Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v3.1
  1/*
  2 * Simple MTD partitioning layer
  3 *
  4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License as published by
 10 * the Free Software Foundation; either version 2 of the License, or
 11 * (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 21 *
 22 */
 23
 24#include <linux/module.h>
 25#include <linux/types.h>
 26#include <linux/kernel.h>
 27#include <linux/slab.h>
 28#include <linux/list.h>
 29#include <linux/kmod.h>
 30#include <linux/mtd/mtd.h>
 31#include <linux/mtd/partitions.h>
 32#include <linux/err.h>
 33
 34#include "mtdcore.h"
 35
 36/* Our partition linked list */
 37static LIST_HEAD(mtd_partitions);
 38static DEFINE_MUTEX(mtd_partitions_mutex);
 39
 40/* Our partition node structure */
 41struct mtd_part {
 42	struct mtd_info mtd;
 43	struct mtd_info *master;
 44	uint64_t offset;
 45	struct list_head list;
 46};
 47
 48/*
 49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
 50 * the pointer to that structure with this macro.
 51 */
 52#define PART(x)  ((struct mtd_part *)(x))
 
 
 
 53
 54
 55/*
 56 * MTD methods which simply translate the effective address and pass through
 57 * to the _real_ device.
 58 */
 59
 60static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
 61		size_t *retlen, u_char *buf)
 62{
 63	struct mtd_part *part = PART(mtd);
 64	struct mtd_ecc_stats stats;
 65	int res;
 66
 67	stats = part->master->ecc_stats;
 68
 69	if (from >= mtd->size)
 70		len = 0;
 71	else if (from + len > mtd->size)
 72		len = mtd->size - from;
 73	res = part->master->read(part->master, from + part->offset,
 74				   len, retlen, buf);
 75	if (unlikely(res)) {
 76		if (res == -EUCLEAN)
 77			mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
 78		if (res == -EBADMSG)
 79			mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
 80	}
 81	return res;
 82}
 83
 84static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
 85		size_t *retlen, void **virt, resource_size_t *phys)
 86{
 87	struct mtd_part *part = PART(mtd);
 88	if (from >= mtd->size)
 89		len = 0;
 90	else if (from + len > mtd->size)
 91		len = mtd->size - from;
 92	return part->master->point (part->master, from + part->offset,
 93				    len, retlen, virt, phys);
 94}
 95
 96static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
 97{
 98	struct mtd_part *part = PART(mtd);
 99
100	part->master->unpoint(part->master, from + part->offset, len);
101}
102
103static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
104					    unsigned long len,
105					    unsigned long offset,
106					    unsigned long flags)
107{
108	struct mtd_part *part = PART(mtd);
109
110	offset += part->offset;
111	return part->master->get_unmapped_area(part->master, len, offset,
112					       flags);
113}
114
115static int part_read_oob(struct mtd_info *mtd, loff_t from,
116		struct mtd_oob_ops *ops)
117{
118	struct mtd_part *part = PART(mtd);
119	int res;
120
121	if (from >= mtd->size)
122		return -EINVAL;
123	if (ops->datbuf && from + ops->len > mtd->size)
124		return -EINVAL;
125
126	/*
127	 * If OOB is also requested, make sure that we do not read past the end
128	 * of this partition.
129	 */
130	if (ops->oobbuf) {
131		size_t len, pages;
132
133		if (ops->mode == MTD_OOB_AUTO)
134			len = mtd->oobavail;
135		else
136			len = mtd->oobsize;
137		pages = mtd_div_by_ws(mtd->size, mtd);
138		pages -= mtd_div_by_ws(from, mtd);
139		if (ops->ooboffs + ops->ooblen > pages * len)
140			return -EINVAL;
141	}
142
143	res = part->master->read_oob(part->master, from + part->offset, ops);
144	if (unlikely(res)) {
145		if (res == -EUCLEAN)
146			mtd->ecc_stats.corrected++;
147		if (res == -EBADMSG)
148			mtd->ecc_stats.failed++;
149	}
150	return res;
151}
152
153static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
154		size_t len, size_t *retlen, u_char *buf)
155{
156	struct mtd_part *part = PART(mtd);
157	return part->master->read_user_prot_reg(part->master, from,
158					len, retlen, buf);
159}
160
161static int part_get_user_prot_info(struct mtd_info *mtd,
162		struct otp_info *buf, size_t len)
163{
164	struct mtd_part *part = PART(mtd);
165	return part->master->get_user_prot_info(part->master, buf, len);
 
166}
167
168static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
169		size_t len, size_t *retlen, u_char *buf)
170{
171	struct mtd_part *part = PART(mtd);
172	return part->master->read_fact_prot_reg(part->master, from,
173					len, retlen, buf);
174}
175
176static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
177		size_t len)
178{
179	struct mtd_part *part = PART(mtd);
180	return part->master->get_fact_prot_info(part->master, buf, len);
 
181}
182
183static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
184		size_t *retlen, const u_char *buf)
185{
186	struct mtd_part *part = PART(mtd);
187	if (!(mtd->flags & MTD_WRITEABLE))
188		return -EROFS;
189	if (to >= mtd->size)
190		len = 0;
191	else if (to + len > mtd->size)
192		len = mtd->size - to;
193	return part->master->write(part->master, to + part->offset,
194				    len, retlen, buf);
195}
196
197static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
198		size_t *retlen, const u_char *buf)
199{
200	struct mtd_part *part = PART(mtd);
201	if (!(mtd->flags & MTD_WRITEABLE))
202		return -EROFS;
203	if (to >= mtd->size)
204		len = 0;
205	else if (to + len > mtd->size)
206		len = mtd->size - to;
207	return part->master->panic_write(part->master, to + part->offset,
208				    len, retlen, buf);
209}
210
211static int part_write_oob(struct mtd_info *mtd, loff_t to,
212		struct mtd_oob_ops *ops)
213{
214	struct mtd_part *part = PART(mtd);
215
216	if (!(mtd->flags & MTD_WRITEABLE))
217		return -EROFS;
218
219	if (to >= mtd->size)
220		return -EINVAL;
221	if (ops->datbuf && to + ops->len > mtd->size)
222		return -EINVAL;
223	return part->master->write_oob(part->master, to + part->offset, ops);
224}
225
226static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
227		size_t len, size_t *retlen, u_char *buf)
228{
229	struct mtd_part *part = PART(mtd);
230	return part->master->write_user_prot_reg(part->master, from,
231					len, retlen, buf);
232}
233
234static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
235		size_t len)
236{
237	struct mtd_part *part = PART(mtd);
238	return part->master->lock_user_prot_reg(part->master, from, len);
239}
240
241static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
242		unsigned long count, loff_t to, size_t *retlen)
243{
244	struct mtd_part *part = PART(mtd);
245	if (!(mtd->flags & MTD_WRITEABLE))
246		return -EROFS;
247	return part->master->writev(part->master, vecs, count,
248					to + part->offset, retlen);
249}
250
251static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
252{
253	struct mtd_part *part = PART(mtd);
254	int ret;
255	if (!(mtd->flags & MTD_WRITEABLE))
256		return -EROFS;
257	if (instr->addr >= mtd->size)
258		return -EINVAL;
259	instr->addr += part->offset;
260	ret = part->master->erase(part->master, instr);
261	if (ret) {
262		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
263			instr->fail_addr -= part->offset;
264		instr->addr -= part->offset;
265	}
266	return ret;
267}
268
269void mtd_erase_callback(struct erase_info *instr)
270{
271	if (instr->mtd->erase == part_erase) {
272		struct mtd_part *part = PART(instr->mtd);
273
274		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
275			instr->fail_addr -= part->offset;
276		instr->addr -= part->offset;
277	}
278	if (instr->callback)
279		instr->callback(instr);
280}
281EXPORT_SYMBOL_GPL(mtd_erase_callback);
282
283static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
284{
285	struct mtd_part *part = PART(mtd);
286	if ((len + ofs) > mtd->size)
287		return -EINVAL;
288	return part->master->lock(part->master, ofs + part->offset, len);
289}
290
291static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
292{
293	struct mtd_part *part = PART(mtd);
294	if ((len + ofs) > mtd->size)
295		return -EINVAL;
296	return part->master->unlock(part->master, ofs + part->offset, len);
297}
298
299static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
300{
301	struct mtd_part *part = PART(mtd);
302	if ((len + ofs) > mtd->size)
303		return -EINVAL;
304	return part->master->is_locked(part->master, ofs + part->offset, len);
305}
306
307static void part_sync(struct mtd_info *mtd)
308{
309	struct mtd_part *part = PART(mtd);
310	part->master->sync(part->master);
311}
312
313static int part_suspend(struct mtd_info *mtd)
314{
315	struct mtd_part *part = PART(mtd);
316	return part->master->suspend(part->master);
317}
318
319static void part_resume(struct mtd_info *mtd)
320{
321	struct mtd_part *part = PART(mtd);
322	part->master->resume(part->master);
 
 
 
 
 
 
 
323}
324
325static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
326{
327	struct mtd_part *part = PART(mtd);
328	if (ofs >= mtd->size)
329		return -EINVAL;
330	ofs += part->offset;
331	return part->master->block_isbad(part->master, ofs);
332}
333
334static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
335{
336	struct mtd_part *part = PART(mtd);
337	int res;
338
339	if (!(mtd->flags & MTD_WRITEABLE))
340		return -EROFS;
341	if (ofs >= mtd->size)
342		return -EINVAL;
343	ofs += part->offset;
344	res = part->master->block_markbad(part->master, ofs);
345	if (!res)
346		mtd->ecc_stats.badblocks++;
347	return res;
348}
349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350static inline void free_partition(struct mtd_part *p)
351{
352	kfree(p->mtd.name);
353	kfree(p);
354}
355
356/*
357 * This function unregisters and destroy all slave MTD objects which are
358 * attached to the given master MTD object.
359 */
360
361int del_mtd_partitions(struct mtd_info *master)
362{
363	struct mtd_part *slave, *next;
364	int ret, err = 0;
365
366	mutex_lock(&mtd_partitions_mutex);
367	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
368		if (slave->master == master) {
369			ret = del_mtd_device(&slave->mtd);
370			if (ret < 0) {
371				err = ret;
372				continue;
373			}
374			list_del(&slave->list);
375			free_partition(slave);
376		}
377	mutex_unlock(&mtd_partitions_mutex);
378
379	return err;
380}
381
382static struct mtd_part *allocate_partition(struct mtd_info *master,
383			const struct mtd_partition *part, int partno,
384			uint64_t cur_offset)
385{
386	struct mtd_part *slave;
387	char *name;
388
389	/* allocate the partition structure */
390	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
391	name = kstrdup(part->name, GFP_KERNEL);
392	if (!name || !slave) {
393		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
394		       master->name);
395		kfree(name);
396		kfree(slave);
397		return ERR_PTR(-ENOMEM);
398	}
399
400	/* set up the MTD object for this partition */
401	slave->mtd.type = master->type;
402	slave->mtd.flags = master->flags & ~part->mask_flags;
403	slave->mtd.size = part->size;
404	slave->mtd.writesize = master->writesize;
405	slave->mtd.writebufsize = master->writebufsize;
406	slave->mtd.oobsize = master->oobsize;
407	slave->mtd.oobavail = master->oobavail;
408	slave->mtd.subpage_sft = master->subpage_sft;
 
409
410	slave->mtd.name = name;
411	slave->mtd.owner = master->owner;
412	slave->mtd.backing_dev_info = master->backing_dev_info;
413
414	/* NOTE:  we don't arrange MTDs as a tree; it'd be error-prone
415	 * to have the same data be in two different partitions.
 
 
 
 
 
416	 */
417	slave->mtd.dev.parent = master->dev.parent;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
418
419	slave->mtd.read = part_read;
420	slave->mtd.write = part_write;
421
422	if (master->panic_write)
423		slave->mtd.panic_write = part_panic_write;
424
425	if (master->point && master->unpoint) {
426		slave->mtd.point = part_point;
427		slave->mtd.unpoint = part_unpoint;
428	}
429
430	if (master->get_unmapped_area)
431		slave->mtd.get_unmapped_area = part_get_unmapped_area;
432	if (master->read_oob)
433		slave->mtd.read_oob = part_read_oob;
434	if (master->write_oob)
435		slave->mtd.write_oob = part_write_oob;
436	if (master->read_user_prot_reg)
437		slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
438	if (master->read_fact_prot_reg)
439		slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
440	if (master->write_user_prot_reg)
441		slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
442	if (master->lock_user_prot_reg)
443		slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
444	if (master->get_user_prot_info)
445		slave->mtd.get_user_prot_info = part_get_user_prot_info;
446	if (master->get_fact_prot_info)
447		slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
448	if (master->sync)
449		slave->mtd.sync = part_sync;
450	if (!partno && !master->dev.class && master->suspend && master->resume) {
451			slave->mtd.suspend = part_suspend;
452			slave->mtd.resume = part_resume;
453	}
454	if (master->writev)
455		slave->mtd.writev = part_writev;
456	if (master->lock)
457		slave->mtd.lock = part_lock;
458	if (master->unlock)
459		slave->mtd.unlock = part_unlock;
460	if (master->is_locked)
461		slave->mtd.is_locked = part_is_locked;
462	if (master->block_isbad)
463		slave->mtd.block_isbad = part_block_isbad;
464	if (master->block_markbad)
465		slave->mtd.block_markbad = part_block_markbad;
466	slave->mtd.erase = part_erase;
467	slave->master = master;
468	slave->offset = part->offset;
469
470	if (slave->offset == MTDPART_OFS_APPEND)
471		slave->offset = cur_offset;
472	if (slave->offset == MTDPART_OFS_NXTBLK) {
473		slave->offset = cur_offset;
474		if (mtd_mod_by_eb(cur_offset, master) != 0) {
475			/* Round up to next erasesize */
476			slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
477			printk(KERN_NOTICE "Moving partition %d: "
478			       "0x%012llx -> 0x%012llx\n", partno,
479			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
480		}
481	}
 
 
 
 
 
 
 
 
 
 
 
 
 
482	if (slave->mtd.size == MTDPART_SIZ_FULL)
483		slave->mtd.size = master->size - slave->offset;
484
485	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
486		(unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
487
488	/* let's do some sanity checks */
489	if (slave->offset >= master->size) {
490		/* let's register it anyway to preserve ordering */
491		slave->offset = 0;
492		slave->mtd.size = 0;
493		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
494			part->name);
495		goto out_register;
496	}
497	if (slave->offset + slave->mtd.size > master->size) {
498		slave->mtd.size = master->size - slave->offset;
499		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
500			part->name, master->name, (unsigned long long)slave->mtd.size);
501	}
502	if (master->numeraseregions > 1) {
503		/* Deal with variable erase size stuff */
504		int i, max = master->numeraseregions;
505		u64 end = slave->offset + slave->mtd.size;
506		struct mtd_erase_region_info *regions = master->eraseregions;
507
508		/* Find the first erase regions which is part of this
509		 * partition. */
510		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
511			;
512		/* The loop searched for the region _behind_ the first one */
513		if (i > 0)
514			i--;
515
516		/* Pick biggest erasesize */
517		for (; i < max && regions[i].offset < end; i++) {
518			if (slave->mtd.erasesize < regions[i].erasesize) {
519				slave->mtd.erasesize = regions[i].erasesize;
520			}
521		}
522		BUG_ON(slave->mtd.erasesize == 0);
523	} else {
524		/* Single erase size */
525		slave->mtd.erasesize = master->erasesize;
526	}
527
528	if ((slave->mtd.flags & MTD_WRITEABLE) &&
529	    mtd_mod_by_eb(slave->offset, &slave->mtd)) {
530		/* Doesn't start on a boundary of major erase size */
531		/* FIXME: Let it be writable if it is on a boundary of
532		 * _minor_ erase size though */
533		slave->mtd.flags &= ~MTD_WRITEABLE;
534		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
535			part->name);
536	}
537	if ((slave->mtd.flags & MTD_WRITEABLE) &&
538	    mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
539		slave->mtd.flags &= ~MTD_WRITEABLE;
540		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
541			part->name);
542	}
543
544	slave->mtd.ecclayout = master->ecclayout;
545	if (master->block_isbad) {
 
 
 
 
546		uint64_t offs = 0;
547
548		while (offs < slave->mtd.size) {
549			if (master->block_isbad(master,
550						offs + slave->offset))
 
551				slave->mtd.ecc_stats.badblocks++;
552			offs += slave->mtd.erasesize;
553		}
554	}
555
556out_register:
557	return slave;
558}
559
560int mtd_add_partition(struct mtd_info *master, char *name,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
561		      long long offset, long long length)
562{
563	struct mtd_partition part;
564	struct mtd_part *p, *new;
565	uint64_t start, end;
566	int ret = 0;
567
568	/* the direct offset is expected */
569	if (offset == MTDPART_OFS_APPEND ||
570	    offset == MTDPART_OFS_NXTBLK)
571		return -EINVAL;
572
573	if (length == MTDPART_SIZ_FULL)
574		length = master->size - offset;
575
576	if (length <= 0)
577		return -EINVAL;
578
 
579	part.name = name;
580	part.size = length;
581	part.offset = offset;
582	part.mask_flags = 0;
583	part.ecclayout = NULL;
584
585	new = allocate_partition(master, &part, -1, offset);
586	if (IS_ERR(new))
587		return PTR_ERR(new);
588
589	start = offset;
590	end = offset + length;
591
592	mutex_lock(&mtd_partitions_mutex);
593	list_for_each_entry(p, &mtd_partitions, list)
594		if (p->master == master) {
595			if ((start >= p->offset) &&
596			    (start < (p->offset + p->mtd.size)))
597				goto err_inv;
598
599			if ((end >= p->offset) &&
600			    (end < (p->offset + p->mtd.size)))
601				goto err_inv;
602		}
603
604	list_add(&new->list, &mtd_partitions);
605	mutex_unlock(&mtd_partitions_mutex);
606
607	add_mtd_device(&new->mtd);
608
 
 
609	return ret;
610err_inv:
611	mutex_unlock(&mtd_partitions_mutex);
612	free_partition(new);
613	return -EINVAL;
614}
615EXPORT_SYMBOL_GPL(mtd_add_partition);
616
617int mtd_del_partition(struct mtd_info *master, int partno)
618{
619	struct mtd_part *slave, *next;
620	int ret = -EINVAL;
621
622	mutex_lock(&mtd_partitions_mutex);
623	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
624		if ((slave->master == master) &&
625		    (slave->mtd.index == partno)) {
 
 
626			ret = del_mtd_device(&slave->mtd);
627			if (ret < 0)
628				break;
629
630			list_del(&slave->list);
631			free_partition(slave);
632			break;
633		}
634	mutex_unlock(&mtd_partitions_mutex);
635
636	return ret;
637}
638EXPORT_SYMBOL_GPL(mtd_del_partition);
639
640/*
641 * This function, given a master MTD object and a partition table, creates
642 * and registers slave MTD objects which are bound to the master according to
643 * the partition definitions.
644 *
645 * We don't register the master, or expect the caller to have done so,
646 * for reasons of data integrity.
647 */
648
649int add_mtd_partitions(struct mtd_info *master,
650		       const struct mtd_partition *parts,
651		       int nbparts)
652{
653	struct mtd_part *slave;
654	uint64_t cur_offset = 0;
655	int i;
656
657	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
658
659	for (i = 0; i < nbparts; i++) {
660		slave = allocate_partition(master, parts + i, i, cur_offset);
661		if (IS_ERR(slave))
 
662			return PTR_ERR(slave);
 
663
664		mutex_lock(&mtd_partitions_mutex);
665		list_add(&slave->list, &mtd_partitions);
666		mutex_unlock(&mtd_partitions_mutex);
667
668		add_mtd_device(&slave->mtd);
 
669
670		cur_offset = slave->offset + slave->mtd.size;
671	}
672
673	return 0;
674}
675
676static DEFINE_SPINLOCK(part_parser_lock);
677static LIST_HEAD(part_parsers);
678
679static struct mtd_part_parser *get_partition_parser(const char *name)
680{
681	struct mtd_part_parser *p, *ret = NULL;
682
683	spin_lock(&part_parser_lock);
684
685	list_for_each_entry(p, &part_parsers, list)
686		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
687			ret = p;
688			break;
689		}
690
691	spin_unlock(&part_parser_lock);
692
693	return ret;
694}
695
696int register_mtd_parser(struct mtd_part_parser *p)
 
 
 
 
 
 
 
 
 
 
697{
 
 
 
 
 
 
 
 
 
 
698	spin_lock(&part_parser_lock);
699	list_add(&p->list, &part_parsers);
700	spin_unlock(&part_parser_lock);
701
702	return 0;
703}
704EXPORT_SYMBOL_GPL(register_mtd_parser);
705
706int deregister_mtd_parser(struct mtd_part_parser *p)
707{
708	spin_lock(&part_parser_lock);
709	list_del(&p->list);
710	spin_unlock(&part_parser_lock);
711	return 0;
712}
713EXPORT_SYMBOL_GPL(deregister_mtd_parser);
714
715int parse_mtd_partitions(struct mtd_info *master, const char **types,
716			 struct mtd_partition **pparts, unsigned long origin)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
717{
718	struct mtd_part_parser *parser;
719	int ret = 0;
 
 
 
720
721	for ( ; ret <= 0 && *types; types++) {
722		parser = get_partition_parser(*types);
 
723		if (!parser && !request_module("%s", *types))
724				parser = get_partition_parser(*types);
 
 
725		if (!parser)
726			continue;
727		ret = (*parser->parse_fn)(master, pparts, origin);
 
 
728		if (ret > 0) {
729			printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
730			       ret, parser->name, master->name);
 
 
 
731		}
732		put_partition_parser(parser);
 
 
 
 
 
 
733	}
734	return ret;
735}
736EXPORT_SYMBOL_GPL(parse_mtd_partitions);
737
738int mtd_is_partition(struct mtd_info *mtd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
739{
740	struct mtd_part *part;
741	int ispart = 0;
742
743	mutex_lock(&mtd_partitions_mutex);
744	list_for_each_entry(part, &mtd_partitions, list)
745		if (&part->mtd == mtd) {
746			ispart = 1;
747			break;
748		}
749	mutex_unlock(&mtd_partitions_mutex);
750
751	return ispart;
752}
753EXPORT_SYMBOL_GPL(mtd_is_partition);
v4.10.11
  1/*
  2 * Simple MTD partitioning layer
  3 *
  4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License as published by
 10 * the Free Software Foundation; either version 2 of the License, or
 11 * (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 21 *
 22 */
 23
 24#include <linux/module.h>
 25#include <linux/types.h>
 26#include <linux/kernel.h>
 27#include <linux/slab.h>
 28#include <linux/list.h>
 29#include <linux/kmod.h>
 30#include <linux/mtd/mtd.h>
 31#include <linux/mtd/partitions.h>
 32#include <linux/err.h>
 33
 34#include "mtdcore.h"
 35
 36/* Our partition linked list */
 37static LIST_HEAD(mtd_partitions);
 38static DEFINE_MUTEX(mtd_partitions_mutex);
 39
 40/* Our partition node structure */
 41struct mtd_part {
 42	struct mtd_info mtd;
 43	struct mtd_info *master;
 44	uint64_t offset;
 45	struct list_head list;
 46};
 47
 48/*
 49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
 50 * the pointer to that structure.
 51 */
 52static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
 53{
 54	return container_of(mtd, struct mtd_part, mtd);
 55}
 56
 57
 58/*
 59 * MTD methods which simply translate the effective address and pass through
 60 * to the _real_ device.
 61 */
 62
 63static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
 64		size_t *retlen, u_char *buf)
 65{
 66	struct mtd_part *part = mtd_to_part(mtd);
 67	struct mtd_ecc_stats stats;
 68	int res;
 69
 70	stats = part->master->ecc_stats;
 71	res = part->master->_read(part->master, from + part->offset, len,
 72				  retlen, buf);
 73	if (unlikely(mtd_is_eccerr(res)))
 74		mtd->ecc_stats.failed +=
 75			part->master->ecc_stats.failed - stats.failed;
 76	else
 77		mtd->ecc_stats.corrected +=
 78			part->master->ecc_stats.corrected - stats.corrected;
 
 
 
 
 
 79	return res;
 80}
 81
 82static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
 83		size_t *retlen, void **virt, resource_size_t *phys)
 84{
 85	struct mtd_part *part = mtd_to_part(mtd);
 86
 87	return part->master->_point(part->master, from + part->offset, len,
 88				    retlen, virt, phys);
 
 
 
 89}
 90
 91static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
 92{
 93	struct mtd_part *part = mtd_to_part(mtd);
 94
 95	return part->master->_unpoint(part->master, from + part->offset, len);
 96}
 97
 98static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
 99					    unsigned long len,
100					    unsigned long offset,
101					    unsigned long flags)
102{
103	struct mtd_part *part = mtd_to_part(mtd);
104
105	offset += part->offset;
106	return part->master->_get_unmapped_area(part->master, len, offset,
107						flags);
108}
109
110static int part_read_oob(struct mtd_info *mtd, loff_t from,
111		struct mtd_oob_ops *ops)
112{
113	struct mtd_part *part = mtd_to_part(mtd);
114	int res;
115
116	if (from >= mtd->size)
117		return -EINVAL;
118	if (ops->datbuf && from + ops->len > mtd->size)
119		return -EINVAL;
120
121	/*
122	 * If OOB is also requested, make sure that we do not read past the end
123	 * of this partition.
124	 */
125	if (ops->oobbuf) {
126		size_t len, pages;
127
128		len = mtd_oobavail(mtd, ops);
 
 
 
129		pages = mtd_div_by_ws(mtd->size, mtd);
130		pages -= mtd_div_by_ws(from, mtd);
131		if (ops->ooboffs + ops->ooblen > pages * len)
132			return -EINVAL;
133	}
134
135	res = part->master->_read_oob(part->master, from + part->offset, ops);
136	if (unlikely(res)) {
137		if (mtd_is_bitflip(res))
138			mtd->ecc_stats.corrected++;
139		if (mtd_is_eccerr(res))
140			mtd->ecc_stats.failed++;
141	}
142	return res;
143}
144
145static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
146		size_t len, size_t *retlen, u_char *buf)
147{
148	struct mtd_part *part = mtd_to_part(mtd);
149	return part->master->_read_user_prot_reg(part->master, from, len,
150						 retlen, buf);
151}
152
153static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
154				   size_t *retlen, struct otp_info *buf)
155{
156	struct mtd_part *part = mtd_to_part(mtd);
157	return part->master->_get_user_prot_info(part->master, len, retlen,
158						 buf);
159}
160
161static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
162		size_t len, size_t *retlen, u_char *buf)
163{
164	struct mtd_part *part = mtd_to_part(mtd);
165	return part->master->_read_fact_prot_reg(part->master, from, len,
166						 retlen, buf);
167}
168
169static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
170				   size_t *retlen, struct otp_info *buf)
171{
172	struct mtd_part *part = mtd_to_part(mtd);
173	return part->master->_get_fact_prot_info(part->master, len, retlen,
174						 buf);
175}
176
177static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
178		size_t *retlen, const u_char *buf)
179{
180	struct mtd_part *part = mtd_to_part(mtd);
181	return part->master->_write(part->master, to + part->offset, len,
182				    retlen, buf);
 
 
 
 
 
 
183}
184
185static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
186		size_t *retlen, const u_char *buf)
187{
188	struct mtd_part *part = mtd_to_part(mtd);
189	return part->master->_panic_write(part->master, to + part->offset, len,
190					  retlen, buf);
 
 
 
 
 
 
191}
192
193static int part_write_oob(struct mtd_info *mtd, loff_t to,
194		struct mtd_oob_ops *ops)
195{
196	struct mtd_part *part = mtd_to_part(mtd);
 
 
 
197
198	if (to >= mtd->size)
199		return -EINVAL;
200	if (ops->datbuf && to + ops->len > mtd->size)
201		return -EINVAL;
202	return part->master->_write_oob(part->master, to + part->offset, ops);
203}
204
205static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
206		size_t len, size_t *retlen, u_char *buf)
207{
208	struct mtd_part *part = mtd_to_part(mtd);
209	return part->master->_write_user_prot_reg(part->master, from, len,
210						  retlen, buf);
211}
212
213static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
214		size_t len)
215{
216	struct mtd_part *part = mtd_to_part(mtd);
217	return part->master->_lock_user_prot_reg(part->master, from, len);
218}
219
220static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
221		unsigned long count, loff_t to, size_t *retlen)
222{
223	struct mtd_part *part = mtd_to_part(mtd);
224	return part->master->_writev(part->master, vecs, count,
225				     to + part->offset, retlen);
 
 
226}
227
228static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
229{
230	struct mtd_part *part = mtd_to_part(mtd);
231	int ret;
232
 
 
 
233	instr->addr += part->offset;
234	ret = part->master->_erase(part->master, instr);
235	if (ret) {
236		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
237			instr->fail_addr -= part->offset;
238		instr->addr -= part->offset;
239	}
240	return ret;
241}
242
243void mtd_erase_callback(struct erase_info *instr)
244{
245	if (instr->mtd->_erase == part_erase) {
246		struct mtd_part *part = mtd_to_part(instr->mtd);
247
248		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
249			instr->fail_addr -= part->offset;
250		instr->addr -= part->offset;
251	}
252	if (instr->callback)
253		instr->callback(instr);
254}
255EXPORT_SYMBOL_GPL(mtd_erase_callback);
256
257static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
258{
259	struct mtd_part *part = mtd_to_part(mtd);
260	return part->master->_lock(part->master, ofs + part->offset, len);
 
 
261}
262
263static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
264{
265	struct mtd_part *part = mtd_to_part(mtd);
266	return part->master->_unlock(part->master, ofs + part->offset, len);
 
 
267}
268
269static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
270{
271	struct mtd_part *part = mtd_to_part(mtd);
272	return part->master->_is_locked(part->master, ofs + part->offset, len);
 
 
273}
274
275static void part_sync(struct mtd_info *mtd)
276{
277	struct mtd_part *part = mtd_to_part(mtd);
278	part->master->_sync(part->master);
279}
280
281static int part_suspend(struct mtd_info *mtd)
282{
283	struct mtd_part *part = mtd_to_part(mtd);
284	return part->master->_suspend(part->master);
285}
286
287static void part_resume(struct mtd_info *mtd)
288{
289	struct mtd_part *part = mtd_to_part(mtd);
290	part->master->_resume(part->master);
291}
292
293static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
294{
295	struct mtd_part *part = mtd_to_part(mtd);
296	ofs += part->offset;
297	return part->master->_block_isreserved(part->master, ofs);
298}
299
300static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
301{
302	struct mtd_part *part = mtd_to_part(mtd);
 
 
303	ofs += part->offset;
304	return part->master->_block_isbad(part->master, ofs);
305}
306
307static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
308{
309	struct mtd_part *part = mtd_to_part(mtd);
310	int res;
311
 
 
 
 
312	ofs += part->offset;
313	res = part->master->_block_markbad(part->master, ofs);
314	if (!res)
315		mtd->ecc_stats.badblocks++;
316	return res;
317}
318
319static int part_get_device(struct mtd_info *mtd)
320{
321	struct mtd_part *part = mtd_to_part(mtd);
322	return part->master->_get_device(part->master);
323}
324
325static void part_put_device(struct mtd_info *mtd)
326{
327	struct mtd_part *part = mtd_to_part(mtd);
328	part->master->_put_device(part->master);
329}
330
331static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
332			      struct mtd_oob_region *oobregion)
333{
334	struct mtd_part *part = mtd_to_part(mtd);
335
336	return mtd_ooblayout_ecc(part->master, section, oobregion);
337}
338
339static int part_ooblayout_free(struct mtd_info *mtd, int section,
340			       struct mtd_oob_region *oobregion)
341{
342	struct mtd_part *part = mtd_to_part(mtd);
343
344	return mtd_ooblayout_free(part->master, section, oobregion);
345}
346
347static const struct mtd_ooblayout_ops part_ooblayout_ops = {
348	.ecc = part_ooblayout_ecc,
349	.free = part_ooblayout_free,
350};
351
352static inline void free_partition(struct mtd_part *p)
353{
354	kfree(p->mtd.name);
355	kfree(p);
356}
357
358/*
359 * This function unregisters and destroy all slave MTD objects which are
360 * attached to the given master MTD object.
361 */
362
363int del_mtd_partitions(struct mtd_info *master)
364{
365	struct mtd_part *slave, *next;
366	int ret, err = 0;
367
368	mutex_lock(&mtd_partitions_mutex);
369	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
370		if (slave->master == master) {
371			ret = del_mtd_device(&slave->mtd);
372			if (ret < 0) {
373				err = ret;
374				continue;
375			}
376			list_del(&slave->list);
377			free_partition(slave);
378		}
379	mutex_unlock(&mtd_partitions_mutex);
380
381	return err;
382}
383
384static struct mtd_part *allocate_partition(struct mtd_info *master,
385			const struct mtd_partition *part, int partno,
386			uint64_t cur_offset)
387{
388	struct mtd_part *slave;
389	char *name;
390
391	/* allocate the partition structure */
392	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
393	name = kstrdup(part->name, GFP_KERNEL);
394	if (!name || !slave) {
395		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
396		       master->name);
397		kfree(name);
398		kfree(slave);
399		return ERR_PTR(-ENOMEM);
400	}
401
402	/* set up the MTD object for this partition */
403	slave->mtd.type = master->type;
404	slave->mtd.flags = master->flags & ~part->mask_flags;
405	slave->mtd.size = part->size;
406	slave->mtd.writesize = master->writesize;
407	slave->mtd.writebufsize = master->writebufsize;
408	slave->mtd.oobsize = master->oobsize;
409	slave->mtd.oobavail = master->oobavail;
410	slave->mtd.subpage_sft = master->subpage_sft;
411	slave->mtd.pairing = master->pairing;
412
413	slave->mtd.name = name;
414	slave->mtd.owner = master->owner;
 
415
416	/* NOTE: Historically, we didn't arrange MTDs as a tree out of
417	 * concern for showing the same data in multiple partitions.
418	 * However, it is very useful to have the master node present,
419	 * so the MTD_PARTITIONED_MASTER option allows that. The master
420	 * will have device nodes etc only if this is set, so make the
421	 * parent conditional on that option. Note, this is a way to
422	 * distinguish between the master and the partition in sysfs.
423	 */
424	slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) ?
425				&master->dev :
426				master->dev.parent;
427
428	slave->mtd._read = part_read;
429	slave->mtd._write = part_write;
430
431	if (master->_panic_write)
432		slave->mtd._panic_write = part_panic_write;
433
434	if (master->_point && master->_unpoint) {
435		slave->mtd._point = part_point;
436		slave->mtd._unpoint = part_unpoint;
437	}
438
439	if (master->_get_unmapped_area)
440		slave->mtd._get_unmapped_area = part_get_unmapped_area;
441	if (master->_read_oob)
442		slave->mtd._read_oob = part_read_oob;
443	if (master->_write_oob)
444		slave->mtd._write_oob = part_write_oob;
445	if (master->_read_user_prot_reg)
446		slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
447	if (master->_read_fact_prot_reg)
448		slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
449	if (master->_write_user_prot_reg)
450		slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
451	if (master->_lock_user_prot_reg)
452		slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
453	if (master->_get_user_prot_info)
454		slave->mtd._get_user_prot_info = part_get_user_prot_info;
455	if (master->_get_fact_prot_info)
456		slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
457	if (master->_sync)
458		slave->mtd._sync = part_sync;
459	if (!partno && !master->dev.class && master->_suspend &&
460	    master->_resume) {
461			slave->mtd._suspend = part_suspend;
462			slave->mtd._resume = part_resume;
463	}
464	if (master->_writev)
465		slave->mtd._writev = part_writev;
466	if (master->_lock)
467		slave->mtd._lock = part_lock;
468	if (master->_unlock)
469		slave->mtd._unlock = part_unlock;
470	if (master->_is_locked)
471		slave->mtd._is_locked = part_is_locked;
472	if (master->_block_isreserved)
473		slave->mtd._block_isreserved = part_block_isreserved;
474	if (master->_block_isbad)
475		slave->mtd._block_isbad = part_block_isbad;
476	if (master->_block_markbad)
477		slave->mtd._block_markbad = part_block_markbad;
478
479	if (master->_get_device)
480		slave->mtd._get_device = part_get_device;
481	if (master->_put_device)
482		slave->mtd._put_device = part_put_device;
483
484	slave->mtd._erase = part_erase;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485	slave->master = master;
486	slave->offset = part->offset;
487
488	if (slave->offset == MTDPART_OFS_APPEND)
489		slave->offset = cur_offset;
490	if (slave->offset == MTDPART_OFS_NXTBLK) {
491		slave->offset = cur_offset;
492		if (mtd_mod_by_eb(cur_offset, master) != 0) {
493			/* Round up to next erasesize */
494			slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
495			printk(KERN_NOTICE "Moving partition %d: "
496			       "0x%012llx -> 0x%012llx\n", partno,
497			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
498		}
499	}
500	if (slave->offset == MTDPART_OFS_RETAIN) {
501		slave->offset = cur_offset;
502		if (master->size - slave->offset >= slave->mtd.size) {
503			slave->mtd.size = master->size - slave->offset
504							- slave->mtd.size;
505		} else {
506			printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
507				part->name, master->size - slave->offset,
508				slave->mtd.size);
509			/* register to preserve ordering */
510			goto out_register;
511		}
512	}
513	if (slave->mtd.size == MTDPART_SIZ_FULL)
514		slave->mtd.size = master->size - slave->offset;
515
516	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
517		(unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
518
519	/* let's do some sanity checks */
520	if (slave->offset >= master->size) {
521		/* let's register it anyway to preserve ordering */
522		slave->offset = 0;
523		slave->mtd.size = 0;
524		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
525			part->name);
526		goto out_register;
527	}
528	if (slave->offset + slave->mtd.size > master->size) {
529		slave->mtd.size = master->size - slave->offset;
530		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
531			part->name, master->name, (unsigned long long)slave->mtd.size);
532	}
533	if (master->numeraseregions > 1) {
534		/* Deal with variable erase size stuff */
535		int i, max = master->numeraseregions;
536		u64 end = slave->offset + slave->mtd.size;
537		struct mtd_erase_region_info *regions = master->eraseregions;
538
539		/* Find the first erase regions which is part of this
540		 * partition. */
541		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
542			;
543		/* The loop searched for the region _behind_ the first one */
544		if (i > 0)
545			i--;
546
547		/* Pick biggest erasesize */
548		for (; i < max && regions[i].offset < end; i++) {
549			if (slave->mtd.erasesize < regions[i].erasesize) {
550				slave->mtd.erasesize = regions[i].erasesize;
551			}
552		}
553		BUG_ON(slave->mtd.erasesize == 0);
554	} else {
555		/* Single erase size */
556		slave->mtd.erasesize = master->erasesize;
557	}
558
559	if ((slave->mtd.flags & MTD_WRITEABLE) &&
560	    mtd_mod_by_eb(slave->offset, &slave->mtd)) {
561		/* Doesn't start on a boundary of major erase size */
562		/* FIXME: Let it be writable if it is on a boundary of
563		 * _minor_ erase size though */
564		slave->mtd.flags &= ~MTD_WRITEABLE;
565		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
566			part->name);
567	}
568	if ((slave->mtd.flags & MTD_WRITEABLE) &&
569	    mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
570		slave->mtd.flags &= ~MTD_WRITEABLE;
571		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
572			part->name);
573	}
574
575	mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
576	slave->mtd.ecc_step_size = master->ecc_step_size;
577	slave->mtd.ecc_strength = master->ecc_strength;
578	slave->mtd.bitflip_threshold = master->bitflip_threshold;
579
580	if (master->_block_isbad) {
581		uint64_t offs = 0;
582
583		while (offs < slave->mtd.size) {
584			if (mtd_block_isreserved(master, offs + slave->offset))
585				slave->mtd.ecc_stats.bbtblocks++;
586			else if (mtd_block_isbad(master, offs + slave->offset))
587				slave->mtd.ecc_stats.badblocks++;
588			offs += slave->mtd.erasesize;
589		}
590	}
591
592out_register:
593	return slave;
594}
595
596static ssize_t mtd_partition_offset_show(struct device *dev,
597		struct device_attribute *attr, char *buf)
598{
599	struct mtd_info *mtd = dev_get_drvdata(dev);
600	struct mtd_part *part = mtd_to_part(mtd);
601	return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
602}
603
604static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
605
606static const struct attribute *mtd_partition_attrs[] = {
607	&dev_attr_offset.attr,
608	NULL
609};
610
611static int mtd_add_partition_attrs(struct mtd_part *new)
612{
613	int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
614	if (ret)
615		printk(KERN_WARNING
616		       "mtd: failed to create partition attrs, err=%d\n", ret);
617	return ret;
618}
619
620int mtd_add_partition(struct mtd_info *master, const char *name,
621		      long long offset, long long length)
622{
623	struct mtd_partition part;
624	struct mtd_part *new;
 
625	int ret = 0;
626
627	/* the direct offset is expected */
628	if (offset == MTDPART_OFS_APPEND ||
629	    offset == MTDPART_OFS_NXTBLK)
630		return -EINVAL;
631
632	if (length == MTDPART_SIZ_FULL)
633		length = master->size - offset;
634
635	if (length <= 0)
636		return -EINVAL;
637
638	memset(&part, 0, sizeof(part));
639	part.name = name;
640	part.size = length;
641	part.offset = offset;
 
 
642
643	new = allocate_partition(master, &part, -1, offset);
644	if (IS_ERR(new))
645		return PTR_ERR(new);
646
 
 
 
647	mutex_lock(&mtd_partitions_mutex);
 
 
 
 
 
 
 
 
 
 
 
648	list_add(&new->list, &mtd_partitions);
649	mutex_unlock(&mtd_partitions_mutex);
650
651	add_mtd_device(&new->mtd);
652
653	mtd_add_partition_attrs(new);
654
655	return ret;
 
 
 
 
656}
657EXPORT_SYMBOL_GPL(mtd_add_partition);
658
659int mtd_del_partition(struct mtd_info *master, int partno)
660{
661	struct mtd_part *slave, *next;
662	int ret = -EINVAL;
663
664	mutex_lock(&mtd_partitions_mutex);
665	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
666		if ((slave->master == master) &&
667		    (slave->mtd.index == partno)) {
668			sysfs_remove_files(&slave->mtd.dev.kobj,
669					   mtd_partition_attrs);
670			ret = del_mtd_device(&slave->mtd);
671			if (ret < 0)
672				break;
673
674			list_del(&slave->list);
675			free_partition(slave);
676			break;
677		}
678	mutex_unlock(&mtd_partitions_mutex);
679
680	return ret;
681}
682EXPORT_SYMBOL_GPL(mtd_del_partition);
683
684/*
685 * This function, given a master MTD object and a partition table, creates
686 * and registers slave MTD objects which are bound to the master according to
687 * the partition definitions.
688 *
689 * For historical reasons, this function's caller only registers the master
690 * if the MTD_PARTITIONED_MASTER config option is set.
691 */
692
693int add_mtd_partitions(struct mtd_info *master,
694		       const struct mtd_partition *parts,
695		       int nbparts)
696{
697	struct mtd_part *slave;
698	uint64_t cur_offset = 0;
699	int i;
700
701	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
702
703	for (i = 0; i < nbparts; i++) {
704		slave = allocate_partition(master, parts + i, i, cur_offset);
705		if (IS_ERR(slave)) {
706			del_mtd_partitions(master);
707			return PTR_ERR(slave);
708		}
709
710		mutex_lock(&mtd_partitions_mutex);
711		list_add(&slave->list, &mtd_partitions);
712		mutex_unlock(&mtd_partitions_mutex);
713
714		add_mtd_device(&slave->mtd);
715		mtd_add_partition_attrs(slave);
716
717		cur_offset = slave->offset + slave->mtd.size;
718	}
719
720	return 0;
721}
722
723static DEFINE_SPINLOCK(part_parser_lock);
724static LIST_HEAD(part_parsers);
725
726static struct mtd_part_parser *mtd_part_parser_get(const char *name)
727{
728	struct mtd_part_parser *p, *ret = NULL;
729
730	spin_lock(&part_parser_lock);
731
732	list_for_each_entry(p, &part_parsers, list)
733		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
734			ret = p;
735			break;
736		}
737
738	spin_unlock(&part_parser_lock);
739
740	return ret;
741}
742
743static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
744{
745	module_put(p->owner);
746}
747
748/*
749 * Many partition parsers just expected the core to kfree() all their data in
750 * one chunk. Do that by default.
751 */
752static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
753					    int nr_parts)
754{
755	kfree(pparts);
756}
757
758int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
759{
760	p->owner = owner;
761
762	if (!p->cleanup)
763		p->cleanup = &mtd_part_parser_cleanup_default;
764
765	spin_lock(&part_parser_lock);
766	list_add(&p->list, &part_parsers);
767	spin_unlock(&part_parser_lock);
768
769	return 0;
770}
771EXPORT_SYMBOL_GPL(__register_mtd_parser);
772
773void deregister_mtd_parser(struct mtd_part_parser *p)
774{
775	spin_lock(&part_parser_lock);
776	list_del(&p->list);
777	spin_unlock(&part_parser_lock);
 
778}
779EXPORT_SYMBOL_GPL(deregister_mtd_parser);
780
781/*
782 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
783 * are changing this array!
784 */
785static const char * const default_mtd_part_types[] = {
786	"cmdlinepart",
787	"ofpart",
788	NULL
789};
790
791/**
792 * parse_mtd_partitions - parse MTD partitions
793 * @master: the master partition (describes whole MTD device)
794 * @types: names of partition parsers to try or %NULL
795 * @pparts: info about partitions found is returned here
796 * @data: MTD partition parser-specific data
797 *
798 * This function tries to find partition on MTD device @master. It uses MTD
799 * partition parsers, specified in @types. However, if @types is %NULL, then
800 * the default list of parsers is used. The default list contains only the
801 * "cmdlinepart" and "ofpart" parsers ATM.
802 * Note: If there are more then one parser in @types, the kernel only takes the
803 * partitions parsed out by the first parser.
804 *
805 * This function may return:
806 * o a negative error code in case of failure
807 * o zero otherwise, and @pparts will describe the partitions, number of
808 *   partitions, and the parser which parsed them. Caller must release
809 *   resources with mtd_part_parser_cleanup() when finished with the returned
810 *   data.
811 */
812int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
813			 struct mtd_partitions *pparts,
814			 struct mtd_part_parser_data *data)
815{
816	struct mtd_part_parser *parser;
817	int ret, err = 0;
818
819	if (!types)
820		types = default_mtd_part_types;
821
822	for ( ; *types; types++) {
823		pr_debug("%s: parsing partitions %s\n", master->name, *types);
824		parser = mtd_part_parser_get(*types);
825		if (!parser && !request_module("%s", *types))
826			parser = mtd_part_parser_get(*types);
827		pr_debug("%s: got parser %s\n", master->name,
828			 parser ? parser->name : NULL);
829		if (!parser)
830			continue;
831		ret = (*parser->parse_fn)(master, &pparts->parts, data);
832		pr_debug("%s: parser %s: %i\n",
833			 master->name, parser->name, ret);
834		if (ret > 0) {
835			printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
836			       ret, parser->name, master->name);
837			pparts->nr_parts = ret;
838			pparts->parser = parser;
839			return 0;
840		}
841		mtd_part_parser_put(parser);
842		/*
843		 * Stash the first error we see; only report it if no parser
844		 * succeeds
845		 */
846		if (ret < 0 && !err)
847			err = ret;
848	}
849	return err;
850}
 
851
852void mtd_part_parser_cleanup(struct mtd_partitions *parts)
853{
854	const struct mtd_part_parser *parser;
855
856	if (!parts)
857		return;
858
859	parser = parts->parser;
860	if (parser) {
861		if (parser->cleanup)
862			parser->cleanup(parts->parts, parts->nr_parts);
863
864		mtd_part_parser_put(parser);
865	}
866}
867
868int mtd_is_partition(const struct mtd_info *mtd)
869{
870	struct mtd_part *part;
871	int ispart = 0;
872
873	mutex_lock(&mtd_partitions_mutex);
874	list_for_each_entry(part, &mtd_partitions, list)
875		if (&part->mtd == mtd) {
876			ispart = 1;
877			break;
878		}
879	mutex_unlock(&mtd_partitions_mutex);
880
881	return ispart;
882}
883EXPORT_SYMBOL_GPL(mtd_is_partition);
884
885/* Returns the size of the entire flash chip */
886uint64_t mtd_get_device_size(const struct mtd_info *mtd)
887{
888	if (!mtd_is_partition(mtd))
889		return mtd->size;
890
891	return mtd_to_part(mtd)->master->size;
892}
893EXPORT_SYMBOL_GPL(mtd_get_device_size);