Loading...
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "hw.h"
18
19static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
20{
21 if (fbin == AR5416_BCHAN_UNUSED)
22 return fbin;
23
24 return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
25}
26
27void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
28{
29 REG_WRITE(ah, reg, val);
30
31 if (ah->config.analog_shiftreg)
32 udelay(100);
33}
34
35void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
36 u32 shift, u32 val)
37{
38 u32 regVal;
39
40 regVal = REG_READ(ah, reg) & ~mask;
41 regVal |= (val << shift) & mask;
42
43 REG_WRITE(ah, reg, regVal);
44
45 if (ah->config.analog_shiftreg)
46 udelay(100);
47}
48
49int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
50 int16_t targetLeft, int16_t targetRight)
51{
52 int16_t rv;
53
54 if (srcRight == srcLeft) {
55 rv = targetLeft;
56 } else {
57 rv = (int16_t) (((target - srcLeft) * targetRight +
58 (srcRight - target) * targetLeft) /
59 (srcRight - srcLeft));
60 }
61 return rv;
62}
63
64bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
65 u16 *indexL, u16 *indexR)
66{
67 u16 i;
68
69 if (target <= pList[0]) {
70 *indexL = *indexR = 0;
71 return true;
72 }
73 if (target >= pList[listSize - 1]) {
74 *indexL = *indexR = (u16) (listSize - 1);
75 return true;
76 }
77
78 for (i = 0; i < listSize - 1; i++) {
79 if (pList[i] == target) {
80 *indexL = *indexR = i;
81 return true;
82 }
83 if (target < pList[i + 1]) {
84 *indexL = i;
85 *indexR = (u16) (i + 1);
86 return false;
87 }
88 }
89 return false;
90}
91
92void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
93 int eep_start_loc, int size)
94{
95 int i = 0, j, addr;
96 u32 addrdata[8];
97 u32 data[8];
98
99 for (addr = 0; addr < size; addr++) {
100 addrdata[i] = AR5416_EEPROM_OFFSET +
101 ((addr + eep_start_loc) << AR5416_EEPROM_S);
102 i++;
103 if (i == 8) {
104 REG_READ_MULTI(ah, addrdata, data, i);
105
106 for (j = 0; j < i; j++) {
107 *eep_data = data[j];
108 eep_data++;
109 }
110 i = 0;
111 }
112 }
113
114 if (i != 0) {
115 REG_READ_MULTI(ah, addrdata, data, i);
116
117 for (j = 0; j < i; j++) {
118 *eep_data = data[j];
119 eep_data++;
120 }
121 }
122}
123
124bool ath9k_hw_nvram_read(struct ath_common *common, u32 off, u16 *data)
125{
126 return common->bus_ops->eeprom_read(common, off, data);
127}
128
129void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
130 u8 *pVpdList, u16 numIntercepts,
131 u8 *pRetVpdList)
132{
133 u16 i, k;
134 u8 currPwr = pwrMin;
135 u16 idxL = 0, idxR = 0;
136
137 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
138 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
139 numIntercepts, &(idxL),
140 &(idxR));
141 if (idxR < 1)
142 idxR = 1;
143 if (idxL == numIntercepts - 1)
144 idxL = (u16) (numIntercepts - 2);
145 if (pPwrList[idxL] == pPwrList[idxR])
146 k = pVpdList[idxL];
147 else
148 k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
149 (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
150 (pPwrList[idxR] - pPwrList[idxL]));
151 pRetVpdList[i] = (u8) k;
152 currPwr += 2;
153 }
154}
155
156void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
157 struct ath9k_channel *chan,
158 struct cal_target_power_leg *powInfo,
159 u16 numChannels,
160 struct cal_target_power_leg *pNewPower,
161 u16 numRates, bool isExtTarget)
162{
163 struct chan_centers centers;
164 u16 clo, chi;
165 int i;
166 int matchIndex = -1, lowIndex = -1;
167 u16 freq;
168
169 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
170 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
171
172 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
173 IS_CHAN_2GHZ(chan))) {
174 matchIndex = 0;
175 } else {
176 for (i = 0; (i < numChannels) &&
177 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
178 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
179 IS_CHAN_2GHZ(chan))) {
180 matchIndex = i;
181 break;
182 } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
183 IS_CHAN_2GHZ(chan)) && i > 0 &&
184 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
185 IS_CHAN_2GHZ(chan))) {
186 lowIndex = i - 1;
187 break;
188 }
189 }
190 if ((matchIndex == -1) && (lowIndex == -1))
191 matchIndex = i - 1;
192 }
193
194 if (matchIndex != -1) {
195 *pNewPower = powInfo[matchIndex];
196 } else {
197 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
198 IS_CHAN_2GHZ(chan));
199 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
200 IS_CHAN_2GHZ(chan));
201
202 for (i = 0; i < numRates; i++) {
203 pNewPower->tPow2x[i] =
204 (u8)ath9k_hw_interpolate(freq, clo, chi,
205 powInfo[lowIndex].tPow2x[i],
206 powInfo[lowIndex + 1].tPow2x[i]);
207 }
208 }
209}
210
211void ath9k_hw_get_target_powers(struct ath_hw *ah,
212 struct ath9k_channel *chan,
213 struct cal_target_power_ht *powInfo,
214 u16 numChannels,
215 struct cal_target_power_ht *pNewPower,
216 u16 numRates, bool isHt40Target)
217{
218 struct chan_centers centers;
219 u16 clo, chi;
220 int i;
221 int matchIndex = -1, lowIndex = -1;
222 u16 freq;
223
224 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
225 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
226
227 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
228 matchIndex = 0;
229 } else {
230 for (i = 0; (i < numChannels) &&
231 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
232 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
233 IS_CHAN_2GHZ(chan))) {
234 matchIndex = i;
235 break;
236 } else
237 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
238 IS_CHAN_2GHZ(chan)) && i > 0 &&
239 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
240 IS_CHAN_2GHZ(chan))) {
241 lowIndex = i - 1;
242 break;
243 }
244 }
245 if ((matchIndex == -1) && (lowIndex == -1))
246 matchIndex = i - 1;
247 }
248
249 if (matchIndex != -1) {
250 *pNewPower = powInfo[matchIndex];
251 } else {
252 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
253 IS_CHAN_2GHZ(chan));
254 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
255 IS_CHAN_2GHZ(chan));
256
257 for (i = 0; i < numRates; i++) {
258 pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
259 clo, chi,
260 powInfo[lowIndex].tPow2x[i],
261 powInfo[lowIndex + 1].tPow2x[i]);
262 }
263 }
264}
265
266u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
267 bool is2GHz, int num_band_edges)
268{
269 u16 twiceMaxEdgePower = MAX_RATE_POWER;
270 int i;
271
272 for (i = 0; (i < num_band_edges) &&
273 (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
274 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
275 twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
276 break;
277 } else if ((i > 0) &&
278 (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
279 is2GHz))) {
280 if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
281 is2GHz) < freq &&
282 CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
283 twiceMaxEdgePower =
284 CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
285 }
286 break;
287 }
288 }
289
290 return twiceMaxEdgePower;
291}
292
293void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
294{
295 struct ath_common *common = ath9k_hw_common(ah);
296 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
297
298 switch (ar5416_get_ntxchains(ah->txchainmask)) {
299 case 1:
300 break;
301 case 2:
302 regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
303 break;
304 case 3:
305 regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
306 break;
307 default:
308 ath_dbg(common, ATH_DBG_EEPROM,
309 "Invalid chainmask configuration\n");
310 break;
311 }
312}
313
314void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
315 struct ath9k_channel *chan,
316 void *pRawDataSet,
317 u8 *bChans, u16 availPiers,
318 u16 tPdGainOverlap,
319 u16 *pPdGainBoundaries, u8 *pPDADCValues,
320 u16 numXpdGains)
321{
322 int i, j, k;
323 int16_t ss;
324 u16 idxL = 0, idxR = 0, numPiers;
325 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
326 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
327 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
328 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
329 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
330 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
331
332 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
333 u8 minPwrT4[AR5416_NUM_PD_GAINS];
334 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
335 int16_t vpdStep;
336 int16_t tmpVal;
337 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
338 bool match;
339 int16_t minDelta = 0;
340 struct chan_centers centers;
341 int pdgain_boundary_default;
342 struct cal_data_per_freq *data_def = pRawDataSet;
343 struct cal_data_per_freq_4k *data_4k = pRawDataSet;
344 struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
345 bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
346 int intercepts;
347
348 if (AR_SREV_9287(ah))
349 intercepts = AR9287_PD_GAIN_ICEPTS;
350 else
351 intercepts = AR5416_PD_GAIN_ICEPTS;
352
353 memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
354 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
355
356 for (numPiers = 0; numPiers < availPiers; numPiers++) {
357 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
358 break;
359 }
360
361 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
362 IS_CHAN_2GHZ(chan)),
363 bChans, numPiers, &idxL, &idxR);
364
365 if (match) {
366 if (AR_SREV_9287(ah)) {
367 /* FIXME: array overrun? */
368 for (i = 0; i < numXpdGains; i++) {
369 minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
370 maxPwrT4[i] = data_9287[idxL].pwrPdg[i][4];
371 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
372 data_9287[idxL].pwrPdg[i],
373 data_9287[idxL].vpdPdg[i],
374 intercepts,
375 vpdTableI[i]);
376 }
377 } else if (eeprom_4k) {
378 for (i = 0; i < numXpdGains; i++) {
379 minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
380 maxPwrT4[i] = data_4k[idxL].pwrPdg[i][4];
381 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
382 data_4k[idxL].pwrPdg[i],
383 data_4k[idxL].vpdPdg[i],
384 intercepts,
385 vpdTableI[i]);
386 }
387 } else {
388 for (i = 0; i < numXpdGains; i++) {
389 minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
390 maxPwrT4[i] = data_def[idxL].pwrPdg[i][4];
391 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
392 data_def[idxL].pwrPdg[i],
393 data_def[idxL].vpdPdg[i],
394 intercepts,
395 vpdTableI[i]);
396 }
397 }
398 } else {
399 for (i = 0; i < numXpdGains; i++) {
400 if (AR_SREV_9287(ah)) {
401 pVpdL = data_9287[idxL].vpdPdg[i];
402 pPwrL = data_9287[idxL].pwrPdg[i];
403 pVpdR = data_9287[idxR].vpdPdg[i];
404 pPwrR = data_9287[idxR].pwrPdg[i];
405 } else if (eeprom_4k) {
406 pVpdL = data_4k[idxL].vpdPdg[i];
407 pPwrL = data_4k[idxL].pwrPdg[i];
408 pVpdR = data_4k[idxR].vpdPdg[i];
409 pPwrR = data_4k[idxR].pwrPdg[i];
410 } else {
411 pVpdL = data_def[idxL].vpdPdg[i];
412 pPwrL = data_def[idxL].pwrPdg[i];
413 pVpdR = data_def[idxR].vpdPdg[i];
414 pPwrR = data_def[idxR].pwrPdg[i];
415 }
416
417 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
418
419 maxPwrT4[i] =
420 min(pPwrL[intercepts - 1],
421 pPwrR[intercepts - 1]);
422
423
424 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
425 pPwrL, pVpdL,
426 intercepts,
427 vpdTableL[i]);
428 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
429 pPwrR, pVpdR,
430 intercepts,
431 vpdTableR[i]);
432
433 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
434 vpdTableI[i][j] =
435 (u8)(ath9k_hw_interpolate((u16)
436 FREQ2FBIN(centers.
437 synth_center,
438 IS_CHAN_2GHZ
439 (chan)),
440 bChans[idxL], bChans[idxR],
441 vpdTableL[i][j], vpdTableR[i][j]));
442 }
443 }
444 }
445
446 k = 0;
447
448 for (i = 0; i < numXpdGains; i++) {
449 if (i == (numXpdGains - 1))
450 pPdGainBoundaries[i] =
451 (u16)(maxPwrT4[i] / 2);
452 else
453 pPdGainBoundaries[i] =
454 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
455
456 pPdGainBoundaries[i] =
457 min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
458
459 if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
460 minDelta = pPdGainBoundaries[0] - 23;
461 pPdGainBoundaries[0] = 23;
462 } else {
463 minDelta = 0;
464 }
465
466 if (i == 0) {
467 if (AR_SREV_9280_20_OR_LATER(ah))
468 ss = (int16_t)(0 - (minPwrT4[i] / 2));
469 else
470 ss = 0;
471 } else {
472 ss = (int16_t)((pPdGainBoundaries[i - 1] -
473 (minPwrT4[i] / 2)) -
474 tPdGainOverlap + 1 + minDelta);
475 }
476 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
477 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
478
479 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
480 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
481 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
482 ss++;
483 }
484
485 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
486 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
487 (minPwrT4[i] / 2));
488 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
489 tgtIndex : sizeCurrVpdTable;
490
491 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
492 pPDADCValues[k++] = vpdTableI[i][ss++];
493 }
494
495 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
496 vpdTableI[i][sizeCurrVpdTable - 2]);
497 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
498
499 if (tgtIndex >= maxIndex) {
500 while ((ss <= tgtIndex) &&
501 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
502 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
503 (ss - maxIndex + 1) * vpdStep));
504 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
505 255 : tmpVal);
506 ss++;
507 }
508 }
509 }
510
511 if (eeprom_4k)
512 pdgain_boundary_default = 58;
513 else
514 pdgain_boundary_default = pPdGainBoundaries[i - 1];
515
516 while (i < AR5416_PD_GAINS_IN_MASK) {
517 pPdGainBoundaries[i] = pdgain_boundary_default;
518 i++;
519 }
520
521 while (k < AR5416_NUM_PDADC_VALUES) {
522 pPDADCValues[k] = pPDADCValues[k - 1];
523 k++;
524 }
525}
526
527int ath9k_hw_eeprom_init(struct ath_hw *ah)
528{
529 int status;
530
531 if (AR_SREV_9300_20_OR_LATER(ah))
532 ah->eep_ops = &eep_ar9300_ops;
533 else if (AR_SREV_9287(ah)) {
534 ah->eep_ops = &eep_ar9287_ops;
535 } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
536 ah->eep_ops = &eep_4k_ops;
537 } else {
538 ah->eep_ops = &eep_def_ops;
539 }
540
541 if (!ah->eep_ops->fill_eeprom(ah))
542 return -EIO;
543
544 status = ah->eep_ops->check_eeprom(ah);
545
546 return status;
547}
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "hw.h"
18#include <linux/ath9k_platform.h>
19
20void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
21{
22 REG_WRITE(ah, reg, val);
23
24 if (ah->config.analog_shiftreg)
25 udelay(100);
26}
27
28void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
29 u32 shift, u32 val)
30{
31 REG_RMW(ah, reg, ((val << shift) & mask), mask);
32
33 if (ah->config.analog_shiftreg)
34 udelay(100);
35}
36
37int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
38 int16_t targetLeft, int16_t targetRight)
39{
40 int16_t rv;
41
42 if (srcRight == srcLeft) {
43 rv = targetLeft;
44 } else {
45 rv = (int16_t) (((target - srcLeft) * targetRight +
46 (srcRight - target) * targetLeft) /
47 (srcRight - srcLeft));
48 }
49 return rv;
50}
51
52bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
53 u16 *indexL, u16 *indexR)
54{
55 u16 i;
56
57 if (target <= pList[0]) {
58 *indexL = *indexR = 0;
59 return true;
60 }
61 if (target >= pList[listSize - 1]) {
62 *indexL = *indexR = (u16) (listSize - 1);
63 return true;
64 }
65
66 for (i = 0; i < listSize - 1; i++) {
67 if (pList[i] == target) {
68 *indexL = *indexR = i;
69 return true;
70 }
71 if (target < pList[i + 1]) {
72 *indexL = i;
73 *indexR = (u16) (i + 1);
74 return false;
75 }
76 }
77 return false;
78}
79
80void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
81 int eep_start_loc, int size)
82{
83 int i = 0, j, addr;
84 u32 addrdata[8];
85 u32 data[8];
86
87 for (addr = 0; addr < size; addr++) {
88 addrdata[i] = AR5416_EEPROM_OFFSET +
89 ((addr + eep_start_loc) << AR5416_EEPROM_S);
90 i++;
91 if (i == 8) {
92 REG_READ_MULTI(ah, addrdata, data, i);
93
94 for (j = 0; j < i; j++) {
95 *eep_data = data[j];
96 eep_data++;
97 }
98 i = 0;
99 }
100 }
101
102 if (i != 0) {
103 REG_READ_MULTI(ah, addrdata, data, i);
104
105 for (j = 0; j < i; j++) {
106 *eep_data = data[j];
107 eep_data++;
108 }
109 }
110}
111
112static bool ath9k_hw_nvram_read_array(u16 *blob, size_t blob_size,
113 off_t offset, u16 *data)
114{
115 if (offset > blob_size)
116 return false;
117
118 *data = blob[offset];
119 return true;
120}
121
122static bool ath9k_hw_nvram_read_pdata(struct ath9k_platform_data *pdata,
123 off_t offset, u16 *data)
124{
125 return ath9k_hw_nvram_read_array(pdata->eeprom_data,
126 ARRAY_SIZE(pdata->eeprom_data),
127 offset, data);
128}
129
130static bool ath9k_hw_nvram_read_firmware(const struct firmware *eeprom_blob,
131 off_t offset, u16 *data)
132{
133 return ath9k_hw_nvram_read_array((u16 *) eeprom_blob->data,
134 eeprom_blob->size / sizeof(u16),
135 offset, data);
136}
137
138bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
139{
140 struct ath_common *common = ath9k_hw_common(ah);
141 struct ath9k_platform_data *pdata = ah->dev->platform_data;
142 bool ret;
143
144 if (ah->eeprom_blob)
145 ret = ath9k_hw_nvram_read_firmware(ah->eeprom_blob, off, data);
146 else if (pdata && !pdata->use_eeprom && pdata->eeprom_data)
147 ret = ath9k_hw_nvram_read_pdata(pdata, off, data);
148 else
149 ret = common->bus_ops->eeprom_read(common, off, data);
150
151 if (!ret)
152 ath_dbg(common, EEPROM,
153 "unable to read eeprom region at offset %u\n", off);
154
155 return ret;
156}
157
158int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
159{
160 u16 magic;
161 u16 *eepdata;
162 int i;
163 struct ath_common *common = ath9k_hw_common(ah);
164
165 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
166 ath_err(common, "Reading Magic # failed\n");
167 return -EIO;
168 }
169
170 *swap_needed = false;
171 if (swab16(magic) == AR5416_EEPROM_MAGIC) {
172 if (ah->ah_flags & AH_NO_EEP_SWAP) {
173 ath_info(common,
174 "Ignoring endianness difference in EEPROM magic bytes.\n");
175 } else {
176 *swap_needed = true;
177 }
178 } else if (magic != AR5416_EEPROM_MAGIC) {
179 if (ath9k_hw_use_flash(ah))
180 return 0;
181
182 ath_err(common,
183 "Invalid EEPROM Magic (0x%04x).\n", magic);
184 return -EINVAL;
185 }
186
187 eepdata = (u16 *)(&ah->eeprom);
188
189 if (*swap_needed) {
190 ath_dbg(common, EEPROM,
191 "EEPROM Endianness is not native.. Changing.\n");
192
193 for (i = 0; i < size; i++)
194 eepdata[i] = swab16(eepdata[i]);
195 }
196
197 return 0;
198}
199
200bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
201{
202 u32 i, sum = 0;
203 u16 *eepdata = (u16 *)(&ah->eeprom);
204 struct ath_common *common = ath9k_hw_common(ah);
205
206 for (i = 0; i < size; i++)
207 sum ^= eepdata[i];
208
209 if (sum != 0xffff) {
210 ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
211 return false;
212 }
213
214 return true;
215}
216
217bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
218{
219 struct ath_common *common = ath9k_hw_common(ah);
220
221 if (ah->eep_ops->get_eeprom_ver(ah) != version ||
222 ah->eep_ops->get_eeprom_rev(ah) < minrev) {
223 ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
224 ah->eep_ops->get_eeprom_ver(ah),
225 ah->eep_ops->get_eeprom_rev(ah));
226 return false;
227 }
228
229 return true;
230}
231
232void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
233 u8 *pVpdList, u16 numIntercepts,
234 u8 *pRetVpdList)
235{
236 u16 i, k;
237 u8 currPwr = pwrMin;
238 u16 idxL = 0, idxR = 0;
239
240 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
241 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
242 numIntercepts, &(idxL),
243 &(idxR));
244 if (idxR < 1)
245 idxR = 1;
246 if (idxL == numIntercepts - 1)
247 idxL = (u16) (numIntercepts - 2);
248 if (pPwrList[idxL] == pPwrList[idxR])
249 k = pVpdList[idxL];
250 else
251 k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
252 (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
253 (pPwrList[idxR] - pPwrList[idxL]));
254 pRetVpdList[i] = (u8) k;
255 currPwr += 2;
256 }
257}
258
259void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
260 struct ath9k_channel *chan,
261 struct cal_target_power_leg *powInfo,
262 u16 numChannels,
263 struct cal_target_power_leg *pNewPower,
264 u16 numRates, bool isExtTarget)
265{
266 struct chan_centers centers;
267 u16 clo, chi;
268 int i;
269 int matchIndex = -1, lowIndex = -1;
270 u16 freq;
271
272 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
273 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
274
275 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
276 IS_CHAN_2GHZ(chan))) {
277 matchIndex = 0;
278 } else {
279 for (i = 0; (i < numChannels) &&
280 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
281 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
282 IS_CHAN_2GHZ(chan))) {
283 matchIndex = i;
284 break;
285 } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
286 IS_CHAN_2GHZ(chan)) && i > 0 &&
287 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
288 IS_CHAN_2GHZ(chan))) {
289 lowIndex = i - 1;
290 break;
291 }
292 }
293 if ((matchIndex == -1) && (lowIndex == -1))
294 matchIndex = i - 1;
295 }
296
297 if (matchIndex != -1) {
298 *pNewPower = powInfo[matchIndex];
299 } else {
300 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
301 IS_CHAN_2GHZ(chan));
302 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
303 IS_CHAN_2GHZ(chan));
304
305 for (i = 0; i < numRates; i++) {
306 pNewPower->tPow2x[i] =
307 (u8)ath9k_hw_interpolate(freq, clo, chi,
308 powInfo[lowIndex].tPow2x[i],
309 powInfo[lowIndex + 1].tPow2x[i]);
310 }
311 }
312}
313
314void ath9k_hw_get_target_powers(struct ath_hw *ah,
315 struct ath9k_channel *chan,
316 struct cal_target_power_ht *powInfo,
317 u16 numChannels,
318 struct cal_target_power_ht *pNewPower,
319 u16 numRates, bool isHt40Target)
320{
321 struct chan_centers centers;
322 u16 clo, chi;
323 int i;
324 int matchIndex = -1, lowIndex = -1;
325 u16 freq;
326
327 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
328 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
329
330 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
331 matchIndex = 0;
332 } else {
333 for (i = 0; (i < numChannels) &&
334 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
335 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
336 IS_CHAN_2GHZ(chan))) {
337 matchIndex = i;
338 break;
339 } else
340 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
341 IS_CHAN_2GHZ(chan)) && i > 0 &&
342 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
343 IS_CHAN_2GHZ(chan))) {
344 lowIndex = i - 1;
345 break;
346 }
347 }
348 if ((matchIndex == -1) && (lowIndex == -1))
349 matchIndex = i - 1;
350 }
351
352 if (matchIndex != -1) {
353 *pNewPower = powInfo[matchIndex];
354 } else {
355 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
356 IS_CHAN_2GHZ(chan));
357 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
358 IS_CHAN_2GHZ(chan));
359
360 for (i = 0; i < numRates; i++) {
361 pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
362 clo, chi,
363 powInfo[lowIndex].tPow2x[i],
364 powInfo[lowIndex + 1].tPow2x[i]);
365 }
366 }
367}
368
369u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
370 bool is2GHz, int num_band_edges)
371{
372 u16 twiceMaxEdgePower = MAX_RATE_POWER;
373 int i;
374
375 for (i = 0; (i < num_band_edges) &&
376 (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
377 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
378 twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
379 break;
380 } else if ((i > 0) &&
381 (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
382 is2GHz))) {
383 if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
384 is2GHz) < freq &&
385 CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
386 twiceMaxEdgePower =
387 CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
388 }
389 break;
390 }
391 }
392
393 return twiceMaxEdgePower;
394}
395
396u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
397 u8 antenna_reduction)
398{
399 u16 reduction = antenna_reduction;
400
401 /*
402 * Reduce scaled Power by number of chains active
403 * to get the per chain tx power level.
404 */
405 switch (ar5416_get_ntxchains(ah->txchainmask)) {
406 case 1:
407 break;
408 case 2:
409 reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
410 break;
411 case 3:
412 reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
413 break;
414 }
415
416 if (power_limit > reduction)
417 power_limit -= reduction;
418 else
419 power_limit = 0;
420
421 return power_limit;
422}
423
424void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
425{
426 struct ath_common *common = ath9k_hw_common(ah);
427 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
428
429 switch (ar5416_get_ntxchains(ah->txchainmask)) {
430 case 1:
431 break;
432 case 2:
433 regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
434 break;
435 case 3:
436 regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
437 break;
438 default:
439 ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
440 break;
441 }
442}
443
444void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
445 struct ath9k_channel *chan,
446 void *pRawDataSet,
447 u8 *bChans, u16 availPiers,
448 u16 tPdGainOverlap,
449 u16 *pPdGainBoundaries, u8 *pPDADCValues,
450 u16 numXpdGains)
451{
452 int i, j, k;
453 int16_t ss;
454 u16 idxL = 0, idxR = 0, numPiers;
455 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
456 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
457 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
458 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
459 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
460 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
461
462 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
463 u8 minPwrT4[AR5416_NUM_PD_GAINS];
464 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
465 int16_t vpdStep;
466 int16_t tmpVal;
467 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
468 bool match;
469 int16_t minDelta = 0;
470 struct chan_centers centers;
471 int pdgain_boundary_default;
472 struct cal_data_per_freq *data_def = pRawDataSet;
473 struct cal_data_per_freq_4k *data_4k = pRawDataSet;
474 struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
475 bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
476 int intercepts;
477
478 if (AR_SREV_9287(ah))
479 intercepts = AR9287_PD_GAIN_ICEPTS;
480 else
481 intercepts = AR5416_PD_GAIN_ICEPTS;
482
483 memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
484 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
485
486 for (numPiers = 0; numPiers < availPiers; numPiers++) {
487 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
488 break;
489 }
490
491 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
492 IS_CHAN_2GHZ(chan)),
493 bChans, numPiers, &idxL, &idxR);
494
495 if (match) {
496 if (AR_SREV_9287(ah)) {
497 for (i = 0; i < numXpdGains; i++) {
498 minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
499 maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
500 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
501 data_9287[idxL].pwrPdg[i],
502 data_9287[idxL].vpdPdg[i],
503 intercepts,
504 vpdTableI[i]);
505 }
506 } else if (eeprom_4k) {
507 for (i = 0; i < numXpdGains; i++) {
508 minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
509 maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
510 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
511 data_4k[idxL].pwrPdg[i],
512 data_4k[idxL].vpdPdg[i],
513 intercepts,
514 vpdTableI[i]);
515 }
516 } else {
517 for (i = 0; i < numXpdGains; i++) {
518 minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
519 maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
520 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
521 data_def[idxL].pwrPdg[i],
522 data_def[idxL].vpdPdg[i],
523 intercepts,
524 vpdTableI[i]);
525 }
526 }
527 } else {
528 for (i = 0; i < numXpdGains; i++) {
529 if (AR_SREV_9287(ah)) {
530 pVpdL = data_9287[idxL].vpdPdg[i];
531 pPwrL = data_9287[idxL].pwrPdg[i];
532 pVpdR = data_9287[idxR].vpdPdg[i];
533 pPwrR = data_9287[idxR].pwrPdg[i];
534 } else if (eeprom_4k) {
535 pVpdL = data_4k[idxL].vpdPdg[i];
536 pPwrL = data_4k[idxL].pwrPdg[i];
537 pVpdR = data_4k[idxR].vpdPdg[i];
538 pPwrR = data_4k[idxR].pwrPdg[i];
539 } else {
540 pVpdL = data_def[idxL].vpdPdg[i];
541 pPwrL = data_def[idxL].pwrPdg[i];
542 pVpdR = data_def[idxR].vpdPdg[i];
543 pPwrR = data_def[idxR].pwrPdg[i];
544 }
545
546 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
547
548 maxPwrT4[i] =
549 min(pPwrL[intercepts - 1],
550 pPwrR[intercepts - 1]);
551
552
553 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
554 pPwrL, pVpdL,
555 intercepts,
556 vpdTableL[i]);
557 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
558 pPwrR, pVpdR,
559 intercepts,
560 vpdTableR[i]);
561
562 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
563 vpdTableI[i][j] =
564 (u8)(ath9k_hw_interpolate((u16)
565 FREQ2FBIN(centers.
566 synth_center,
567 IS_CHAN_2GHZ
568 (chan)),
569 bChans[idxL], bChans[idxR],
570 vpdTableL[i][j], vpdTableR[i][j]));
571 }
572 }
573 }
574
575 k = 0;
576
577 for (i = 0; i < numXpdGains; i++) {
578 if (i == (numXpdGains - 1))
579 pPdGainBoundaries[i] =
580 (u16)(maxPwrT4[i] / 2);
581 else
582 pPdGainBoundaries[i] =
583 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
584
585 pPdGainBoundaries[i] =
586 min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
587
588 minDelta = 0;
589
590 if (i == 0) {
591 if (AR_SREV_9280_20_OR_LATER(ah))
592 ss = (int16_t)(0 - (minPwrT4[i] / 2));
593 else
594 ss = 0;
595 } else {
596 ss = (int16_t)((pPdGainBoundaries[i - 1] -
597 (minPwrT4[i] / 2)) -
598 tPdGainOverlap + 1 + minDelta);
599 }
600 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
601 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
602
603 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
604 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
605 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
606 ss++;
607 }
608
609 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
610 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
611 (minPwrT4[i] / 2));
612 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
613 tgtIndex : sizeCurrVpdTable;
614
615 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
616 pPDADCValues[k++] = vpdTableI[i][ss++];
617 }
618
619 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
620 vpdTableI[i][sizeCurrVpdTable - 2]);
621 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
622
623 if (tgtIndex >= maxIndex) {
624 while ((ss <= tgtIndex) &&
625 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
626 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
627 (ss - maxIndex + 1) * vpdStep));
628 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
629 255 : tmpVal);
630 ss++;
631 }
632 }
633 }
634
635 if (eeprom_4k)
636 pdgain_boundary_default = 58;
637 else
638 pdgain_boundary_default = pPdGainBoundaries[i - 1];
639
640 while (i < AR5416_PD_GAINS_IN_MASK) {
641 pPdGainBoundaries[i] = pdgain_boundary_default;
642 i++;
643 }
644
645 while (k < AR5416_NUM_PDADC_VALUES) {
646 pPDADCValues[k] = pPDADCValues[k - 1];
647 k++;
648 }
649}
650
651int ath9k_hw_eeprom_init(struct ath_hw *ah)
652{
653 int status;
654
655 if (AR_SREV_9300_20_OR_LATER(ah))
656 ah->eep_ops = &eep_ar9300_ops;
657 else if (AR_SREV_9287(ah)) {
658 ah->eep_ops = &eep_ar9287_ops;
659 } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
660 ah->eep_ops = &eep_4k_ops;
661 } else {
662 ah->eep_ops = &eep_def_ops;
663 }
664
665 if (!ah->eep_ops->fill_eeprom(ah))
666 return -EIO;
667
668 status = ah->eep_ops->check_eeprom(ah);
669
670 return status;
671}