Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include <linux/stddef.h>
  20#include <linux/errno.h>
  21#include <linux/gfp.h>
  22#include <linux/pagemap.h>
  23#include <linux/init.h>
  24#include <linux/vmalloc.h>
  25#include <linux/bio.h>
  26#include <linux/sysctl.h>
  27#include <linux/proc_fs.h>
  28#include <linux/workqueue.h>
  29#include <linux/percpu.h>
  30#include <linux/blkdev.h>
  31#include <linux/hash.h>
  32#include <linux/kthread.h>
  33#include <linux/migrate.h>
  34#include <linux/backing-dev.h>
  35#include <linux/freezer.h>
  36
 
 
 
 
  37#include "xfs_sb.h"
  38#include "xfs_inum.h"
  39#include "xfs_log.h"
  40#include "xfs_ag.h"
  41#include "xfs_mount.h"
  42#include "xfs_trace.h"
 
 
 
  43
  44static kmem_zone_t *xfs_buf_zone;
  45STATIC int xfsbufd(void *);
  46STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
  47
  48static struct workqueue_struct *xfslogd_workqueue;
  49struct workqueue_struct *xfsdatad_workqueue;
  50struct workqueue_struct *xfsconvertd_workqueue;
  51
  52#ifdef XFS_BUF_LOCK_TRACKING
  53# define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
  54# define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
  55# define XB_GET_OWNER(bp)	((bp)->b_last_holder)
  56#else
  57# define XB_SET_OWNER(bp)	do { } while (0)
  58# define XB_CLEAR_OWNER(bp)	do { } while (0)
  59# define XB_GET_OWNER(bp)	do { } while (0)
  60#endif
  61
  62#define xb_to_gfp(flags) \
  63	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
  64	  ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
  65
  66#define xb_to_km(flags) \
  67	 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
  68
  69#define xfs_buf_allocate(flags) \
  70	kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
  71#define xfs_buf_deallocate(bp) \
  72	kmem_zone_free(xfs_buf_zone, (bp));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73
  74static inline int
  75xfs_buf_is_vmapped(
  76	struct xfs_buf	*bp)
  77{
  78	/*
  79	 * Return true if the buffer is vmapped.
  80	 *
  81	 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
  82	 * code is clever enough to know it doesn't have to map a single page,
  83	 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
  84	 */
  85	return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
  86}
  87
  88static inline int
  89xfs_buf_vmap_len(
  90	struct xfs_buf	*bp)
  91{
  92	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
  93}
  94
  95/*
  96 * xfs_buf_lru_add - add a buffer to the LRU.
 
 
 
 
 
 
  97 *
  98 * The LRU takes a new reference to the buffer so that it will only be freed
  99 * once the shrinker takes the buffer off the LRU.
 
 100 */
 101STATIC void
 102xfs_buf_lru_add(
 103	struct xfs_buf	*bp)
 104{
 105	struct xfs_buftarg *btp = bp->b_target;
 
 106
 107	spin_lock(&btp->bt_lru_lock);
 108	if (list_empty(&bp->b_lru)) {
 109		atomic_inc(&bp->b_hold);
 110		list_add_tail(&bp->b_lru, &btp->bt_lru);
 111		btp->bt_lru_nr++;
 112	}
 113	spin_unlock(&btp->bt_lru_lock);
 114}
 115
 116/*
 117 * xfs_buf_lru_del - remove a buffer from the LRU
 118 *
 119 * The unlocked check is safe here because it only occurs when there are not
 120 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
 121 * to optimise the shrinker removing the buffer from the LRU and calling
 122 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
 123 * bt_lru_lock.
 124 */
 125STATIC void
 126xfs_buf_lru_del(
 127	struct xfs_buf	*bp)
 128{
 129	struct xfs_buftarg *btp = bp->b_target;
 130
 131	if (list_empty(&bp->b_lru))
 132		return;
 133
 134	spin_lock(&btp->bt_lru_lock);
 135	if (!list_empty(&bp->b_lru)) {
 136		list_del_init(&bp->b_lru);
 137		btp->bt_lru_nr--;
 138	}
 139	spin_unlock(&btp->bt_lru_lock);
 
 
 
 
 
 
 
 
 140}
 141
 142/*
 143 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
 144 * b_lru_ref count so that the buffer is freed immediately when the buffer
 145 * reference count falls to zero. If the buffer is already on the LRU, we need
 146 * to remove the reference that LRU holds on the buffer.
 147 *
 148 * This prevents build-up of stale buffers on the LRU.
 149 */
 150void
 151xfs_buf_stale(
 152	struct xfs_buf	*bp)
 153{
 
 
 154	bp->b_flags |= XBF_STALE;
 155	atomic_set(&(bp)->b_lru_ref, 0);
 156	if (!list_empty(&bp->b_lru)) {
 157		struct xfs_buftarg *btp = bp->b_target;
 158
 159		spin_lock(&btp->bt_lru_lock);
 160		if (!list_empty(&bp->b_lru)) {
 161			list_del_init(&bp->b_lru);
 162			btp->bt_lru_nr--;
 163			atomic_dec(&bp->b_hold);
 164		}
 165		spin_unlock(&btp->bt_lru_lock);
 166	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 167	ASSERT(atomic_read(&bp->b_hold) >= 1);
 
 168}
 169
 170STATIC void
 171_xfs_buf_initialize(
 172	xfs_buf_t		*bp,
 173	xfs_buftarg_t		*target,
 174	xfs_off_t		range_base,
 175	size_t			range_length,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176	xfs_buf_flags_t		flags)
 177{
 
 
 
 
 
 
 
 
 178	/*
 179	 * We don't want certain flags to appear in b_flags.
 
 180	 */
 181	flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
 182
 183	memset(bp, 0, sizeof(xfs_buf_t));
 184	atomic_set(&bp->b_hold, 1);
 185	atomic_set(&bp->b_lru_ref, 1);
 186	init_completion(&bp->b_iowait);
 187	INIT_LIST_HEAD(&bp->b_lru);
 188	INIT_LIST_HEAD(&bp->b_list);
 189	RB_CLEAR_NODE(&bp->b_rbnode);
 190	sema_init(&bp->b_sema, 0); /* held, no waiters */
 191	XB_SET_OWNER(bp);
 192	bp->b_target = target;
 193	bp->b_file_offset = range_base;
 
 
 194	/*
 195	 * Set buffer_length and count_desired to the same value initially.
 196	 * I/O routines should use count_desired, which will be the same in
 197	 * most cases but may be reset (e.g. XFS recovery).
 198	 */
 199	bp->b_buffer_length = bp->b_count_desired = range_length;
 200	bp->b_flags = flags;
 201	bp->b_bn = XFS_BUF_DADDR_NULL;
 
 
 
 
 
 
 
 
 
 
 
 202	atomic_set(&bp->b_pin_count, 0);
 203	init_waitqueue_head(&bp->b_waiters);
 204
 205	XFS_STATS_INC(xb_create);
 206
 207	trace_xfs_buf_init(bp, _RET_IP_);
 
 
 208}
 209
 210/*
 211 *	Allocate a page array capable of holding a specified number
 212 *	of pages, and point the page buf at it.
 213 */
 214STATIC int
 215_xfs_buf_get_pages(
 216	xfs_buf_t		*bp,
 217	int			page_count,
 218	xfs_buf_flags_t		flags)
 219{
 220	/* Make sure that we have a page list */
 221	if (bp->b_pages == NULL) {
 222		bp->b_offset = xfs_buf_poff(bp->b_file_offset);
 223		bp->b_page_count = page_count;
 224		if (page_count <= XB_PAGES) {
 225			bp->b_pages = bp->b_page_array;
 226		} else {
 227			bp->b_pages = kmem_alloc(sizeof(struct page *) *
 228					page_count, xb_to_km(flags));
 229			if (bp->b_pages == NULL)
 230				return -ENOMEM;
 231		}
 232		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
 233	}
 234	return 0;
 235}
 236
 237/*
 238 *	Frees b_pages if it was allocated.
 239 */
 240STATIC void
 241_xfs_buf_free_pages(
 242	xfs_buf_t	*bp)
 243{
 244	if (bp->b_pages != bp->b_page_array) {
 245		kmem_free(bp->b_pages);
 246		bp->b_pages = NULL;
 247	}
 248}
 249
 250/*
 251 *	Releases the specified buffer.
 252 *
 253 * 	The modification state of any associated pages is left unchanged.
 254 * 	The buffer most not be on any hash - use xfs_buf_rele instead for
 255 * 	hashed and refcounted buffers
 256 */
 257void
 258xfs_buf_free(
 259	xfs_buf_t		*bp)
 260{
 261	trace_xfs_buf_free(bp, _RET_IP_);
 262
 263	ASSERT(list_empty(&bp->b_lru));
 264
 265	if (bp->b_flags & _XBF_PAGES) {
 266		uint		i;
 267
 268		if (xfs_buf_is_vmapped(bp))
 269			vm_unmap_ram(bp->b_addr - bp->b_offset,
 270					bp->b_page_count);
 271
 272		for (i = 0; i < bp->b_page_count; i++) {
 273			struct page	*page = bp->b_pages[i];
 274
 275			__free_page(page);
 276		}
 277	} else if (bp->b_flags & _XBF_KMEM)
 278		kmem_free(bp->b_addr);
 279	_xfs_buf_free_pages(bp);
 280	xfs_buf_deallocate(bp);
 
 281}
 282
 283/*
 284 * Allocates all the pages for buffer in question and builds it's page list.
 285 */
 286STATIC int
 287xfs_buf_allocate_memory(
 288	xfs_buf_t		*bp,
 289	uint			flags)
 290{
 291	size_t			size = bp->b_count_desired;
 292	size_t			nbytes, offset;
 293	gfp_t			gfp_mask = xb_to_gfp(flags);
 294	unsigned short		page_count, i;
 295	xfs_off_t		end;
 296	int			error;
 
 
 
 
 
 
 
 
 
 297
 298	/*
 299	 * for buffers that are contained within a single page, just allocate
 300	 * the memory from the heap - there's no need for the complexity of
 301	 * page arrays to keep allocation down to order 0.
 302	 */
 303	if (bp->b_buffer_length < PAGE_SIZE) {
 304		bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
 
 
 
 305		if (!bp->b_addr) {
 306			/* low memory - use alloc_page loop instead */
 307			goto use_alloc_page;
 308		}
 309
 310		if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
 311								PAGE_MASK) !=
 312		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
 313			/* b_addr spans two pages - use alloc_page instead */
 314			kmem_free(bp->b_addr);
 315			bp->b_addr = NULL;
 316			goto use_alloc_page;
 317		}
 318		bp->b_offset = offset_in_page(bp->b_addr);
 319		bp->b_pages = bp->b_page_array;
 320		bp->b_pages[0] = virt_to_page(bp->b_addr);
 321		bp->b_page_count = 1;
 322		bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
 323		return 0;
 324	}
 325
 326use_alloc_page:
 327	end = bp->b_file_offset + bp->b_buffer_length;
 328	page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
 329	error = _xfs_buf_get_pages(bp, page_count, flags);
 
 
 330	if (unlikely(error))
 331		return error;
 332
 333	offset = bp->b_offset;
 334	bp->b_flags |= _XBF_PAGES;
 335
 336	for (i = 0; i < bp->b_page_count; i++) {
 337		struct page	*page;
 338		uint		retries = 0;
 339retry:
 340		page = alloc_page(gfp_mask);
 341		if (unlikely(page == NULL)) {
 342			if (flags & XBF_READ_AHEAD) {
 343				bp->b_page_count = i;
 344				error = ENOMEM;
 345				goto out_free_pages;
 346			}
 347
 348			/*
 349			 * This could deadlock.
 350			 *
 351			 * But until all the XFS lowlevel code is revamped to
 352			 * handle buffer allocation failures we can't do much.
 353			 */
 354			if (!(++retries % 100))
 355				xfs_err(NULL,
 356		"possible memory allocation deadlock in %s (mode:0x%x)",
 
 357					__func__, gfp_mask);
 358
 359			XFS_STATS_INC(xb_page_retries);
 360			congestion_wait(BLK_RW_ASYNC, HZ/50);
 361			goto retry;
 362		}
 363
 364		XFS_STATS_INC(xb_page_found);
 365
 366		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
 367		size -= nbytes;
 368		bp->b_pages[i] = page;
 369		offset = 0;
 370	}
 371	return 0;
 372
 373out_free_pages:
 374	for (i = 0; i < bp->b_page_count; i++)
 375		__free_page(bp->b_pages[i]);
 
 376	return error;
 377}
 378
 379/*
 380 *	Map buffer into kernel address-space if necessary.
 381 */
 382STATIC int
 383_xfs_buf_map_pages(
 384	xfs_buf_t		*bp,
 385	uint			flags)
 386{
 387	ASSERT(bp->b_flags & _XBF_PAGES);
 388	if (bp->b_page_count == 1) {
 389		/* A single page buffer is always mappable */
 390		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
 391		bp->b_flags |= XBF_MAPPED;
 392	} else if (flags & XBF_MAPPED) {
 
 393		int retried = 0;
 
 394
 
 
 
 
 
 
 
 
 
 395		do {
 396			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
 397						-1, PAGE_KERNEL);
 398			if (bp->b_addr)
 399				break;
 400			vm_unmap_aliases();
 401		} while (retried++ <= 1);
 
 402
 403		if (!bp->b_addr)
 404			return -ENOMEM;
 405		bp->b_addr += bp->b_offset;
 406		bp->b_flags |= XBF_MAPPED;
 407	}
 408
 409	return 0;
 410}
 411
 412/*
 413 *	Finding and Reading Buffers
 414 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 415
 416/*
 417 *	Look up, and creates if absent, a lockable buffer for
 418 *	a given range of an inode.  The buffer is returned
 419 *	locked.	 If other overlapping buffers exist, they are
 420 *	released before the new buffer is created and locked,
 421 *	which may imply that this call will block until those buffers
 422 *	are unlocked.  No I/O is implied by this call.
 
 
 
 
 
 
 
 
 
 
 423 */
 424xfs_buf_t *
 425_xfs_buf_find(
 426	xfs_buftarg_t		*btp,	/* block device target		*/
 427	xfs_off_t		ioff,	/* starting offset of range	*/
 428	size_t			isize,	/* length of range		*/
 429	xfs_buf_flags_t		flags,
 430	xfs_buf_t		*new_bp)
 
 431{
 432	xfs_off_t		range_base;
 433	size_t			range_length;
 434	struct xfs_perag	*pag;
 435	struct rb_node		**rbp;
 436	struct rb_node		*parent;
 437	xfs_buf_t		*bp;
 
 
 
 438
 439	range_base = (ioff << BBSHIFT);
 440	range_length = (isize << BBSHIFT);
 
 
 441
 442	/* Check for IOs smaller than the sector size / not sector aligned */
 443	ASSERT(!(range_length < (1 << btp->bt_sshift)));
 444	ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
 
 
 
 
 
 
 
 
 
 
 
 
 
 445
 446	/* get tree root */
 447	pag = xfs_perag_get(btp->bt_mount,
 448				xfs_daddr_to_agno(btp->bt_mount, ioff));
 449
 450	/* walk tree */
 451	spin_lock(&pag->pag_buf_lock);
 452	rbp = &pag->pag_buf_tree.rb_node;
 453	parent = NULL;
 454	bp = NULL;
 455	while (*rbp) {
 456		parent = *rbp;
 457		bp = rb_entry(parent, struct xfs_buf, b_rbnode);
 458
 459		if (range_base < bp->b_file_offset)
 460			rbp = &(*rbp)->rb_left;
 461		else if (range_base > bp->b_file_offset)
 462			rbp = &(*rbp)->rb_right;
 463		else {
 464			/*
 465			 * found a block offset match. If the range doesn't
 466			 * match, the only way this is allowed is if the buffer
 467			 * in the cache is stale and the transaction that made
 468			 * it stale has not yet committed. i.e. we are
 469			 * reallocating a busy extent. Skip this buffer and
 470			 * continue searching to the right for an exact match.
 471			 */
 472			if (bp->b_buffer_length != range_length) {
 473				ASSERT(bp->b_flags & XBF_STALE);
 474				rbp = &(*rbp)->rb_right;
 475				continue;
 476			}
 477			atomic_inc(&bp->b_hold);
 478			goto found;
 479		}
 480	}
 481
 482	/* No match found */
 483	if (new_bp) {
 484		_xfs_buf_initialize(new_bp, btp, range_base,
 485				range_length, flags);
 486		rb_link_node(&new_bp->b_rbnode, parent, rbp);
 487		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
 488		/* the buffer keeps the perag reference until it is freed */
 489		new_bp->b_pag = pag;
 490		spin_unlock(&pag->pag_buf_lock);
 491	} else {
 492		XFS_STATS_INC(xb_miss_locked);
 493		spin_unlock(&pag->pag_buf_lock);
 494		xfs_perag_put(pag);
 
 495	}
 496	return new_bp;
 
 
 
 
 
 
 
 497
 498found:
 499	spin_unlock(&pag->pag_buf_lock);
 500	xfs_perag_put(pag);
 501
 502	if (!xfs_buf_trylock(bp)) {
 503		if (flags & XBF_TRYLOCK) {
 504			xfs_buf_rele(bp);
 505			XFS_STATS_INC(xb_busy_locked);
 506			return NULL;
 507		}
 508		xfs_buf_lock(bp);
 509		XFS_STATS_INC(xb_get_locked_waited);
 510	}
 511
 512	/*
 513	 * if the buffer is stale, clear all the external state associated with
 514	 * it. We need to keep flags such as how we allocated the buffer memory
 515	 * intact here.
 516	 */
 517	if (bp->b_flags & XBF_STALE) {
 518		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
 519		bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
 
 
 520	}
 521
 522	trace_xfs_buf_find(bp, flags, _RET_IP_);
 523	XFS_STATS_INC(xb_get_locked);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524	return bp;
 525}
 526
 527/*
 528 *	Assembles a buffer covering the specified range.
 529 *	Storage in memory for all portions of the buffer will be allocated,
 530 *	although backing storage may not be.
 531 */
 532xfs_buf_t *
 533xfs_buf_get(
 534	xfs_buftarg_t		*target,/* target for buffer		*/
 535	xfs_off_t		ioff,	/* starting offset of range	*/
 536	size_t			isize,	/* length of range		*/
 537	xfs_buf_flags_t		flags)
 538{
 539	xfs_buf_t		*bp, *new_bp;
 
 540	int			error = 0;
 541
 542	new_bp = xfs_buf_allocate(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543	if (unlikely(!new_bp))
 544		return NULL;
 545
 546	bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
 547	if (bp == new_bp) {
 548		error = xfs_buf_allocate_memory(bp, flags);
 549		if (error)
 550			goto no_buffer;
 551	} else {
 552		xfs_buf_deallocate(new_bp);
 553		if (unlikely(bp == NULL))
 554			return NULL;
 
 555	}
 556
 557	if (!(bp->b_flags & XBF_MAPPED)) {
 
 
 
 
 558		error = _xfs_buf_map_pages(bp, flags);
 559		if (unlikely(error)) {
 560			xfs_warn(target->bt_mount,
 561				"%s: failed to map pages\n", __func__);
 562			goto no_buffer;
 
 563		}
 564	}
 565
 566	XFS_STATS_INC(xb_get);
 567
 568	/*
 569	 * Always fill in the block number now, the mapped cases can do
 570	 * their own overlay of this later.
 571	 */
 572	bp->b_bn = ioff;
 573	bp->b_count_desired = bp->b_buffer_length;
 574
 
 575	trace_xfs_buf_get(bp, flags, _RET_IP_);
 576	return bp;
 577
 578 no_buffer:
 579	if (flags & (XBF_LOCK | XBF_TRYLOCK))
 580		xfs_buf_unlock(bp);
 581	xfs_buf_rele(bp);
 582	return NULL;
 583}
 584
 585STATIC int
 586_xfs_buf_read(
 587	xfs_buf_t		*bp,
 588	xfs_buf_flags_t		flags)
 589{
 590	int			status;
 591
 592	ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
 593	ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
 594
 595	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD);
 596	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
 597
 598	status = xfs_buf_iorequest(bp);
 599	if (status || bp->b_error || (flags & XBF_ASYNC))
 600		return status;
 601	return xfs_buf_iowait(bp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 602}
 603
 604xfs_buf_t *
 605xfs_buf_read(
 606	xfs_buftarg_t		*target,
 607	xfs_off_t		ioff,
 608	size_t			isize,
 609	xfs_buf_flags_t		flags)
 
 610{
 611	xfs_buf_t		*bp;
 612
 613	flags |= XBF_READ;
 614
 615	bp = xfs_buf_get(target, ioff, isize, flags);
 616	if (bp) {
 617		trace_xfs_buf_read(bp, flags, _RET_IP_);
 618
 619		if (!XFS_BUF_ISDONE(bp)) {
 620			XFS_STATS_INC(xb_get_read);
 621			_xfs_buf_read(bp, flags);
 622		} else if (flags & XBF_ASYNC) {
 623			/*
 624			 * Read ahead call which is already satisfied,
 625			 * drop the buffer
 626			 */
 627			goto no_buffer;
 628		} else {
 629			/* We do not want read in the flags */
 630			bp->b_flags &= ~XBF_READ;
 631		}
 632	}
 633
 634	return bp;
 635
 636 no_buffer:
 637	if (flags & (XBF_LOCK | XBF_TRYLOCK))
 638		xfs_buf_unlock(bp);
 639	xfs_buf_rele(bp);
 640	return NULL;
 
 
 
 
 
 
 
 
 641}
 642
 643/*
 644 *	If we are not low on memory then do the readahead in a deadlock
 645 *	safe manner.
 646 */
 647void
 648xfs_buf_readahead(
 649	xfs_buftarg_t		*target,
 650	xfs_off_t		ioff,
 651	size_t			isize)
 
 652{
 653	if (bdi_read_congested(target->bt_bdi))
 654		return;
 655
 656	xfs_buf_read(target, ioff, isize,
 657		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
 658}
 659
 660/*
 661 * Read an uncached buffer from disk. Allocates and returns a locked
 662 * buffer containing the disk contents or nothing.
 663 */
 664struct xfs_buf *
 665xfs_buf_read_uncached(
 666	struct xfs_mount	*mp,
 667	struct xfs_buftarg	*target,
 668	xfs_daddr_t		daddr,
 669	size_t			length,
 670	int			flags)
 
 
 671{
 672	xfs_buf_t		*bp;
 673	int			error;
 
 674
 675	bp = xfs_buf_get_uncached(target, length, flags);
 676	if (!bp)
 677		return NULL;
 678
 679	/* set up the buffer for a read IO */
 680	XFS_BUF_SET_ADDR(bp, daddr);
 681	XFS_BUF_READ(bp);
 682
 683	xfsbdstrat(mp, bp);
 684	error = xfs_buf_iowait(bp);
 685	if (error || bp->b_error) {
 
 
 
 686		xfs_buf_relse(bp);
 687		return NULL;
 688	}
 689	return bp;
 690}
 691
 692xfs_buf_t *
 693xfs_buf_get_empty(
 694	size_t			len,
 695	xfs_buftarg_t		*target)
 696{
 697	xfs_buf_t		*bp;
 698
 699	bp = xfs_buf_allocate(0);
 700	if (bp)
 701		_xfs_buf_initialize(bp, target, 0, len, 0);
 702	return bp;
 703}
 704
 705/*
 706 * Return a buffer allocated as an empty buffer and associated to external
 707 * memory via xfs_buf_associate_memory() back to it's empty state.
 708 */
 709void
 710xfs_buf_set_empty(
 711	struct xfs_buf		*bp,
 712	size_t			len)
 713{
 714	if (bp->b_pages)
 715		_xfs_buf_free_pages(bp);
 716
 717	bp->b_pages = NULL;
 718	bp->b_page_count = 0;
 719	bp->b_addr = NULL;
 720	bp->b_file_offset = 0;
 721	bp->b_buffer_length = bp->b_count_desired = len;
 722	bp->b_bn = XFS_BUF_DADDR_NULL;
 723	bp->b_flags &= ~XBF_MAPPED;
 724}
 725
 726static inline struct page *
 727mem_to_page(
 728	void			*addr)
 729{
 730	if ((!is_vmalloc_addr(addr))) {
 731		return virt_to_page(addr);
 732	} else {
 733		return vmalloc_to_page(addr);
 734	}
 735}
 736
 737int
 738xfs_buf_associate_memory(
 739	xfs_buf_t		*bp,
 740	void			*mem,
 741	size_t			len)
 742{
 743	int			rval;
 744	int			i = 0;
 745	unsigned long		pageaddr;
 746	unsigned long		offset;
 747	size_t			buflen;
 748	int			page_count;
 749
 750	pageaddr = (unsigned long)mem & PAGE_MASK;
 751	offset = (unsigned long)mem - pageaddr;
 752	buflen = PAGE_ALIGN(len + offset);
 753	page_count = buflen >> PAGE_SHIFT;
 754
 755	/* Free any previous set of page pointers */
 756	if (bp->b_pages)
 757		_xfs_buf_free_pages(bp);
 758
 759	bp->b_pages = NULL;
 760	bp->b_addr = mem;
 761
 762	rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
 763	if (rval)
 764		return rval;
 765
 766	bp->b_offset = offset;
 767
 768	for (i = 0; i < bp->b_page_count; i++) {
 769		bp->b_pages[i] = mem_to_page((void *)pageaddr);
 770		pageaddr += PAGE_SIZE;
 771	}
 772
 773	bp->b_count_desired = len;
 774	bp->b_buffer_length = buflen;
 775	bp->b_flags |= XBF_MAPPED;
 776
 777	return 0;
 778}
 779
 780xfs_buf_t *
 781xfs_buf_get_uncached(
 782	struct xfs_buftarg	*target,
 783	size_t			len,
 784	int			flags)
 785{
 786	unsigned long		page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
 787	int			error, i;
 788	xfs_buf_t		*bp;
 
 789
 790	bp = xfs_buf_allocate(0);
 
 791	if (unlikely(bp == NULL))
 792		goto fail;
 793	_xfs_buf_initialize(bp, target, 0, len, 0);
 794
 795	error = _xfs_buf_get_pages(bp, page_count, 0);
 
 796	if (error)
 797		goto fail_free_buf;
 798
 799	for (i = 0; i < page_count; i++) {
 800		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
 801		if (!bp->b_pages[i])
 802			goto fail_free_mem;
 803	}
 804	bp->b_flags |= _XBF_PAGES;
 805
 806	error = _xfs_buf_map_pages(bp, XBF_MAPPED);
 807	if (unlikely(error)) {
 808		xfs_warn(target->bt_mount,
 809			"%s: failed to map pages\n", __func__);
 810		goto fail_free_mem;
 811	}
 812
 813	trace_xfs_buf_get_uncached(bp, _RET_IP_);
 814	return bp;
 815
 816 fail_free_mem:
 817	while (--i >= 0)
 818		__free_page(bp->b_pages[i]);
 819	_xfs_buf_free_pages(bp);
 820 fail_free_buf:
 821	xfs_buf_deallocate(bp);
 
 822 fail:
 823	return NULL;
 824}
 825
 826/*
 827 *	Increment reference count on buffer, to hold the buffer concurrently
 828 *	with another thread which may release (free) the buffer asynchronously.
 829 *	Must hold the buffer already to call this function.
 830 */
 831void
 832xfs_buf_hold(
 833	xfs_buf_t		*bp)
 834{
 835	trace_xfs_buf_hold(bp, _RET_IP_);
 836	atomic_inc(&bp->b_hold);
 837}
 838
 839/*
 840 *	Releases a hold on the specified buffer.  If the
 841 *	the hold count is 1, calls xfs_buf_free.
 842 */
 843void
 844xfs_buf_rele(
 845	xfs_buf_t		*bp)
 846{
 847	struct xfs_perag	*pag = bp->b_pag;
 
 
 848
 849	trace_xfs_buf_rele(bp, _RET_IP_);
 850
 851	if (!pag) {
 852		ASSERT(list_empty(&bp->b_lru));
 853		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
 854		if (atomic_dec_and_test(&bp->b_hold))
 855			xfs_buf_free(bp);
 
 856		return;
 857	}
 858
 859	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
 860
 861	ASSERT(atomic_read(&bp->b_hold) > 0);
 862	if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
 863		if (!(bp->b_flags & XBF_STALE) &&
 864			   atomic_read(&bp->b_lru_ref)) {
 865			xfs_buf_lru_add(bp);
 866			spin_unlock(&pag->pag_buf_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867		} else {
 868			xfs_buf_lru_del(bp);
 869			ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
 870			rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
 871			spin_unlock(&pag->pag_buf_lock);
 872			xfs_perag_put(pag);
 873			xfs_buf_free(bp);
 874		}
 
 
 
 
 
 
 
 875	}
 
 
 
 
 
 
 876}
 877
 878
 879/*
 880 *	Lock a buffer object, if it is not already locked.
 881 *
 882 *	If we come across a stale, pinned, locked buffer, we know that we are
 883 *	being asked to lock a buffer that has been reallocated. Because it is
 884 *	pinned, we know that the log has not been pushed to disk and hence it
 885 *	will still be locked.  Rather than continuing to have trylock attempts
 886 *	fail until someone else pushes the log, push it ourselves before
 887 *	returning.  This means that the xfsaild will not get stuck trying
 888 *	to push on stale inode buffers.
 889 */
 890int
 891xfs_buf_trylock(
 892	struct xfs_buf		*bp)
 893{
 894	int			locked;
 895
 896	locked = down_trylock(&bp->b_sema) == 0;
 897	if (locked)
 898		XB_SET_OWNER(bp);
 899	else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
 900		xfs_log_force(bp->b_target->bt_mount, 0);
 901
 902	trace_xfs_buf_trylock(bp, _RET_IP_);
 903	return locked;
 904}
 905
 906/*
 907 *	Lock a buffer object.
 908 *
 909 *	If we come across a stale, pinned, locked buffer, we know that we
 910 *	are being asked to lock a buffer that has been reallocated. Because
 911 *	it is pinned, we know that the log has not been pushed to disk and
 912 *	hence it will still be locked. Rather than sleeping until someone
 913 *	else pushes the log, push it ourselves before trying to get the lock.
 914 */
 915void
 916xfs_buf_lock(
 917	struct xfs_buf		*bp)
 918{
 919	trace_xfs_buf_lock(bp, _RET_IP_);
 920
 921	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
 922		xfs_log_force(bp->b_target->bt_mount, 0);
 923	down(&bp->b_sema);
 924	XB_SET_OWNER(bp);
 925
 926	trace_xfs_buf_lock_done(bp, _RET_IP_);
 927}
 928
 929/*
 930 *	Releases the lock on the buffer object.
 931 *	If the buffer is marked delwri but is not queued, do so before we
 932 *	unlock the buffer as we need to set flags correctly.  We also need to
 933 *	take a reference for the delwri queue because the unlocker is going to
 934 *	drop their's and they don't know we just queued it.
 935 */
 936void
 937xfs_buf_unlock(
 938	struct xfs_buf		*bp)
 939{
 940	if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
 941		atomic_inc(&bp->b_hold);
 942		bp->b_flags |= XBF_ASYNC;
 943		xfs_buf_delwri_queue(bp, 0);
 944	}
 945
 946	XB_CLEAR_OWNER(bp);
 947	up(&bp->b_sema);
 948
 949	trace_xfs_buf_unlock(bp, _RET_IP_);
 950}
 951
 952STATIC void
 953xfs_buf_wait_unpin(
 954	xfs_buf_t		*bp)
 955{
 956	DECLARE_WAITQUEUE	(wait, current);
 957
 958	if (atomic_read(&bp->b_pin_count) == 0)
 959		return;
 960
 961	add_wait_queue(&bp->b_waiters, &wait);
 962	for (;;) {
 963		set_current_state(TASK_UNINTERRUPTIBLE);
 964		if (atomic_read(&bp->b_pin_count) == 0)
 965			break;
 966		io_schedule();
 967	}
 968	remove_wait_queue(&bp->b_waiters, &wait);
 969	set_current_state(TASK_RUNNING);
 970}
 971
 972/*
 973 *	Buffer Utility Routines
 974 */
 975
 976STATIC void
 977xfs_buf_iodone_work(
 978	struct work_struct	*work)
 979{
 980	xfs_buf_t		*bp =
 981		container_of(work, xfs_buf_t, b_iodone_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982
 983	if (bp->b_iodone)
 984		(*(bp->b_iodone))(bp);
 985	else if (bp->b_flags & XBF_ASYNC)
 986		xfs_buf_relse(bp);
 
 
 987}
 988
 989void
 990xfs_buf_ioend(
 991	xfs_buf_t		*bp,
 992	int			schedule)
 993{
 994	trace_xfs_buf_iodone(bp, _RET_IP_);
 
 995
 996	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
 997	if (bp->b_error == 0)
 998		bp->b_flags |= XBF_DONE;
 999
1000	if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1001		if (schedule) {
1002			INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1003			queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1004		} else {
1005			xfs_buf_iodone_work(&bp->b_iodone_work);
1006		}
1007	} else {
1008		complete(&bp->b_iowait);
1009	}
1010}
1011
1012void
1013xfs_buf_ioerror(
1014	xfs_buf_t		*bp,
1015	int			error)
 
1016{
1017	ASSERT(error >= 0 && error <= 0xffff);
1018	bp->b_error = (unsigned short)error;
1019	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
 
 
 
 
 
 
 
 
 
 
 
1020}
1021
1022int
1023xfs_bwrite(
1024	struct xfs_mount	*mp,
1025	struct xfs_buf		*bp)
1026{
1027	int			error;
1028
1029	bp->b_flags |= XBF_WRITE;
1030	bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1031
1032	xfs_buf_delwri_dequeue(bp);
1033	xfs_bdstrat_cb(bp);
 
1034
1035	error = xfs_buf_iowait(bp);
1036	if (error)
1037		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1038	xfs_buf_relse(bp);
1039	return error;
1040}
1041
1042void
1043xfs_bdwrite(
1044	void			*mp,
1045	struct xfs_buf		*bp)
1046{
1047	trace_xfs_buf_bdwrite(bp, _RET_IP_);
1048
1049	bp->b_flags &= ~XBF_READ;
1050	bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1051
1052	xfs_buf_delwri_queue(bp, 1);
1053}
1054
1055/*
1056 * Called when we want to stop a buffer from getting written or read.
1057 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1058 * so that the proper iodone callbacks get called.
1059 */
1060STATIC int
1061xfs_bioerror(
1062	xfs_buf_t *bp)
1063{
1064#ifdef XFSERRORDEBUG
1065	ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1066#endif
1067
1068	/*
1069	 * No need to wait until the buffer is unpinned, we aren't flushing it.
1070	 */
1071	xfs_buf_ioerror(bp, EIO);
1072
1073	/*
1074	 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
 
1075	 */
1076	XFS_BUF_UNREAD(bp);
1077	XFS_BUF_UNDELAYWRITE(bp);
1078	XFS_BUF_UNDONE(bp);
1079	XFS_BUF_STALE(bp);
1080
1081	xfs_buf_ioend(bp, 0);
1082
1083	return EIO;
1084}
1085
1086/*
1087 * Same as xfs_bioerror, except that we are releasing the buffer
1088 * here ourselves, and avoiding the xfs_buf_ioend call.
1089 * This is meant for userdata errors; metadata bufs come with
1090 * iodone functions attached, so that we can track down errors.
1091 */
1092STATIC int
1093xfs_bioerror_relse(
1094	struct xfs_buf	*bp)
1095{
1096	int64_t		fl = bp->b_flags;
1097	/*
1098	 * No need to wait until the buffer is unpinned.
1099	 * We aren't flushing it.
1100	 *
1101	 * chunkhold expects B_DONE to be set, whether
1102	 * we actually finish the I/O or not. We don't want to
1103	 * change that interface.
1104	 */
1105	XFS_BUF_UNREAD(bp);
1106	XFS_BUF_UNDELAYWRITE(bp);
1107	XFS_BUF_DONE(bp);
1108	XFS_BUF_STALE(bp);
1109	bp->b_iodone = NULL;
1110	if (!(fl & XBF_ASYNC)) {
1111		/*
1112		 * Mark b_error and B_ERROR _both_.
1113		 * Lot's of chunkcache code assumes that.
1114		 * There's no reason to mark error for
1115		 * ASYNC buffers.
1116		 */
1117		xfs_buf_ioerror(bp, EIO);
1118		XFS_BUF_FINISH_IOWAIT(bp);
1119	} else {
1120		xfs_buf_relse(bp);
1121	}
1122
1123	return EIO;
1124}
1125
1126
1127/*
1128 * All xfs metadata buffers except log state machine buffers
1129 * get this attached as their b_bdstrat callback function.
1130 * This is so that we can catch a buffer
1131 * after prematurely unpinning it to forcibly shutdown the filesystem.
1132 */
1133int
1134xfs_bdstrat_cb(
1135	struct xfs_buf	*bp)
1136{
1137	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1138		trace_xfs_bdstrat_shut(bp, _RET_IP_);
1139		/*
1140		 * Metadata write that didn't get logged but
1141		 * written delayed anyway. These aren't associated
1142		 * with a transaction, and can be ignored.
1143		 */
1144		if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1145			return xfs_bioerror_relse(bp);
1146		else
1147			return xfs_bioerror(bp);
1148	}
1149
1150	xfs_buf_iorequest(bp);
1151	return 0;
1152}
1153
1154/*
1155 * Wrapper around bdstrat so that we can stop data from going to disk in case
1156 * we are shutting down the filesystem.  Typically user data goes thru this
1157 * path; one of the exceptions is the superblock.
1158 */
1159void
1160xfsbdstrat(
1161	struct xfs_mount	*mp,
1162	struct xfs_buf		*bp)
1163{
1164	if (XFS_FORCED_SHUTDOWN(mp)) {
1165		trace_xfs_bdstrat_shut(bp, _RET_IP_);
1166		xfs_bioerror_relse(bp);
1167		return;
1168	}
1169
1170	xfs_buf_iorequest(bp);
1171}
1172
1173STATIC void
1174_xfs_buf_ioend(
1175	xfs_buf_t		*bp,
1176	int			schedule)
1177{
1178	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1179		xfs_buf_ioend(bp, schedule);
1180}
1181
1182STATIC void
1183xfs_buf_bio_end_io(
1184	struct bio		*bio,
1185	int			error)
1186{
1187	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private;
1188
1189	xfs_buf_ioerror(bp, -error);
1190
1191	if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1192		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1193
1194	_xfs_buf_ioend(bp, 1);
 
1195	bio_put(bio);
1196}
1197
1198STATIC void
1199_xfs_buf_ioapply(
1200	xfs_buf_t		*bp)
1201{
1202	int			rw, map_i, total_nr_pages, nr_pages;
1203	struct bio		*bio;
1204	int			offset = bp->b_offset;
1205	int			size = bp->b_count_desired;
1206	sector_t		sector = bp->b_bn;
1207
1208	total_nr_pages = bp->b_page_count;
1209	map_i = 0;
1210
1211	if (bp->b_flags & XBF_WRITE) {
1212		if (bp->b_flags & XBF_SYNCIO)
1213			rw = WRITE_SYNC;
1214		else
1215			rw = WRITE;
1216		if (bp->b_flags & XBF_FUA)
1217			rw |= REQ_FUA;
1218		if (bp->b_flags & XBF_FLUSH)
1219			rw |= REQ_FLUSH;
1220	} else if (bp->b_flags & XBF_READ_AHEAD) {
1221		rw = READA;
1222	} else {
1223		rw = READ;
1224	}
1225
1226	/* we only use the buffer cache for meta-data */
1227	rw |= REQ_META;
 
 
 
 
 
1228
1229next_chunk:
1230	atomic_inc(&bp->b_io_remaining);
1231	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1232	if (nr_pages > total_nr_pages)
1233		nr_pages = total_nr_pages;
1234
1235	bio = bio_alloc(GFP_NOIO, nr_pages);
1236	bio->bi_bdev = bp->b_target->bt_bdev;
1237	bio->bi_sector = sector;
1238	bio->bi_end_io = xfs_buf_bio_end_io;
1239	bio->bi_private = bp;
 
1240
1241
1242	for (; size && nr_pages; nr_pages--, map_i++) {
1243		int	rbytes, nbytes = PAGE_SIZE - offset;
1244
1245		if (nbytes > size)
1246			nbytes = size;
1247
1248		rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
 
1249		if (rbytes < nbytes)
1250			break;
1251
1252		offset = 0;
1253		sector += nbytes >> BBSHIFT;
1254		size -= nbytes;
1255		total_nr_pages--;
1256	}
1257
1258	if (likely(bio->bi_size)) {
1259		if (xfs_buf_is_vmapped(bp)) {
1260			flush_kernel_vmap_range(bp->b_addr,
1261						xfs_buf_vmap_len(bp));
1262		}
1263		submit_bio(rw, bio);
1264		if (size)
1265			goto next_chunk;
1266	} else {
1267		xfs_buf_ioerror(bp, EIO);
 
 
 
 
 
1268		bio_put(bio);
1269	}
 
1270}
1271
1272int
1273xfs_buf_iorequest(
1274	xfs_buf_t		*bp)
1275{
1276	trace_xfs_buf_iorequest(bp, _RET_IP_);
 
 
 
 
 
1277
1278	if (bp->b_flags & XBF_DELWRI) {
1279		xfs_buf_delwri_queue(bp, 1);
1280		return 0;
1281	}
 
1282
1283	if (bp->b_flags & XBF_WRITE) {
1284		xfs_buf_wait_unpin(bp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285	}
1286
1287	xfs_buf_hold(bp);
 
1288
1289	/* Set the count to 1 initially, this will stop an I/O
1290	 * completion callout which happens before we have started
1291	 * all the I/O from calling xfs_buf_ioend too early.
 
 
1292	 */
1293	atomic_set(&bp->b_io_remaining, 1);
1294	_xfs_buf_ioapply(bp);
1295	_xfs_buf_ioend(bp, 0);
1296
1297	xfs_buf_rele(bp);
1298	return 0;
 
 
 
 
 
1299}
1300
1301/*
1302 *	Waits for I/O to complete on the buffer supplied.
1303 *	It returns immediately if no I/O is pending.
1304 *	It returns the I/O error code, if any, or 0 if there was no error.
1305 */
1306int
1307xfs_buf_iowait(
1308	xfs_buf_t		*bp)
1309{
1310	trace_xfs_buf_iowait(bp, _RET_IP_);
1311
 
1312	wait_for_completion(&bp->b_iowait);
1313
1314	trace_xfs_buf_iowait_done(bp, _RET_IP_);
 
1315	return bp->b_error;
1316}
1317
1318xfs_caddr_t
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319xfs_buf_offset(
1320	xfs_buf_t		*bp,
1321	size_t			offset)
1322{
1323	struct page		*page;
1324
1325	if (bp->b_flags & XBF_MAPPED)
1326		return bp->b_addr + offset;
1327
1328	offset += bp->b_offset;
1329	page = bp->b_pages[offset >> PAGE_SHIFT];
1330	return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1331}
1332
1333/*
1334 *	Move data into or out of a buffer.
1335 */
1336void
1337xfs_buf_iomove(
1338	xfs_buf_t		*bp,	/* buffer to process		*/
1339	size_t			boff,	/* starting buffer offset	*/
1340	size_t			bsize,	/* length to copy		*/
1341	void			*data,	/* data address			*/
1342	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1343{
1344	size_t			bend, cpoff, csize;
1345	struct page		*page;
1346
1347	bend = boff + bsize;
1348	while (boff < bend) {
1349		page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1350		cpoff = xfs_buf_poff(boff + bp->b_offset);
1351		csize = min_t(size_t,
1352			      PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1353
1354		ASSERT(((csize + cpoff) <= PAGE_SIZE));
1355
1356		switch (mode) {
1357		case XBRW_ZERO:
1358			memset(page_address(page) + cpoff, 0, csize);
1359			break;
1360		case XBRW_READ:
1361			memcpy(data, page_address(page) + cpoff, csize);
1362			break;
1363		case XBRW_WRITE:
1364			memcpy(page_address(page) + cpoff, data, csize);
1365		}
1366
1367		boff += csize;
1368		data += csize;
1369	}
1370}
1371
1372/*
1373 *	Handling of buffer targets (buftargs).
1374 */
1375
1376/*
1377 * Wait for any bufs with callbacks that have been submitted but have not yet
1378 * returned. These buffers will have an elevated hold count, so wait on those
1379 * while freeing all the buffers only held by the LRU.
1380 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1381void
1382xfs_wait_buftarg(
1383	struct xfs_buftarg	*btp)
1384{
1385	struct xfs_buf		*bp;
 
1386
1387restart:
1388	spin_lock(&btp->bt_lru_lock);
1389	while (!list_empty(&btp->bt_lru)) {
1390		bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1391		if (atomic_read(&bp->b_hold) > 1) {
1392			spin_unlock(&btp->bt_lru_lock);
1393			delay(100);
1394			goto restart;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1395		}
1396		/*
1397		 * clear the LRU reference count so the bufer doesn't get
1398		 * ignored in xfs_buf_rele().
1399		 */
1400		atomic_set(&bp->b_lru_ref, 0);
1401		spin_unlock(&btp->bt_lru_lock);
1402		xfs_buf_rele(bp);
1403		spin_lock(&btp->bt_lru_lock);
1404	}
1405	spin_unlock(&btp->bt_lru_lock);
1406}
1407
1408int
1409xfs_buftarg_shrink(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1410	struct shrinker		*shrink,
1411	struct shrink_control	*sc)
1412{
1413	struct xfs_buftarg	*btp = container_of(shrink,
1414					struct xfs_buftarg, bt_shrinker);
1415	struct xfs_buf		*bp;
1416	int nr_to_scan = sc->nr_to_scan;
1417	LIST_HEAD(dispose);
 
1418
1419	if (!nr_to_scan)
1420		return btp->bt_lru_nr;
1421
1422	spin_lock(&btp->bt_lru_lock);
1423	while (!list_empty(&btp->bt_lru)) {
1424		if (nr_to_scan-- <= 0)
1425			break;
1426
1427		bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1428
1429		/*
1430		 * Decrement the b_lru_ref count unless the value is already
1431		 * zero. If the value is already zero, we need to reclaim the
1432		 * buffer, otherwise it gets another trip through the LRU.
1433		 */
1434		if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1435			list_move_tail(&bp->b_lru, &btp->bt_lru);
1436			continue;
1437		}
1438
1439		/*
1440		 * remove the buffer from the LRU now to avoid needing another
1441		 * lock round trip inside xfs_buf_rele().
1442		 */
1443		list_move(&bp->b_lru, &dispose);
1444		btp->bt_lru_nr--;
1445	}
1446	spin_unlock(&btp->bt_lru_lock);
1447
1448	while (!list_empty(&dispose)) {
 
1449		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1450		list_del_init(&bp->b_lru);
1451		xfs_buf_rele(bp);
1452	}
1453
1454	return btp->bt_lru_nr;
 
 
 
 
 
 
 
 
 
 
1455}
1456
1457void
1458xfs_free_buftarg(
1459	struct xfs_mount	*mp,
1460	struct xfs_buftarg	*btp)
1461{
1462	unregister_shrinker(&btp->bt_shrinker);
 
 
 
1463
1464	xfs_flush_buftarg(btp, 1);
1465	if (mp->m_flags & XFS_MOUNT_BARRIER)
1466		xfs_blkdev_issue_flush(btp);
1467
1468	kthread_stop(btp->bt_task);
1469	kmem_free(btp);
1470}
1471
1472STATIC int
1473xfs_setsize_buftarg_flags(
1474	xfs_buftarg_t		*btp,
1475	unsigned int		blocksize,
1476	unsigned int		sectorsize,
1477	int			verbose)
1478{
1479	btp->bt_bsize = blocksize;
1480	btp->bt_sshift = ffs(sectorsize) - 1;
1481	btp->bt_smask = sectorsize - 1;
1482
1483	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1484		xfs_warn(btp->bt_mount,
1485			"Cannot set_blocksize to %u on device %s\n",
1486			sectorsize, xfs_buf_target_name(btp));
1487		return EINVAL;
1488	}
1489
 
 
 
 
1490	return 0;
1491}
1492
1493/*
1494 *	When allocating the initial buffer target we have not yet
1495 *	read in the superblock, so don't know what sized sectors
1496 *	are being used is at this early stage.  Play safe.
1497 */
1498STATIC int
1499xfs_setsize_buftarg_early(
1500	xfs_buftarg_t		*btp,
1501	struct block_device	*bdev)
1502{
1503	return xfs_setsize_buftarg_flags(btp,
1504			PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1505}
1506
1507int
1508xfs_setsize_buftarg(
1509	xfs_buftarg_t		*btp,
1510	unsigned int		blocksize,
1511	unsigned int		sectorsize)
1512{
1513	return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1514}
1515
1516STATIC int
1517xfs_alloc_delwrite_queue(
1518	xfs_buftarg_t		*btp,
1519	const char		*fsname)
1520{
1521	INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1522	spin_lock_init(&btp->bt_delwrite_lock);
1523	btp->bt_flags = 0;
1524	btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1525	if (IS_ERR(btp->bt_task))
1526		return PTR_ERR(btp->bt_task);
1527	return 0;
1528}
1529
1530xfs_buftarg_t *
1531xfs_alloc_buftarg(
1532	struct xfs_mount	*mp,
1533	struct block_device	*bdev,
1534	int			external,
1535	const char		*fsname)
1536{
1537	xfs_buftarg_t		*btp;
1538
1539	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1540
1541	btp->bt_mount = mp;
1542	btp->bt_dev =  bdev->bd_dev;
1543	btp->bt_bdev = bdev;
1544	btp->bt_bdi = blk_get_backing_dev_info(bdev);
1545	if (!btp->bt_bdi)
1546		goto error;
1547
1548	INIT_LIST_HEAD(&btp->bt_lru);
1549	spin_lock_init(&btp->bt_lru_lock);
1550	if (xfs_setsize_buftarg_early(btp, bdev))
1551		goto error;
1552	if (xfs_alloc_delwrite_queue(btp, fsname))
1553		goto error;
1554	btp->bt_shrinker.shrink = xfs_buftarg_shrink;
 
 
 
 
 
 
1555	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1556	register_shrinker(&btp->bt_shrinker);
 
 
1557	return btp;
1558
1559error:
 
 
 
 
1560	kmem_free(btp);
1561	return NULL;
1562}
1563
1564
1565/*
1566 *	Delayed write buffer handling
 
 
 
1567 */
1568STATIC void
1569xfs_buf_delwri_queue(
1570	xfs_buf_t		*bp,
1571	int			unlock)
1572{
1573	struct list_head	*dwq = &bp->b_target->bt_delwrite_queue;
1574	spinlock_t		*dwlk = &bp->b_target->bt_delwrite_lock;
1575
1576	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1577
1578	ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1579
1580	spin_lock(dwlk);
1581	/* If already in the queue, dequeue and place at tail */
1582	if (!list_empty(&bp->b_list)) {
1583		ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1584		if (unlock)
1585			atomic_dec(&bp->b_hold);
1586		list_del(&bp->b_list);
1587	}
1588
1589	if (list_empty(dwq)) {
1590		/* start xfsbufd as it is about to have something to do */
1591		wake_up_process(bp->b_target->bt_task);
1592	}
1593
1594	bp->b_flags |= _XBF_DELWRI_Q;
1595	list_add_tail(&bp->b_list, dwq);
1596	bp->b_queuetime = jiffies;
1597	spin_unlock(dwlk);
1598
1599	if (unlock)
1600		xfs_buf_unlock(bp);
1601}
1602
1603void
1604xfs_buf_delwri_dequeue(
1605	xfs_buf_t		*bp)
1606{
1607	spinlock_t		*dwlk = &bp->b_target->bt_delwrite_lock;
1608	int			dequeued = 0;
1609
1610	spin_lock(dwlk);
1611	if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1612		ASSERT(bp->b_flags & _XBF_DELWRI_Q);
 
 
1613		list_del_init(&bp->b_list);
1614		dequeued = 1;
1615	}
1616	bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1617	spin_unlock(dwlk);
1618
1619	if (dequeued)
1620		xfs_buf_rele(bp);
1621
1622	trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1623}
1624
1625/*
1626 * If a delwri buffer needs to be pushed before it has aged out, then promote
1627 * it to the head of the delwri queue so that it will be flushed on the next
1628 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1629 * than the age currently needed to flush the buffer. Hence the next time the
1630 * xfsbufd sees it is guaranteed to be considered old enough to flush.
 
 
 
 
1631 */
1632void
1633xfs_buf_delwri_promote(
1634	struct xfs_buf	*bp)
 
1635{
1636	struct xfs_buftarg *btp = bp->b_target;
1637	long		age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1638
1639	ASSERT(bp->b_flags & XBF_DELWRI);
1640	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1641
1642	/*
1643	 * Check the buffer age before locking the delayed write queue as we
1644	 * don't need to promote buffers that are already past the flush age.
 
1645	 */
1646	if (bp->b_queuetime < jiffies - age)
1647		return;
1648	bp->b_queuetime = jiffies - age;
1649	spin_lock(&btp->bt_delwrite_lock);
1650	list_move(&bp->b_list, &btp->bt_delwrite_queue);
1651	spin_unlock(&btp->bt_delwrite_lock);
1652}
1653
1654STATIC void
1655xfs_buf_runall_queues(
1656	struct workqueue_struct	*queue)
1657{
1658	flush_workqueue(queue);
1659}
1660
1661/*
1662 * Move as many buffers as specified to the supplied list
1663 * idicating if we skipped any buffers to prevent deadlocks.
1664 */
1665STATIC int
1666xfs_buf_delwri_split(
1667	xfs_buftarg_t	*target,
1668	struct list_head *list,
1669	unsigned long	age)
1670{
1671	xfs_buf_t	*bp, *n;
1672	struct list_head *dwq = &target->bt_delwrite_queue;
1673	spinlock_t	*dwlk = &target->bt_delwrite_lock;
1674	int		skipped = 0;
1675	int		force;
1676
1677	force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1678	INIT_LIST_HEAD(list);
1679	spin_lock(dwlk);
1680	list_for_each_entry_safe(bp, n, dwq, b_list) {
1681		ASSERT(bp->b_flags & XBF_DELWRI);
1682
1683		if (!xfs_buf_ispinned(bp) && xfs_buf_trylock(bp)) {
1684			if (!force &&
1685			    time_before(jiffies, bp->b_queuetime + age)) {
1686				xfs_buf_unlock(bp);
1687				break;
1688			}
1689
1690			bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q);
1691			bp->b_flags |= XBF_WRITE;
1692			list_move_tail(&bp->b_list, list);
1693			trace_xfs_buf_delwri_split(bp, _RET_IP_);
1694		} else
1695			skipped++;
 
 
 
 
 
 
1696	}
1697	spin_unlock(dwlk);
1698
1699	return skipped;
1700
 
1701}
1702
1703/*
1704 * Compare function is more complex than it needs to be because
1705 * the return value is only 32 bits and we are doing comparisons
1706 * on 64 bit values
1707 */
1708static int
1709xfs_buf_cmp(
1710	void		*priv,
1711	struct list_head *a,
1712	struct list_head *b)
1713{
1714	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1715	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1716	xfs_daddr_t		diff;
1717
1718	diff = ap->b_bn - bp->b_bn;
1719	if (diff < 0)
1720		return -1;
1721	if (diff > 0)
1722		return 1;
1723	return 0;
1724}
1725
1726STATIC int
1727xfsbufd(
1728	void		*data)
1729{
1730	xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1731
1732	current->flags |= PF_MEMALLOC;
1733
1734	set_freezable();
 
 
 
 
 
 
1735
1736	do {
1737		long	age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1738		long	tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1739		struct list_head tmp;
1740		struct blk_plug plug;
1741
1742		if (unlikely(freezing(current))) {
1743			set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1744			refrigerator();
 
 
 
 
 
 
1745		} else {
1746			clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1747		}
1748
1749		/* sleep for a long time if there is nothing to do. */
1750		if (list_empty(&target->bt_delwrite_queue))
1751			tout = MAX_SCHEDULE_TIMEOUT;
1752		schedule_timeout_interruptible(tout);
 
 
 
 
 
 
 
1753
1754		xfs_buf_delwri_split(target, &tmp, age);
1755		list_sort(NULL, &tmp, xfs_buf_cmp);
1756
1757		blk_start_plug(&plug);
1758		while (!list_empty(&tmp)) {
1759			struct xfs_buf *bp;
1760			bp = list_first_entry(&tmp, struct xfs_buf, b_list);
 
 
 
 
 
 
 
 
 
1761			list_del_init(&bp->b_list);
1762			xfs_bdstrat_cb(bp);
1763		}
1764		blk_finish_plug(&plug);
1765	} while (!kthread_should_stop());
 
1766
1767	return 0;
1768}
1769
1770/*
1771 *	Go through all incore buffers, and release buffers if they belong to
1772 *	the given device. This is used in filesystem error handling to
1773 *	preserve the consistency of its metadata.
 
 
 
 
 
 
 
 
 
 
 
1774 */
1775int
1776xfs_flush_buftarg(
1777	xfs_buftarg_t	*target,
1778	int		wait)
1779{
1780	xfs_buf_t	*bp;
1781	int		pincount = 0;
1782	LIST_HEAD(tmp_list);
1783	LIST_HEAD(wait_list);
1784	struct blk_plug plug;
1785
1786	xfs_buf_runall_queues(xfsconvertd_workqueue);
1787	xfs_buf_runall_queues(xfsdatad_workqueue);
1788	xfs_buf_runall_queues(xfslogd_workqueue);
 
 
 
 
 
 
 
 
 
 
 
 
1789
1790	set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1791	pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1792
1793	/*
1794	 * Dropped the delayed write list lock, now walk the temporary list.
1795	 * All I/O is issued async and then if we need to wait for completion
1796	 * we do that after issuing all the IO.
1797	 */
1798	list_sort(NULL, &tmp_list, xfs_buf_cmp);
1799
1800	blk_start_plug(&plug);
1801	while (!list_empty(&tmp_list)) {
1802		bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1803		ASSERT(target == bp->b_target);
1804		list_del_init(&bp->b_list);
1805		if (wait) {
1806			bp->b_flags &= ~XBF_ASYNC;
1807			list_add(&bp->b_list, &wait_list);
1808		}
1809		xfs_bdstrat_cb(bp);
 
 
 
 
1810	}
1811	blk_finish_plug(&plug);
1812
1813	if (wait) {
1814		/* Wait for IO to complete. */
1815		while (!list_empty(&wait_list)) {
1816			bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1817
1818			list_del_init(&bp->b_list);
1819			xfs_buf_iowait(bp);
1820			xfs_buf_relse(bp);
1821		}
1822	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823
1824	return pincount;
1825}
1826
1827int __init
1828xfs_buf_init(void)
1829{
1830	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1831						KM_ZONE_HWALIGN, NULL);
1832	if (!xfs_buf_zone)
1833		goto out;
1834
1835	xfslogd_workqueue = alloc_workqueue("xfslogd",
1836					WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1837	if (!xfslogd_workqueue)
1838		goto out_free_buf_zone;
1839
1840	xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
1841	if (!xfsdatad_workqueue)
1842		goto out_destroy_xfslogd_workqueue;
1843
1844	xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1845						WQ_MEM_RECLAIM, 1);
1846	if (!xfsconvertd_workqueue)
1847		goto out_destroy_xfsdatad_workqueue;
1848
1849	return 0;
1850
1851 out_destroy_xfsdatad_workqueue:
1852	destroy_workqueue(xfsdatad_workqueue);
1853 out_destroy_xfslogd_workqueue:
1854	destroy_workqueue(xfslogd_workqueue);
1855 out_free_buf_zone:
1856	kmem_zone_destroy(xfs_buf_zone);
1857 out:
1858	return -ENOMEM;
1859}
1860
1861void
1862xfs_buf_terminate(void)
1863{
1864	destroy_workqueue(xfsconvertd_workqueue);
1865	destroy_workqueue(xfsdatad_workqueue);
1866	destroy_workqueue(xfslogd_workqueue);
1867	kmem_zone_destroy(xfs_buf_zone);
1868}
1869
1870#ifdef CONFIG_KDB_MODULES
1871struct list_head *
1872xfs_get_buftarg_list(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1873{
1874	return &xfs_buftarg_list;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1875}
1876#endif
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7#include <linux/backing-dev.h>
 
   8
   9#include "xfs_shared.h"
  10#include "xfs_format.h"
  11#include "xfs_log_format.h"
  12#include "xfs_trans_resv.h"
  13#include "xfs_sb.h"
 
 
 
  14#include "xfs_mount.h"
  15#include "xfs_trace.h"
  16#include "xfs_log.h"
  17#include "xfs_errortag.h"
  18#include "xfs_error.h"
  19
  20static kmem_zone_t *xfs_buf_zone;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  21
  22#define xb_to_gfp(flags) \
  23	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
 
 
 
 
  24
  25/*
  26 * Locking orders
  27 *
  28 * xfs_buf_ioacct_inc:
  29 * xfs_buf_ioacct_dec:
  30 *	b_sema (caller holds)
  31 *	  b_lock
  32 *
  33 * xfs_buf_stale:
  34 *	b_sema (caller holds)
  35 *	  b_lock
  36 *	    lru_lock
  37 *
  38 * xfs_buf_rele:
  39 *	b_lock
  40 *	  pag_buf_lock
  41 *	    lru_lock
  42 *
  43 * xfs_buftarg_wait_rele
  44 *	lru_lock
  45 *	  b_lock (trylock due to inversion)
  46 *
  47 * xfs_buftarg_isolate
  48 *	lru_lock
  49 *	  b_lock (trylock due to inversion)
  50 */
  51
  52static inline int
  53xfs_buf_is_vmapped(
  54	struct xfs_buf	*bp)
  55{
  56	/*
  57	 * Return true if the buffer is vmapped.
  58	 *
  59	 * b_addr is null if the buffer is not mapped, but the code is clever
  60	 * enough to know it doesn't have to map a single page, so the check has
  61	 * to be both for b_addr and bp->b_page_count > 1.
  62	 */
  63	return bp->b_addr && bp->b_page_count > 1;
  64}
  65
  66static inline int
  67xfs_buf_vmap_len(
  68	struct xfs_buf	*bp)
  69{
  70	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
  71}
  72
  73/*
  74 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
  75 * this buffer. The count is incremented once per buffer (per hold cycle)
  76 * because the corresponding decrement is deferred to buffer release. Buffers
  77 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
  78 * tracking adds unnecessary overhead. This is used for sychronization purposes
  79 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
  80 * in-flight buffers.
  81 *
  82 * Buffers that are never released (e.g., superblock, iclog buffers) must set
  83 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
  84 * never reaches zero and unmount hangs indefinitely.
  85 */
  86static inline void
  87xfs_buf_ioacct_inc(
  88	struct xfs_buf	*bp)
  89{
  90	if (bp->b_flags & XBF_NO_IOACCT)
  91		return;
  92
  93	ASSERT(bp->b_flags & XBF_ASYNC);
  94	spin_lock(&bp->b_lock);
  95	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
  96		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
  97		percpu_counter_inc(&bp->b_target->bt_io_count);
  98	}
  99	spin_unlock(&bp->b_lock);
 100}
 101
 102/*
 103 * Clear the in-flight state on a buffer about to be released to the LRU or
 104 * freed and unaccount from the buftarg.
 
 
 
 
 
 105 */
 106static inline void
 107__xfs_buf_ioacct_dec(
 108	struct xfs_buf	*bp)
 109{
 110	lockdep_assert_held(&bp->b_lock);
 111
 112	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
 113		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
 114		percpu_counter_dec(&bp->b_target->bt_io_count);
 
 
 
 
 115	}
 116}
 117
 118static inline void
 119xfs_buf_ioacct_dec(
 120	struct xfs_buf	*bp)
 121{
 122	spin_lock(&bp->b_lock);
 123	__xfs_buf_ioacct_dec(bp);
 124	spin_unlock(&bp->b_lock);
 125}
 126
 127/*
 128 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
 129 * b_lru_ref count so that the buffer is freed immediately when the buffer
 130 * reference count falls to zero. If the buffer is already on the LRU, we need
 131 * to remove the reference that LRU holds on the buffer.
 132 *
 133 * This prevents build-up of stale buffers on the LRU.
 134 */
 135void
 136xfs_buf_stale(
 137	struct xfs_buf	*bp)
 138{
 139	ASSERT(xfs_buf_islocked(bp));
 140
 141	bp->b_flags |= XBF_STALE;
 
 
 
 142
 143	/*
 144	 * Clear the delwri status so that a delwri queue walker will not
 145	 * flush this buffer to disk now that it is stale. The delwri queue has
 146	 * a reference to the buffer, so this is safe to do.
 147	 */
 148	bp->b_flags &= ~_XBF_DELWRI_Q;
 149
 150	/*
 151	 * Once the buffer is marked stale and unlocked, a subsequent lookup
 152	 * could reset b_flags. There is no guarantee that the buffer is
 153	 * unaccounted (released to LRU) before that occurs. Drop in-flight
 154	 * status now to preserve accounting consistency.
 155	 */
 156	spin_lock(&bp->b_lock);
 157	__xfs_buf_ioacct_dec(bp);
 158
 159	atomic_set(&bp->b_lru_ref, 0);
 160	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
 161	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
 162		atomic_dec(&bp->b_hold);
 163
 164	ASSERT(atomic_read(&bp->b_hold) >= 1);
 165	spin_unlock(&bp->b_lock);
 166}
 167
 168static int
 169xfs_buf_get_maps(
 170	struct xfs_buf		*bp,
 171	int			map_count)
 172{
 173	ASSERT(bp->b_maps == NULL);
 174	bp->b_map_count = map_count;
 175
 176	if (map_count == 1) {
 177		bp->b_maps = &bp->__b_map;
 178		return 0;
 179	}
 180
 181	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
 182				KM_NOFS);
 183	if (!bp->b_maps)
 184		return -ENOMEM;
 185	return 0;
 186}
 187
 188/*
 189 *	Frees b_pages if it was allocated.
 190 */
 191static void
 192xfs_buf_free_maps(
 193	struct xfs_buf	*bp)
 194{
 195	if (bp->b_maps != &bp->__b_map) {
 196		kmem_free(bp->b_maps);
 197		bp->b_maps = NULL;
 198	}
 199}
 200
 201static struct xfs_buf *
 202_xfs_buf_alloc(
 203	struct xfs_buftarg	*target,
 204	struct xfs_buf_map	*map,
 205	int			nmaps,
 206	xfs_buf_flags_t		flags)
 207{
 208	struct xfs_buf		*bp;
 209	int			error;
 210	int			i;
 211
 212	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
 213	if (unlikely(!bp))
 214		return NULL;
 215
 216	/*
 217	 * We don't want certain flags to appear in b_flags unless they are
 218	 * specifically set by later operations on the buffer.
 219	 */
 220	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
 221
 
 222	atomic_set(&bp->b_hold, 1);
 223	atomic_set(&bp->b_lru_ref, 1);
 224	init_completion(&bp->b_iowait);
 225	INIT_LIST_HEAD(&bp->b_lru);
 226	INIT_LIST_HEAD(&bp->b_list);
 227	INIT_LIST_HEAD(&bp->b_li_list);
 228	sema_init(&bp->b_sema, 0); /* held, no waiters */
 229	spin_lock_init(&bp->b_lock);
 230	bp->b_target = target;
 231	bp->b_mount = target->bt_mount;
 232	bp->b_flags = flags;
 233
 234	/*
 235	 * Set length and io_length to the same value initially.
 236	 * I/O routines should use io_length, which will be the same in
 237	 * most cases but may be reset (e.g. XFS recovery).
 238	 */
 239	error = xfs_buf_get_maps(bp, nmaps);
 240	if (error)  {
 241		kmem_zone_free(xfs_buf_zone, bp);
 242		return NULL;
 243	}
 244
 245	bp->b_bn = map[0].bm_bn;
 246	bp->b_length = 0;
 247	for (i = 0; i < nmaps; i++) {
 248		bp->b_maps[i].bm_bn = map[i].bm_bn;
 249		bp->b_maps[i].bm_len = map[i].bm_len;
 250		bp->b_length += map[i].bm_len;
 251	}
 252
 253	atomic_set(&bp->b_pin_count, 0);
 254	init_waitqueue_head(&bp->b_waiters);
 255
 256	XFS_STATS_INC(bp->b_mount, xb_create);
 
 257	trace_xfs_buf_init(bp, _RET_IP_);
 258
 259	return bp;
 260}
 261
 262/*
 263 *	Allocate a page array capable of holding a specified number
 264 *	of pages, and point the page buf at it.
 265 */
 266STATIC int
 267_xfs_buf_get_pages(
 268	xfs_buf_t		*bp,
 269	int			page_count)
 
 270{
 271	/* Make sure that we have a page list */
 272	if (bp->b_pages == NULL) {
 
 273		bp->b_page_count = page_count;
 274		if (page_count <= XB_PAGES) {
 275			bp->b_pages = bp->b_page_array;
 276		} else {
 277			bp->b_pages = kmem_alloc(sizeof(struct page *) *
 278						 page_count, KM_NOFS);
 279			if (bp->b_pages == NULL)
 280				return -ENOMEM;
 281		}
 282		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
 283	}
 284	return 0;
 285}
 286
 287/*
 288 *	Frees b_pages if it was allocated.
 289 */
 290STATIC void
 291_xfs_buf_free_pages(
 292	xfs_buf_t	*bp)
 293{
 294	if (bp->b_pages != bp->b_page_array) {
 295		kmem_free(bp->b_pages);
 296		bp->b_pages = NULL;
 297	}
 298}
 299
 300/*
 301 *	Releases the specified buffer.
 302 *
 303 * 	The modification state of any associated pages is left unchanged.
 304 * 	The buffer must not be on any hash - use xfs_buf_rele instead for
 305 * 	hashed and refcounted buffers
 306 */
 307void
 308xfs_buf_free(
 309	xfs_buf_t		*bp)
 310{
 311	trace_xfs_buf_free(bp, _RET_IP_);
 312
 313	ASSERT(list_empty(&bp->b_lru));
 314
 315	if (bp->b_flags & _XBF_PAGES) {
 316		uint		i;
 317
 318		if (xfs_buf_is_vmapped(bp))
 319			vm_unmap_ram(bp->b_addr - bp->b_offset,
 320					bp->b_page_count);
 321
 322		for (i = 0; i < bp->b_page_count; i++) {
 323			struct page	*page = bp->b_pages[i];
 324
 325			__free_page(page);
 326		}
 327	} else if (bp->b_flags & _XBF_KMEM)
 328		kmem_free(bp->b_addr);
 329	_xfs_buf_free_pages(bp);
 330	xfs_buf_free_maps(bp);
 331	kmem_zone_free(xfs_buf_zone, bp);
 332}
 333
 334/*
 335 * Allocates all the pages for buffer in question and builds it's page list.
 336 */
 337STATIC int
 338xfs_buf_allocate_memory(
 339	xfs_buf_t		*bp,
 340	uint			flags)
 341{
 342	size_t			size;
 343	size_t			nbytes, offset;
 344	gfp_t			gfp_mask = xb_to_gfp(flags);
 345	unsigned short		page_count, i;
 346	xfs_off_t		start, end;
 347	int			error;
 348	xfs_km_flags_t		kmflag_mask = 0;
 349
 350	/*
 351	 * assure zeroed buffer for non-read cases.
 352	 */
 353	if (!(flags & XBF_READ)) {
 354		kmflag_mask |= KM_ZERO;
 355		gfp_mask |= __GFP_ZERO;
 356	}
 357
 358	/*
 359	 * for buffers that are contained within a single page, just allocate
 360	 * the memory from the heap - there's no need for the complexity of
 361	 * page arrays to keep allocation down to order 0.
 362	 */
 363	size = BBTOB(bp->b_length);
 364	if (size < PAGE_SIZE) {
 365		int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
 366		bp->b_addr = kmem_alloc_io(size, align_mask,
 367					   KM_NOFS | kmflag_mask);
 368		if (!bp->b_addr) {
 369			/* low memory - use alloc_page loop instead */
 370			goto use_alloc_page;
 371		}
 372
 373		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
 
 374		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
 375			/* b_addr spans two pages - use alloc_page instead */
 376			kmem_free(bp->b_addr);
 377			bp->b_addr = NULL;
 378			goto use_alloc_page;
 379		}
 380		bp->b_offset = offset_in_page(bp->b_addr);
 381		bp->b_pages = bp->b_page_array;
 382		bp->b_pages[0] = kmem_to_page(bp->b_addr);
 383		bp->b_page_count = 1;
 384		bp->b_flags |= _XBF_KMEM;
 385		return 0;
 386	}
 387
 388use_alloc_page:
 389	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
 390	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
 391								>> PAGE_SHIFT;
 392	page_count = end - start;
 393	error = _xfs_buf_get_pages(bp, page_count);
 394	if (unlikely(error))
 395		return error;
 396
 397	offset = bp->b_offset;
 398	bp->b_flags |= _XBF_PAGES;
 399
 400	for (i = 0; i < bp->b_page_count; i++) {
 401		struct page	*page;
 402		uint		retries = 0;
 403retry:
 404		page = alloc_page(gfp_mask);
 405		if (unlikely(page == NULL)) {
 406			if (flags & XBF_READ_AHEAD) {
 407				bp->b_page_count = i;
 408				error = -ENOMEM;
 409				goto out_free_pages;
 410			}
 411
 412			/*
 413			 * This could deadlock.
 414			 *
 415			 * But until all the XFS lowlevel code is revamped to
 416			 * handle buffer allocation failures we can't do much.
 417			 */
 418			if (!(++retries % 100))
 419				xfs_err(NULL,
 420		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
 421					current->comm, current->pid,
 422					__func__, gfp_mask);
 423
 424			XFS_STATS_INC(bp->b_mount, xb_page_retries);
 425			congestion_wait(BLK_RW_ASYNC, HZ/50);
 426			goto retry;
 427		}
 428
 429		XFS_STATS_INC(bp->b_mount, xb_page_found);
 430
 431		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
 432		size -= nbytes;
 433		bp->b_pages[i] = page;
 434		offset = 0;
 435	}
 436	return 0;
 437
 438out_free_pages:
 439	for (i = 0; i < bp->b_page_count; i++)
 440		__free_page(bp->b_pages[i]);
 441	bp->b_flags &= ~_XBF_PAGES;
 442	return error;
 443}
 444
 445/*
 446 *	Map buffer into kernel address-space if necessary.
 447 */
 448STATIC int
 449_xfs_buf_map_pages(
 450	xfs_buf_t		*bp,
 451	uint			flags)
 452{
 453	ASSERT(bp->b_flags & _XBF_PAGES);
 454	if (bp->b_page_count == 1) {
 455		/* A single page buffer is always mappable */
 456		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
 457	} else if (flags & XBF_UNMAPPED) {
 458		bp->b_addr = NULL;
 459	} else {
 460		int retried = 0;
 461		unsigned nofs_flag;
 462
 463		/*
 464		 * vm_map_ram() will allocate auxillary structures (e.g.
 465		 * pagetables) with GFP_KERNEL, yet we are likely to be under
 466		 * GFP_NOFS context here. Hence we need to tell memory reclaim
 467		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
 468		 * memory reclaim re-entering the filesystem here and
 469		 * potentially deadlocking.
 470		 */
 471		nofs_flag = memalloc_nofs_save();
 472		do {
 473			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
 474						-1, PAGE_KERNEL);
 475			if (bp->b_addr)
 476				break;
 477			vm_unmap_aliases();
 478		} while (retried++ <= 1);
 479		memalloc_nofs_restore(nofs_flag);
 480
 481		if (!bp->b_addr)
 482			return -ENOMEM;
 483		bp->b_addr += bp->b_offset;
 
 484	}
 485
 486	return 0;
 487}
 488
 489/*
 490 *	Finding and Reading Buffers
 491 */
 492static int
 493_xfs_buf_obj_cmp(
 494	struct rhashtable_compare_arg	*arg,
 495	const void			*obj)
 496{
 497	const struct xfs_buf_map	*map = arg->key;
 498	const struct xfs_buf		*bp = obj;
 499
 500	/*
 501	 * The key hashing in the lookup path depends on the key being the
 502	 * first element of the compare_arg, make sure to assert this.
 503	 */
 504	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
 505
 506	if (bp->b_bn != map->bm_bn)
 507		return 1;
 508
 509	if (unlikely(bp->b_length != map->bm_len)) {
 510		/*
 511		 * found a block number match. If the range doesn't
 512		 * match, the only way this is allowed is if the buffer
 513		 * in the cache is stale and the transaction that made
 514		 * it stale has not yet committed. i.e. we are
 515		 * reallocating a busy extent. Skip this buffer and
 516		 * continue searching for an exact match.
 517		 */
 518		ASSERT(bp->b_flags & XBF_STALE);
 519		return 1;
 520	}
 521	return 0;
 522}
 523
 524static const struct rhashtable_params xfs_buf_hash_params = {
 525	.min_size		= 32,	/* empty AGs have minimal footprint */
 526	.nelem_hint		= 16,
 527	.key_len		= sizeof(xfs_daddr_t),
 528	.key_offset		= offsetof(struct xfs_buf, b_bn),
 529	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
 530	.automatic_shrinking	= true,
 531	.obj_cmpfn		= _xfs_buf_obj_cmp,
 532};
 533
 534int
 535xfs_buf_hash_init(
 536	struct xfs_perag	*pag)
 537{
 538	spin_lock_init(&pag->pag_buf_lock);
 539	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
 540}
 541
 542void
 543xfs_buf_hash_destroy(
 544	struct xfs_perag	*pag)
 545{
 546	rhashtable_destroy(&pag->pag_buf_hash);
 547}
 548
 549/*
 550 * Look up a buffer in the buffer cache and return it referenced and locked
 551 * in @found_bp.
 552 *
 553 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
 554 * cache.
 555 *
 556 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
 557 * -EAGAIN if we fail to lock it.
 558 *
 559 * Return values are:
 560 *	-EFSCORRUPTED if have been supplied with an invalid address
 561 *	-EAGAIN on trylock failure
 562 *	-ENOENT if we fail to find a match and @new_bp was NULL
 563 *	0, with @found_bp:
 564 *		- @new_bp if we inserted it into the cache
 565 *		- the buffer we found and locked.
 566 */
 567static int
 568xfs_buf_find(
 569	struct xfs_buftarg	*btp,
 570	struct xfs_buf_map	*map,
 571	int			nmaps,
 572	xfs_buf_flags_t		flags,
 573	struct xfs_buf		*new_bp,
 574	struct xfs_buf		**found_bp)
 575{
 
 
 576	struct xfs_perag	*pag;
 
 
 577	xfs_buf_t		*bp;
 578	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
 579	xfs_daddr_t		eofs;
 580	int			i;
 581
 582	*found_bp = NULL;
 583
 584	for (i = 0; i < nmaps; i++)
 585		cmap.bm_len += map[i].bm_len;
 586
 587	/* Check for IOs smaller than the sector size / not sector aligned */
 588	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
 589	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
 590
 591	/*
 592	 * Corrupted block numbers can get through to here, unfortunately, so we
 593	 * have to check that the buffer falls within the filesystem bounds.
 594	 */
 595	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
 596	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
 597		xfs_alert(btp->bt_mount,
 598			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
 599			  __func__, cmap.bm_bn, eofs);
 600		WARN_ON(1);
 601		return -EFSCORRUPTED;
 602	}
 603
 
 604	pag = xfs_perag_get(btp->bt_mount,
 605			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
 606
 
 607	spin_lock(&pag->pag_buf_lock);
 608	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
 609				    xfs_buf_hash_params);
 610	if (bp) {
 611		atomic_inc(&bp->b_hold);
 612		goto found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 613	}
 614
 615	/* No match found */
 616	if (!new_bp) {
 617		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
 
 
 
 
 
 
 
 
 618		spin_unlock(&pag->pag_buf_lock);
 619		xfs_perag_put(pag);
 620		return -ENOENT;
 621	}
 622
 623	/* the buffer keeps the perag reference until it is freed */
 624	new_bp->b_pag = pag;
 625	rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
 626			       xfs_buf_hash_params);
 627	spin_unlock(&pag->pag_buf_lock);
 628	*found_bp = new_bp;
 629	return 0;
 630
 631found:
 632	spin_unlock(&pag->pag_buf_lock);
 633	xfs_perag_put(pag);
 634
 635	if (!xfs_buf_trylock(bp)) {
 636		if (flags & XBF_TRYLOCK) {
 637			xfs_buf_rele(bp);
 638			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
 639			return -EAGAIN;
 640		}
 641		xfs_buf_lock(bp);
 642		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
 643	}
 644
 645	/*
 646	 * if the buffer is stale, clear all the external state associated with
 647	 * it. We need to keep flags such as how we allocated the buffer memory
 648	 * intact here.
 649	 */
 650	if (bp->b_flags & XBF_STALE) {
 651		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
 652		ASSERT(bp->b_iodone == NULL);
 653		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
 654		bp->b_ops = NULL;
 655	}
 656
 657	trace_xfs_buf_find(bp, flags, _RET_IP_);
 658	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
 659	*found_bp = bp;
 660	return 0;
 661}
 662
 663struct xfs_buf *
 664xfs_buf_incore(
 665	struct xfs_buftarg	*target,
 666	xfs_daddr_t		blkno,
 667	size_t			numblks,
 668	xfs_buf_flags_t		flags)
 669{
 670	struct xfs_buf		*bp;
 671	int			error;
 672	DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
 673
 674	error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
 675	if (error)
 676		return NULL;
 677	return bp;
 678}
 679
 680/*
 681 * Assembles a buffer covering the specified range. The code is optimised for
 682 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
 683 * more hits than misses.
 684 */
 685struct xfs_buf *
 686xfs_buf_get_map(
 687	struct xfs_buftarg	*target,
 688	struct xfs_buf_map	*map,
 689	int			nmaps,
 690	xfs_buf_flags_t		flags)
 691{
 692	struct xfs_buf		*bp;
 693	struct xfs_buf		*new_bp;
 694	int			error = 0;
 695
 696	error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
 697
 698	switch (error) {
 699	case 0:
 700		/* cache hit */
 701		goto found;
 702	case -EAGAIN:
 703		/* cache hit, trylock failure, caller handles failure */
 704		ASSERT(flags & XBF_TRYLOCK);
 705		return NULL;
 706	case -ENOENT:
 707		/* cache miss, go for insert */
 708		break;
 709	case -EFSCORRUPTED:
 710	default:
 711		/*
 712		 * None of the higher layers understand failure types
 713		 * yet, so return NULL to signal a fatal lookup error.
 714		 */
 715		return NULL;
 716	}
 717
 718	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
 719	if (unlikely(!new_bp))
 720		return NULL;
 721
 722	error = xfs_buf_allocate_memory(new_bp, flags);
 723	if (error) {
 724		xfs_buf_free(new_bp);
 725		return NULL;
 726	}
 727
 728	error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
 729	if (error) {
 730		xfs_buf_free(new_bp);
 731		return NULL;
 732	}
 733
 734	if (bp != new_bp)
 735		xfs_buf_free(new_bp);
 736
 737found:
 738	if (!bp->b_addr) {
 739		error = _xfs_buf_map_pages(bp, flags);
 740		if (unlikely(error)) {
 741			xfs_warn(target->bt_mount,
 742				"%s: failed to map pagesn", __func__);
 743			xfs_buf_relse(bp);
 744			return NULL;
 745		}
 746	}
 747
 
 
 748	/*
 749	 * Clear b_error if this is a lookup from a caller that doesn't expect
 750	 * valid data to be found in the buffer.
 751	 */
 752	if (!(flags & XBF_READ))
 753		xfs_buf_ioerror(bp, 0);
 754
 755	XFS_STATS_INC(target->bt_mount, xb_get);
 756	trace_xfs_buf_get(bp, flags, _RET_IP_);
 757	return bp;
 
 
 
 
 
 
 758}
 759
 760STATIC int
 761_xfs_buf_read(
 762	xfs_buf_t		*bp,
 763	xfs_buf_flags_t		flags)
 764{
 765	ASSERT(!(flags & XBF_WRITE));
 766	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
 
 
 767
 768	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
 769	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
 770
 771	return xfs_buf_submit(bp);
 772}
 773
 774/*
 775 * Reverify a buffer found in cache without an attached ->b_ops.
 776 *
 777 * If the caller passed an ops structure and the buffer doesn't have ops
 778 * assigned, set the ops and use it to verify the contents. If verification
 779 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
 780 * already in XBF_DONE state on entry.
 781 *
 782 * Under normal operations, every in-core buffer is verified on read I/O
 783 * completion. There are two scenarios that can lead to in-core buffers without
 784 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
 785 * filesystem, though these buffers are purged at the end of recovery. The
 786 * other is online repair, which intentionally reads with a NULL buffer ops to
 787 * run several verifiers across an in-core buffer in order to establish buffer
 788 * type.  If repair can't establish that, the buffer will be left in memory
 789 * with NULL buffer ops.
 790 */
 791int
 792xfs_buf_reverify(
 793	struct xfs_buf		*bp,
 794	const struct xfs_buf_ops *ops)
 795{
 796	ASSERT(bp->b_flags & XBF_DONE);
 797	ASSERT(bp->b_error == 0);
 798
 799	if (!ops || bp->b_ops)
 800		return 0;
 801
 802	bp->b_ops = ops;
 803	bp->b_ops->verify_read(bp);
 804	if (bp->b_error)
 805		bp->b_flags &= ~XBF_DONE;
 806	return bp->b_error;
 807}
 808
 809xfs_buf_t *
 810xfs_buf_read_map(
 811	struct xfs_buftarg	*target,
 812	struct xfs_buf_map	*map,
 813	int			nmaps,
 814	xfs_buf_flags_t		flags,
 815	const struct xfs_buf_ops *ops)
 816{
 817	struct xfs_buf		*bp;
 818
 819	flags |= XBF_READ;
 820
 821	bp = xfs_buf_get_map(target, map, nmaps, flags);
 822	if (!bp)
 823		return NULL;
 824
 825	trace_xfs_buf_read(bp, flags, _RET_IP_);
 826
 827	if (!(bp->b_flags & XBF_DONE)) {
 828		XFS_STATS_INC(target->bt_mount, xb_get_read);
 829		bp->b_ops = ops;
 830		_xfs_buf_read(bp, flags);
 831		return bp;
 
 
 
 
 
 
 832	}
 833
 834	xfs_buf_reverify(bp, ops);
 835
 836	if (flags & XBF_ASYNC) {
 837		/*
 838		 * Read ahead call which is already satisfied,
 839		 * drop the buffer
 840		 */
 841		xfs_buf_relse(bp);
 842		return NULL;
 843	}
 844
 845	/* We do not want read in the flags */
 846	bp->b_flags &= ~XBF_READ;
 847	ASSERT(bp->b_ops != NULL || ops == NULL);
 848	return bp;
 849}
 850
 851/*
 852 *	If we are not low on memory then do the readahead in a deadlock
 853 *	safe manner.
 854 */
 855void
 856xfs_buf_readahead_map(
 857	struct xfs_buftarg	*target,
 858	struct xfs_buf_map	*map,
 859	int			nmaps,
 860	const struct xfs_buf_ops *ops)
 861{
 862	if (bdi_read_congested(target->bt_bdev->bd_bdi))
 863		return;
 864
 865	xfs_buf_read_map(target, map, nmaps,
 866		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
 867}
 868
 869/*
 870 * Read an uncached buffer from disk. Allocates and returns a locked
 871 * buffer containing the disk contents or nothing.
 872 */
 873int
 874xfs_buf_read_uncached(
 
 875	struct xfs_buftarg	*target,
 876	xfs_daddr_t		daddr,
 877	size_t			numblks,
 878	int			flags,
 879	struct xfs_buf		**bpp,
 880	const struct xfs_buf_ops *ops)
 881{
 882	struct xfs_buf		*bp;
 883
 884	*bpp = NULL;
 885
 886	bp = xfs_buf_get_uncached(target, numblks, flags);
 887	if (!bp)
 888		return -ENOMEM;
 889
 890	/* set up the buffer for a read IO */
 891	ASSERT(bp->b_map_count == 1);
 892	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
 893	bp->b_maps[0].bm_bn = daddr;
 894	bp->b_flags |= XBF_READ;
 895	bp->b_ops = ops;
 896
 897	xfs_buf_submit(bp);
 898	if (bp->b_error) {
 899		int	error = bp->b_error;
 900		xfs_buf_relse(bp);
 901		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902	}
 903
 904	*bpp = bp;
 
 
 
 905	return 0;
 906}
 907
 908xfs_buf_t *
 909xfs_buf_get_uncached(
 910	struct xfs_buftarg	*target,
 911	size_t			numblks,
 912	int			flags)
 913{
 914	unsigned long		page_count;
 915	int			error, i;
 916	struct xfs_buf		*bp;
 917	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
 918
 919	/* flags might contain irrelevant bits, pass only what we care about */
 920	bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
 921	if (unlikely(bp == NULL))
 922		goto fail;
 
 923
 924	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
 925	error = _xfs_buf_get_pages(bp, page_count);
 926	if (error)
 927		goto fail_free_buf;
 928
 929	for (i = 0; i < page_count; i++) {
 930		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
 931		if (!bp->b_pages[i])
 932			goto fail_free_mem;
 933	}
 934	bp->b_flags |= _XBF_PAGES;
 935
 936	error = _xfs_buf_map_pages(bp, 0);
 937	if (unlikely(error)) {
 938		xfs_warn(target->bt_mount,
 939			"%s: failed to map pages", __func__);
 940		goto fail_free_mem;
 941	}
 942
 943	trace_xfs_buf_get_uncached(bp, _RET_IP_);
 944	return bp;
 945
 946 fail_free_mem:
 947	while (--i >= 0)
 948		__free_page(bp->b_pages[i]);
 949	_xfs_buf_free_pages(bp);
 950 fail_free_buf:
 951	xfs_buf_free_maps(bp);
 952	kmem_zone_free(xfs_buf_zone, bp);
 953 fail:
 954	return NULL;
 955}
 956
 957/*
 958 *	Increment reference count on buffer, to hold the buffer concurrently
 959 *	with another thread which may release (free) the buffer asynchronously.
 960 *	Must hold the buffer already to call this function.
 961 */
 962void
 963xfs_buf_hold(
 964	xfs_buf_t		*bp)
 965{
 966	trace_xfs_buf_hold(bp, _RET_IP_);
 967	atomic_inc(&bp->b_hold);
 968}
 969
 970/*
 971 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
 972 * placed on LRU or freed (depending on b_lru_ref).
 973 */
 974void
 975xfs_buf_rele(
 976	xfs_buf_t		*bp)
 977{
 978	struct xfs_perag	*pag = bp->b_pag;
 979	bool			release;
 980	bool			freebuf = false;
 981
 982	trace_xfs_buf_rele(bp, _RET_IP_);
 983
 984	if (!pag) {
 985		ASSERT(list_empty(&bp->b_lru));
 986		if (atomic_dec_and_test(&bp->b_hold)) {
 987			xfs_buf_ioacct_dec(bp);
 988			xfs_buf_free(bp);
 989		}
 990		return;
 991	}
 992
 
 
 993	ASSERT(atomic_read(&bp->b_hold) > 0);
 994
 995	/*
 996	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
 997	 * calls. The pag_buf_lock being taken on the last reference only
 998	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
 999	 * to last reference we drop here is not serialised against the last
1000	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1001	 * first, the last "release" reference can win the race to the lock and
1002	 * free the buffer before the second-to-last reference is processed,
1003	 * leading to a use-after-free scenario.
1004	 */
1005	spin_lock(&bp->b_lock);
1006	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1007	if (!release) {
1008		/*
1009		 * Drop the in-flight state if the buffer is already on the LRU
1010		 * and it holds the only reference. This is racy because we
1011		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1012		 * ensures the decrement occurs only once per-buf.
1013		 */
1014		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1015			__xfs_buf_ioacct_dec(bp);
1016		goto out_unlock;
1017	}
1018
1019	/* the last reference has been dropped ... */
1020	__xfs_buf_ioacct_dec(bp);
1021	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1022		/*
1023		 * If the buffer is added to the LRU take a new reference to the
1024		 * buffer for the LRU and clear the (now stale) dispose list
1025		 * state flag
1026		 */
1027		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1028			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1029			atomic_inc(&bp->b_hold);
1030		}
1031		spin_unlock(&pag->pag_buf_lock);
1032	} else {
1033		/*
1034		 * most of the time buffers will already be removed from the
1035		 * LRU, so optimise that case by checking for the
1036		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1037		 * was on was the disposal list
1038		 */
1039		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1040			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1041		} else {
1042			ASSERT(list_empty(&bp->b_lru));
 
 
 
 
 
1043		}
1044
1045		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1046		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1047				       xfs_buf_hash_params);
1048		spin_unlock(&pag->pag_buf_lock);
1049		xfs_perag_put(pag);
1050		freebuf = true;
1051	}
1052
1053out_unlock:
1054	spin_unlock(&bp->b_lock);
1055
1056	if (freebuf)
1057		xfs_buf_free(bp);
1058}
1059
1060
1061/*
1062 *	Lock a buffer object, if it is not already locked.
1063 *
1064 *	If we come across a stale, pinned, locked buffer, we know that we are
1065 *	being asked to lock a buffer that has been reallocated. Because it is
1066 *	pinned, we know that the log has not been pushed to disk and hence it
1067 *	will still be locked.  Rather than continuing to have trylock attempts
1068 *	fail until someone else pushes the log, push it ourselves before
1069 *	returning.  This means that the xfsaild will not get stuck trying
1070 *	to push on stale inode buffers.
1071 */
1072int
1073xfs_buf_trylock(
1074	struct xfs_buf		*bp)
1075{
1076	int			locked;
1077
1078	locked = down_trylock(&bp->b_sema) == 0;
1079	if (locked)
1080		trace_xfs_buf_trylock(bp, _RET_IP_);
1081	else
1082		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
 
 
1083	return locked;
1084}
1085
1086/*
1087 *	Lock a buffer object.
1088 *
1089 *	If we come across a stale, pinned, locked buffer, we know that we
1090 *	are being asked to lock a buffer that has been reallocated. Because
1091 *	it is pinned, we know that the log has not been pushed to disk and
1092 *	hence it will still be locked. Rather than sleeping until someone
1093 *	else pushes the log, push it ourselves before trying to get the lock.
1094 */
1095void
1096xfs_buf_lock(
1097	struct xfs_buf		*bp)
1098{
1099	trace_xfs_buf_lock(bp, _RET_IP_);
1100
1101	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1102		xfs_log_force(bp->b_mount, 0);
1103	down(&bp->b_sema);
 
1104
1105	trace_xfs_buf_lock_done(bp, _RET_IP_);
1106}
1107
 
 
 
 
 
 
 
1108void
1109xfs_buf_unlock(
1110	struct xfs_buf		*bp)
1111{
1112	ASSERT(xfs_buf_islocked(bp));
 
 
 
 
1113
 
1114	up(&bp->b_sema);
 
1115	trace_xfs_buf_unlock(bp, _RET_IP_);
1116}
1117
1118STATIC void
1119xfs_buf_wait_unpin(
1120	xfs_buf_t		*bp)
1121{
1122	DECLARE_WAITQUEUE	(wait, current);
1123
1124	if (atomic_read(&bp->b_pin_count) == 0)
1125		return;
1126
1127	add_wait_queue(&bp->b_waiters, &wait);
1128	for (;;) {
1129		set_current_state(TASK_UNINTERRUPTIBLE);
1130		if (atomic_read(&bp->b_pin_count) == 0)
1131			break;
1132		io_schedule();
1133	}
1134	remove_wait_queue(&bp->b_waiters, &wait);
1135	set_current_state(TASK_RUNNING);
1136}
1137
1138/*
1139 *	Buffer Utility Routines
1140 */
1141
1142void
1143xfs_buf_ioend(
1144	struct xfs_buf	*bp)
1145{
1146	bool		read = bp->b_flags & XBF_READ;
1147
1148	trace_xfs_buf_iodone(bp, _RET_IP_);
1149
1150	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1151
1152	/*
1153	 * Pull in IO completion errors now. We are guaranteed to be running
1154	 * single threaded, so we don't need the lock to read b_io_error.
1155	 */
1156	if (!bp->b_error && bp->b_io_error)
1157		xfs_buf_ioerror(bp, bp->b_io_error);
1158
1159	/* Only validate buffers that were read without errors */
1160	if (read && !bp->b_error && bp->b_ops) {
1161		ASSERT(!bp->b_iodone);
1162		bp->b_ops->verify_read(bp);
1163	}
1164
1165	if (!bp->b_error)
1166		bp->b_flags |= XBF_DONE;
1167
1168	if (bp->b_iodone)
1169		(*(bp->b_iodone))(bp);
1170	else if (bp->b_flags & XBF_ASYNC)
1171		xfs_buf_relse(bp);
1172	else
1173		complete(&bp->b_iowait);
1174}
1175
1176static void
1177xfs_buf_ioend_work(
1178	struct work_struct	*work)
 
1179{
1180	struct xfs_buf		*bp =
1181		container_of(work, xfs_buf_t, b_ioend_work);
1182
1183	xfs_buf_ioend(bp);
1184}
 
1185
1186static void
1187xfs_buf_ioend_async(
1188	struct xfs_buf	*bp)
1189{
1190	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1191	queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
 
 
 
 
1192}
1193
1194void
1195__xfs_buf_ioerror(
1196	xfs_buf_t		*bp,
1197	int			error,
1198	xfs_failaddr_t		failaddr)
1199{
1200	ASSERT(error <= 0 && error >= -1000);
1201	bp->b_error = error;
1202	trace_xfs_buf_ioerror(bp, error, failaddr);
1203}
1204
1205void
1206xfs_buf_ioerror_alert(
1207	struct xfs_buf		*bp,
1208	const char		*func)
1209{
1210	xfs_alert(bp->b_mount,
1211"metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1212			func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1213			-bp->b_error);
1214}
1215
1216int
1217xfs_bwrite(
 
1218	struct xfs_buf		*bp)
1219{
1220	int			error;
1221
1222	ASSERT(xfs_buf_islocked(bp));
 
1223
1224	bp->b_flags |= XBF_WRITE;
1225	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1226			 XBF_WRITE_FAIL | XBF_DONE);
1227
1228	error = xfs_buf_submit(bp);
1229	if (error)
1230		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
 
1231	return error;
1232}
1233
1234static void
1235xfs_buf_bio_end_io(
1236	struct bio		*bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237{
1238	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
 
 
 
 
 
 
 
1239
1240	/*
1241	 * don't overwrite existing errors - otherwise we can lose errors on
1242	 * buffers that require multiple bios to complete.
1243	 */
1244	if (bio->bi_status) {
1245		int error = blk_status_to_errno(bio->bi_status);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1246
1247		cmpxchg(&bp->b_io_error, 0, error);
 
 
 
 
 
 
 
 
 
 
 
 
 
1248	}
1249
1250	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1251		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1252
1253	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1254		xfs_buf_ioend_async(bp);
1255	bio_put(bio);
1256}
1257
1258static void
1259xfs_buf_ioapply_map(
1260	struct xfs_buf	*bp,
1261	int		map,
1262	int		*buf_offset,
1263	int		*count,
1264	int		op,
1265	int		op_flags)
1266{
1267	int		page_index;
1268	int		total_nr_pages = bp->b_page_count;
1269	int		nr_pages;
1270	struct bio	*bio;
1271	sector_t	sector =  bp->b_maps[map].bm_bn;
1272	int		size;
1273	int		offset;
1274
1275	/* skip the pages in the buffer before the start offset */
1276	page_index = 0;
1277	offset = *buf_offset;
1278	while (offset >= PAGE_SIZE) {
1279		page_index++;
1280		offset -= PAGE_SIZE;
 
 
 
1281	}
1282
1283	/*
1284	 * Limit the IO size to the length of the current vector, and update the
1285	 * remaining IO count for the next time around.
1286	 */
1287	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1288	*count -= size;
1289	*buf_offset += size;
1290
1291next_chunk:
1292	atomic_inc(&bp->b_io_remaining);
1293	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
 
 
1294
1295	bio = bio_alloc(GFP_NOIO, nr_pages);
1296	bio_set_dev(bio, bp->b_target->bt_bdev);
1297	bio->bi_iter.bi_sector = sector;
1298	bio->bi_end_io = xfs_buf_bio_end_io;
1299	bio->bi_private = bp;
1300	bio_set_op_attrs(bio, op, op_flags);
1301
1302	for (; size && nr_pages; nr_pages--, page_index++) {
 
1303		int	rbytes, nbytes = PAGE_SIZE - offset;
1304
1305		if (nbytes > size)
1306			nbytes = size;
1307
1308		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1309				      offset);
1310		if (rbytes < nbytes)
1311			break;
1312
1313		offset = 0;
1314		sector += BTOBB(nbytes);
1315		size -= nbytes;
1316		total_nr_pages--;
1317	}
1318
1319	if (likely(bio->bi_iter.bi_size)) {
1320		if (xfs_buf_is_vmapped(bp)) {
1321			flush_kernel_vmap_range(bp->b_addr,
1322						xfs_buf_vmap_len(bp));
1323		}
1324		submit_bio(bio);
1325		if (size)
1326			goto next_chunk;
1327	} else {
1328		/*
1329		 * This is guaranteed not to be the last io reference count
1330		 * because the caller (xfs_buf_submit) holds a count itself.
1331		 */
1332		atomic_dec(&bp->b_io_remaining);
1333		xfs_buf_ioerror(bp, -EIO);
1334		bio_put(bio);
1335	}
1336
1337}
1338
1339STATIC void
1340_xfs_buf_ioapply(
1341	struct xfs_buf	*bp)
1342{
1343	struct blk_plug	plug;
1344	int		op;
1345	int		op_flags = 0;
1346	int		offset;
1347	int		size;
1348	int		i;
1349
1350	/*
1351	 * Make sure we capture only current IO errors rather than stale errors
1352	 * left over from previous use of the buffer (e.g. failed readahead).
1353	 */
1354	bp->b_error = 0;
1355
1356	if (bp->b_flags & XBF_WRITE) {
1357		op = REQ_OP_WRITE;
1358
1359		/*
1360		 * Run the write verifier callback function if it exists. If
1361		 * this function fails it will mark the buffer with an error and
1362		 * the IO should not be dispatched.
1363		 */
1364		if (bp->b_ops) {
1365			bp->b_ops->verify_write(bp);
1366			if (bp->b_error) {
1367				xfs_force_shutdown(bp->b_mount,
1368						   SHUTDOWN_CORRUPT_INCORE);
1369				return;
1370			}
1371		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1372			struct xfs_mount *mp = bp->b_mount;
1373
1374			/*
1375			 * non-crc filesystems don't attach verifiers during
1376			 * log recovery, so don't warn for such filesystems.
1377			 */
1378			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1379				xfs_warn(mp,
1380					"%s: no buf ops on daddr 0x%llx len %d",
1381					__func__, bp->b_bn, bp->b_length);
1382				xfs_hex_dump(bp->b_addr,
1383						XFS_CORRUPTION_DUMP_LEN);
1384				dump_stack();
1385			}
1386		}
1387	} else if (bp->b_flags & XBF_READ_AHEAD) {
1388		op = REQ_OP_READ;
1389		op_flags = REQ_RAHEAD;
1390	} else {
1391		op = REQ_OP_READ;
1392	}
1393
1394	/* we only use the buffer cache for meta-data */
1395	op_flags |= REQ_META;
1396
1397	/*
1398	 * Walk all the vectors issuing IO on them. Set up the initial offset
1399	 * into the buffer and the desired IO size before we start -
1400	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1401	 * subsequent call.
1402	 */
1403	offset = bp->b_offset;
1404	size = BBTOB(bp->b_length);
1405	blk_start_plug(&plug);
1406	for (i = 0; i < bp->b_map_count; i++) {
1407		xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1408		if (bp->b_error)
1409			break;
1410		if (size <= 0)
1411			break;	/* all done */
1412	}
1413	blk_finish_plug(&plug);
1414}
1415
1416/*
1417 * Wait for I/O completion of a sync buffer and return the I/O error code.
 
 
1418 */
1419static int
1420xfs_buf_iowait(
1421	struct xfs_buf	*bp)
1422{
1423	ASSERT(!(bp->b_flags & XBF_ASYNC));
1424
1425	trace_xfs_buf_iowait(bp, _RET_IP_);
1426	wait_for_completion(&bp->b_iowait);
 
1427	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1428
1429	return bp->b_error;
1430}
1431
1432/*
1433 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1434 * the buffer lock ownership and the current reference to the IO. It is not
1435 * safe to reference the buffer after a call to this function unless the caller
1436 * holds an additional reference itself.
1437 */
1438int
1439__xfs_buf_submit(
1440	struct xfs_buf	*bp,
1441	bool		wait)
1442{
1443	int		error = 0;
1444
1445	trace_xfs_buf_submit(bp, _RET_IP_);
1446
1447	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1448
1449	/* on shutdown we stale and complete the buffer immediately */
1450	if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1451		xfs_buf_ioerror(bp, -EIO);
1452		bp->b_flags &= ~XBF_DONE;
1453		xfs_buf_stale(bp);
1454		xfs_buf_ioend(bp);
1455		return -EIO;
1456	}
1457
1458	/*
1459	 * Grab a reference so the buffer does not go away underneath us. For
1460	 * async buffers, I/O completion drops the callers reference, which
1461	 * could occur before submission returns.
1462	 */
1463	xfs_buf_hold(bp);
1464
1465	if (bp->b_flags & XBF_WRITE)
1466		xfs_buf_wait_unpin(bp);
1467
1468	/* clear the internal error state to avoid spurious errors */
1469	bp->b_io_error = 0;
1470
1471	/*
1472	 * Set the count to 1 initially, this will stop an I/O completion
1473	 * callout which happens before we have started all the I/O from calling
1474	 * xfs_buf_ioend too early.
1475	 */
1476	atomic_set(&bp->b_io_remaining, 1);
1477	if (bp->b_flags & XBF_ASYNC)
1478		xfs_buf_ioacct_inc(bp);
1479	_xfs_buf_ioapply(bp);
1480
1481	/*
1482	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1483	 * reference we took above. If we drop it to zero, run completion so
1484	 * that we don't return to the caller with completion still pending.
1485	 */
1486	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1487		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1488			xfs_buf_ioend(bp);
1489		else
1490			xfs_buf_ioend_async(bp);
1491	}
1492
1493	if (wait)
1494		error = xfs_buf_iowait(bp);
1495
1496	/*
1497	 * Release the hold that keeps the buffer referenced for the entire
1498	 * I/O. Note that if the buffer is async, it is not safe to reference
1499	 * after this release.
1500	 */
1501	xfs_buf_rele(bp);
1502	return error;
1503}
1504
1505void *
1506xfs_buf_offset(
1507	struct xfs_buf		*bp,
1508	size_t			offset)
1509{
1510	struct page		*page;
1511
1512	if (bp->b_addr)
1513		return bp->b_addr + offset;
1514
1515	offset += bp->b_offset;
1516	page = bp->b_pages[offset >> PAGE_SHIFT];
1517	return page_address(page) + (offset & (PAGE_SIZE-1));
1518}
1519
 
 
 
1520void
1521xfs_buf_zero(
1522	struct xfs_buf		*bp,
1523	size_t			boff,
1524	size_t			bsize)
 
 
1525{
1526	size_t			bend;
 
1527
1528	bend = boff + bsize;
1529	while (boff < bend) {
1530		struct page	*page;
1531		int		page_index, page_offset, csize;
1532
1533		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1534		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1535		page = bp->b_pages[page_index];
1536		csize = min_t(size_t, PAGE_SIZE - page_offset,
1537				      BBTOB(bp->b_length) - boff);
1538
1539		ASSERT((csize + page_offset) <= PAGE_SIZE);
1540
1541		memset(page_address(page) + page_offset, 0, csize);
 
 
 
 
 
1542
1543		boff += csize;
 
1544	}
1545}
1546
1547/*
1548 *	Handling of buffer targets (buftargs).
1549 */
1550
1551/*
1552 * Wait for any bufs with callbacks that have been submitted but have not yet
1553 * returned. These buffers will have an elevated hold count, so wait on those
1554 * while freeing all the buffers only held by the LRU.
1555 */
1556static enum lru_status
1557xfs_buftarg_wait_rele(
1558	struct list_head	*item,
1559	struct list_lru_one	*lru,
1560	spinlock_t		*lru_lock,
1561	void			*arg)
1562
1563{
1564	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1565	struct list_head	*dispose = arg;
1566
1567	if (atomic_read(&bp->b_hold) > 1) {
1568		/* need to wait, so skip it this pass */
1569		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1570		return LRU_SKIP;
1571	}
1572	if (!spin_trylock(&bp->b_lock))
1573		return LRU_SKIP;
1574
1575	/*
1576	 * clear the LRU reference count so the buffer doesn't get
1577	 * ignored in xfs_buf_rele().
1578	 */
1579	atomic_set(&bp->b_lru_ref, 0);
1580	bp->b_state |= XFS_BSTATE_DISPOSE;
1581	list_lru_isolate_move(lru, item, dispose);
1582	spin_unlock(&bp->b_lock);
1583	return LRU_REMOVED;
1584}
1585
1586void
1587xfs_wait_buftarg(
1588	struct xfs_buftarg	*btp)
1589{
1590	LIST_HEAD(dispose);
1591	int loop = 0;
1592
1593	/*
1594	 * First wait on the buftarg I/O count for all in-flight buffers to be
1595	 * released. This is critical as new buffers do not make the LRU until
1596	 * they are released.
1597	 *
1598	 * Next, flush the buffer workqueue to ensure all completion processing
1599	 * has finished. Just waiting on buffer locks is not sufficient for
1600	 * async IO as the reference count held over IO is not released until
1601	 * after the buffer lock is dropped. Hence we need to ensure here that
1602	 * all reference counts have been dropped before we start walking the
1603	 * LRU list.
1604	 */
1605	while (percpu_counter_sum(&btp->bt_io_count))
1606		delay(100);
1607	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1608
1609	/* loop until there is nothing left on the lru list. */
1610	while (list_lru_count(&btp->bt_lru)) {
1611		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1612			      &dispose, LONG_MAX);
1613
1614		while (!list_empty(&dispose)) {
1615			struct xfs_buf *bp;
1616			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1617			list_del_init(&bp->b_lru);
1618			if (bp->b_flags & XBF_WRITE_FAIL) {
1619				xfs_alert(btp->bt_mount,
1620"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1621					(long long)bp->b_bn);
1622				xfs_alert(btp->bt_mount,
1623"Please run xfs_repair to determine the extent of the problem.");
1624			}
1625			xfs_buf_rele(bp);
1626		}
1627		if (loop++ != 0)
1628			delay(100);
 
 
 
 
 
 
1629	}
 
1630}
1631
1632static enum lru_status
1633xfs_buftarg_isolate(
1634	struct list_head	*item,
1635	struct list_lru_one	*lru,
1636	spinlock_t		*lru_lock,
1637	void			*arg)
1638{
1639	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1640	struct list_head	*dispose = arg;
1641
1642	/*
1643	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1644	 * If we fail to get the lock, just skip it.
1645	 */
1646	if (!spin_trylock(&bp->b_lock))
1647		return LRU_SKIP;
1648	/*
1649	 * Decrement the b_lru_ref count unless the value is already
1650	 * zero. If the value is already zero, we need to reclaim the
1651	 * buffer, otherwise it gets another trip through the LRU.
1652	 */
1653	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1654		spin_unlock(&bp->b_lock);
1655		return LRU_ROTATE;
1656	}
1657
1658	bp->b_state |= XFS_BSTATE_DISPOSE;
1659	list_lru_isolate_move(lru, item, dispose);
1660	spin_unlock(&bp->b_lock);
1661	return LRU_REMOVED;
1662}
1663
1664static unsigned long
1665xfs_buftarg_shrink_scan(
1666	struct shrinker		*shrink,
1667	struct shrink_control	*sc)
1668{
1669	struct xfs_buftarg	*btp = container_of(shrink,
1670					struct xfs_buftarg, bt_shrinker);
 
 
1671	LIST_HEAD(dispose);
1672	unsigned long		freed;
1673
1674	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1675				     xfs_buftarg_isolate, &dispose);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1676
1677	while (!list_empty(&dispose)) {
1678		struct xfs_buf *bp;
1679		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1680		list_del_init(&bp->b_lru);
1681		xfs_buf_rele(bp);
1682	}
1683
1684	return freed;
1685}
1686
1687static unsigned long
1688xfs_buftarg_shrink_count(
1689	struct shrinker		*shrink,
1690	struct shrink_control	*sc)
1691{
1692	struct xfs_buftarg	*btp = container_of(shrink,
1693					struct xfs_buftarg, bt_shrinker);
1694	return list_lru_shrink_count(&btp->bt_lru, sc);
1695}
1696
1697void
1698xfs_free_buftarg(
 
1699	struct xfs_buftarg	*btp)
1700{
1701	unregister_shrinker(&btp->bt_shrinker);
1702	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1703	percpu_counter_destroy(&btp->bt_io_count);
1704	list_lru_destroy(&btp->bt_lru);
1705
1706	xfs_blkdev_issue_flush(btp);
 
 
1707
 
1708	kmem_free(btp);
1709}
1710
1711int
1712xfs_setsize_buftarg(
1713	xfs_buftarg_t		*btp,
1714	unsigned int		sectorsize)
1715{
1716	/* Set up metadata sector size info */
1717	btp->bt_meta_sectorsize = sectorsize;
1718	btp->bt_meta_sectormask = sectorsize - 1;
 
 
1719
1720	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1721		xfs_warn(btp->bt_mount,
1722			"Cannot set_blocksize to %u on device %pg",
1723			sectorsize, btp->bt_bdev);
1724		return -EINVAL;
1725	}
1726
1727	/* Set up device logical sector size mask */
1728	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1729	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1730
1731	return 0;
1732}
1733
1734/*
1735 * When allocating the initial buffer target we have not yet
1736 * read in the superblock, so don't know what sized sectors
1737 * are being used at this early stage.  Play safe.
1738 */
1739STATIC int
1740xfs_setsize_buftarg_early(
1741	xfs_buftarg_t		*btp,
1742	struct block_device	*bdev)
1743{
1744	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1745}
1746
1747xfs_buftarg_t *
1748xfs_alloc_buftarg(
1749	struct xfs_mount	*mp,
1750	struct block_device	*bdev,
1751	struct dax_device	*dax_dev)
 
1752{
1753	xfs_buftarg_t		*btp;
1754
1755	btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1756
1757	btp->bt_mount = mp;
1758	btp->bt_dev =  bdev->bd_dev;
1759	btp->bt_bdev = bdev;
1760	btp->bt_daxdev = dax_dev;
 
 
1761
 
 
1762	if (xfs_setsize_buftarg_early(btp, bdev))
1763		goto error_free;
1764
1765	if (list_lru_init(&btp->bt_lru))
1766		goto error_free;
1767
1768	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1769		goto error_lru;
1770
1771	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1772	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1773	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1774	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1775	if (register_shrinker(&btp->bt_shrinker))
1776		goto error_pcpu;
1777	return btp;
1778
1779error_pcpu:
1780	percpu_counter_destroy(&btp->bt_io_count);
1781error_lru:
1782	list_lru_destroy(&btp->bt_lru);
1783error_free:
1784	kmem_free(btp);
1785	return NULL;
1786}
1787
 
1788/*
1789 * Cancel a delayed write list.
1790 *
1791 * Remove each buffer from the list, clear the delwri queue flag and drop the
1792 * associated buffer reference.
1793 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1794void
1795xfs_buf_delwri_cancel(
1796	struct list_head	*list)
1797{
1798	struct xfs_buf		*bp;
 
1799
1800	while (!list_empty(list)) {
1801		bp = list_first_entry(list, struct xfs_buf, b_list);
1802
1803		xfs_buf_lock(bp);
1804		bp->b_flags &= ~_XBF_DELWRI_Q;
1805		list_del_init(&bp->b_list);
1806		xfs_buf_relse(bp);
1807	}
 
 
 
 
 
 
 
1808}
1809
1810/*
1811 * Add a buffer to the delayed write list.
1812 *
1813 * This queues a buffer for writeout if it hasn't already been.  Note that
1814 * neither this routine nor the buffer list submission functions perform
1815 * any internal synchronization.  It is expected that the lists are thread-local
1816 * to the callers.
1817 *
1818 * Returns true if we queued up the buffer, or false if it already had
1819 * been on the buffer list.
1820 */
1821bool
1822xfs_buf_delwri_queue(
1823	struct xfs_buf		*bp,
1824	struct list_head	*list)
1825{
1826	ASSERT(xfs_buf_islocked(bp));
1827	ASSERT(!(bp->b_flags & XBF_READ));
 
 
 
1828
1829	/*
1830	 * If the buffer is already marked delwri it already is queued up
1831	 * by someone else for imediate writeout.  Just ignore it in that
1832	 * case.
1833	 */
1834	if (bp->b_flags & _XBF_DELWRI_Q) {
1835		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1836		return false;
1837	}
 
 
 
 
 
 
 
 
 
 
1838
1839	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1840
1841	/*
1842	 * If a buffer gets written out synchronously or marked stale while it
1843	 * is on a delwri list we lazily remove it. To do this, the other party
1844	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1845	 * It remains referenced and on the list.  In a rare corner case it
1846	 * might get readded to a delwri list after the synchronous writeout, in
1847	 * which case we need just need to re-add the flag here.
1848	 */
1849	bp->b_flags |= _XBF_DELWRI_Q;
1850	if (list_empty(&bp->b_list)) {
1851		atomic_inc(&bp->b_hold);
1852		list_add_tail(&bp->b_list, list);
1853	}
 
 
 
1854
1855	return true;
1856}
1857
1858/*
1859 * Compare function is more complex than it needs to be because
1860 * the return value is only 32 bits and we are doing comparisons
1861 * on 64 bit values
1862 */
1863static int
1864xfs_buf_cmp(
1865	void		*priv,
1866	struct list_head *a,
1867	struct list_head *b)
1868{
1869	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1870	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1871	xfs_daddr_t		diff;
1872
1873	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1874	if (diff < 0)
1875		return -1;
1876	if (diff > 0)
1877		return 1;
1878	return 0;
1879}
1880
1881/*
1882 * Submit buffers for write. If wait_list is specified, the buffers are
1883 * submitted using sync I/O and placed on the wait list such that the caller can
1884 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1885 * at I/O completion time. In either case, buffers remain locked until I/O
1886 * completes and the buffer is released from the queue.
1887 */
1888static int
1889xfs_buf_delwri_submit_buffers(
1890	struct list_head	*buffer_list,
1891	struct list_head	*wait_list)
1892{
1893	struct xfs_buf		*bp, *n;
1894	int			pinned = 0;
1895	struct blk_plug		plug;
1896
1897	list_sort(NULL, buffer_list, xfs_buf_cmp);
 
 
 
 
1898
1899	blk_start_plug(&plug);
1900	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1901		if (!wait_list) {
1902			if (xfs_buf_ispinned(bp)) {
1903				pinned++;
1904				continue;
1905			}
1906			if (!xfs_buf_trylock(bp))
1907				continue;
1908		} else {
1909			xfs_buf_lock(bp);
1910		}
1911
1912		/*
1913		 * Someone else might have written the buffer synchronously or
1914		 * marked it stale in the meantime.  In that case only the
1915		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1916		 * reference and remove it from the list here.
1917		 */
1918		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1919			list_del_init(&bp->b_list);
1920			xfs_buf_relse(bp);
1921			continue;
1922		}
1923
1924		trace_xfs_buf_delwri_split(bp, _RET_IP_);
 
1925
1926		/*
1927		 * If we have a wait list, each buffer (and associated delwri
1928		 * queue reference) transfers to it and is submitted
1929		 * synchronously. Otherwise, drop the buffer from the delwri
1930		 * queue and submit async.
1931		 */
1932		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1933		bp->b_flags |= XBF_WRITE;
1934		if (wait_list) {
1935			bp->b_flags &= ~XBF_ASYNC;
1936			list_move_tail(&bp->b_list, wait_list);
1937		} else {
1938			bp->b_flags |= XBF_ASYNC;
1939			list_del_init(&bp->b_list);
 
1940		}
1941		__xfs_buf_submit(bp, false);
1942	}
1943	blk_finish_plug(&plug);
1944
1945	return pinned;
1946}
1947
1948/*
1949 * Write out a buffer list asynchronously.
1950 *
1951 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1952 * out and not wait for I/O completion on any of the buffers.  This interface
1953 * is only safely useable for callers that can track I/O completion by higher
1954 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1955 * function.
1956 *
1957 * Note: this function will skip buffers it would block on, and in doing so
1958 * leaves them on @buffer_list so they can be retried on a later pass. As such,
1959 * it is up to the caller to ensure that the buffer list is fully submitted or
1960 * cancelled appropriately when they are finished with the list. Failure to
1961 * cancel or resubmit the list until it is empty will result in leaked buffers
1962 * at unmount time.
1963 */
1964int
1965xfs_buf_delwri_submit_nowait(
1966	struct list_head	*buffer_list)
 
1967{
1968	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1969}
 
 
 
1970
1971/*
1972 * Write out a buffer list synchronously.
1973 *
1974 * This will take the @buffer_list, write all buffers out and wait for I/O
1975 * completion on all of the buffers. @buffer_list is consumed by the function,
1976 * so callers must have some other way of tracking buffers if they require such
1977 * functionality.
1978 */
1979int
1980xfs_buf_delwri_submit(
1981	struct list_head	*buffer_list)
1982{
1983	LIST_HEAD		(wait_list);
1984	int			error = 0, error2;
1985	struct xfs_buf		*bp;
1986
1987	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
 
1988
1989	/* Wait for IO to complete. */
1990	while (!list_empty(&wait_list)) {
1991		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
 
 
 
1992
 
 
 
 
1993		list_del_init(&bp->b_list);
1994
1995		/*
1996		 * Wait on the locked buffer, check for errors and unlock and
1997		 * release the delwri queue reference.
1998		 */
1999		error2 = xfs_buf_iowait(bp);
2000		xfs_buf_relse(bp);
2001		if (!error)
2002			error = error2;
2003	}
 
2004
2005	return error;
2006}
 
 
2007
2008/*
2009 * Push a single buffer on a delwri queue.
2010 *
2011 * The purpose of this function is to submit a single buffer of a delwri queue
2012 * and return with the buffer still on the original queue. The waiting delwri
2013 * buffer submission infrastructure guarantees transfer of the delwri queue
2014 * buffer reference to a temporary wait list. We reuse this infrastructure to
2015 * transfer the buffer back to the original queue.
2016 *
2017 * Note the buffer transitions from the queued state, to the submitted and wait
2018 * listed state and back to the queued state during this call. The buffer
2019 * locking and queue management logic between _delwri_pushbuf() and
2020 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2021 * before returning.
2022 */
2023int
2024xfs_buf_delwri_pushbuf(
2025	struct xfs_buf		*bp,
2026	struct list_head	*buffer_list)
2027{
2028	LIST_HEAD		(submit_list);
2029	int			error;
2030
2031	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2032
2033	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2034
2035	/*
2036	 * Isolate the buffer to a new local list so we can submit it for I/O
2037	 * independently from the rest of the original list.
2038	 */
2039	xfs_buf_lock(bp);
2040	list_move(&bp->b_list, &submit_list);
2041	xfs_buf_unlock(bp);
2042
2043	/*
2044	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2045	 * the buffer on the wait list with the original reference. Rather than
2046	 * bounce the buffer from a local wait list back to the original list
2047	 * after I/O completion, reuse the original list as the wait list.
2048	 */
2049	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2050
2051	/*
2052	 * The buffer is now locked, under I/O and wait listed on the original
2053	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2054	 * return with the buffer unlocked and on the original queue.
2055	 */
2056	error = xfs_buf_iowait(bp);
2057	bp->b_flags |= _XBF_DELWRI_Q;
2058	xfs_buf_unlock(bp);
2059
2060	return error;
2061}
2062
2063int __init
2064xfs_buf_init(void)
2065{
2066	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2067						KM_ZONE_HWALIGN, NULL);
2068	if (!xfs_buf_zone)
2069		goto out;
2070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2071	return 0;
2072
 
 
 
 
 
 
2073 out:
2074	return -ENOMEM;
2075}
2076
2077void
2078xfs_buf_terminate(void)
2079{
 
 
 
2080	kmem_zone_destroy(xfs_buf_zone);
2081}
2082
2083void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2084{
2085	/*
2086	 * Set the lru reference count to 0 based on the error injection tag.
2087	 * This allows userspace to disrupt buffer caching for debug/testing
2088	 * purposes.
2089	 */
2090	if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2091		lru_ref = 0;
2092
2093	atomic_set(&bp->b_lru_ref, lru_ref);
2094}
2095
2096/*
2097 * Verify an on-disk magic value against the magic value specified in the
2098 * verifier structure. The verifier magic is in disk byte order so the caller is
2099 * expected to pass the value directly from disk.
2100 */
2101bool
2102xfs_verify_magic(
2103	struct xfs_buf		*bp,
2104	__be32			dmagic)
2105{
2106	struct xfs_mount	*mp = bp->b_mount;
2107	int			idx;
2108
2109	idx = xfs_sb_version_hascrc(&mp->m_sb);
2110	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2111		return false;
2112	return dmagic == bp->b_ops->magic[idx];
2113}
2114/*
2115 * Verify an on-disk magic value against the magic value specified in the
2116 * verifier structure. The verifier magic is in disk byte order so the caller is
2117 * expected to pass the value directly from disk.
2118 */
2119bool
2120xfs_verify_magic16(
2121	struct xfs_buf		*bp,
2122	__be16			dmagic)
2123{
2124	struct xfs_mount	*mp = bp->b_mount;
2125	int			idx;
2126
2127	idx = xfs_sb_version_hascrc(&mp->m_sb);
2128	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2129		return false;
2130	return dmagic == bp->b_ops->magic16[idx];
2131}