrupted block numbers can get through to here, unfortunately, so we
561 * have to check that the buffer falls within the filesystem bounds.
562 */
563 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
564 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
565 /*
566 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
567 * but none of the higher level infrastructure supports
568 * returning a specific error on buffer lookup failures.
569 */
570 xfs_alert(btp->bt_mount,
571 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
572 __func__, cmap.bm_bn, eofs);
573 WARN_ON(1);
574 return NULL;
575 }
576
577 pag = xfs_perag_get(btp->bt_mount,
578 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
579
580 spin_lock(&pag->pag_buf_lock);
581 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
582 xfs_buf_hash_params);
583 if (bp) {
584 atomic_inc(&bp->b_hold);
585 goto found;
586 }
587
588 /* No match found */
589 if (new_bp) {
590 /* the buffer keeps the perag reference until it is freed */
591 new_bp->b_pag = pag;
592 rhashtable_insert_fast(&pag->pag_buf_hash,
593 &new_bp->b_rhash_head,
594 xfs_buf_hash_params);
595 spin_unlock(&pag->pag_buf_lock);
596 } else {
597 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
598 spin_unlock(&pag->pag_buf_lock);
599 xfs_perag_put(pag);
600 }
601 return new_bp;
602
603found:
604 spin_unlock(&pag->pag_buf_lock);
605 xfs_perag_put(pag);
606
607 if (!xfs_buf_trylock(bp)) {
608 if (flags & XBF_TRYLOCK) {
609 xfs_buf_rele(bp);
610 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
611 return NULL;
612 }
613 xfs_buf_lock(bp);
614 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
615 }
616
617 /*
618 * if the buffer is stale, clear all the external state associated with
619 * it. We need to keep flags such as how we allocated the buffer memory
620 * intact here.
621 */
622 if (bp->b_flags & XBF_STALE) {
623 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
624 ASSERT(bp->b_iodone == NULL);
625 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
626 bp->b_ops = NULL;
627 }
628
629 trace_xfs_buf_find(bp, flags, _RET_IP_);
630 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
631 return bp;
632}
633
634/*
635 * Assembles a buffer covering the specified range. The code is optimised for
636 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
637 * more hits than misses.
638 */
639struct xfs_buf *
640xfs_buf_get_map(
641 struct xfs_buftarg *target,
642 struct xfs_buf_map *map,
643 int nmaps,
644 xfs_buf_flags_t flags)
645{
646 struct xfs_buf *bp;
647 struct xfs_buf *new_bp;
648 int error = 0;
649
650 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
651 if (likely(bp))
652 goto found;
653
654 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
655 if (unlikely(!new_bp))
656 return NULL;
657
658 error = xfs_buf_allocate_memory(new_bp, flags);
659 if (error) {
660 xfs_buf_free(new_bp);
661 return NULL;
662 }
663
664 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
665 if (!bp) {
666 xfs_buf_free(new_bp);
667 return NULL;
668 }
669
670 if (bp != new_bp)
671 xfs_buf_free(new_bp);
672
673found:
674 if (!bp->b_addr) {
675 error = _xfs_buf_map_pages(bp, flags);
676 if (unlikely(error)) {
677 xfs_warn(target->bt_mount,
678 "%s: failed to map pagesn", __func__);
679 xfs_buf_relse(bp);
680 return NULL;
681 }
682 }
683
684 /*
685 * Clear b_error if this is a lookup from a caller that doesn't expect
686 * valid data to be found in the buffer.
687 */
688 if (!(flags & XBF_READ))
689 xfs_buf_ioerror(bp, 0);
690
691 XFS_STATS_INC(target->bt_mount, xb_get);
692 trace_xfs_buf_get(bp, flags, _RET_IP_);
693 return bp;
694}
695
696STATIC int
697_xfs_buf_read(
698 xfs_buf_t *bp,
699 xfs_buf_flags_t flags)
700{
701 ASSERT(!(flags & XBF_WRITE));
702 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
703
704 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
705 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
706
707 if (flags & XBF_ASYNC) {
708 xfs_buf_submit(bp);
709 return 0;
710 }
711 return xfs_buf_submit_wait(bp);
712}
713
714xfs_buf_t *
715xfs_buf_read_map(
716 struct xfs_buftarg *target,
717 struct xfs_buf_map *map,
718 int nmaps,
719 xfs_buf_flags_t flags,
720 const struct xfs_buf_ops *ops)
721{
722 struct xfs_buf *bp;
723
724 flags |= XBF_READ;
725
726 bp = xfs_buf_get_map(target, map, nmaps, flags);
727 if (bp) {
728 trace_xfs_buf_read(bp, flags, _RET_IP_);
729
730 if (!(bp->b_flags & XBF_DONE)) {
731 XFS_STATS_INC(target->bt_mount, xb_get_read);
732 bp->b_ops = ops;
733 _xfs_buf_read(bp, flags);
734 } else if (flags & XBF_ASYNC) {
735 /*
736 * Read ahead call which is already satisfied,
737 * drop the buffer
738 */
739 xfs_buf_relse(bp);
740 return NULL;
741 } else {
742 /* We do not want read in the flags */
743 bp->b_flags &= ~XBF_READ;
744 }
745 }
746
747 return bp;
748}
749
750/*
751 * If we are not low on memory then do the readahead in a deadlock
752 * safe manner.
753 */
754void
755xfs_buf_readahead_map(
756 struct xfs_buftarg *target,
757 struct xfs_buf_map *map,
758 int nmaps,
759 const struct xfs_buf_ops *ops)
760{
761 if (bdi_read_congested(target->bt_bdi))
762 return;
763
764 xfs_buf_read_map(target, map, nmaps,
765 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
766}
767
768/*
769 * Read an uncached buffer from disk. Allocates and returns a locked
770 * buffer containing the disk contents or nothing.
771 */
772int
773xfs_buf_read_uncached(
774 struct xfs_buftarg *target,
775 xfs_daddr_t daddr,
776 size_t numblks,
777 int flags,
778 struct xfs_buf **bpp,
779 const struct xfs_buf_ops *ops)
780{
781 struct xfs_buf *bp;
782
783 *bpp = NULL;
784
785 bp = xfs_buf_get_uncached(target, numblks, flags);
786 if (!bp)
787 return -ENOMEM;
788
789 /* set up the buffer for a read IO */
790 ASSERT(bp->b_map_count == 1);
791 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
792 bp->b_maps[0].bm_bn = daddr;
793 bp->b_flags |= XBF_READ;
794 bp->b_ops = ops;
795
796 xfs_buf_submit_wait(bp);
797 if (bp->b_error) {
798 int error = bp->b_error;
799 xfs_buf_relse(bp);
800 return error;
801 }
802
803 *bpp = bp;
804 return 0;
805}
806
807/*
808 * Return a buffer allocated as an empty buffer and associated to external
809 * memory via xfs_buf_associate_memory() back to it's empty state.
810 */
811void
812xfs_buf_set_empty(
813 struct xfs_buf *bp,
814 size_t numblks)
815{
816 if (bp->b_pages)
817 _xfs_buf_free_pages(bp);
818
819 bp->b_pages = NULL;
820 bp->b_page_count = 0;
821 bp->b_addr = NULL;
822 bp->b_length = numblks;
823 bp->b_io_length = numblks;
824
825 ASSERT(bp->b_map_count == 1);
826 bp->b_bn = XFS_BUF_DADDR_NULL;
827 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
828 bp->b_maps[0].bm_len = bp->b_length;
829}
830
831static inline struct page *
832mem_to_page(
833 void *addr)
834{
835 if ((!is_vmalloc_addr(addr))) {
836 return virt_to_page(addr);
837 } else {
838 return vmalloc_to_page(addr);
839 }
840}
841
842int
843xfs_buf_associate_memory(
844 xfs_buf_t *bp,
845 void *mem,
846 size_t len)
847{
848 int rval;
849 int i = 0;
850 unsigned long pageaddr;
851 unsigned long offset;
852 size_t buflen;
853 int page_count;
854
855 pageaddr = (unsigned long)mem & PAGE_MASK;
856 offset = (unsigned long)mem - pageaddr;
857 buflen = PAGE_ALIGN(len + offset);
858 page_count = buflen >> PAGE_SHIFT;
859
860 /* Free any previous set of page pointers */
861 if (bp->b_pages)
862 _xfs_buf_free_pages(bp);
863
864 bp->b_pages = NULL;
865 bp->b_addr = mem;
866
867 rval = _xfs_buf_get_pages(bp, page_count);
868 if (rval)
869 return rval;
870
871 bp->b_offset = offset;
872
873 for (i = 0; i < bp->b_page_count; i++) {
874 bp->b_pages[i] = mem_to_page((void *)pageaddr);
875 pageaddr += PAGE_SIZE;
876 }
877
878 bp->b_io_length = BTOBB(len);
879 bp->b_length = BTOBB(buflen);
880
881 return 0;
882}
883
884xfs_buf_t *
885xfs_buf_get_uncached(
886 struct xfs_buftarg *target,
887 size_t numblks,
888 int flags)
889{
890 unsigned long page_count;
891 int error, i;
892 struct xfs_buf *bp;
893 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
894
895 /* flags might contain irrelevant bits, pass only what we care about */
896 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
897 if (unlikely(bp == NULL))
898 goto fail;
899
900 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
901 error = _xfs_buf_get_pages(bp, page_count);
902 if (error)
903 goto fail_free_buf;
904
905 for (i = 0; i < page_count; i++) {
906 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
907 if (!bp->b_pages[i])
908 goto fail_free_mem;
909 }
910 bp->b_flags |= _XBF_PAGES;
911
912 error = _xfs_buf_map_pages(bp, 0);
913 if (unlikely(error)) {
914 xfs_warn(target->bt_mount,
915 "%s: failed to map pages", __func__);
916 goto fail_free_mem;
917 }
918
919 trace_xfs_buf_get_uncached(bp, _RET_IP_);
920 return bp;
921
922 fail_free_mem:
923 while (--i >= 0)
924 __free_page(bp->b_pages[i]);
925 _xfs_buf_free_pages(bp);
926 fail_free_buf:
927 xfs_buf_free_maps(bp);
928 kmem_zone_free(xfs_buf_zone, bp);
929 fail:
930 return NULL;
931}
932
933/*
934 * Increment reference count on buffer, to hold the buffer concurrently
935 * with another thread which may release (free) the buffer asynchronously.
936 * Must hold the buffer already to call this function.
937 */
938void
939xfs_buf_hold(
940 xfs_buf_t *bp)
941{
942 trace_xfs_buf_hold(bp, _RET_IP_);
943 atomic_inc(&bp->b_hold);
944}
945
946/*
947 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
948 * placed on LRU or freed (depending on b_lru_ref).
949 */
950void
951xfs_buf_rele(
952 xfs_buf_t *bp)
953{
954 struct xfs_perag *pag = bp->b_pag;
955 bool release;
956 bool freebuf = false;
957
958 trace_xfs_buf_rele(bp, _RET_IP_);
959
960 if (!pag) {
961 ASSERT(list_empty(&bp->b_lru));
962 if (atomic_dec_and_test(&bp->b_hold)) {
963 xfs_buf_ioacct_dec(bp);
964 xfs_buf_free(bp);
965 }
966 return;
967 }
968
969 ASSERT(atomic_read(&bp->b_hold) > 0);
970
971 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
972 spin_lock(&bp->b_lock);
973 if (!release) {
974 /*
975 * Drop the in-flight state if the buffer is already on the LRU
976 * and it holds the only reference. This is racy because we
977 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
978 * ensures the decrement occurs only once per-buf.
979 */
980 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
981 xfs_buf_ioacct_dec(bp);
982 goto out_unlock;
983 }
984
985 /* the last reference has been dropped ... */
986 xfs_buf_ioacct_dec(bp);
987 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
988 /*
989 * If the buffer is added to the LRU take a new reference to the
990 * buffer for the LRU and clear the (now stale) dispose list
991 * state flag
992 */
993 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
994 bp->b_state &= ~XFS_BSTATE_DISPOSE;
995 atomic_inc(&bp->b_hold);
996 }
997 spin_unlock(&pag->pag_buf_lock);
998 } else {
999 /*
1000 * most of the time buffers will already be removed from the
1001 * LRU, so optimise that case by checking for the
1002 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1003 * was on was the disposal list
1004 */
1005 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1006 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1007 } else {
1008 ASSERT(list_empty(&bp->b_lru));
1009 }
1010
1011 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1012 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1013 xfs_buf_hash_params);
1014 spin_unlock(&pag->pag_buf_lock);
1015 xfs_perag_put(pag);
1016 freebuf = true;
1017 }
1018
1019out_unlock:
1020 spin_unlock(&bp->b_lock);
1021
1022 if (freebuf)
1023 xfs_buf_free(bp);
1024}
1025
1026
1027/*
1028 * Lock a buffer object, if it is not already locked.
1029 *
1030 * If we come across a stale, pinned, locked buffer, we know that we are
1031 * being asked to lock a buffer that has been reallocated. Because it is
1032 * pinned, we know that the log has not been pushed to disk and hence it
1033 * will still be locked. Rather than continuing to have trylock attempts
1034 * fail until someone else pushes the log, push it ourselves before
1035 * returning. This means that the xfsaild will not get stuck trying
1036 * to push on stale inode buffers.
1037 */
1038int
1039xfs_buf_trylock(
1040 struct xfs_buf *bp)
1041{
1042 int locked;
1043
1044 locked = down_trylock(&bp->b_sema) == 0;
1045 if (locked) {
1046 XB_SET_OWNER(bp);
1047 trace_xfs_buf_trylock(bp, _RET_IP_);
1048 } else {
1049 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1050 }
1051 return locked;
1052}
1053
1054/*
1055 * Lock a buffer object.
1056 *
1057 * If we come across a stale, pinned, locked buffer, we know that we
1058 * are being asked to lock a buffer that has been reallocated. Because
1059 * it is pinned, we know that the log has not been pushed to disk and
1060 * hence it will still be locked. Rather than sleeping until someone
1061 * else pushes the log, push it ourselves before trying to get the lock.
1062 */
1063void
1064xfs_buf_lock(
1065 struct xfs_buf *bp)
1066{
1067 trace_xfs_buf_lock(bp, _RET_IP_);
1068
1069 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1070 xfs_log_force(bp->b_target->bt_mount, 0);
1071 down(&bp->b_sema);
1072 XB_SET_OWNER(bp);
1073
1074 trace_xfs_buf_lock_done(bp, _RET_IP_);
1075}
1076
1077void
1078xfs_buf_unlock(
1079 struct xfs_buf *bp)
1080{
1081 XB_CLEAR_OWNER(bp);
1082 up(&bp->b_sema);
1083
1084 trace_xfs_buf_unlock(bp, _RET_IP_);
1085}
1086
1087STATIC void
1088xfs_buf_wait_unpin(
1089 xfs_buf_t *bp)
1090{
1091 DECLARE_WAITQUEUE (wait, current);
1092
1093 if (atomic_read(&bp->b_pin_count) == 0)
1094 return;
1095
1096 add_wait_queue(&bp->b_waiters, &wait);
1097 for (;;) {
1098 set_current_state(TASK_UNINTERRUPTIBLE);
1099 if (atomic_read(&bp->b_pin_count) == 0)
1100 break;
1101 io_schedule();
1102 }
1103 remove_wait_queue(&bp->b_waiters, &wait);
1104 set_current_state(TASK_RUNNING);
1105}
1106
1107/*
1108 * Buffer Utility Routines
1109 */
1110
1111void
1112xfs_buf_ioend(
1113 struct xfs_buf *bp)
1114{
1115 bool read = bp->b_flags & XBF_READ;
1116
1117 trace_xfs_buf_iodone(bp, _RET_IP_);
1118
1119 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1120
1121 /*
1122 * Pull in IO completion errors now. We are guaranteed to be running
1123 * single threaded, so we don't need the lock to read b_io_error.
1124 */
1125 if (!bp->b_error && bp->b_io_error)
1126 xfs_buf_ioerror(bp, bp->b_io_error);
1127
1128 /* Only validate buffers that were read without errors */
1129 if (read && !bp->b_error && bp->b_ops) {
1130 ASSERT(!bp->b_iodone);
1131 bp->b_ops->verify_read(bp);
1132 }
1133
1134 if (!bp->b_error)
1135 bp->b_flags |= XBF_DONE;
1136
1137 if (bp->b_iodone)
1138 (*(bp->b_iodone))(bp);
1139 else if (bp->b_flags & XBF_ASYNC)
1140 xfs_buf_relse(bp);
1141 else
1142 complete(&bp->b_iowait);
1143}
1144
1145static void
1146xfs_buf_ioend_work(
1147 struct work_struct *work)
1148{
1149 struct xfs_buf *bp =
1150 container_of(work, xfs_buf_t, b_ioend_work);
1151
1152 xfs_buf_ioend(bp);
1153}
1154
1155static void
1156xfs_buf_ioend_async(
1157 struct xfs_buf *bp)
1158{
1159 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1160 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1161}
1162
1163void
1164xfs_buf_ioerror(
1165 xfs_buf_t *bp,
1166 int error)
1167{
1168 ASSERT(error <= 0 && error >= -1000);
1169 bp->b_error = error;
1170 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1171}
1172
1173void
1174xfs_buf_ioerror_alert(
1175 struct xfs_buf *bp,
1176 const char *func)
1177{
1178 xfs_alert(bp->b_target->bt_mount,
1179"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1180 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1181}
1182
1183int
1184xfs_bwrite(
1185 struct xfs_buf *bp)
1186{
1187 int error;
1188
1189 ASSERT(xfs_buf_islocked(bp));
1190
1191 bp->b_flags |= XBF_WRITE;
1192 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1193 XBF_WRITE_FAIL | XBF_DONE);
1194
1195 error = xfs_buf_submit_wait(bp);
1196 if (error) {
1197 xfs_force_shutdown(bp->b_target->bt_mount,
1198 SHUTDOWN_META_IO_ERROR);
1199 }
1200 return error;
1201}
1202
1203static void
1204xfs_buf_bio_end_io(
1205 struct bio *bio)
1206{
1207 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1208
1209 /*
1210 * don't overwrite existing errors - otherwise we can lose errors on
1211 * buffers that require multiple bios to complete.
1212 */
1213 if (bio->bi_error)
1214 cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1215
1216 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1217 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1218
1219 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1220 xfs_buf_ioend_async(bp);
1221 bio_put(bio);
1222}
1223
1224static void
1225xfs_buf_ioapply_map(
1226 struct xfs_buf *bp,
1227 int map,
1228 int *buf_offset,
1229 int *count,
1230 int op,
1231 int op_flags)
1232{
1233 int page_index;
1234 int total_nr_pages = bp->b_page_count;
1235 int nr_pages;
1236 struct bio *bio;
1237 sector_t sector = bp->b_maps[map].bm_bn;
1238 int size;
1239 int offset;
1240
1241 total_nr_pages = bp->b_page_count;
1242
1243 /* skip the pages in the buffer before the start offset */
1244 page_index = 0;
1245 offset = *buf_offset;
1246 while (offset >= PAGE_SIZE) {
1247 page_index++;
1248 offset -= PAGE_SIZE;
1249 }
1250
1251 /*
1252 * Limit the IO size to the length of the current vector, and update the
1253 * remaining IO count for the next time around.
1254 */
1255 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1256 *count -= size;
1257 *buf_offset += size;
1258
1259next_chunk:
1260 atomic_inc(&bp->b_io_remaining);
1261 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1262
1263 bio = bio_alloc(GFP_NOIO, nr_pages);
1264 bio->bi_bdev = bp->b_target->bt_bdev;
1265 bio->bi_iter.bi_sector = sector;
1266 bio->bi_end_io = xfs_buf_bio_end_io;
1267 bio->bi_private = bp;
1268 bio_set_op_attrs(bio, op, op_flags);
1269
1270 for (; size && nr_pages; nr_pages--, page_index++) {
1271 int rbytes, nbytes = PAGE_SIZE - offset;
1272
1273 if (nbytes > size)
1274 nbytes = size;
1275
1276 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1277 offset);
1278 if (rbytes < nbytes)
1279 break;
1280
1281 offset = 0;
1282 sector += BTOBB(nbytes);
1283 size -= nbytes;
1284 total_nr_pages--;
1285 }
1286
1287 if (likely(bio->bi_iter.bi_size)) {
1288 if (xfs_buf_is_vmapped(bp)) {
1289 flush_kernel_vmap_range(bp->b_addr,
1290 xfs_buf_vmap_len(bp));
1291 }
1292 submit_bio(bio);
1293 if (size)
1294 goto next_chunk;
1295 } else {
1296 /*
1297 * This is guaranteed not to be the last io reference count
1298 * because the caller (xfs_buf_submit) holds a count itself.
1299 */
1300 atomic_dec(&bp->b_io_remaining);
1301 xfs_buf_ioerror(bp, -EIO);
1302 bio_put(bio);
1303 }
1304
1305}
1306
1307STATIC void
1308_xfs_buf_ioapply(
1309 struct xfs_buf *bp)
1310{
1311 struct blk_plug plug;
1312 int op;
1313 int op_flags = 0;
1314 int offset;
1315 int size;
1316 int i;
1317
1318 /*
1319 * Make sure we capture only current IO errors rather than stale errors
1320 * left over from previous use of the buffer (e.g. failed readahead).
1321 */
1322 bp->b_error = 0;
1323
1324 /*
1325 * Initialize the I/O completion workqueue if we haven't yet or the
1326 * submitter has not opted to specify a custom one.
1327 */
1328 if (!bp->b_ioend_wq)
1329 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1330
1331 if (bp->b_flags & XBF_WRITE) {
1332 op = REQ_OP_WRITE;
1333 if (bp->b_flags & XBF_SYNCIO)
1334 op_flags = REQ_SYNC;
1335 if (bp->b_flags & XBF_FUA)
1336 op_flags |= REQ_FUA;
1337 if (bp->b_flags & XBF_FLUSH)
1338 op_flags |= REQ_PREFLUSH;
1339
1340 /*
1341 * Run the write verifier callback function if it exists. If
1342 * this function fails it will mark the buffer with an error and
1343 * the IO should not be dispatched.
1344 */
1345 if (bp->b_ops) {
1346 bp->b_ops->verify_write(bp);
1347 if (bp->b_error) {
1348 xfs_force_shutdown(bp->b_target->bt_mount,
1349 SHUTDOWN_CORRUPT_INCORE);
1350 return;
1351 }
1352 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1353 struct xfs_mount *mp = bp->b_target->bt_mount;
1354
1355 /*
1356 * non-crc filesystems don't attach verifiers during
1357 * log recovery, so don't warn for such filesystems.
1358 */
1359 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1360 xfs_warn(mp,
1361 "%s: no ops on block 0x%llx/0x%x",
1362 __func__, bp->b_bn, bp->b_length);
1363 xfs_hex_dump(bp->b_addr, 64);
1364 dump_stack();
1365 }
1366 }
1367 } else if (bp->b_flags & XBF_READ_AHEAD) {
1368 op = REQ_OP_READ;
1369 op_flags = REQ_RAHEAD;
1370 } else {
1371 op = REQ_OP_READ;
1372 }
1373
1374 /* we only use the buffer cache for meta-data */
1375 op_flags |= REQ_META;
1376
1377 /*
1378 * Walk all the vectors issuing IO on them. Set up the initial offset
1379 * into the buffer and the desired IO size before we start -
1380 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1381 * subsequent call.
1382 */
1383 offset = bp->b_offset;
1384 size = BBTOB(bp->b_io_length);
1385 blk_start_plug(&plug);
1386 for (i = 0; i < bp->b_map_count; i++) {
1387 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1388 if (bp->b_error)
1389 break;
1390 if (size <= 0)
1391 break; /* all done */
1392 }
1393 blk_finish_plug(&plug);
1394}
1395
1396/*
1397 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1398 * the current reference to the IO. It is not safe to reference the buffer after
1399 * a call to this function unless the caller holds an additional reference
1400 * itself.
1401 */
1402void
1403xfs_buf_submit(
1404 struct xfs_buf *bp)
1405{
1406 trace_xfs_buf_submit(bp, _RET_IP_);
1407
1408 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1409 ASSERT(bp->b_flags & XBF_ASYNC);
1410
1411 /* on shutdown we stale and complete the buffer immediately */
1412 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1413 xfs_buf_ioerror(bp, -EIO);
1414 bp->b_flags &= ~XBF_DONE;
1415 xfs_buf_stale(bp);
1416 xfs_buf_ioend(bp);
1417 return;
1418 }
1419
1420 if (bp->b_flags & XBF_WRITE)
1421 xfs_buf_wait_unpin(bp);
1422
1423 /* clear the internal error state to avoid spurious errors */
1424 bp->b_io_error = 0;
1425
1426 /*
1427 * The caller's reference is released during I/O completion.
1428 * This occurs some time after the last b_io_remaining reference is
1429 * released, so after we drop our Io reference we have to have some
1430 * other reference to ensure the buffer doesn't go away from underneath
1431 * us. Take a direct reference to ensure we have safe access to the
1432 * buffer until we are finished with it.
1433 */
1434 xfs_buf_hold(bp);
1435
1436 /*
1437 * Set the count to 1 initially, this will stop an I/O completion
1438 * callout which happens before we have started all the I/O from calling
1439 * xfs_buf_ioend too early.
1440 */
1441 atomic_set(&bp->b_io_remaining, 1);
1442 xfs_buf_ioacct_inc(bp);
1443 _xfs_buf_ioapply(bp);
1444
1445 /*
1446 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1447 * reference we took above. If we drop it to zero, run completion so
1448 * that we don't return to the caller with completion still pending.
1449 */
1450 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1451 if (bp->b_error)
1452 xfs_buf_ioend(bp);
1453 else
1454 xfs_buf_ioend_async(bp);
1455 }
1456
1457 xfs_buf_rele(bp);
1458 /* Note: it is not safe to reference bp now we've dropped our ref */
1459}
1460
1461/*
1462 * Synchronous buffer IO submission path, read or write.
1463 */
1464int
1465xfs_buf_submit_wait(
1466 struct xfs_buf *bp)
1467{
1468 int error;
1469
1470 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1471
1472 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1473
1474 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1475 xfs_buf_ioerror(bp, -EIO);
1476 xfs_buf_stale(bp);
1477 bp->b_flags &= ~XBF_DONE;
1478 return -EIO;
1479 }
1480
1481 if (bp->b_flags & XBF_WRITE)
1482 xfs_buf_wait_unpin(bp);
1483
1484 /* clear the internal error state to avoid spurious errors */
1485 bp->b_io_error = 0;
1486
1487 /*
1488 * For synchronous IO, the IO does not inherit the submitters reference
1489 * count, nor the buffer lock. Hence we cannot release the reference we
1490 * are about to take until we've waited for all IO completion to occur,
1491 * including any xfs_buf_ioend_async() work that may be pending.
1492 */
1493 xfs_buf_hold(bp);
1494
1495 /*
1496 * Set the count to 1 initially, this will stop an I/O completion
1497 * callout which happens before we have started all the I/O from calling
1498 * xfs_buf_ioend too early.
1499 */
1500 atomic_set(&bp->b_io_remaining, 1);
1501 _xfs_buf_ioapply(bp);
1502
1503 /*
1504 * make sure we run completion synchronously if it raced with us and is
1505 * already complete.
1506 */
1507 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1508 xfs_buf_ioend(bp);
1509
1510 /* wait for completion before gathering the error from the buffer */
1511 trace_xfs_buf_iowait(bp, _RET_IP_);
1512 wait_for_completion(&bp->b_iowait);
1513 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1514 error = bp->b_error;
1515
1516 /*
1517 * all done now, we can release the hold that keeps the buffer
1518 * referenced for the entire IO.
1519 */
1520 xfs_buf_rele(bp);
1521 return error;
1522}
1523
1524void *
1525xfs_buf_offset(
1526 struct xfs_buf *bp,
1527 size_t offset)
1528{
1529 struct page *page;
1530
1531 if (bp->b_addr)
1532 return bp->b_addr + offset;
1533
1534 offset += bp->b_offset;
1535 page = bp->b_pages[offset >> PAGE_SHIFT];
1536 return page_address(page) + (offset & (PAGE_SIZE-1));
1537}
1538
1539/*
1540 * Move data into or out of a buffer.
1541 */
1542void
1543xfs_buf_iomove(
1544 xfs_buf_t *bp, /* buffer to process */
1545 size_t boff, /* starting buffer offset */
1546 size_t bsize, /* length to copy */
1547 void *data, /* data address */
1548 xfs_buf_rw_t mode) /* read/write/zero flag */
1549{
1550 size_t bend;
1551
1552 bend = boff + bsize;
1553 while (boff < bend) {
1554 struct page *page;
1555 int page_index, page_offset, csize;
1556
1557 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1558 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1559 page = bp->b_pages[page_index];
1560 csize = min_t(size_t, PAGE_SIZE - page_offset,
1561 BBTOB(bp->b_io_length) - boff);
1562
1563 ASSERT((csize + page_offset) <= PAGE_SIZE);
1564
1565 switch (mode) {
1566 case XBRW_ZERO:
1567 memset(page_address(page) + page_offset, 0, csize);
1568 break;
1569 case XBRW_READ:
1570 memcpy(data, page_address(page) + page_offset, csize);
1571 break;
1572 case XBRW_WRITE:
1573 memcpy(page_address(page) + page_offset, data, csize);
1574 }
1575
1576 boff += csize;
1577 data += csize;
1578 }
1579}
1580
1581/*
1582 * Handling of buffer targets (buftargs).
1583 */
1584
1585/*
1586 * Wait for any bufs with callbacks that have been submitted but have not yet
1587 * returned. These buffers will have an elevated hold count, so wait on those
1588 * while freeing all the buffers only held by the LRU.
1589 */
1590static enum lru_status
1591xfs_buftarg_wait_rele(
1592 struct list_head *item,
1593 struct list_lru_one *lru,
1594 spinlock_t *lru_lock,
1595 void *arg)
1596
1597{
1598 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1599 struct list_head *dispose = arg;
1600
1601 if (atomic_read(&bp->b_hold) > 1) {
1602 /* need to wait, so skip it this pass */
1603 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1604 return LRU_SKIP;
1605 }
1606 if (!spin_trylock(&bp->b_lock))
1607 return LRU_SKIP;
1608
1609 /*
1610 * clear the LRU reference count so the buffer doesn't get
1611 * ignored in xfs_buf_rele().
1612 */
1613 atomic_set(&bp->b_lru_ref, 0);
1614 bp->b_state |= XFS_BSTATE_DISPOSE;
1615 list_lru_isolate_move(lru, item, dispose);
1616 spin_unlock(&bp->b_lock);
1617 return LRU_REMOVED;
1618}
1619
1620void
1621xfs_wait_buftarg(
1622 struct xfs_buftarg *btp)
1623{
1624 LIST_HEAD(dispose);
1625 int loop = 0;
1626
1627 /*
1628 * First wait on the buftarg I/O count for all in-flight buffers to be
1629 * released. This is critical as new buffers do not make the LRU until
1630 * they are released.
1631 *
1632 * Next, flush the buffer workqueue to ensure all completion processing
1633 * has finished. Just waiting on buffer locks is not sufficient for
1634 * async IO as the reference count held over IO is not released until
1635 * after the buffer lock is dropped. Hence we need to ensure here that
1636 * all reference counts have been dropped before we start walking the
1637 * LRU list.
1638 */
1639 while (percpu_counter_sum(&btp->bt_io_count))
1640 delay(100);
1641 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1642
1643 /* loop until there is nothing left on the lru list. */
1644 while (list_lru_count(&btp->bt_lru)) {
1645 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1646 &dispose, LONG_MAX);
1647
1648 while (!list_empty(&dispose)) {
1649 struct xfs_buf *bp;
1650 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1651 list_del_init(&bp->b_lru);
1652 if (bp->b_flags & XBF_WRITE_FAIL) {
1653 xfs_alert(btp->bt_mount,
1654"Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1655 (long long)bp->b_bn);
1656 xfs_alert(btp->bt_mount,
1657"Please run xfs_repair to determine the extent of the problem.");
1658 }
1659 xfs_buf_rele(bp);
1660 }
1661 if (loop++ != 0)
1662 delay(100);
1663 }
1664}
1665
1666static enum lru_status
1667xfs_buftarg_isolate(
1668 struct list_head *item,
1669 struct list_lru_one *lru,
1670 spinlock_t *lru_lock,
1671 void *arg)
1672{
1673 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1674 struct list_head *dispose = arg;
1675
1676 /*
1677 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1678 * If we fail to get the lock, just skip it.
1679 */
1680 if (!spin_trylock(&bp->b_lock))
1681 return LRU_SKIP;
1682 /*
1683 * Decrement the b_lru_ref count unless the value is already
1684 * zero. If the value is already zero, we need to reclaim the
1685 * buffer, otherwise it gets another trip through the LRU.
1686 */
1687 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1688 spin_unlock(&bp->b_lock);
1689 return LRU_ROTATE;
1690 }
1691
1692 bp->b_state |= XFS_BSTATE_DISPOSE;
1693 list_lru_isolate_move(lru, item, dispose);
1694 spin_unlock(&bp->b_lock);
1695 return LRU_REMOVED;
1696}
1697
1698static unsigned long
1699xfs_buftarg_shrink_scan(
1700 struct shrinker *shrink,
1701 struct shrink_control *sc)
1702{
1703 struct xfs_buftarg *btp = container_of(shrink,
1704 struct xfs_buftarg, bt_shrinker);
1705 LIST_HEAD(dispose);
1706 unsigned long freed;
1707
1708 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1709 xfs_buftarg_isolate, &dispose);
1710
1711 while (!list_empty(&dispose)) {
1712 struct xfs_buf *bp;
1713 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1714 list_del_init(&bp->b_lru);
1715 xfs_buf_rele(bp);
1716 }
1717
1718 return freed;
1719}
1720
1721static unsigned long
1722xfs_buftarg_shrink_count(
1723 struct shrinker *shrink,
1724 struct shrink_control *sc)
1725{
1726 struct xfs_buftarg *btp = container_of(shrink,
1727 struct xfs_buftarg, bt_shrinker);
1728 return list_lru_shrink_count(&btp->bt_lru, sc);
1729}
1730
1731void
1732xfs_free_buftarg(
1733 struct xfs_mount *mp,
1734 struct xfs_buftarg *btp)
1735{
1736 unregister_shrinker(&btp->bt_shrinker);
1737 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1738 percpu_counter_destroy(&btp->bt_io_count);
1739 list_lru_destroy(&btp->bt_lru);
1740
1741 xfs_blkdev_issue_flush(btp);
1742
1743 kmem_free(btp);
1744}
1745
1746int
1747xfs_setsize_buftarg(
1748 xfs_buftarg_t *btp,
1749 unsigned int sectorsize)
1750{
1751 /* Set up metadata sector size info */
1752 btp->bt_meta_sectorsize = sectorsize;
1753 btp->bt_meta_sectormask = sectorsize - 1;
1754
1755 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1756 xfs_warn(btp->bt_mount,
1757 "Cannot set_blocksize to %u on device %pg",
1758 sectorsize, btp->bt_bdev);
1759 return -EINVAL;
1760 }
1761
1762 /* Set up device logical sector size mask */
1763 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1764 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1765
1766 return 0;
1767}
1768
1769/*
1770 * When allocating the initial buffer target we have not yet
1771 * read in the superblock, so don't know what sized sectors
1772 * are being used at this early stage. Play safe.
1773 */
1774STATIC int
1775xfs_setsize_buftarg_early(
1776 xfs_buftarg_t *btp,
1777 struct block_device *bdev)
1778{
1779 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1780}
1781
1782xfs_buftarg_t *
1783xfs_alloc_buftarg(
1784 struct xfs_mount *mp,
1785 struct block_device *bdev)
1786{
1787 xfs_buftarg_t *btp;
1788
1789 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1790
1791 btp->bt_mount = mp;
1792 btp->bt_dev = bdev->bd_dev;
1793 btp->bt_bdev = bdev;
1794 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1795
1796 if (xfs_setsize_buftarg_early(btp, bdev))
1797 goto error;
1798
1799 if (list_lru_init(&btp->bt_lru))
1800 goto error;
1801
1802 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1803 goto error;
1804
1805 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1806 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1807 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1808 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1809 register_shrinker(&btp->bt_shrinker);
1810 return btp;
1811
1812error:
1813 kmem_free(btp);
1814 return NULL;
1815}
1816
1817/*
1818 * Add a buffer to the delayed write list.
1819 *
1820 * This queues a buffer for writeout if it hasn't already been. Note that
1821 * neither this routine nor the buffer list submission functions perform
1822 * any internal synchronization. It is expected that the lists are thread-local
1823 * to the callers.
1824 *
1825 * Returns true if we queued up the buffer, or false if it already had
1826 * been on the buffer list.
1827 */
1828bool
1829xfs_buf_delwri_queue(
1830 struct xfs_buf *bp,
1831 struct list_head *list)
1832{
1833 ASSERT(xfs_buf_islocked(bp));
1834 ASSERT(!(bp->b_flags & XBF_READ));
1835
1836 /*
1837 * If the buffer is already marked delwri it already is queued up
1838 * by someone else for imediate writeout. Just ignore it in that
1839 * case.
1840 */
1841 if (bp->b_flags & _XBF_DELWRI_Q) {
1842 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1843 return false;
1844 }
1845
1846 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1847
1848 /*
1849 * If a buffer gets written out synchronously or marked stale while it
1850 * is on a delwri list we lazily remove it. To do this, the other party
1851 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1852 * It remains referenced and on the list. In a rare corner case it
1853 * might get readded to a delwri list after the synchronous writeout, in
1854 * which case we need just need to re-add the flag here.
1855 */
1856 bp->b_flags |= _XBF_DELWRI_Q;
1857 if (list_empty(&bp->b_list)) {
1858 atomic_inc(&bp->b_hold);
1859 list_add_tail(&bp->b_list, list);
1860 }
1861
1862 return true;
1863}
1864
1865/*
1866 * Compare function is more complex than it needs to be because
1867 * the return value is only 32 bits and we are doing comparisons
1868 * on 64 bit values
1869 */
1870static int
1871xfs_buf_cmp(
1872 void *priv,
1873 struct list_head *a,
1874 struct list_head *b)
1875{
1876 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1877 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1878 xfs_daddr_t diff;
1879
1880 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1881 if (diff < 0)
1882 return -1;
1883 if (diff > 0)
1884 return 1;
1885 return 0;
1886}
1887
1888/*
1889 * submit buffers for write.
1890 *
1891 * When we have a large buffer list, we do not want to hold all the buffers
1892 * locked while we block on the request queue waiting for IO dispatch. To avoid
1893 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1894 * the lock hold times for lists which may contain thousands of objects.
1895 *
1896 * To do this, we sort the buffer list before we walk the list to lock and
1897 * submit buffers, and we plug and unplug around each group of buffers we
1898 * submit.
1899 */
1900static int
1901xfs_buf_delwri_submit_buffers(
1902 struct list_head *buffer_list,
1903 struct list_head *wait_list)
1904{
1905 struct xfs_buf *bp, *n;
1906 LIST_HEAD (submit_list);
1907 int pinned = 0;
1908 struct blk_plug plug;
1909
1910 list_sort(NULL, buffer_list, xfs_buf_cmp);
1911
1912 blk_start_plug(&plug);
1913 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1914 if (!wait_list) {
1915 if (xfs_buf_ispinned(bp)) {
1916 pinned++;
1917 continue;
1918 }
1919 if (!xfs_buf_trylock(bp))
1920 continue;
1921 } else {
1922 xfs_buf_lock(bp);
1923 }
1924
1925 /*
1926 * Someone else might have written the buffer synchronously or
1927 * marked it stale in the meantime. In that case only the
1928 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1929 * reference and remove it from the list here.
1930 */
1931 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1932 list_del_init(&bp->b_list);
1933 xfs_buf_relse(bp);
1934 continue;
1935 }
1936
1937 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1938
1939 /*
1940 * We do all IO submission async. This means if we need
1941 * to wait for IO completion we need to take an extra
1942 * reference so the buffer is still valid on the other
1943 * side. We need to move the buffer onto the io_list
1944 * at this point so the caller can still access it.
1945 */
1946 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1947 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1948 if (wait_list) {
1949 xfs_buf_hold(bp);
1950 list_move_tail(&bp->b_list, wait_list);
1951 } else
1952 list_del_init(&bp->b_list);
1953
1954 xfs_buf_submit(bp);
1955 }
1956 blk_finish_plug(&plug);
1957
1958 return pinned;
1959}
1960
1961/*
1962 * Write out a buffer list asynchronously.
1963 *
1964 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1965 * out and not wait for I/O completion on any of the buffers. This interface
1966 * is only safely useable for callers that can track I/O completion by higher
1967 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1968 * function.
1969 */
1970int
1971xfs_buf_delwri_submit_nowait(
1972 struct list_head *buffer_list)
1973{
1974 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1975}
1976
1977/*
1978 * Write out a buffer list synchronously.
1979 *
1980 * This will take the @buffer_list, write all buffers out and wait for I/O
1981 * completion on all of the buffers. @buffer_list is consumed by the function,
1982 * so callers must have some other way of tracking buffers if they require such
1983 * functionality.
1984 */
1985int
1986xfs_buf_delwri_submit(
1987 struct list_head *buffer_list)
1988{
1989 LIST_HEAD (wait_list);
1990 int error = 0, error2;
1991 struct xfs_buf *bp;
1992
1993 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1994
1995 /* Wait for IO to complete. */
1996 while (!list_empty(&wait_list)) {
1997 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1998
1999 list_del_init(&bp->b_list);
2000
2001 /* locking the buffer will wait for async IO completion. */
2002 xfs_buf_lock(bp);
2003 error2 = bp->b_error;
2004 xfs_buf_relse(bp);
2005 if (!error)
2006 error = error2;
2007 }
2008
2009 return error;
2010}
2011
2012int __init
2013xfs_buf_init(void)
2014{
2015 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2016 KM_ZONE_HWALIGN, NULL);
2017 if (!xfs_buf_zone)
2018 goto out;
2019
2020 return 0;
2021
2022 out:
2023 return -ENOMEM;
2024}
2025
2026void
2027xfs_buf_terminate(void)
2028{
2029 kmem_zone_destroy(xfs_buf_zone);
2030}