Loading...
1/*
2 * linux/fs/ext2/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23 */
24
25#include <linux/time.h>
26#include <linux/highuid.h>
27#include <linux/pagemap.h>
28#include <linux/quotaops.h>
29#include <linux/module.h>
30#include <linux/writeback.h>
31#include <linux/buffer_head.h>
32#include <linux/mpage.h>
33#include <linux/fiemap.h>
34#include <linux/namei.h>
35#include "ext2.h"
36#include "acl.h"
37#include "xip.h"
38
39MODULE_AUTHOR("Remy Card and others");
40MODULE_DESCRIPTION("Second Extended Filesystem");
41MODULE_LICENSE("GPL");
42
43static int __ext2_write_inode(struct inode *inode, int do_sync);
44
45/*
46 * Test whether an inode is a fast symlink.
47 */
48static inline int ext2_inode_is_fast_symlink(struct inode *inode)
49{
50 int ea_blocks = EXT2_I(inode)->i_file_acl ?
51 (inode->i_sb->s_blocksize >> 9) : 0;
52
53 return (S_ISLNK(inode->i_mode) &&
54 inode->i_blocks - ea_blocks == 0);
55}
56
57static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
58
59static void ext2_write_failed(struct address_space *mapping, loff_t to)
60{
61 struct inode *inode = mapping->host;
62
63 if (to > inode->i_size) {
64 truncate_pagecache(inode, to, inode->i_size);
65 ext2_truncate_blocks(inode, inode->i_size);
66 }
67}
68
69/*
70 * Called at the last iput() if i_nlink is zero.
71 */
72void ext2_evict_inode(struct inode * inode)
73{
74 struct ext2_block_alloc_info *rsv;
75 int want_delete = 0;
76
77 if (!inode->i_nlink && !is_bad_inode(inode)) {
78 want_delete = 1;
79 dquot_initialize(inode);
80 } else {
81 dquot_drop(inode);
82 }
83
84 truncate_inode_pages(&inode->i_data, 0);
85
86 if (want_delete) {
87 /* set dtime */
88 EXT2_I(inode)->i_dtime = get_seconds();
89 mark_inode_dirty(inode);
90 __ext2_write_inode(inode, inode_needs_sync(inode));
91 /* truncate to 0 */
92 inode->i_size = 0;
93 if (inode->i_blocks)
94 ext2_truncate_blocks(inode, 0);
95 }
96
97 invalidate_inode_buffers(inode);
98 end_writeback(inode);
99
100 ext2_discard_reservation(inode);
101 rsv = EXT2_I(inode)->i_block_alloc_info;
102 EXT2_I(inode)->i_block_alloc_info = NULL;
103 if (unlikely(rsv))
104 kfree(rsv);
105
106 if (want_delete)
107 ext2_free_inode(inode);
108}
109
110typedef struct {
111 __le32 *p;
112 __le32 key;
113 struct buffer_head *bh;
114} Indirect;
115
116static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
117{
118 p->key = *(p->p = v);
119 p->bh = bh;
120}
121
122static inline int verify_chain(Indirect *from, Indirect *to)
123{
124 while (from <= to && from->key == *from->p)
125 from++;
126 return (from > to);
127}
128
129/**
130 * ext2_block_to_path - parse the block number into array of offsets
131 * @inode: inode in question (we are only interested in its superblock)
132 * @i_block: block number to be parsed
133 * @offsets: array to store the offsets in
134 * @boundary: set this non-zero if the referred-to block is likely to be
135 * followed (on disk) by an indirect block.
136 * To store the locations of file's data ext2 uses a data structure common
137 * for UNIX filesystems - tree of pointers anchored in the inode, with
138 * data blocks at leaves and indirect blocks in intermediate nodes.
139 * This function translates the block number into path in that tree -
140 * return value is the path length and @offsets[n] is the offset of
141 * pointer to (n+1)th node in the nth one. If @block is out of range
142 * (negative or too large) warning is printed and zero returned.
143 *
144 * Note: function doesn't find node addresses, so no IO is needed. All
145 * we need to know is the capacity of indirect blocks (taken from the
146 * inode->i_sb).
147 */
148
149/*
150 * Portability note: the last comparison (check that we fit into triple
151 * indirect block) is spelled differently, because otherwise on an
152 * architecture with 32-bit longs and 8Kb pages we might get into trouble
153 * if our filesystem had 8Kb blocks. We might use long long, but that would
154 * kill us on x86. Oh, well, at least the sign propagation does not matter -
155 * i_block would have to be negative in the very beginning, so we would not
156 * get there at all.
157 */
158
159static int ext2_block_to_path(struct inode *inode,
160 long i_block, int offsets[4], int *boundary)
161{
162 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
163 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
164 const long direct_blocks = EXT2_NDIR_BLOCKS,
165 indirect_blocks = ptrs,
166 double_blocks = (1 << (ptrs_bits * 2));
167 int n = 0;
168 int final = 0;
169
170 if (i_block < 0) {
171 ext2_msg(inode->i_sb, KERN_WARNING,
172 "warning: %s: block < 0", __func__);
173 } else if (i_block < direct_blocks) {
174 offsets[n++] = i_block;
175 final = direct_blocks;
176 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
177 offsets[n++] = EXT2_IND_BLOCK;
178 offsets[n++] = i_block;
179 final = ptrs;
180 } else if ((i_block -= indirect_blocks) < double_blocks) {
181 offsets[n++] = EXT2_DIND_BLOCK;
182 offsets[n++] = i_block >> ptrs_bits;
183 offsets[n++] = i_block & (ptrs - 1);
184 final = ptrs;
185 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
186 offsets[n++] = EXT2_TIND_BLOCK;
187 offsets[n++] = i_block >> (ptrs_bits * 2);
188 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
189 offsets[n++] = i_block & (ptrs - 1);
190 final = ptrs;
191 } else {
192 ext2_msg(inode->i_sb, KERN_WARNING,
193 "warning: %s: block is too big", __func__);
194 }
195 if (boundary)
196 *boundary = final - 1 - (i_block & (ptrs - 1));
197
198 return n;
199}
200
201/**
202 * ext2_get_branch - read the chain of indirect blocks leading to data
203 * @inode: inode in question
204 * @depth: depth of the chain (1 - direct pointer, etc.)
205 * @offsets: offsets of pointers in inode/indirect blocks
206 * @chain: place to store the result
207 * @err: here we store the error value
208 *
209 * Function fills the array of triples <key, p, bh> and returns %NULL
210 * if everything went OK or the pointer to the last filled triple
211 * (incomplete one) otherwise. Upon the return chain[i].key contains
212 * the number of (i+1)-th block in the chain (as it is stored in memory,
213 * i.e. little-endian 32-bit), chain[i].p contains the address of that
214 * number (it points into struct inode for i==0 and into the bh->b_data
215 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
216 * block for i>0 and NULL for i==0. In other words, it holds the block
217 * numbers of the chain, addresses they were taken from (and where we can
218 * verify that chain did not change) and buffer_heads hosting these
219 * numbers.
220 *
221 * Function stops when it stumbles upon zero pointer (absent block)
222 * (pointer to last triple returned, *@err == 0)
223 * or when it gets an IO error reading an indirect block
224 * (ditto, *@err == -EIO)
225 * or when it notices that chain had been changed while it was reading
226 * (ditto, *@err == -EAGAIN)
227 * or when it reads all @depth-1 indirect blocks successfully and finds
228 * the whole chain, all way to the data (returns %NULL, *err == 0).
229 */
230static Indirect *ext2_get_branch(struct inode *inode,
231 int depth,
232 int *offsets,
233 Indirect chain[4],
234 int *err)
235{
236 struct super_block *sb = inode->i_sb;
237 Indirect *p = chain;
238 struct buffer_head *bh;
239
240 *err = 0;
241 /* i_data is not going away, no lock needed */
242 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
243 if (!p->key)
244 goto no_block;
245 while (--depth) {
246 bh = sb_bread(sb, le32_to_cpu(p->key));
247 if (!bh)
248 goto failure;
249 read_lock(&EXT2_I(inode)->i_meta_lock);
250 if (!verify_chain(chain, p))
251 goto changed;
252 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
253 read_unlock(&EXT2_I(inode)->i_meta_lock);
254 if (!p->key)
255 goto no_block;
256 }
257 return NULL;
258
259changed:
260 read_unlock(&EXT2_I(inode)->i_meta_lock);
261 brelse(bh);
262 *err = -EAGAIN;
263 goto no_block;
264failure:
265 *err = -EIO;
266no_block:
267 return p;
268}
269
270/**
271 * ext2_find_near - find a place for allocation with sufficient locality
272 * @inode: owner
273 * @ind: descriptor of indirect block.
274 *
275 * This function returns the preferred place for block allocation.
276 * It is used when heuristic for sequential allocation fails.
277 * Rules are:
278 * + if there is a block to the left of our position - allocate near it.
279 * + if pointer will live in indirect block - allocate near that block.
280 * + if pointer will live in inode - allocate in the same cylinder group.
281 *
282 * In the latter case we colour the starting block by the callers PID to
283 * prevent it from clashing with concurrent allocations for a different inode
284 * in the same block group. The PID is used here so that functionally related
285 * files will be close-by on-disk.
286 *
287 * Caller must make sure that @ind is valid and will stay that way.
288 */
289
290static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
291{
292 struct ext2_inode_info *ei = EXT2_I(inode);
293 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
294 __le32 *p;
295 ext2_fsblk_t bg_start;
296 ext2_fsblk_t colour;
297
298 /* Try to find previous block */
299 for (p = ind->p - 1; p >= start; p--)
300 if (*p)
301 return le32_to_cpu(*p);
302
303 /* No such thing, so let's try location of indirect block */
304 if (ind->bh)
305 return ind->bh->b_blocknr;
306
307 /*
308 * It is going to be referred from inode itself? OK, just put it into
309 * the same cylinder group then.
310 */
311 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
312 colour = (current->pid % 16) *
313 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
314 return bg_start + colour;
315}
316
317/**
318 * ext2_find_goal - find a preferred place for allocation.
319 * @inode: owner
320 * @block: block we want
321 * @partial: pointer to the last triple within a chain
322 *
323 * Returns preferred place for a block (the goal).
324 */
325
326static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
327 Indirect *partial)
328{
329 struct ext2_block_alloc_info *block_i;
330
331 block_i = EXT2_I(inode)->i_block_alloc_info;
332
333 /*
334 * try the heuristic for sequential allocation,
335 * failing that at least try to get decent locality.
336 */
337 if (block_i && (block == block_i->last_alloc_logical_block + 1)
338 && (block_i->last_alloc_physical_block != 0)) {
339 return block_i->last_alloc_physical_block + 1;
340 }
341
342 return ext2_find_near(inode, partial);
343}
344
345/**
346 * ext2_blks_to_allocate: Look up the block map and count the number
347 * of direct blocks need to be allocated for the given branch.
348 *
349 * @branch: chain of indirect blocks
350 * @k: number of blocks need for indirect blocks
351 * @blks: number of data blocks to be mapped.
352 * @blocks_to_boundary: the offset in the indirect block
353 *
354 * return the total number of blocks to be allocate, including the
355 * direct and indirect blocks.
356 */
357static int
358ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
359 int blocks_to_boundary)
360{
361 unsigned long count = 0;
362
363 /*
364 * Simple case, [t,d]Indirect block(s) has not allocated yet
365 * then it's clear blocks on that path have not allocated
366 */
367 if (k > 0) {
368 /* right now don't hanel cross boundary allocation */
369 if (blks < blocks_to_boundary + 1)
370 count += blks;
371 else
372 count += blocks_to_boundary + 1;
373 return count;
374 }
375
376 count++;
377 while (count < blks && count <= blocks_to_boundary
378 && le32_to_cpu(*(branch[0].p + count)) == 0) {
379 count++;
380 }
381 return count;
382}
383
384/**
385 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
386 * @indirect_blks: the number of blocks need to allocate for indirect
387 * blocks
388 *
389 * @new_blocks: on return it will store the new block numbers for
390 * the indirect blocks(if needed) and the first direct block,
391 * @blks: on return it will store the total number of allocated
392 * direct blocks
393 */
394static int ext2_alloc_blocks(struct inode *inode,
395 ext2_fsblk_t goal, int indirect_blks, int blks,
396 ext2_fsblk_t new_blocks[4], int *err)
397{
398 int target, i;
399 unsigned long count = 0;
400 int index = 0;
401 ext2_fsblk_t current_block = 0;
402 int ret = 0;
403
404 /*
405 * Here we try to allocate the requested multiple blocks at once,
406 * on a best-effort basis.
407 * To build a branch, we should allocate blocks for
408 * the indirect blocks(if not allocated yet), and at least
409 * the first direct block of this branch. That's the
410 * minimum number of blocks need to allocate(required)
411 */
412 target = blks + indirect_blks;
413
414 while (1) {
415 count = target;
416 /* allocating blocks for indirect blocks and direct blocks */
417 current_block = ext2_new_blocks(inode,goal,&count,err);
418 if (*err)
419 goto failed_out;
420
421 target -= count;
422 /* allocate blocks for indirect blocks */
423 while (index < indirect_blks && count) {
424 new_blocks[index++] = current_block++;
425 count--;
426 }
427
428 if (count > 0)
429 break;
430 }
431
432 /* save the new block number for the first direct block */
433 new_blocks[index] = current_block;
434
435 /* total number of blocks allocated for direct blocks */
436 ret = count;
437 *err = 0;
438 return ret;
439failed_out:
440 for (i = 0; i <index; i++)
441 ext2_free_blocks(inode, new_blocks[i], 1);
442 if (index)
443 mark_inode_dirty(inode);
444 return ret;
445}
446
447/**
448 * ext2_alloc_branch - allocate and set up a chain of blocks.
449 * @inode: owner
450 * @num: depth of the chain (number of blocks to allocate)
451 * @offsets: offsets (in the blocks) to store the pointers to next.
452 * @branch: place to store the chain in.
453 *
454 * This function allocates @num blocks, zeroes out all but the last one,
455 * links them into chain and (if we are synchronous) writes them to disk.
456 * In other words, it prepares a branch that can be spliced onto the
457 * inode. It stores the information about that chain in the branch[], in
458 * the same format as ext2_get_branch() would do. We are calling it after
459 * we had read the existing part of chain and partial points to the last
460 * triple of that (one with zero ->key). Upon the exit we have the same
461 * picture as after the successful ext2_get_block(), except that in one
462 * place chain is disconnected - *branch->p is still zero (we did not
463 * set the last link), but branch->key contains the number that should
464 * be placed into *branch->p to fill that gap.
465 *
466 * If allocation fails we free all blocks we've allocated (and forget
467 * their buffer_heads) and return the error value the from failed
468 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
469 * as described above and return 0.
470 */
471
472static int ext2_alloc_branch(struct inode *inode,
473 int indirect_blks, int *blks, ext2_fsblk_t goal,
474 int *offsets, Indirect *branch)
475{
476 int blocksize = inode->i_sb->s_blocksize;
477 int i, n = 0;
478 int err = 0;
479 struct buffer_head *bh;
480 int num;
481 ext2_fsblk_t new_blocks[4];
482 ext2_fsblk_t current_block;
483
484 num = ext2_alloc_blocks(inode, goal, indirect_blks,
485 *blks, new_blocks, &err);
486 if (err)
487 return err;
488
489 branch[0].key = cpu_to_le32(new_blocks[0]);
490 /*
491 * metadata blocks and data blocks are allocated.
492 */
493 for (n = 1; n <= indirect_blks; n++) {
494 /*
495 * Get buffer_head for parent block, zero it out
496 * and set the pointer to new one, then send
497 * parent to disk.
498 */
499 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
500 branch[n].bh = bh;
501 lock_buffer(bh);
502 memset(bh->b_data, 0, blocksize);
503 branch[n].p = (__le32 *) bh->b_data + offsets[n];
504 branch[n].key = cpu_to_le32(new_blocks[n]);
505 *branch[n].p = branch[n].key;
506 if ( n == indirect_blks) {
507 current_block = new_blocks[n];
508 /*
509 * End of chain, update the last new metablock of
510 * the chain to point to the new allocated
511 * data blocks numbers
512 */
513 for (i=1; i < num; i++)
514 *(branch[n].p + i) = cpu_to_le32(++current_block);
515 }
516 set_buffer_uptodate(bh);
517 unlock_buffer(bh);
518 mark_buffer_dirty_inode(bh, inode);
519 /* We used to sync bh here if IS_SYNC(inode).
520 * But we now rely upon generic_write_sync()
521 * and b_inode_buffers. But not for directories.
522 */
523 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
524 sync_dirty_buffer(bh);
525 }
526 *blks = num;
527 return err;
528}
529
530/**
531 * ext2_splice_branch - splice the allocated branch onto inode.
532 * @inode: owner
533 * @block: (logical) number of block we are adding
534 * @where: location of missing link
535 * @num: number of indirect blocks we are adding
536 * @blks: number of direct blocks we are adding
537 *
538 * This function fills the missing link and does all housekeeping needed in
539 * inode (->i_blocks, etc.). In case of success we end up with the full
540 * chain to new block and return 0.
541 */
542static void ext2_splice_branch(struct inode *inode,
543 long block, Indirect *where, int num, int blks)
544{
545 int i;
546 struct ext2_block_alloc_info *block_i;
547 ext2_fsblk_t current_block;
548
549 block_i = EXT2_I(inode)->i_block_alloc_info;
550
551 /* XXX LOCKING probably should have i_meta_lock ?*/
552 /* That's it */
553
554 *where->p = where->key;
555
556 /*
557 * Update the host buffer_head or inode to point to more just allocated
558 * direct blocks blocks
559 */
560 if (num == 0 && blks > 1) {
561 current_block = le32_to_cpu(where->key) + 1;
562 for (i = 1; i < blks; i++)
563 *(where->p + i ) = cpu_to_le32(current_block++);
564 }
565
566 /*
567 * update the most recently allocated logical & physical block
568 * in i_block_alloc_info, to assist find the proper goal block for next
569 * allocation
570 */
571 if (block_i) {
572 block_i->last_alloc_logical_block = block + blks - 1;
573 block_i->last_alloc_physical_block =
574 le32_to_cpu(where[num].key) + blks - 1;
575 }
576
577 /* We are done with atomic stuff, now do the rest of housekeeping */
578
579 /* had we spliced it onto indirect block? */
580 if (where->bh)
581 mark_buffer_dirty_inode(where->bh, inode);
582
583 inode->i_ctime = CURRENT_TIME_SEC;
584 mark_inode_dirty(inode);
585}
586
587/*
588 * Allocation strategy is simple: if we have to allocate something, we will
589 * have to go the whole way to leaf. So let's do it before attaching anything
590 * to tree, set linkage between the newborn blocks, write them if sync is
591 * required, recheck the path, free and repeat if check fails, otherwise
592 * set the last missing link (that will protect us from any truncate-generated
593 * removals - all blocks on the path are immune now) and possibly force the
594 * write on the parent block.
595 * That has a nice additional property: no special recovery from the failed
596 * allocations is needed - we simply release blocks and do not touch anything
597 * reachable from inode.
598 *
599 * `handle' can be NULL if create == 0.
600 *
601 * return > 0, # of blocks mapped or allocated.
602 * return = 0, if plain lookup failed.
603 * return < 0, error case.
604 */
605static int ext2_get_blocks(struct inode *inode,
606 sector_t iblock, unsigned long maxblocks,
607 struct buffer_head *bh_result,
608 int create)
609{
610 int err = -EIO;
611 int offsets[4];
612 Indirect chain[4];
613 Indirect *partial;
614 ext2_fsblk_t goal;
615 int indirect_blks;
616 int blocks_to_boundary = 0;
617 int depth;
618 struct ext2_inode_info *ei = EXT2_I(inode);
619 int count = 0;
620 ext2_fsblk_t first_block = 0;
621
622 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
623
624 if (depth == 0)
625 return (err);
626
627 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
628 /* Simplest case - block found, no allocation needed */
629 if (!partial) {
630 first_block = le32_to_cpu(chain[depth - 1].key);
631 clear_buffer_new(bh_result); /* What's this do? */
632 count++;
633 /*map more blocks*/
634 while (count < maxblocks && count <= blocks_to_boundary) {
635 ext2_fsblk_t blk;
636
637 if (!verify_chain(chain, chain + depth - 1)) {
638 /*
639 * Indirect block might be removed by
640 * truncate while we were reading it.
641 * Handling of that case: forget what we've
642 * got now, go to reread.
643 */
644 err = -EAGAIN;
645 count = 0;
646 break;
647 }
648 blk = le32_to_cpu(*(chain[depth-1].p + count));
649 if (blk == first_block + count)
650 count++;
651 else
652 break;
653 }
654 if (err != -EAGAIN)
655 goto got_it;
656 }
657
658 /* Next simple case - plain lookup or failed read of indirect block */
659 if (!create || err == -EIO)
660 goto cleanup;
661
662 mutex_lock(&ei->truncate_mutex);
663 /*
664 * If the indirect block is missing while we are reading
665 * the chain(ext2_get_branch() returns -EAGAIN err), or
666 * if the chain has been changed after we grab the semaphore,
667 * (either because another process truncated this branch, or
668 * another get_block allocated this branch) re-grab the chain to see if
669 * the request block has been allocated or not.
670 *
671 * Since we already block the truncate/other get_block
672 * at this point, we will have the current copy of the chain when we
673 * splice the branch into the tree.
674 */
675 if (err == -EAGAIN || !verify_chain(chain, partial)) {
676 while (partial > chain) {
677 brelse(partial->bh);
678 partial--;
679 }
680 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
681 if (!partial) {
682 count++;
683 mutex_unlock(&ei->truncate_mutex);
684 if (err)
685 goto cleanup;
686 clear_buffer_new(bh_result);
687 goto got_it;
688 }
689 }
690
691 /*
692 * Okay, we need to do block allocation. Lazily initialize the block
693 * allocation info here if necessary
694 */
695 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
696 ext2_init_block_alloc_info(inode);
697
698 goal = ext2_find_goal(inode, iblock, partial);
699
700 /* the number of blocks need to allocate for [d,t]indirect blocks */
701 indirect_blks = (chain + depth) - partial - 1;
702 /*
703 * Next look up the indirect map to count the totoal number of
704 * direct blocks to allocate for this branch.
705 */
706 count = ext2_blks_to_allocate(partial, indirect_blks,
707 maxblocks, blocks_to_boundary);
708 /*
709 * XXX ???? Block out ext2_truncate while we alter the tree
710 */
711 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
712 offsets + (partial - chain), partial);
713
714 if (err) {
715 mutex_unlock(&ei->truncate_mutex);
716 goto cleanup;
717 }
718
719 if (ext2_use_xip(inode->i_sb)) {
720 /*
721 * we need to clear the block
722 */
723 err = ext2_clear_xip_target (inode,
724 le32_to_cpu(chain[depth-1].key));
725 if (err) {
726 mutex_unlock(&ei->truncate_mutex);
727 goto cleanup;
728 }
729 }
730
731 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
732 mutex_unlock(&ei->truncate_mutex);
733 set_buffer_new(bh_result);
734got_it:
735 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
736 if (count > blocks_to_boundary)
737 set_buffer_boundary(bh_result);
738 err = count;
739 /* Clean up and exit */
740 partial = chain + depth - 1; /* the whole chain */
741cleanup:
742 while (partial > chain) {
743 brelse(partial->bh);
744 partial--;
745 }
746 return err;
747}
748
749int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
750{
751 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
752 int ret = ext2_get_blocks(inode, iblock, max_blocks,
753 bh_result, create);
754 if (ret > 0) {
755 bh_result->b_size = (ret << inode->i_blkbits);
756 ret = 0;
757 }
758 return ret;
759
760}
761
762int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
763 u64 start, u64 len)
764{
765 return generic_block_fiemap(inode, fieinfo, start, len,
766 ext2_get_block);
767}
768
769static int ext2_writepage(struct page *page, struct writeback_control *wbc)
770{
771 return block_write_full_page(page, ext2_get_block, wbc);
772}
773
774static int ext2_readpage(struct file *file, struct page *page)
775{
776 return mpage_readpage(page, ext2_get_block);
777}
778
779static int
780ext2_readpages(struct file *file, struct address_space *mapping,
781 struct list_head *pages, unsigned nr_pages)
782{
783 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
784}
785
786static int
787ext2_write_begin(struct file *file, struct address_space *mapping,
788 loff_t pos, unsigned len, unsigned flags,
789 struct page **pagep, void **fsdata)
790{
791 int ret;
792
793 ret = block_write_begin(mapping, pos, len, flags, pagep,
794 ext2_get_block);
795 if (ret < 0)
796 ext2_write_failed(mapping, pos + len);
797 return ret;
798}
799
800static int ext2_write_end(struct file *file, struct address_space *mapping,
801 loff_t pos, unsigned len, unsigned copied,
802 struct page *page, void *fsdata)
803{
804 int ret;
805
806 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
807 if (ret < len)
808 ext2_write_failed(mapping, pos + len);
809 return ret;
810}
811
812static int
813ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
814 loff_t pos, unsigned len, unsigned flags,
815 struct page **pagep, void **fsdata)
816{
817 int ret;
818
819 ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
820 ext2_get_block);
821 if (ret < 0)
822 ext2_write_failed(mapping, pos + len);
823 return ret;
824}
825
826static int ext2_nobh_writepage(struct page *page,
827 struct writeback_control *wbc)
828{
829 return nobh_writepage(page, ext2_get_block, wbc);
830}
831
832static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
833{
834 return generic_block_bmap(mapping,block,ext2_get_block);
835}
836
837static ssize_t
838ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
839 loff_t offset, unsigned long nr_segs)
840{
841 struct file *file = iocb->ki_filp;
842 struct address_space *mapping = file->f_mapping;
843 struct inode *inode = mapping->host;
844 ssize_t ret;
845
846 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
847 ext2_get_block);
848 if (ret < 0 && (rw & WRITE))
849 ext2_write_failed(mapping, offset + iov_length(iov, nr_segs));
850 return ret;
851}
852
853static int
854ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
855{
856 return mpage_writepages(mapping, wbc, ext2_get_block);
857}
858
859const struct address_space_operations ext2_aops = {
860 .readpage = ext2_readpage,
861 .readpages = ext2_readpages,
862 .writepage = ext2_writepage,
863 .write_begin = ext2_write_begin,
864 .write_end = ext2_write_end,
865 .bmap = ext2_bmap,
866 .direct_IO = ext2_direct_IO,
867 .writepages = ext2_writepages,
868 .migratepage = buffer_migrate_page,
869 .is_partially_uptodate = block_is_partially_uptodate,
870 .error_remove_page = generic_error_remove_page,
871};
872
873const struct address_space_operations ext2_aops_xip = {
874 .bmap = ext2_bmap,
875 .get_xip_mem = ext2_get_xip_mem,
876};
877
878const struct address_space_operations ext2_nobh_aops = {
879 .readpage = ext2_readpage,
880 .readpages = ext2_readpages,
881 .writepage = ext2_nobh_writepage,
882 .write_begin = ext2_nobh_write_begin,
883 .write_end = nobh_write_end,
884 .bmap = ext2_bmap,
885 .direct_IO = ext2_direct_IO,
886 .writepages = ext2_writepages,
887 .migratepage = buffer_migrate_page,
888 .error_remove_page = generic_error_remove_page,
889};
890
891/*
892 * Probably it should be a library function... search for first non-zero word
893 * or memcmp with zero_page, whatever is better for particular architecture.
894 * Linus?
895 */
896static inline int all_zeroes(__le32 *p, __le32 *q)
897{
898 while (p < q)
899 if (*p++)
900 return 0;
901 return 1;
902}
903
904/**
905 * ext2_find_shared - find the indirect blocks for partial truncation.
906 * @inode: inode in question
907 * @depth: depth of the affected branch
908 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
909 * @chain: place to store the pointers to partial indirect blocks
910 * @top: place to the (detached) top of branch
911 *
912 * This is a helper function used by ext2_truncate().
913 *
914 * When we do truncate() we may have to clean the ends of several indirect
915 * blocks but leave the blocks themselves alive. Block is partially
916 * truncated if some data below the new i_size is referred from it (and
917 * it is on the path to the first completely truncated data block, indeed).
918 * We have to free the top of that path along with everything to the right
919 * of the path. Since no allocation past the truncation point is possible
920 * until ext2_truncate() finishes, we may safely do the latter, but top
921 * of branch may require special attention - pageout below the truncation
922 * point might try to populate it.
923 *
924 * We atomically detach the top of branch from the tree, store the block
925 * number of its root in *@top, pointers to buffer_heads of partially
926 * truncated blocks - in @chain[].bh and pointers to their last elements
927 * that should not be removed - in @chain[].p. Return value is the pointer
928 * to last filled element of @chain.
929 *
930 * The work left to caller to do the actual freeing of subtrees:
931 * a) free the subtree starting from *@top
932 * b) free the subtrees whose roots are stored in
933 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
934 * c) free the subtrees growing from the inode past the @chain[0].p
935 * (no partially truncated stuff there).
936 */
937
938static Indirect *ext2_find_shared(struct inode *inode,
939 int depth,
940 int offsets[4],
941 Indirect chain[4],
942 __le32 *top)
943{
944 Indirect *partial, *p;
945 int k, err;
946
947 *top = 0;
948 for (k = depth; k > 1 && !offsets[k-1]; k--)
949 ;
950 partial = ext2_get_branch(inode, k, offsets, chain, &err);
951 if (!partial)
952 partial = chain + k-1;
953 /*
954 * If the branch acquired continuation since we've looked at it -
955 * fine, it should all survive and (new) top doesn't belong to us.
956 */
957 write_lock(&EXT2_I(inode)->i_meta_lock);
958 if (!partial->key && *partial->p) {
959 write_unlock(&EXT2_I(inode)->i_meta_lock);
960 goto no_top;
961 }
962 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
963 ;
964 /*
965 * OK, we've found the last block that must survive. The rest of our
966 * branch should be detached before unlocking. However, if that rest
967 * of branch is all ours and does not grow immediately from the inode
968 * it's easier to cheat and just decrement partial->p.
969 */
970 if (p == chain + k - 1 && p > chain) {
971 p->p--;
972 } else {
973 *top = *p->p;
974 *p->p = 0;
975 }
976 write_unlock(&EXT2_I(inode)->i_meta_lock);
977
978 while(partial > p)
979 {
980 brelse(partial->bh);
981 partial--;
982 }
983no_top:
984 return partial;
985}
986
987/**
988 * ext2_free_data - free a list of data blocks
989 * @inode: inode we are dealing with
990 * @p: array of block numbers
991 * @q: points immediately past the end of array
992 *
993 * We are freeing all blocks referred from that array (numbers are
994 * stored as little-endian 32-bit) and updating @inode->i_blocks
995 * appropriately.
996 */
997static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
998{
999 unsigned long block_to_free = 0, count = 0;
1000 unsigned long nr;
1001
1002 for ( ; p < q ; p++) {
1003 nr = le32_to_cpu(*p);
1004 if (nr) {
1005 *p = 0;
1006 /* accumulate blocks to free if they're contiguous */
1007 if (count == 0)
1008 goto free_this;
1009 else if (block_to_free == nr - count)
1010 count++;
1011 else {
1012 ext2_free_blocks (inode, block_to_free, count);
1013 mark_inode_dirty(inode);
1014 free_this:
1015 block_to_free = nr;
1016 count = 1;
1017 }
1018 }
1019 }
1020 if (count > 0) {
1021 ext2_free_blocks (inode, block_to_free, count);
1022 mark_inode_dirty(inode);
1023 }
1024}
1025
1026/**
1027 * ext2_free_branches - free an array of branches
1028 * @inode: inode we are dealing with
1029 * @p: array of block numbers
1030 * @q: pointer immediately past the end of array
1031 * @depth: depth of the branches to free
1032 *
1033 * We are freeing all blocks referred from these branches (numbers are
1034 * stored as little-endian 32-bit) and updating @inode->i_blocks
1035 * appropriately.
1036 */
1037static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1038{
1039 struct buffer_head * bh;
1040 unsigned long nr;
1041
1042 if (depth--) {
1043 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1044 for ( ; p < q ; p++) {
1045 nr = le32_to_cpu(*p);
1046 if (!nr)
1047 continue;
1048 *p = 0;
1049 bh = sb_bread(inode->i_sb, nr);
1050 /*
1051 * A read failure? Report error and clear slot
1052 * (should be rare).
1053 */
1054 if (!bh) {
1055 ext2_error(inode->i_sb, "ext2_free_branches",
1056 "Read failure, inode=%ld, block=%ld",
1057 inode->i_ino, nr);
1058 continue;
1059 }
1060 ext2_free_branches(inode,
1061 (__le32*)bh->b_data,
1062 (__le32*)bh->b_data + addr_per_block,
1063 depth);
1064 bforget(bh);
1065 ext2_free_blocks(inode, nr, 1);
1066 mark_inode_dirty(inode);
1067 }
1068 } else
1069 ext2_free_data(inode, p, q);
1070}
1071
1072static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1073{
1074 __le32 *i_data = EXT2_I(inode)->i_data;
1075 struct ext2_inode_info *ei = EXT2_I(inode);
1076 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1077 int offsets[4];
1078 Indirect chain[4];
1079 Indirect *partial;
1080 __le32 nr = 0;
1081 int n;
1082 long iblock;
1083 unsigned blocksize;
1084 blocksize = inode->i_sb->s_blocksize;
1085 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1086
1087 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1088 if (n == 0)
1089 return;
1090
1091 /*
1092 * From here we block out all ext2_get_block() callers who want to
1093 * modify the block allocation tree.
1094 */
1095 mutex_lock(&ei->truncate_mutex);
1096
1097 if (n == 1) {
1098 ext2_free_data(inode, i_data+offsets[0],
1099 i_data + EXT2_NDIR_BLOCKS);
1100 goto do_indirects;
1101 }
1102
1103 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1104 /* Kill the top of shared branch (already detached) */
1105 if (nr) {
1106 if (partial == chain)
1107 mark_inode_dirty(inode);
1108 else
1109 mark_buffer_dirty_inode(partial->bh, inode);
1110 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1111 }
1112 /* Clear the ends of indirect blocks on the shared branch */
1113 while (partial > chain) {
1114 ext2_free_branches(inode,
1115 partial->p + 1,
1116 (__le32*)partial->bh->b_data+addr_per_block,
1117 (chain+n-1) - partial);
1118 mark_buffer_dirty_inode(partial->bh, inode);
1119 brelse (partial->bh);
1120 partial--;
1121 }
1122do_indirects:
1123 /* Kill the remaining (whole) subtrees */
1124 switch (offsets[0]) {
1125 default:
1126 nr = i_data[EXT2_IND_BLOCK];
1127 if (nr) {
1128 i_data[EXT2_IND_BLOCK] = 0;
1129 mark_inode_dirty(inode);
1130 ext2_free_branches(inode, &nr, &nr+1, 1);
1131 }
1132 case EXT2_IND_BLOCK:
1133 nr = i_data[EXT2_DIND_BLOCK];
1134 if (nr) {
1135 i_data[EXT2_DIND_BLOCK] = 0;
1136 mark_inode_dirty(inode);
1137 ext2_free_branches(inode, &nr, &nr+1, 2);
1138 }
1139 case EXT2_DIND_BLOCK:
1140 nr = i_data[EXT2_TIND_BLOCK];
1141 if (nr) {
1142 i_data[EXT2_TIND_BLOCK] = 0;
1143 mark_inode_dirty(inode);
1144 ext2_free_branches(inode, &nr, &nr+1, 3);
1145 }
1146 case EXT2_TIND_BLOCK:
1147 ;
1148 }
1149
1150 ext2_discard_reservation(inode);
1151
1152 mutex_unlock(&ei->truncate_mutex);
1153}
1154
1155static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1156{
1157 /*
1158 * XXX: it seems like a bug here that we don't allow
1159 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1160 * review and fix this.
1161 *
1162 * Also would be nice to be able to handle IO errors and such,
1163 * but that's probably too much to ask.
1164 */
1165 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1166 S_ISLNK(inode->i_mode)))
1167 return;
1168 if (ext2_inode_is_fast_symlink(inode))
1169 return;
1170 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1171 return;
1172 __ext2_truncate_blocks(inode, offset);
1173}
1174
1175static int ext2_setsize(struct inode *inode, loff_t newsize)
1176{
1177 int error;
1178
1179 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1180 S_ISLNK(inode->i_mode)))
1181 return -EINVAL;
1182 if (ext2_inode_is_fast_symlink(inode))
1183 return -EINVAL;
1184 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1185 return -EPERM;
1186
1187 inode_dio_wait(inode);
1188
1189 if (mapping_is_xip(inode->i_mapping))
1190 error = xip_truncate_page(inode->i_mapping, newsize);
1191 else if (test_opt(inode->i_sb, NOBH))
1192 error = nobh_truncate_page(inode->i_mapping,
1193 newsize, ext2_get_block);
1194 else
1195 error = block_truncate_page(inode->i_mapping,
1196 newsize, ext2_get_block);
1197 if (error)
1198 return error;
1199
1200 truncate_setsize(inode, newsize);
1201 __ext2_truncate_blocks(inode, newsize);
1202
1203 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1204 if (inode_needs_sync(inode)) {
1205 sync_mapping_buffers(inode->i_mapping);
1206 sync_inode_metadata(inode, 1);
1207 } else {
1208 mark_inode_dirty(inode);
1209 }
1210
1211 return 0;
1212}
1213
1214static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1215 struct buffer_head **p)
1216{
1217 struct buffer_head * bh;
1218 unsigned long block_group;
1219 unsigned long block;
1220 unsigned long offset;
1221 struct ext2_group_desc * gdp;
1222
1223 *p = NULL;
1224 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1225 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1226 goto Einval;
1227
1228 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1229 gdp = ext2_get_group_desc(sb, block_group, NULL);
1230 if (!gdp)
1231 goto Egdp;
1232 /*
1233 * Figure out the offset within the block group inode table
1234 */
1235 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1236 block = le32_to_cpu(gdp->bg_inode_table) +
1237 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1238 if (!(bh = sb_bread(sb, block)))
1239 goto Eio;
1240
1241 *p = bh;
1242 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1243 return (struct ext2_inode *) (bh->b_data + offset);
1244
1245Einval:
1246 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1247 (unsigned long) ino);
1248 return ERR_PTR(-EINVAL);
1249Eio:
1250 ext2_error(sb, "ext2_get_inode",
1251 "unable to read inode block - inode=%lu, block=%lu",
1252 (unsigned long) ino, block);
1253Egdp:
1254 return ERR_PTR(-EIO);
1255}
1256
1257void ext2_set_inode_flags(struct inode *inode)
1258{
1259 unsigned int flags = EXT2_I(inode)->i_flags;
1260
1261 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1262 if (flags & EXT2_SYNC_FL)
1263 inode->i_flags |= S_SYNC;
1264 if (flags & EXT2_APPEND_FL)
1265 inode->i_flags |= S_APPEND;
1266 if (flags & EXT2_IMMUTABLE_FL)
1267 inode->i_flags |= S_IMMUTABLE;
1268 if (flags & EXT2_NOATIME_FL)
1269 inode->i_flags |= S_NOATIME;
1270 if (flags & EXT2_DIRSYNC_FL)
1271 inode->i_flags |= S_DIRSYNC;
1272}
1273
1274/* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1275void ext2_get_inode_flags(struct ext2_inode_info *ei)
1276{
1277 unsigned int flags = ei->vfs_inode.i_flags;
1278
1279 ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1280 EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1281 if (flags & S_SYNC)
1282 ei->i_flags |= EXT2_SYNC_FL;
1283 if (flags & S_APPEND)
1284 ei->i_flags |= EXT2_APPEND_FL;
1285 if (flags & S_IMMUTABLE)
1286 ei->i_flags |= EXT2_IMMUTABLE_FL;
1287 if (flags & S_NOATIME)
1288 ei->i_flags |= EXT2_NOATIME_FL;
1289 if (flags & S_DIRSYNC)
1290 ei->i_flags |= EXT2_DIRSYNC_FL;
1291}
1292
1293struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1294{
1295 struct ext2_inode_info *ei;
1296 struct buffer_head * bh;
1297 struct ext2_inode *raw_inode;
1298 struct inode *inode;
1299 long ret = -EIO;
1300 int n;
1301
1302 inode = iget_locked(sb, ino);
1303 if (!inode)
1304 return ERR_PTR(-ENOMEM);
1305 if (!(inode->i_state & I_NEW))
1306 return inode;
1307
1308 ei = EXT2_I(inode);
1309 ei->i_block_alloc_info = NULL;
1310
1311 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1312 if (IS_ERR(raw_inode)) {
1313 ret = PTR_ERR(raw_inode);
1314 goto bad_inode;
1315 }
1316
1317 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1318 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1319 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1320 if (!(test_opt (inode->i_sb, NO_UID32))) {
1321 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1322 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1323 }
1324 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1325 inode->i_size = le32_to_cpu(raw_inode->i_size);
1326 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1327 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1328 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1329 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1330 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1331 /* We now have enough fields to check if the inode was active or not.
1332 * This is needed because nfsd might try to access dead inodes
1333 * the test is that same one that e2fsck uses
1334 * NeilBrown 1999oct15
1335 */
1336 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1337 /* this inode is deleted */
1338 brelse (bh);
1339 ret = -ESTALE;
1340 goto bad_inode;
1341 }
1342 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1343 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1344 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1345 ei->i_frag_no = raw_inode->i_frag;
1346 ei->i_frag_size = raw_inode->i_fsize;
1347 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1348 ei->i_dir_acl = 0;
1349 if (S_ISREG(inode->i_mode))
1350 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1351 else
1352 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1353 ei->i_dtime = 0;
1354 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1355 ei->i_state = 0;
1356 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1357 ei->i_dir_start_lookup = 0;
1358
1359 /*
1360 * NOTE! The in-memory inode i_data array is in little-endian order
1361 * even on big-endian machines: we do NOT byteswap the block numbers!
1362 */
1363 for (n = 0; n < EXT2_N_BLOCKS; n++)
1364 ei->i_data[n] = raw_inode->i_block[n];
1365
1366 if (S_ISREG(inode->i_mode)) {
1367 inode->i_op = &ext2_file_inode_operations;
1368 if (ext2_use_xip(inode->i_sb)) {
1369 inode->i_mapping->a_ops = &ext2_aops_xip;
1370 inode->i_fop = &ext2_xip_file_operations;
1371 } else if (test_opt(inode->i_sb, NOBH)) {
1372 inode->i_mapping->a_ops = &ext2_nobh_aops;
1373 inode->i_fop = &ext2_file_operations;
1374 } else {
1375 inode->i_mapping->a_ops = &ext2_aops;
1376 inode->i_fop = &ext2_file_operations;
1377 }
1378 } else if (S_ISDIR(inode->i_mode)) {
1379 inode->i_op = &ext2_dir_inode_operations;
1380 inode->i_fop = &ext2_dir_operations;
1381 if (test_opt(inode->i_sb, NOBH))
1382 inode->i_mapping->a_ops = &ext2_nobh_aops;
1383 else
1384 inode->i_mapping->a_ops = &ext2_aops;
1385 } else if (S_ISLNK(inode->i_mode)) {
1386 if (ext2_inode_is_fast_symlink(inode)) {
1387 inode->i_op = &ext2_fast_symlink_inode_operations;
1388 nd_terminate_link(ei->i_data, inode->i_size,
1389 sizeof(ei->i_data) - 1);
1390 } else {
1391 inode->i_op = &ext2_symlink_inode_operations;
1392 if (test_opt(inode->i_sb, NOBH))
1393 inode->i_mapping->a_ops = &ext2_nobh_aops;
1394 else
1395 inode->i_mapping->a_ops = &ext2_aops;
1396 }
1397 } else {
1398 inode->i_op = &ext2_special_inode_operations;
1399 if (raw_inode->i_block[0])
1400 init_special_inode(inode, inode->i_mode,
1401 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1402 else
1403 init_special_inode(inode, inode->i_mode,
1404 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1405 }
1406 brelse (bh);
1407 ext2_set_inode_flags(inode);
1408 unlock_new_inode(inode);
1409 return inode;
1410
1411bad_inode:
1412 iget_failed(inode);
1413 return ERR_PTR(ret);
1414}
1415
1416static int __ext2_write_inode(struct inode *inode, int do_sync)
1417{
1418 struct ext2_inode_info *ei = EXT2_I(inode);
1419 struct super_block *sb = inode->i_sb;
1420 ino_t ino = inode->i_ino;
1421 uid_t uid = inode->i_uid;
1422 gid_t gid = inode->i_gid;
1423 struct buffer_head * bh;
1424 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1425 int n;
1426 int err = 0;
1427
1428 if (IS_ERR(raw_inode))
1429 return -EIO;
1430
1431 /* For fields not not tracking in the in-memory inode,
1432 * initialise them to zero for new inodes. */
1433 if (ei->i_state & EXT2_STATE_NEW)
1434 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1435
1436 ext2_get_inode_flags(ei);
1437 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1438 if (!(test_opt(sb, NO_UID32))) {
1439 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1440 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1441/*
1442 * Fix up interoperability with old kernels. Otherwise, old inodes get
1443 * re-used with the upper 16 bits of the uid/gid intact
1444 */
1445 if (!ei->i_dtime) {
1446 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1447 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1448 } else {
1449 raw_inode->i_uid_high = 0;
1450 raw_inode->i_gid_high = 0;
1451 }
1452 } else {
1453 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1454 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1455 raw_inode->i_uid_high = 0;
1456 raw_inode->i_gid_high = 0;
1457 }
1458 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1459 raw_inode->i_size = cpu_to_le32(inode->i_size);
1460 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1461 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1462 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1463
1464 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1465 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1466 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1467 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1468 raw_inode->i_frag = ei->i_frag_no;
1469 raw_inode->i_fsize = ei->i_frag_size;
1470 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1471 if (!S_ISREG(inode->i_mode))
1472 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1473 else {
1474 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1475 if (inode->i_size > 0x7fffffffULL) {
1476 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1477 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1478 EXT2_SB(sb)->s_es->s_rev_level ==
1479 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1480 /* If this is the first large file
1481 * created, add a flag to the superblock.
1482 */
1483 spin_lock(&EXT2_SB(sb)->s_lock);
1484 ext2_update_dynamic_rev(sb);
1485 EXT2_SET_RO_COMPAT_FEATURE(sb,
1486 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1487 spin_unlock(&EXT2_SB(sb)->s_lock);
1488 ext2_write_super(sb);
1489 }
1490 }
1491 }
1492
1493 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1494 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1495 if (old_valid_dev(inode->i_rdev)) {
1496 raw_inode->i_block[0] =
1497 cpu_to_le32(old_encode_dev(inode->i_rdev));
1498 raw_inode->i_block[1] = 0;
1499 } else {
1500 raw_inode->i_block[0] = 0;
1501 raw_inode->i_block[1] =
1502 cpu_to_le32(new_encode_dev(inode->i_rdev));
1503 raw_inode->i_block[2] = 0;
1504 }
1505 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1506 raw_inode->i_block[n] = ei->i_data[n];
1507 mark_buffer_dirty(bh);
1508 if (do_sync) {
1509 sync_dirty_buffer(bh);
1510 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1511 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1512 sb->s_id, (unsigned long) ino);
1513 err = -EIO;
1514 }
1515 }
1516 ei->i_state &= ~EXT2_STATE_NEW;
1517 brelse (bh);
1518 return err;
1519}
1520
1521int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1522{
1523 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1524}
1525
1526int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1527{
1528 struct inode *inode = dentry->d_inode;
1529 int error;
1530
1531 error = inode_change_ok(inode, iattr);
1532 if (error)
1533 return error;
1534
1535 if (is_quota_modification(inode, iattr))
1536 dquot_initialize(inode);
1537 if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1538 (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1539 error = dquot_transfer(inode, iattr);
1540 if (error)
1541 return error;
1542 }
1543 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1544 error = ext2_setsize(inode, iattr->ia_size);
1545 if (error)
1546 return error;
1547 }
1548 setattr_copy(inode, iattr);
1549 if (iattr->ia_valid & ATTR_MODE)
1550 error = ext2_acl_chmod(inode);
1551 mark_inode_dirty(inode);
1552
1553 return error;
1554}
1/*
2 * linux/fs/ext2/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23 */
24
25#include <linux/time.h>
26#include <linux/highuid.h>
27#include <linux/pagemap.h>
28#include <linux/quotaops.h>
29#include <linux/writeback.h>
30#include <linux/buffer_head.h>
31#include <linux/mpage.h>
32#include <linux/fiemap.h>
33#include <linux/namei.h>
34#include <linux/aio.h>
35#include "ext2.h"
36#include "acl.h"
37#include "xip.h"
38#include "xattr.h"
39
40static int __ext2_write_inode(struct inode *inode, int do_sync);
41
42/*
43 * Test whether an inode is a fast symlink.
44 */
45static inline int ext2_inode_is_fast_symlink(struct inode *inode)
46{
47 int ea_blocks = EXT2_I(inode)->i_file_acl ?
48 (inode->i_sb->s_blocksize >> 9) : 0;
49
50 return (S_ISLNK(inode->i_mode) &&
51 inode->i_blocks - ea_blocks == 0);
52}
53
54static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
55
56static void ext2_write_failed(struct address_space *mapping, loff_t to)
57{
58 struct inode *inode = mapping->host;
59
60 if (to > inode->i_size) {
61 truncate_pagecache(inode, inode->i_size);
62 ext2_truncate_blocks(inode, inode->i_size);
63 }
64}
65
66/*
67 * Called at the last iput() if i_nlink is zero.
68 */
69void ext2_evict_inode(struct inode * inode)
70{
71 struct ext2_block_alloc_info *rsv;
72 int want_delete = 0;
73
74 if (!inode->i_nlink && !is_bad_inode(inode)) {
75 want_delete = 1;
76 dquot_initialize(inode);
77 } else {
78 dquot_drop(inode);
79 }
80
81 truncate_inode_pages_final(&inode->i_data);
82
83 if (want_delete) {
84 sb_start_intwrite(inode->i_sb);
85 /* set dtime */
86 EXT2_I(inode)->i_dtime = get_seconds();
87 mark_inode_dirty(inode);
88 __ext2_write_inode(inode, inode_needs_sync(inode));
89 /* truncate to 0 */
90 inode->i_size = 0;
91 if (inode->i_blocks)
92 ext2_truncate_blocks(inode, 0);
93 ext2_xattr_delete_inode(inode);
94 }
95
96 invalidate_inode_buffers(inode);
97 clear_inode(inode);
98
99 ext2_discard_reservation(inode);
100 rsv = EXT2_I(inode)->i_block_alloc_info;
101 EXT2_I(inode)->i_block_alloc_info = NULL;
102 if (unlikely(rsv))
103 kfree(rsv);
104
105 if (want_delete) {
106 ext2_free_inode(inode);
107 sb_end_intwrite(inode->i_sb);
108 }
109}
110
111typedef struct {
112 __le32 *p;
113 __le32 key;
114 struct buffer_head *bh;
115} Indirect;
116
117static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
118{
119 p->key = *(p->p = v);
120 p->bh = bh;
121}
122
123static inline int verify_chain(Indirect *from, Indirect *to)
124{
125 while (from <= to && from->key == *from->p)
126 from++;
127 return (from > to);
128}
129
130/**
131 * ext2_block_to_path - parse the block number into array of offsets
132 * @inode: inode in question (we are only interested in its superblock)
133 * @i_block: block number to be parsed
134 * @offsets: array to store the offsets in
135 * @boundary: set this non-zero if the referred-to block is likely to be
136 * followed (on disk) by an indirect block.
137 * To store the locations of file's data ext2 uses a data structure common
138 * for UNIX filesystems - tree of pointers anchored in the inode, with
139 * data blocks at leaves and indirect blocks in intermediate nodes.
140 * This function translates the block number into path in that tree -
141 * return value is the path length and @offsets[n] is the offset of
142 * pointer to (n+1)th node in the nth one. If @block is out of range
143 * (negative or too large) warning is printed and zero returned.
144 *
145 * Note: function doesn't find node addresses, so no IO is needed. All
146 * we need to know is the capacity of indirect blocks (taken from the
147 * inode->i_sb).
148 */
149
150/*
151 * Portability note: the last comparison (check that we fit into triple
152 * indirect block) is spelled differently, because otherwise on an
153 * architecture with 32-bit longs and 8Kb pages we might get into trouble
154 * if our filesystem had 8Kb blocks. We might use long long, but that would
155 * kill us on x86. Oh, well, at least the sign propagation does not matter -
156 * i_block would have to be negative in the very beginning, so we would not
157 * get there at all.
158 */
159
160static int ext2_block_to_path(struct inode *inode,
161 long i_block, int offsets[4], int *boundary)
162{
163 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
164 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
165 const long direct_blocks = EXT2_NDIR_BLOCKS,
166 indirect_blocks = ptrs,
167 double_blocks = (1 << (ptrs_bits * 2));
168 int n = 0;
169 int final = 0;
170
171 if (i_block < 0) {
172 ext2_msg(inode->i_sb, KERN_WARNING,
173 "warning: %s: block < 0", __func__);
174 } else if (i_block < direct_blocks) {
175 offsets[n++] = i_block;
176 final = direct_blocks;
177 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
178 offsets[n++] = EXT2_IND_BLOCK;
179 offsets[n++] = i_block;
180 final = ptrs;
181 } else if ((i_block -= indirect_blocks) < double_blocks) {
182 offsets[n++] = EXT2_DIND_BLOCK;
183 offsets[n++] = i_block >> ptrs_bits;
184 offsets[n++] = i_block & (ptrs - 1);
185 final = ptrs;
186 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
187 offsets[n++] = EXT2_TIND_BLOCK;
188 offsets[n++] = i_block >> (ptrs_bits * 2);
189 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
190 offsets[n++] = i_block & (ptrs - 1);
191 final = ptrs;
192 } else {
193 ext2_msg(inode->i_sb, KERN_WARNING,
194 "warning: %s: block is too big", __func__);
195 }
196 if (boundary)
197 *boundary = final - 1 - (i_block & (ptrs - 1));
198
199 return n;
200}
201
202/**
203 * ext2_get_branch - read the chain of indirect blocks leading to data
204 * @inode: inode in question
205 * @depth: depth of the chain (1 - direct pointer, etc.)
206 * @offsets: offsets of pointers in inode/indirect blocks
207 * @chain: place to store the result
208 * @err: here we store the error value
209 *
210 * Function fills the array of triples <key, p, bh> and returns %NULL
211 * if everything went OK or the pointer to the last filled triple
212 * (incomplete one) otherwise. Upon the return chain[i].key contains
213 * the number of (i+1)-th block in the chain (as it is stored in memory,
214 * i.e. little-endian 32-bit), chain[i].p contains the address of that
215 * number (it points into struct inode for i==0 and into the bh->b_data
216 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
217 * block for i>0 and NULL for i==0. In other words, it holds the block
218 * numbers of the chain, addresses they were taken from (and where we can
219 * verify that chain did not change) and buffer_heads hosting these
220 * numbers.
221 *
222 * Function stops when it stumbles upon zero pointer (absent block)
223 * (pointer to last triple returned, *@err == 0)
224 * or when it gets an IO error reading an indirect block
225 * (ditto, *@err == -EIO)
226 * or when it notices that chain had been changed while it was reading
227 * (ditto, *@err == -EAGAIN)
228 * or when it reads all @depth-1 indirect blocks successfully and finds
229 * the whole chain, all way to the data (returns %NULL, *err == 0).
230 */
231static Indirect *ext2_get_branch(struct inode *inode,
232 int depth,
233 int *offsets,
234 Indirect chain[4],
235 int *err)
236{
237 struct super_block *sb = inode->i_sb;
238 Indirect *p = chain;
239 struct buffer_head *bh;
240
241 *err = 0;
242 /* i_data is not going away, no lock needed */
243 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
244 if (!p->key)
245 goto no_block;
246 while (--depth) {
247 bh = sb_bread(sb, le32_to_cpu(p->key));
248 if (!bh)
249 goto failure;
250 read_lock(&EXT2_I(inode)->i_meta_lock);
251 if (!verify_chain(chain, p))
252 goto changed;
253 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
254 read_unlock(&EXT2_I(inode)->i_meta_lock);
255 if (!p->key)
256 goto no_block;
257 }
258 return NULL;
259
260changed:
261 read_unlock(&EXT2_I(inode)->i_meta_lock);
262 brelse(bh);
263 *err = -EAGAIN;
264 goto no_block;
265failure:
266 *err = -EIO;
267no_block:
268 return p;
269}
270
271/**
272 * ext2_find_near - find a place for allocation with sufficient locality
273 * @inode: owner
274 * @ind: descriptor of indirect block.
275 *
276 * This function returns the preferred place for block allocation.
277 * It is used when heuristic for sequential allocation fails.
278 * Rules are:
279 * + if there is a block to the left of our position - allocate near it.
280 * + if pointer will live in indirect block - allocate near that block.
281 * + if pointer will live in inode - allocate in the same cylinder group.
282 *
283 * In the latter case we colour the starting block by the callers PID to
284 * prevent it from clashing with concurrent allocations for a different inode
285 * in the same block group. The PID is used here so that functionally related
286 * files will be close-by on-disk.
287 *
288 * Caller must make sure that @ind is valid and will stay that way.
289 */
290
291static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
292{
293 struct ext2_inode_info *ei = EXT2_I(inode);
294 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
295 __le32 *p;
296 ext2_fsblk_t bg_start;
297 ext2_fsblk_t colour;
298
299 /* Try to find previous block */
300 for (p = ind->p - 1; p >= start; p--)
301 if (*p)
302 return le32_to_cpu(*p);
303
304 /* No such thing, so let's try location of indirect block */
305 if (ind->bh)
306 return ind->bh->b_blocknr;
307
308 /*
309 * It is going to be referred from inode itself? OK, just put it into
310 * the same cylinder group then.
311 */
312 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
313 colour = (current->pid % 16) *
314 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
315 return bg_start + colour;
316}
317
318/**
319 * ext2_find_goal - find a preferred place for allocation.
320 * @inode: owner
321 * @block: block we want
322 * @partial: pointer to the last triple within a chain
323 *
324 * Returns preferred place for a block (the goal).
325 */
326
327static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
328 Indirect *partial)
329{
330 struct ext2_block_alloc_info *block_i;
331
332 block_i = EXT2_I(inode)->i_block_alloc_info;
333
334 /*
335 * try the heuristic for sequential allocation,
336 * failing that at least try to get decent locality.
337 */
338 if (block_i && (block == block_i->last_alloc_logical_block + 1)
339 && (block_i->last_alloc_physical_block != 0)) {
340 return block_i->last_alloc_physical_block + 1;
341 }
342
343 return ext2_find_near(inode, partial);
344}
345
346/**
347 * ext2_blks_to_allocate: Look up the block map and count the number
348 * of direct blocks need to be allocated for the given branch.
349 *
350 * @branch: chain of indirect blocks
351 * @k: number of blocks need for indirect blocks
352 * @blks: number of data blocks to be mapped.
353 * @blocks_to_boundary: the offset in the indirect block
354 *
355 * return the total number of blocks to be allocate, including the
356 * direct and indirect blocks.
357 */
358static int
359ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
360 int blocks_to_boundary)
361{
362 unsigned long count = 0;
363
364 /*
365 * Simple case, [t,d]Indirect block(s) has not allocated yet
366 * then it's clear blocks on that path have not allocated
367 */
368 if (k > 0) {
369 /* right now don't hanel cross boundary allocation */
370 if (blks < blocks_to_boundary + 1)
371 count += blks;
372 else
373 count += blocks_to_boundary + 1;
374 return count;
375 }
376
377 count++;
378 while (count < blks && count <= blocks_to_boundary
379 && le32_to_cpu(*(branch[0].p + count)) == 0) {
380 count++;
381 }
382 return count;
383}
384
385/**
386 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
387 * @indirect_blks: the number of blocks need to allocate for indirect
388 * blocks
389 *
390 * @new_blocks: on return it will store the new block numbers for
391 * the indirect blocks(if needed) and the first direct block,
392 * @blks: on return it will store the total number of allocated
393 * direct blocks
394 */
395static int ext2_alloc_blocks(struct inode *inode,
396 ext2_fsblk_t goal, int indirect_blks, int blks,
397 ext2_fsblk_t new_blocks[4], int *err)
398{
399 int target, i;
400 unsigned long count = 0;
401 int index = 0;
402 ext2_fsblk_t current_block = 0;
403 int ret = 0;
404
405 /*
406 * Here we try to allocate the requested multiple blocks at once,
407 * on a best-effort basis.
408 * To build a branch, we should allocate blocks for
409 * the indirect blocks(if not allocated yet), and at least
410 * the first direct block of this branch. That's the
411 * minimum number of blocks need to allocate(required)
412 */
413 target = blks + indirect_blks;
414
415 while (1) {
416 count = target;
417 /* allocating blocks for indirect blocks and direct blocks */
418 current_block = ext2_new_blocks(inode,goal,&count,err);
419 if (*err)
420 goto failed_out;
421
422 target -= count;
423 /* allocate blocks for indirect blocks */
424 while (index < indirect_blks && count) {
425 new_blocks[index++] = current_block++;
426 count--;
427 }
428
429 if (count > 0)
430 break;
431 }
432
433 /* save the new block number for the first direct block */
434 new_blocks[index] = current_block;
435
436 /* total number of blocks allocated for direct blocks */
437 ret = count;
438 *err = 0;
439 return ret;
440failed_out:
441 for (i = 0; i <index; i++)
442 ext2_free_blocks(inode, new_blocks[i], 1);
443 if (index)
444 mark_inode_dirty(inode);
445 return ret;
446}
447
448/**
449 * ext2_alloc_branch - allocate and set up a chain of blocks.
450 * @inode: owner
451 * @num: depth of the chain (number of blocks to allocate)
452 * @offsets: offsets (in the blocks) to store the pointers to next.
453 * @branch: place to store the chain in.
454 *
455 * This function allocates @num blocks, zeroes out all but the last one,
456 * links them into chain and (if we are synchronous) writes them to disk.
457 * In other words, it prepares a branch that can be spliced onto the
458 * inode. It stores the information about that chain in the branch[], in
459 * the same format as ext2_get_branch() would do. We are calling it after
460 * we had read the existing part of chain and partial points to the last
461 * triple of that (one with zero ->key). Upon the exit we have the same
462 * picture as after the successful ext2_get_block(), except that in one
463 * place chain is disconnected - *branch->p is still zero (we did not
464 * set the last link), but branch->key contains the number that should
465 * be placed into *branch->p to fill that gap.
466 *
467 * If allocation fails we free all blocks we've allocated (and forget
468 * their buffer_heads) and return the error value the from failed
469 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
470 * as described above and return 0.
471 */
472
473static int ext2_alloc_branch(struct inode *inode,
474 int indirect_blks, int *blks, ext2_fsblk_t goal,
475 int *offsets, Indirect *branch)
476{
477 int blocksize = inode->i_sb->s_blocksize;
478 int i, n = 0;
479 int err = 0;
480 struct buffer_head *bh;
481 int num;
482 ext2_fsblk_t new_blocks[4];
483 ext2_fsblk_t current_block;
484
485 num = ext2_alloc_blocks(inode, goal, indirect_blks,
486 *blks, new_blocks, &err);
487 if (err)
488 return err;
489
490 branch[0].key = cpu_to_le32(new_blocks[0]);
491 /*
492 * metadata blocks and data blocks are allocated.
493 */
494 for (n = 1; n <= indirect_blks; n++) {
495 /*
496 * Get buffer_head for parent block, zero it out
497 * and set the pointer to new one, then send
498 * parent to disk.
499 */
500 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
501 if (unlikely(!bh)) {
502 err = -ENOMEM;
503 goto failed;
504 }
505 branch[n].bh = bh;
506 lock_buffer(bh);
507 memset(bh->b_data, 0, blocksize);
508 branch[n].p = (__le32 *) bh->b_data + offsets[n];
509 branch[n].key = cpu_to_le32(new_blocks[n]);
510 *branch[n].p = branch[n].key;
511 if ( n == indirect_blks) {
512 current_block = new_blocks[n];
513 /*
514 * End of chain, update the last new metablock of
515 * the chain to point to the new allocated
516 * data blocks numbers
517 */
518 for (i=1; i < num; i++)
519 *(branch[n].p + i) = cpu_to_le32(++current_block);
520 }
521 set_buffer_uptodate(bh);
522 unlock_buffer(bh);
523 mark_buffer_dirty_inode(bh, inode);
524 /* We used to sync bh here if IS_SYNC(inode).
525 * But we now rely upon generic_write_sync()
526 * and b_inode_buffers. But not for directories.
527 */
528 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
529 sync_dirty_buffer(bh);
530 }
531 *blks = num;
532 return err;
533
534failed:
535 for (i = 1; i < n; i++)
536 bforget(branch[i].bh);
537 for (i = 0; i < indirect_blks; i++)
538 ext2_free_blocks(inode, new_blocks[i], 1);
539 ext2_free_blocks(inode, new_blocks[i], num);
540 return err;
541}
542
543/**
544 * ext2_splice_branch - splice the allocated branch onto inode.
545 * @inode: owner
546 * @block: (logical) number of block we are adding
547 * @where: location of missing link
548 * @num: number of indirect blocks we are adding
549 * @blks: number of direct blocks we are adding
550 *
551 * This function fills the missing link and does all housekeeping needed in
552 * inode (->i_blocks, etc.). In case of success we end up with the full
553 * chain to new block and return 0.
554 */
555static void ext2_splice_branch(struct inode *inode,
556 long block, Indirect *where, int num, int blks)
557{
558 int i;
559 struct ext2_block_alloc_info *block_i;
560 ext2_fsblk_t current_block;
561
562 block_i = EXT2_I(inode)->i_block_alloc_info;
563
564 /* XXX LOCKING probably should have i_meta_lock ?*/
565 /* That's it */
566
567 *where->p = where->key;
568
569 /*
570 * Update the host buffer_head or inode to point to more just allocated
571 * direct blocks blocks
572 */
573 if (num == 0 && blks > 1) {
574 current_block = le32_to_cpu(where->key) + 1;
575 for (i = 1; i < blks; i++)
576 *(where->p + i ) = cpu_to_le32(current_block++);
577 }
578
579 /*
580 * update the most recently allocated logical & physical block
581 * in i_block_alloc_info, to assist find the proper goal block for next
582 * allocation
583 */
584 if (block_i) {
585 block_i->last_alloc_logical_block = block + blks - 1;
586 block_i->last_alloc_physical_block =
587 le32_to_cpu(where[num].key) + blks - 1;
588 }
589
590 /* We are done with atomic stuff, now do the rest of housekeeping */
591
592 /* had we spliced it onto indirect block? */
593 if (where->bh)
594 mark_buffer_dirty_inode(where->bh, inode);
595
596 inode->i_ctime = CURRENT_TIME_SEC;
597 mark_inode_dirty(inode);
598}
599
600/*
601 * Allocation strategy is simple: if we have to allocate something, we will
602 * have to go the whole way to leaf. So let's do it before attaching anything
603 * to tree, set linkage between the newborn blocks, write them if sync is
604 * required, recheck the path, free and repeat if check fails, otherwise
605 * set the last missing link (that will protect us from any truncate-generated
606 * removals - all blocks on the path are immune now) and possibly force the
607 * write on the parent block.
608 * That has a nice additional property: no special recovery from the failed
609 * allocations is needed - we simply release blocks and do not touch anything
610 * reachable from inode.
611 *
612 * `handle' can be NULL if create == 0.
613 *
614 * return > 0, # of blocks mapped or allocated.
615 * return = 0, if plain lookup failed.
616 * return < 0, error case.
617 */
618static int ext2_get_blocks(struct inode *inode,
619 sector_t iblock, unsigned long maxblocks,
620 struct buffer_head *bh_result,
621 int create)
622{
623 int err = -EIO;
624 int offsets[4];
625 Indirect chain[4];
626 Indirect *partial;
627 ext2_fsblk_t goal;
628 int indirect_blks;
629 int blocks_to_boundary = 0;
630 int depth;
631 struct ext2_inode_info *ei = EXT2_I(inode);
632 int count = 0;
633 ext2_fsblk_t first_block = 0;
634
635 BUG_ON(maxblocks == 0);
636
637 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
638
639 if (depth == 0)
640 return (err);
641
642 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
643 /* Simplest case - block found, no allocation needed */
644 if (!partial) {
645 first_block = le32_to_cpu(chain[depth - 1].key);
646 clear_buffer_new(bh_result); /* What's this do? */
647 count++;
648 /*map more blocks*/
649 while (count < maxblocks && count <= blocks_to_boundary) {
650 ext2_fsblk_t blk;
651
652 if (!verify_chain(chain, chain + depth - 1)) {
653 /*
654 * Indirect block might be removed by
655 * truncate while we were reading it.
656 * Handling of that case: forget what we've
657 * got now, go to reread.
658 */
659 err = -EAGAIN;
660 count = 0;
661 break;
662 }
663 blk = le32_to_cpu(*(chain[depth-1].p + count));
664 if (blk == first_block + count)
665 count++;
666 else
667 break;
668 }
669 if (err != -EAGAIN)
670 goto got_it;
671 }
672
673 /* Next simple case - plain lookup or failed read of indirect block */
674 if (!create || err == -EIO)
675 goto cleanup;
676
677 mutex_lock(&ei->truncate_mutex);
678 /*
679 * If the indirect block is missing while we are reading
680 * the chain(ext2_get_branch() returns -EAGAIN err), or
681 * if the chain has been changed after we grab the semaphore,
682 * (either because another process truncated this branch, or
683 * another get_block allocated this branch) re-grab the chain to see if
684 * the request block has been allocated or not.
685 *
686 * Since we already block the truncate/other get_block
687 * at this point, we will have the current copy of the chain when we
688 * splice the branch into the tree.
689 */
690 if (err == -EAGAIN || !verify_chain(chain, partial)) {
691 while (partial > chain) {
692 brelse(partial->bh);
693 partial--;
694 }
695 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
696 if (!partial) {
697 count++;
698 mutex_unlock(&ei->truncate_mutex);
699 if (err)
700 goto cleanup;
701 clear_buffer_new(bh_result);
702 goto got_it;
703 }
704 }
705
706 /*
707 * Okay, we need to do block allocation. Lazily initialize the block
708 * allocation info here if necessary
709 */
710 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
711 ext2_init_block_alloc_info(inode);
712
713 goal = ext2_find_goal(inode, iblock, partial);
714
715 /* the number of blocks need to allocate for [d,t]indirect blocks */
716 indirect_blks = (chain + depth) - partial - 1;
717 /*
718 * Next look up the indirect map to count the totoal number of
719 * direct blocks to allocate for this branch.
720 */
721 count = ext2_blks_to_allocate(partial, indirect_blks,
722 maxblocks, blocks_to_boundary);
723 /*
724 * XXX ???? Block out ext2_truncate while we alter the tree
725 */
726 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
727 offsets + (partial - chain), partial);
728
729 if (err) {
730 mutex_unlock(&ei->truncate_mutex);
731 goto cleanup;
732 }
733
734 if (ext2_use_xip(inode->i_sb)) {
735 /*
736 * we need to clear the block
737 */
738 err = ext2_clear_xip_target (inode,
739 le32_to_cpu(chain[depth-1].key));
740 if (err) {
741 mutex_unlock(&ei->truncate_mutex);
742 goto cleanup;
743 }
744 }
745
746 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
747 mutex_unlock(&ei->truncate_mutex);
748 set_buffer_new(bh_result);
749got_it:
750 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
751 if (count > blocks_to_boundary)
752 set_buffer_boundary(bh_result);
753 err = count;
754 /* Clean up and exit */
755 partial = chain + depth - 1; /* the whole chain */
756cleanup:
757 while (partial > chain) {
758 brelse(partial->bh);
759 partial--;
760 }
761 return err;
762}
763
764int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
765{
766 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
767 int ret = ext2_get_blocks(inode, iblock, max_blocks,
768 bh_result, create);
769 if (ret > 0) {
770 bh_result->b_size = (ret << inode->i_blkbits);
771 ret = 0;
772 }
773 return ret;
774
775}
776
777int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
778 u64 start, u64 len)
779{
780 return generic_block_fiemap(inode, fieinfo, start, len,
781 ext2_get_block);
782}
783
784static int ext2_writepage(struct page *page, struct writeback_control *wbc)
785{
786 return block_write_full_page(page, ext2_get_block, wbc);
787}
788
789static int ext2_readpage(struct file *file, struct page *page)
790{
791 return mpage_readpage(page, ext2_get_block);
792}
793
794static int
795ext2_readpages(struct file *file, struct address_space *mapping,
796 struct list_head *pages, unsigned nr_pages)
797{
798 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
799}
800
801static int
802ext2_write_begin(struct file *file, struct address_space *mapping,
803 loff_t pos, unsigned len, unsigned flags,
804 struct page **pagep, void **fsdata)
805{
806 int ret;
807
808 ret = block_write_begin(mapping, pos, len, flags, pagep,
809 ext2_get_block);
810 if (ret < 0)
811 ext2_write_failed(mapping, pos + len);
812 return ret;
813}
814
815static int ext2_write_end(struct file *file, struct address_space *mapping,
816 loff_t pos, unsigned len, unsigned copied,
817 struct page *page, void *fsdata)
818{
819 int ret;
820
821 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
822 if (ret < len)
823 ext2_write_failed(mapping, pos + len);
824 return ret;
825}
826
827static int
828ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
829 loff_t pos, unsigned len, unsigned flags,
830 struct page **pagep, void **fsdata)
831{
832 int ret;
833
834 ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
835 ext2_get_block);
836 if (ret < 0)
837 ext2_write_failed(mapping, pos + len);
838 return ret;
839}
840
841static int ext2_nobh_writepage(struct page *page,
842 struct writeback_control *wbc)
843{
844 return nobh_writepage(page, ext2_get_block, wbc);
845}
846
847static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
848{
849 return generic_block_bmap(mapping,block,ext2_get_block);
850}
851
852static ssize_t
853ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
854 loff_t offset, unsigned long nr_segs)
855{
856 struct file *file = iocb->ki_filp;
857 struct address_space *mapping = file->f_mapping;
858 struct inode *inode = mapping->host;
859 ssize_t ret;
860
861 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
862 ext2_get_block);
863 if (ret < 0 && (rw & WRITE))
864 ext2_write_failed(mapping, offset + iov_length(iov, nr_segs));
865 return ret;
866}
867
868static int
869ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
870{
871 return mpage_writepages(mapping, wbc, ext2_get_block);
872}
873
874const struct address_space_operations ext2_aops = {
875 .readpage = ext2_readpage,
876 .readpages = ext2_readpages,
877 .writepage = ext2_writepage,
878 .write_begin = ext2_write_begin,
879 .write_end = ext2_write_end,
880 .bmap = ext2_bmap,
881 .direct_IO = ext2_direct_IO,
882 .writepages = ext2_writepages,
883 .migratepage = buffer_migrate_page,
884 .is_partially_uptodate = block_is_partially_uptodate,
885 .error_remove_page = generic_error_remove_page,
886};
887
888const struct address_space_operations ext2_aops_xip = {
889 .bmap = ext2_bmap,
890 .get_xip_mem = ext2_get_xip_mem,
891};
892
893const struct address_space_operations ext2_nobh_aops = {
894 .readpage = ext2_readpage,
895 .readpages = ext2_readpages,
896 .writepage = ext2_nobh_writepage,
897 .write_begin = ext2_nobh_write_begin,
898 .write_end = nobh_write_end,
899 .bmap = ext2_bmap,
900 .direct_IO = ext2_direct_IO,
901 .writepages = ext2_writepages,
902 .migratepage = buffer_migrate_page,
903 .error_remove_page = generic_error_remove_page,
904};
905
906/*
907 * Probably it should be a library function... search for first non-zero word
908 * or memcmp with zero_page, whatever is better for particular architecture.
909 * Linus?
910 */
911static inline int all_zeroes(__le32 *p, __le32 *q)
912{
913 while (p < q)
914 if (*p++)
915 return 0;
916 return 1;
917}
918
919/**
920 * ext2_find_shared - find the indirect blocks for partial truncation.
921 * @inode: inode in question
922 * @depth: depth of the affected branch
923 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
924 * @chain: place to store the pointers to partial indirect blocks
925 * @top: place to the (detached) top of branch
926 *
927 * This is a helper function used by ext2_truncate().
928 *
929 * When we do truncate() we may have to clean the ends of several indirect
930 * blocks but leave the blocks themselves alive. Block is partially
931 * truncated if some data below the new i_size is referred from it (and
932 * it is on the path to the first completely truncated data block, indeed).
933 * We have to free the top of that path along with everything to the right
934 * of the path. Since no allocation past the truncation point is possible
935 * until ext2_truncate() finishes, we may safely do the latter, but top
936 * of branch may require special attention - pageout below the truncation
937 * point might try to populate it.
938 *
939 * We atomically detach the top of branch from the tree, store the block
940 * number of its root in *@top, pointers to buffer_heads of partially
941 * truncated blocks - in @chain[].bh and pointers to their last elements
942 * that should not be removed - in @chain[].p. Return value is the pointer
943 * to last filled element of @chain.
944 *
945 * The work left to caller to do the actual freeing of subtrees:
946 * a) free the subtree starting from *@top
947 * b) free the subtrees whose roots are stored in
948 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
949 * c) free the subtrees growing from the inode past the @chain[0].p
950 * (no partially truncated stuff there).
951 */
952
953static Indirect *ext2_find_shared(struct inode *inode,
954 int depth,
955 int offsets[4],
956 Indirect chain[4],
957 __le32 *top)
958{
959 Indirect *partial, *p;
960 int k, err;
961
962 *top = 0;
963 for (k = depth; k > 1 && !offsets[k-1]; k--)
964 ;
965 partial = ext2_get_branch(inode, k, offsets, chain, &err);
966 if (!partial)
967 partial = chain + k-1;
968 /*
969 * If the branch acquired continuation since we've looked at it -
970 * fine, it should all survive and (new) top doesn't belong to us.
971 */
972 write_lock(&EXT2_I(inode)->i_meta_lock);
973 if (!partial->key && *partial->p) {
974 write_unlock(&EXT2_I(inode)->i_meta_lock);
975 goto no_top;
976 }
977 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
978 ;
979 /*
980 * OK, we've found the last block that must survive. The rest of our
981 * branch should be detached before unlocking. However, if that rest
982 * of branch is all ours and does not grow immediately from the inode
983 * it's easier to cheat and just decrement partial->p.
984 */
985 if (p == chain + k - 1 && p > chain) {
986 p->p--;
987 } else {
988 *top = *p->p;
989 *p->p = 0;
990 }
991 write_unlock(&EXT2_I(inode)->i_meta_lock);
992
993 while(partial > p)
994 {
995 brelse(partial->bh);
996 partial--;
997 }
998no_top:
999 return partial;
1000}
1001
1002/**
1003 * ext2_free_data - free a list of data blocks
1004 * @inode: inode we are dealing with
1005 * @p: array of block numbers
1006 * @q: points immediately past the end of array
1007 *
1008 * We are freeing all blocks referred from that array (numbers are
1009 * stored as little-endian 32-bit) and updating @inode->i_blocks
1010 * appropriately.
1011 */
1012static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1013{
1014 unsigned long block_to_free = 0, count = 0;
1015 unsigned long nr;
1016
1017 for ( ; p < q ; p++) {
1018 nr = le32_to_cpu(*p);
1019 if (nr) {
1020 *p = 0;
1021 /* accumulate blocks to free if they're contiguous */
1022 if (count == 0)
1023 goto free_this;
1024 else if (block_to_free == nr - count)
1025 count++;
1026 else {
1027 ext2_free_blocks (inode, block_to_free, count);
1028 mark_inode_dirty(inode);
1029 free_this:
1030 block_to_free = nr;
1031 count = 1;
1032 }
1033 }
1034 }
1035 if (count > 0) {
1036 ext2_free_blocks (inode, block_to_free, count);
1037 mark_inode_dirty(inode);
1038 }
1039}
1040
1041/**
1042 * ext2_free_branches - free an array of branches
1043 * @inode: inode we are dealing with
1044 * @p: array of block numbers
1045 * @q: pointer immediately past the end of array
1046 * @depth: depth of the branches to free
1047 *
1048 * We are freeing all blocks referred from these branches (numbers are
1049 * stored as little-endian 32-bit) and updating @inode->i_blocks
1050 * appropriately.
1051 */
1052static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1053{
1054 struct buffer_head * bh;
1055 unsigned long nr;
1056
1057 if (depth--) {
1058 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1059 for ( ; p < q ; p++) {
1060 nr = le32_to_cpu(*p);
1061 if (!nr)
1062 continue;
1063 *p = 0;
1064 bh = sb_bread(inode->i_sb, nr);
1065 /*
1066 * A read failure? Report error and clear slot
1067 * (should be rare).
1068 */
1069 if (!bh) {
1070 ext2_error(inode->i_sb, "ext2_free_branches",
1071 "Read failure, inode=%ld, block=%ld",
1072 inode->i_ino, nr);
1073 continue;
1074 }
1075 ext2_free_branches(inode,
1076 (__le32*)bh->b_data,
1077 (__le32*)bh->b_data + addr_per_block,
1078 depth);
1079 bforget(bh);
1080 ext2_free_blocks(inode, nr, 1);
1081 mark_inode_dirty(inode);
1082 }
1083 } else
1084 ext2_free_data(inode, p, q);
1085}
1086
1087static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1088{
1089 __le32 *i_data = EXT2_I(inode)->i_data;
1090 struct ext2_inode_info *ei = EXT2_I(inode);
1091 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1092 int offsets[4];
1093 Indirect chain[4];
1094 Indirect *partial;
1095 __le32 nr = 0;
1096 int n;
1097 long iblock;
1098 unsigned blocksize;
1099 blocksize = inode->i_sb->s_blocksize;
1100 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1101
1102 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1103 if (n == 0)
1104 return;
1105
1106 /*
1107 * From here we block out all ext2_get_block() callers who want to
1108 * modify the block allocation tree.
1109 */
1110 mutex_lock(&ei->truncate_mutex);
1111
1112 if (n == 1) {
1113 ext2_free_data(inode, i_data+offsets[0],
1114 i_data + EXT2_NDIR_BLOCKS);
1115 goto do_indirects;
1116 }
1117
1118 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1119 /* Kill the top of shared branch (already detached) */
1120 if (nr) {
1121 if (partial == chain)
1122 mark_inode_dirty(inode);
1123 else
1124 mark_buffer_dirty_inode(partial->bh, inode);
1125 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1126 }
1127 /* Clear the ends of indirect blocks on the shared branch */
1128 while (partial > chain) {
1129 ext2_free_branches(inode,
1130 partial->p + 1,
1131 (__le32*)partial->bh->b_data+addr_per_block,
1132 (chain+n-1) - partial);
1133 mark_buffer_dirty_inode(partial->bh, inode);
1134 brelse (partial->bh);
1135 partial--;
1136 }
1137do_indirects:
1138 /* Kill the remaining (whole) subtrees */
1139 switch (offsets[0]) {
1140 default:
1141 nr = i_data[EXT2_IND_BLOCK];
1142 if (nr) {
1143 i_data[EXT2_IND_BLOCK] = 0;
1144 mark_inode_dirty(inode);
1145 ext2_free_branches(inode, &nr, &nr+1, 1);
1146 }
1147 case EXT2_IND_BLOCK:
1148 nr = i_data[EXT2_DIND_BLOCK];
1149 if (nr) {
1150 i_data[EXT2_DIND_BLOCK] = 0;
1151 mark_inode_dirty(inode);
1152 ext2_free_branches(inode, &nr, &nr+1, 2);
1153 }
1154 case EXT2_DIND_BLOCK:
1155 nr = i_data[EXT2_TIND_BLOCK];
1156 if (nr) {
1157 i_data[EXT2_TIND_BLOCK] = 0;
1158 mark_inode_dirty(inode);
1159 ext2_free_branches(inode, &nr, &nr+1, 3);
1160 }
1161 case EXT2_TIND_BLOCK:
1162 ;
1163 }
1164
1165 ext2_discard_reservation(inode);
1166
1167 mutex_unlock(&ei->truncate_mutex);
1168}
1169
1170static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1171{
1172 /*
1173 * XXX: it seems like a bug here that we don't allow
1174 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1175 * review and fix this.
1176 *
1177 * Also would be nice to be able to handle IO errors and such,
1178 * but that's probably too much to ask.
1179 */
1180 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1181 S_ISLNK(inode->i_mode)))
1182 return;
1183 if (ext2_inode_is_fast_symlink(inode))
1184 return;
1185 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1186 return;
1187 __ext2_truncate_blocks(inode, offset);
1188}
1189
1190static int ext2_setsize(struct inode *inode, loff_t newsize)
1191{
1192 int error;
1193
1194 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1195 S_ISLNK(inode->i_mode)))
1196 return -EINVAL;
1197 if (ext2_inode_is_fast_symlink(inode))
1198 return -EINVAL;
1199 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1200 return -EPERM;
1201
1202 inode_dio_wait(inode);
1203
1204 if (mapping_is_xip(inode->i_mapping))
1205 error = xip_truncate_page(inode->i_mapping, newsize);
1206 else if (test_opt(inode->i_sb, NOBH))
1207 error = nobh_truncate_page(inode->i_mapping,
1208 newsize, ext2_get_block);
1209 else
1210 error = block_truncate_page(inode->i_mapping,
1211 newsize, ext2_get_block);
1212 if (error)
1213 return error;
1214
1215 truncate_setsize(inode, newsize);
1216 __ext2_truncate_blocks(inode, newsize);
1217
1218 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1219 if (inode_needs_sync(inode)) {
1220 sync_mapping_buffers(inode->i_mapping);
1221 sync_inode_metadata(inode, 1);
1222 } else {
1223 mark_inode_dirty(inode);
1224 }
1225
1226 return 0;
1227}
1228
1229static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1230 struct buffer_head **p)
1231{
1232 struct buffer_head * bh;
1233 unsigned long block_group;
1234 unsigned long block;
1235 unsigned long offset;
1236 struct ext2_group_desc * gdp;
1237
1238 *p = NULL;
1239 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1240 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1241 goto Einval;
1242
1243 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1244 gdp = ext2_get_group_desc(sb, block_group, NULL);
1245 if (!gdp)
1246 goto Egdp;
1247 /*
1248 * Figure out the offset within the block group inode table
1249 */
1250 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1251 block = le32_to_cpu(gdp->bg_inode_table) +
1252 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1253 if (!(bh = sb_bread(sb, block)))
1254 goto Eio;
1255
1256 *p = bh;
1257 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1258 return (struct ext2_inode *) (bh->b_data + offset);
1259
1260Einval:
1261 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1262 (unsigned long) ino);
1263 return ERR_PTR(-EINVAL);
1264Eio:
1265 ext2_error(sb, "ext2_get_inode",
1266 "unable to read inode block - inode=%lu, block=%lu",
1267 (unsigned long) ino, block);
1268Egdp:
1269 return ERR_PTR(-EIO);
1270}
1271
1272void ext2_set_inode_flags(struct inode *inode)
1273{
1274 unsigned int flags = EXT2_I(inode)->i_flags;
1275
1276 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1277 if (flags & EXT2_SYNC_FL)
1278 inode->i_flags |= S_SYNC;
1279 if (flags & EXT2_APPEND_FL)
1280 inode->i_flags |= S_APPEND;
1281 if (flags & EXT2_IMMUTABLE_FL)
1282 inode->i_flags |= S_IMMUTABLE;
1283 if (flags & EXT2_NOATIME_FL)
1284 inode->i_flags |= S_NOATIME;
1285 if (flags & EXT2_DIRSYNC_FL)
1286 inode->i_flags |= S_DIRSYNC;
1287}
1288
1289/* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1290void ext2_get_inode_flags(struct ext2_inode_info *ei)
1291{
1292 unsigned int flags = ei->vfs_inode.i_flags;
1293
1294 ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1295 EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1296 if (flags & S_SYNC)
1297 ei->i_flags |= EXT2_SYNC_FL;
1298 if (flags & S_APPEND)
1299 ei->i_flags |= EXT2_APPEND_FL;
1300 if (flags & S_IMMUTABLE)
1301 ei->i_flags |= EXT2_IMMUTABLE_FL;
1302 if (flags & S_NOATIME)
1303 ei->i_flags |= EXT2_NOATIME_FL;
1304 if (flags & S_DIRSYNC)
1305 ei->i_flags |= EXT2_DIRSYNC_FL;
1306}
1307
1308struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1309{
1310 struct ext2_inode_info *ei;
1311 struct buffer_head * bh;
1312 struct ext2_inode *raw_inode;
1313 struct inode *inode;
1314 long ret = -EIO;
1315 int n;
1316 uid_t i_uid;
1317 gid_t i_gid;
1318
1319 inode = iget_locked(sb, ino);
1320 if (!inode)
1321 return ERR_PTR(-ENOMEM);
1322 if (!(inode->i_state & I_NEW))
1323 return inode;
1324
1325 ei = EXT2_I(inode);
1326 ei->i_block_alloc_info = NULL;
1327
1328 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1329 if (IS_ERR(raw_inode)) {
1330 ret = PTR_ERR(raw_inode);
1331 goto bad_inode;
1332 }
1333
1334 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1335 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1336 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1337 if (!(test_opt (inode->i_sb, NO_UID32))) {
1338 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1339 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1340 }
1341 i_uid_write(inode, i_uid);
1342 i_gid_write(inode, i_gid);
1343 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1344 inode->i_size = le32_to_cpu(raw_inode->i_size);
1345 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1346 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1347 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1348 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1349 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1350 /* We now have enough fields to check if the inode was active or not.
1351 * This is needed because nfsd might try to access dead inodes
1352 * the test is that same one that e2fsck uses
1353 * NeilBrown 1999oct15
1354 */
1355 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1356 /* this inode is deleted */
1357 brelse (bh);
1358 ret = -ESTALE;
1359 goto bad_inode;
1360 }
1361 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1362 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1363 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1364 ei->i_frag_no = raw_inode->i_frag;
1365 ei->i_frag_size = raw_inode->i_fsize;
1366 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1367 ei->i_dir_acl = 0;
1368 if (S_ISREG(inode->i_mode))
1369 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1370 else
1371 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1372 ei->i_dtime = 0;
1373 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1374 ei->i_state = 0;
1375 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1376 ei->i_dir_start_lookup = 0;
1377
1378 /*
1379 * NOTE! The in-memory inode i_data array is in little-endian order
1380 * even on big-endian machines: we do NOT byteswap the block numbers!
1381 */
1382 for (n = 0; n < EXT2_N_BLOCKS; n++)
1383 ei->i_data[n] = raw_inode->i_block[n];
1384
1385 if (S_ISREG(inode->i_mode)) {
1386 inode->i_op = &ext2_file_inode_operations;
1387 if (ext2_use_xip(inode->i_sb)) {
1388 inode->i_mapping->a_ops = &ext2_aops_xip;
1389 inode->i_fop = &ext2_xip_file_operations;
1390 } else if (test_opt(inode->i_sb, NOBH)) {
1391 inode->i_mapping->a_ops = &ext2_nobh_aops;
1392 inode->i_fop = &ext2_file_operations;
1393 } else {
1394 inode->i_mapping->a_ops = &ext2_aops;
1395 inode->i_fop = &ext2_file_operations;
1396 }
1397 } else if (S_ISDIR(inode->i_mode)) {
1398 inode->i_op = &ext2_dir_inode_operations;
1399 inode->i_fop = &ext2_dir_operations;
1400 if (test_opt(inode->i_sb, NOBH))
1401 inode->i_mapping->a_ops = &ext2_nobh_aops;
1402 else
1403 inode->i_mapping->a_ops = &ext2_aops;
1404 } else if (S_ISLNK(inode->i_mode)) {
1405 if (ext2_inode_is_fast_symlink(inode)) {
1406 inode->i_op = &ext2_fast_symlink_inode_operations;
1407 nd_terminate_link(ei->i_data, inode->i_size,
1408 sizeof(ei->i_data) - 1);
1409 } else {
1410 inode->i_op = &ext2_symlink_inode_operations;
1411 if (test_opt(inode->i_sb, NOBH))
1412 inode->i_mapping->a_ops = &ext2_nobh_aops;
1413 else
1414 inode->i_mapping->a_ops = &ext2_aops;
1415 }
1416 } else {
1417 inode->i_op = &ext2_special_inode_operations;
1418 if (raw_inode->i_block[0])
1419 init_special_inode(inode, inode->i_mode,
1420 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1421 else
1422 init_special_inode(inode, inode->i_mode,
1423 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1424 }
1425 brelse (bh);
1426 ext2_set_inode_flags(inode);
1427 unlock_new_inode(inode);
1428 return inode;
1429
1430bad_inode:
1431 iget_failed(inode);
1432 return ERR_PTR(ret);
1433}
1434
1435static int __ext2_write_inode(struct inode *inode, int do_sync)
1436{
1437 struct ext2_inode_info *ei = EXT2_I(inode);
1438 struct super_block *sb = inode->i_sb;
1439 ino_t ino = inode->i_ino;
1440 uid_t uid = i_uid_read(inode);
1441 gid_t gid = i_gid_read(inode);
1442 struct buffer_head * bh;
1443 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1444 int n;
1445 int err = 0;
1446
1447 if (IS_ERR(raw_inode))
1448 return -EIO;
1449
1450 /* For fields not not tracking in the in-memory inode,
1451 * initialise them to zero for new inodes. */
1452 if (ei->i_state & EXT2_STATE_NEW)
1453 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1454
1455 ext2_get_inode_flags(ei);
1456 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1457 if (!(test_opt(sb, NO_UID32))) {
1458 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1459 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1460/*
1461 * Fix up interoperability with old kernels. Otherwise, old inodes get
1462 * re-used with the upper 16 bits of the uid/gid intact
1463 */
1464 if (!ei->i_dtime) {
1465 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1466 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1467 } else {
1468 raw_inode->i_uid_high = 0;
1469 raw_inode->i_gid_high = 0;
1470 }
1471 } else {
1472 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1473 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1474 raw_inode->i_uid_high = 0;
1475 raw_inode->i_gid_high = 0;
1476 }
1477 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1478 raw_inode->i_size = cpu_to_le32(inode->i_size);
1479 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1480 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1481 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1482
1483 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1484 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1485 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1486 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1487 raw_inode->i_frag = ei->i_frag_no;
1488 raw_inode->i_fsize = ei->i_frag_size;
1489 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1490 if (!S_ISREG(inode->i_mode))
1491 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1492 else {
1493 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1494 if (inode->i_size > 0x7fffffffULL) {
1495 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1496 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1497 EXT2_SB(sb)->s_es->s_rev_level ==
1498 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1499 /* If this is the first large file
1500 * created, add a flag to the superblock.
1501 */
1502 spin_lock(&EXT2_SB(sb)->s_lock);
1503 ext2_update_dynamic_rev(sb);
1504 EXT2_SET_RO_COMPAT_FEATURE(sb,
1505 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1506 spin_unlock(&EXT2_SB(sb)->s_lock);
1507 ext2_write_super(sb);
1508 }
1509 }
1510 }
1511
1512 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1513 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1514 if (old_valid_dev(inode->i_rdev)) {
1515 raw_inode->i_block[0] =
1516 cpu_to_le32(old_encode_dev(inode->i_rdev));
1517 raw_inode->i_block[1] = 0;
1518 } else {
1519 raw_inode->i_block[0] = 0;
1520 raw_inode->i_block[1] =
1521 cpu_to_le32(new_encode_dev(inode->i_rdev));
1522 raw_inode->i_block[2] = 0;
1523 }
1524 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1525 raw_inode->i_block[n] = ei->i_data[n];
1526 mark_buffer_dirty(bh);
1527 if (do_sync) {
1528 sync_dirty_buffer(bh);
1529 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1530 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1531 sb->s_id, (unsigned long) ino);
1532 err = -EIO;
1533 }
1534 }
1535 ei->i_state &= ~EXT2_STATE_NEW;
1536 brelse (bh);
1537 return err;
1538}
1539
1540int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1541{
1542 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1543}
1544
1545int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1546{
1547 struct inode *inode = dentry->d_inode;
1548 int error;
1549
1550 error = inode_change_ok(inode, iattr);
1551 if (error)
1552 return error;
1553
1554 if (is_quota_modification(inode, iattr))
1555 dquot_initialize(inode);
1556 if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1557 (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1558 error = dquot_transfer(inode, iattr);
1559 if (error)
1560 return error;
1561 }
1562 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1563 error = ext2_setsize(inode, iattr->ia_size);
1564 if (error)
1565 return error;
1566 }
1567 setattr_copy(inode, iattr);
1568 if (iattr->ia_valid & ATTR_MODE)
1569 error = posix_acl_chmod(inode, inode->i_mode);
1570 mark_inode_dirty(inode);
1571
1572 return error;
1573}