Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#include <linux/sched.h>
  11#include <linux/slab.h>
  12#include <linux/spinlock.h>
  13#include <linux/completion.h>
  14#include <linux/buffer_head.h>
  15#include <linux/pagemap.h>
  16#include <linux/pagevec.h>
  17#include <linux/mpage.h>
  18#include <linux/fs.h>
  19#include <linux/writeback.h>
  20#include <linux/swap.h>
  21#include <linux/gfs2_ondisk.h>
  22#include <linux/backing-dev.h>
 
 
 
  23
  24#include "gfs2.h"
  25#include "incore.h"
  26#include "bmap.h"
  27#include "glock.h"
  28#include "inode.h"
  29#include "log.h"
  30#include "meta_io.h"
  31#include "quota.h"
  32#include "trans.h"
  33#include "rgrp.h"
  34#include "super.h"
  35#include "util.h"
  36#include "glops.h"
 
  37
  38
  39void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
  40			    unsigned int from, unsigned int to)
  41{
  42	struct buffer_head *head = page_buffers(page);
  43	unsigned int bsize = head->b_size;
  44	struct buffer_head *bh;
 
  45	unsigned int start, end;
  46
  47	for (bh = head, start = 0; bh != head || !start;
  48	     bh = bh->b_this_page, start = end) {
  49		end = start + bsize;
  50		if (end <= from || start >= to)
  51			continue;
  52		if (gfs2_is_jdata(ip))
  53			set_buffer_uptodate(bh);
  54		gfs2_trans_add_bh(ip->i_gl, bh, 0);
 
  55	}
  56}
  57
  58/**
  59 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
  60 * @inode: The inode
  61 * @lblock: The block number to look up
  62 * @bh_result: The buffer head to return the result in
  63 * @create: Non-zero if we may add block to the file
  64 *
  65 * Returns: errno
  66 */
  67
  68static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
  69				  struct buffer_head *bh_result, int create)
  70{
  71	int error;
  72
  73	error = gfs2_block_map(inode, lblock, bh_result, 0);
  74	if (error)
  75		return error;
  76	if (!buffer_mapped(bh_result))
  77		return -EIO;
  78	return 0;
  79}
  80
  81static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
  82				 struct buffer_head *bh_result, int create)
  83{
  84	return gfs2_block_map(inode, lblock, bh_result, 0);
  85}
  86
  87/**
  88 * gfs2_writepage_common - Common bits of writepage
  89 * @page: The page to be written
  90 * @wbc: The writeback control
  91 *
  92 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
  93 */
  94
  95static int gfs2_writepage_common(struct page *page,
  96				 struct writeback_control *wbc)
  97{
  98	struct inode *inode = page->mapping->host;
  99	struct gfs2_inode *ip = GFS2_I(inode);
 100	struct gfs2_sbd *sdp = GFS2_SB(inode);
 101	loff_t i_size = i_size_read(inode);
 102	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
 103	unsigned offset;
 104
 105	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
 106		goto out;
 107	if (current->journal_info)
 108		goto redirty;
 109	/* Is the page fully outside i_size? (truncate in progress) */
 110	offset = i_size & (PAGE_CACHE_SIZE-1);
 111	if (page->index > end_index || (page->index == end_index && !offset)) {
 112		page->mapping->a_ops->invalidatepage(page, 0);
 113		goto out;
 114	}
 115	return 1;
 116redirty:
 117	redirty_page_for_writepage(wbc, page);
 118out:
 119	unlock_page(page);
 120	return 0;
 121}
 122
 123/**
 124 * gfs2_writeback_writepage - Write page for writeback mappings
 125 * @page: The page
 126 * @wbc: The writeback control
 127 *
 128 */
 129
 130static int gfs2_writeback_writepage(struct page *page,
 131				    struct writeback_control *wbc)
 132{
 133	int ret;
 134
 135	ret = gfs2_writepage_common(page, wbc);
 136	if (ret <= 0)
 137		return ret;
 138
 139	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
 140}
 141
 142/**
 143 * gfs2_ordered_writepage - Write page for ordered data files
 144 * @page: The page to write
 145 * @wbc: The writeback control
 146 *
 
 
 147 */
 148
 149static int gfs2_ordered_writepage(struct page *page,
 150				  struct writeback_control *wbc)
 151{
 152	struct inode *inode = page->mapping->host;
 153	struct gfs2_inode *ip = GFS2_I(inode);
 154	int ret;
 
 155
 156	ret = gfs2_writepage_common(page, wbc);
 157	if (ret <= 0)
 158		return ret;
 
 
 
 
 
 
 
 159
 160	if (!page_has_buffers(page)) {
 161		create_empty_buffers(page, inode->i_sb->s_blocksize,
 162				     (1 << BH_Dirty)|(1 << BH_Uptodate));
 163	}
 164	gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
 165	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
 166}
 167
 168/**
 169 * __gfs2_jdata_writepage - The core of jdata writepage
 170 * @page: The page to write
 171 * @wbc: The writeback control
 172 *
 173 * This is shared between writepage and writepages and implements the
 174 * core of the writepage operation. If a transaction is required then
 175 * PageChecked will have been set and the transaction will have
 176 * already been started before this is called.
 177 */
 178
 179static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
 180{
 181	struct inode *inode = page->mapping->host;
 182	struct gfs2_inode *ip = GFS2_I(inode);
 183	struct gfs2_sbd *sdp = GFS2_SB(inode);
 184
 185	if (PageChecked(page)) {
 186		ClearPageChecked(page);
 187		if (!page_has_buffers(page)) {
 188			create_empty_buffers(page, inode->i_sb->s_blocksize,
 189					     (1 << BH_Dirty)|(1 << BH_Uptodate));
 190		}
 191		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
 192	}
 193	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
 194}
 195
 196/**
 197 * gfs2_jdata_writepage - Write complete page
 198 * @page: Page to write
 
 199 *
 200 * Returns: errno
 201 *
 202 */
 203
 204static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
 205{
 206	struct inode *inode = page->mapping->host;
 
 207	struct gfs2_sbd *sdp = GFS2_SB(inode);
 208	int ret;
 209	int done_trans = 0;
 210
 211	if (PageChecked(page)) {
 212		if (wbc->sync_mode != WB_SYNC_ALL)
 213			goto out_ignore;
 214		ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
 215		if (ret)
 216			goto out_ignore;
 217		done_trans = 1;
 218	}
 219	ret = gfs2_writepage_common(page, wbc);
 220	if (ret > 0)
 221		ret = __gfs2_jdata_writepage(page, wbc);
 222	if (done_trans)
 223		gfs2_trans_end(sdp);
 224	return ret;
 225
 226out_ignore:
 227	redirty_page_for_writepage(wbc, page);
 
 228	unlock_page(page);
 229	return 0;
 230}
 231
 232/**
 233 * gfs2_writeback_writepages - Write a bunch of dirty pages back to disk
 234 * @mapping: The mapping to write
 235 * @wbc: Write-back control
 236 *
 237 * For the data=writeback case we can already ignore buffer heads
 238 * and write whole extents at once. This is a big reduction in the
 239 * number of I/O requests we send and the bmap calls we make in this case.
 240 */
 241static int gfs2_writeback_writepages(struct address_space *mapping,
 242				     struct writeback_control *wbc)
 243{
 244	return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 245}
 246
 247/**
 248 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
 249 * @mapping: The mapping
 250 * @wbc: The writeback control
 251 * @writepage: The writepage function to call for each page
 252 * @pvec: The vector of pages
 253 * @nr_pages: The number of pages to write
 
 254 *
 255 * Returns: non-zero if loop should terminate, zero otherwise
 256 */
 257
 258static int gfs2_write_jdata_pagevec(struct address_space *mapping,
 259				    struct writeback_control *wbc,
 260				    struct pagevec *pvec,
 261				    int nr_pages, pgoff_t end)
 
 262{
 263	struct inode *inode = mapping->host;
 264	struct gfs2_sbd *sdp = GFS2_SB(inode);
 265	loff_t i_size = i_size_read(inode);
 266	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
 267	unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
 268	unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
 269	int i;
 270	int ret;
 271
 272	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
 273	if (ret < 0)
 274		return ret;
 275
 276	for(i = 0; i < nr_pages; i++) {
 277		struct page *page = pvec->pages[i];
 278
 
 
 279		lock_page(page);
 280
 281		if (unlikely(page->mapping != mapping)) {
 
 282			unlock_page(page);
 283			continue;
 284		}
 285
 286		if (!wbc->range_cyclic && page->index > end) {
 287			ret = 1;
 288			unlock_page(page);
 289			continue;
 290		}
 291
 292		if (wbc->sync_mode != WB_SYNC_NONE)
 293			wait_on_page_writeback(page);
 294
 295		if (PageWriteback(page) ||
 296		    !clear_page_dirty_for_io(page)) {
 297			unlock_page(page);
 298			continue;
 299		}
 300
 301		/* Is the page fully outside i_size? (truncate in progress) */
 302		if (page->index > end_index || (page->index == end_index && !offset)) {
 303			page->mapping->a_ops->invalidatepage(page, 0);
 304			unlock_page(page);
 305			continue;
 306		}
 307
 308		ret = __gfs2_jdata_writepage(page, wbc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 309
 310		if (ret || (--(wbc->nr_to_write) <= 0))
 
 
 
 
 
 
 311			ret = 1;
 
 
 
 312	}
 313	gfs2_trans_end(sdp);
 314	return ret;
 315}
 316
 317/**
 318 * gfs2_write_cache_jdata - Like write_cache_pages but different
 319 * @mapping: The mapping to write
 320 * @wbc: The writeback control
 321 * @writepage: The writepage function to call
 322 * @data: The data to pass to writepage
 323 *
 324 * The reason that we use our own function here is that we need to
 325 * start transactions before we grab page locks. This allows us
 326 * to get the ordering right.
 327 */
 328
 329static int gfs2_write_cache_jdata(struct address_space *mapping,
 330				  struct writeback_control *wbc)
 331{
 332	int ret = 0;
 333	int done = 0;
 334	struct pagevec pvec;
 335	int nr_pages;
 
 336	pgoff_t index;
 337	pgoff_t end;
 338	int scanned = 0;
 
 339	int range_whole = 0;
 
 340
 341	pagevec_init(&pvec, 0);
 342	if (wbc->range_cyclic) {
 343		index = mapping->writeback_index; /* Start from prev offset */
 
 
 
 
 
 344		end = -1;
 345	} else {
 346		index = wbc->range_start >> PAGE_CACHE_SHIFT;
 347		end = wbc->range_end >> PAGE_CACHE_SHIFT;
 348		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
 349			range_whole = 1;
 350		scanned = 1;
 351	}
 
 
 
 
 352
 353retry:
 354	 while (!done && (index <= end) &&
 355		(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 356					       PAGECACHE_TAG_DIRTY,
 357					       min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
 358		scanned = 1;
 359		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
 
 
 
 
 360		if (ret)
 361			done = 1;
 362		if (ret > 0)
 363			ret = 0;
 364
 365		pagevec_release(&pvec);
 366		cond_resched();
 367	}
 368
 369	if (!scanned && !done) {
 370		/*
 
 371		 * We hit the last page and there is more work to be done: wrap
 372		 * back to the start of the file
 373		 */
 374		scanned = 1;
 375		index = 0;
 
 376		goto retry;
 377	}
 378
 379	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
 380		mapping->writeback_index = index;
 
 381	return ret;
 382}
 383
 384
 385/**
 386 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
 387 * @mapping: The mapping to write
 388 * @wbc: The writeback control
 389 * 
 390 */
 391
 392static int gfs2_jdata_writepages(struct address_space *mapping,
 393				 struct writeback_control *wbc)
 394{
 395	struct gfs2_inode *ip = GFS2_I(mapping->host);
 396	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
 397	int ret;
 398
 399	ret = gfs2_write_cache_jdata(mapping, wbc);
 400	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
 401		gfs2_log_flush(sdp, ip->i_gl);
 
 402		ret = gfs2_write_cache_jdata(mapping, wbc);
 403	}
 404	return ret;
 405}
 406
 407/**
 408 * stuffed_readpage - Fill in a Linux page with stuffed file data
 409 * @ip: the inode
 410 * @page: the page
 411 *
 412 * Returns: errno
 413 */
 414
 415static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
 416{
 417	struct buffer_head *dibh;
 418	u64 dsize = i_size_read(&ip->i_inode);
 419	void *kaddr;
 420	int error;
 421
 422	/*
 423	 * Due to the order of unstuffing files and ->fault(), we can be
 424	 * asked for a zero page in the case of a stuffed file being extended,
 425	 * so we need to supply one here. It doesn't happen often.
 426	 */
 427	if (unlikely(page->index)) {
 428		zero_user(page, 0, PAGE_CACHE_SIZE);
 429		SetPageUptodate(page);
 430		return 0;
 431	}
 432
 433	error = gfs2_meta_inode_buffer(ip, &dibh);
 434	if (error)
 435		return error;
 436
 437	kaddr = kmap_atomic(page, KM_USER0);
 438	if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
 439		dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
 440	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
 441	memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
 442	kunmap_atomic(kaddr, KM_USER0);
 443	flush_dcache_page(page);
 444	brelse(dibh);
 445	SetPageUptodate(page);
 446
 447	return 0;
 448}
 449
 450
 451/**
 452 * __gfs2_readpage - readpage
 453 * @file: The file to read a page for
 454 * @page: The page to read
 455 *
 456 * This is the core of gfs2's readpage. Its used by the internal file
 457 * reading code as in that case we already hold the glock. Also its
 458 * called by gfs2_readpage() once the required lock has been granted.
 459 *
 460 */
 461
 462static int __gfs2_readpage(void *file, struct page *page)
 463{
 464	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
 465	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
 
 466	int error;
 467
 468	if (gfs2_is_stuffed(ip)) {
 
 
 
 469		error = stuffed_readpage(ip, page);
 470		unlock_page(page);
 471	} else {
 472		error = mpage_readpage(page, gfs2_block_map);
 473	}
 474
 475	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
 476		return -EIO;
 477
 478	return error;
 479}
 480
 481/**
 482 * gfs2_readpage - read a page of a file
 483 * @file: The file to read
 484 * @page: The page of the file
 485 *
 486 * This deals with the locking required. We have to unlock and
 487 * relock the page in order to get the locking in the right
 488 * order.
 489 */
 490
 491static int gfs2_readpage(struct file *file, struct page *page)
 492{
 493	struct address_space *mapping = page->mapping;
 494	struct gfs2_inode *ip = GFS2_I(mapping->host);
 495	struct gfs2_holder gh;
 496	int error;
 497
 498	unlock_page(page);
 499	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 500	error = gfs2_glock_nq(&gh);
 501	if (unlikely(error))
 502		goto out;
 503	error = AOP_TRUNCATED_PAGE;
 504	lock_page(page);
 505	if (page->mapping == mapping && !PageUptodate(page))
 506		error = __gfs2_readpage(file, page);
 507	else
 508		unlock_page(page);
 509	gfs2_glock_dq(&gh);
 510out:
 511	gfs2_holder_uninit(&gh);
 512	if (error && error != AOP_TRUNCATED_PAGE)
 513		lock_page(page);
 514	return error;
 515}
 516
 517/**
 518 * gfs2_internal_read - read an internal file
 519 * @ip: The gfs2 inode
 520 * @ra_state: The readahead state (or NULL for no readahead)
 521 * @buf: The buffer to fill
 522 * @pos: The file position
 523 * @size: The amount to read
 524 *
 525 */
 526
 527int gfs2_internal_read(struct gfs2_inode *ip, struct file_ra_state *ra_state,
 528                       char *buf, loff_t *pos, unsigned size)
 529{
 530	struct address_space *mapping = ip->i_inode.i_mapping;
 531	unsigned long index = *pos / PAGE_CACHE_SIZE;
 532	unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
 533	unsigned copied = 0;
 534	unsigned amt;
 535	struct page *page;
 536	void *p;
 537
 538	do {
 539		amt = size - copied;
 540		if (offset + size > PAGE_CACHE_SIZE)
 541			amt = PAGE_CACHE_SIZE - offset;
 542		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
 543		if (IS_ERR(page))
 544			return PTR_ERR(page);
 545		p = kmap_atomic(page, KM_USER0);
 546		memcpy(buf + copied, p + offset, amt);
 547		kunmap_atomic(p, KM_USER0);
 548		mark_page_accessed(page);
 549		page_cache_release(page);
 550		copied += amt;
 551		index++;
 552		offset = 0;
 553	} while(copied < size);
 554	(*pos) += size;
 555	return size;
 556}
 557
 558/**
 559 * gfs2_readpages - Read a bunch of pages at once
 
 560 *
 561 * Some notes:
 562 * 1. This is only for readahead, so we can simply ignore any things
 563 *    which are slightly inconvenient (such as locking conflicts between
 564 *    the page lock and the glock) and return having done no I/O. Its
 565 *    obviously not something we'd want to do on too regular a basis.
 566 *    Any I/O we ignore at this time will be done via readpage later.
 567 * 2. We don't handle stuffed files here we let readpage do the honours.
 568 * 3. mpage_readpages() does most of the heavy lifting in the common case.
 569 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
 570 */
 571
 572static int gfs2_readpages(struct file *file, struct address_space *mapping,
 573			  struct list_head *pages, unsigned nr_pages)
 574{
 575	struct inode *inode = mapping->host;
 576	struct gfs2_inode *ip = GFS2_I(inode);
 577	struct gfs2_sbd *sdp = GFS2_SB(inode);
 578	struct gfs2_holder gh;
 579	int ret;
 580
 581	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 582	ret = gfs2_glock_nq(&gh);
 583	if (unlikely(ret))
 584		goto out_uninit;
 585	if (!gfs2_is_stuffed(ip))
 586		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
 587	gfs2_glock_dq(&gh);
 588out_uninit:
 589	gfs2_holder_uninit(&gh);
 590	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
 591		ret = -EIO;
 592	return ret;
 593}
 594
 595/**
 596 * gfs2_write_begin - Begin to write to a file
 597 * @file: The file to write to
 598 * @mapping: The mapping in which to write
 599 * @pos: The file offset at which to start writing
 600 * @len: Length of the write
 601 * @flags: Various flags
 602 * @pagep: Pointer to return the page
 603 * @fsdata: Pointer to return fs data (unused by GFS2)
 604 *
 605 * Returns: errno
 606 */
 607
 608static int gfs2_write_begin(struct file *file, struct address_space *mapping,
 609			    loff_t pos, unsigned len, unsigned flags,
 610			    struct page **pagep, void **fsdata)
 611{
 612	struct gfs2_inode *ip = GFS2_I(mapping->host);
 613	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
 614	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 615	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
 616	int alloc_required;
 617	int error = 0;
 618	struct gfs2_alloc *al = NULL;
 619	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
 620	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
 621	struct page *page;
 622
 623	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
 624	error = gfs2_glock_nq(&ip->i_gh);
 625	if (unlikely(error))
 626		goto out_uninit;
 627	if (&ip->i_inode == sdp->sd_rindex) {
 628		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
 629					   GL_NOCACHE, &m_ip->i_gh);
 630		if (unlikely(error)) {
 631			gfs2_glock_dq(&ip->i_gh);
 632			goto out_uninit;
 633		}
 634	}
 635
 636	alloc_required = gfs2_write_alloc_required(ip, pos, len);
 637
 638	if (alloc_required || gfs2_is_jdata(ip))
 639		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
 640
 641	if (alloc_required) {
 642		al = gfs2_alloc_get(ip);
 643		if (!al) {
 644			error = -ENOMEM;
 645			goto out_unlock;
 646		}
 647
 648		error = gfs2_quota_lock_check(ip);
 649		if (error)
 650			goto out_alloc_put;
 651
 652		al->al_requested = data_blocks + ind_blocks;
 653		error = gfs2_inplace_reserve(ip);
 654		if (error)
 655			goto out_qunlock;
 656	}
 657
 658	rblocks = RES_DINODE + ind_blocks;
 659	if (gfs2_is_jdata(ip))
 660		rblocks += data_blocks ? data_blocks : 1;
 661	if (ind_blocks || data_blocks)
 662		rblocks += RES_STATFS + RES_QUOTA;
 663	if (&ip->i_inode == sdp->sd_rindex)
 664		rblocks += 2 * RES_STATFS;
 665	if (alloc_required)
 666		rblocks += gfs2_rg_blocks(al);
 667
 668	error = gfs2_trans_begin(sdp, rblocks,
 669				 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
 670	if (error)
 671		goto out_trans_fail;
 672
 673	error = -ENOMEM;
 674	flags |= AOP_FLAG_NOFS;
 675	page = grab_cache_page_write_begin(mapping, index, flags);
 676	*pagep = page;
 677	if (unlikely(!page))
 678		goto out_endtrans;
 679
 680	if (gfs2_is_stuffed(ip)) {
 681		error = 0;
 682		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
 683			error = gfs2_unstuff_dinode(ip, page);
 684			if (error == 0)
 685				goto prepare_write;
 686		} else if (!PageUptodate(page)) {
 687			error = stuffed_readpage(ip, page);
 688		}
 689		goto out;
 690	}
 691
 692prepare_write:
 693	error = __block_write_begin(page, from, len, gfs2_block_map);
 694out:
 695	if (error == 0)
 696		return 0;
 697
 698	unlock_page(page);
 699	page_cache_release(page);
 700
 701	gfs2_trans_end(sdp);
 702	if (pos + len > ip->i_inode.i_size)
 703		gfs2_trim_blocks(&ip->i_inode);
 704	goto out_trans_fail;
 705
 706out_endtrans:
 707	gfs2_trans_end(sdp);
 708out_trans_fail:
 709	if (alloc_required) {
 710		gfs2_inplace_release(ip);
 711out_qunlock:
 712		gfs2_quota_unlock(ip);
 713out_alloc_put:
 714		gfs2_alloc_put(ip);
 715	}
 716out_unlock:
 717	if (&ip->i_inode == sdp->sd_rindex) {
 718		gfs2_glock_dq(&m_ip->i_gh);
 719		gfs2_holder_uninit(&m_ip->i_gh);
 720	}
 721	gfs2_glock_dq(&ip->i_gh);
 722out_uninit:
 723	gfs2_holder_uninit(&ip->i_gh);
 724	return error;
 725}
 726
 727/**
 728 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
 729 * @inode: the rindex inode
 730 */
 731static void adjust_fs_space(struct inode *inode)
 732{
 733	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
 734	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 735	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
 736	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
 737	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
 738	struct buffer_head *m_bh, *l_bh;
 739	u64 fs_total, new_free;
 740
 
 
 
 741	/* Total up the file system space, according to the latest rindex. */
 742	fs_total = gfs2_ri_total(sdp);
 743	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
 744		return;
 745
 746	spin_lock(&sdp->sd_statfs_spin);
 747	gfs2_statfs_change_in(m_sc, m_bh->b_data +
 748			      sizeof(struct gfs2_dinode));
 749	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
 750		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
 751	else
 752		new_free = 0;
 753	spin_unlock(&sdp->sd_statfs_spin);
 754	fs_warn(sdp, "File system extended by %llu blocks.\n",
 755		(unsigned long long)new_free);
 756	gfs2_statfs_change(sdp, new_free, new_free, 0);
 757
 758	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
 759		goto out;
 760	update_statfs(sdp, m_bh, l_bh);
 761	brelse(l_bh);
 762out:
 763	brelse(m_bh);
 764}
 765
 766/**
 767 * gfs2_stuffed_write_end - Write end for stuffed files
 768 * @inode: The inode
 769 * @dibh: The buffer_head containing the on-disk inode
 770 * @pos: The file position
 771 * @len: The length of the write
 772 * @copied: How much was actually copied by the VFS
 773 * @page: The page
 774 *
 775 * This copies the data from the page into the inode block after
 776 * the inode data structure itself.
 777 *
 778 * Returns: errno
 779 */
 780static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
 781				  loff_t pos, unsigned len, unsigned copied,
 782				  struct page *page)
 783{
 784	struct gfs2_inode *ip = GFS2_I(inode);
 785	struct gfs2_sbd *sdp = GFS2_SB(inode);
 786	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 787	u64 to = pos + copied;
 788	void *kaddr;
 789	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
 790	struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data;
 791
 792	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
 793	kaddr = kmap_atomic(page, KM_USER0);
 794	memcpy(buf + pos, kaddr + pos, copied);
 795	memset(kaddr + pos + copied, 0, len - copied);
 796	flush_dcache_page(page);
 797	kunmap_atomic(kaddr, KM_USER0);
 798
 799	if (!PageUptodate(page))
 800		SetPageUptodate(page);
 801	unlock_page(page);
 802	page_cache_release(page);
 803
 804	if (copied) {
 805		if (inode->i_size < to)
 806			i_size_write(inode, to);
 807		gfs2_dinode_out(ip, di);
 808		mark_inode_dirty(inode);
 809	}
 810
 811	if (inode == sdp->sd_rindex) {
 812		adjust_fs_space(inode);
 813		ip->i_gh.gh_flags |= GL_NOCACHE;
 814	}
 815
 816	brelse(dibh);
 817	gfs2_trans_end(sdp);
 818	if (inode == sdp->sd_rindex) {
 819		gfs2_glock_dq(&m_ip->i_gh);
 820		gfs2_holder_uninit(&m_ip->i_gh);
 821	}
 822	gfs2_glock_dq(&ip->i_gh);
 823	gfs2_holder_uninit(&ip->i_gh);
 824	return copied;
 825}
 826
 827/**
 828 * gfs2_write_end
 829 * @file: The file to write to
 830 * @mapping: The address space to write to
 831 * @pos: The file position
 832 * @len: The length of the data
 833 * @copied:
 834 * @page: The page that has been written
 835 * @fsdata: The fsdata (unused in GFS2)
 836 *
 837 * The main write_end function for GFS2. We have a separate one for
 838 * stuffed files as they are slightly different, otherwise we just
 839 * put our locking around the VFS provided functions.
 840 *
 841 * Returns: errno
 842 */
 843
 844static int gfs2_write_end(struct file *file, struct address_space *mapping,
 845			  loff_t pos, unsigned len, unsigned copied,
 846			  struct page *page, void *fsdata)
 847{
 848	struct inode *inode = page->mapping->host;
 849	struct gfs2_inode *ip = GFS2_I(inode);
 850	struct gfs2_sbd *sdp = GFS2_SB(inode);
 851	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 852	struct buffer_head *dibh;
 853	struct gfs2_alloc *al = ip->i_alloc;
 854	unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
 855	unsigned int to = from + len;
 856	int ret;
 857
 858	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
 859
 860	ret = gfs2_meta_inode_buffer(ip, &dibh);
 861	if (unlikely(ret)) {
 862		unlock_page(page);
 863		page_cache_release(page);
 864		goto failed;
 865	}
 866
 867	gfs2_trans_add_bh(ip->i_gl, dibh, 1);
 868
 869	if (gfs2_is_stuffed(ip))
 870		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
 871
 872	if (!gfs2_is_writeback(ip))
 873		gfs2_page_add_databufs(ip, page, from, to);
 874
 875	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 876	if (ret > 0) {
 877		gfs2_dinode_out(ip, dibh->b_data);
 878		mark_inode_dirty(inode);
 879	}
 880
 881	if (inode == sdp->sd_rindex) {
 882		adjust_fs_space(inode);
 883		ip->i_gh.gh_flags |= GL_NOCACHE;
 884	}
 885
 886	brelse(dibh);
 887failed:
 888	gfs2_trans_end(sdp);
 889	if (al) {
 890		gfs2_inplace_release(ip);
 891		gfs2_quota_unlock(ip);
 892		gfs2_alloc_put(ip);
 893	}
 894	if (inode == sdp->sd_rindex) {
 895		gfs2_glock_dq(&m_ip->i_gh);
 896		gfs2_holder_uninit(&m_ip->i_gh);
 897	}
 898	gfs2_glock_dq(&ip->i_gh);
 899	gfs2_holder_uninit(&ip->i_gh);
 900	return ret;
 901}
 902
 903/**
 904 * gfs2_set_page_dirty - Page dirtying function
 905 * @page: The page to dirty
 906 *
 907 * Returns: 1 if it dirtyed the page, or 0 otherwise
 908 */
 909 
 910static int gfs2_set_page_dirty(struct page *page)
 911{
 912	SetPageChecked(page);
 
 913	return __set_page_dirty_buffers(page);
 914}
 915
 916/**
 917 * gfs2_bmap - Block map function
 918 * @mapping: Address space info
 919 * @lblock: The block to map
 920 *
 921 * Returns: The disk address for the block or 0 on hole or error
 922 */
 923
 924static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
 925{
 926	struct gfs2_inode *ip = GFS2_I(mapping->host);
 927	struct gfs2_holder i_gh;
 928	sector_t dblock = 0;
 929	int error;
 930
 931	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
 932	if (error)
 933		return 0;
 934
 935	if (!gfs2_is_stuffed(ip))
 936		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
 937
 938	gfs2_glock_dq_uninit(&i_gh);
 939
 940	return dblock;
 941}
 942
 943static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
 944{
 945	struct gfs2_bufdata *bd;
 946
 947	lock_buffer(bh);
 948	gfs2_log_lock(sdp);
 949	clear_buffer_dirty(bh);
 950	bd = bh->b_private;
 951	if (bd) {
 952		if (!list_empty(&bd->bd_le.le_list) && !buffer_pinned(bh))
 953			list_del_init(&bd->bd_le.le_list);
 954		else
 955			gfs2_remove_from_journal(bh, current->journal_info, 0);
 
 
 
 956	}
 957	bh->b_bdev = NULL;
 958	clear_buffer_mapped(bh);
 959	clear_buffer_req(bh);
 960	clear_buffer_new(bh);
 961	gfs2_log_unlock(sdp);
 962	unlock_buffer(bh);
 963}
 964
 965static void gfs2_invalidatepage(struct page *page, unsigned long offset)
 
 966{
 967	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
 
 
 968	struct buffer_head *bh, *head;
 969	unsigned long pos = 0;
 970
 971	BUG_ON(!PageLocked(page));
 972	if (offset == 0)
 973		ClearPageChecked(page);
 974	if (!page_has_buffers(page))
 975		goto out;
 976
 977	bh = head = page_buffers(page);
 978	do {
 
 
 
 979		if (offset <= pos)
 980			gfs2_discard(sdp, bh);
 981		pos += bh->b_size;
 982		bh = bh->b_this_page;
 983	} while (bh != head);
 984out:
 985	if (offset == 0)
 986		try_to_release_page(page, 0);
 987}
 988
 989/**
 990 * gfs2_ok_for_dio - check that dio is valid on this file
 991 * @ip: The inode
 992 * @rw: READ or WRITE
 993 * @offset: The offset at which we are reading or writing
 994 *
 995 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
 996 *          1 (to accept the i/o request)
 997 */
 998static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
 999{
1000	/*
1001	 * Should we return an error here? I can't see that O_DIRECT for
1002	 * a stuffed file makes any sense. For now we'll silently fall
1003	 * back to buffered I/O
1004	 */
1005	if (gfs2_is_stuffed(ip))
1006		return 0;
1007
1008	if (offset >= i_size_read(&ip->i_inode))
1009		return 0;
1010	return 1;
1011}
1012
1013
1014
1015static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
1016			      const struct iovec *iov, loff_t offset,
1017			      unsigned long nr_segs)
1018{
1019	struct file *file = iocb->ki_filp;
1020	struct inode *inode = file->f_mapping->host;
1021	struct gfs2_inode *ip = GFS2_I(inode);
1022	struct gfs2_holder gh;
1023	int rv;
1024
1025	/*
1026	 * Deferred lock, even if its a write, since we do no allocation
1027	 * on this path. All we need change is atime, and this lock mode
1028	 * ensures that other nodes have flushed their buffered read caches
1029	 * (i.e. their page cache entries for this inode). We do not,
1030	 * unfortunately have the option of only flushing a range like
1031	 * the VFS does.
1032	 */
1033	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1034	rv = gfs2_glock_nq(&gh);
1035	if (rv)
1036		return rv;
1037	rv = gfs2_ok_for_dio(ip, rw, offset);
1038	if (rv != 1)
1039		goto out; /* dio not valid, fall back to buffered i/o */
1040
1041	rv = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1042				  offset, nr_segs, gfs2_get_block_direct,
1043				  NULL, NULL, 0);
1044out:
1045	gfs2_glock_dq_m(1, &gh);
1046	gfs2_holder_uninit(&gh);
1047	return rv;
1048}
1049
1050/**
1051 * gfs2_releasepage - free the metadata associated with a page
1052 * @page: the page that's being released
1053 * @gfp_mask: passed from Linux VFS, ignored by us
1054 *
1055 * Call try_to_free_buffers() if the buffers in this page can be
1056 * released.
1057 *
1058 * Returns: 0
1059 */
1060
1061int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1062{
1063	struct address_space *mapping = page->mapping;
1064	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1065	struct buffer_head *bh, *head;
1066	struct gfs2_bufdata *bd;
1067
1068	if (!page_has_buffers(page))
1069		return 0;
1070
 
 
 
 
 
 
 
 
 
 
1071	gfs2_log_lock(sdp);
1072	spin_lock(&sdp->sd_ail_lock);
1073	head = bh = page_buffers(page);
1074	do {
1075		if (atomic_read(&bh->b_count))
1076			goto cannot_release;
1077		bd = bh->b_private;
1078		if (bd && bd->bd_ail)
 
 
1079			goto cannot_release;
1080		if (buffer_pinned(bh) || buffer_dirty(bh))
1081			goto not_possible;
1082		bh = bh->b_this_page;
1083	} while(bh != head);
1084	spin_unlock(&sdp->sd_ail_lock);
1085	gfs2_log_unlock(sdp);
1086
1087	head = bh = page_buffers(page);
1088	do {
1089		gfs2_log_lock(sdp);
1090		bd = bh->b_private;
1091		if (bd) {
1092			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1093			gfs2_assert_warn(sdp, list_empty(&bd->bd_list_tr));
1094			if (!list_empty(&bd->bd_le.le_list)) {
1095				if (!buffer_pinned(bh))
1096					list_del_init(&bd->bd_le.le_list);
1097				else
1098					bd = NULL;
1099			}
1100			if (bd)
1101				bd->bd_bh = NULL;
1102			bh->b_private = NULL;
 
 
 
 
 
 
 
 
1103		}
1104		gfs2_log_unlock(sdp);
1105		if (bd)
1106			kmem_cache_free(gfs2_bufdata_cachep, bd);
1107
1108		bh = bh->b_this_page;
1109	} while (bh != head);
 
1110
1111	return try_to_free_buffers(page);
1112
1113not_possible: /* Should never happen */
1114	WARN_ON(buffer_dirty(bh));
1115	WARN_ON(buffer_pinned(bh));
1116cannot_release:
1117	spin_unlock(&sdp->sd_ail_lock);
1118	gfs2_log_unlock(sdp);
1119	return 0;
1120}
1121
1122static const struct address_space_operations gfs2_writeback_aops = {
1123	.writepage = gfs2_writeback_writepage,
1124	.writepages = gfs2_writeback_writepages,
1125	.readpage = gfs2_readpage,
1126	.readpages = gfs2_readpages,
1127	.write_begin = gfs2_write_begin,
1128	.write_end = gfs2_write_end,
1129	.bmap = gfs2_bmap,
1130	.invalidatepage = gfs2_invalidatepage,
1131	.releasepage = gfs2_releasepage,
1132	.direct_IO = gfs2_direct_IO,
1133	.migratepage = buffer_migrate_page,
1134	.is_partially_uptodate = block_is_partially_uptodate,
1135	.error_remove_page = generic_error_remove_page,
1136};
1137
1138static const struct address_space_operations gfs2_ordered_aops = {
1139	.writepage = gfs2_ordered_writepage,
1140	.readpage = gfs2_readpage,
1141	.readpages = gfs2_readpages,
1142	.write_begin = gfs2_write_begin,
1143	.write_end = gfs2_write_end,
1144	.set_page_dirty = gfs2_set_page_dirty,
1145	.bmap = gfs2_bmap,
1146	.invalidatepage = gfs2_invalidatepage,
1147	.releasepage = gfs2_releasepage,
1148	.direct_IO = gfs2_direct_IO,
1149	.migratepage = buffer_migrate_page,
1150	.is_partially_uptodate = block_is_partially_uptodate,
1151	.error_remove_page = generic_error_remove_page,
1152};
1153
1154static const struct address_space_operations gfs2_jdata_aops = {
1155	.writepage = gfs2_jdata_writepage,
1156	.writepages = gfs2_jdata_writepages,
1157	.readpage = gfs2_readpage,
1158	.readpages = gfs2_readpages,
1159	.write_begin = gfs2_write_begin,
1160	.write_end = gfs2_write_end,
1161	.set_page_dirty = gfs2_set_page_dirty,
1162	.bmap = gfs2_bmap,
1163	.invalidatepage = gfs2_invalidatepage,
1164	.releasepage = gfs2_releasepage,
1165	.is_partially_uptodate = block_is_partially_uptodate,
1166	.error_remove_page = generic_error_remove_page,
1167};
1168
1169void gfs2_set_aops(struct inode *inode)
1170{
1171	struct gfs2_inode *ip = GFS2_I(inode);
1172
1173	if (gfs2_is_writeback(ip))
1174		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1175	else if (gfs2_is_ordered(ip))
1176		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1177	else if (gfs2_is_jdata(ip))
1178		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1179	else
1180		BUG();
1181}
1182
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
  4 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
 
 
 
 
  5 */
  6
  7#include <linux/sched.h>
  8#include <linux/slab.h>
  9#include <linux/spinlock.h>
 10#include <linux/completion.h>
 11#include <linux/buffer_head.h>
 12#include <linux/pagemap.h>
 13#include <linux/pagevec.h>
 14#include <linux/mpage.h>
 15#include <linux/fs.h>
 16#include <linux/writeback.h>
 17#include <linux/swap.h>
 18#include <linux/gfs2_ondisk.h>
 19#include <linux/backing-dev.h>
 20#include <linux/uio.h>
 21#include <trace/events/writeback.h>
 22#include <linux/sched/signal.h>
 23
 24#include "gfs2.h"
 25#include "incore.h"
 26#include "bmap.h"
 27#include "glock.h"
 28#include "inode.h"
 29#include "log.h"
 30#include "meta_io.h"
 31#include "quota.h"
 32#include "trans.h"
 33#include "rgrp.h"
 34#include "super.h"
 35#include "util.h"
 36#include "glops.h"
 37#include "aops.h"
 38
 39
 40void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
 41			    unsigned int from, unsigned int len)
 42{
 43	struct buffer_head *head = page_buffers(page);
 44	unsigned int bsize = head->b_size;
 45	struct buffer_head *bh;
 46	unsigned int to = from + len;
 47	unsigned int start, end;
 48
 49	for (bh = head, start = 0; bh != head || !start;
 50	     bh = bh->b_this_page, start = end) {
 51		end = start + bsize;
 52		if (end <= from)
 53			continue;
 54		if (start >= to)
 55			break;
 56		set_buffer_uptodate(bh);
 57		gfs2_trans_add_data(ip->i_gl, bh);
 58	}
 59}
 60
 61/**
 62 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
 63 * @inode: The inode
 64 * @lblock: The block number to look up
 65 * @bh_result: The buffer head to return the result in
 66 * @create: Non-zero if we may add block to the file
 67 *
 68 * Returns: errno
 69 */
 70
 71static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
 72				  struct buffer_head *bh_result, int create)
 73{
 74	int error;
 75
 76	error = gfs2_block_map(inode, lblock, bh_result, 0);
 77	if (error)
 78		return error;
 79	if (!buffer_mapped(bh_result))
 80		return -ENODATA;
 81	return 0;
 82}
 83
 
 
 
 
 
 
 84/**
 85 * gfs2_writepage - Write page for writeback mappings
 86 * @page: The page
 87 * @wbc: The writeback control
 
 
 88 */
 89static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
 
 
 90{
 91	struct inode *inode = page->mapping->host;
 92	struct gfs2_inode *ip = GFS2_I(inode);
 93	struct gfs2_sbd *sdp = GFS2_SB(inode);
 94	struct iomap_writepage_ctx wpc = { };
 
 
 95
 96	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
 97		goto out;
 98	if (current->journal_info)
 99		goto redirty;
100	return iomap_writepage(page, wbc, &wpc, &gfs2_writeback_ops);
101
 
 
 
 
 
102redirty:
103	redirty_page_for_writepage(wbc, page);
104out:
105	unlock_page(page);
106	return 0;
107}
108
109/**
110 * gfs2_write_jdata_page - gfs2 jdata-specific version of block_write_full_page
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111 * @page: The page to write
112 * @wbc: The writeback control
113 *
114 * This is the same as calling block_write_full_page, but it also
115 * writes pages outside of i_size
116 */
117static int gfs2_write_jdata_page(struct page *page,
118				 struct writeback_control *wbc)
 
119{
120	struct inode * const inode = page->mapping->host;
121	loff_t i_size = i_size_read(inode);
122	const pgoff_t end_index = i_size >> PAGE_SHIFT;
123	unsigned offset;
124
125	/*
126	 * The page straddles i_size.  It must be zeroed out on each and every
127	 * writepage invocation because it may be mmapped.  "A file is mapped
128	 * in multiples of the page size.  For a file that is not a multiple of
129	 * the  page size, the remaining memory is zeroed when mapped, and
130	 * writes to that region are not written out to the file."
131	 */
132	offset = i_size & (PAGE_SIZE - 1);
133	if (page->index == end_index && offset)
134		zero_user_segment(page, offset, PAGE_SIZE);
135
136	return __block_write_full_page(inode, page, gfs2_get_block_noalloc, wbc,
137				       end_buffer_async_write);
 
 
 
 
138}
139
140/**
141 * __gfs2_jdata_writepage - The core of jdata writepage
142 * @page: The page to write
143 * @wbc: The writeback control
144 *
145 * This is shared between writepage and writepages and implements the
146 * core of the writepage operation. If a transaction is required then
147 * PageChecked will have been set and the transaction will have
148 * already been started before this is called.
149 */
150
151static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
152{
153	struct inode *inode = page->mapping->host;
154	struct gfs2_inode *ip = GFS2_I(inode);
155	struct gfs2_sbd *sdp = GFS2_SB(inode);
156
157	if (PageChecked(page)) {
158		ClearPageChecked(page);
159		if (!page_has_buffers(page)) {
160			create_empty_buffers(page, inode->i_sb->s_blocksize,
161					     BIT(BH_Dirty)|BIT(BH_Uptodate));
162		}
163		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize);
164	}
165	return gfs2_write_jdata_page(page, wbc);
166}
167
168/**
169 * gfs2_jdata_writepage - Write complete page
170 * @page: Page to write
171 * @wbc: The writeback control
172 *
173 * Returns: errno
174 *
175 */
176
177static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
178{
179	struct inode *inode = page->mapping->host;
180	struct gfs2_inode *ip = GFS2_I(inode);
181	struct gfs2_sbd *sdp = GFS2_SB(inode);
 
 
182
183	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
184		goto out;
185	if (PageChecked(page) || current->journal_info)
186		goto out_ignore;
187	return __gfs2_jdata_writepage(page, wbc);
 
 
 
 
 
 
 
 
 
188
189out_ignore:
190	redirty_page_for_writepage(wbc, page);
191out:
192	unlock_page(page);
193	return 0;
194}
195
196/**
197 * gfs2_writepages - Write a bunch of dirty pages back to disk
198 * @mapping: The mapping to write
199 * @wbc: Write-back control
200 *
201 * Used for both ordered and writeback modes.
 
 
202 */
203static int gfs2_writepages(struct address_space *mapping,
204			   struct writeback_control *wbc)
205{
206	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
207	struct iomap_writepage_ctx wpc = { };
208	int ret;
209
210	/*
211	 * Even if we didn't write any pages here, we might still be holding
212	 * dirty pages in the ail. We forcibly flush the ail because we don't
213	 * want balance_dirty_pages() to loop indefinitely trying to write out
214	 * pages held in the ail that it can't find.
215	 */
216	ret = iomap_writepages(mapping, wbc, &wpc, &gfs2_writeback_ops);
217	if (ret == 0)
218		set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
219	return ret;
220}
221
222/**
223 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
224 * @mapping: The mapping
225 * @wbc: The writeback control
 
226 * @pvec: The vector of pages
227 * @nr_pages: The number of pages to write
228 * @done_index: Page index
229 *
230 * Returns: non-zero if loop should terminate, zero otherwise
231 */
232
233static int gfs2_write_jdata_pagevec(struct address_space *mapping,
234				    struct writeback_control *wbc,
235				    struct pagevec *pvec,
236				    int nr_pages,
237				    pgoff_t *done_index)
238{
239	struct inode *inode = mapping->host;
240	struct gfs2_sbd *sdp = GFS2_SB(inode);
241	unsigned nrblocks = nr_pages * (PAGE_SIZE >> inode->i_blkbits);
 
 
 
242	int i;
243	int ret;
244
245	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
246	if (ret < 0)
247		return ret;
248
249	for(i = 0; i < nr_pages; i++) {
250		struct page *page = pvec->pages[i];
251
252		*done_index = page->index;
253
254		lock_page(page);
255
256		if (unlikely(page->mapping != mapping)) {
257continue_unlock:
258			unlock_page(page);
259			continue;
260		}
261
262		if (!PageDirty(page)) {
263			/* someone wrote it for us */
264			goto continue_unlock;
 
265		}
266
267		if (PageWriteback(page)) {
268			if (wbc->sync_mode != WB_SYNC_NONE)
269				wait_on_page_writeback(page);
270			else
271				goto continue_unlock;
 
 
272		}
273
274		BUG_ON(PageWriteback(page));
275		if (!clear_page_dirty_for_io(page))
276			goto continue_unlock;
277
278		trace_wbc_writepage(wbc, inode_to_bdi(inode));
 
279
280		ret = __gfs2_jdata_writepage(page, wbc);
281		if (unlikely(ret)) {
282			if (ret == AOP_WRITEPAGE_ACTIVATE) {
283				unlock_page(page);
284				ret = 0;
285			} else {
286
287				/*
288				 * done_index is set past this page,
289				 * so media errors will not choke
290				 * background writeout for the entire
291				 * file. This has consequences for
292				 * range_cyclic semantics (ie. it may
293				 * not be suitable for data integrity
294				 * writeout).
295				 */
296				*done_index = page->index + 1;
297				ret = 1;
298				break;
299			}
300		}
301
302		/*
303		 * We stop writing back only if we are not doing
304		 * integrity sync. In case of integrity sync we have to
305		 * keep going until we have written all the pages
306		 * we tagged for writeback prior to entering this loop.
307		 */
308		if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
309			ret = 1;
310			break;
311		}
312
313	}
314	gfs2_trans_end(sdp);
315	return ret;
316}
317
318/**
319 * gfs2_write_cache_jdata - Like write_cache_pages but different
320 * @mapping: The mapping to write
321 * @wbc: The writeback control
 
 
322 *
323 * The reason that we use our own function here is that we need to
324 * start transactions before we grab page locks. This allows us
325 * to get the ordering right.
326 */
327
328static int gfs2_write_cache_jdata(struct address_space *mapping,
329				  struct writeback_control *wbc)
330{
331	int ret = 0;
332	int done = 0;
333	struct pagevec pvec;
334	int nr_pages;
335	pgoff_t writeback_index;
336	pgoff_t index;
337	pgoff_t end;
338	pgoff_t done_index;
339	int cycled;
340	int range_whole = 0;
341	xa_mark_t tag;
342
343	pagevec_init(&pvec);
344	if (wbc->range_cyclic) {
345		writeback_index = mapping->writeback_index; /* prev offset */
346		index = writeback_index;
347		if (index == 0)
348			cycled = 1;
349		else
350			cycled = 0;
351		end = -1;
352	} else {
353		index = wbc->range_start >> PAGE_SHIFT;
354		end = wbc->range_end >> PAGE_SHIFT;
355		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
356			range_whole = 1;
357		cycled = 1; /* ignore range_cyclic tests */
358	}
359	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
360		tag = PAGECACHE_TAG_TOWRITE;
361	else
362		tag = PAGECACHE_TAG_DIRTY;
363
364retry:
365	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
366		tag_pages_for_writeback(mapping, index, end);
367	done_index = index;
368	while (!done && (index <= end)) {
369		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
370				tag);
371		if (nr_pages == 0)
372			break;
373
374		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, &done_index);
375		if (ret)
376			done = 1;
377		if (ret > 0)
378			ret = 0;
 
379		pagevec_release(&pvec);
380		cond_resched();
381	}
382
383	if (!cycled && !done) {
384		/*
385		 * range_cyclic:
386		 * We hit the last page and there is more work to be done: wrap
387		 * back to the start of the file
388		 */
389		cycled = 1;
390		index = 0;
391		end = writeback_index - 1;
392		goto retry;
393	}
394
395	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
396		mapping->writeback_index = done_index;
397
398	return ret;
399}
400
401
402/**
403 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
404 * @mapping: The mapping to write
405 * @wbc: The writeback control
406 * 
407 */
408
409static int gfs2_jdata_writepages(struct address_space *mapping,
410				 struct writeback_control *wbc)
411{
412	struct gfs2_inode *ip = GFS2_I(mapping->host);
413	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
414	int ret;
415
416	ret = gfs2_write_cache_jdata(mapping, wbc);
417	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
418		gfs2_log_flush(sdp, ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL |
419			       GFS2_LFC_JDATA_WPAGES);
420		ret = gfs2_write_cache_jdata(mapping, wbc);
421	}
422	return ret;
423}
424
425/**
426 * stuffed_readpage - Fill in a Linux page with stuffed file data
427 * @ip: the inode
428 * @page: the page
429 *
430 * Returns: errno
431 */
 
432static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
433{
434	struct buffer_head *dibh;
435	u64 dsize = i_size_read(&ip->i_inode);
436	void *kaddr;
437	int error;
438
439	/*
440	 * Due to the order of unstuffing files and ->fault(), we can be
441	 * asked for a zero page in the case of a stuffed file being extended,
442	 * so we need to supply one here. It doesn't happen often.
443	 */
444	if (unlikely(page->index)) {
445		zero_user(page, 0, PAGE_SIZE);
446		SetPageUptodate(page);
447		return 0;
448	}
449
450	error = gfs2_meta_inode_buffer(ip, &dibh);
451	if (error)
452		return error;
453
454	kaddr = kmap_atomic(page);
455	if (dsize > gfs2_max_stuffed_size(ip))
456		dsize = gfs2_max_stuffed_size(ip);
457	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
458	memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
459	kunmap_atomic(kaddr);
460	flush_dcache_page(page);
461	brelse(dibh);
462	SetPageUptodate(page);
463
464	return 0;
465}
466
467
 
 
 
 
 
 
 
 
 
 
 
468static int __gfs2_readpage(void *file, struct page *page)
469{
470	struct inode *inode = page->mapping->host;
471	struct gfs2_inode *ip = GFS2_I(inode);
472	struct gfs2_sbd *sdp = GFS2_SB(inode);
473	int error;
474
475	if (!gfs2_is_jdata(ip) ||
476	    (i_blocksize(inode) == PAGE_SIZE && !page_has_buffers(page))) {
477		error = iomap_readpage(page, &gfs2_iomap_ops);
478	} else if (gfs2_is_stuffed(ip)) {
479		error = stuffed_readpage(ip, page);
480		unlock_page(page);
481	} else {
482		error = mpage_readpage(page, gfs2_block_map);
483	}
484
485	if (unlikely(gfs2_withdrawn(sdp)))
486		return -EIO;
487
488	return error;
489}
490
491/**
492 * gfs2_readpage - read a page of a file
493 * @file: The file to read
494 * @page: The page of the file
 
 
 
 
495 */
496
497static int gfs2_readpage(struct file *file, struct page *page)
498{
499	return __gfs2_readpage(file, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500}
501
502/**
503 * gfs2_internal_read - read an internal file
504 * @ip: The gfs2 inode
 
505 * @buf: The buffer to fill
506 * @pos: The file position
507 * @size: The amount to read
508 *
509 */
510
511int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
512                       unsigned size)
513{
514	struct address_space *mapping = ip->i_inode.i_mapping;
515	unsigned long index = *pos >> PAGE_SHIFT;
516	unsigned offset = *pos & (PAGE_SIZE - 1);
517	unsigned copied = 0;
518	unsigned amt;
519	struct page *page;
520	void *p;
521
522	do {
523		amt = size - copied;
524		if (offset + size > PAGE_SIZE)
525			amt = PAGE_SIZE - offset;
526		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
527		if (IS_ERR(page))
528			return PTR_ERR(page);
529		p = kmap_atomic(page);
530		memcpy(buf + copied, p + offset, amt);
531		kunmap_atomic(p);
532		put_page(page);
 
533		copied += amt;
534		index++;
535		offset = 0;
536	} while(copied < size);
537	(*pos) += size;
538	return size;
539}
540
541/**
542 * gfs2_readahead - Read a bunch of pages at once
543 * @rac: Read-ahead control structure
544 *
545 * Some notes:
546 * 1. This is only for readahead, so we can simply ignore any things
547 *    which are slightly inconvenient (such as locking conflicts between
548 *    the page lock and the glock) and return having done no I/O. Its
549 *    obviously not something we'd want to do on too regular a basis.
550 *    Any I/O we ignore at this time will be done via readpage later.
551 * 2. We don't handle stuffed files here we let readpage do the honours.
552 * 3. mpage_readahead() does most of the heavy lifting in the common case.
553 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
554 */
555
556static void gfs2_readahead(struct readahead_control *rac)
 
557{
558	struct inode *inode = rac->mapping->host;
559	struct gfs2_inode *ip = GFS2_I(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
560
561	if (gfs2_is_stuffed(ip))
562		;
563	else if (gfs2_is_jdata(ip))
564		mpage_readahead(rac, gfs2_block_map);
565	else
566		iomap_readahead(rac, &gfs2_iomap_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
567}
568
569/**
570 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
571 * @inode: the rindex inode
572 */
573void adjust_fs_space(struct inode *inode)
574{
575	struct gfs2_sbd *sdp = GFS2_SB(inode);
576	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
577	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
578	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
579	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
580	struct buffer_head *m_bh, *l_bh;
581	u64 fs_total, new_free;
582
583	if (gfs2_trans_begin(sdp, 2 * RES_STATFS, 0) != 0)
584		return;
585
586	/* Total up the file system space, according to the latest rindex. */
587	fs_total = gfs2_ri_total(sdp);
588	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
589		goto out;
590
591	spin_lock(&sdp->sd_statfs_spin);
592	gfs2_statfs_change_in(m_sc, m_bh->b_data +
593			      sizeof(struct gfs2_dinode));
594	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
595		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
596	else
597		new_free = 0;
598	spin_unlock(&sdp->sd_statfs_spin);
599	fs_warn(sdp, "File system extended by %llu blocks.\n",
600		(unsigned long long)new_free);
601	gfs2_statfs_change(sdp, new_free, new_free, 0);
602
603	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
604		goto out2;
605	update_statfs(sdp, m_bh, l_bh);
606	brelse(l_bh);
607out2:
608	brelse(m_bh);
609out:
610	sdp->sd_rindex_uptodate = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
611	gfs2_trans_end(sdp);
 
 
 
 
 
 
 
 
 
 
 
 
612}
613
614/**
615 * jdata_set_page_dirty - Page dirtying function
616 * @page: The page to dirty
617 *
618 * Returns: 1 if it dirtyed the page, or 0 otherwise
619 */
620 
621static int jdata_set_page_dirty(struct page *page)
622{
623	if (current->journal_info)
624		SetPageChecked(page);
625	return __set_page_dirty_buffers(page);
626}
627
628/**
629 * gfs2_bmap - Block map function
630 * @mapping: Address space info
631 * @lblock: The block to map
632 *
633 * Returns: The disk address for the block or 0 on hole or error
634 */
635
636static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
637{
638	struct gfs2_inode *ip = GFS2_I(mapping->host);
639	struct gfs2_holder i_gh;
640	sector_t dblock = 0;
641	int error;
642
643	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
644	if (error)
645		return 0;
646
647	if (!gfs2_is_stuffed(ip))
648		dblock = iomap_bmap(mapping, lblock, &gfs2_iomap_ops);
649
650	gfs2_glock_dq_uninit(&i_gh);
651
652	return dblock;
653}
654
655static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
656{
657	struct gfs2_bufdata *bd;
658
659	lock_buffer(bh);
660	gfs2_log_lock(sdp);
661	clear_buffer_dirty(bh);
662	bd = bh->b_private;
663	if (bd) {
664		if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
665			list_del_init(&bd->bd_list);
666		else {
667			spin_lock(&sdp->sd_ail_lock);
668			gfs2_remove_from_journal(bh, REMOVE_JDATA);
669			spin_unlock(&sdp->sd_ail_lock);
670		}
671	}
672	bh->b_bdev = NULL;
673	clear_buffer_mapped(bh);
674	clear_buffer_req(bh);
675	clear_buffer_new(bh);
676	gfs2_log_unlock(sdp);
677	unlock_buffer(bh);
678}
679
680static void gfs2_invalidatepage(struct page *page, unsigned int offset,
681				unsigned int length)
682{
683	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
684	unsigned int stop = offset + length;
685	int partial_page = (offset || length < PAGE_SIZE);
686	struct buffer_head *bh, *head;
687	unsigned long pos = 0;
688
689	BUG_ON(!PageLocked(page));
690	if (!partial_page)
691		ClearPageChecked(page);
692	if (!page_has_buffers(page))
693		goto out;
694
695	bh = head = page_buffers(page);
696	do {
697		if (pos + bh->b_size > stop)
698			return;
699
700		if (offset <= pos)
701			gfs2_discard(sdp, bh);
702		pos += bh->b_size;
703		bh = bh->b_this_page;
704	} while (bh != head);
705out:
706	if (!partial_page)
707		try_to_release_page(page, 0);
708}
709
710/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
711 * gfs2_releasepage - free the metadata associated with a page
712 * @page: the page that's being released
713 * @gfp_mask: passed from Linux VFS, ignored by us
714 *
715 * Calls try_to_free_buffers() to free the buffers and put the page if the
716 * buffers can be released.
717 *
718 * Returns: 1 if the page was put or else 0
719 */
720
721int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
722{
723	struct address_space *mapping = page->mapping;
724	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
725	struct buffer_head *bh, *head;
726	struct gfs2_bufdata *bd;
727
728	if (!page_has_buffers(page))
729		return 0;
730
731	/*
732	 * From xfs_vm_releasepage: mm accommodates an old ext3 case where
733	 * clean pages might not have had the dirty bit cleared.  Thus, it can
734	 * send actual dirty pages to ->releasepage() via shrink_active_list().
735	 *
736	 * As a workaround, we skip pages that contain dirty buffers below.
737	 * Once ->releasepage isn't called on dirty pages anymore, we can warn
738	 * on dirty buffers like we used to here again.
739	 */
740
741	gfs2_log_lock(sdp);
 
742	head = bh = page_buffers(page);
743	do {
744		if (atomic_read(&bh->b_count))
745			goto cannot_release;
746		bd = bh->b_private;
747		if (bd && bd->bd_tr)
748			goto cannot_release;
749		if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
750			goto cannot_release;
 
 
751		bh = bh->b_this_page;
752	} while(bh != head);
 
 
753
754	head = bh = page_buffers(page);
755	do {
 
756		bd = bh->b_private;
757		if (bd) {
758			gfs2_assert_warn(sdp, bd->bd_bh == bh);
759			bd->bd_bh = NULL;
 
 
 
 
 
 
 
 
760			bh->b_private = NULL;
761			/*
762			 * The bd may still be queued as a revoke, in which
763			 * case we must not dequeue nor free it.
764			 */
765			if (!bd->bd_blkno && !list_empty(&bd->bd_list))
766				list_del_init(&bd->bd_list);
767			if (list_empty(&bd->bd_list))
768				kmem_cache_free(gfs2_bufdata_cachep, bd);
769		}
 
 
 
770
771		bh = bh->b_this_page;
772	} while (bh != head);
773	gfs2_log_unlock(sdp);
774
775	return try_to_free_buffers(page);
776
 
 
 
777cannot_release:
 
778	gfs2_log_unlock(sdp);
779	return 0;
780}
781
782static const struct address_space_operations gfs2_aops = {
783	.writepage = gfs2_writepage,
784	.writepages = gfs2_writepages,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
785	.readpage = gfs2_readpage,
786	.readahead = gfs2_readahead,
787	.set_page_dirty = __set_page_dirty_nobuffers,
788	.releasepage = iomap_releasepage,
789	.invalidatepage = iomap_invalidatepage,
790	.bmap = gfs2_bmap,
791	.direct_IO = noop_direct_IO,
792	.migratepage = iomap_migrate_page,
793	.is_partially_uptodate = iomap_is_partially_uptodate,
 
 
794	.error_remove_page = generic_error_remove_page,
795};
796
797static const struct address_space_operations gfs2_jdata_aops = {
798	.writepage = gfs2_jdata_writepage,
799	.writepages = gfs2_jdata_writepages,
800	.readpage = gfs2_readpage,
801	.readahead = gfs2_readahead,
802	.set_page_dirty = jdata_set_page_dirty,
 
 
803	.bmap = gfs2_bmap,
804	.invalidatepage = gfs2_invalidatepage,
805	.releasepage = gfs2_releasepage,
806	.is_partially_uptodate = block_is_partially_uptodate,
807	.error_remove_page = generic_error_remove_page,
808};
809
810void gfs2_set_aops(struct inode *inode)
811{
812	if (gfs2_is_jdata(GFS2_I(inode)))
 
 
 
 
 
 
813		inode->i_mapping->a_ops = &gfs2_jdata_aops;
814	else
815		inode->i_mapping->a_ops = &gfs2_aops;
816}