Loading...
1/*
2 * linux/fs/ext2/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23 */
24
25#include <linux/time.h>
26#include <linux/highuid.h>
27#include <linux/pagemap.h>
28#include <linux/quotaops.h>
29#include <linux/module.h>
30#include <linux/writeback.h>
31#include <linux/buffer_head.h>
32#include <linux/mpage.h>
33#include <linux/fiemap.h>
34#include <linux/namei.h>
35#include "ext2.h"
36#include "acl.h"
37#include "xip.h"
38
39MODULE_AUTHOR("Remy Card and others");
40MODULE_DESCRIPTION("Second Extended Filesystem");
41MODULE_LICENSE("GPL");
42
43static int __ext2_write_inode(struct inode *inode, int do_sync);
44
45/*
46 * Test whether an inode is a fast symlink.
47 */
48static inline int ext2_inode_is_fast_symlink(struct inode *inode)
49{
50 int ea_blocks = EXT2_I(inode)->i_file_acl ?
51 (inode->i_sb->s_blocksize >> 9) : 0;
52
53 return (S_ISLNK(inode->i_mode) &&
54 inode->i_blocks - ea_blocks == 0);
55}
56
57static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
58
59static void ext2_write_failed(struct address_space *mapping, loff_t to)
60{
61 struct inode *inode = mapping->host;
62
63 if (to > inode->i_size) {
64 truncate_pagecache(inode, to, inode->i_size);
65 ext2_truncate_blocks(inode, inode->i_size);
66 }
67}
68
69/*
70 * Called at the last iput() if i_nlink is zero.
71 */
72void ext2_evict_inode(struct inode * inode)
73{
74 struct ext2_block_alloc_info *rsv;
75 int want_delete = 0;
76
77 if (!inode->i_nlink && !is_bad_inode(inode)) {
78 want_delete = 1;
79 dquot_initialize(inode);
80 } else {
81 dquot_drop(inode);
82 }
83
84 truncate_inode_pages(&inode->i_data, 0);
85
86 if (want_delete) {
87 /* set dtime */
88 EXT2_I(inode)->i_dtime = get_seconds();
89 mark_inode_dirty(inode);
90 __ext2_write_inode(inode, inode_needs_sync(inode));
91 /* truncate to 0 */
92 inode->i_size = 0;
93 if (inode->i_blocks)
94 ext2_truncate_blocks(inode, 0);
95 }
96
97 invalidate_inode_buffers(inode);
98 end_writeback(inode);
99
100 ext2_discard_reservation(inode);
101 rsv = EXT2_I(inode)->i_block_alloc_info;
102 EXT2_I(inode)->i_block_alloc_info = NULL;
103 if (unlikely(rsv))
104 kfree(rsv);
105
106 if (want_delete)
107 ext2_free_inode(inode);
108}
109
110typedef struct {
111 __le32 *p;
112 __le32 key;
113 struct buffer_head *bh;
114} Indirect;
115
116static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
117{
118 p->key = *(p->p = v);
119 p->bh = bh;
120}
121
122static inline int verify_chain(Indirect *from, Indirect *to)
123{
124 while (from <= to && from->key == *from->p)
125 from++;
126 return (from > to);
127}
128
129/**
130 * ext2_block_to_path - parse the block number into array of offsets
131 * @inode: inode in question (we are only interested in its superblock)
132 * @i_block: block number to be parsed
133 * @offsets: array to store the offsets in
134 * @boundary: set this non-zero if the referred-to block is likely to be
135 * followed (on disk) by an indirect block.
136 * To store the locations of file's data ext2 uses a data structure common
137 * for UNIX filesystems - tree of pointers anchored in the inode, with
138 * data blocks at leaves and indirect blocks in intermediate nodes.
139 * This function translates the block number into path in that tree -
140 * return value is the path length and @offsets[n] is the offset of
141 * pointer to (n+1)th node in the nth one. If @block is out of range
142 * (negative or too large) warning is printed and zero returned.
143 *
144 * Note: function doesn't find node addresses, so no IO is needed. All
145 * we need to know is the capacity of indirect blocks (taken from the
146 * inode->i_sb).
147 */
148
149/*
150 * Portability note: the last comparison (check that we fit into triple
151 * indirect block) is spelled differently, because otherwise on an
152 * architecture with 32-bit longs and 8Kb pages we might get into trouble
153 * if our filesystem had 8Kb blocks. We might use long long, but that would
154 * kill us on x86. Oh, well, at least the sign propagation does not matter -
155 * i_block would have to be negative in the very beginning, so we would not
156 * get there at all.
157 */
158
159static int ext2_block_to_path(struct inode *inode,
160 long i_block, int offsets[4], int *boundary)
161{
162 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
163 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
164 const long direct_blocks = EXT2_NDIR_BLOCKS,
165 indirect_blocks = ptrs,
166 double_blocks = (1 << (ptrs_bits * 2));
167 int n = 0;
168 int final = 0;
169
170 if (i_block < 0) {
171 ext2_msg(inode->i_sb, KERN_WARNING,
172 "warning: %s: block < 0", __func__);
173 } else if (i_block < direct_blocks) {
174 offsets[n++] = i_block;
175 final = direct_blocks;
176 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
177 offsets[n++] = EXT2_IND_BLOCK;
178 offsets[n++] = i_block;
179 final = ptrs;
180 } else if ((i_block -= indirect_blocks) < double_blocks) {
181 offsets[n++] = EXT2_DIND_BLOCK;
182 offsets[n++] = i_block >> ptrs_bits;
183 offsets[n++] = i_block & (ptrs - 1);
184 final = ptrs;
185 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
186 offsets[n++] = EXT2_TIND_BLOCK;
187 offsets[n++] = i_block >> (ptrs_bits * 2);
188 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
189 offsets[n++] = i_block & (ptrs - 1);
190 final = ptrs;
191 } else {
192 ext2_msg(inode->i_sb, KERN_WARNING,
193 "warning: %s: block is too big", __func__);
194 }
195 if (boundary)
196 *boundary = final - 1 - (i_block & (ptrs - 1));
197
198 return n;
199}
200
201/**
202 * ext2_get_branch - read the chain of indirect blocks leading to data
203 * @inode: inode in question
204 * @depth: depth of the chain (1 - direct pointer, etc.)
205 * @offsets: offsets of pointers in inode/indirect blocks
206 * @chain: place to store the result
207 * @err: here we store the error value
208 *
209 * Function fills the array of triples <key, p, bh> and returns %NULL
210 * if everything went OK or the pointer to the last filled triple
211 * (incomplete one) otherwise. Upon the return chain[i].key contains
212 * the number of (i+1)-th block in the chain (as it is stored in memory,
213 * i.e. little-endian 32-bit), chain[i].p contains the address of that
214 * number (it points into struct inode for i==0 and into the bh->b_data
215 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
216 * block for i>0 and NULL for i==0. In other words, it holds the block
217 * numbers of the chain, addresses they were taken from (and where we can
218 * verify that chain did not change) and buffer_heads hosting these
219 * numbers.
220 *
221 * Function stops when it stumbles upon zero pointer (absent block)
222 * (pointer to last triple returned, *@err == 0)
223 * or when it gets an IO error reading an indirect block
224 * (ditto, *@err == -EIO)
225 * or when it notices that chain had been changed while it was reading
226 * (ditto, *@err == -EAGAIN)
227 * or when it reads all @depth-1 indirect blocks successfully and finds
228 * the whole chain, all way to the data (returns %NULL, *err == 0).
229 */
230static Indirect *ext2_get_branch(struct inode *inode,
231 int depth,
232 int *offsets,
233 Indirect chain[4],
234 int *err)
235{
236 struct super_block *sb = inode->i_sb;
237 Indirect *p = chain;
238 struct buffer_head *bh;
239
240 *err = 0;
241 /* i_data is not going away, no lock needed */
242 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
243 if (!p->key)
244 goto no_block;
245 while (--depth) {
246 bh = sb_bread(sb, le32_to_cpu(p->key));
247 if (!bh)
248 goto failure;
249 read_lock(&EXT2_I(inode)->i_meta_lock);
250 if (!verify_chain(chain, p))
251 goto changed;
252 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
253 read_unlock(&EXT2_I(inode)->i_meta_lock);
254 if (!p->key)
255 goto no_block;
256 }
257 return NULL;
258
259changed:
260 read_unlock(&EXT2_I(inode)->i_meta_lock);
261 brelse(bh);
262 *err = -EAGAIN;
263 goto no_block;
264failure:
265 *err = -EIO;
266no_block:
267 return p;
268}
269
270/**
271 * ext2_find_near - find a place for allocation with sufficient locality
272 * @inode: owner
273 * @ind: descriptor of indirect block.
274 *
275 * This function returns the preferred place for block allocation.
276 * It is used when heuristic for sequential allocation fails.
277 * Rules are:
278 * + if there is a block to the left of our position - allocate near it.
279 * + if pointer will live in indirect block - allocate near that block.
280 * + if pointer will live in inode - allocate in the same cylinder group.
281 *
282 * In the latter case we colour the starting block by the callers PID to
283 * prevent it from clashing with concurrent allocations for a different inode
284 * in the same block group. The PID is used here so that functionally related
285 * files will be close-by on-disk.
286 *
287 * Caller must make sure that @ind is valid and will stay that way.
288 */
289
290static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
291{
292 struct ext2_inode_info *ei = EXT2_I(inode);
293 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
294 __le32 *p;
295 ext2_fsblk_t bg_start;
296 ext2_fsblk_t colour;
297
298 /* Try to find previous block */
299 for (p = ind->p - 1; p >= start; p--)
300 if (*p)
301 return le32_to_cpu(*p);
302
303 /* No such thing, so let's try location of indirect block */
304 if (ind->bh)
305 return ind->bh->b_blocknr;
306
307 /*
308 * It is going to be referred from inode itself? OK, just put it into
309 * the same cylinder group then.
310 */
311 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
312 colour = (current->pid % 16) *
313 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
314 return bg_start + colour;
315}
316
317/**
318 * ext2_find_goal - find a preferred place for allocation.
319 * @inode: owner
320 * @block: block we want
321 * @partial: pointer to the last triple within a chain
322 *
323 * Returns preferred place for a block (the goal).
324 */
325
326static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
327 Indirect *partial)
328{
329 struct ext2_block_alloc_info *block_i;
330
331 block_i = EXT2_I(inode)->i_block_alloc_info;
332
333 /*
334 * try the heuristic for sequential allocation,
335 * failing that at least try to get decent locality.
336 */
337 if (block_i && (block == block_i->last_alloc_logical_block + 1)
338 && (block_i->last_alloc_physical_block != 0)) {
339 return block_i->last_alloc_physical_block + 1;
340 }
341
342 return ext2_find_near(inode, partial);
343}
344
345/**
346 * ext2_blks_to_allocate: Look up the block map and count the number
347 * of direct blocks need to be allocated for the given branch.
348 *
349 * @branch: chain of indirect blocks
350 * @k: number of blocks need for indirect blocks
351 * @blks: number of data blocks to be mapped.
352 * @blocks_to_boundary: the offset in the indirect block
353 *
354 * return the total number of blocks to be allocate, including the
355 * direct and indirect blocks.
356 */
357static int
358ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
359 int blocks_to_boundary)
360{
361 unsigned long count = 0;
362
363 /*
364 * Simple case, [t,d]Indirect block(s) has not allocated yet
365 * then it's clear blocks on that path have not allocated
366 */
367 if (k > 0) {
368 /* right now don't hanel cross boundary allocation */
369 if (blks < blocks_to_boundary + 1)
370 count += blks;
371 else
372 count += blocks_to_boundary + 1;
373 return count;
374 }
375
376 count++;
377 while (count < blks && count <= blocks_to_boundary
378 && le32_to_cpu(*(branch[0].p + count)) == 0) {
379 count++;
380 }
381 return count;
382}
383
384/**
385 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
386 * @indirect_blks: the number of blocks need to allocate for indirect
387 * blocks
388 *
389 * @new_blocks: on return it will store the new block numbers for
390 * the indirect blocks(if needed) and the first direct block,
391 * @blks: on return it will store the total number of allocated
392 * direct blocks
393 */
394static int ext2_alloc_blocks(struct inode *inode,
395 ext2_fsblk_t goal, int indirect_blks, int blks,
396 ext2_fsblk_t new_blocks[4], int *err)
397{
398 int target, i;
399 unsigned long count = 0;
400 int index = 0;
401 ext2_fsblk_t current_block = 0;
402 int ret = 0;
403
404 /*
405 * Here we try to allocate the requested multiple blocks at once,
406 * on a best-effort basis.
407 * To build a branch, we should allocate blocks for
408 * the indirect blocks(if not allocated yet), and at least
409 * the first direct block of this branch. That's the
410 * minimum number of blocks need to allocate(required)
411 */
412 target = blks + indirect_blks;
413
414 while (1) {
415 count = target;
416 /* allocating blocks for indirect blocks and direct blocks */
417 current_block = ext2_new_blocks(inode,goal,&count,err);
418 if (*err)
419 goto failed_out;
420
421 target -= count;
422 /* allocate blocks for indirect blocks */
423 while (index < indirect_blks && count) {
424 new_blocks[index++] = current_block++;
425 count--;
426 }
427
428 if (count > 0)
429 break;
430 }
431
432 /* save the new block number for the first direct block */
433 new_blocks[index] = current_block;
434
435 /* total number of blocks allocated for direct blocks */
436 ret = count;
437 *err = 0;
438 return ret;
439failed_out:
440 for (i = 0; i <index; i++)
441 ext2_free_blocks(inode, new_blocks[i], 1);
442 if (index)
443 mark_inode_dirty(inode);
444 return ret;
445}
446
447/**
448 * ext2_alloc_branch - allocate and set up a chain of blocks.
449 * @inode: owner
450 * @num: depth of the chain (number of blocks to allocate)
451 * @offsets: offsets (in the blocks) to store the pointers to next.
452 * @branch: place to store the chain in.
453 *
454 * This function allocates @num blocks, zeroes out all but the last one,
455 * links them into chain and (if we are synchronous) writes them to disk.
456 * In other words, it prepares a branch that can be spliced onto the
457 * inode. It stores the information about that chain in the branch[], in
458 * the same format as ext2_get_branch() would do. We are calling it after
459 * we had read the existing part of chain and partial points to the last
460 * triple of that (one with zero ->key). Upon the exit we have the same
461 * picture as after the successful ext2_get_block(), except that in one
462 * place chain is disconnected - *branch->p is still zero (we did not
463 * set the last link), but branch->key contains the number that should
464 * be placed into *branch->p to fill that gap.
465 *
466 * If allocation fails we free all blocks we've allocated (and forget
467 * their buffer_heads) and return the error value the from failed
468 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
469 * as described above and return 0.
470 */
471
472static int ext2_alloc_branch(struct inode *inode,
473 int indirect_blks, int *blks, ext2_fsblk_t goal,
474 int *offsets, Indirect *branch)
475{
476 int blocksize = inode->i_sb->s_blocksize;
477 int i, n = 0;
478 int err = 0;
479 struct buffer_head *bh;
480 int num;
481 ext2_fsblk_t new_blocks[4];
482 ext2_fsblk_t current_block;
483
484 num = ext2_alloc_blocks(inode, goal, indirect_blks,
485 *blks, new_blocks, &err);
486 if (err)
487 return err;
488
489 branch[0].key = cpu_to_le32(new_blocks[0]);
490 /*
491 * metadata blocks and data blocks are allocated.
492 */
493 for (n = 1; n <= indirect_blks; n++) {
494 /*
495 * Get buffer_head for parent block, zero it out
496 * and set the pointer to new one, then send
497 * parent to disk.
498 */
499 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
500 branch[n].bh = bh;
501 lock_buffer(bh);
502 memset(bh->b_data, 0, blocksize);
503 branch[n].p = (__le32 *) bh->b_data + offsets[n];
504 branch[n].key = cpu_to_le32(new_blocks[n]);
505 *branch[n].p = branch[n].key;
506 if ( n == indirect_blks) {
507 current_block = new_blocks[n];
508 /*
509 * End of chain, update the last new metablock of
510 * the chain to point to the new allocated
511 * data blocks numbers
512 */
513 for (i=1; i < num; i++)
514 *(branch[n].p + i) = cpu_to_le32(++current_block);
515 }
516 set_buffer_uptodate(bh);
517 unlock_buffer(bh);
518 mark_buffer_dirty_inode(bh, inode);
519 /* We used to sync bh here if IS_SYNC(inode).
520 * But we now rely upon generic_write_sync()
521 * and b_inode_buffers. But not for directories.
522 */
523 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
524 sync_dirty_buffer(bh);
525 }
526 *blks = num;
527 return err;
528}
529
530/**
531 * ext2_splice_branch - splice the allocated branch onto inode.
532 * @inode: owner
533 * @block: (logical) number of block we are adding
534 * @where: location of missing link
535 * @num: number of indirect blocks we are adding
536 * @blks: number of direct blocks we are adding
537 *
538 * This function fills the missing link and does all housekeeping needed in
539 * inode (->i_blocks, etc.). In case of success we end up with the full
540 * chain to new block and return 0.
541 */
542static void ext2_splice_branch(struct inode *inode,
543 long block, Indirect *where, int num, int blks)
544{
545 int i;
546 struct ext2_block_alloc_info *block_i;
547 ext2_fsblk_t current_block;
548
549 block_i = EXT2_I(inode)->i_block_alloc_info;
550
551 /* XXX LOCKING probably should have i_meta_lock ?*/
552 /* That's it */
553
554 *where->p = where->key;
555
556 /*
557 * Update the host buffer_head or inode to point to more just allocated
558 * direct blocks blocks
559 */
560 if (num == 0 && blks > 1) {
561 current_block = le32_to_cpu(where->key) + 1;
562 for (i = 1; i < blks; i++)
563 *(where->p + i ) = cpu_to_le32(current_block++);
564 }
565
566 /*
567 * update the most recently allocated logical & physical block
568 * in i_block_alloc_info, to assist find the proper goal block for next
569 * allocation
570 */
571 if (block_i) {
572 block_i->last_alloc_logical_block = block + blks - 1;
573 block_i->last_alloc_physical_block =
574 le32_to_cpu(where[num].key) + blks - 1;
575 }
576
577 /* We are done with atomic stuff, now do the rest of housekeeping */
578
579 /* had we spliced it onto indirect block? */
580 if (where->bh)
581 mark_buffer_dirty_inode(where->bh, inode);
582
583 inode->i_ctime = CURRENT_TIME_SEC;
584 mark_inode_dirty(inode);
585}
586
587/*
588 * Allocation strategy is simple: if we have to allocate something, we will
589 * have to go the whole way to leaf. So let's do it before attaching anything
590 * to tree, set linkage between the newborn blocks, write them if sync is
591 * required, recheck the path, free and repeat if check fails, otherwise
592 * set the last missing link (that will protect us from any truncate-generated
593 * removals - all blocks on the path are immune now) and possibly force the
594 * write on the parent block.
595 * That has a nice additional property: no special recovery from the failed
596 * allocations is needed - we simply release blocks and do not touch anything
597 * reachable from inode.
598 *
599 * `handle' can be NULL if create == 0.
600 *
601 * return > 0, # of blocks mapped or allocated.
602 * return = 0, if plain lookup failed.
603 * return < 0, error case.
604 */
605static int ext2_get_blocks(struct inode *inode,
606 sector_t iblock, unsigned long maxblocks,
607 struct buffer_head *bh_result,
608 int create)
609{
610 int err = -EIO;
611 int offsets[4];
612 Indirect chain[4];
613 Indirect *partial;
614 ext2_fsblk_t goal;
615 int indirect_blks;
616 int blocks_to_boundary = 0;
617 int depth;
618 struct ext2_inode_info *ei = EXT2_I(inode);
619 int count = 0;
620 ext2_fsblk_t first_block = 0;
621
622 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
623
624 if (depth == 0)
625 return (err);
626
627 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
628 /* Simplest case - block found, no allocation needed */
629 if (!partial) {
630 first_block = le32_to_cpu(chain[depth - 1].key);
631 clear_buffer_new(bh_result); /* What's this do? */
632 count++;
633 /*map more blocks*/
634 while (count < maxblocks && count <= blocks_to_boundary) {
635 ext2_fsblk_t blk;
636
637 if (!verify_chain(chain, chain + depth - 1)) {
638 /*
639 * Indirect block might be removed by
640 * truncate while we were reading it.
641 * Handling of that case: forget what we've
642 * got now, go to reread.
643 */
644 err = -EAGAIN;
645 count = 0;
646 break;
647 }
648 blk = le32_to_cpu(*(chain[depth-1].p + count));
649 if (blk == first_block + count)
650 count++;
651 else
652 break;
653 }
654 if (err != -EAGAIN)
655 goto got_it;
656 }
657
658 /* Next simple case - plain lookup or failed read of indirect block */
659 if (!create || err == -EIO)
660 goto cleanup;
661
662 mutex_lock(&ei->truncate_mutex);
663 /*
664 * If the indirect block is missing while we are reading
665 * the chain(ext2_get_branch() returns -EAGAIN err), or
666 * if the chain has been changed after we grab the semaphore,
667 * (either because another process truncated this branch, or
668 * another get_block allocated this branch) re-grab the chain to see if
669 * the request block has been allocated or not.
670 *
671 * Since we already block the truncate/other get_block
672 * at this point, we will have the current copy of the chain when we
673 * splice the branch into the tree.
674 */
675 if (err == -EAGAIN || !verify_chain(chain, partial)) {
676 while (partial > chain) {
677 brelse(partial->bh);
678 partial--;
679 }
680 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
681 if (!partial) {
682 count++;
683 mutex_unlock(&ei->truncate_mutex);
684 if (err)
685 goto cleanup;
686 clear_buffer_new(bh_result);
687 goto got_it;
688 }
689 }
690
691 /*
692 * Okay, we need to do block allocation. Lazily initialize the block
693 * allocation info here if necessary
694 */
695 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
696 ext2_init_block_alloc_info(inode);
697
698 goal = ext2_find_goal(inode, iblock, partial);
699
700 /* the number of blocks need to allocate for [d,t]indirect blocks */
701 indirect_blks = (chain + depth) - partial - 1;
702 /*
703 * Next look up the indirect map to count the totoal number of
704 * direct blocks to allocate for this branch.
705 */
706 count = ext2_blks_to_allocate(partial, indirect_blks,
707 maxblocks, blocks_to_boundary);
708 /*
709 * XXX ???? Block out ext2_truncate while we alter the tree
710 */
711 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
712 offsets + (partial - chain), partial);
713
714 if (err) {
715 mutex_unlock(&ei->truncate_mutex);
716 goto cleanup;
717 }
718
719 if (ext2_use_xip(inode->i_sb)) {
720 /*
721 * we need to clear the block
722 */
723 err = ext2_clear_xip_target (inode,
724 le32_to_cpu(chain[depth-1].key));
725 if (err) {
726 mutex_unlock(&ei->truncate_mutex);
727 goto cleanup;
728 }
729 }
730
731 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
732 mutex_unlock(&ei->truncate_mutex);
733 set_buffer_new(bh_result);
734got_it:
735 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
736 if (count > blocks_to_boundary)
737 set_buffer_boundary(bh_result);
738 err = count;
739 /* Clean up and exit */
740 partial = chain + depth - 1; /* the whole chain */
741cleanup:
742 while (partial > chain) {
743 brelse(partial->bh);
744 partial--;
745 }
746 return err;
747}
748
749int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
750{
751 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
752 int ret = ext2_get_blocks(inode, iblock, max_blocks,
753 bh_result, create);
754 if (ret > 0) {
755 bh_result->b_size = (ret << inode->i_blkbits);
756 ret = 0;
757 }
758 return ret;
759
760}
761
762int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
763 u64 start, u64 len)
764{
765 return generic_block_fiemap(inode, fieinfo, start, len,
766 ext2_get_block);
767}
768
769static int ext2_writepage(struct page *page, struct writeback_control *wbc)
770{
771 return block_write_full_page(page, ext2_get_block, wbc);
772}
773
774static int ext2_readpage(struct file *file, struct page *page)
775{
776 return mpage_readpage(page, ext2_get_block);
777}
778
779static int
780ext2_readpages(struct file *file, struct address_space *mapping,
781 struct list_head *pages, unsigned nr_pages)
782{
783 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
784}
785
786static int
787ext2_write_begin(struct file *file, struct address_space *mapping,
788 loff_t pos, unsigned len, unsigned flags,
789 struct page **pagep, void **fsdata)
790{
791 int ret;
792
793 ret = block_write_begin(mapping, pos, len, flags, pagep,
794 ext2_get_block);
795 if (ret < 0)
796 ext2_write_failed(mapping, pos + len);
797 return ret;
798}
799
800static int ext2_write_end(struct file *file, struct address_space *mapping,
801 loff_t pos, unsigned len, unsigned copied,
802 struct page *page, void *fsdata)
803{
804 int ret;
805
806 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
807 if (ret < len)
808 ext2_write_failed(mapping, pos + len);
809 return ret;
810}
811
812static int
813ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
814 loff_t pos, unsigned len, unsigned flags,
815 struct page **pagep, void **fsdata)
816{
817 int ret;
818
819 ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
820 ext2_get_block);
821 if (ret < 0)
822 ext2_write_failed(mapping, pos + len);
823 return ret;
824}
825
826static int ext2_nobh_writepage(struct page *page,
827 struct writeback_control *wbc)
828{
829 return nobh_writepage(page, ext2_get_block, wbc);
830}
831
832static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
833{
834 return generic_block_bmap(mapping,block,ext2_get_block);
835}
836
837static ssize_t
838ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
839 loff_t offset, unsigned long nr_segs)
840{
841 struct file *file = iocb->ki_filp;
842 struct address_space *mapping = file->f_mapping;
843 struct inode *inode = mapping->host;
844 ssize_t ret;
845
846 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
847 ext2_get_block);
848 if (ret < 0 && (rw & WRITE))
849 ext2_write_failed(mapping, offset + iov_length(iov, nr_segs));
850 return ret;
851}
852
853static int
854ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
855{
856 return mpage_writepages(mapping, wbc, ext2_get_block);
857}
858
859const struct address_space_operations ext2_aops = {
860 .readpage = ext2_readpage,
861 .readpages = ext2_readpages,
862 .writepage = ext2_writepage,
863 .write_begin = ext2_write_begin,
864 .write_end = ext2_write_end,
865 .bmap = ext2_bmap,
866 .direct_IO = ext2_direct_IO,
867 .writepages = ext2_writepages,
868 .migratepage = buffer_migrate_page,
869 .is_partially_uptodate = block_is_partially_uptodate,
870 .error_remove_page = generic_error_remove_page,
871};
872
873const struct address_space_operations ext2_aops_xip = {
874 .bmap = ext2_bmap,
875 .get_xip_mem = ext2_get_xip_mem,
876};
877
878const struct address_space_operations ext2_nobh_aops = {
879 .readpage = ext2_readpage,
880 .readpages = ext2_readpages,
881 .writepage = ext2_nobh_writepage,
882 .write_begin = ext2_nobh_write_begin,
883 .write_end = nobh_write_end,
884 .bmap = ext2_bmap,
885 .direct_IO = ext2_direct_IO,
886 .writepages = ext2_writepages,
887 .migratepage = buffer_migrate_page,
888 .error_remove_page = generic_error_remove_page,
889};
890
891/*
892 * Probably it should be a library function... search for first non-zero word
893 * or memcmp with zero_page, whatever is better for particular architecture.
894 * Linus?
895 */
896static inline int all_zeroes(__le32 *p, __le32 *q)
897{
898 while (p < q)
899 if (*p++)
900 return 0;
901 return 1;
902}
903
904/**
905 * ext2_find_shared - find the indirect blocks for partial truncation.
906 * @inode: inode in question
907 * @depth: depth of the affected branch
908 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
909 * @chain: place to store the pointers to partial indirect blocks
910 * @top: place to the (detached) top of branch
911 *
912 * This is a helper function used by ext2_truncate().
913 *
914 * When we do truncate() we may have to clean the ends of several indirect
915 * blocks but leave the blocks themselves alive. Block is partially
916 * truncated if some data below the new i_size is referred from it (and
917 * it is on the path to the first completely truncated data block, indeed).
918 * We have to free the top of that path along with everything to the right
919 * of the path. Since no allocation past the truncation point is possible
920 * until ext2_truncate() finishes, we may safely do the latter, but top
921 * of branch may require special attention - pageout below the truncation
922 * point might try to populate it.
923 *
924 * We atomically detach the top of branch from the tree, store the block
925 * number of its root in *@top, pointers to buffer_heads of partially
926 * truncated blocks - in @chain[].bh and pointers to their last elements
927 * that should not be removed - in @chain[].p. Return value is the pointer
928 * to last filled element of @chain.
929 *
930 * The work left to caller to do the actual freeing of subtrees:
931 * a) free the subtree starting from *@top
932 * b) free the subtrees whose roots are stored in
933 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
934 * c) free the subtrees growing from the inode past the @chain[0].p
935 * (no partially truncated stuff there).
936 */
937
938static Indirect *ext2_find_shared(struct inode *inode,
939 int depth,
940 int offsets[4],
941 Indirect chain[4],
942 __le32 *top)
943{
944 Indirect *partial, *p;
945 int k, err;
946
947 *top = 0;
948 for (k = depth; k > 1 && !offsets[k-1]; k--)
949 ;
950 partial = ext2_get_branch(inode, k, offsets, chain, &err);
951 if (!partial)
952 partial = chain + k-1;
953 /*
954 * If the branch acquired continuation since we've looked at it -
955 * fine, it should all survive and (new) top doesn't belong to us.
956 */
957 write_lock(&EXT2_I(inode)->i_meta_lock);
958 if (!partial->key && *partial->p) {
959 write_unlock(&EXT2_I(inode)->i_meta_lock);
960 goto no_top;
961 }
962 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
963 ;
964 /*
965 * OK, we've found the last block that must survive. The rest of our
966 * branch should be detached before unlocking. However, if that rest
967 * of branch is all ours and does not grow immediately from the inode
968 * it's easier to cheat and just decrement partial->p.
969 */
970 if (p == chain + k - 1 && p > chain) {
971 p->p--;
972 } else {
973 *top = *p->p;
974 *p->p = 0;
975 }
976 write_unlock(&EXT2_I(inode)->i_meta_lock);
977
978 while(partial > p)
979 {
980 brelse(partial->bh);
981 partial--;
982 }
983no_top:
984 return partial;
985}
986
987/**
988 * ext2_free_data - free a list of data blocks
989 * @inode: inode we are dealing with
990 * @p: array of block numbers
991 * @q: points immediately past the end of array
992 *
993 * We are freeing all blocks referred from that array (numbers are
994 * stored as little-endian 32-bit) and updating @inode->i_blocks
995 * appropriately.
996 */
997static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
998{
999 unsigned long block_to_free = 0, count = 0;
1000 unsigned long nr;
1001
1002 for ( ; p < q ; p++) {
1003 nr = le32_to_cpu(*p);
1004 if (nr) {
1005 *p = 0;
1006 /* accumulate blocks to free if they're contiguous */
1007 if (count == 0)
1008 goto free_this;
1009 else if (block_to_free == nr - count)
1010 count++;
1011 else {
1012 ext2_free_blocks (inode, block_to_free, count);
1013 mark_inode_dirty(inode);
1014 free_this:
1015 block_to_free = nr;
1016 count = 1;
1017 }
1018 }
1019 }
1020 if (count > 0) {
1021 ext2_free_blocks (inode, block_to_free, count);
1022 mark_inode_dirty(inode);
1023 }
1024}
1025
1026/**
1027 * ext2_free_branches - free an array of branches
1028 * @inode: inode we are dealing with
1029 * @p: array of block numbers
1030 * @q: pointer immediately past the end of array
1031 * @depth: depth of the branches to free
1032 *
1033 * We are freeing all blocks referred from these branches (numbers are
1034 * stored as little-endian 32-bit) and updating @inode->i_blocks
1035 * appropriately.
1036 */
1037static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1038{
1039 struct buffer_head * bh;
1040 unsigned long nr;
1041
1042 if (depth--) {
1043 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1044 for ( ; p < q ; p++) {
1045 nr = le32_to_cpu(*p);
1046 if (!nr)
1047 continue;
1048 *p = 0;
1049 bh = sb_bread(inode->i_sb, nr);
1050 /*
1051 * A read failure? Report error and clear slot
1052 * (should be rare).
1053 */
1054 if (!bh) {
1055 ext2_error(inode->i_sb, "ext2_free_branches",
1056 "Read failure, inode=%ld, block=%ld",
1057 inode->i_ino, nr);
1058 continue;
1059 }
1060 ext2_free_branches(inode,
1061 (__le32*)bh->b_data,
1062 (__le32*)bh->b_data + addr_per_block,
1063 depth);
1064 bforget(bh);
1065 ext2_free_blocks(inode, nr, 1);
1066 mark_inode_dirty(inode);
1067 }
1068 } else
1069 ext2_free_data(inode, p, q);
1070}
1071
1072static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1073{
1074 __le32 *i_data = EXT2_I(inode)->i_data;
1075 struct ext2_inode_info *ei = EXT2_I(inode);
1076 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1077 int offsets[4];
1078 Indirect chain[4];
1079 Indirect *partial;
1080 __le32 nr = 0;
1081 int n;
1082 long iblock;
1083 unsigned blocksize;
1084 blocksize = inode->i_sb->s_blocksize;
1085 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1086
1087 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1088 if (n == 0)
1089 return;
1090
1091 /*
1092 * From here we block out all ext2_get_block() callers who want to
1093 * modify the block allocation tree.
1094 */
1095 mutex_lock(&ei->truncate_mutex);
1096
1097 if (n == 1) {
1098 ext2_free_data(inode, i_data+offsets[0],
1099 i_data + EXT2_NDIR_BLOCKS);
1100 goto do_indirects;
1101 }
1102
1103 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1104 /* Kill the top of shared branch (already detached) */
1105 if (nr) {
1106 if (partial == chain)
1107 mark_inode_dirty(inode);
1108 else
1109 mark_buffer_dirty_inode(partial->bh, inode);
1110 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1111 }
1112 /* Clear the ends of indirect blocks on the shared branch */
1113 while (partial > chain) {
1114 ext2_free_branches(inode,
1115 partial->p + 1,
1116 (__le32*)partial->bh->b_data+addr_per_block,
1117 (chain+n-1) - partial);
1118 mark_buffer_dirty_inode(partial->bh, inode);
1119 brelse (partial->bh);
1120 partial--;
1121 }
1122do_indirects:
1123 /* Kill the remaining (whole) subtrees */
1124 switch (offsets[0]) {
1125 default:
1126 nr = i_data[EXT2_IND_BLOCK];
1127 if (nr) {
1128 i_data[EXT2_IND_BLOCK] = 0;
1129 mark_inode_dirty(inode);
1130 ext2_free_branches(inode, &nr, &nr+1, 1);
1131 }
1132 case EXT2_IND_BLOCK:
1133 nr = i_data[EXT2_DIND_BLOCK];
1134 if (nr) {
1135 i_data[EXT2_DIND_BLOCK] = 0;
1136 mark_inode_dirty(inode);
1137 ext2_free_branches(inode, &nr, &nr+1, 2);
1138 }
1139 case EXT2_DIND_BLOCK:
1140 nr = i_data[EXT2_TIND_BLOCK];
1141 if (nr) {
1142 i_data[EXT2_TIND_BLOCK] = 0;
1143 mark_inode_dirty(inode);
1144 ext2_free_branches(inode, &nr, &nr+1, 3);
1145 }
1146 case EXT2_TIND_BLOCK:
1147 ;
1148 }
1149
1150 ext2_discard_reservation(inode);
1151
1152 mutex_unlock(&ei->truncate_mutex);
1153}
1154
1155static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1156{
1157 /*
1158 * XXX: it seems like a bug here that we don't allow
1159 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1160 * review and fix this.
1161 *
1162 * Also would be nice to be able to handle IO errors and such,
1163 * but that's probably too much to ask.
1164 */
1165 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1166 S_ISLNK(inode->i_mode)))
1167 return;
1168 if (ext2_inode_is_fast_symlink(inode))
1169 return;
1170 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1171 return;
1172 __ext2_truncate_blocks(inode, offset);
1173}
1174
1175static int ext2_setsize(struct inode *inode, loff_t newsize)
1176{
1177 int error;
1178
1179 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1180 S_ISLNK(inode->i_mode)))
1181 return -EINVAL;
1182 if (ext2_inode_is_fast_symlink(inode))
1183 return -EINVAL;
1184 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1185 return -EPERM;
1186
1187 inode_dio_wait(inode);
1188
1189 if (mapping_is_xip(inode->i_mapping))
1190 error = xip_truncate_page(inode->i_mapping, newsize);
1191 else if (test_opt(inode->i_sb, NOBH))
1192 error = nobh_truncate_page(inode->i_mapping,
1193 newsize, ext2_get_block);
1194 else
1195 error = block_truncate_page(inode->i_mapping,
1196 newsize, ext2_get_block);
1197 if (error)
1198 return error;
1199
1200 truncate_setsize(inode, newsize);
1201 __ext2_truncate_blocks(inode, newsize);
1202
1203 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1204 if (inode_needs_sync(inode)) {
1205 sync_mapping_buffers(inode->i_mapping);
1206 sync_inode_metadata(inode, 1);
1207 } else {
1208 mark_inode_dirty(inode);
1209 }
1210
1211 return 0;
1212}
1213
1214static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1215 struct buffer_head **p)
1216{
1217 struct buffer_head * bh;
1218 unsigned long block_group;
1219 unsigned long block;
1220 unsigned long offset;
1221 struct ext2_group_desc * gdp;
1222
1223 *p = NULL;
1224 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1225 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1226 goto Einval;
1227
1228 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1229 gdp = ext2_get_group_desc(sb, block_group, NULL);
1230 if (!gdp)
1231 goto Egdp;
1232 /*
1233 * Figure out the offset within the block group inode table
1234 */
1235 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1236 block = le32_to_cpu(gdp->bg_inode_table) +
1237 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1238 if (!(bh = sb_bread(sb, block)))
1239 goto Eio;
1240
1241 *p = bh;
1242 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1243 return (struct ext2_inode *) (bh->b_data + offset);
1244
1245Einval:
1246 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1247 (unsigned long) ino);
1248 return ERR_PTR(-EINVAL);
1249Eio:
1250 ext2_error(sb, "ext2_get_inode",
1251 "unable to read inode block - inode=%lu, block=%lu",
1252 (unsigned long) ino, block);
1253Egdp:
1254 return ERR_PTR(-EIO);
1255}
1256
1257void ext2_set_inode_flags(struct inode *inode)
1258{
1259 unsigned int flags = EXT2_I(inode)->i_flags;
1260
1261 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1262 if (flags & EXT2_SYNC_FL)
1263 inode->i_flags |= S_SYNC;
1264 if (flags & EXT2_APPEND_FL)
1265 inode->i_flags |= S_APPEND;
1266 if (flags & EXT2_IMMUTABLE_FL)
1267 inode->i_flags |= S_IMMUTABLE;
1268 if (flags & EXT2_NOATIME_FL)
1269 inode->i_flags |= S_NOATIME;
1270 if (flags & EXT2_DIRSYNC_FL)
1271 inode->i_flags |= S_DIRSYNC;
1272}
1273
1274/* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1275void ext2_get_inode_flags(struct ext2_inode_info *ei)
1276{
1277 unsigned int flags = ei->vfs_inode.i_flags;
1278
1279 ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1280 EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1281 if (flags & S_SYNC)
1282 ei->i_flags |= EXT2_SYNC_FL;
1283 if (flags & S_APPEND)
1284 ei->i_flags |= EXT2_APPEND_FL;
1285 if (flags & S_IMMUTABLE)
1286 ei->i_flags |= EXT2_IMMUTABLE_FL;
1287 if (flags & S_NOATIME)
1288 ei->i_flags |= EXT2_NOATIME_FL;
1289 if (flags & S_DIRSYNC)
1290 ei->i_flags |= EXT2_DIRSYNC_FL;
1291}
1292
1293struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1294{
1295 struct ext2_inode_info *ei;
1296 struct buffer_head * bh;
1297 struct ext2_inode *raw_inode;
1298 struct inode *inode;
1299 long ret = -EIO;
1300 int n;
1301
1302 inode = iget_locked(sb, ino);
1303 if (!inode)
1304 return ERR_PTR(-ENOMEM);
1305 if (!(inode->i_state & I_NEW))
1306 return inode;
1307
1308 ei = EXT2_I(inode);
1309 ei->i_block_alloc_info = NULL;
1310
1311 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1312 if (IS_ERR(raw_inode)) {
1313 ret = PTR_ERR(raw_inode);
1314 goto bad_inode;
1315 }
1316
1317 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1318 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1319 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1320 if (!(test_opt (inode->i_sb, NO_UID32))) {
1321 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1322 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1323 }
1324 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1325 inode->i_size = le32_to_cpu(raw_inode->i_size);
1326 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1327 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1328 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1329 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1330 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1331 /* We now have enough fields to check if the inode was active or not.
1332 * This is needed because nfsd might try to access dead inodes
1333 * the test is that same one that e2fsck uses
1334 * NeilBrown 1999oct15
1335 */
1336 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1337 /* this inode is deleted */
1338 brelse (bh);
1339 ret = -ESTALE;
1340 goto bad_inode;
1341 }
1342 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1343 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1344 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1345 ei->i_frag_no = raw_inode->i_frag;
1346 ei->i_frag_size = raw_inode->i_fsize;
1347 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1348 ei->i_dir_acl = 0;
1349 if (S_ISREG(inode->i_mode))
1350 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1351 else
1352 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1353 ei->i_dtime = 0;
1354 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1355 ei->i_state = 0;
1356 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1357 ei->i_dir_start_lookup = 0;
1358
1359 /*
1360 * NOTE! The in-memory inode i_data array is in little-endian order
1361 * even on big-endian machines: we do NOT byteswap the block numbers!
1362 */
1363 for (n = 0; n < EXT2_N_BLOCKS; n++)
1364 ei->i_data[n] = raw_inode->i_block[n];
1365
1366 if (S_ISREG(inode->i_mode)) {
1367 inode->i_op = &ext2_file_inode_operations;
1368 if (ext2_use_xip(inode->i_sb)) {
1369 inode->i_mapping->a_ops = &ext2_aops_xip;
1370 inode->i_fop = &ext2_xip_file_operations;
1371 } else if (test_opt(inode->i_sb, NOBH)) {
1372 inode->i_mapping->a_ops = &ext2_nobh_aops;
1373 inode->i_fop = &ext2_file_operations;
1374 } else {
1375 inode->i_mapping->a_ops = &ext2_aops;
1376 inode->i_fop = &ext2_file_operations;
1377 }
1378 } else if (S_ISDIR(inode->i_mode)) {
1379 inode->i_op = &ext2_dir_inode_operations;
1380 inode->i_fop = &ext2_dir_operations;
1381 if (test_opt(inode->i_sb, NOBH))
1382 inode->i_mapping->a_ops = &ext2_nobh_aops;
1383 else
1384 inode->i_mapping->a_ops = &ext2_aops;
1385 } else if (S_ISLNK(inode->i_mode)) {
1386 if (ext2_inode_is_fast_symlink(inode)) {
1387 inode->i_op = &ext2_fast_symlink_inode_operations;
1388 nd_terminate_link(ei->i_data, inode->i_size,
1389 sizeof(ei->i_data) - 1);
1390 } else {
1391 inode->i_op = &ext2_symlink_inode_operations;
1392 if (test_opt(inode->i_sb, NOBH))
1393 inode->i_mapping->a_ops = &ext2_nobh_aops;
1394 else
1395 inode->i_mapping->a_ops = &ext2_aops;
1396 }
1397 } else {
1398 inode->i_op = &ext2_special_inode_operations;
1399 if (raw_inode->i_block[0])
1400 init_special_inode(inode, inode->i_mode,
1401 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1402 else
1403 init_special_inode(inode, inode->i_mode,
1404 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1405 }
1406 brelse (bh);
1407 ext2_set_inode_flags(inode);
1408 unlock_new_inode(inode);
1409 return inode;
1410
1411bad_inode:
1412 iget_failed(inode);
1413 return ERR_PTR(ret);
1414}
1415
1416static int __ext2_write_inode(struct inode *inode, int do_sync)
1417{
1418 struct ext2_inode_info *ei = EXT2_I(inode);
1419 struct super_block *sb = inode->i_sb;
1420 ino_t ino = inode->i_ino;
1421 uid_t uid = inode->i_uid;
1422 gid_t gid = inode->i_gid;
1423 struct buffer_head * bh;
1424 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1425 int n;
1426 int err = 0;
1427
1428 if (IS_ERR(raw_inode))
1429 return -EIO;
1430
1431 /* For fields not not tracking in the in-memory inode,
1432 * initialise them to zero for new inodes. */
1433 if (ei->i_state & EXT2_STATE_NEW)
1434 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1435
1436 ext2_get_inode_flags(ei);
1437 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1438 if (!(test_opt(sb, NO_UID32))) {
1439 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1440 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1441/*
1442 * Fix up interoperability with old kernels. Otherwise, old inodes get
1443 * re-used with the upper 16 bits of the uid/gid intact
1444 */
1445 if (!ei->i_dtime) {
1446 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1447 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1448 } else {
1449 raw_inode->i_uid_high = 0;
1450 raw_inode->i_gid_high = 0;
1451 }
1452 } else {
1453 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1454 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1455 raw_inode->i_uid_high = 0;
1456 raw_inode->i_gid_high = 0;
1457 }
1458 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1459 raw_inode->i_size = cpu_to_le32(inode->i_size);
1460 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1461 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1462 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1463
1464 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1465 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1466 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1467 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1468 raw_inode->i_frag = ei->i_frag_no;
1469 raw_inode->i_fsize = ei->i_frag_size;
1470 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1471 if (!S_ISREG(inode->i_mode))
1472 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1473 else {
1474 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1475 if (inode->i_size > 0x7fffffffULL) {
1476 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1477 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1478 EXT2_SB(sb)->s_es->s_rev_level ==
1479 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1480 /* If this is the first large file
1481 * created, add a flag to the superblock.
1482 */
1483 spin_lock(&EXT2_SB(sb)->s_lock);
1484 ext2_update_dynamic_rev(sb);
1485 EXT2_SET_RO_COMPAT_FEATURE(sb,
1486 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1487 spin_unlock(&EXT2_SB(sb)->s_lock);
1488 ext2_write_super(sb);
1489 }
1490 }
1491 }
1492
1493 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1494 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1495 if (old_valid_dev(inode->i_rdev)) {
1496 raw_inode->i_block[0] =
1497 cpu_to_le32(old_encode_dev(inode->i_rdev));
1498 raw_inode->i_block[1] = 0;
1499 } else {
1500 raw_inode->i_block[0] = 0;
1501 raw_inode->i_block[1] =
1502 cpu_to_le32(new_encode_dev(inode->i_rdev));
1503 raw_inode->i_block[2] = 0;
1504 }
1505 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1506 raw_inode->i_block[n] = ei->i_data[n];
1507 mark_buffer_dirty(bh);
1508 if (do_sync) {
1509 sync_dirty_buffer(bh);
1510 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1511 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1512 sb->s_id, (unsigned long) ino);
1513 err = -EIO;
1514 }
1515 }
1516 ei->i_state &= ~EXT2_STATE_NEW;
1517 brelse (bh);
1518 return err;
1519}
1520
1521int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1522{
1523 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1524}
1525
1526int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1527{
1528 struct inode *inode = dentry->d_inode;
1529 int error;
1530
1531 error = inode_change_ok(inode, iattr);
1532 if (error)
1533 return error;
1534
1535 if (is_quota_modification(inode, iattr))
1536 dquot_initialize(inode);
1537 if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1538 (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1539 error = dquot_transfer(inode, iattr);
1540 if (error)
1541 return error;
1542 }
1543 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1544 error = ext2_setsize(inode, iattr->ia_size);
1545 if (error)
1546 return error;
1547 }
1548 setattr_copy(inode, iattr);
1549 if (iattr->ia_valid & ATTR_MODE)
1550 error = ext2_acl_chmod(inode);
1551 mark_inode_dirty(inode);
1552
1553 return error;
1554}
1/*
2 * linux/fs/ext2/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23 */
24
25#include <linux/time.h>
26#include <linux/highuid.h>
27#include <linux/pagemap.h>
28#include <linux/dax.h>
29#include <linux/blkdev.h>
30#include <linux/quotaops.h>
31#include <linux/writeback.h>
32#include <linux/buffer_head.h>
33#include <linux/mpage.h>
34#include <linux/fiemap.h>
35#include <linux/iomap.h>
36#include <linux/namei.h>
37#include <linux/uio.h>
38#include "ext2.h"
39#include "acl.h"
40#include "xattr.h"
41
42static int __ext2_write_inode(struct inode *inode, int do_sync);
43
44/*
45 * Test whether an inode is a fast symlink.
46 */
47static inline int ext2_inode_is_fast_symlink(struct inode *inode)
48{
49 int ea_blocks = EXT2_I(inode)->i_file_acl ?
50 (inode->i_sb->s_blocksize >> 9) : 0;
51
52 return (S_ISLNK(inode->i_mode) &&
53 inode->i_blocks - ea_blocks == 0);
54}
55
56static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
57
58static void ext2_write_failed(struct address_space *mapping, loff_t to)
59{
60 struct inode *inode = mapping->host;
61
62 if (to > inode->i_size) {
63 truncate_pagecache(inode, inode->i_size);
64 ext2_truncate_blocks(inode, inode->i_size);
65 }
66}
67
68/*
69 * Called at the last iput() if i_nlink is zero.
70 */
71void ext2_evict_inode(struct inode * inode)
72{
73 struct ext2_block_alloc_info *rsv;
74 int want_delete = 0;
75
76 if (!inode->i_nlink && !is_bad_inode(inode)) {
77 want_delete = 1;
78 dquot_initialize(inode);
79 } else {
80 dquot_drop(inode);
81 }
82
83 truncate_inode_pages_final(&inode->i_data);
84
85 if (want_delete) {
86 sb_start_intwrite(inode->i_sb);
87 /* set dtime */
88 EXT2_I(inode)->i_dtime = get_seconds();
89 mark_inode_dirty(inode);
90 __ext2_write_inode(inode, inode_needs_sync(inode));
91 /* truncate to 0 */
92 inode->i_size = 0;
93 if (inode->i_blocks)
94 ext2_truncate_blocks(inode, 0);
95 ext2_xattr_delete_inode(inode);
96 }
97
98 invalidate_inode_buffers(inode);
99 clear_inode(inode);
100
101 ext2_discard_reservation(inode);
102 rsv = EXT2_I(inode)->i_block_alloc_info;
103 EXT2_I(inode)->i_block_alloc_info = NULL;
104 if (unlikely(rsv))
105 kfree(rsv);
106
107 if (want_delete) {
108 ext2_free_inode(inode);
109 sb_end_intwrite(inode->i_sb);
110 }
111}
112
113typedef struct {
114 __le32 *p;
115 __le32 key;
116 struct buffer_head *bh;
117} Indirect;
118
119static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
120{
121 p->key = *(p->p = v);
122 p->bh = bh;
123}
124
125static inline int verify_chain(Indirect *from, Indirect *to)
126{
127 while (from <= to && from->key == *from->p)
128 from++;
129 return (from > to);
130}
131
132/**
133 * ext2_block_to_path - parse the block number into array of offsets
134 * @inode: inode in question (we are only interested in its superblock)
135 * @i_block: block number to be parsed
136 * @offsets: array to store the offsets in
137 * @boundary: set this non-zero if the referred-to block is likely to be
138 * followed (on disk) by an indirect block.
139 * To store the locations of file's data ext2 uses a data structure common
140 * for UNIX filesystems - tree of pointers anchored in the inode, with
141 * data blocks at leaves and indirect blocks in intermediate nodes.
142 * This function translates the block number into path in that tree -
143 * return value is the path length and @offsets[n] is the offset of
144 * pointer to (n+1)th node in the nth one. If @block is out of range
145 * (negative or too large) warning is printed and zero returned.
146 *
147 * Note: function doesn't find node addresses, so no IO is needed. All
148 * we need to know is the capacity of indirect blocks (taken from the
149 * inode->i_sb).
150 */
151
152/*
153 * Portability note: the last comparison (check that we fit into triple
154 * indirect block) is spelled differently, because otherwise on an
155 * architecture with 32-bit longs and 8Kb pages we might get into trouble
156 * if our filesystem had 8Kb blocks. We might use long long, but that would
157 * kill us on x86. Oh, well, at least the sign propagation does not matter -
158 * i_block would have to be negative in the very beginning, so we would not
159 * get there at all.
160 */
161
162static int ext2_block_to_path(struct inode *inode,
163 long i_block, int offsets[4], int *boundary)
164{
165 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
166 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
167 const long direct_blocks = EXT2_NDIR_BLOCKS,
168 indirect_blocks = ptrs,
169 double_blocks = (1 << (ptrs_bits * 2));
170 int n = 0;
171 int final = 0;
172
173 if (i_block < 0) {
174 ext2_msg(inode->i_sb, KERN_WARNING,
175 "warning: %s: block < 0", __func__);
176 } else if (i_block < direct_blocks) {
177 offsets[n++] = i_block;
178 final = direct_blocks;
179 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
180 offsets[n++] = EXT2_IND_BLOCK;
181 offsets[n++] = i_block;
182 final = ptrs;
183 } else if ((i_block -= indirect_blocks) < double_blocks) {
184 offsets[n++] = EXT2_DIND_BLOCK;
185 offsets[n++] = i_block >> ptrs_bits;
186 offsets[n++] = i_block & (ptrs - 1);
187 final = ptrs;
188 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
189 offsets[n++] = EXT2_TIND_BLOCK;
190 offsets[n++] = i_block >> (ptrs_bits * 2);
191 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
192 offsets[n++] = i_block & (ptrs - 1);
193 final = ptrs;
194 } else {
195 ext2_msg(inode->i_sb, KERN_WARNING,
196 "warning: %s: block is too big", __func__);
197 }
198 if (boundary)
199 *boundary = final - 1 - (i_block & (ptrs - 1));
200
201 return n;
202}
203
204/**
205 * ext2_get_branch - read the chain of indirect blocks leading to data
206 * @inode: inode in question
207 * @depth: depth of the chain (1 - direct pointer, etc.)
208 * @offsets: offsets of pointers in inode/indirect blocks
209 * @chain: place to store the result
210 * @err: here we store the error value
211 *
212 * Function fills the array of triples <key, p, bh> and returns %NULL
213 * if everything went OK or the pointer to the last filled triple
214 * (incomplete one) otherwise. Upon the return chain[i].key contains
215 * the number of (i+1)-th block in the chain (as it is stored in memory,
216 * i.e. little-endian 32-bit), chain[i].p contains the address of that
217 * number (it points into struct inode for i==0 and into the bh->b_data
218 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
219 * block for i>0 and NULL for i==0. In other words, it holds the block
220 * numbers of the chain, addresses they were taken from (and where we can
221 * verify that chain did not change) and buffer_heads hosting these
222 * numbers.
223 *
224 * Function stops when it stumbles upon zero pointer (absent block)
225 * (pointer to last triple returned, *@err == 0)
226 * or when it gets an IO error reading an indirect block
227 * (ditto, *@err == -EIO)
228 * or when it notices that chain had been changed while it was reading
229 * (ditto, *@err == -EAGAIN)
230 * or when it reads all @depth-1 indirect blocks successfully and finds
231 * the whole chain, all way to the data (returns %NULL, *err == 0).
232 */
233static Indirect *ext2_get_branch(struct inode *inode,
234 int depth,
235 int *offsets,
236 Indirect chain[4],
237 int *err)
238{
239 struct super_block *sb = inode->i_sb;
240 Indirect *p = chain;
241 struct buffer_head *bh;
242
243 *err = 0;
244 /* i_data is not going away, no lock needed */
245 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
246 if (!p->key)
247 goto no_block;
248 while (--depth) {
249 bh = sb_bread(sb, le32_to_cpu(p->key));
250 if (!bh)
251 goto failure;
252 read_lock(&EXT2_I(inode)->i_meta_lock);
253 if (!verify_chain(chain, p))
254 goto changed;
255 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
256 read_unlock(&EXT2_I(inode)->i_meta_lock);
257 if (!p->key)
258 goto no_block;
259 }
260 return NULL;
261
262changed:
263 read_unlock(&EXT2_I(inode)->i_meta_lock);
264 brelse(bh);
265 *err = -EAGAIN;
266 goto no_block;
267failure:
268 *err = -EIO;
269no_block:
270 return p;
271}
272
273/**
274 * ext2_find_near - find a place for allocation with sufficient locality
275 * @inode: owner
276 * @ind: descriptor of indirect block.
277 *
278 * This function returns the preferred place for block allocation.
279 * It is used when heuristic for sequential allocation fails.
280 * Rules are:
281 * + if there is a block to the left of our position - allocate near it.
282 * + if pointer will live in indirect block - allocate near that block.
283 * + if pointer will live in inode - allocate in the same cylinder group.
284 *
285 * In the latter case we colour the starting block by the callers PID to
286 * prevent it from clashing with concurrent allocations for a different inode
287 * in the same block group. The PID is used here so that functionally related
288 * files will be close-by on-disk.
289 *
290 * Caller must make sure that @ind is valid and will stay that way.
291 */
292
293static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
294{
295 struct ext2_inode_info *ei = EXT2_I(inode);
296 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
297 __le32 *p;
298 ext2_fsblk_t bg_start;
299 ext2_fsblk_t colour;
300
301 /* Try to find previous block */
302 for (p = ind->p - 1; p >= start; p--)
303 if (*p)
304 return le32_to_cpu(*p);
305
306 /* No such thing, so let's try location of indirect block */
307 if (ind->bh)
308 return ind->bh->b_blocknr;
309
310 /*
311 * It is going to be referred from inode itself? OK, just put it into
312 * the same cylinder group then.
313 */
314 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
315 colour = (current->pid % 16) *
316 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
317 return bg_start + colour;
318}
319
320/**
321 * ext2_find_goal - find a preferred place for allocation.
322 * @inode: owner
323 * @block: block we want
324 * @partial: pointer to the last triple within a chain
325 *
326 * Returns preferred place for a block (the goal).
327 */
328
329static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
330 Indirect *partial)
331{
332 struct ext2_block_alloc_info *block_i;
333
334 block_i = EXT2_I(inode)->i_block_alloc_info;
335
336 /*
337 * try the heuristic for sequential allocation,
338 * failing that at least try to get decent locality.
339 */
340 if (block_i && (block == block_i->last_alloc_logical_block + 1)
341 && (block_i->last_alloc_physical_block != 0)) {
342 return block_i->last_alloc_physical_block + 1;
343 }
344
345 return ext2_find_near(inode, partial);
346}
347
348/**
349 * ext2_blks_to_allocate: Look up the block map and count the number
350 * of direct blocks need to be allocated for the given branch.
351 *
352 * @branch: chain of indirect blocks
353 * @k: number of blocks need for indirect blocks
354 * @blks: number of data blocks to be mapped.
355 * @blocks_to_boundary: the offset in the indirect block
356 *
357 * return the total number of blocks to be allocate, including the
358 * direct and indirect blocks.
359 */
360static int
361ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
362 int blocks_to_boundary)
363{
364 unsigned long count = 0;
365
366 /*
367 * Simple case, [t,d]Indirect block(s) has not allocated yet
368 * then it's clear blocks on that path have not allocated
369 */
370 if (k > 0) {
371 /* right now don't hanel cross boundary allocation */
372 if (blks < blocks_to_boundary + 1)
373 count += blks;
374 else
375 count += blocks_to_boundary + 1;
376 return count;
377 }
378
379 count++;
380 while (count < blks && count <= blocks_to_boundary
381 && le32_to_cpu(*(branch[0].p + count)) == 0) {
382 count++;
383 }
384 return count;
385}
386
387/**
388 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
389 * @indirect_blks: the number of blocks need to allocate for indirect
390 * blocks
391 *
392 * @new_blocks: on return it will store the new block numbers for
393 * the indirect blocks(if needed) and the first direct block,
394 * @blks: on return it will store the total number of allocated
395 * direct blocks
396 */
397static int ext2_alloc_blocks(struct inode *inode,
398 ext2_fsblk_t goal, int indirect_blks, int blks,
399 ext2_fsblk_t new_blocks[4], int *err)
400{
401 int target, i;
402 unsigned long count = 0;
403 int index = 0;
404 ext2_fsblk_t current_block = 0;
405 int ret = 0;
406
407 /*
408 * Here we try to allocate the requested multiple blocks at once,
409 * on a best-effort basis.
410 * To build a branch, we should allocate blocks for
411 * the indirect blocks(if not allocated yet), and at least
412 * the first direct block of this branch. That's the
413 * minimum number of blocks need to allocate(required)
414 */
415 target = blks + indirect_blks;
416
417 while (1) {
418 count = target;
419 /* allocating blocks for indirect blocks and direct blocks */
420 current_block = ext2_new_blocks(inode,goal,&count,err);
421 if (*err)
422 goto failed_out;
423
424 target -= count;
425 /* allocate blocks for indirect blocks */
426 while (index < indirect_blks && count) {
427 new_blocks[index++] = current_block++;
428 count--;
429 }
430
431 if (count > 0)
432 break;
433 }
434
435 /* save the new block number for the first direct block */
436 new_blocks[index] = current_block;
437
438 /* total number of blocks allocated for direct blocks */
439 ret = count;
440 *err = 0;
441 return ret;
442failed_out:
443 for (i = 0; i <index; i++)
444 ext2_free_blocks(inode, new_blocks[i], 1);
445 if (index)
446 mark_inode_dirty(inode);
447 return ret;
448}
449
450/**
451 * ext2_alloc_branch - allocate and set up a chain of blocks.
452 * @inode: owner
453 * @num: depth of the chain (number of blocks to allocate)
454 * @offsets: offsets (in the blocks) to store the pointers to next.
455 * @branch: place to store the chain in.
456 *
457 * This function allocates @num blocks, zeroes out all but the last one,
458 * links them into chain and (if we are synchronous) writes them to disk.
459 * In other words, it prepares a branch that can be spliced onto the
460 * inode. It stores the information about that chain in the branch[], in
461 * the same format as ext2_get_branch() would do. We are calling it after
462 * we had read the existing part of chain and partial points to the last
463 * triple of that (one with zero ->key). Upon the exit we have the same
464 * picture as after the successful ext2_get_block(), except that in one
465 * place chain is disconnected - *branch->p is still zero (we did not
466 * set the last link), but branch->key contains the number that should
467 * be placed into *branch->p to fill that gap.
468 *
469 * If allocation fails we free all blocks we've allocated (and forget
470 * their buffer_heads) and return the error value the from failed
471 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
472 * as described above and return 0.
473 */
474
475static int ext2_alloc_branch(struct inode *inode,
476 int indirect_blks, int *blks, ext2_fsblk_t goal,
477 int *offsets, Indirect *branch)
478{
479 int blocksize = inode->i_sb->s_blocksize;
480 int i, n = 0;
481 int err = 0;
482 struct buffer_head *bh;
483 int num;
484 ext2_fsblk_t new_blocks[4];
485 ext2_fsblk_t current_block;
486
487 num = ext2_alloc_blocks(inode, goal, indirect_blks,
488 *blks, new_blocks, &err);
489 if (err)
490 return err;
491
492 branch[0].key = cpu_to_le32(new_blocks[0]);
493 /*
494 * metadata blocks and data blocks are allocated.
495 */
496 for (n = 1; n <= indirect_blks; n++) {
497 /*
498 * Get buffer_head for parent block, zero it out
499 * and set the pointer to new one, then send
500 * parent to disk.
501 */
502 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
503 if (unlikely(!bh)) {
504 err = -ENOMEM;
505 goto failed;
506 }
507 branch[n].bh = bh;
508 lock_buffer(bh);
509 memset(bh->b_data, 0, blocksize);
510 branch[n].p = (__le32 *) bh->b_data + offsets[n];
511 branch[n].key = cpu_to_le32(new_blocks[n]);
512 *branch[n].p = branch[n].key;
513 if ( n == indirect_blks) {
514 current_block = new_blocks[n];
515 /*
516 * End of chain, update the last new metablock of
517 * the chain to point to the new allocated
518 * data blocks numbers
519 */
520 for (i=1; i < num; i++)
521 *(branch[n].p + i) = cpu_to_le32(++current_block);
522 }
523 set_buffer_uptodate(bh);
524 unlock_buffer(bh);
525 mark_buffer_dirty_inode(bh, inode);
526 /* We used to sync bh here if IS_SYNC(inode).
527 * But we now rely upon generic_write_sync()
528 * and b_inode_buffers. But not for directories.
529 */
530 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
531 sync_dirty_buffer(bh);
532 }
533 *blks = num;
534 return err;
535
536failed:
537 for (i = 1; i < n; i++)
538 bforget(branch[i].bh);
539 for (i = 0; i < indirect_blks; i++)
540 ext2_free_blocks(inode, new_blocks[i], 1);
541 ext2_free_blocks(inode, new_blocks[i], num);
542 return err;
543}
544
545/**
546 * ext2_splice_branch - splice the allocated branch onto inode.
547 * @inode: owner
548 * @block: (logical) number of block we are adding
549 * @where: location of missing link
550 * @num: number of indirect blocks we are adding
551 * @blks: number of direct blocks we are adding
552 *
553 * This function fills the missing link and does all housekeeping needed in
554 * inode (->i_blocks, etc.). In case of success we end up with the full
555 * chain to new block and return 0.
556 */
557static void ext2_splice_branch(struct inode *inode,
558 long block, Indirect *where, int num, int blks)
559{
560 int i;
561 struct ext2_block_alloc_info *block_i;
562 ext2_fsblk_t current_block;
563
564 block_i = EXT2_I(inode)->i_block_alloc_info;
565
566 /* XXX LOCKING probably should have i_meta_lock ?*/
567 /* That's it */
568
569 *where->p = where->key;
570
571 /*
572 * Update the host buffer_head or inode to point to more just allocated
573 * direct blocks blocks
574 */
575 if (num == 0 && blks > 1) {
576 current_block = le32_to_cpu(where->key) + 1;
577 for (i = 1; i < blks; i++)
578 *(where->p + i ) = cpu_to_le32(current_block++);
579 }
580
581 /*
582 * update the most recently allocated logical & physical block
583 * in i_block_alloc_info, to assist find the proper goal block for next
584 * allocation
585 */
586 if (block_i) {
587 block_i->last_alloc_logical_block = block + blks - 1;
588 block_i->last_alloc_physical_block =
589 le32_to_cpu(where[num].key) + blks - 1;
590 }
591
592 /* We are done with atomic stuff, now do the rest of housekeeping */
593
594 /* had we spliced it onto indirect block? */
595 if (where->bh)
596 mark_buffer_dirty_inode(where->bh, inode);
597
598 inode->i_ctime = current_time(inode);
599 mark_inode_dirty(inode);
600}
601
602/*
603 * Allocation strategy is simple: if we have to allocate something, we will
604 * have to go the whole way to leaf. So let's do it before attaching anything
605 * to tree, set linkage between the newborn blocks, write them if sync is
606 * required, recheck the path, free and repeat if check fails, otherwise
607 * set the last missing link (that will protect us from any truncate-generated
608 * removals - all blocks on the path are immune now) and possibly force the
609 * write on the parent block.
610 * That has a nice additional property: no special recovery from the failed
611 * allocations is needed - we simply release blocks and do not touch anything
612 * reachable from inode.
613 *
614 * `handle' can be NULL if create == 0.
615 *
616 * return > 0, # of blocks mapped or allocated.
617 * return = 0, if plain lookup failed.
618 * return < 0, error case.
619 */
620static int ext2_get_blocks(struct inode *inode,
621 sector_t iblock, unsigned long maxblocks,
622 u32 *bno, bool *new, bool *boundary,
623 int create)
624{
625 int err;
626 int offsets[4];
627 Indirect chain[4];
628 Indirect *partial;
629 ext2_fsblk_t goal;
630 int indirect_blks;
631 int blocks_to_boundary = 0;
632 int depth;
633 struct ext2_inode_info *ei = EXT2_I(inode);
634 int count = 0;
635 ext2_fsblk_t first_block = 0;
636
637 BUG_ON(maxblocks == 0);
638
639 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
640
641 if (depth == 0)
642 return -EIO;
643
644 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
645 /* Simplest case - block found, no allocation needed */
646 if (!partial) {
647 first_block = le32_to_cpu(chain[depth - 1].key);
648 count++;
649 /*map more blocks*/
650 while (count < maxblocks && count <= blocks_to_boundary) {
651 ext2_fsblk_t blk;
652
653 if (!verify_chain(chain, chain + depth - 1)) {
654 /*
655 * Indirect block might be removed by
656 * truncate while we were reading it.
657 * Handling of that case: forget what we've
658 * got now, go to reread.
659 */
660 err = -EAGAIN;
661 count = 0;
662 break;
663 }
664 blk = le32_to_cpu(*(chain[depth-1].p + count));
665 if (blk == first_block + count)
666 count++;
667 else
668 break;
669 }
670 if (err != -EAGAIN)
671 goto got_it;
672 }
673
674 /* Next simple case - plain lookup or failed read of indirect block */
675 if (!create || err == -EIO)
676 goto cleanup;
677
678 mutex_lock(&ei->truncate_mutex);
679 /*
680 * If the indirect block is missing while we are reading
681 * the chain(ext2_get_branch() returns -EAGAIN err), or
682 * if the chain has been changed after we grab the semaphore,
683 * (either because another process truncated this branch, or
684 * another get_block allocated this branch) re-grab the chain to see if
685 * the request block has been allocated or not.
686 *
687 * Since we already block the truncate/other get_block
688 * at this point, we will have the current copy of the chain when we
689 * splice the branch into the tree.
690 */
691 if (err == -EAGAIN || !verify_chain(chain, partial)) {
692 while (partial > chain) {
693 brelse(partial->bh);
694 partial--;
695 }
696 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
697 if (!partial) {
698 count++;
699 mutex_unlock(&ei->truncate_mutex);
700 if (err)
701 goto cleanup;
702 goto got_it;
703 }
704 }
705
706 /*
707 * Okay, we need to do block allocation. Lazily initialize the block
708 * allocation info here if necessary
709 */
710 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
711 ext2_init_block_alloc_info(inode);
712
713 goal = ext2_find_goal(inode, iblock, partial);
714
715 /* the number of blocks need to allocate for [d,t]indirect blocks */
716 indirect_blks = (chain + depth) - partial - 1;
717 /*
718 * Next look up the indirect map to count the totoal number of
719 * direct blocks to allocate for this branch.
720 */
721 count = ext2_blks_to_allocate(partial, indirect_blks,
722 maxblocks, blocks_to_boundary);
723 /*
724 * XXX ???? Block out ext2_truncate while we alter the tree
725 */
726 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
727 offsets + (partial - chain), partial);
728
729 if (err) {
730 mutex_unlock(&ei->truncate_mutex);
731 goto cleanup;
732 }
733
734 if (IS_DAX(inode)) {
735 /*
736 * We must unmap blocks before zeroing so that writeback cannot
737 * overwrite zeros with stale data from block device page cache.
738 */
739 clean_bdev_aliases(inode->i_sb->s_bdev,
740 le32_to_cpu(chain[depth-1].key),
741 count);
742 /*
743 * block must be initialised before we put it in the tree
744 * so that it's not found by another thread before it's
745 * initialised
746 */
747 err = sb_issue_zeroout(inode->i_sb,
748 le32_to_cpu(chain[depth-1].key), count,
749 GFP_NOFS);
750 if (err) {
751 mutex_unlock(&ei->truncate_mutex);
752 goto cleanup;
753 }
754 }
755 *new = true;
756
757 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
758 mutex_unlock(&ei->truncate_mutex);
759got_it:
760 if (count > blocks_to_boundary)
761 *boundary = true;
762 err = count;
763 /* Clean up and exit */
764 partial = chain + depth - 1; /* the whole chain */
765cleanup:
766 while (partial > chain) {
767 brelse(partial->bh);
768 partial--;
769 }
770 if (err > 0)
771 *bno = le32_to_cpu(chain[depth-1].key);
772 return err;
773}
774
775int ext2_get_block(struct inode *inode, sector_t iblock,
776 struct buffer_head *bh_result, int create)
777{
778 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
779 bool new = false, boundary = false;
780 u32 bno;
781 int ret;
782
783 ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
784 create);
785 if (ret <= 0)
786 return ret;
787
788 map_bh(bh_result, inode->i_sb, bno);
789 bh_result->b_size = (ret << inode->i_blkbits);
790 if (new)
791 set_buffer_new(bh_result);
792 if (boundary)
793 set_buffer_boundary(bh_result);
794 return 0;
795
796}
797
798#ifdef CONFIG_FS_DAX
799static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
800 unsigned flags, struct iomap *iomap)
801{
802 unsigned int blkbits = inode->i_blkbits;
803 unsigned long first_block = offset >> blkbits;
804 unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
805 bool new = false, boundary = false;
806 u32 bno;
807 int ret;
808
809 ret = ext2_get_blocks(inode, first_block, max_blocks,
810 &bno, &new, &boundary, flags & IOMAP_WRITE);
811 if (ret < 0)
812 return ret;
813
814 iomap->flags = 0;
815 iomap->bdev = inode->i_sb->s_bdev;
816 iomap->offset = (u64)first_block << blkbits;
817
818 if (ret == 0) {
819 iomap->type = IOMAP_HOLE;
820 iomap->blkno = IOMAP_NULL_BLOCK;
821 iomap->length = 1 << blkbits;
822 } else {
823 iomap->type = IOMAP_MAPPED;
824 iomap->blkno = (sector_t)bno << (blkbits - 9);
825 iomap->length = (u64)ret << blkbits;
826 iomap->flags |= IOMAP_F_MERGED;
827 }
828
829 if (new)
830 iomap->flags |= IOMAP_F_NEW;
831 return 0;
832}
833
834static int
835ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
836 ssize_t written, unsigned flags, struct iomap *iomap)
837{
838 if (iomap->type == IOMAP_MAPPED &&
839 written < length &&
840 (flags & IOMAP_WRITE))
841 ext2_write_failed(inode->i_mapping, offset + length);
842 return 0;
843}
844
845struct iomap_ops ext2_iomap_ops = {
846 .iomap_begin = ext2_iomap_begin,
847 .iomap_end = ext2_iomap_end,
848};
849#else
850/* Define empty ops for !CONFIG_FS_DAX case to avoid ugly ifdefs */
851struct iomap_ops ext2_iomap_ops;
852#endif /* CONFIG_FS_DAX */
853
854int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
855 u64 start, u64 len)
856{
857 return generic_block_fiemap(inode, fieinfo, start, len,
858 ext2_get_block);
859}
860
861static int ext2_writepage(struct page *page, struct writeback_control *wbc)
862{
863 return block_write_full_page(page, ext2_get_block, wbc);
864}
865
866static int ext2_readpage(struct file *file, struct page *page)
867{
868 return mpage_readpage(page, ext2_get_block);
869}
870
871static int
872ext2_readpages(struct file *file, struct address_space *mapping,
873 struct list_head *pages, unsigned nr_pages)
874{
875 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
876}
877
878static int
879ext2_write_begin(struct file *file, struct address_space *mapping,
880 loff_t pos, unsigned len, unsigned flags,
881 struct page **pagep, void **fsdata)
882{
883 int ret;
884
885 ret = block_write_begin(mapping, pos, len, flags, pagep,
886 ext2_get_block);
887 if (ret < 0)
888 ext2_write_failed(mapping, pos + len);
889 return ret;
890}
891
892static int ext2_write_end(struct file *file, struct address_space *mapping,
893 loff_t pos, unsigned len, unsigned copied,
894 struct page *page, void *fsdata)
895{
896 int ret;
897
898 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
899 if (ret < len)
900 ext2_write_failed(mapping, pos + len);
901 return ret;
902}
903
904static int
905ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
906 loff_t pos, unsigned len, unsigned flags,
907 struct page **pagep, void **fsdata)
908{
909 int ret;
910
911 ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
912 ext2_get_block);
913 if (ret < 0)
914 ext2_write_failed(mapping, pos + len);
915 return ret;
916}
917
918static int ext2_nobh_writepage(struct page *page,
919 struct writeback_control *wbc)
920{
921 return nobh_writepage(page, ext2_get_block, wbc);
922}
923
924static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
925{
926 return generic_block_bmap(mapping,block,ext2_get_block);
927}
928
929static ssize_t
930ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
931{
932 struct file *file = iocb->ki_filp;
933 struct address_space *mapping = file->f_mapping;
934 struct inode *inode = mapping->host;
935 size_t count = iov_iter_count(iter);
936 loff_t offset = iocb->ki_pos;
937 ssize_t ret;
938
939 if (WARN_ON_ONCE(IS_DAX(inode)))
940 return -EIO;
941
942 ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
943 if (ret < 0 && iov_iter_rw(iter) == WRITE)
944 ext2_write_failed(mapping, offset + count);
945 return ret;
946}
947
948static int
949ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
950{
951#ifdef CONFIG_FS_DAX
952 if (dax_mapping(mapping)) {
953 return dax_writeback_mapping_range(mapping,
954 mapping->host->i_sb->s_bdev,
955 wbc);
956 }
957#endif
958
959 return mpage_writepages(mapping, wbc, ext2_get_block);
960}
961
962const struct address_space_operations ext2_aops = {
963 .readpage = ext2_readpage,
964 .readpages = ext2_readpages,
965 .writepage = ext2_writepage,
966 .write_begin = ext2_write_begin,
967 .write_end = ext2_write_end,
968 .bmap = ext2_bmap,
969 .direct_IO = ext2_direct_IO,
970 .writepages = ext2_writepages,
971 .migratepage = buffer_migrate_page,
972 .is_partially_uptodate = block_is_partially_uptodate,
973 .error_remove_page = generic_error_remove_page,
974};
975
976const struct address_space_operations ext2_nobh_aops = {
977 .readpage = ext2_readpage,
978 .readpages = ext2_readpages,
979 .writepage = ext2_nobh_writepage,
980 .write_begin = ext2_nobh_write_begin,
981 .write_end = nobh_write_end,
982 .bmap = ext2_bmap,
983 .direct_IO = ext2_direct_IO,
984 .writepages = ext2_writepages,
985 .migratepage = buffer_migrate_page,
986 .error_remove_page = generic_error_remove_page,
987};
988
989/*
990 * Probably it should be a library function... search for first non-zero word
991 * or memcmp with zero_page, whatever is better for particular architecture.
992 * Linus?
993 */
994static inline int all_zeroes(__le32 *p, __le32 *q)
995{
996 while (p < q)
997 if (*p++)
998 return 0;
999 return 1;
1000}
1001
1002/**
1003 * ext2_find_shared - find the indirect blocks for partial truncation.
1004 * @inode: inode in question
1005 * @depth: depth of the affected branch
1006 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
1007 * @chain: place to store the pointers to partial indirect blocks
1008 * @top: place to the (detached) top of branch
1009 *
1010 * This is a helper function used by ext2_truncate().
1011 *
1012 * When we do truncate() we may have to clean the ends of several indirect
1013 * blocks but leave the blocks themselves alive. Block is partially
1014 * truncated if some data below the new i_size is referred from it (and
1015 * it is on the path to the first completely truncated data block, indeed).
1016 * We have to free the top of that path along with everything to the right
1017 * of the path. Since no allocation past the truncation point is possible
1018 * until ext2_truncate() finishes, we may safely do the latter, but top
1019 * of branch may require special attention - pageout below the truncation
1020 * point might try to populate it.
1021 *
1022 * We atomically detach the top of branch from the tree, store the block
1023 * number of its root in *@top, pointers to buffer_heads of partially
1024 * truncated blocks - in @chain[].bh and pointers to their last elements
1025 * that should not be removed - in @chain[].p. Return value is the pointer
1026 * to last filled element of @chain.
1027 *
1028 * The work left to caller to do the actual freeing of subtrees:
1029 * a) free the subtree starting from *@top
1030 * b) free the subtrees whose roots are stored in
1031 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1032 * c) free the subtrees growing from the inode past the @chain[0].p
1033 * (no partially truncated stuff there).
1034 */
1035
1036static Indirect *ext2_find_shared(struct inode *inode,
1037 int depth,
1038 int offsets[4],
1039 Indirect chain[4],
1040 __le32 *top)
1041{
1042 Indirect *partial, *p;
1043 int k, err;
1044
1045 *top = 0;
1046 for (k = depth; k > 1 && !offsets[k-1]; k--)
1047 ;
1048 partial = ext2_get_branch(inode, k, offsets, chain, &err);
1049 if (!partial)
1050 partial = chain + k-1;
1051 /*
1052 * If the branch acquired continuation since we've looked at it -
1053 * fine, it should all survive and (new) top doesn't belong to us.
1054 */
1055 write_lock(&EXT2_I(inode)->i_meta_lock);
1056 if (!partial->key && *partial->p) {
1057 write_unlock(&EXT2_I(inode)->i_meta_lock);
1058 goto no_top;
1059 }
1060 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1061 ;
1062 /*
1063 * OK, we've found the last block that must survive. The rest of our
1064 * branch should be detached before unlocking. However, if that rest
1065 * of branch is all ours and does not grow immediately from the inode
1066 * it's easier to cheat and just decrement partial->p.
1067 */
1068 if (p == chain + k - 1 && p > chain) {
1069 p->p--;
1070 } else {
1071 *top = *p->p;
1072 *p->p = 0;
1073 }
1074 write_unlock(&EXT2_I(inode)->i_meta_lock);
1075
1076 while(partial > p)
1077 {
1078 brelse(partial->bh);
1079 partial--;
1080 }
1081no_top:
1082 return partial;
1083}
1084
1085/**
1086 * ext2_free_data - free a list of data blocks
1087 * @inode: inode we are dealing with
1088 * @p: array of block numbers
1089 * @q: points immediately past the end of array
1090 *
1091 * We are freeing all blocks referred from that array (numbers are
1092 * stored as little-endian 32-bit) and updating @inode->i_blocks
1093 * appropriately.
1094 */
1095static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1096{
1097 unsigned long block_to_free = 0, count = 0;
1098 unsigned long nr;
1099
1100 for ( ; p < q ; p++) {
1101 nr = le32_to_cpu(*p);
1102 if (nr) {
1103 *p = 0;
1104 /* accumulate blocks to free if they're contiguous */
1105 if (count == 0)
1106 goto free_this;
1107 else if (block_to_free == nr - count)
1108 count++;
1109 else {
1110 ext2_free_blocks (inode, block_to_free, count);
1111 mark_inode_dirty(inode);
1112 free_this:
1113 block_to_free = nr;
1114 count = 1;
1115 }
1116 }
1117 }
1118 if (count > 0) {
1119 ext2_free_blocks (inode, block_to_free, count);
1120 mark_inode_dirty(inode);
1121 }
1122}
1123
1124/**
1125 * ext2_free_branches - free an array of branches
1126 * @inode: inode we are dealing with
1127 * @p: array of block numbers
1128 * @q: pointer immediately past the end of array
1129 * @depth: depth of the branches to free
1130 *
1131 * We are freeing all blocks referred from these branches (numbers are
1132 * stored as little-endian 32-bit) and updating @inode->i_blocks
1133 * appropriately.
1134 */
1135static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1136{
1137 struct buffer_head * bh;
1138 unsigned long nr;
1139
1140 if (depth--) {
1141 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1142 for ( ; p < q ; p++) {
1143 nr = le32_to_cpu(*p);
1144 if (!nr)
1145 continue;
1146 *p = 0;
1147 bh = sb_bread(inode->i_sb, nr);
1148 /*
1149 * A read failure? Report error and clear slot
1150 * (should be rare).
1151 */
1152 if (!bh) {
1153 ext2_error(inode->i_sb, "ext2_free_branches",
1154 "Read failure, inode=%ld, block=%ld",
1155 inode->i_ino, nr);
1156 continue;
1157 }
1158 ext2_free_branches(inode,
1159 (__le32*)bh->b_data,
1160 (__le32*)bh->b_data + addr_per_block,
1161 depth);
1162 bforget(bh);
1163 ext2_free_blocks(inode, nr, 1);
1164 mark_inode_dirty(inode);
1165 }
1166 } else
1167 ext2_free_data(inode, p, q);
1168}
1169
1170/* dax_sem must be held when calling this function */
1171static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1172{
1173 __le32 *i_data = EXT2_I(inode)->i_data;
1174 struct ext2_inode_info *ei = EXT2_I(inode);
1175 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1176 int offsets[4];
1177 Indirect chain[4];
1178 Indirect *partial;
1179 __le32 nr = 0;
1180 int n;
1181 long iblock;
1182 unsigned blocksize;
1183 blocksize = inode->i_sb->s_blocksize;
1184 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1185
1186#ifdef CONFIG_FS_DAX
1187 WARN_ON(!rwsem_is_locked(&ei->dax_sem));
1188#endif
1189
1190 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1191 if (n == 0)
1192 return;
1193
1194 /*
1195 * From here we block out all ext2_get_block() callers who want to
1196 * modify the block allocation tree.
1197 */
1198 mutex_lock(&ei->truncate_mutex);
1199
1200 if (n == 1) {
1201 ext2_free_data(inode, i_data+offsets[0],
1202 i_data + EXT2_NDIR_BLOCKS);
1203 goto do_indirects;
1204 }
1205
1206 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1207 /* Kill the top of shared branch (already detached) */
1208 if (nr) {
1209 if (partial == chain)
1210 mark_inode_dirty(inode);
1211 else
1212 mark_buffer_dirty_inode(partial->bh, inode);
1213 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1214 }
1215 /* Clear the ends of indirect blocks on the shared branch */
1216 while (partial > chain) {
1217 ext2_free_branches(inode,
1218 partial->p + 1,
1219 (__le32*)partial->bh->b_data+addr_per_block,
1220 (chain+n-1) - partial);
1221 mark_buffer_dirty_inode(partial->bh, inode);
1222 brelse (partial->bh);
1223 partial--;
1224 }
1225do_indirects:
1226 /* Kill the remaining (whole) subtrees */
1227 switch (offsets[0]) {
1228 default:
1229 nr = i_data[EXT2_IND_BLOCK];
1230 if (nr) {
1231 i_data[EXT2_IND_BLOCK] = 0;
1232 mark_inode_dirty(inode);
1233 ext2_free_branches(inode, &nr, &nr+1, 1);
1234 }
1235 case EXT2_IND_BLOCK:
1236 nr = i_data[EXT2_DIND_BLOCK];
1237 if (nr) {
1238 i_data[EXT2_DIND_BLOCK] = 0;
1239 mark_inode_dirty(inode);
1240 ext2_free_branches(inode, &nr, &nr+1, 2);
1241 }
1242 case EXT2_DIND_BLOCK:
1243 nr = i_data[EXT2_TIND_BLOCK];
1244 if (nr) {
1245 i_data[EXT2_TIND_BLOCK] = 0;
1246 mark_inode_dirty(inode);
1247 ext2_free_branches(inode, &nr, &nr+1, 3);
1248 }
1249 case EXT2_TIND_BLOCK:
1250 ;
1251 }
1252
1253 ext2_discard_reservation(inode);
1254
1255 mutex_unlock(&ei->truncate_mutex);
1256}
1257
1258static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1259{
1260 /*
1261 * XXX: it seems like a bug here that we don't allow
1262 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1263 * review and fix this.
1264 *
1265 * Also would be nice to be able to handle IO errors and such,
1266 * but that's probably too much to ask.
1267 */
1268 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1269 S_ISLNK(inode->i_mode)))
1270 return;
1271 if (ext2_inode_is_fast_symlink(inode))
1272 return;
1273 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1274 return;
1275
1276 dax_sem_down_write(EXT2_I(inode));
1277 __ext2_truncate_blocks(inode, offset);
1278 dax_sem_up_write(EXT2_I(inode));
1279}
1280
1281static int ext2_setsize(struct inode *inode, loff_t newsize)
1282{
1283 int error;
1284
1285 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1286 S_ISLNK(inode->i_mode)))
1287 return -EINVAL;
1288 if (ext2_inode_is_fast_symlink(inode))
1289 return -EINVAL;
1290 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1291 return -EPERM;
1292
1293 inode_dio_wait(inode);
1294
1295 if (IS_DAX(inode)) {
1296 error = iomap_zero_range(inode, newsize,
1297 PAGE_ALIGN(newsize) - newsize, NULL,
1298 &ext2_iomap_ops);
1299 } else if (test_opt(inode->i_sb, NOBH))
1300 error = nobh_truncate_page(inode->i_mapping,
1301 newsize, ext2_get_block);
1302 else
1303 error = block_truncate_page(inode->i_mapping,
1304 newsize, ext2_get_block);
1305 if (error)
1306 return error;
1307
1308 dax_sem_down_write(EXT2_I(inode));
1309 truncate_setsize(inode, newsize);
1310 __ext2_truncate_blocks(inode, newsize);
1311 dax_sem_up_write(EXT2_I(inode));
1312
1313 inode->i_mtime = inode->i_ctime = current_time(inode);
1314 if (inode_needs_sync(inode)) {
1315 sync_mapping_buffers(inode->i_mapping);
1316 sync_inode_metadata(inode, 1);
1317 } else {
1318 mark_inode_dirty(inode);
1319 }
1320
1321 return 0;
1322}
1323
1324static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1325 struct buffer_head **p)
1326{
1327 struct buffer_head * bh;
1328 unsigned long block_group;
1329 unsigned long block;
1330 unsigned long offset;
1331 struct ext2_group_desc * gdp;
1332
1333 *p = NULL;
1334 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1335 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1336 goto Einval;
1337
1338 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1339 gdp = ext2_get_group_desc(sb, block_group, NULL);
1340 if (!gdp)
1341 goto Egdp;
1342 /*
1343 * Figure out the offset within the block group inode table
1344 */
1345 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1346 block = le32_to_cpu(gdp->bg_inode_table) +
1347 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1348 if (!(bh = sb_bread(sb, block)))
1349 goto Eio;
1350
1351 *p = bh;
1352 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1353 return (struct ext2_inode *) (bh->b_data + offset);
1354
1355Einval:
1356 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1357 (unsigned long) ino);
1358 return ERR_PTR(-EINVAL);
1359Eio:
1360 ext2_error(sb, "ext2_get_inode",
1361 "unable to read inode block - inode=%lu, block=%lu",
1362 (unsigned long) ino, block);
1363Egdp:
1364 return ERR_PTR(-EIO);
1365}
1366
1367void ext2_set_inode_flags(struct inode *inode)
1368{
1369 unsigned int flags = EXT2_I(inode)->i_flags;
1370
1371 inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1372 S_DIRSYNC | S_DAX);
1373 if (flags & EXT2_SYNC_FL)
1374 inode->i_flags |= S_SYNC;
1375 if (flags & EXT2_APPEND_FL)
1376 inode->i_flags |= S_APPEND;
1377 if (flags & EXT2_IMMUTABLE_FL)
1378 inode->i_flags |= S_IMMUTABLE;
1379 if (flags & EXT2_NOATIME_FL)
1380 inode->i_flags |= S_NOATIME;
1381 if (flags & EXT2_DIRSYNC_FL)
1382 inode->i_flags |= S_DIRSYNC;
1383 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1384 inode->i_flags |= S_DAX;
1385}
1386
1387/* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1388void ext2_get_inode_flags(struct ext2_inode_info *ei)
1389{
1390 unsigned int flags = ei->vfs_inode.i_flags;
1391
1392 ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1393 EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1394 if (flags & S_SYNC)
1395 ei->i_flags |= EXT2_SYNC_FL;
1396 if (flags & S_APPEND)
1397 ei->i_flags |= EXT2_APPEND_FL;
1398 if (flags & S_IMMUTABLE)
1399 ei->i_flags |= EXT2_IMMUTABLE_FL;
1400 if (flags & S_NOATIME)
1401 ei->i_flags |= EXT2_NOATIME_FL;
1402 if (flags & S_DIRSYNC)
1403 ei->i_flags |= EXT2_DIRSYNC_FL;
1404}
1405
1406struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1407{
1408 struct ext2_inode_info *ei;
1409 struct buffer_head * bh;
1410 struct ext2_inode *raw_inode;
1411 struct inode *inode;
1412 long ret = -EIO;
1413 int n;
1414 uid_t i_uid;
1415 gid_t i_gid;
1416
1417 inode = iget_locked(sb, ino);
1418 if (!inode)
1419 return ERR_PTR(-ENOMEM);
1420 if (!(inode->i_state & I_NEW))
1421 return inode;
1422
1423 ei = EXT2_I(inode);
1424 ei->i_block_alloc_info = NULL;
1425
1426 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1427 if (IS_ERR(raw_inode)) {
1428 ret = PTR_ERR(raw_inode);
1429 goto bad_inode;
1430 }
1431
1432 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1433 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1434 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1435 if (!(test_opt (inode->i_sb, NO_UID32))) {
1436 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1437 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1438 }
1439 i_uid_write(inode, i_uid);
1440 i_gid_write(inode, i_gid);
1441 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1442 inode->i_size = le32_to_cpu(raw_inode->i_size);
1443 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1444 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1445 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1446 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1447 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1448 /* We now have enough fields to check if the inode was active or not.
1449 * This is needed because nfsd might try to access dead inodes
1450 * the test is that same one that e2fsck uses
1451 * NeilBrown 1999oct15
1452 */
1453 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1454 /* this inode is deleted */
1455 brelse (bh);
1456 ret = -ESTALE;
1457 goto bad_inode;
1458 }
1459 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1460 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1461 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1462 ei->i_frag_no = raw_inode->i_frag;
1463 ei->i_frag_size = raw_inode->i_fsize;
1464 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1465 ei->i_dir_acl = 0;
1466
1467 if (ei->i_file_acl &&
1468 !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1469 ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1470 ei->i_file_acl);
1471 brelse(bh);
1472 ret = -EFSCORRUPTED;
1473 goto bad_inode;
1474 }
1475
1476 if (S_ISREG(inode->i_mode))
1477 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1478 else
1479 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1480 if (i_size_read(inode) < 0) {
1481 ret = -EFSCORRUPTED;
1482 goto bad_inode;
1483 }
1484 ei->i_dtime = 0;
1485 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1486 ei->i_state = 0;
1487 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1488 ei->i_dir_start_lookup = 0;
1489
1490 /*
1491 * NOTE! The in-memory inode i_data array is in little-endian order
1492 * even on big-endian machines: we do NOT byteswap the block numbers!
1493 */
1494 for (n = 0; n < EXT2_N_BLOCKS; n++)
1495 ei->i_data[n] = raw_inode->i_block[n];
1496
1497 if (S_ISREG(inode->i_mode)) {
1498 inode->i_op = &ext2_file_inode_operations;
1499 if (test_opt(inode->i_sb, NOBH)) {
1500 inode->i_mapping->a_ops = &ext2_nobh_aops;
1501 inode->i_fop = &ext2_file_operations;
1502 } else {
1503 inode->i_mapping->a_ops = &ext2_aops;
1504 inode->i_fop = &ext2_file_operations;
1505 }
1506 } else if (S_ISDIR(inode->i_mode)) {
1507 inode->i_op = &ext2_dir_inode_operations;
1508 inode->i_fop = &ext2_dir_operations;
1509 if (test_opt(inode->i_sb, NOBH))
1510 inode->i_mapping->a_ops = &ext2_nobh_aops;
1511 else
1512 inode->i_mapping->a_ops = &ext2_aops;
1513 } else if (S_ISLNK(inode->i_mode)) {
1514 if (ext2_inode_is_fast_symlink(inode)) {
1515 inode->i_link = (char *)ei->i_data;
1516 inode->i_op = &ext2_fast_symlink_inode_operations;
1517 nd_terminate_link(ei->i_data, inode->i_size,
1518 sizeof(ei->i_data) - 1);
1519 } else {
1520 inode->i_op = &ext2_symlink_inode_operations;
1521 inode_nohighmem(inode);
1522 if (test_opt(inode->i_sb, NOBH))
1523 inode->i_mapping->a_ops = &ext2_nobh_aops;
1524 else
1525 inode->i_mapping->a_ops = &ext2_aops;
1526 }
1527 } else {
1528 inode->i_op = &ext2_special_inode_operations;
1529 if (raw_inode->i_block[0])
1530 init_special_inode(inode, inode->i_mode,
1531 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1532 else
1533 init_special_inode(inode, inode->i_mode,
1534 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1535 }
1536 brelse (bh);
1537 ext2_set_inode_flags(inode);
1538 unlock_new_inode(inode);
1539 return inode;
1540
1541bad_inode:
1542 iget_failed(inode);
1543 return ERR_PTR(ret);
1544}
1545
1546static int __ext2_write_inode(struct inode *inode, int do_sync)
1547{
1548 struct ext2_inode_info *ei = EXT2_I(inode);
1549 struct super_block *sb = inode->i_sb;
1550 ino_t ino = inode->i_ino;
1551 uid_t uid = i_uid_read(inode);
1552 gid_t gid = i_gid_read(inode);
1553 struct buffer_head * bh;
1554 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1555 int n;
1556 int err = 0;
1557
1558 if (IS_ERR(raw_inode))
1559 return -EIO;
1560
1561 /* For fields not not tracking in the in-memory inode,
1562 * initialise them to zero for new inodes. */
1563 if (ei->i_state & EXT2_STATE_NEW)
1564 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1565
1566 ext2_get_inode_flags(ei);
1567 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1568 if (!(test_opt(sb, NO_UID32))) {
1569 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1570 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1571/*
1572 * Fix up interoperability with old kernels. Otherwise, old inodes get
1573 * re-used with the upper 16 bits of the uid/gid intact
1574 */
1575 if (!ei->i_dtime) {
1576 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1577 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1578 } else {
1579 raw_inode->i_uid_high = 0;
1580 raw_inode->i_gid_high = 0;
1581 }
1582 } else {
1583 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1584 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1585 raw_inode->i_uid_high = 0;
1586 raw_inode->i_gid_high = 0;
1587 }
1588 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1589 raw_inode->i_size = cpu_to_le32(inode->i_size);
1590 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1591 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1592 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1593
1594 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1595 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1596 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1597 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1598 raw_inode->i_frag = ei->i_frag_no;
1599 raw_inode->i_fsize = ei->i_frag_size;
1600 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1601 if (!S_ISREG(inode->i_mode))
1602 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1603 else {
1604 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1605 if (inode->i_size > 0x7fffffffULL) {
1606 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1607 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1608 EXT2_SB(sb)->s_es->s_rev_level ==
1609 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1610 /* If this is the first large file
1611 * created, add a flag to the superblock.
1612 */
1613 spin_lock(&EXT2_SB(sb)->s_lock);
1614 ext2_update_dynamic_rev(sb);
1615 EXT2_SET_RO_COMPAT_FEATURE(sb,
1616 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1617 spin_unlock(&EXT2_SB(sb)->s_lock);
1618 ext2_write_super(sb);
1619 }
1620 }
1621 }
1622
1623 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1624 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1625 if (old_valid_dev(inode->i_rdev)) {
1626 raw_inode->i_block[0] =
1627 cpu_to_le32(old_encode_dev(inode->i_rdev));
1628 raw_inode->i_block[1] = 0;
1629 } else {
1630 raw_inode->i_block[0] = 0;
1631 raw_inode->i_block[1] =
1632 cpu_to_le32(new_encode_dev(inode->i_rdev));
1633 raw_inode->i_block[2] = 0;
1634 }
1635 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1636 raw_inode->i_block[n] = ei->i_data[n];
1637 mark_buffer_dirty(bh);
1638 if (do_sync) {
1639 sync_dirty_buffer(bh);
1640 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1641 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1642 sb->s_id, (unsigned long) ino);
1643 err = -EIO;
1644 }
1645 }
1646 ei->i_state &= ~EXT2_STATE_NEW;
1647 brelse (bh);
1648 return err;
1649}
1650
1651int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1652{
1653 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1654}
1655
1656int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1657{
1658 struct inode *inode = d_inode(dentry);
1659 int error;
1660
1661 error = setattr_prepare(dentry, iattr);
1662 if (error)
1663 return error;
1664
1665 if (is_quota_modification(inode, iattr)) {
1666 error = dquot_initialize(inode);
1667 if (error)
1668 return error;
1669 }
1670 if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1671 (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1672 error = dquot_transfer(inode, iattr);
1673 if (error)
1674 return error;
1675 }
1676 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1677 error = ext2_setsize(inode, iattr->ia_size);
1678 if (error)
1679 return error;
1680 }
1681 setattr_copy(inode, iattr);
1682 if (iattr->ia_valid & ATTR_MODE)
1683 error = posix_acl_chmod(inode, inode->i_mode);
1684 mark_inode_dirty(inode);
1685
1686 return error;
1687}