Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#include <linux/sched.h>
  11#include <linux/slab.h>
  12#include <linux/spinlock.h>
  13#include <linux/completion.h>
  14#include <linux/buffer_head.h>
  15#include <linux/pagemap.h>
  16#include <linux/pagevec.h>
  17#include <linux/mpage.h>
  18#include <linux/fs.h>
  19#include <linux/writeback.h>
  20#include <linux/swap.h>
  21#include <linux/gfs2_ondisk.h>
  22#include <linux/backing-dev.h>
 
 
  23
  24#include "gfs2.h"
  25#include "incore.h"
  26#include "bmap.h"
  27#include "glock.h"
  28#include "inode.h"
  29#include "log.h"
  30#include "meta_io.h"
  31#include "quota.h"
  32#include "trans.h"
  33#include "rgrp.h"
  34#include "super.h"
  35#include "util.h"
  36#include "glops.h"
  37
  38
  39void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
  40			    unsigned int from, unsigned int to)
  41{
  42	struct buffer_head *head = page_buffers(page);
  43	unsigned int bsize = head->b_size;
  44	struct buffer_head *bh;
 
  45	unsigned int start, end;
  46
  47	for (bh = head, start = 0; bh != head || !start;
  48	     bh = bh->b_this_page, start = end) {
  49		end = start + bsize;
  50		if (end <= from || start >= to)
  51			continue;
 
 
  52		if (gfs2_is_jdata(ip))
  53			set_buffer_uptodate(bh);
  54		gfs2_trans_add_bh(ip->i_gl, bh, 0);
  55	}
  56}
  57
  58/**
  59 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
  60 * @inode: The inode
  61 * @lblock: The block number to look up
  62 * @bh_result: The buffer head to return the result in
  63 * @create: Non-zero if we may add block to the file
  64 *
  65 * Returns: errno
  66 */
  67
  68static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
  69				  struct buffer_head *bh_result, int create)
  70{
  71	int error;
  72
  73	error = gfs2_block_map(inode, lblock, bh_result, 0);
  74	if (error)
  75		return error;
  76	if (!buffer_mapped(bh_result))
  77		return -EIO;
  78	return 0;
  79}
  80
  81static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
  82				 struct buffer_head *bh_result, int create)
  83{
  84	return gfs2_block_map(inode, lblock, bh_result, 0);
  85}
  86
  87/**
  88 * gfs2_writepage_common - Common bits of writepage
  89 * @page: The page to be written
  90 * @wbc: The writeback control
  91 *
  92 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
  93 */
  94
  95static int gfs2_writepage_common(struct page *page,
  96				 struct writeback_control *wbc)
  97{
  98	struct inode *inode = page->mapping->host;
  99	struct gfs2_inode *ip = GFS2_I(inode);
 100	struct gfs2_sbd *sdp = GFS2_SB(inode);
 101	loff_t i_size = i_size_read(inode);
 102	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
 103	unsigned offset;
 104
 105	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
 106		goto out;
 107	if (current->journal_info)
 108		goto redirty;
 109	/* Is the page fully outside i_size? (truncate in progress) */
 110	offset = i_size & (PAGE_CACHE_SIZE-1);
 111	if (page->index > end_index || (page->index == end_index && !offset)) {
 112		page->mapping->a_ops->invalidatepage(page, 0);
 113		goto out;
 114	}
 115	return 1;
 116redirty:
 117	redirty_page_for_writepage(wbc, page);
 118out:
 119	unlock_page(page);
 120	return 0;
 121}
 122
 123/**
 124 * gfs2_writeback_writepage - Write page for writeback mappings
 125 * @page: The page
 126 * @wbc: The writeback control
 127 *
 128 */
 129
 130static int gfs2_writeback_writepage(struct page *page,
 131				    struct writeback_control *wbc)
 132{
 133	int ret;
 134
 135	ret = gfs2_writepage_common(page, wbc);
 136	if (ret <= 0)
 137		return ret;
 138
 139	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
 140}
 141
 142/**
 143 * gfs2_ordered_writepage - Write page for ordered data files
 144 * @page: The page to write
 145 * @wbc: The writeback control
 146 *
 147 */
 148
 149static int gfs2_ordered_writepage(struct page *page,
 150				  struct writeback_control *wbc)
 151{
 152	struct inode *inode = page->mapping->host;
 153	struct gfs2_inode *ip = GFS2_I(inode);
 154	int ret;
 
 155
 156	ret = gfs2_writepage_common(page, wbc);
 157	if (ret <= 0)
 158		return ret;
 
 
 
 
 
 
 
 159
 160	if (!page_has_buffers(page)) {
 161		create_empty_buffers(page, inode->i_sb->s_blocksize,
 162				     (1 << BH_Dirty)|(1 << BH_Uptodate));
 163	}
 164	gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
 165	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
 166}
 167
 168/**
 169 * __gfs2_jdata_writepage - The core of jdata writepage
 170 * @page: The page to write
 171 * @wbc: The writeback control
 172 *
 173 * This is shared between writepage and writepages and implements the
 174 * core of the writepage operation. If a transaction is required then
 175 * PageChecked will have been set and the transaction will have
 176 * already been started before this is called.
 177 */
 178
 179static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
 180{
 181	struct inode *inode = page->mapping->host;
 182	struct gfs2_inode *ip = GFS2_I(inode);
 183	struct gfs2_sbd *sdp = GFS2_SB(inode);
 184
 185	if (PageChecked(page)) {
 186		ClearPageChecked(page);
 187		if (!page_has_buffers(page)) {
 188			create_empty_buffers(page, inode->i_sb->s_blocksize,
 189					     (1 << BH_Dirty)|(1 << BH_Uptodate));
 190		}
 191		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
 192	}
 193	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
 194}
 195
 196/**
 197 * gfs2_jdata_writepage - Write complete page
 198 * @page: Page to write
 
 199 *
 200 * Returns: errno
 201 *
 202 */
 203
 204static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
 205{
 206	struct inode *inode = page->mapping->host;
 
 207	struct gfs2_sbd *sdp = GFS2_SB(inode);
 208	int ret;
 209	int done_trans = 0;
 210
 211	if (PageChecked(page)) {
 212		if (wbc->sync_mode != WB_SYNC_ALL)
 213			goto out_ignore;
 214		ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
 215		if (ret)
 216			goto out_ignore;
 217		done_trans = 1;
 218	}
 219	ret = gfs2_writepage_common(page, wbc);
 220	if (ret > 0)
 221		ret = __gfs2_jdata_writepage(page, wbc);
 222	if (done_trans)
 223		gfs2_trans_end(sdp);
 224	return ret;
 225
 226out_ignore:
 227	redirty_page_for_writepage(wbc, page);
 
 228	unlock_page(page);
 229	return 0;
 230}
 231
 232/**
 233 * gfs2_writeback_writepages - Write a bunch of dirty pages back to disk
 234 * @mapping: The mapping to write
 235 * @wbc: Write-back control
 236 *
 237 * For the data=writeback case we can already ignore buffer heads
 238 * and write whole extents at once. This is a big reduction in the
 239 * number of I/O requests we send and the bmap calls we make in this case.
 240 */
 241static int gfs2_writeback_writepages(struct address_space *mapping,
 242				     struct writeback_control *wbc)
 243{
 244	return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
 
 
 
 
 
 
 
 
 
 
 
 
 245}
 246
 247/**
 248 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
 249 * @mapping: The mapping
 250 * @wbc: The writeback control
 251 * @writepage: The writepage function to call for each page
 252 * @pvec: The vector of pages
 253 * @nr_pages: The number of pages to write
 
 254 *
 255 * Returns: non-zero if loop should terminate, zero otherwise
 256 */
 257
 258static int gfs2_write_jdata_pagevec(struct address_space *mapping,
 259				    struct writeback_control *wbc,
 260				    struct pagevec *pvec,
 261				    int nr_pages, pgoff_t end)
 
 262{
 263	struct inode *inode = mapping->host;
 264	struct gfs2_sbd *sdp = GFS2_SB(inode);
 265	loff_t i_size = i_size_read(inode);
 266	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
 267	unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
 268	unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
 269	int i;
 270	int ret;
 271
 272	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
 273	if (ret < 0)
 274		return ret;
 275
 276	for(i = 0; i < nr_pages; i++) {
 277		struct page *page = pvec->pages[i];
 278
 
 
 279		lock_page(page);
 280
 281		if (unlikely(page->mapping != mapping)) {
 
 282			unlock_page(page);
 283			continue;
 284		}
 285
 286		if (!wbc->range_cyclic && page->index > end) {
 287			ret = 1;
 288			unlock_page(page);
 289			continue;
 290		}
 291
 292		if (wbc->sync_mode != WB_SYNC_NONE)
 293			wait_on_page_writeback(page);
 294
 295		if (PageWriteback(page) ||
 296		    !clear_page_dirty_for_io(page)) {
 297			unlock_page(page);
 298			continue;
 299		}
 300
 301		/* Is the page fully outside i_size? (truncate in progress) */
 302		if (page->index > end_index || (page->index == end_index && !offset)) {
 303			page->mapping->a_ops->invalidatepage(page, 0);
 304			unlock_page(page);
 305			continue;
 306		}
 307
 308		ret = __gfs2_jdata_writepage(page, wbc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 309
 310		if (ret || (--(wbc->nr_to_write) <= 0))
 
 
 
 
 
 
 311			ret = 1;
 
 
 
 312	}
 313	gfs2_trans_end(sdp);
 314	return ret;
 315}
 316
 317/**
 318 * gfs2_write_cache_jdata - Like write_cache_pages but different
 319 * @mapping: The mapping to write
 320 * @wbc: The writeback control
 321 * @writepage: The writepage function to call
 322 * @data: The data to pass to writepage
 323 *
 324 * The reason that we use our own function here is that we need to
 325 * start transactions before we grab page locks. This allows us
 326 * to get the ordering right.
 327 */
 328
 329static int gfs2_write_cache_jdata(struct address_space *mapping,
 330				  struct writeback_control *wbc)
 331{
 332	int ret = 0;
 333	int done = 0;
 334	struct pagevec pvec;
 335	int nr_pages;
 
 336	pgoff_t index;
 337	pgoff_t end;
 338	int scanned = 0;
 
 339	int range_whole = 0;
 
 340
 341	pagevec_init(&pvec, 0);
 342	if (wbc->range_cyclic) {
 343		index = mapping->writeback_index; /* Start from prev offset */
 
 
 
 
 
 344		end = -1;
 345	} else {
 346		index = wbc->range_start >> PAGE_CACHE_SHIFT;
 347		end = wbc->range_end >> PAGE_CACHE_SHIFT;
 348		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
 349			range_whole = 1;
 350		scanned = 1;
 351	}
 
 
 
 
 352
 353retry:
 354	 while (!done && (index <= end) &&
 355		(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 356					       PAGECACHE_TAG_DIRTY,
 357					       min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
 358		scanned = 1;
 359		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
 
 
 
 
 360		if (ret)
 361			done = 1;
 362		if (ret > 0)
 363			ret = 0;
 364
 365		pagevec_release(&pvec);
 366		cond_resched();
 367	}
 368
 369	if (!scanned && !done) {
 370		/*
 
 371		 * We hit the last page and there is more work to be done: wrap
 372		 * back to the start of the file
 373		 */
 374		scanned = 1;
 375		index = 0;
 
 376		goto retry;
 377	}
 378
 379	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
 380		mapping->writeback_index = index;
 
 381	return ret;
 382}
 383
 384
 385/**
 386 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
 387 * @mapping: The mapping to write
 388 * @wbc: The writeback control
 389 * 
 390 */
 391
 392static int gfs2_jdata_writepages(struct address_space *mapping,
 393				 struct writeback_control *wbc)
 394{
 395	struct gfs2_inode *ip = GFS2_I(mapping->host);
 396	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
 397	int ret;
 398
 399	ret = gfs2_write_cache_jdata(mapping, wbc);
 400	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
 401		gfs2_log_flush(sdp, ip->i_gl);
 
 402		ret = gfs2_write_cache_jdata(mapping, wbc);
 403	}
 404	return ret;
 405}
 406
 407/**
 408 * stuffed_readpage - Fill in a Linux page with stuffed file data
 409 * @ip: the inode
 410 * @page: the page
 411 *
 412 * Returns: errno
 413 */
 414
 415static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
 416{
 417	struct buffer_head *dibh;
 418	u64 dsize = i_size_read(&ip->i_inode);
 419	void *kaddr;
 420	int error;
 421
 422	/*
 423	 * Due to the order of unstuffing files and ->fault(), we can be
 424	 * asked for a zero page in the case of a stuffed file being extended,
 425	 * so we need to supply one here. It doesn't happen often.
 426	 */
 427	if (unlikely(page->index)) {
 428		zero_user(page, 0, PAGE_CACHE_SIZE);
 429		SetPageUptodate(page);
 430		return 0;
 431	}
 432
 433	error = gfs2_meta_inode_buffer(ip, &dibh);
 434	if (error)
 435		return error;
 436
 437	kaddr = kmap_atomic(page, KM_USER0);
 438	if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
 439		dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
 440	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
 441	memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
 442	kunmap_atomic(kaddr, KM_USER0);
 443	flush_dcache_page(page);
 444	brelse(dibh);
 445	SetPageUptodate(page);
 446
 447	return 0;
 448}
 449
 450
 451/**
 452 * __gfs2_readpage - readpage
 453 * @file: The file to read a page for
 454 * @page: The page to read
 455 *
 456 * This is the core of gfs2's readpage. Its used by the internal file
 457 * reading code as in that case we already hold the glock. Also its
 458 * called by gfs2_readpage() once the required lock has been granted.
 459 *
 460 */
 461
 462static int __gfs2_readpage(void *file, struct page *page)
 463{
 464	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
 465	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
 466	int error;
 467
 468	if (gfs2_is_stuffed(ip)) {
 469		error = stuffed_readpage(ip, page);
 470		unlock_page(page);
 471	} else {
 472		error = mpage_readpage(page, gfs2_block_map);
 473	}
 474
 475	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
 476		return -EIO;
 477
 478	return error;
 479}
 480
 481/**
 482 * gfs2_readpage - read a page of a file
 483 * @file: The file to read
 484 * @page: The page of the file
 485 *
 486 * This deals with the locking required. We have to unlock and
 487 * relock the page in order to get the locking in the right
 488 * order.
 489 */
 490
 491static int gfs2_readpage(struct file *file, struct page *page)
 492{
 493	struct address_space *mapping = page->mapping;
 494	struct gfs2_inode *ip = GFS2_I(mapping->host);
 495	struct gfs2_holder gh;
 496	int error;
 497
 498	unlock_page(page);
 499	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 500	error = gfs2_glock_nq(&gh);
 501	if (unlikely(error))
 502		goto out;
 503	error = AOP_TRUNCATED_PAGE;
 504	lock_page(page);
 505	if (page->mapping == mapping && !PageUptodate(page))
 506		error = __gfs2_readpage(file, page);
 507	else
 508		unlock_page(page);
 509	gfs2_glock_dq(&gh);
 510out:
 511	gfs2_holder_uninit(&gh);
 512	if (error && error != AOP_TRUNCATED_PAGE)
 513		lock_page(page);
 514	return error;
 515}
 516
 517/**
 518 * gfs2_internal_read - read an internal file
 519 * @ip: The gfs2 inode
 520 * @ra_state: The readahead state (or NULL for no readahead)
 521 * @buf: The buffer to fill
 522 * @pos: The file position
 523 * @size: The amount to read
 524 *
 525 */
 526
 527int gfs2_internal_read(struct gfs2_inode *ip, struct file_ra_state *ra_state,
 528                       char *buf, loff_t *pos, unsigned size)
 529{
 530	struct address_space *mapping = ip->i_inode.i_mapping;
 531	unsigned long index = *pos / PAGE_CACHE_SIZE;
 532	unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
 533	unsigned copied = 0;
 534	unsigned amt;
 535	struct page *page;
 536	void *p;
 537
 538	do {
 539		amt = size - copied;
 540		if (offset + size > PAGE_CACHE_SIZE)
 541			amt = PAGE_CACHE_SIZE - offset;
 542		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
 543		if (IS_ERR(page))
 544			return PTR_ERR(page);
 545		p = kmap_atomic(page, KM_USER0);
 546		memcpy(buf + copied, p + offset, amt);
 547		kunmap_atomic(p, KM_USER0);
 548		mark_page_accessed(page);
 549		page_cache_release(page);
 550		copied += amt;
 551		index++;
 552		offset = 0;
 553	} while(copied < size);
 554	(*pos) += size;
 555	return size;
 556}
 557
 558/**
 559 * gfs2_readpages - Read a bunch of pages at once
 
 
 
 
 560 *
 561 * Some notes:
 562 * 1. This is only for readahead, so we can simply ignore any things
 563 *    which are slightly inconvenient (such as locking conflicts between
 564 *    the page lock and the glock) and return having done no I/O. Its
 565 *    obviously not something we'd want to do on too regular a basis.
 566 *    Any I/O we ignore at this time will be done via readpage later.
 567 * 2. We don't handle stuffed files here we let readpage do the honours.
 568 * 3. mpage_readpages() does most of the heavy lifting in the common case.
 569 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
 570 */
 571
 572static int gfs2_readpages(struct file *file, struct address_space *mapping,
 573			  struct list_head *pages, unsigned nr_pages)
 574{
 575	struct inode *inode = mapping->host;
 576	struct gfs2_inode *ip = GFS2_I(inode);
 577	struct gfs2_sbd *sdp = GFS2_SB(inode);
 578	struct gfs2_holder gh;
 579	int ret;
 580
 581	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 582	ret = gfs2_glock_nq(&gh);
 583	if (unlikely(ret))
 584		goto out_uninit;
 585	if (!gfs2_is_stuffed(ip))
 586		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
 587	gfs2_glock_dq(&gh);
 588out_uninit:
 589	gfs2_holder_uninit(&gh);
 590	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
 591		ret = -EIO;
 592	return ret;
 593}
 594
 595/**
 596 * gfs2_write_begin - Begin to write to a file
 597 * @file: The file to write to
 598 * @mapping: The mapping in which to write
 599 * @pos: The file offset at which to start writing
 600 * @len: Length of the write
 601 * @flags: Various flags
 602 * @pagep: Pointer to return the page
 603 * @fsdata: Pointer to return fs data (unused by GFS2)
 604 *
 605 * Returns: errno
 606 */
 607
 608static int gfs2_write_begin(struct file *file, struct address_space *mapping,
 609			    loff_t pos, unsigned len, unsigned flags,
 610			    struct page **pagep, void **fsdata)
 611{
 612	struct gfs2_inode *ip = GFS2_I(mapping->host);
 613	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
 614	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 615	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
 
 616	int alloc_required;
 617	int error = 0;
 618	struct gfs2_alloc *al = NULL;
 619	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
 620	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
 621	struct page *page;
 622
 623	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
 624	error = gfs2_glock_nq(&ip->i_gh);
 625	if (unlikely(error))
 626		goto out_uninit;
 627	if (&ip->i_inode == sdp->sd_rindex) {
 628		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
 629					   GL_NOCACHE, &m_ip->i_gh);
 630		if (unlikely(error)) {
 631			gfs2_glock_dq(&ip->i_gh);
 632			goto out_uninit;
 633		}
 634	}
 635
 636	alloc_required = gfs2_write_alloc_required(ip, pos, len);
 637
 638	if (alloc_required || gfs2_is_jdata(ip))
 639		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
 640
 641	if (alloc_required) {
 642		al = gfs2_alloc_get(ip);
 643		if (!al) {
 644			error = -ENOMEM;
 645			goto out_unlock;
 646		}
 647
 648		error = gfs2_quota_lock_check(ip);
 649		if (error)
 650			goto out_alloc_put;
 651
 652		al->al_requested = data_blocks + ind_blocks;
 653		error = gfs2_inplace_reserve(ip);
 654		if (error)
 655			goto out_qunlock;
 656	}
 657
 658	rblocks = RES_DINODE + ind_blocks;
 659	if (gfs2_is_jdata(ip))
 660		rblocks += data_blocks ? data_blocks : 1;
 661	if (ind_blocks || data_blocks)
 662		rblocks += RES_STATFS + RES_QUOTA;
 663	if (&ip->i_inode == sdp->sd_rindex)
 664		rblocks += 2 * RES_STATFS;
 665	if (alloc_required)
 666		rblocks += gfs2_rg_blocks(al);
 667
 668	error = gfs2_trans_begin(sdp, rblocks,
 669				 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
 670	if (error)
 671		goto out_trans_fail;
 672
 673	error = -ENOMEM;
 674	flags |= AOP_FLAG_NOFS;
 675	page = grab_cache_page_write_begin(mapping, index, flags);
 676	*pagep = page;
 677	if (unlikely(!page))
 678		goto out_endtrans;
 679
 680	if (gfs2_is_stuffed(ip)) {
 681		error = 0;
 682		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
 683			error = gfs2_unstuff_dinode(ip, page);
 684			if (error == 0)
 685				goto prepare_write;
 686		} else if (!PageUptodate(page)) {
 687			error = stuffed_readpage(ip, page);
 688		}
 689		goto out;
 690	}
 691
 692prepare_write:
 693	error = __block_write_begin(page, from, len, gfs2_block_map);
 694out:
 695	if (error == 0)
 696		return 0;
 697
 698	unlock_page(page);
 699	page_cache_release(page);
 700
 701	gfs2_trans_end(sdp);
 702	if (pos + len > ip->i_inode.i_size)
 703		gfs2_trim_blocks(&ip->i_inode);
 704	goto out_trans_fail;
 705
 706out_endtrans:
 707	gfs2_trans_end(sdp);
 708out_trans_fail:
 709	if (alloc_required) {
 710		gfs2_inplace_release(ip);
 711out_qunlock:
 712		gfs2_quota_unlock(ip);
 713out_alloc_put:
 714		gfs2_alloc_put(ip);
 715	}
 716out_unlock:
 717	if (&ip->i_inode == sdp->sd_rindex) {
 718		gfs2_glock_dq(&m_ip->i_gh);
 719		gfs2_holder_uninit(&m_ip->i_gh);
 720	}
 721	gfs2_glock_dq(&ip->i_gh);
 722out_uninit:
 723	gfs2_holder_uninit(&ip->i_gh);
 724	return error;
 725}
 726
 727/**
 728 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
 729 * @inode: the rindex inode
 730 */
 731static void adjust_fs_space(struct inode *inode)
 732{
 733	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
 734	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 735	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
 736	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
 737	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
 738	struct buffer_head *m_bh, *l_bh;
 739	u64 fs_total, new_free;
 740
 741	/* Total up the file system space, according to the latest rindex. */
 742	fs_total = gfs2_ri_total(sdp);
 743	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
 744		return;
 745
 746	spin_lock(&sdp->sd_statfs_spin);
 747	gfs2_statfs_change_in(m_sc, m_bh->b_data +
 748			      sizeof(struct gfs2_dinode));
 749	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
 750		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
 751	else
 752		new_free = 0;
 753	spin_unlock(&sdp->sd_statfs_spin);
 754	fs_warn(sdp, "File system extended by %llu blocks.\n",
 755		(unsigned long long)new_free);
 756	gfs2_statfs_change(sdp, new_free, new_free, 0);
 757
 758	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
 759		goto out;
 760	update_statfs(sdp, m_bh, l_bh);
 761	brelse(l_bh);
 762out:
 763	brelse(m_bh);
 764}
 765
 766/**
 767 * gfs2_stuffed_write_end - Write end for stuffed files
 768 * @inode: The inode
 769 * @dibh: The buffer_head containing the on-disk inode
 770 * @pos: The file position
 771 * @len: The length of the write
 772 * @copied: How much was actually copied by the VFS
 773 * @page: The page
 774 *
 775 * This copies the data from the page into the inode block after
 776 * the inode data structure itself.
 777 *
 778 * Returns: errno
 779 */
 780static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
 781				  loff_t pos, unsigned len, unsigned copied,
 782				  struct page *page)
 783{
 784	struct gfs2_inode *ip = GFS2_I(inode);
 785	struct gfs2_sbd *sdp = GFS2_SB(inode);
 786	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 787	u64 to = pos + copied;
 788	void *kaddr;
 789	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
 790	struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data;
 791
 792	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
 793	kaddr = kmap_atomic(page, KM_USER0);
 
 794	memcpy(buf + pos, kaddr + pos, copied);
 795	memset(kaddr + pos + copied, 0, len - copied);
 796	flush_dcache_page(page);
 797	kunmap_atomic(kaddr, KM_USER0);
 798
 799	if (!PageUptodate(page))
 800		SetPageUptodate(page);
 801	unlock_page(page);
 802	page_cache_release(page);
 803
 804	if (copied) {
 805		if (inode->i_size < to)
 806			i_size_write(inode, to);
 807		gfs2_dinode_out(ip, di);
 808		mark_inode_dirty(inode);
 809	}
 810
 811	if (inode == sdp->sd_rindex) {
 812		adjust_fs_space(inode);
 813		ip->i_gh.gh_flags |= GL_NOCACHE;
 814	}
 815
 816	brelse(dibh);
 817	gfs2_trans_end(sdp);
 818	if (inode == sdp->sd_rindex) {
 819		gfs2_glock_dq(&m_ip->i_gh);
 820		gfs2_holder_uninit(&m_ip->i_gh);
 821	}
 822	gfs2_glock_dq(&ip->i_gh);
 823	gfs2_holder_uninit(&ip->i_gh);
 824	return copied;
 825}
 826
 827/**
 828 * gfs2_write_end
 829 * @file: The file to write to
 830 * @mapping: The address space to write to
 831 * @pos: The file position
 832 * @len: The length of the data
 833 * @copied:
 834 * @page: The page that has been written
 835 * @fsdata: The fsdata (unused in GFS2)
 836 *
 837 * The main write_end function for GFS2. We have a separate one for
 838 * stuffed files as they are slightly different, otherwise we just
 839 * put our locking around the VFS provided functions.
 840 *
 841 * Returns: errno
 842 */
 843
 844static int gfs2_write_end(struct file *file, struct address_space *mapping,
 845			  loff_t pos, unsigned len, unsigned copied,
 846			  struct page *page, void *fsdata)
 847{
 848	struct inode *inode = page->mapping->host;
 849	struct gfs2_inode *ip = GFS2_I(inode);
 850	struct gfs2_sbd *sdp = GFS2_SB(inode);
 851	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 852	struct buffer_head *dibh;
 853	struct gfs2_alloc *al = ip->i_alloc;
 854	unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
 855	unsigned int to = from + len;
 856	int ret;
 
 
 857
 858	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
 859
 860	ret = gfs2_meta_inode_buffer(ip, &dibh);
 861	if (unlikely(ret)) {
 862		unlock_page(page);
 863		page_cache_release(page);
 864		goto failed;
 865	}
 866
 867	gfs2_trans_add_bh(ip->i_gl, dibh, 1);
 868
 869	if (gfs2_is_stuffed(ip))
 870		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
 871
 872	if (!gfs2_is_writeback(ip))
 873		gfs2_page_add_databufs(ip, page, from, to);
 874
 875	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 876	if (ret > 0) {
 877		gfs2_dinode_out(ip, dibh->b_data);
 878		mark_inode_dirty(inode);
 879	}
 
 880
 881	if (inode == sdp->sd_rindex) {
 882		adjust_fs_space(inode);
 883		ip->i_gh.gh_flags |= GL_NOCACHE;
 884	}
 885
 886	brelse(dibh);
 887failed:
 888	gfs2_trans_end(sdp);
 889	if (al) {
 890		gfs2_inplace_release(ip);
 891		gfs2_quota_unlock(ip);
 892		gfs2_alloc_put(ip);
 893	}
 894	if (inode == sdp->sd_rindex) {
 895		gfs2_glock_dq(&m_ip->i_gh);
 896		gfs2_holder_uninit(&m_ip->i_gh);
 897	}
 898	gfs2_glock_dq(&ip->i_gh);
 899	gfs2_holder_uninit(&ip->i_gh);
 900	return ret;
 901}
 902
 903/**
 904 * gfs2_set_page_dirty - Page dirtying function
 905 * @page: The page to dirty
 906 *
 907 * Returns: 1 if it dirtyed the page, or 0 otherwise
 908 */
 909 
 910static int gfs2_set_page_dirty(struct page *page)
 911{
 912	SetPageChecked(page);
 913	return __set_page_dirty_buffers(page);
 914}
 915
 916/**
 917 * gfs2_bmap - Block map function
 918 * @mapping: Address space info
 919 * @lblock: The block to map
 920 *
 921 * Returns: The disk address for the block or 0 on hole or error
 922 */
 923
 924static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
 925{
 926	struct gfs2_inode *ip = GFS2_I(mapping->host);
 927	struct gfs2_holder i_gh;
 928	sector_t dblock = 0;
 929	int error;
 930
 931	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
 932	if (error)
 933		return 0;
 934
 935	if (!gfs2_is_stuffed(ip))
 936		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
 937
 938	gfs2_glock_dq_uninit(&i_gh);
 939
 940	return dblock;
 941}
 942
 943static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
 944{
 945	struct gfs2_bufdata *bd;
 946
 947	lock_buffer(bh);
 948	gfs2_log_lock(sdp);
 949	clear_buffer_dirty(bh);
 950	bd = bh->b_private;
 951	if (bd) {
 952		if (!list_empty(&bd->bd_le.le_list) && !buffer_pinned(bh))
 953			list_del_init(&bd->bd_le.le_list);
 954		else
 955			gfs2_remove_from_journal(bh, current->journal_info, 0);
 956	}
 957	bh->b_bdev = NULL;
 958	clear_buffer_mapped(bh);
 959	clear_buffer_req(bh);
 960	clear_buffer_new(bh);
 961	gfs2_log_unlock(sdp);
 962	unlock_buffer(bh);
 963}
 964
 965static void gfs2_invalidatepage(struct page *page, unsigned long offset)
 
 966{
 967	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
 
 
 968	struct buffer_head *bh, *head;
 969	unsigned long pos = 0;
 970
 971	BUG_ON(!PageLocked(page));
 972	if (offset == 0)
 973		ClearPageChecked(page);
 974	if (!page_has_buffers(page))
 975		goto out;
 976
 977	bh = head = page_buffers(page);
 978	do {
 
 
 
 979		if (offset <= pos)
 980			gfs2_discard(sdp, bh);
 981		pos += bh->b_size;
 982		bh = bh->b_this_page;
 983	} while (bh != head);
 984out:
 985	if (offset == 0)
 986		try_to_release_page(page, 0);
 987}
 988
 989/**
 990 * gfs2_ok_for_dio - check that dio is valid on this file
 991 * @ip: The inode
 992 * @rw: READ or WRITE
 993 * @offset: The offset at which we are reading or writing
 994 *
 995 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
 996 *          1 (to accept the i/o request)
 997 */
 998static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
 999{
1000	/*
1001	 * Should we return an error here? I can't see that O_DIRECT for
1002	 * a stuffed file makes any sense. For now we'll silently fall
1003	 * back to buffered I/O
1004	 */
1005	if (gfs2_is_stuffed(ip))
1006		return 0;
1007
1008	if (offset >= i_size_read(&ip->i_inode))
1009		return 0;
1010	return 1;
1011}
1012
1013
1014
1015static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
1016			      const struct iovec *iov, loff_t offset,
1017			      unsigned long nr_segs)
1018{
1019	struct file *file = iocb->ki_filp;
1020	struct inode *inode = file->f_mapping->host;
 
1021	struct gfs2_inode *ip = GFS2_I(inode);
 
1022	struct gfs2_holder gh;
1023	int rv;
1024
1025	/*
1026	 * Deferred lock, even if its a write, since we do no allocation
1027	 * on this path. All we need change is atime, and this lock mode
1028	 * ensures that other nodes have flushed their buffered read caches
1029	 * (i.e. their page cache entries for this inode). We do not,
1030	 * unfortunately have the option of only flushing a range like
1031	 * the VFS does.
1032	 */
1033	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1034	rv = gfs2_glock_nq(&gh);
1035	if (rv)
1036		return rv;
1037	rv = gfs2_ok_for_dio(ip, rw, offset);
1038	if (rv != 1)
1039		goto out; /* dio not valid, fall back to buffered i/o */
1040
1041	rv = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1042				  offset, nr_segs, gfs2_get_block_direct,
1043				  NULL, NULL, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1044out:
1045	gfs2_glock_dq_m(1, &gh);
 
1046	gfs2_holder_uninit(&gh);
1047	return rv;
1048}
1049
1050/**
1051 * gfs2_releasepage - free the metadata associated with a page
1052 * @page: the page that's being released
1053 * @gfp_mask: passed from Linux VFS, ignored by us
1054 *
1055 * Call try_to_free_buffers() if the buffers in this page can be
1056 * released.
1057 *
1058 * Returns: 0
1059 */
1060
1061int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1062{
1063	struct address_space *mapping = page->mapping;
1064	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1065	struct buffer_head *bh, *head;
1066	struct gfs2_bufdata *bd;
1067
1068	if (!page_has_buffers(page))
1069		return 0;
1070
 
 
 
 
 
 
 
 
 
 
1071	gfs2_log_lock(sdp);
1072	spin_lock(&sdp->sd_ail_lock);
1073	head = bh = page_buffers(page);
1074	do {
1075		if (atomic_read(&bh->b_count))
1076			goto cannot_release;
1077		bd = bh->b_private;
1078		if (bd && bd->bd_ail)
 
 
1079			goto cannot_release;
1080		if (buffer_pinned(bh) || buffer_dirty(bh))
1081			goto not_possible;
1082		bh = bh->b_this_page;
1083	} while(bh != head);
1084	spin_unlock(&sdp->sd_ail_lock);
1085	gfs2_log_unlock(sdp);
1086
1087	head = bh = page_buffers(page);
1088	do {
1089		gfs2_log_lock(sdp);
1090		bd = bh->b_private;
1091		if (bd) {
1092			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1093			gfs2_assert_warn(sdp, list_empty(&bd->bd_list_tr));
1094			if (!list_empty(&bd->bd_le.le_list)) {
1095				if (!buffer_pinned(bh))
1096					list_del_init(&bd->bd_le.le_list);
1097				else
1098					bd = NULL;
1099			}
1100			if (bd)
1101				bd->bd_bh = NULL;
1102			bh->b_private = NULL;
1103		}
1104		gfs2_log_unlock(sdp);
1105		if (bd)
1106			kmem_cache_free(gfs2_bufdata_cachep, bd);
 
1107
1108		bh = bh->b_this_page;
1109	} while (bh != head);
 
1110
1111	return try_to_free_buffers(page);
1112
1113not_possible: /* Should never happen */
1114	WARN_ON(buffer_dirty(bh));
1115	WARN_ON(buffer_pinned(bh));
1116cannot_release:
1117	spin_unlock(&sdp->sd_ail_lock);
1118	gfs2_log_unlock(sdp);
1119	return 0;
1120}
1121
1122static const struct address_space_operations gfs2_writeback_aops = {
1123	.writepage = gfs2_writeback_writepage,
1124	.writepages = gfs2_writeback_writepages,
1125	.readpage = gfs2_readpage,
1126	.readpages = gfs2_readpages,
1127	.write_begin = gfs2_write_begin,
1128	.write_end = gfs2_write_end,
1129	.bmap = gfs2_bmap,
1130	.invalidatepage = gfs2_invalidatepage,
1131	.releasepage = gfs2_releasepage,
1132	.direct_IO = gfs2_direct_IO,
1133	.migratepage = buffer_migrate_page,
1134	.is_partially_uptodate = block_is_partially_uptodate,
1135	.error_remove_page = generic_error_remove_page,
1136};
1137
1138static const struct address_space_operations gfs2_ordered_aops = {
1139	.writepage = gfs2_ordered_writepage,
 
1140	.readpage = gfs2_readpage,
1141	.readpages = gfs2_readpages,
1142	.write_begin = gfs2_write_begin,
1143	.write_end = gfs2_write_end,
1144	.set_page_dirty = gfs2_set_page_dirty,
1145	.bmap = gfs2_bmap,
1146	.invalidatepage = gfs2_invalidatepage,
1147	.releasepage = gfs2_releasepage,
1148	.direct_IO = gfs2_direct_IO,
1149	.migratepage = buffer_migrate_page,
1150	.is_partially_uptodate = block_is_partially_uptodate,
1151	.error_remove_page = generic_error_remove_page,
1152};
1153
1154static const struct address_space_operations gfs2_jdata_aops = {
1155	.writepage = gfs2_jdata_writepage,
1156	.writepages = gfs2_jdata_writepages,
1157	.readpage = gfs2_readpage,
1158	.readpages = gfs2_readpages,
1159	.write_begin = gfs2_write_begin,
1160	.write_end = gfs2_write_end,
1161	.set_page_dirty = gfs2_set_page_dirty,
1162	.bmap = gfs2_bmap,
1163	.invalidatepage = gfs2_invalidatepage,
1164	.releasepage = gfs2_releasepage,
1165	.is_partially_uptodate = block_is_partially_uptodate,
1166	.error_remove_page = generic_error_remove_page,
1167};
1168
1169void gfs2_set_aops(struct inode *inode)
1170{
1171	struct gfs2_inode *ip = GFS2_I(inode);
1172
1173	if (gfs2_is_writeback(ip))
1174		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1175	else if (gfs2_is_ordered(ip))
1176		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1177	else if (gfs2_is_jdata(ip))
1178		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1179	else
1180		BUG();
1181}
1182
v4.17
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#include <linux/sched.h>
  11#include <linux/slab.h>
  12#include <linux/spinlock.h>
  13#include <linux/completion.h>
  14#include <linux/buffer_head.h>
  15#include <linux/pagemap.h>
  16#include <linux/pagevec.h>
  17#include <linux/mpage.h>
  18#include <linux/fs.h>
  19#include <linux/writeback.h>
  20#include <linux/swap.h>
  21#include <linux/gfs2_ondisk.h>
  22#include <linux/backing-dev.h>
  23#include <linux/uio.h>
  24#include <trace/events/writeback.h>
  25
  26#include "gfs2.h"
  27#include "incore.h"
  28#include "bmap.h"
  29#include "glock.h"
  30#include "inode.h"
  31#include "log.h"
  32#include "meta_io.h"
  33#include "quota.h"
  34#include "trans.h"
  35#include "rgrp.h"
  36#include "super.h"
  37#include "util.h"
  38#include "glops.h"
  39
  40
  41static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
  42				   unsigned int from, unsigned int len)
  43{
  44	struct buffer_head *head = page_buffers(page);
  45	unsigned int bsize = head->b_size;
  46	struct buffer_head *bh;
  47	unsigned int to = from + len;
  48	unsigned int start, end;
  49
  50	for (bh = head, start = 0; bh != head || !start;
  51	     bh = bh->b_this_page, start = end) {
  52		end = start + bsize;
  53		if (end <= from)
  54			continue;
  55		if (start >= to)
  56			break;
  57		if (gfs2_is_jdata(ip))
  58			set_buffer_uptodate(bh);
  59		gfs2_trans_add_data(ip->i_gl, bh);
  60	}
  61}
  62
  63/**
  64 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
  65 * @inode: The inode
  66 * @lblock: The block number to look up
  67 * @bh_result: The buffer head to return the result in
  68 * @create: Non-zero if we may add block to the file
  69 *
  70 * Returns: errno
  71 */
  72
  73static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
  74				  struct buffer_head *bh_result, int create)
  75{
  76	int error;
  77
  78	error = gfs2_block_map(inode, lblock, bh_result, 0);
  79	if (error)
  80		return error;
  81	if (!buffer_mapped(bh_result))
  82		return -EIO;
  83	return 0;
  84}
  85
  86static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
  87				 struct buffer_head *bh_result, int create)
  88{
  89	return gfs2_block_map(inode, lblock, bh_result, 0);
  90}
  91
  92/**
  93 * gfs2_writepage_common - Common bits of writepage
  94 * @page: The page to be written
  95 * @wbc: The writeback control
  96 *
  97 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
  98 */
  99
 100static int gfs2_writepage_common(struct page *page,
 101				 struct writeback_control *wbc)
 102{
 103	struct inode *inode = page->mapping->host;
 104	struct gfs2_inode *ip = GFS2_I(inode);
 105	struct gfs2_sbd *sdp = GFS2_SB(inode);
 106	loff_t i_size = i_size_read(inode);
 107	pgoff_t end_index = i_size >> PAGE_SHIFT;
 108	unsigned offset;
 109
 110	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
 111		goto out;
 112	if (current->journal_info)
 113		goto redirty;
 114	/* Is the page fully outside i_size? (truncate in progress) */
 115	offset = i_size & (PAGE_SIZE-1);
 116	if (page->index > end_index || (page->index == end_index && !offset)) {
 117		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
 118		goto out;
 119	}
 120	return 1;
 121redirty:
 122	redirty_page_for_writepage(wbc, page);
 123out:
 124	unlock_page(page);
 125	return 0;
 126}
 127
 128/**
 129 * gfs2_writepage - Write page for writeback mappings
 130 * @page: The page
 131 * @wbc: The writeback control
 132 *
 133 */
 134
 135static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
 
 136{
 137	int ret;
 138
 139	ret = gfs2_writepage_common(page, wbc);
 140	if (ret <= 0)
 141		return ret;
 142
 143	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
 144}
 145
 146/* This is the same as calling block_write_full_page, but it also
 147 * writes pages outside of i_size
 
 
 
 148 */
 149static int gfs2_write_full_page(struct page *page, get_block_t *get_block,
 150				struct writeback_control *wbc)
 
 151{
 152	struct inode * const inode = page->mapping->host;
 153	loff_t i_size = i_size_read(inode);
 154	const pgoff_t end_index = i_size >> PAGE_SHIFT;
 155	unsigned offset;
 156
 157	/*
 158	 * The page straddles i_size.  It must be zeroed out on each and every
 159	 * writepage invocation because it may be mmapped.  "A file is mapped
 160	 * in multiples of the page size.  For a file that is not a multiple of
 161	 * the  page size, the remaining memory is zeroed when mapped, and
 162	 * writes to that region are not written out to the file."
 163	 */
 164	offset = i_size & (PAGE_SIZE-1);
 165	if (page->index == end_index && offset)
 166		zero_user_segment(page, offset, PAGE_SIZE);
 167
 168	return __block_write_full_page(inode, page, get_block, wbc,
 169				       end_buffer_async_write);
 
 
 
 
 170}
 171
 172/**
 173 * __gfs2_jdata_writepage - The core of jdata writepage
 174 * @page: The page to write
 175 * @wbc: The writeback control
 176 *
 177 * This is shared between writepage and writepages and implements the
 178 * core of the writepage operation. If a transaction is required then
 179 * PageChecked will have been set and the transaction will have
 180 * already been started before this is called.
 181 */
 182
 183static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
 184{
 185	struct inode *inode = page->mapping->host;
 186	struct gfs2_inode *ip = GFS2_I(inode);
 187	struct gfs2_sbd *sdp = GFS2_SB(inode);
 188
 189	if (PageChecked(page)) {
 190		ClearPageChecked(page);
 191		if (!page_has_buffers(page)) {
 192			create_empty_buffers(page, inode->i_sb->s_blocksize,
 193					     BIT(BH_Dirty)|BIT(BH_Uptodate));
 194		}
 195		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize);
 196	}
 197	return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
 198}
 199
 200/**
 201 * gfs2_jdata_writepage - Write complete page
 202 * @page: Page to write
 203 * @wbc: The writeback control
 204 *
 205 * Returns: errno
 206 *
 207 */
 208
 209static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
 210{
 211	struct inode *inode = page->mapping->host;
 212	struct gfs2_inode *ip = GFS2_I(inode);
 213	struct gfs2_sbd *sdp = GFS2_SB(inode);
 214	int ret;
 
 215
 216	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
 217		goto out;
 218	if (PageChecked(page) || current->journal_info)
 219		goto out_ignore;
 220	ret = __gfs2_jdata_writepage(page, wbc);
 
 
 
 
 
 
 
 
 221	return ret;
 222
 223out_ignore:
 224	redirty_page_for_writepage(wbc, page);
 225out:
 226	unlock_page(page);
 227	return 0;
 228}
 229
 230/**
 231 * gfs2_writepages - Write a bunch of dirty pages back to disk
 232 * @mapping: The mapping to write
 233 * @wbc: Write-back control
 234 *
 235 * Used for both ordered and writeback modes.
 
 
 236 */
 237static int gfs2_writepages(struct address_space *mapping,
 238			   struct writeback_control *wbc)
 239{
 240	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
 241	int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
 242
 243	/*
 244	 * Even if we didn't write any pages here, we might still be holding
 245	 * dirty pages in the ail. We forcibly flush the ail because we don't
 246	 * want balance_dirty_pages() to loop indefinitely trying to write out
 247	 * pages held in the ail that it can't find.
 248	 */
 249	if (ret == 0)
 250		set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
 251
 252	return ret;
 253}
 254
 255/**
 256 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
 257 * @mapping: The mapping
 258 * @wbc: The writeback control
 
 259 * @pvec: The vector of pages
 260 * @nr_pages: The number of pages to write
 261 * @done_index: Page index
 262 *
 263 * Returns: non-zero if loop should terminate, zero otherwise
 264 */
 265
 266static int gfs2_write_jdata_pagevec(struct address_space *mapping,
 267				    struct writeback_control *wbc,
 268				    struct pagevec *pvec,
 269				    int nr_pages,
 270				    pgoff_t *done_index)
 271{
 272	struct inode *inode = mapping->host;
 273	struct gfs2_sbd *sdp = GFS2_SB(inode);
 274	unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
 
 
 
 275	int i;
 276	int ret;
 277
 278	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
 279	if (ret < 0)
 280		return ret;
 281
 282	for(i = 0; i < nr_pages; i++) {
 283		struct page *page = pvec->pages[i];
 284
 285		*done_index = page->index;
 286
 287		lock_page(page);
 288
 289		if (unlikely(page->mapping != mapping)) {
 290continue_unlock:
 291			unlock_page(page);
 292			continue;
 293		}
 294
 295		if (!PageDirty(page)) {
 296			/* someone wrote it for us */
 297			goto continue_unlock;
 
 298		}
 299
 300		if (PageWriteback(page)) {
 301			if (wbc->sync_mode != WB_SYNC_NONE)
 302				wait_on_page_writeback(page);
 303			else
 304				goto continue_unlock;
 
 
 305		}
 306
 307		BUG_ON(PageWriteback(page));
 308		if (!clear_page_dirty_for_io(page))
 309			goto continue_unlock;
 310
 311		trace_wbc_writepage(wbc, inode_to_bdi(inode));
 
 312
 313		ret = __gfs2_jdata_writepage(page, wbc);
 314		if (unlikely(ret)) {
 315			if (ret == AOP_WRITEPAGE_ACTIVATE) {
 316				unlock_page(page);
 317				ret = 0;
 318			} else {
 319
 320				/*
 321				 * done_index is set past this page,
 322				 * so media errors will not choke
 323				 * background writeout for the entire
 324				 * file. This has consequences for
 325				 * range_cyclic semantics (ie. it may
 326				 * not be suitable for data integrity
 327				 * writeout).
 328				 */
 329				*done_index = page->index + 1;
 330				ret = 1;
 331				break;
 332			}
 333		}
 334
 335		/*
 336		 * We stop writing back only if we are not doing
 337		 * integrity sync. In case of integrity sync we have to
 338		 * keep going until we have written all the pages
 339		 * we tagged for writeback prior to entering this loop.
 340		 */
 341		if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
 342			ret = 1;
 343			break;
 344		}
 345
 346	}
 347	gfs2_trans_end(sdp);
 348	return ret;
 349}
 350
 351/**
 352 * gfs2_write_cache_jdata - Like write_cache_pages but different
 353 * @mapping: The mapping to write
 354 * @wbc: The writeback control
 
 
 355 *
 356 * The reason that we use our own function here is that we need to
 357 * start transactions before we grab page locks. This allows us
 358 * to get the ordering right.
 359 */
 360
 361static int gfs2_write_cache_jdata(struct address_space *mapping,
 362				  struct writeback_control *wbc)
 363{
 364	int ret = 0;
 365	int done = 0;
 366	struct pagevec pvec;
 367	int nr_pages;
 368	pgoff_t uninitialized_var(writeback_index);
 369	pgoff_t index;
 370	pgoff_t end;
 371	pgoff_t done_index;
 372	int cycled;
 373	int range_whole = 0;
 374	int tag;
 375
 376	pagevec_init(&pvec);
 377	if (wbc->range_cyclic) {
 378		writeback_index = mapping->writeback_index; /* prev offset */
 379		index = writeback_index;
 380		if (index == 0)
 381			cycled = 1;
 382		else
 383			cycled = 0;
 384		end = -1;
 385	} else {
 386		index = wbc->range_start >> PAGE_SHIFT;
 387		end = wbc->range_end >> PAGE_SHIFT;
 388		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
 389			range_whole = 1;
 390		cycled = 1; /* ignore range_cyclic tests */
 391	}
 392	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 393		tag = PAGECACHE_TAG_TOWRITE;
 394	else
 395		tag = PAGECACHE_TAG_DIRTY;
 396
 397retry:
 398	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 399		tag_pages_for_writeback(mapping, index, end);
 400	done_index = index;
 401	while (!done && (index <= end)) {
 402		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
 403				tag);
 404		if (nr_pages == 0)
 405			break;
 406
 407		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, &done_index);
 408		if (ret)
 409			done = 1;
 410		if (ret > 0)
 411			ret = 0;
 
 412		pagevec_release(&pvec);
 413		cond_resched();
 414	}
 415
 416	if (!cycled && !done) {
 417		/*
 418		 * range_cyclic:
 419		 * We hit the last page and there is more work to be done: wrap
 420		 * back to the start of the file
 421		 */
 422		cycled = 1;
 423		index = 0;
 424		end = writeback_index - 1;
 425		goto retry;
 426	}
 427
 428	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
 429		mapping->writeback_index = done_index;
 430
 431	return ret;
 432}
 433
 434
 435/**
 436 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
 437 * @mapping: The mapping to write
 438 * @wbc: The writeback control
 439 * 
 440 */
 441
 442static int gfs2_jdata_writepages(struct address_space *mapping,
 443				 struct writeback_control *wbc)
 444{
 445	struct gfs2_inode *ip = GFS2_I(mapping->host);
 446	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
 447	int ret;
 448
 449	ret = gfs2_write_cache_jdata(mapping, wbc);
 450	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
 451		gfs2_log_flush(sdp, ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL |
 452			       GFS2_LFC_JDATA_WPAGES);
 453		ret = gfs2_write_cache_jdata(mapping, wbc);
 454	}
 455	return ret;
 456}
 457
 458/**
 459 * stuffed_readpage - Fill in a Linux page with stuffed file data
 460 * @ip: the inode
 461 * @page: the page
 462 *
 463 * Returns: errno
 464 */
 465
 466static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
 467{
 468	struct buffer_head *dibh;
 469	u64 dsize = i_size_read(&ip->i_inode);
 470	void *kaddr;
 471	int error;
 472
 473	/*
 474	 * Due to the order of unstuffing files and ->fault(), we can be
 475	 * asked for a zero page in the case of a stuffed file being extended,
 476	 * so we need to supply one here. It doesn't happen often.
 477	 */
 478	if (unlikely(page->index)) {
 479		zero_user(page, 0, PAGE_SIZE);
 480		SetPageUptodate(page);
 481		return 0;
 482	}
 483
 484	error = gfs2_meta_inode_buffer(ip, &dibh);
 485	if (error)
 486		return error;
 487
 488	kaddr = kmap_atomic(page);
 489	if (dsize > gfs2_max_stuffed_size(ip))
 490		dsize = gfs2_max_stuffed_size(ip);
 491	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
 492	memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
 493	kunmap_atomic(kaddr);
 494	flush_dcache_page(page);
 495	brelse(dibh);
 496	SetPageUptodate(page);
 497
 498	return 0;
 499}
 500
 501
 502/**
 503 * __gfs2_readpage - readpage
 504 * @file: The file to read a page for
 505 * @page: The page to read
 506 *
 507 * This is the core of gfs2's readpage. It's used by the internal file
 508 * reading code as in that case we already hold the glock. Also it's
 509 * called by gfs2_readpage() once the required lock has been granted.
 
 510 */
 511
 512static int __gfs2_readpage(void *file, struct page *page)
 513{
 514	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
 515	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
 516	int error;
 517
 518	if (gfs2_is_stuffed(ip)) {
 519		error = stuffed_readpage(ip, page);
 520		unlock_page(page);
 521	} else {
 522		error = mpage_readpage(page, gfs2_block_map);
 523	}
 524
 525	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
 526		return -EIO;
 527
 528	return error;
 529}
 530
 531/**
 532 * gfs2_readpage - read a page of a file
 533 * @file: The file to read
 534 * @page: The page of the file
 535 *
 536 * This deals with the locking required. We have to unlock and
 537 * relock the page in order to get the locking in the right
 538 * order.
 539 */
 540
 541static int gfs2_readpage(struct file *file, struct page *page)
 542{
 543	struct address_space *mapping = page->mapping;
 544	struct gfs2_inode *ip = GFS2_I(mapping->host);
 545	struct gfs2_holder gh;
 546	int error;
 547
 548	unlock_page(page);
 549	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 550	error = gfs2_glock_nq(&gh);
 551	if (unlikely(error))
 552		goto out;
 553	error = AOP_TRUNCATED_PAGE;
 554	lock_page(page);
 555	if (page->mapping == mapping && !PageUptodate(page))
 556		error = __gfs2_readpage(file, page);
 557	else
 558		unlock_page(page);
 559	gfs2_glock_dq(&gh);
 560out:
 561	gfs2_holder_uninit(&gh);
 562	if (error && error != AOP_TRUNCATED_PAGE)
 563		lock_page(page);
 564	return error;
 565}
 566
 567/**
 568 * gfs2_internal_read - read an internal file
 569 * @ip: The gfs2 inode
 
 570 * @buf: The buffer to fill
 571 * @pos: The file position
 572 * @size: The amount to read
 573 *
 574 */
 575
 576int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
 577                       unsigned size)
 578{
 579	struct address_space *mapping = ip->i_inode.i_mapping;
 580	unsigned long index = *pos / PAGE_SIZE;
 581	unsigned offset = *pos & (PAGE_SIZE - 1);
 582	unsigned copied = 0;
 583	unsigned amt;
 584	struct page *page;
 585	void *p;
 586
 587	do {
 588		amt = size - copied;
 589		if (offset + size > PAGE_SIZE)
 590			amt = PAGE_SIZE - offset;
 591		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
 592		if (IS_ERR(page))
 593			return PTR_ERR(page);
 594		p = kmap_atomic(page);
 595		memcpy(buf + copied, p + offset, amt);
 596		kunmap_atomic(p);
 597		put_page(page);
 
 598		copied += amt;
 599		index++;
 600		offset = 0;
 601	} while(copied < size);
 602	(*pos) += size;
 603	return size;
 604}
 605
 606/**
 607 * gfs2_readpages - Read a bunch of pages at once
 608 * @file: The file to read from
 609 * @mapping: Address space info
 610 * @pages: List of pages to read
 611 * @nr_pages: Number of pages to read
 612 *
 613 * Some notes:
 614 * 1. This is only for readahead, so we can simply ignore any things
 615 *    which are slightly inconvenient (such as locking conflicts between
 616 *    the page lock and the glock) and return having done no I/O. Its
 617 *    obviously not something we'd want to do on too regular a basis.
 618 *    Any I/O we ignore at this time will be done via readpage later.
 619 * 2. We don't handle stuffed files here we let readpage do the honours.
 620 * 3. mpage_readpages() does most of the heavy lifting in the common case.
 621 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
 622 */
 623
 624static int gfs2_readpages(struct file *file, struct address_space *mapping,
 625			  struct list_head *pages, unsigned nr_pages)
 626{
 627	struct inode *inode = mapping->host;
 628	struct gfs2_inode *ip = GFS2_I(inode);
 629	struct gfs2_sbd *sdp = GFS2_SB(inode);
 630	struct gfs2_holder gh;
 631	int ret;
 632
 633	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 634	ret = gfs2_glock_nq(&gh);
 635	if (unlikely(ret))
 636		goto out_uninit;
 637	if (!gfs2_is_stuffed(ip))
 638		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
 639	gfs2_glock_dq(&gh);
 640out_uninit:
 641	gfs2_holder_uninit(&gh);
 642	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
 643		ret = -EIO;
 644	return ret;
 645}
 646
 647/**
 648 * gfs2_write_begin - Begin to write to a file
 649 * @file: The file to write to
 650 * @mapping: The mapping in which to write
 651 * @pos: The file offset at which to start writing
 652 * @len: Length of the write
 653 * @flags: Various flags
 654 * @pagep: Pointer to return the page
 655 * @fsdata: Pointer to return fs data (unused by GFS2)
 656 *
 657 * Returns: errno
 658 */
 659
 660static int gfs2_write_begin(struct file *file, struct address_space *mapping,
 661			    loff_t pos, unsigned len, unsigned flags,
 662			    struct page **pagep, void **fsdata)
 663{
 664	struct gfs2_inode *ip = GFS2_I(mapping->host);
 665	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
 666	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 667	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
 668	unsigned requested = 0;
 669	int alloc_required;
 670	int error = 0;
 671	pgoff_t index = pos >> PAGE_SHIFT;
 672	unsigned from = pos & (PAGE_SIZE - 1);
 
 673	struct page *page;
 674
 675	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
 676	error = gfs2_glock_nq(&ip->i_gh);
 677	if (unlikely(error))
 678		goto out_uninit;
 679	if (&ip->i_inode == sdp->sd_rindex) {
 680		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
 681					   GL_NOCACHE, &m_ip->i_gh);
 682		if (unlikely(error)) {
 683			gfs2_glock_dq(&ip->i_gh);
 684			goto out_uninit;
 685		}
 686	}
 687
 688	alloc_required = gfs2_write_alloc_required(ip, pos, len);
 689
 690	if (alloc_required || gfs2_is_jdata(ip))
 691		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
 692
 693	if (alloc_required) {
 694		struct gfs2_alloc_parms ap = { .aflags = 0, };
 695		requested = data_blocks + ind_blocks;
 696		ap.target = requested;
 697		error = gfs2_quota_lock_check(ip, &ap);
 
 
 
 698		if (error)
 699			goto out_unlock;
 700
 701		error = gfs2_inplace_reserve(ip, &ap);
 
 702		if (error)
 703			goto out_qunlock;
 704	}
 705
 706	rblocks = RES_DINODE + ind_blocks;
 707	if (gfs2_is_jdata(ip))
 708		rblocks += data_blocks ? data_blocks : 1;
 709	if (ind_blocks || data_blocks)
 710		rblocks += RES_STATFS + RES_QUOTA;
 711	if (&ip->i_inode == sdp->sd_rindex)
 712		rblocks += 2 * RES_STATFS;
 713	if (alloc_required)
 714		rblocks += gfs2_rg_blocks(ip, requested);
 715
 716	error = gfs2_trans_begin(sdp, rblocks,
 717				 PAGE_SIZE/sdp->sd_sb.sb_bsize);
 718	if (error)
 719		goto out_trans_fail;
 720
 721	error = -ENOMEM;
 722	flags |= AOP_FLAG_NOFS;
 723	page = grab_cache_page_write_begin(mapping, index, flags);
 724	*pagep = page;
 725	if (unlikely(!page))
 726		goto out_endtrans;
 727
 728	if (gfs2_is_stuffed(ip)) {
 729		error = 0;
 730		if (pos + len > gfs2_max_stuffed_size(ip)) {
 731			error = gfs2_unstuff_dinode(ip, page);
 732			if (error == 0)
 733				goto prepare_write;
 734		} else if (!PageUptodate(page)) {
 735			error = stuffed_readpage(ip, page);
 736		}
 737		goto out;
 738	}
 739
 740prepare_write:
 741	error = __block_write_begin(page, from, len, gfs2_block_map);
 742out:
 743	if (error == 0)
 744		return 0;
 745
 746	unlock_page(page);
 747	put_page(page);
 748
 749	gfs2_trans_end(sdp);
 750	if (pos + len > ip->i_inode.i_size)
 751		gfs2_trim_blocks(&ip->i_inode);
 752	goto out_trans_fail;
 753
 754out_endtrans:
 755	gfs2_trans_end(sdp);
 756out_trans_fail:
 757	if (alloc_required) {
 758		gfs2_inplace_release(ip);
 759out_qunlock:
 760		gfs2_quota_unlock(ip);
 
 
 761	}
 762out_unlock:
 763	if (&ip->i_inode == sdp->sd_rindex) {
 764		gfs2_glock_dq(&m_ip->i_gh);
 765		gfs2_holder_uninit(&m_ip->i_gh);
 766	}
 767	gfs2_glock_dq(&ip->i_gh);
 768out_uninit:
 769	gfs2_holder_uninit(&ip->i_gh);
 770	return error;
 771}
 772
 773/**
 774 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
 775 * @inode: the rindex inode
 776 */
 777static void adjust_fs_space(struct inode *inode)
 778{
 779	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
 780	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 781	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
 782	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
 783	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
 784	struct buffer_head *m_bh, *l_bh;
 785	u64 fs_total, new_free;
 786
 787	/* Total up the file system space, according to the latest rindex. */
 788	fs_total = gfs2_ri_total(sdp);
 789	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
 790		return;
 791
 792	spin_lock(&sdp->sd_statfs_spin);
 793	gfs2_statfs_change_in(m_sc, m_bh->b_data +
 794			      sizeof(struct gfs2_dinode));
 795	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
 796		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
 797	else
 798		new_free = 0;
 799	spin_unlock(&sdp->sd_statfs_spin);
 800	fs_warn(sdp, "File system extended by %llu blocks.\n",
 801		(unsigned long long)new_free);
 802	gfs2_statfs_change(sdp, new_free, new_free, 0);
 803
 804	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
 805		goto out;
 806	update_statfs(sdp, m_bh, l_bh);
 807	brelse(l_bh);
 808out:
 809	brelse(m_bh);
 810}
 811
 812/**
 813 * gfs2_stuffed_write_end - Write end for stuffed files
 814 * @inode: The inode
 815 * @dibh: The buffer_head containing the on-disk inode
 816 * @pos: The file position
 817 * @len: The length of the write
 818 * @copied: How much was actually copied by the VFS
 819 * @page: The page
 820 *
 821 * This copies the data from the page into the inode block after
 822 * the inode data structure itself.
 823 *
 824 * Returns: errno
 825 */
 826static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
 827				  loff_t pos, unsigned len, unsigned copied,
 828				  struct page *page)
 829{
 830	struct gfs2_inode *ip = GFS2_I(inode);
 831	struct gfs2_sbd *sdp = GFS2_SB(inode);
 832	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 833	u64 to = pos + copied;
 834	void *kaddr;
 835	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
 
 836
 837	BUG_ON(pos + len > gfs2_max_stuffed_size(ip));
 838
 839	kaddr = kmap_atomic(page);
 840	memcpy(buf + pos, kaddr + pos, copied);
 
 841	flush_dcache_page(page);
 842	kunmap_atomic(kaddr);
 843
 844	WARN_ON(!PageUptodate(page));
 
 845	unlock_page(page);
 846	put_page(page);
 847
 848	if (copied) {
 849		if (inode->i_size < to)
 850			i_size_write(inode, to);
 
 851		mark_inode_dirty(inode);
 852	}
 853
 854	if (inode == sdp->sd_rindex) {
 855		adjust_fs_space(inode);
 856		sdp->sd_rindex_uptodate = 0;
 857	}
 858
 859	brelse(dibh);
 860	gfs2_trans_end(sdp);
 861	if (inode == sdp->sd_rindex) {
 862		gfs2_glock_dq(&m_ip->i_gh);
 863		gfs2_holder_uninit(&m_ip->i_gh);
 864	}
 865	gfs2_glock_dq(&ip->i_gh);
 866	gfs2_holder_uninit(&ip->i_gh);
 867	return copied;
 868}
 869
 870/**
 871 * gfs2_write_end
 872 * @file: The file to write to
 873 * @mapping: The address space to write to
 874 * @pos: The file position
 875 * @len: The length of the data
 876 * @copied: How much was actually copied by the VFS
 877 * @page: The page that has been written
 878 * @fsdata: The fsdata (unused in GFS2)
 879 *
 880 * The main write_end function for GFS2. We have a separate one for
 881 * stuffed files as they are slightly different, otherwise we just
 882 * put our locking around the VFS provided functions.
 883 *
 884 * Returns: errno
 885 */
 886
 887static int gfs2_write_end(struct file *file, struct address_space *mapping,
 888			  loff_t pos, unsigned len, unsigned copied,
 889			  struct page *page, void *fsdata)
 890{
 891	struct inode *inode = page->mapping->host;
 892	struct gfs2_inode *ip = GFS2_I(inode);
 893	struct gfs2_sbd *sdp = GFS2_SB(inode);
 894	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 895	struct buffer_head *dibh;
 
 
 
 896	int ret;
 897	struct gfs2_trans *tr = current->journal_info;
 898	BUG_ON(!tr);
 899
 900	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
 901
 902	ret = gfs2_meta_inode_buffer(ip, &dibh);
 903	if (unlikely(ret)) {
 904		unlock_page(page);
 905		put_page(page);
 906		goto failed;
 907	}
 908
 
 
 909	if (gfs2_is_stuffed(ip))
 910		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
 911
 912	if (!gfs2_is_writeback(ip))
 913		gfs2_page_add_databufs(ip, page, pos & ~PAGE_MASK, len);
 914
 915	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 916	if (tr->tr_num_buf_new)
 917		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
 918	else
 919		gfs2_trans_add_meta(ip->i_gl, dibh);
 920
 921
 922	if (inode == sdp->sd_rindex) {
 923		adjust_fs_space(inode);
 924		sdp->sd_rindex_uptodate = 0;
 925	}
 926
 927	brelse(dibh);
 928failed:
 929	gfs2_trans_end(sdp);
 930	gfs2_inplace_release(ip);
 931	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
 932		gfs2_quota_unlock(ip);
 
 
 933	if (inode == sdp->sd_rindex) {
 934		gfs2_glock_dq(&m_ip->i_gh);
 935		gfs2_holder_uninit(&m_ip->i_gh);
 936	}
 937	gfs2_glock_dq(&ip->i_gh);
 938	gfs2_holder_uninit(&ip->i_gh);
 939	return ret;
 940}
 941
 942/**
 943 * jdata_set_page_dirty - Page dirtying function
 944 * @page: The page to dirty
 945 *
 946 * Returns: 1 if it dirtyed the page, or 0 otherwise
 947 */
 948 
 949static int jdata_set_page_dirty(struct page *page)
 950{
 951	SetPageChecked(page);
 952	return __set_page_dirty_buffers(page);
 953}
 954
 955/**
 956 * gfs2_bmap - Block map function
 957 * @mapping: Address space info
 958 * @lblock: The block to map
 959 *
 960 * Returns: The disk address for the block or 0 on hole or error
 961 */
 962
 963static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
 964{
 965	struct gfs2_inode *ip = GFS2_I(mapping->host);
 966	struct gfs2_holder i_gh;
 967	sector_t dblock = 0;
 968	int error;
 969
 970	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
 971	if (error)
 972		return 0;
 973
 974	if (!gfs2_is_stuffed(ip))
 975		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
 976
 977	gfs2_glock_dq_uninit(&i_gh);
 978
 979	return dblock;
 980}
 981
 982static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
 983{
 984	struct gfs2_bufdata *bd;
 985
 986	lock_buffer(bh);
 987	gfs2_log_lock(sdp);
 988	clear_buffer_dirty(bh);
 989	bd = bh->b_private;
 990	if (bd) {
 991		if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
 992			list_del_init(&bd->bd_list);
 993		else
 994			gfs2_remove_from_journal(bh, REMOVE_JDATA);
 995	}
 996	bh->b_bdev = NULL;
 997	clear_buffer_mapped(bh);
 998	clear_buffer_req(bh);
 999	clear_buffer_new(bh);
1000	gfs2_log_unlock(sdp);
1001	unlock_buffer(bh);
1002}
1003
1004static void gfs2_invalidatepage(struct page *page, unsigned int offset,
1005				unsigned int length)
1006{
1007	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
1008	unsigned int stop = offset + length;
1009	int partial_page = (offset || length < PAGE_SIZE);
1010	struct buffer_head *bh, *head;
1011	unsigned long pos = 0;
1012
1013	BUG_ON(!PageLocked(page));
1014	if (!partial_page)
1015		ClearPageChecked(page);
1016	if (!page_has_buffers(page))
1017		goto out;
1018
1019	bh = head = page_buffers(page);
1020	do {
1021		if (pos + bh->b_size > stop)
1022			return;
1023
1024		if (offset <= pos)
1025			gfs2_discard(sdp, bh);
1026		pos += bh->b_size;
1027		bh = bh->b_this_page;
1028	} while (bh != head);
1029out:
1030	if (!partial_page)
1031		try_to_release_page(page, 0);
1032}
1033
1034/**
1035 * gfs2_ok_for_dio - check that dio is valid on this file
1036 * @ip: The inode
 
1037 * @offset: The offset at which we are reading or writing
1038 *
1039 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1040 *          1 (to accept the i/o request)
1041 */
1042static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset)
1043{
1044	/*
1045	 * Should we return an error here? I can't see that O_DIRECT for
1046	 * a stuffed file makes any sense. For now we'll silently fall
1047	 * back to buffered I/O
1048	 */
1049	if (gfs2_is_stuffed(ip))
1050		return 0;
1051
1052	if (offset >= i_size_read(&ip->i_inode))
1053		return 0;
1054	return 1;
1055}
1056
1057
1058
1059static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 
 
1060{
1061	struct file *file = iocb->ki_filp;
1062	struct inode *inode = file->f_mapping->host;
1063	struct address_space *mapping = inode->i_mapping;
1064	struct gfs2_inode *ip = GFS2_I(inode);
1065	loff_t offset = iocb->ki_pos;
1066	struct gfs2_holder gh;
1067	int rv;
1068
1069	/*
1070	 * Deferred lock, even if its a write, since we do no allocation
1071	 * on this path. All we need change is atime, and this lock mode
1072	 * ensures that other nodes have flushed their buffered read caches
1073	 * (i.e. their page cache entries for this inode). We do not,
1074	 * unfortunately have the option of only flushing a range like
1075	 * the VFS does.
1076	 */
1077	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1078	rv = gfs2_glock_nq(&gh);
1079	if (rv)
1080		goto out_uninit;
1081	rv = gfs2_ok_for_dio(ip, offset);
1082	if (rv != 1)
1083		goto out; /* dio not valid, fall back to buffered i/o */
1084
1085	/*
1086	 * Now since we are holding a deferred (CW) lock at this point, you
1087	 * might be wondering why this is ever needed. There is a case however
1088	 * where we've granted a deferred local lock against a cached exclusive
1089	 * glock. That is ok provided all granted local locks are deferred, but
1090	 * it also means that it is possible to encounter pages which are
1091	 * cached and possibly also mapped. So here we check for that and sort
1092	 * them out ahead of the dio. The glock state machine will take care of
1093	 * everything else.
1094	 *
1095	 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1096	 * the first place, mapping->nr_pages will always be zero.
1097	 */
1098	if (mapping->nrpages) {
1099		loff_t lstart = offset & ~(PAGE_SIZE - 1);
1100		loff_t len = iov_iter_count(iter);
1101		loff_t end = PAGE_ALIGN(offset + len) - 1;
1102
1103		rv = 0;
1104		if (len == 0)
1105			goto out;
1106		if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1107			unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1108		rv = filemap_write_and_wait_range(mapping, lstart, end);
1109		if (rv)
1110			goto out;
1111		if (iov_iter_rw(iter) == WRITE)
1112			truncate_inode_pages_range(mapping, lstart, end);
1113	}
1114
1115	rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
1116				  gfs2_get_block_direct, NULL, NULL, 0);
1117out:
1118	gfs2_glock_dq(&gh);
1119out_uninit:
1120	gfs2_holder_uninit(&gh);
1121	return rv;
1122}
1123
1124/**
1125 * gfs2_releasepage - free the metadata associated with a page
1126 * @page: the page that's being released
1127 * @gfp_mask: passed from Linux VFS, ignored by us
1128 *
1129 * Call try_to_free_buffers() if the buffers in this page can be
1130 * released.
1131 *
1132 * Returns: 0
1133 */
1134
1135int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1136{
1137	struct address_space *mapping = page->mapping;
1138	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1139	struct buffer_head *bh, *head;
1140	struct gfs2_bufdata *bd;
1141
1142	if (!page_has_buffers(page))
1143		return 0;
1144
1145	/*
1146	 * From xfs_vm_releasepage: mm accommodates an old ext3 case where
1147	 * clean pages might not have had the dirty bit cleared.  Thus, it can
1148	 * send actual dirty pages to ->releasepage() via shrink_active_list().
1149	 *
1150	 * As a workaround, we skip pages that contain dirty buffers below.
1151	 * Once ->releasepage isn't called on dirty pages anymore, we can warn
1152	 * on dirty buffers like we used to here again.
1153	 */
1154
1155	gfs2_log_lock(sdp);
1156	spin_lock(&sdp->sd_ail_lock);
1157	head = bh = page_buffers(page);
1158	do {
1159		if (atomic_read(&bh->b_count))
1160			goto cannot_release;
1161		bd = bh->b_private;
1162		if (bd && bd->bd_tr)
1163			goto cannot_release;
1164		if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
1165			goto cannot_release;
 
 
1166		bh = bh->b_this_page;
1167	} while(bh != head);
1168	spin_unlock(&sdp->sd_ail_lock);
 
1169
1170	head = bh = page_buffers(page);
1171	do {
 
1172		bd = bh->b_private;
1173		if (bd) {
1174			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1175			if (!list_empty(&bd->bd_list))
1176				list_del_init(&bd->bd_list);
1177			bd->bd_bh = NULL;
 
 
 
 
 
 
1178			bh->b_private = NULL;
 
 
 
1179			kmem_cache_free(gfs2_bufdata_cachep, bd);
1180		}
1181
1182		bh = bh->b_this_page;
1183	} while (bh != head);
1184	gfs2_log_unlock(sdp);
1185
1186	return try_to_free_buffers(page);
1187
 
 
 
1188cannot_release:
1189	spin_unlock(&sdp->sd_ail_lock);
1190	gfs2_log_unlock(sdp);
1191	return 0;
1192}
1193
1194static const struct address_space_operations gfs2_writeback_aops = {
1195	.writepage = gfs2_writepage,
1196	.writepages = gfs2_writepages,
1197	.readpage = gfs2_readpage,
1198	.readpages = gfs2_readpages,
1199	.write_begin = gfs2_write_begin,
1200	.write_end = gfs2_write_end,
1201	.bmap = gfs2_bmap,
1202	.invalidatepage = gfs2_invalidatepage,
1203	.releasepage = gfs2_releasepage,
1204	.direct_IO = gfs2_direct_IO,
1205	.migratepage = buffer_migrate_page,
1206	.is_partially_uptodate = block_is_partially_uptodate,
1207	.error_remove_page = generic_error_remove_page,
1208};
1209
1210static const struct address_space_operations gfs2_ordered_aops = {
1211	.writepage = gfs2_writepage,
1212	.writepages = gfs2_writepages,
1213	.readpage = gfs2_readpage,
1214	.readpages = gfs2_readpages,
1215	.write_begin = gfs2_write_begin,
1216	.write_end = gfs2_write_end,
1217	.set_page_dirty = __set_page_dirty_buffers,
1218	.bmap = gfs2_bmap,
1219	.invalidatepage = gfs2_invalidatepage,
1220	.releasepage = gfs2_releasepage,
1221	.direct_IO = gfs2_direct_IO,
1222	.migratepage = buffer_migrate_page,
1223	.is_partially_uptodate = block_is_partially_uptodate,
1224	.error_remove_page = generic_error_remove_page,
1225};
1226
1227static const struct address_space_operations gfs2_jdata_aops = {
1228	.writepage = gfs2_jdata_writepage,
1229	.writepages = gfs2_jdata_writepages,
1230	.readpage = gfs2_readpage,
1231	.readpages = gfs2_readpages,
1232	.write_begin = gfs2_write_begin,
1233	.write_end = gfs2_write_end,
1234	.set_page_dirty = jdata_set_page_dirty,
1235	.bmap = gfs2_bmap,
1236	.invalidatepage = gfs2_invalidatepage,
1237	.releasepage = gfs2_releasepage,
1238	.is_partially_uptodate = block_is_partially_uptodate,
1239	.error_remove_page = generic_error_remove_page,
1240};
1241
1242void gfs2_set_aops(struct inode *inode)
1243{
1244	struct gfs2_inode *ip = GFS2_I(inode);
1245
1246	if (gfs2_is_writeback(ip))
1247		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1248	else if (gfs2_is_ordered(ip))
1249		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1250	else if (gfs2_is_jdata(ip))
1251		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1252	else
1253		BUG();
1254}
1255