Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#include <linux/sched.h>
  11#include <linux/slab.h>
  12#include <linux/spinlock.h>
  13#include <linux/completion.h>
  14#include <linux/buffer_head.h>
  15#include <linux/pagemap.h>
  16#include <linux/pagevec.h>
  17#include <linux/mpage.h>
  18#include <linux/fs.h>
  19#include <linux/writeback.h>
  20#include <linux/swap.h>
  21#include <linux/gfs2_ondisk.h>
  22#include <linux/backing-dev.h>
 
 
  23
  24#include "gfs2.h"
  25#include "incore.h"
  26#include "bmap.h"
  27#include "glock.h"
  28#include "inode.h"
  29#include "log.h"
  30#include "meta_io.h"
  31#include "quota.h"
  32#include "trans.h"
  33#include "rgrp.h"
  34#include "super.h"
  35#include "util.h"
  36#include "glops.h"
  37
  38
  39void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
  40			    unsigned int from, unsigned int to)
  41{
  42	struct buffer_head *head = page_buffers(page);
  43	unsigned int bsize = head->b_size;
  44	struct buffer_head *bh;
  45	unsigned int start, end;
  46
  47	for (bh = head, start = 0; bh != head || !start;
  48	     bh = bh->b_this_page, start = end) {
  49		end = start + bsize;
  50		if (end <= from || start >= to)
  51			continue;
  52		if (gfs2_is_jdata(ip))
  53			set_buffer_uptodate(bh);
  54		gfs2_trans_add_bh(ip->i_gl, bh, 0);
  55	}
  56}
  57
  58/**
  59 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
  60 * @inode: The inode
  61 * @lblock: The block number to look up
  62 * @bh_result: The buffer head to return the result in
  63 * @create: Non-zero if we may add block to the file
  64 *
  65 * Returns: errno
  66 */
  67
  68static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
  69				  struct buffer_head *bh_result, int create)
  70{
  71	int error;
  72
  73	error = gfs2_block_map(inode, lblock, bh_result, 0);
  74	if (error)
  75		return error;
  76	if (!buffer_mapped(bh_result))
  77		return -EIO;
  78	return 0;
  79}
  80
  81static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
  82				 struct buffer_head *bh_result, int create)
  83{
  84	return gfs2_block_map(inode, lblock, bh_result, 0);
  85}
  86
  87/**
  88 * gfs2_writepage_common - Common bits of writepage
  89 * @page: The page to be written
  90 * @wbc: The writeback control
  91 *
  92 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
  93 */
  94
  95static int gfs2_writepage_common(struct page *page,
  96				 struct writeback_control *wbc)
  97{
  98	struct inode *inode = page->mapping->host;
  99	struct gfs2_inode *ip = GFS2_I(inode);
 100	struct gfs2_sbd *sdp = GFS2_SB(inode);
 101	loff_t i_size = i_size_read(inode);
 102	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
 103	unsigned offset;
 104
 105	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
 106		goto out;
 107	if (current->journal_info)
 108		goto redirty;
 109	/* Is the page fully outside i_size? (truncate in progress) */
 110	offset = i_size & (PAGE_CACHE_SIZE-1);
 111	if (page->index > end_index || (page->index == end_index && !offset)) {
 112		page->mapping->a_ops->invalidatepage(page, 0);
 113		goto out;
 114	}
 115	return 1;
 116redirty:
 117	redirty_page_for_writepage(wbc, page);
 118out:
 119	unlock_page(page);
 120	return 0;
 121}
 122
 123/**
 124 * gfs2_writeback_writepage - Write page for writeback mappings
 125 * @page: The page
 126 * @wbc: The writeback control
 127 *
 128 */
 129
 130static int gfs2_writeback_writepage(struct page *page,
 131				    struct writeback_control *wbc)
 132{
 133	int ret;
 134
 135	ret = gfs2_writepage_common(page, wbc);
 136	if (ret <= 0)
 137		return ret;
 138
 139	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
 140}
 141
 142/**
 143 * gfs2_ordered_writepage - Write page for ordered data files
 144 * @page: The page to write
 145 * @wbc: The writeback control
 146 *
 147 */
 148
 149static int gfs2_ordered_writepage(struct page *page,
 150				  struct writeback_control *wbc)
 151{
 152	struct inode *inode = page->mapping->host;
 153	struct gfs2_inode *ip = GFS2_I(inode);
 154	int ret;
 
 155
 156	ret = gfs2_writepage_common(page, wbc);
 157	if (ret <= 0)
 158		return ret;
 
 
 
 
 
 
 
 159
 160	if (!page_has_buffers(page)) {
 161		create_empty_buffers(page, inode->i_sb->s_blocksize,
 162				     (1 << BH_Dirty)|(1 << BH_Uptodate));
 163	}
 164	gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
 165	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
 166}
 167
 168/**
 169 * __gfs2_jdata_writepage - The core of jdata writepage
 170 * @page: The page to write
 171 * @wbc: The writeback control
 172 *
 173 * This is shared between writepage and writepages and implements the
 174 * core of the writepage operation. If a transaction is required then
 175 * PageChecked will have been set and the transaction will have
 176 * already been started before this is called.
 177 */
 178
 179static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
 180{
 181	struct inode *inode = page->mapping->host;
 182	struct gfs2_inode *ip = GFS2_I(inode);
 183	struct gfs2_sbd *sdp = GFS2_SB(inode);
 184
 185	if (PageChecked(page)) {
 186		ClearPageChecked(page);
 187		if (!page_has_buffers(page)) {
 188			create_empty_buffers(page, inode->i_sb->s_blocksize,
 189					     (1 << BH_Dirty)|(1 << BH_Uptodate));
 190		}
 191		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
 192	}
 193	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
 194}
 195
 196/**
 197 * gfs2_jdata_writepage - Write complete page
 198 * @page: Page to write
 
 199 *
 200 * Returns: errno
 201 *
 202 */
 203
 204static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
 205{
 206	struct inode *inode = page->mapping->host;
 
 207	struct gfs2_sbd *sdp = GFS2_SB(inode);
 208	int ret;
 209	int done_trans = 0;
 210
 211	if (PageChecked(page)) {
 212		if (wbc->sync_mode != WB_SYNC_ALL)
 213			goto out_ignore;
 214		ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
 215		if (ret)
 216			goto out_ignore;
 217		done_trans = 1;
 218	}
 219	ret = gfs2_writepage_common(page, wbc);
 220	if (ret > 0)
 221		ret = __gfs2_jdata_writepage(page, wbc);
 222	if (done_trans)
 223		gfs2_trans_end(sdp);
 224	return ret;
 225
 226out_ignore:
 227	redirty_page_for_writepage(wbc, page);
 
 228	unlock_page(page);
 229	return 0;
 230}
 231
 232/**
 233 * gfs2_writeback_writepages - Write a bunch of dirty pages back to disk
 234 * @mapping: The mapping to write
 235 * @wbc: Write-back control
 236 *
 237 * For the data=writeback case we can already ignore buffer heads
 238 * and write whole extents at once. This is a big reduction in the
 239 * number of I/O requests we send and the bmap calls we make in this case.
 240 */
 241static int gfs2_writeback_writepages(struct address_space *mapping,
 242				     struct writeback_control *wbc)
 243{
 244	return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
 245}
 246
 247/**
 248 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
 249 * @mapping: The mapping
 250 * @wbc: The writeback control
 251 * @writepage: The writepage function to call for each page
 252 * @pvec: The vector of pages
 253 * @nr_pages: The number of pages to write
 
 
 254 *
 255 * Returns: non-zero if loop should terminate, zero otherwise
 256 */
 257
 258static int gfs2_write_jdata_pagevec(struct address_space *mapping,
 259				    struct writeback_control *wbc,
 260				    struct pagevec *pvec,
 261				    int nr_pages, pgoff_t end)
 
 262{
 263	struct inode *inode = mapping->host;
 264	struct gfs2_sbd *sdp = GFS2_SB(inode);
 265	loff_t i_size = i_size_read(inode);
 266	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
 267	unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
 268	unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
 269	int i;
 270	int ret;
 271
 272	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
 273	if (ret < 0)
 274		return ret;
 275
 276	for(i = 0; i < nr_pages; i++) {
 277		struct page *page = pvec->pages[i];
 278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279		lock_page(page);
 280
 281		if (unlikely(page->mapping != mapping)) {
 
 282			unlock_page(page);
 283			continue;
 284		}
 285
 286		if (!wbc->range_cyclic && page->index > end) {
 287			ret = 1;
 288			unlock_page(page);
 289			continue;
 290		}
 291
 292		if (wbc->sync_mode != WB_SYNC_NONE)
 293			wait_on_page_writeback(page);
 294
 295		if (PageWriteback(page) ||
 296		    !clear_page_dirty_for_io(page)) {
 297			unlock_page(page);
 298			continue;
 299		}
 300
 301		/* Is the page fully outside i_size? (truncate in progress) */
 302		if (page->index > end_index || (page->index == end_index && !offset)) {
 303			page->mapping->a_ops->invalidatepage(page, 0);
 304			unlock_page(page);
 305			continue;
 306		}
 307
 308		ret = __gfs2_jdata_writepage(page, wbc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 309
 310		if (ret || (--(wbc->nr_to_write) <= 0))
 
 
 
 
 
 
 311			ret = 1;
 
 
 
 312	}
 313	gfs2_trans_end(sdp);
 314	return ret;
 315}
 316
 317/**
 318 * gfs2_write_cache_jdata - Like write_cache_pages but different
 319 * @mapping: The mapping to write
 320 * @wbc: The writeback control
 321 * @writepage: The writepage function to call
 322 * @data: The data to pass to writepage
 323 *
 324 * The reason that we use our own function here is that we need to
 325 * start transactions before we grab page locks. This allows us
 326 * to get the ordering right.
 327 */
 328
 329static int gfs2_write_cache_jdata(struct address_space *mapping,
 330				  struct writeback_control *wbc)
 331{
 332	int ret = 0;
 333	int done = 0;
 334	struct pagevec pvec;
 335	int nr_pages;
 
 336	pgoff_t index;
 337	pgoff_t end;
 338	int scanned = 0;
 
 339	int range_whole = 0;
 
 340
 341	pagevec_init(&pvec, 0);
 342	if (wbc->range_cyclic) {
 343		index = mapping->writeback_index; /* Start from prev offset */
 
 
 
 
 
 344		end = -1;
 345	} else {
 346		index = wbc->range_start >> PAGE_CACHE_SHIFT;
 347		end = wbc->range_end >> PAGE_CACHE_SHIFT;
 348		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
 349			range_whole = 1;
 350		scanned = 1;
 351	}
 
 
 
 
 352
 353retry:
 354	 while (!done && (index <= end) &&
 355		(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 356					       PAGECACHE_TAG_DIRTY,
 357					       min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
 358		scanned = 1;
 359		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
 
 
 
 
 360		if (ret)
 361			done = 1;
 362		if (ret > 0)
 363			ret = 0;
 364
 365		pagevec_release(&pvec);
 366		cond_resched();
 367	}
 368
 369	if (!scanned && !done) {
 370		/*
 
 371		 * We hit the last page and there is more work to be done: wrap
 372		 * back to the start of the file
 373		 */
 374		scanned = 1;
 375		index = 0;
 
 376		goto retry;
 377	}
 378
 379	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
 380		mapping->writeback_index = index;
 
 381	return ret;
 382}
 383
 384
 385/**
 386 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
 387 * @mapping: The mapping to write
 388 * @wbc: The writeback control
 389 * 
 390 */
 391
 392static int gfs2_jdata_writepages(struct address_space *mapping,
 393				 struct writeback_control *wbc)
 394{
 395	struct gfs2_inode *ip = GFS2_I(mapping->host);
 396	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
 397	int ret;
 398
 399	ret = gfs2_write_cache_jdata(mapping, wbc);
 400	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
 401		gfs2_log_flush(sdp, ip->i_gl);
 402		ret = gfs2_write_cache_jdata(mapping, wbc);
 403	}
 404	return ret;
 405}
 406
 407/**
 408 * stuffed_readpage - Fill in a Linux page with stuffed file data
 409 * @ip: the inode
 410 * @page: the page
 411 *
 412 * Returns: errno
 413 */
 414
 415static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
 416{
 417	struct buffer_head *dibh;
 418	u64 dsize = i_size_read(&ip->i_inode);
 419	void *kaddr;
 420	int error;
 421
 422	/*
 423	 * Due to the order of unstuffing files and ->fault(), we can be
 424	 * asked for a zero page in the case of a stuffed file being extended,
 425	 * so we need to supply one here. It doesn't happen often.
 426	 */
 427	if (unlikely(page->index)) {
 428		zero_user(page, 0, PAGE_CACHE_SIZE);
 429		SetPageUptodate(page);
 430		return 0;
 431	}
 432
 433	error = gfs2_meta_inode_buffer(ip, &dibh);
 434	if (error)
 435		return error;
 436
 437	kaddr = kmap_atomic(page, KM_USER0);
 438	if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
 439		dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
 440	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
 441	memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
 442	kunmap_atomic(kaddr, KM_USER0);
 443	flush_dcache_page(page);
 444	brelse(dibh);
 445	SetPageUptodate(page);
 446
 447	return 0;
 448}
 449
 450
 451/**
 452 * __gfs2_readpage - readpage
 453 * @file: The file to read a page for
 454 * @page: The page to read
 455 *
 456 * This is the core of gfs2's readpage. Its used by the internal file
 457 * reading code as in that case we already hold the glock. Also its
 458 * called by gfs2_readpage() once the required lock has been granted.
 459 *
 460 */
 461
 462static int __gfs2_readpage(void *file, struct page *page)
 463{
 464	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
 465	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
 466	int error;
 467
 468	if (gfs2_is_stuffed(ip)) {
 469		error = stuffed_readpage(ip, page);
 470		unlock_page(page);
 471	} else {
 472		error = mpage_readpage(page, gfs2_block_map);
 473	}
 474
 475	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
 476		return -EIO;
 477
 478	return error;
 479}
 480
 481/**
 482 * gfs2_readpage - read a page of a file
 483 * @file: The file to read
 484 * @page: The page of the file
 485 *
 486 * This deals with the locking required. We have to unlock and
 487 * relock the page in order to get the locking in the right
 488 * order.
 489 */
 490
 491static int gfs2_readpage(struct file *file, struct page *page)
 492{
 493	struct address_space *mapping = page->mapping;
 494	struct gfs2_inode *ip = GFS2_I(mapping->host);
 495	struct gfs2_holder gh;
 496	int error;
 497
 498	unlock_page(page);
 499	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 500	error = gfs2_glock_nq(&gh);
 501	if (unlikely(error))
 502		goto out;
 503	error = AOP_TRUNCATED_PAGE;
 504	lock_page(page);
 505	if (page->mapping == mapping && !PageUptodate(page))
 506		error = __gfs2_readpage(file, page);
 507	else
 508		unlock_page(page);
 509	gfs2_glock_dq(&gh);
 510out:
 511	gfs2_holder_uninit(&gh);
 512	if (error && error != AOP_TRUNCATED_PAGE)
 513		lock_page(page);
 514	return error;
 515}
 516
 517/**
 518 * gfs2_internal_read - read an internal file
 519 * @ip: The gfs2 inode
 520 * @ra_state: The readahead state (or NULL for no readahead)
 521 * @buf: The buffer to fill
 522 * @pos: The file position
 523 * @size: The amount to read
 524 *
 525 */
 526
 527int gfs2_internal_read(struct gfs2_inode *ip, struct file_ra_state *ra_state,
 528                       char *buf, loff_t *pos, unsigned size)
 529{
 530	struct address_space *mapping = ip->i_inode.i_mapping;
 531	unsigned long index = *pos / PAGE_CACHE_SIZE;
 532	unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
 533	unsigned copied = 0;
 534	unsigned amt;
 535	struct page *page;
 536	void *p;
 537
 538	do {
 539		amt = size - copied;
 540		if (offset + size > PAGE_CACHE_SIZE)
 541			amt = PAGE_CACHE_SIZE - offset;
 542		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
 543		if (IS_ERR(page))
 544			return PTR_ERR(page);
 545		p = kmap_atomic(page, KM_USER0);
 546		memcpy(buf + copied, p + offset, amt);
 547		kunmap_atomic(p, KM_USER0);
 548		mark_page_accessed(page);
 549		page_cache_release(page);
 550		copied += amt;
 551		index++;
 552		offset = 0;
 553	} while(copied < size);
 554	(*pos) += size;
 555	return size;
 556}
 557
 558/**
 559 * gfs2_readpages - Read a bunch of pages at once
 
 
 
 
 560 *
 561 * Some notes:
 562 * 1. This is only for readahead, so we can simply ignore any things
 563 *    which are slightly inconvenient (such as locking conflicts between
 564 *    the page lock and the glock) and return having done no I/O. Its
 565 *    obviously not something we'd want to do on too regular a basis.
 566 *    Any I/O we ignore at this time will be done via readpage later.
 567 * 2. We don't handle stuffed files here we let readpage do the honours.
 568 * 3. mpage_readpages() does most of the heavy lifting in the common case.
 569 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
 570 */
 571
 572static int gfs2_readpages(struct file *file, struct address_space *mapping,
 573			  struct list_head *pages, unsigned nr_pages)
 574{
 575	struct inode *inode = mapping->host;
 576	struct gfs2_inode *ip = GFS2_I(inode);
 577	struct gfs2_sbd *sdp = GFS2_SB(inode);
 578	struct gfs2_holder gh;
 579	int ret;
 580
 581	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 582	ret = gfs2_glock_nq(&gh);
 583	if (unlikely(ret))
 584		goto out_uninit;
 585	if (!gfs2_is_stuffed(ip))
 586		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
 587	gfs2_glock_dq(&gh);
 588out_uninit:
 589	gfs2_holder_uninit(&gh);
 590	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
 591		ret = -EIO;
 592	return ret;
 593}
 594
 595/**
 596 * gfs2_write_begin - Begin to write to a file
 597 * @file: The file to write to
 598 * @mapping: The mapping in which to write
 599 * @pos: The file offset at which to start writing
 600 * @len: Length of the write
 601 * @flags: Various flags
 602 * @pagep: Pointer to return the page
 603 * @fsdata: Pointer to return fs data (unused by GFS2)
 604 *
 605 * Returns: errno
 606 */
 607
 608static int gfs2_write_begin(struct file *file, struct address_space *mapping,
 609			    loff_t pos, unsigned len, unsigned flags,
 610			    struct page **pagep, void **fsdata)
 611{
 612	struct gfs2_inode *ip = GFS2_I(mapping->host);
 613	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
 614	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 615	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
 
 616	int alloc_required;
 617	int error = 0;
 618	struct gfs2_alloc *al = NULL;
 619	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
 620	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
 621	struct page *page;
 622
 623	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
 624	error = gfs2_glock_nq(&ip->i_gh);
 625	if (unlikely(error))
 626		goto out_uninit;
 627	if (&ip->i_inode == sdp->sd_rindex) {
 628		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
 629					   GL_NOCACHE, &m_ip->i_gh);
 630		if (unlikely(error)) {
 631			gfs2_glock_dq(&ip->i_gh);
 632			goto out_uninit;
 633		}
 634	}
 635
 636	alloc_required = gfs2_write_alloc_required(ip, pos, len);
 637
 638	if (alloc_required || gfs2_is_jdata(ip))
 639		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
 640
 641	if (alloc_required) {
 642		al = gfs2_alloc_get(ip);
 643		if (!al) {
 644			error = -ENOMEM;
 645			goto out_unlock;
 646		}
 647
 648		error = gfs2_quota_lock_check(ip);
 649		if (error)
 650			goto out_alloc_put;
 651
 652		al->al_requested = data_blocks + ind_blocks;
 653		error = gfs2_inplace_reserve(ip);
 654		if (error)
 655			goto out_qunlock;
 656	}
 657
 658	rblocks = RES_DINODE + ind_blocks;
 659	if (gfs2_is_jdata(ip))
 660		rblocks += data_blocks ? data_blocks : 1;
 661	if (ind_blocks || data_blocks)
 662		rblocks += RES_STATFS + RES_QUOTA;
 663	if (&ip->i_inode == sdp->sd_rindex)
 664		rblocks += 2 * RES_STATFS;
 665	if (alloc_required)
 666		rblocks += gfs2_rg_blocks(al);
 667
 668	error = gfs2_trans_begin(sdp, rblocks,
 669				 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
 670	if (error)
 671		goto out_trans_fail;
 672
 673	error = -ENOMEM;
 674	flags |= AOP_FLAG_NOFS;
 675	page = grab_cache_page_write_begin(mapping, index, flags);
 676	*pagep = page;
 677	if (unlikely(!page))
 678		goto out_endtrans;
 679
 680	if (gfs2_is_stuffed(ip)) {
 681		error = 0;
 682		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
 683			error = gfs2_unstuff_dinode(ip, page);
 684			if (error == 0)
 685				goto prepare_write;
 686		} else if (!PageUptodate(page)) {
 687			error = stuffed_readpage(ip, page);
 688		}
 689		goto out;
 690	}
 691
 692prepare_write:
 693	error = __block_write_begin(page, from, len, gfs2_block_map);
 694out:
 695	if (error == 0)
 696		return 0;
 697
 698	unlock_page(page);
 699	page_cache_release(page);
 700
 701	gfs2_trans_end(sdp);
 702	if (pos + len > ip->i_inode.i_size)
 703		gfs2_trim_blocks(&ip->i_inode);
 704	goto out_trans_fail;
 705
 706out_endtrans:
 707	gfs2_trans_end(sdp);
 708out_trans_fail:
 709	if (alloc_required) {
 710		gfs2_inplace_release(ip);
 711out_qunlock:
 712		gfs2_quota_unlock(ip);
 713out_alloc_put:
 714		gfs2_alloc_put(ip);
 715	}
 716out_unlock:
 717	if (&ip->i_inode == sdp->sd_rindex) {
 718		gfs2_glock_dq(&m_ip->i_gh);
 719		gfs2_holder_uninit(&m_ip->i_gh);
 720	}
 721	gfs2_glock_dq(&ip->i_gh);
 722out_uninit:
 723	gfs2_holder_uninit(&ip->i_gh);
 724	return error;
 725}
 726
 727/**
 728 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
 729 * @inode: the rindex inode
 730 */
 731static void adjust_fs_space(struct inode *inode)
 732{
 733	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
 734	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 735	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
 736	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
 737	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
 738	struct buffer_head *m_bh, *l_bh;
 739	u64 fs_total, new_free;
 740
 741	/* Total up the file system space, according to the latest rindex. */
 742	fs_total = gfs2_ri_total(sdp);
 743	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
 744		return;
 745
 746	spin_lock(&sdp->sd_statfs_spin);
 747	gfs2_statfs_change_in(m_sc, m_bh->b_data +
 748			      sizeof(struct gfs2_dinode));
 749	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
 750		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
 751	else
 752		new_free = 0;
 753	spin_unlock(&sdp->sd_statfs_spin);
 754	fs_warn(sdp, "File system extended by %llu blocks.\n",
 755		(unsigned long long)new_free);
 756	gfs2_statfs_change(sdp, new_free, new_free, 0);
 757
 758	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
 759		goto out;
 760	update_statfs(sdp, m_bh, l_bh);
 761	brelse(l_bh);
 762out:
 763	brelse(m_bh);
 764}
 765
 766/**
 767 * gfs2_stuffed_write_end - Write end for stuffed files
 768 * @inode: The inode
 769 * @dibh: The buffer_head containing the on-disk inode
 770 * @pos: The file position
 771 * @len: The length of the write
 772 * @copied: How much was actually copied by the VFS
 773 * @page: The page
 774 *
 775 * This copies the data from the page into the inode block after
 776 * the inode data structure itself.
 777 *
 778 * Returns: errno
 779 */
 780static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
 781				  loff_t pos, unsigned len, unsigned copied,
 782				  struct page *page)
 783{
 784	struct gfs2_inode *ip = GFS2_I(inode);
 785	struct gfs2_sbd *sdp = GFS2_SB(inode);
 786	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 787	u64 to = pos + copied;
 788	void *kaddr;
 789	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
 790	struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data;
 791
 792	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
 793	kaddr = kmap_atomic(page, KM_USER0);
 794	memcpy(buf + pos, kaddr + pos, copied);
 795	memset(kaddr + pos + copied, 0, len - copied);
 796	flush_dcache_page(page);
 797	kunmap_atomic(kaddr, KM_USER0);
 798
 799	if (!PageUptodate(page))
 800		SetPageUptodate(page);
 801	unlock_page(page);
 802	page_cache_release(page);
 803
 804	if (copied) {
 805		if (inode->i_size < to)
 806			i_size_write(inode, to);
 807		gfs2_dinode_out(ip, di);
 808		mark_inode_dirty(inode);
 809	}
 810
 811	if (inode == sdp->sd_rindex) {
 812		adjust_fs_space(inode);
 813		ip->i_gh.gh_flags |= GL_NOCACHE;
 814	}
 815
 816	brelse(dibh);
 817	gfs2_trans_end(sdp);
 818	if (inode == sdp->sd_rindex) {
 819		gfs2_glock_dq(&m_ip->i_gh);
 820		gfs2_holder_uninit(&m_ip->i_gh);
 821	}
 822	gfs2_glock_dq(&ip->i_gh);
 823	gfs2_holder_uninit(&ip->i_gh);
 824	return copied;
 825}
 826
 827/**
 828 * gfs2_write_end
 829 * @file: The file to write to
 830 * @mapping: The address space to write to
 831 * @pos: The file position
 832 * @len: The length of the data
 833 * @copied:
 834 * @page: The page that has been written
 835 * @fsdata: The fsdata (unused in GFS2)
 836 *
 837 * The main write_end function for GFS2. We have a separate one for
 838 * stuffed files as they are slightly different, otherwise we just
 839 * put our locking around the VFS provided functions.
 840 *
 841 * Returns: errno
 842 */
 843
 844static int gfs2_write_end(struct file *file, struct address_space *mapping,
 845			  loff_t pos, unsigned len, unsigned copied,
 846			  struct page *page, void *fsdata)
 847{
 848	struct inode *inode = page->mapping->host;
 849	struct gfs2_inode *ip = GFS2_I(inode);
 850	struct gfs2_sbd *sdp = GFS2_SB(inode);
 851	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 852	struct buffer_head *dibh;
 853	struct gfs2_alloc *al = ip->i_alloc;
 854	unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
 855	unsigned int to = from + len;
 856	int ret;
 
 
 857
 858	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
 859
 860	ret = gfs2_meta_inode_buffer(ip, &dibh);
 861	if (unlikely(ret)) {
 862		unlock_page(page);
 863		page_cache_release(page);
 864		goto failed;
 865	}
 866
 867	gfs2_trans_add_bh(ip->i_gl, dibh, 1);
 868
 869	if (gfs2_is_stuffed(ip))
 870		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
 871
 872	if (!gfs2_is_writeback(ip))
 873		gfs2_page_add_databufs(ip, page, from, to);
 874
 875	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 876	if (ret > 0) {
 877		gfs2_dinode_out(ip, dibh->b_data);
 878		mark_inode_dirty(inode);
 879	}
 
 880
 881	if (inode == sdp->sd_rindex) {
 882		adjust_fs_space(inode);
 883		ip->i_gh.gh_flags |= GL_NOCACHE;
 884	}
 885
 886	brelse(dibh);
 887failed:
 888	gfs2_trans_end(sdp);
 889	if (al) {
 890		gfs2_inplace_release(ip);
 891		gfs2_quota_unlock(ip);
 892		gfs2_alloc_put(ip);
 893	}
 894	if (inode == sdp->sd_rindex) {
 895		gfs2_glock_dq(&m_ip->i_gh);
 896		gfs2_holder_uninit(&m_ip->i_gh);
 897	}
 898	gfs2_glock_dq(&ip->i_gh);
 899	gfs2_holder_uninit(&ip->i_gh);
 900	return ret;
 901}
 902
 903/**
 904 * gfs2_set_page_dirty - Page dirtying function
 905 * @page: The page to dirty
 906 *
 907 * Returns: 1 if it dirtyed the page, or 0 otherwise
 908 */
 909 
 910static int gfs2_set_page_dirty(struct page *page)
 911{
 912	SetPageChecked(page);
 913	return __set_page_dirty_buffers(page);
 914}
 915
 916/**
 917 * gfs2_bmap - Block map function
 918 * @mapping: Address space info
 919 * @lblock: The block to map
 920 *
 921 * Returns: The disk address for the block or 0 on hole or error
 922 */
 923
 924static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
 925{
 926	struct gfs2_inode *ip = GFS2_I(mapping->host);
 927	struct gfs2_holder i_gh;
 928	sector_t dblock = 0;
 929	int error;
 930
 931	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
 932	if (error)
 933		return 0;
 934
 935	if (!gfs2_is_stuffed(ip))
 936		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
 937
 938	gfs2_glock_dq_uninit(&i_gh);
 939
 940	return dblock;
 941}
 942
 943static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
 944{
 945	struct gfs2_bufdata *bd;
 946
 947	lock_buffer(bh);
 948	gfs2_log_lock(sdp);
 949	clear_buffer_dirty(bh);
 950	bd = bh->b_private;
 951	if (bd) {
 952		if (!list_empty(&bd->bd_le.le_list) && !buffer_pinned(bh))
 953			list_del_init(&bd->bd_le.le_list);
 954		else
 955			gfs2_remove_from_journal(bh, current->journal_info, 0);
 956	}
 957	bh->b_bdev = NULL;
 958	clear_buffer_mapped(bh);
 959	clear_buffer_req(bh);
 960	clear_buffer_new(bh);
 961	gfs2_log_unlock(sdp);
 962	unlock_buffer(bh);
 963}
 964
 965static void gfs2_invalidatepage(struct page *page, unsigned long offset)
 
 966{
 967	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
 
 
 968	struct buffer_head *bh, *head;
 969	unsigned long pos = 0;
 970
 971	BUG_ON(!PageLocked(page));
 972	if (offset == 0)
 973		ClearPageChecked(page);
 974	if (!page_has_buffers(page))
 975		goto out;
 976
 977	bh = head = page_buffers(page);
 978	do {
 
 
 
 979		if (offset <= pos)
 980			gfs2_discard(sdp, bh);
 981		pos += bh->b_size;
 982		bh = bh->b_this_page;
 983	} while (bh != head);
 984out:
 985	if (offset == 0)
 986		try_to_release_page(page, 0);
 987}
 988
 989/**
 990 * gfs2_ok_for_dio - check that dio is valid on this file
 991 * @ip: The inode
 992 * @rw: READ or WRITE
 993 * @offset: The offset at which we are reading or writing
 994 *
 995 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
 996 *          1 (to accept the i/o request)
 997 */
 998static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
 999{
1000	/*
1001	 * Should we return an error here? I can't see that O_DIRECT for
1002	 * a stuffed file makes any sense. For now we'll silently fall
1003	 * back to buffered I/O
1004	 */
1005	if (gfs2_is_stuffed(ip))
1006		return 0;
1007
1008	if (offset >= i_size_read(&ip->i_inode))
1009		return 0;
1010	return 1;
1011}
1012
1013
1014
1015static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
1016			      const struct iovec *iov, loff_t offset,
1017			      unsigned long nr_segs)
1018{
1019	struct file *file = iocb->ki_filp;
1020	struct inode *inode = file->f_mapping->host;
 
1021	struct gfs2_inode *ip = GFS2_I(inode);
 
1022	struct gfs2_holder gh;
1023	int rv;
1024
1025	/*
1026	 * Deferred lock, even if its a write, since we do no allocation
1027	 * on this path. All we need change is atime, and this lock mode
1028	 * ensures that other nodes have flushed their buffered read caches
1029	 * (i.e. their page cache entries for this inode). We do not,
1030	 * unfortunately have the option of only flushing a range like
1031	 * the VFS does.
1032	 */
1033	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1034	rv = gfs2_glock_nq(&gh);
1035	if (rv)
1036		return rv;
1037	rv = gfs2_ok_for_dio(ip, rw, offset);
1038	if (rv != 1)
1039		goto out; /* dio not valid, fall back to buffered i/o */
1040
1041	rv = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1042				  offset, nr_segs, gfs2_get_block_direct,
1043				  NULL, NULL, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1044out:
1045	gfs2_glock_dq_m(1, &gh);
 
1046	gfs2_holder_uninit(&gh);
1047	return rv;
1048}
1049
1050/**
1051 * gfs2_releasepage - free the metadata associated with a page
1052 * @page: the page that's being released
1053 * @gfp_mask: passed from Linux VFS, ignored by us
1054 *
1055 * Call try_to_free_buffers() if the buffers in this page can be
1056 * released.
1057 *
1058 * Returns: 0
1059 */
1060
1061int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1062{
1063	struct address_space *mapping = page->mapping;
1064	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1065	struct buffer_head *bh, *head;
1066	struct gfs2_bufdata *bd;
1067
1068	if (!page_has_buffers(page))
1069		return 0;
1070
 
 
 
 
 
 
 
 
 
 
1071	gfs2_log_lock(sdp);
1072	spin_lock(&sdp->sd_ail_lock);
1073	head = bh = page_buffers(page);
1074	do {
1075		if (atomic_read(&bh->b_count))
1076			goto cannot_release;
1077		bd = bh->b_private;
1078		if (bd && bd->bd_ail)
 
 
1079			goto cannot_release;
1080		if (buffer_pinned(bh) || buffer_dirty(bh))
1081			goto not_possible;
1082		bh = bh->b_this_page;
1083	} while(bh != head);
1084	spin_unlock(&sdp->sd_ail_lock);
1085	gfs2_log_unlock(sdp);
1086
1087	head = bh = page_buffers(page);
1088	do {
1089		gfs2_log_lock(sdp);
1090		bd = bh->b_private;
1091		if (bd) {
1092			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1093			gfs2_assert_warn(sdp, list_empty(&bd->bd_list_tr));
1094			if (!list_empty(&bd->bd_le.le_list)) {
1095				if (!buffer_pinned(bh))
1096					list_del_init(&bd->bd_le.le_list);
1097				else
1098					bd = NULL;
1099			}
1100			if (bd)
1101				bd->bd_bh = NULL;
1102			bh->b_private = NULL;
1103		}
1104		gfs2_log_unlock(sdp);
1105		if (bd)
1106			kmem_cache_free(gfs2_bufdata_cachep, bd);
 
1107
1108		bh = bh->b_this_page;
1109	} while (bh != head);
 
1110
1111	return try_to_free_buffers(page);
1112
1113not_possible: /* Should never happen */
1114	WARN_ON(buffer_dirty(bh));
1115	WARN_ON(buffer_pinned(bh));
1116cannot_release:
1117	spin_unlock(&sdp->sd_ail_lock);
1118	gfs2_log_unlock(sdp);
1119	return 0;
1120}
1121
1122static const struct address_space_operations gfs2_writeback_aops = {
1123	.writepage = gfs2_writeback_writepage,
1124	.writepages = gfs2_writeback_writepages,
1125	.readpage = gfs2_readpage,
1126	.readpages = gfs2_readpages,
1127	.write_begin = gfs2_write_begin,
1128	.write_end = gfs2_write_end,
1129	.bmap = gfs2_bmap,
1130	.invalidatepage = gfs2_invalidatepage,
1131	.releasepage = gfs2_releasepage,
1132	.direct_IO = gfs2_direct_IO,
1133	.migratepage = buffer_migrate_page,
1134	.is_partially_uptodate = block_is_partially_uptodate,
1135	.error_remove_page = generic_error_remove_page,
1136};
1137
1138static const struct address_space_operations gfs2_ordered_aops = {
1139	.writepage = gfs2_ordered_writepage,
 
1140	.readpage = gfs2_readpage,
1141	.readpages = gfs2_readpages,
1142	.write_begin = gfs2_write_begin,
1143	.write_end = gfs2_write_end,
1144	.set_page_dirty = gfs2_set_page_dirty,
1145	.bmap = gfs2_bmap,
1146	.invalidatepage = gfs2_invalidatepage,
1147	.releasepage = gfs2_releasepage,
1148	.direct_IO = gfs2_direct_IO,
1149	.migratepage = buffer_migrate_page,
1150	.is_partially_uptodate = block_is_partially_uptodate,
1151	.error_remove_page = generic_error_remove_page,
1152};
1153
1154static const struct address_space_operations gfs2_jdata_aops = {
1155	.writepage = gfs2_jdata_writepage,
1156	.writepages = gfs2_jdata_writepages,
1157	.readpage = gfs2_readpage,
1158	.readpages = gfs2_readpages,
1159	.write_begin = gfs2_write_begin,
1160	.write_end = gfs2_write_end,
1161	.set_page_dirty = gfs2_set_page_dirty,
1162	.bmap = gfs2_bmap,
1163	.invalidatepage = gfs2_invalidatepage,
1164	.releasepage = gfs2_releasepage,
1165	.is_partially_uptodate = block_is_partially_uptodate,
1166	.error_remove_page = generic_error_remove_page,
1167};
1168
1169void gfs2_set_aops(struct inode *inode)
1170{
1171	struct gfs2_inode *ip = GFS2_I(inode);
1172
1173	if (gfs2_is_writeback(ip))
1174		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1175	else if (gfs2_is_ordered(ip))
1176		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1177	else if (gfs2_is_jdata(ip))
1178		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1179	else
1180		BUG();
1181}
1182
v4.10.11
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#include <linux/sched.h>
  11#include <linux/slab.h>
  12#include <linux/spinlock.h>
  13#include <linux/completion.h>
  14#include <linux/buffer_head.h>
  15#include <linux/pagemap.h>
  16#include <linux/pagevec.h>
  17#include <linux/mpage.h>
  18#include <linux/fs.h>
  19#include <linux/writeback.h>
  20#include <linux/swap.h>
  21#include <linux/gfs2_ondisk.h>
  22#include <linux/backing-dev.h>
  23#include <linux/uio.h>
  24#include <trace/events/writeback.h>
  25
  26#include "gfs2.h"
  27#include "incore.h"
  28#include "bmap.h"
  29#include "glock.h"
  30#include "inode.h"
  31#include "log.h"
  32#include "meta_io.h"
  33#include "quota.h"
  34#include "trans.h"
  35#include "rgrp.h"
  36#include "super.h"
  37#include "util.h"
  38#include "glops.h"
  39
  40
  41static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
  42				   unsigned int from, unsigned int to)
  43{
  44	struct buffer_head *head = page_buffers(page);
  45	unsigned int bsize = head->b_size;
  46	struct buffer_head *bh;
  47	unsigned int start, end;
  48
  49	for (bh = head, start = 0; bh != head || !start;
  50	     bh = bh->b_this_page, start = end) {
  51		end = start + bsize;
  52		if (end <= from || start >= to)
  53			continue;
  54		if (gfs2_is_jdata(ip))
  55			set_buffer_uptodate(bh);
  56		gfs2_trans_add_data(ip->i_gl, bh);
  57	}
  58}
  59
  60/**
  61 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
  62 * @inode: The inode
  63 * @lblock: The block number to look up
  64 * @bh_result: The buffer head to return the result in
  65 * @create: Non-zero if we may add block to the file
  66 *
  67 * Returns: errno
  68 */
  69
  70static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
  71				  struct buffer_head *bh_result, int create)
  72{
  73	int error;
  74
  75	error = gfs2_block_map(inode, lblock, bh_result, 0);
  76	if (error)
  77		return error;
  78	if (!buffer_mapped(bh_result))
  79		return -EIO;
  80	return 0;
  81}
  82
  83static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
  84				 struct buffer_head *bh_result, int create)
  85{
  86	return gfs2_block_map(inode, lblock, bh_result, 0);
  87}
  88
  89/**
  90 * gfs2_writepage_common - Common bits of writepage
  91 * @page: The page to be written
  92 * @wbc: The writeback control
  93 *
  94 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
  95 */
  96
  97static int gfs2_writepage_common(struct page *page,
  98				 struct writeback_control *wbc)
  99{
 100	struct inode *inode = page->mapping->host;
 101	struct gfs2_inode *ip = GFS2_I(inode);
 102	struct gfs2_sbd *sdp = GFS2_SB(inode);
 103	loff_t i_size = i_size_read(inode);
 104	pgoff_t end_index = i_size >> PAGE_SHIFT;
 105	unsigned offset;
 106
 107	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
 108		goto out;
 109	if (current->journal_info)
 110		goto redirty;
 111	/* Is the page fully outside i_size? (truncate in progress) */
 112	offset = i_size & (PAGE_SIZE-1);
 113	if (page->index > end_index || (page->index == end_index && !offset)) {
 114		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
 115		goto out;
 116	}
 117	return 1;
 118redirty:
 119	redirty_page_for_writepage(wbc, page);
 120out:
 121	unlock_page(page);
 122	return 0;
 123}
 124
 125/**
 126 * gfs2_writepage - Write page for writeback mappings
 127 * @page: The page
 128 * @wbc: The writeback control
 129 *
 130 */
 131
 132static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
 
 133{
 134	int ret;
 135
 136	ret = gfs2_writepage_common(page, wbc);
 137	if (ret <= 0)
 138		return ret;
 139
 140	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
 141}
 142
 143/* This is the same as calling block_write_full_page, but it also
 144 * writes pages outside of i_size
 
 
 
 145 */
 146int gfs2_write_full_page(struct page *page, get_block_t *get_block,
 147			 struct writeback_control *wbc)
 
 148{
 149	struct inode * const inode = page->mapping->host;
 150	loff_t i_size = i_size_read(inode);
 151	const pgoff_t end_index = i_size >> PAGE_SHIFT;
 152	unsigned offset;
 153
 154	/*
 155	 * The page straddles i_size.  It must be zeroed out on each and every
 156	 * writepage invocation because it may be mmapped.  "A file is mapped
 157	 * in multiples of the page size.  For a file that is not a multiple of
 158	 * the  page size, the remaining memory is zeroed when mapped, and
 159	 * writes to that region are not written out to the file."
 160	 */
 161	offset = i_size & (PAGE_SIZE-1);
 162	if (page->index == end_index && offset)
 163		zero_user_segment(page, offset, PAGE_SIZE);
 164
 165	return __block_write_full_page(inode, page, get_block, wbc,
 166				       end_buffer_async_write);
 
 
 
 
 167}
 168
 169/**
 170 * __gfs2_jdata_writepage - The core of jdata writepage
 171 * @page: The page to write
 172 * @wbc: The writeback control
 173 *
 174 * This is shared between writepage and writepages and implements the
 175 * core of the writepage operation. If a transaction is required then
 176 * PageChecked will have been set and the transaction will have
 177 * already been started before this is called.
 178 */
 179
 180static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
 181{
 182	struct inode *inode = page->mapping->host;
 183	struct gfs2_inode *ip = GFS2_I(inode);
 184	struct gfs2_sbd *sdp = GFS2_SB(inode);
 185
 186	if (PageChecked(page)) {
 187		ClearPageChecked(page);
 188		if (!page_has_buffers(page)) {
 189			create_empty_buffers(page, inode->i_sb->s_blocksize,
 190					     BIT(BH_Dirty)|BIT(BH_Uptodate));
 191		}
 192		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
 193	}
 194	return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
 195}
 196
 197/**
 198 * gfs2_jdata_writepage - Write complete page
 199 * @page: Page to write
 200 * @wbc: The writeback control
 201 *
 202 * Returns: errno
 203 *
 204 */
 205
 206static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
 207{
 208	struct inode *inode = page->mapping->host;
 209	struct gfs2_inode *ip = GFS2_I(inode);
 210	struct gfs2_sbd *sdp = GFS2_SB(inode);
 211	int ret;
 
 212
 213	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
 214		goto out;
 215	if (PageChecked(page) || current->journal_info)
 216		goto out_ignore;
 217	ret = __gfs2_jdata_writepage(page, wbc);
 
 
 
 
 
 
 
 
 218	return ret;
 219
 220out_ignore:
 221	redirty_page_for_writepage(wbc, page);
 222out:
 223	unlock_page(page);
 224	return 0;
 225}
 226
 227/**
 228 * gfs2_writepages - Write a bunch of dirty pages back to disk
 229 * @mapping: The mapping to write
 230 * @wbc: Write-back control
 231 *
 232 * Used for both ordered and writeback modes.
 
 
 233 */
 234static int gfs2_writepages(struct address_space *mapping,
 235			   struct writeback_control *wbc)
 236{
 237	return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
 238}
 239
 240/**
 241 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
 242 * @mapping: The mapping
 243 * @wbc: The writeback control
 
 244 * @pvec: The vector of pages
 245 * @nr_pages: The number of pages to write
 246 * @end: End position
 247 * @done_index: Page index
 248 *
 249 * Returns: non-zero if loop should terminate, zero otherwise
 250 */
 251
 252static int gfs2_write_jdata_pagevec(struct address_space *mapping,
 253				    struct writeback_control *wbc,
 254				    struct pagevec *pvec,
 255				    int nr_pages, pgoff_t end,
 256				    pgoff_t *done_index)
 257{
 258	struct inode *inode = mapping->host;
 259	struct gfs2_sbd *sdp = GFS2_SB(inode);
 260	unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
 
 
 
 261	int i;
 262	int ret;
 263
 264	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
 265	if (ret < 0)
 266		return ret;
 267
 268	for(i = 0; i < nr_pages; i++) {
 269		struct page *page = pvec->pages[i];
 270
 271		/*
 272		 * At this point, the page may be truncated or
 273		 * invalidated (changing page->mapping to NULL), or
 274		 * even swizzled back from swapper_space to tmpfs file
 275		 * mapping. However, page->index will not change
 276		 * because we have a reference on the page.
 277		 */
 278		if (page->index > end) {
 279			/*
 280			 * can't be range_cyclic (1st pass) because
 281			 * end == -1 in that case.
 282			 */
 283			ret = 1;
 284			break;
 285		}
 286
 287		*done_index = page->index;
 288
 289		lock_page(page);
 290
 291		if (unlikely(page->mapping != mapping)) {
 292continue_unlock:
 293			unlock_page(page);
 294			continue;
 295		}
 296
 297		if (!PageDirty(page)) {
 298			/* someone wrote it for us */
 299			goto continue_unlock;
 
 300		}
 301
 302		if (PageWriteback(page)) {
 303			if (wbc->sync_mode != WB_SYNC_NONE)
 304				wait_on_page_writeback(page);
 305			else
 306				goto continue_unlock;
 
 
 307		}
 308
 309		BUG_ON(PageWriteback(page));
 310		if (!clear_page_dirty_for_io(page))
 311			goto continue_unlock;
 312
 313		trace_wbc_writepage(wbc, inode_to_bdi(inode));
 
 314
 315		ret = __gfs2_jdata_writepage(page, wbc);
 316		if (unlikely(ret)) {
 317			if (ret == AOP_WRITEPAGE_ACTIVATE) {
 318				unlock_page(page);
 319				ret = 0;
 320			} else {
 321
 322				/*
 323				 * done_index is set past this page,
 324				 * so media errors will not choke
 325				 * background writeout for the entire
 326				 * file. This has consequences for
 327				 * range_cyclic semantics (ie. it may
 328				 * not be suitable for data integrity
 329				 * writeout).
 330				 */
 331				*done_index = page->index + 1;
 332				ret = 1;
 333				break;
 334			}
 335		}
 336
 337		/*
 338		 * We stop writing back only if we are not doing
 339		 * integrity sync. In case of integrity sync we have to
 340		 * keep going until we have written all the pages
 341		 * we tagged for writeback prior to entering this loop.
 342		 */
 343		if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
 344			ret = 1;
 345			break;
 346		}
 347
 348	}
 349	gfs2_trans_end(sdp);
 350	return ret;
 351}
 352
 353/**
 354 * gfs2_write_cache_jdata - Like write_cache_pages but different
 355 * @mapping: The mapping to write
 356 * @wbc: The writeback control
 
 
 357 *
 358 * The reason that we use our own function here is that we need to
 359 * start transactions before we grab page locks. This allows us
 360 * to get the ordering right.
 361 */
 362
 363static int gfs2_write_cache_jdata(struct address_space *mapping,
 364				  struct writeback_control *wbc)
 365{
 366	int ret = 0;
 367	int done = 0;
 368	struct pagevec pvec;
 369	int nr_pages;
 370	pgoff_t uninitialized_var(writeback_index);
 371	pgoff_t index;
 372	pgoff_t end;
 373	pgoff_t done_index;
 374	int cycled;
 375	int range_whole = 0;
 376	int tag;
 377
 378	pagevec_init(&pvec, 0);
 379	if (wbc->range_cyclic) {
 380		writeback_index = mapping->writeback_index; /* prev offset */
 381		index = writeback_index;
 382		if (index == 0)
 383			cycled = 1;
 384		else
 385			cycled = 0;
 386		end = -1;
 387	} else {
 388		index = wbc->range_start >> PAGE_SHIFT;
 389		end = wbc->range_end >> PAGE_SHIFT;
 390		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
 391			range_whole = 1;
 392		cycled = 1; /* ignore range_cyclic tests */
 393	}
 394	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 395		tag = PAGECACHE_TAG_TOWRITE;
 396	else
 397		tag = PAGECACHE_TAG_DIRTY;
 398
 399retry:
 400	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 401		tag_pages_for_writeback(mapping, index, end);
 402	done_index = index;
 403	while (!done && (index <= end)) {
 404		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
 405			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
 406		if (nr_pages == 0)
 407			break;
 408
 409		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end, &done_index);
 410		if (ret)
 411			done = 1;
 412		if (ret > 0)
 413			ret = 0;
 
 414		pagevec_release(&pvec);
 415		cond_resched();
 416	}
 417
 418	if (!cycled && !done) {
 419		/*
 420		 * range_cyclic:
 421		 * We hit the last page and there is more work to be done: wrap
 422		 * back to the start of the file
 423		 */
 424		cycled = 1;
 425		index = 0;
 426		end = writeback_index - 1;
 427		goto retry;
 428	}
 429
 430	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
 431		mapping->writeback_index = done_index;
 432
 433	return ret;
 434}
 435
 436
 437/**
 438 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
 439 * @mapping: The mapping to write
 440 * @wbc: The writeback control
 441 * 
 442 */
 443
 444static int gfs2_jdata_writepages(struct address_space *mapping,
 445				 struct writeback_control *wbc)
 446{
 447	struct gfs2_inode *ip = GFS2_I(mapping->host);
 448	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
 449	int ret;
 450
 451	ret = gfs2_write_cache_jdata(mapping, wbc);
 452	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
 453		gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH);
 454		ret = gfs2_write_cache_jdata(mapping, wbc);
 455	}
 456	return ret;
 457}
 458
 459/**
 460 * stuffed_readpage - Fill in a Linux page with stuffed file data
 461 * @ip: the inode
 462 * @page: the page
 463 *
 464 * Returns: errno
 465 */
 466
 467static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
 468{
 469	struct buffer_head *dibh;
 470	u64 dsize = i_size_read(&ip->i_inode);
 471	void *kaddr;
 472	int error;
 473
 474	/*
 475	 * Due to the order of unstuffing files and ->fault(), we can be
 476	 * asked for a zero page in the case of a stuffed file being extended,
 477	 * so we need to supply one here. It doesn't happen often.
 478	 */
 479	if (unlikely(page->index)) {
 480		zero_user(page, 0, PAGE_SIZE);
 481		SetPageUptodate(page);
 482		return 0;
 483	}
 484
 485	error = gfs2_meta_inode_buffer(ip, &dibh);
 486	if (error)
 487		return error;
 488
 489	kaddr = kmap_atomic(page);
 490	if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
 491		dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
 492	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
 493	memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
 494	kunmap_atomic(kaddr);
 495	flush_dcache_page(page);
 496	brelse(dibh);
 497	SetPageUptodate(page);
 498
 499	return 0;
 500}
 501
 502
 503/**
 504 * __gfs2_readpage - readpage
 505 * @file: The file to read a page for
 506 * @page: The page to read
 507 *
 508 * This is the core of gfs2's readpage. Its used by the internal file
 509 * reading code as in that case we already hold the glock. Also its
 510 * called by gfs2_readpage() once the required lock has been granted.
 511 *
 512 */
 513
 514static int __gfs2_readpage(void *file, struct page *page)
 515{
 516	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
 517	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
 518	int error;
 519
 520	if (gfs2_is_stuffed(ip)) {
 521		error = stuffed_readpage(ip, page);
 522		unlock_page(page);
 523	} else {
 524		error = mpage_readpage(page, gfs2_block_map);
 525	}
 526
 527	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
 528		return -EIO;
 529
 530	return error;
 531}
 532
 533/**
 534 * gfs2_readpage - read a page of a file
 535 * @file: The file to read
 536 * @page: The page of the file
 537 *
 538 * This deals with the locking required. We have to unlock and
 539 * relock the page in order to get the locking in the right
 540 * order.
 541 */
 542
 543static int gfs2_readpage(struct file *file, struct page *page)
 544{
 545	struct address_space *mapping = page->mapping;
 546	struct gfs2_inode *ip = GFS2_I(mapping->host);
 547	struct gfs2_holder gh;
 548	int error;
 549
 550	unlock_page(page);
 551	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 552	error = gfs2_glock_nq(&gh);
 553	if (unlikely(error))
 554		goto out;
 555	error = AOP_TRUNCATED_PAGE;
 556	lock_page(page);
 557	if (page->mapping == mapping && !PageUptodate(page))
 558		error = __gfs2_readpage(file, page);
 559	else
 560		unlock_page(page);
 561	gfs2_glock_dq(&gh);
 562out:
 563	gfs2_holder_uninit(&gh);
 564	if (error && error != AOP_TRUNCATED_PAGE)
 565		lock_page(page);
 566	return error;
 567}
 568
 569/**
 570 * gfs2_internal_read - read an internal file
 571 * @ip: The gfs2 inode
 
 572 * @buf: The buffer to fill
 573 * @pos: The file position
 574 * @size: The amount to read
 575 *
 576 */
 577
 578int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
 579                       unsigned size)
 580{
 581	struct address_space *mapping = ip->i_inode.i_mapping;
 582	unsigned long index = *pos / PAGE_SIZE;
 583	unsigned offset = *pos & (PAGE_SIZE - 1);
 584	unsigned copied = 0;
 585	unsigned amt;
 586	struct page *page;
 587	void *p;
 588
 589	do {
 590		amt = size - copied;
 591		if (offset + size > PAGE_SIZE)
 592			amt = PAGE_SIZE - offset;
 593		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
 594		if (IS_ERR(page))
 595			return PTR_ERR(page);
 596		p = kmap_atomic(page);
 597		memcpy(buf + copied, p + offset, amt);
 598		kunmap_atomic(p);
 599		put_page(page);
 
 600		copied += amt;
 601		index++;
 602		offset = 0;
 603	} while(copied < size);
 604	(*pos) += size;
 605	return size;
 606}
 607
 608/**
 609 * gfs2_readpages - Read a bunch of pages at once
 610 * @file: The file to read from
 611 * @mapping: Address space info
 612 * @pages: List of pages to read
 613 * @nr_pages: Number of pages to read
 614 *
 615 * Some notes:
 616 * 1. This is only for readahead, so we can simply ignore any things
 617 *    which are slightly inconvenient (such as locking conflicts between
 618 *    the page lock and the glock) and return having done no I/O. Its
 619 *    obviously not something we'd want to do on too regular a basis.
 620 *    Any I/O we ignore at this time will be done via readpage later.
 621 * 2. We don't handle stuffed files here we let readpage do the honours.
 622 * 3. mpage_readpages() does most of the heavy lifting in the common case.
 623 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
 624 */
 625
 626static int gfs2_readpages(struct file *file, struct address_space *mapping,
 627			  struct list_head *pages, unsigned nr_pages)
 628{
 629	struct inode *inode = mapping->host;
 630	struct gfs2_inode *ip = GFS2_I(inode);
 631	struct gfs2_sbd *sdp = GFS2_SB(inode);
 632	struct gfs2_holder gh;
 633	int ret;
 634
 635	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 636	ret = gfs2_glock_nq(&gh);
 637	if (unlikely(ret))
 638		goto out_uninit;
 639	if (!gfs2_is_stuffed(ip))
 640		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
 641	gfs2_glock_dq(&gh);
 642out_uninit:
 643	gfs2_holder_uninit(&gh);
 644	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
 645		ret = -EIO;
 646	return ret;
 647}
 648
 649/**
 650 * gfs2_write_begin - Begin to write to a file
 651 * @file: The file to write to
 652 * @mapping: The mapping in which to write
 653 * @pos: The file offset at which to start writing
 654 * @len: Length of the write
 655 * @flags: Various flags
 656 * @pagep: Pointer to return the page
 657 * @fsdata: Pointer to return fs data (unused by GFS2)
 658 *
 659 * Returns: errno
 660 */
 661
 662static int gfs2_write_begin(struct file *file, struct address_space *mapping,
 663			    loff_t pos, unsigned len, unsigned flags,
 664			    struct page **pagep, void **fsdata)
 665{
 666	struct gfs2_inode *ip = GFS2_I(mapping->host);
 667	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
 668	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 669	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
 670	unsigned requested = 0;
 671	int alloc_required;
 672	int error = 0;
 673	pgoff_t index = pos >> PAGE_SHIFT;
 674	unsigned from = pos & (PAGE_SIZE - 1);
 
 675	struct page *page;
 676
 677	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
 678	error = gfs2_glock_nq(&ip->i_gh);
 679	if (unlikely(error))
 680		goto out_uninit;
 681	if (&ip->i_inode == sdp->sd_rindex) {
 682		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
 683					   GL_NOCACHE, &m_ip->i_gh);
 684		if (unlikely(error)) {
 685			gfs2_glock_dq(&ip->i_gh);
 686			goto out_uninit;
 687		}
 688	}
 689
 690	alloc_required = gfs2_write_alloc_required(ip, pos, len);
 691
 692	if (alloc_required || gfs2_is_jdata(ip))
 693		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
 694
 695	if (alloc_required) {
 696		struct gfs2_alloc_parms ap = { .aflags = 0, };
 697		requested = data_blocks + ind_blocks;
 698		ap.target = requested;
 699		error = gfs2_quota_lock_check(ip, &ap);
 
 
 
 700		if (error)
 701			goto out_unlock;
 702
 703		error = gfs2_inplace_reserve(ip, &ap);
 
 704		if (error)
 705			goto out_qunlock;
 706	}
 707
 708	rblocks = RES_DINODE + ind_blocks;
 709	if (gfs2_is_jdata(ip))
 710		rblocks += data_blocks ? data_blocks : 1;
 711	if (ind_blocks || data_blocks)
 712		rblocks += RES_STATFS + RES_QUOTA;
 713	if (&ip->i_inode == sdp->sd_rindex)
 714		rblocks += 2 * RES_STATFS;
 715	if (alloc_required)
 716		rblocks += gfs2_rg_blocks(ip, requested);
 717
 718	error = gfs2_trans_begin(sdp, rblocks,
 719				 PAGE_SIZE/sdp->sd_sb.sb_bsize);
 720	if (error)
 721		goto out_trans_fail;
 722
 723	error = -ENOMEM;
 724	flags |= AOP_FLAG_NOFS;
 725	page = grab_cache_page_write_begin(mapping, index, flags);
 726	*pagep = page;
 727	if (unlikely(!page))
 728		goto out_endtrans;
 729
 730	if (gfs2_is_stuffed(ip)) {
 731		error = 0;
 732		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
 733			error = gfs2_unstuff_dinode(ip, page);
 734			if (error == 0)
 735				goto prepare_write;
 736		} else if (!PageUptodate(page)) {
 737			error = stuffed_readpage(ip, page);
 738		}
 739		goto out;
 740	}
 741
 742prepare_write:
 743	error = __block_write_begin(page, from, len, gfs2_block_map);
 744out:
 745	if (error == 0)
 746		return 0;
 747
 748	unlock_page(page);
 749	put_page(page);
 750
 751	gfs2_trans_end(sdp);
 752	if (pos + len > ip->i_inode.i_size)
 753		gfs2_trim_blocks(&ip->i_inode);
 754	goto out_trans_fail;
 755
 756out_endtrans:
 757	gfs2_trans_end(sdp);
 758out_trans_fail:
 759	if (alloc_required) {
 760		gfs2_inplace_release(ip);
 761out_qunlock:
 762		gfs2_quota_unlock(ip);
 
 
 763	}
 764out_unlock:
 765	if (&ip->i_inode == sdp->sd_rindex) {
 766		gfs2_glock_dq(&m_ip->i_gh);
 767		gfs2_holder_uninit(&m_ip->i_gh);
 768	}
 769	gfs2_glock_dq(&ip->i_gh);
 770out_uninit:
 771	gfs2_holder_uninit(&ip->i_gh);
 772	return error;
 773}
 774
 775/**
 776 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
 777 * @inode: the rindex inode
 778 */
 779static void adjust_fs_space(struct inode *inode)
 780{
 781	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
 782	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 783	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
 784	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
 785	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
 786	struct buffer_head *m_bh, *l_bh;
 787	u64 fs_total, new_free;
 788
 789	/* Total up the file system space, according to the latest rindex. */
 790	fs_total = gfs2_ri_total(sdp);
 791	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
 792		return;
 793
 794	spin_lock(&sdp->sd_statfs_spin);
 795	gfs2_statfs_change_in(m_sc, m_bh->b_data +
 796			      sizeof(struct gfs2_dinode));
 797	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
 798		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
 799	else
 800		new_free = 0;
 801	spin_unlock(&sdp->sd_statfs_spin);
 802	fs_warn(sdp, "File system extended by %llu blocks.\n",
 803		(unsigned long long)new_free);
 804	gfs2_statfs_change(sdp, new_free, new_free, 0);
 805
 806	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
 807		goto out;
 808	update_statfs(sdp, m_bh, l_bh);
 809	brelse(l_bh);
 810out:
 811	brelse(m_bh);
 812}
 813
 814/**
 815 * gfs2_stuffed_write_end - Write end for stuffed files
 816 * @inode: The inode
 817 * @dibh: The buffer_head containing the on-disk inode
 818 * @pos: The file position
 819 * @len: The length of the write
 820 * @copied: How much was actually copied by the VFS
 821 * @page: The page
 822 *
 823 * This copies the data from the page into the inode block after
 824 * the inode data structure itself.
 825 *
 826 * Returns: errno
 827 */
 828static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
 829				  loff_t pos, unsigned len, unsigned copied,
 830				  struct page *page)
 831{
 832	struct gfs2_inode *ip = GFS2_I(inode);
 833	struct gfs2_sbd *sdp = GFS2_SB(inode);
 834	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 835	u64 to = pos + copied;
 836	void *kaddr;
 837	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
 
 838
 839	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
 840	kaddr = kmap_atomic(page);
 841	memcpy(buf + pos, kaddr + pos, copied);
 
 842	flush_dcache_page(page);
 843	kunmap_atomic(kaddr);
 844
 845	WARN_ON(!PageUptodate(page));
 
 846	unlock_page(page);
 847	put_page(page);
 848
 849	if (copied) {
 850		if (inode->i_size < to)
 851			i_size_write(inode, to);
 
 852		mark_inode_dirty(inode);
 853	}
 854
 855	if (inode == sdp->sd_rindex) {
 856		adjust_fs_space(inode);
 857		sdp->sd_rindex_uptodate = 0;
 858	}
 859
 860	brelse(dibh);
 861	gfs2_trans_end(sdp);
 862	if (inode == sdp->sd_rindex) {
 863		gfs2_glock_dq(&m_ip->i_gh);
 864		gfs2_holder_uninit(&m_ip->i_gh);
 865	}
 866	gfs2_glock_dq(&ip->i_gh);
 867	gfs2_holder_uninit(&ip->i_gh);
 868	return copied;
 869}
 870
 871/**
 872 * gfs2_write_end
 873 * @file: The file to write to
 874 * @mapping: The address space to write to
 875 * @pos: The file position
 876 * @len: The length of the data
 877 * @copied: How much was actually copied by the VFS
 878 * @page: The page that has been written
 879 * @fsdata: The fsdata (unused in GFS2)
 880 *
 881 * The main write_end function for GFS2. We have a separate one for
 882 * stuffed files as they are slightly different, otherwise we just
 883 * put our locking around the VFS provided functions.
 884 *
 885 * Returns: errno
 886 */
 887
 888static int gfs2_write_end(struct file *file, struct address_space *mapping,
 889			  loff_t pos, unsigned len, unsigned copied,
 890			  struct page *page, void *fsdata)
 891{
 892	struct inode *inode = page->mapping->host;
 893	struct gfs2_inode *ip = GFS2_I(inode);
 894	struct gfs2_sbd *sdp = GFS2_SB(inode);
 895	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 896	struct buffer_head *dibh;
 897	unsigned int from = pos & (PAGE_SIZE - 1);
 
 898	unsigned int to = from + len;
 899	int ret;
 900	struct gfs2_trans *tr = current->journal_info;
 901	BUG_ON(!tr);
 902
 903	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
 904
 905	ret = gfs2_meta_inode_buffer(ip, &dibh);
 906	if (unlikely(ret)) {
 907		unlock_page(page);
 908		put_page(page);
 909		goto failed;
 910	}
 911
 
 
 912	if (gfs2_is_stuffed(ip))
 913		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
 914
 915	if (!gfs2_is_writeback(ip))
 916		gfs2_page_add_databufs(ip, page, from, to);
 917
 918	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 919	if (tr->tr_num_buf_new)
 920		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
 921	else
 922		gfs2_trans_add_meta(ip->i_gl, dibh);
 923
 924
 925	if (inode == sdp->sd_rindex) {
 926		adjust_fs_space(inode);
 927		sdp->sd_rindex_uptodate = 0;
 928	}
 929
 930	brelse(dibh);
 931failed:
 932	gfs2_trans_end(sdp);
 933	gfs2_inplace_release(ip);
 934	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
 935		gfs2_quota_unlock(ip);
 
 
 936	if (inode == sdp->sd_rindex) {
 937		gfs2_glock_dq(&m_ip->i_gh);
 938		gfs2_holder_uninit(&m_ip->i_gh);
 939	}
 940	gfs2_glock_dq(&ip->i_gh);
 941	gfs2_holder_uninit(&ip->i_gh);
 942	return ret;
 943}
 944
 945/**
 946 * gfs2_set_page_dirty - Page dirtying function
 947 * @page: The page to dirty
 948 *
 949 * Returns: 1 if it dirtyed the page, or 0 otherwise
 950 */
 951 
 952static int gfs2_set_page_dirty(struct page *page)
 953{
 954	SetPageChecked(page);
 955	return __set_page_dirty_buffers(page);
 956}
 957
 958/**
 959 * gfs2_bmap - Block map function
 960 * @mapping: Address space info
 961 * @lblock: The block to map
 962 *
 963 * Returns: The disk address for the block or 0 on hole or error
 964 */
 965
 966static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
 967{
 968	struct gfs2_inode *ip = GFS2_I(mapping->host);
 969	struct gfs2_holder i_gh;
 970	sector_t dblock = 0;
 971	int error;
 972
 973	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
 974	if (error)
 975		return 0;
 976
 977	if (!gfs2_is_stuffed(ip))
 978		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
 979
 980	gfs2_glock_dq_uninit(&i_gh);
 981
 982	return dblock;
 983}
 984
 985static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
 986{
 987	struct gfs2_bufdata *bd;
 988
 989	lock_buffer(bh);
 990	gfs2_log_lock(sdp);
 991	clear_buffer_dirty(bh);
 992	bd = bh->b_private;
 993	if (bd) {
 994		if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
 995			list_del_init(&bd->bd_list);
 996		else
 997			gfs2_remove_from_journal(bh, REMOVE_JDATA);
 998	}
 999	bh->b_bdev = NULL;
1000	clear_buffer_mapped(bh);
1001	clear_buffer_req(bh);
1002	clear_buffer_new(bh);
1003	gfs2_log_unlock(sdp);
1004	unlock_buffer(bh);
1005}
1006
1007static void gfs2_invalidatepage(struct page *page, unsigned int offset,
1008				unsigned int length)
1009{
1010	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
1011	unsigned int stop = offset + length;
1012	int partial_page = (offset || length < PAGE_SIZE);
1013	struct buffer_head *bh, *head;
1014	unsigned long pos = 0;
1015
1016	BUG_ON(!PageLocked(page));
1017	if (!partial_page)
1018		ClearPageChecked(page);
1019	if (!page_has_buffers(page))
1020		goto out;
1021
1022	bh = head = page_buffers(page);
1023	do {
1024		if (pos + bh->b_size > stop)
1025			return;
1026
1027		if (offset <= pos)
1028			gfs2_discard(sdp, bh);
1029		pos += bh->b_size;
1030		bh = bh->b_this_page;
1031	} while (bh != head);
1032out:
1033	if (!partial_page)
1034		try_to_release_page(page, 0);
1035}
1036
1037/**
1038 * gfs2_ok_for_dio - check that dio is valid on this file
1039 * @ip: The inode
 
1040 * @offset: The offset at which we are reading or writing
1041 *
1042 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1043 *          1 (to accept the i/o request)
1044 */
1045static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset)
1046{
1047	/*
1048	 * Should we return an error here? I can't see that O_DIRECT for
1049	 * a stuffed file makes any sense. For now we'll silently fall
1050	 * back to buffered I/O
1051	 */
1052	if (gfs2_is_stuffed(ip))
1053		return 0;
1054
1055	if (offset >= i_size_read(&ip->i_inode))
1056		return 0;
1057	return 1;
1058}
1059
1060
1061
1062static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 
 
1063{
1064	struct file *file = iocb->ki_filp;
1065	struct inode *inode = file->f_mapping->host;
1066	struct address_space *mapping = inode->i_mapping;
1067	struct gfs2_inode *ip = GFS2_I(inode);
1068	loff_t offset = iocb->ki_pos;
1069	struct gfs2_holder gh;
1070	int rv;
1071
1072	/*
1073	 * Deferred lock, even if its a write, since we do no allocation
1074	 * on this path. All we need change is atime, and this lock mode
1075	 * ensures that other nodes have flushed their buffered read caches
1076	 * (i.e. their page cache entries for this inode). We do not,
1077	 * unfortunately have the option of only flushing a range like
1078	 * the VFS does.
1079	 */
1080	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1081	rv = gfs2_glock_nq(&gh);
1082	if (rv)
1083		goto out_uninit;
1084	rv = gfs2_ok_for_dio(ip, offset);
1085	if (rv != 1)
1086		goto out; /* dio not valid, fall back to buffered i/o */
1087
1088	/*
1089	 * Now since we are holding a deferred (CW) lock at this point, you
1090	 * might be wondering why this is ever needed. There is a case however
1091	 * where we've granted a deferred local lock against a cached exclusive
1092	 * glock. That is ok provided all granted local locks are deferred, but
1093	 * it also means that it is possible to encounter pages which are
1094	 * cached and possibly also mapped. So here we check for that and sort
1095	 * them out ahead of the dio. The glock state machine will take care of
1096	 * everything else.
1097	 *
1098	 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1099	 * the first place, mapping->nr_pages will always be zero.
1100	 */
1101	if (mapping->nrpages) {
1102		loff_t lstart = offset & ~(PAGE_SIZE - 1);
1103		loff_t len = iov_iter_count(iter);
1104		loff_t end = PAGE_ALIGN(offset + len) - 1;
1105
1106		rv = 0;
1107		if (len == 0)
1108			goto out;
1109		if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1110			unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1111		rv = filemap_write_and_wait_range(mapping, lstart, end);
1112		if (rv)
1113			goto out;
1114		if (iov_iter_rw(iter) == WRITE)
1115			truncate_inode_pages_range(mapping, lstart, end);
1116	}
1117
1118	rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
1119				  gfs2_get_block_direct, NULL, NULL, 0);
1120out:
1121	gfs2_glock_dq(&gh);
1122out_uninit:
1123	gfs2_holder_uninit(&gh);
1124	return rv;
1125}
1126
1127/**
1128 * gfs2_releasepage - free the metadata associated with a page
1129 * @page: the page that's being released
1130 * @gfp_mask: passed from Linux VFS, ignored by us
1131 *
1132 * Call try_to_free_buffers() if the buffers in this page can be
1133 * released.
1134 *
1135 * Returns: 0
1136 */
1137
1138int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1139{
1140	struct address_space *mapping = page->mapping;
1141	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1142	struct buffer_head *bh, *head;
1143	struct gfs2_bufdata *bd;
1144
1145	if (!page_has_buffers(page))
1146		return 0;
1147
1148	/*
1149	 * From xfs_vm_releasepage: mm accommodates an old ext3 case where
1150	 * clean pages might not have had the dirty bit cleared.  Thus, it can
1151	 * send actual dirty pages to ->releasepage() via shrink_active_list().
1152	 *
1153	 * As a workaround, we skip pages that contain dirty buffers below.
1154	 * Once ->releasepage isn't called on dirty pages anymore, we can warn
1155	 * on dirty buffers like we used to here again.
1156	 */
1157
1158	gfs2_log_lock(sdp);
1159	spin_lock(&sdp->sd_ail_lock);
1160	head = bh = page_buffers(page);
1161	do {
1162		if (atomic_read(&bh->b_count))
1163			goto cannot_release;
1164		bd = bh->b_private;
1165		if (bd && bd->bd_tr)
1166			goto cannot_release;
1167		if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
1168			goto cannot_release;
 
 
1169		bh = bh->b_this_page;
1170	} while(bh != head);
1171	spin_unlock(&sdp->sd_ail_lock);
 
1172
1173	head = bh = page_buffers(page);
1174	do {
 
1175		bd = bh->b_private;
1176		if (bd) {
1177			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1178			if (!list_empty(&bd->bd_list))
1179				list_del_init(&bd->bd_list);
1180			bd->bd_bh = NULL;
 
 
 
 
 
 
1181			bh->b_private = NULL;
 
 
 
1182			kmem_cache_free(gfs2_bufdata_cachep, bd);
1183		}
1184
1185		bh = bh->b_this_page;
1186	} while (bh != head);
1187	gfs2_log_unlock(sdp);
1188
1189	return try_to_free_buffers(page);
1190
 
 
 
1191cannot_release:
1192	spin_unlock(&sdp->sd_ail_lock);
1193	gfs2_log_unlock(sdp);
1194	return 0;
1195}
1196
1197static const struct address_space_operations gfs2_writeback_aops = {
1198	.writepage = gfs2_writepage,
1199	.writepages = gfs2_writepages,
1200	.readpage = gfs2_readpage,
1201	.readpages = gfs2_readpages,
1202	.write_begin = gfs2_write_begin,
1203	.write_end = gfs2_write_end,
1204	.bmap = gfs2_bmap,
1205	.invalidatepage = gfs2_invalidatepage,
1206	.releasepage = gfs2_releasepage,
1207	.direct_IO = gfs2_direct_IO,
1208	.migratepage = buffer_migrate_page,
1209	.is_partially_uptodate = block_is_partially_uptodate,
1210	.error_remove_page = generic_error_remove_page,
1211};
1212
1213static const struct address_space_operations gfs2_ordered_aops = {
1214	.writepage = gfs2_writepage,
1215	.writepages = gfs2_writepages,
1216	.readpage = gfs2_readpage,
1217	.readpages = gfs2_readpages,
1218	.write_begin = gfs2_write_begin,
1219	.write_end = gfs2_write_end,
1220	.set_page_dirty = gfs2_set_page_dirty,
1221	.bmap = gfs2_bmap,
1222	.invalidatepage = gfs2_invalidatepage,
1223	.releasepage = gfs2_releasepage,
1224	.direct_IO = gfs2_direct_IO,
1225	.migratepage = buffer_migrate_page,
1226	.is_partially_uptodate = block_is_partially_uptodate,
1227	.error_remove_page = generic_error_remove_page,
1228};
1229
1230static const struct address_space_operations gfs2_jdata_aops = {
1231	.writepage = gfs2_jdata_writepage,
1232	.writepages = gfs2_jdata_writepages,
1233	.readpage = gfs2_readpage,
1234	.readpages = gfs2_readpages,
1235	.write_begin = gfs2_write_begin,
1236	.write_end = gfs2_write_end,
1237	.set_page_dirty = gfs2_set_page_dirty,
1238	.bmap = gfs2_bmap,
1239	.invalidatepage = gfs2_invalidatepage,
1240	.releasepage = gfs2_releasepage,
1241	.is_partially_uptodate = block_is_partially_uptodate,
1242	.error_remove_page = generic_error_remove_page,
1243};
1244
1245void gfs2_set_aops(struct inode *inode)
1246{
1247	struct gfs2_inode *ip = GFS2_I(inode);
1248
1249	if (gfs2_is_writeback(ip))
1250		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1251	else if (gfs2_is_ordered(ip))
1252		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1253	else if (gfs2_is_jdata(ip))
1254		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1255	else
1256		BUG();
1257}
1258