Loading...
1/*
2 * Simple MTD partitioning layer
3 *
4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24#include <linux/module.h>
25#include <linux/types.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/list.h>
29#include <linux/kmod.h>
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/partitions.h>
32#include <linux/err.h>
33
34#include "mtdcore.h"
35
36/* Our partition linked list */
37static LIST_HEAD(mtd_partitions);
38static DEFINE_MUTEX(mtd_partitions_mutex);
39
40/* Our partition node structure */
41struct mtd_part {
42 struct mtd_info mtd;
43 struct mtd_info *master;
44 uint64_t offset;
45 struct list_head list;
46};
47
48/*
49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
50 * the pointer to that structure with this macro.
51 */
52#define PART(x) ((struct mtd_part *)(x))
53
54
55/*
56 * MTD methods which simply translate the effective address and pass through
57 * to the _real_ device.
58 */
59
60static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
61 size_t *retlen, u_char *buf)
62{
63 struct mtd_part *part = PART(mtd);
64 struct mtd_ecc_stats stats;
65 int res;
66
67 stats = part->master->ecc_stats;
68
69 if (from >= mtd->size)
70 len = 0;
71 else if (from + len > mtd->size)
72 len = mtd->size - from;
73 res = part->master->read(part->master, from + part->offset,
74 len, retlen, buf);
75 if (unlikely(res)) {
76 if (res == -EUCLEAN)
77 mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
78 if (res == -EBADMSG)
79 mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
80 }
81 return res;
82}
83
84static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
85 size_t *retlen, void **virt, resource_size_t *phys)
86{
87 struct mtd_part *part = PART(mtd);
88 if (from >= mtd->size)
89 len = 0;
90 else if (from + len > mtd->size)
91 len = mtd->size - from;
92 return part->master->point (part->master, from + part->offset,
93 len, retlen, virt, phys);
94}
95
96static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
97{
98 struct mtd_part *part = PART(mtd);
99
100 part->master->unpoint(part->master, from + part->offset, len);
101}
102
103static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
104 unsigned long len,
105 unsigned long offset,
106 unsigned long flags)
107{
108 struct mtd_part *part = PART(mtd);
109
110 offset += part->offset;
111 return part->master->get_unmapped_area(part->master, len, offset,
112 flags);
113}
114
115static int part_read_oob(struct mtd_info *mtd, loff_t from,
116 struct mtd_oob_ops *ops)
117{
118 struct mtd_part *part = PART(mtd);
119 int res;
120
121 if (from >= mtd->size)
122 return -EINVAL;
123 if (ops->datbuf && from + ops->len > mtd->size)
124 return -EINVAL;
125
126 /*
127 * If OOB is also requested, make sure that we do not read past the end
128 * of this partition.
129 */
130 if (ops->oobbuf) {
131 size_t len, pages;
132
133 if (ops->mode == MTD_OOB_AUTO)
134 len = mtd->oobavail;
135 else
136 len = mtd->oobsize;
137 pages = mtd_div_by_ws(mtd->size, mtd);
138 pages -= mtd_div_by_ws(from, mtd);
139 if (ops->ooboffs + ops->ooblen > pages * len)
140 return -EINVAL;
141 }
142
143 res = part->master->read_oob(part->master, from + part->offset, ops);
144 if (unlikely(res)) {
145 if (res == -EUCLEAN)
146 mtd->ecc_stats.corrected++;
147 if (res == -EBADMSG)
148 mtd->ecc_stats.failed++;
149 }
150 return res;
151}
152
153static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
154 size_t len, size_t *retlen, u_char *buf)
155{
156 struct mtd_part *part = PART(mtd);
157 return part->master->read_user_prot_reg(part->master, from,
158 len, retlen, buf);
159}
160
161static int part_get_user_prot_info(struct mtd_info *mtd,
162 struct otp_info *buf, size_t len)
163{
164 struct mtd_part *part = PART(mtd);
165 return part->master->get_user_prot_info(part->master, buf, len);
166}
167
168static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
169 size_t len, size_t *retlen, u_char *buf)
170{
171 struct mtd_part *part = PART(mtd);
172 return part->master->read_fact_prot_reg(part->master, from,
173 len, retlen, buf);
174}
175
176static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
177 size_t len)
178{
179 struct mtd_part *part = PART(mtd);
180 return part->master->get_fact_prot_info(part->master, buf, len);
181}
182
183static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
184 size_t *retlen, const u_char *buf)
185{
186 struct mtd_part *part = PART(mtd);
187 if (!(mtd->flags & MTD_WRITEABLE))
188 return -EROFS;
189 if (to >= mtd->size)
190 len = 0;
191 else if (to + len > mtd->size)
192 len = mtd->size - to;
193 return part->master->write(part->master, to + part->offset,
194 len, retlen, buf);
195}
196
197static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
198 size_t *retlen, const u_char *buf)
199{
200 struct mtd_part *part = PART(mtd);
201 if (!(mtd->flags & MTD_WRITEABLE))
202 return -EROFS;
203 if (to >= mtd->size)
204 len = 0;
205 else if (to + len > mtd->size)
206 len = mtd->size - to;
207 return part->master->panic_write(part->master, to + part->offset,
208 len, retlen, buf);
209}
210
211static int part_write_oob(struct mtd_info *mtd, loff_t to,
212 struct mtd_oob_ops *ops)
213{
214 struct mtd_part *part = PART(mtd);
215
216 if (!(mtd->flags & MTD_WRITEABLE))
217 return -EROFS;
218
219 if (to >= mtd->size)
220 return -EINVAL;
221 if (ops->datbuf && to + ops->len > mtd->size)
222 return -EINVAL;
223 return part->master->write_oob(part->master, to + part->offset, ops);
224}
225
226static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
227 size_t len, size_t *retlen, u_char *buf)
228{
229 struct mtd_part *part = PART(mtd);
230 return part->master->write_user_prot_reg(part->master, from,
231 len, retlen, buf);
232}
233
234static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
235 size_t len)
236{
237 struct mtd_part *part = PART(mtd);
238 return part->master->lock_user_prot_reg(part->master, from, len);
239}
240
241static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
242 unsigned long count, loff_t to, size_t *retlen)
243{
244 struct mtd_part *part = PART(mtd);
245 if (!(mtd->flags & MTD_WRITEABLE))
246 return -EROFS;
247 return part->master->writev(part->master, vecs, count,
248 to + part->offset, retlen);
249}
250
251static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
252{
253 struct mtd_part *part = PART(mtd);
254 int ret;
255 if (!(mtd->flags & MTD_WRITEABLE))
256 return -EROFS;
257 if (instr->addr >= mtd->size)
258 return -EINVAL;
259 instr->addr += part->offset;
260 ret = part->master->erase(part->master, instr);
261 if (ret) {
262 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
263 instr->fail_addr -= part->offset;
264 instr->addr -= part->offset;
265 }
266 return ret;
267}
268
269void mtd_erase_callback(struct erase_info *instr)
270{
271 if (instr->mtd->erase == part_erase) {
272 struct mtd_part *part = PART(instr->mtd);
273
274 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
275 instr->fail_addr -= part->offset;
276 instr->addr -= part->offset;
277 }
278 if (instr->callback)
279 instr->callback(instr);
280}
281EXPORT_SYMBOL_GPL(mtd_erase_callback);
282
283static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
284{
285 struct mtd_part *part = PART(mtd);
286 if ((len + ofs) > mtd->size)
287 return -EINVAL;
288 return part->master->lock(part->master, ofs + part->offset, len);
289}
290
291static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
292{
293 struct mtd_part *part = PART(mtd);
294 if ((len + ofs) > mtd->size)
295 return -EINVAL;
296 return part->master->unlock(part->master, ofs + part->offset, len);
297}
298
299static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
300{
301 struct mtd_part *part = PART(mtd);
302 if ((len + ofs) > mtd->size)
303 return -EINVAL;
304 return part->master->is_locked(part->master, ofs + part->offset, len);
305}
306
307static void part_sync(struct mtd_info *mtd)
308{
309 struct mtd_part *part = PART(mtd);
310 part->master->sync(part->master);
311}
312
313static int part_suspend(struct mtd_info *mtd)
314{
315 struct mtd_part *part = PART(mtd);
316 return part->master->suspend(part->master);
317}
318
319static void part_resume(struct mtd_info *mtd)
320{
321 struct mtd_part *part = PART(mtd);
322 part->master->resume(part->master);
323}
324
325static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
326{
327 struct mtd_part *part = PART(mtd);
328 if (ofs >= mtd->size)
329 return -EINVAL;
330 ofs += part->offset;
331 return part->master->block_isbad(part->master, ofs);
332}
333
334static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
335{
336 struct mtd_part *part = PART(mtd);
337 int res;
338
339 if (!(mtd->flags & MTD_WRITEABLE))
340 return -EROFS;
341 if (ofs >= mtd->size)
342 return -EINVAL;
343 ofs += part->offset;
344 res = part->master->block_markbad(part->master, ofs);
345 if (!res)
346 mtd->ecc_stats.badblocks++;
347 return res;
348}
349
350static inline void free_partition(struct mtd_part *p)
351{
352 kfree(p->mtd.name);
353 kfree(p);
354}
355
356/*
357 * This function unregisters and destroy all slave MTD objects which are
358 * attached to the given master MTD object.
359 */
360
361int del_mtd_partitions(struct mtd_info *master)
362{
363 struct mtd_part *slave, *next;
364 int ret, err = 0;
365
366 mutex_lock(&mtd_partitions_mutex);
367 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
368 if (slave->master == master) {
369 ret = del_mtd_device(&slave->mtd);
370 if (ret < 0) {
371 err = ret;
372 continue;
373 }
374 list_del(&slave->list);
375 free_partition(slave);
376 }
377 mutex_unlock(&mtd_partitions_mutex);
378
379 return err;
380}
381
382static struct mtd_part *allocate_partition(struct mtd_info *master,
383 const struct mtd_partition *part, int partno,
384 uint64_t cur_offset)
385{
386 struct mtd_part *slave;
387 char *name;
388
389 /* allocate the partition structure */
390 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
391 name = kstrdup(part->name, GFP_KERNEL);
392 if (!name || !slave) {
393 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
394 master->name);
395 kfree(name);
396 kfree(slave);
397 return ERR_PTR(-ENOMEM);
398 }
399
400 /* set up the MTD object for this partition */
401 slave->mtd.type = master->type;
402 slave->mtd.flags = master->flags & ~part->mask_flags;
403 slave->mtd.size = part->size;
404 slave->mtd.writesize = master->writesize;
405 slave->mtd.writebufsize = master->writebufsize;
406 slave->mtd.oobsize = master->oobsize;
407 slave->mtd.oobavail = master->oobavail;
408 slave->mtd.subpage_sft = master->subpage_sft;
409
410 slave->mtd.name = name;
411 slave->mtd.owner = master->owner;
412 slave->mtd.backing_dev_info = master->backing_dev_info;
413
414 /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
415 * to have the same data be in two different partitions.
416 */
417 slave->mtd.dev.parent = master->dev.parent;
418
419 slave->mtd.read = part_read;
420 slave->mtd.write = part_write;
421
422 if (master->panic_write)
423 slave->mtd.panic_write = part_panic_write;
424
425 if (master->point && master->unpoint) {
426 slave->mtd.point = part_point;
427 slave->mtd.unpoint = part_unpoint;
428 }
429
430 if (master->get_unmapped_area)
431 slave->mtd.get_unmapped_area = part_get_unmapped_area;
432 if (master->read_oob)
433 slave->mtd.read_oob = part_read_oob;
434 if (master->write_oob)
435 slave->mtd.write_oob = part_write_oob;
436 if (master->read_user_prot_reg)
437 slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
438 if (master->read_fact_prot_reg)
439 slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
440 if (master->write_user_prot_reg)
441 slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
442 if (master->lock_user_prot_reg)
443 slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
444 if (master->get_user_prot_info)
445 slave->mtd.get_user_prot_info = part_get_user_prot_info;
446 if (master->get_fact_prot_info)
447 slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
448 if (master->sync)
449 slave->mtd.sync = part_sync;
450 if (!partno && !master->dev.class && master->suspend && master->resume) {
451 slave->mtd.suspend = part_suspend;
452 slave->mtd.resume = part_resume;
453 }
454 if (master->writev)
455 slave->mtd.writev = part_writev;
456 if (master->lock)
457 slave->mtd.lock = part_lock;
458 if (master->unlock)
459 slave->mtd.unlock = part_unlock;
460 if (master->is_locked)
461 slave->mtd.is_locked = part_is_locked;
462 if (master->block_isbad)
463 slave->mtd.block_isbad = part_block_isbad;
464 if (master->block_markbad)
465 slave->mtd.block_markbad = part_block_markbad;
466 slave->mtd.erase = part_erase;
467 slave->master = master;
468 slave->offset = part->offset;
469
470 if (slave->offset == MTDPART_OFS_APPEND)
471 slave->offset = cur_offset;
472 if (slave->offset == MTDPART_OFS_NXTBLK) {
473 slave->offset = cur_offset;
474 if (mtd_mod_by_eb(cur_offset, master) != 0) {
475 /* Round up to next erasesize */
476 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
477 printk(KERN_NOTICE "Moving partition %d: "
478 "0x%012llx -> 0x%012llx\n", partno,
479 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
480 }
481 }
482 if (slave->mtd.size == MTDPART_SIZ_FULL)
483 slave->mtd.size = master->size - slave->offset;
484
485 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
486 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
487
488 /* let's do some sanity checks */
489 if (slave->offset >= master->size) {
490 /* let's register it anyway to preserve ordering */
491 slave->offset = 0;
492 slave->mtd.size = 0;
493 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
494 part->name);
495 goto out_register;
496 }
497 if (slave->offset + slave->mtd.size > master->size) {
498 slave->mtd.size = master->size - slave->offset;
499 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
500 part->name, master->name, (unsigned long long)slave->mtd.size);
501 }
502 if (master->numeraseregions > 1) {
503 /* Deal with variable erase size stuff */
504 int i, max = master->numeraseregions;
505 u64 end = slave->offset + slave->mtd.size;
506 struct mtd_erase_region_info *regions = master->eraseregions;
507
508 /* Find the first erase regions which is part of this
509 * partition. */
510 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
511 ;
512 /* The loop searched for the region _behind_ the first one */
513 if (i > 0)
514 i--;
515
516 /* Pick biggest erasesize */
517 for (; i < max && regions[i].offset < end; i++) {
518 if (slave->mtd.erasesize < regions[i].erasesize) {
519 slave->mtd.erasesize = regions[i].erasesize;
520 }
521 }
522 BUG_ON(slave->mtd.erasesize == 0);
523 } else {
524 /* Single erase size */
525 slave->mtd.erasesize = master->erasesize;
526 }
527
528 if ((slave->mtd.flags & MTD_WRITEABLE) &&
529 mtd_mod_by_eb(slave->offset, &slave->mtd)) {
530 /* Doesn't start on a boundary of major erase size */
531 /* FIXME: Let it be writable if it is on a boundary of
532 * _minor_ erase size though */
533 slave->mtd.flags &= ~MTD_WRITEABLE;
534 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
535 part->name);
536 }
537 if ((slave->mtd.flags & MTD_WRITEABLE) &&
538 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
539 slave->mtd.flags &= ~MTD_WRITEABLE;
540 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
541 part->name);
542 }
543
544 slave->mtd.ecclayout = master->ecclayout;
545 if (master->block_isbad) {
546 uint64_t offs = 0;
547
548 while (offs < slave->mtd.size) {
549 if (master->block_isbad(master,
550 offs + slave->offset))
551 slave->mtd.ecc_stats.badblocks++;
552 offs += slave->mtd.erasesize;
553 }
554 }
555
556out_register:
557 return slave;
558}
559
560int mtd_add_partition(struct mtd_info *master, char *name,
561 long long offset, long long length)
562{
563 struct mtd_partition part;
564 struct mtd_part *p, *new;
565 uint64_t start, end;
566 int ret = 0;
567
568 /* the direct offset is expected */
569 if (offset == MTDPART_OFS_APPEND ||
570 offset == MTDPART_OFS_NXTBLK)
571 return -EINVAL;
572
573 if (length == MTDPART_SIZ_FULL)
574 length = master->size - offset;
575
576 if (length <= 0)
577 return -EINVAL;
578
579 part.name = name;
580 part.size = length;
581 part.offset = offset;
582 part.mask_flags = 0;
583 part.ecclayout = NULL;
584
585 new = allocate_partition(master, &part, -1, offset);
586 if (IS_ERR(new))
587 return PTR_ERR(new);
588
589 start = offset;
590 end = offset + length;
591
592 mutex_lock(&mtd_partitions_mutex);
593 list_for_each_entry(p, &mtd_partitions, list)
594 if (p->master == master) {
595 if ((start >= p->offset) &&
596 (start < (p->offset + p->mtd.size)))
597 goto err_inv;
598
599 if ((end >= p->offset) &&
600 (end < (p->offset + p->mtd.size)))
601 goto err_inv;
602 }
603
604 list_add(&new->list, &mtd_partitions);
605 mutex_unlock(&mtd_partitions_mutex);
606
607 add_mtd_device(&new->mtd);
608
609 return ret;
610err_inv:
611 mutex_unlock(&mtd_partitions_mutex);
612 free_partition(new);
613 return -EINVAL;
614}
615EXPORT_SYMBOL_GPL(mtd_add_partition);
616
617int mtd_del_partition(struct mtd_info *master, int partno)
618{
619 struct mtd_part *slave, *next;
620 int ret = -EINVAL;
621
622 mutex_lock(&mtd_partitions_mutex);
623 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
624 if ((slave->master == master) &&
625 (slave->mtd.index == partno)) {
626 ret = del_mtd_device(&slave->mtd);
627 if (ret < 0)
628 break;
629
630 list_del(&slave->list);
631 free_partition(slave);
632 break;
633 }
634 mutex_unlock(&mtd_partitions_mutex);
635
636 return ret;
637}
638EXPORT_SYMBOL_GPL(mtd_del_partition);
639
640/*
641 * This function, given a master MTD object and a partition table, creates
642 * and registers slave MTD objects which are bound to the master according to
643 * the partition definitions.
644 *
645 * We don't register the master, or expect the caller to have done so,
646 * for reasons of data integrity.
647 */
648
649int add_mtd_partitions(struct mtd_info *master,
650 const struct mtd_partition *parts,
651 int nbparts)
652{
653 struct mtd_part *slave;
654 uint64_t cur_offset = 0;
655 int i;
656
657 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
658
659 for (i = 0; i < nbparts; i++) {
660 slave = allocate_partition(master, parts + i, i, cur_offset);
661 if (IS_ERR(slave))
662 return PTR_ERR(slave);
663
664 mutex_lock(&mtd_partitions_mutex);
665 list_add(&slave->list, &mtd_partitions);
666 mutex_unlock(&mtd_partitions_mutex);
667
668 add_mtd_device(&slave->mtd);
669
670 cur_offset = slave->offset + slave->mtd.size;
671 }
672
673 return 0;
674}
675
676static DEFINE_SPINLOCK(part_parser_lock);
677static LIST_HEAD(part_parsers);
678
679static struct mtd_part_parser *get_partition_parser(const char *name)
680{
681 struct mtd_part_parser *p, *ret = NULL;
682
683 spin_lock(&part_parser_lock);
684
685 list_for_each_entry(p, &part_parsers, list)
686 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
687 ret = p;
688 break;
689 }
690
691 spin_unlock(&part_parser_lock);
692
693 return ret;
694}
695
696int register_mtd_parser(struct mtd_part_parser *p)
697{
698 spin_lock(&part_parser_lock);
699 list_add(&p->list, &part_parsers);
700 spin_unlock(&part_parser_lock);
701
702 return 0;
703}
704EXPORT_SYMBOL_GPL(register_mtd_parser);
705
706int deregister_mtd_parser(struct mtd_part_parser *p)
707{
708 spin_lock(&part_parser_lock);
709 list_del(&p->list);
710 spin_unlock(&part_parser_lock);
711 return 0;
712}
713EXPORT_SYMBOL_GPL(deregister_mtd_parser);
714
715int parse_mtd_partitions(struct mtd_info *master, const char **types,
716 struct mtd_partition **pparts, unsigned long origin)
717{
718 struct mtd_part_parser *parser;
719 int ret = 0;
720
721 for ( ; ret <= 0 && *types; types++) {
722 parser = get_partition_parser(*types);
723 if (!parser && !request_module("%s", *types))
724 parser = get_partition_parser(*types);
725 if (!parser)
726 continue;
727 ret = (*parser->parse_fn)(master, pparts, origin);
728 if (ret > 0) {
729 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
730 ret, parser->name, master->name);
731 }
732 put_partition_parser(parser);
733 }
734 return ret;
735}
736EXPORT_SYMBOL_GPL(parse_mtd_partitions);
737
738int mtd_is_partition(struct mtd_info *mtd)
739{
740 struct mtd_part *part;
741 int ispart = 0;
742
743 mutex_lock(&mtd_partitions_mutex);
744 list_for_each_entry(part, &mtd_partitions, list)
745 if (&part->mtd == mtd) {
746 ispart = 1;
747 break;
748 }
749 mutex_unlock(&mtd_partitions_mutex);
750
751 return ispart;
752}
753EXPORT_SYMBOL_GPL(mtd_is_partition);
1/*
2 * Simple MTD partitioning layer
3 *
4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24#include <linux/module.h>
25#include <linux/types.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/list.h>
29#include <linux/kmod.h>
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/partitions.h>
32#include <linux/err.h>
33#include <linux/of.h>
34
35#include "mtdcore.h"
36
37/* Our partition linked list */
38static LIST_HEAD(mtd_partitions);
39static DEFINE_MUTEX(mtd_partitions_mutex);
40
41/**
42 * struct mtd_part - our partition node structure
43 *
44 * @mtd: struct holding partition details
45 * @parent: parent mtd - flash device or another partition
46 * @offset: partition offset relative to the *flash device*
47 */
48struct mtd_part {
49 struct mtd_info mtd;
50 struct mtd_info *parent;
51 uint64_t offset;
52 struct list_head list;
53};
54
55/*
56 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
57 * the pointer to that structure.
58 */
59static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
60{
61 return container_of(mtd, struct mtd_part, mtd);
62}
63
64
65/*
66 * MTD methods which simply translate the effective address and pass through
67 * to the _real_ device.
68 */
69
70static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
71 size_t *retlen, u_char *buf)
72{
73 struct mtd_part *part = mtd_to_part(mtd);
74 struct mtd_ecc_stats stats;
75 int res;
76
77 stats = part->parent->ecc_stats;
78 res = part->parent->_read(part->parent, from + part->offset, len,
79 retlen, buf);
80 if (unlikely(mtd_is_eccerr(res)))
81 mtd->ecc_stats.failed +=
82 part->parent->ecc_stats.failed - stats.failed;
83 else
84 mtd->ecc_stats.corrected +=
85 part->parent->ecc_stats.corrected - stats.corrected;
86 return res;
87}
88
89static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
90 size_t *retlen, void **virt, resource_size_t *phys)
91{
92 struct mtd_part *part = mtd_to_part(mtd);
93
94 return part->parent->_point(part->parent, from + part->offset, len,
95 retlen, virt, phys);
96}
97
98static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
99{
100 struct mtd_part *part = mtd_to_part(mtd);
101
102 return part->parent->_unpoint(part->parent, from + part->offset, len);
103}
104
105static int part_read_oob(struct mtd_info *mtd, loff_t from,
106 struct mtd_oob_ops *ops)
107{
108 struct mtd_part *part = mtd_to_part(mtd);
109 struct mtd_ecc_stats stats;
110 int res;
111
112 stats = part->parent->ecc_stats;
113 res = part->parent->_read_oob(part->parent, from + part->offset, ops);
114 if (unlikely(mtd_is_eccerr(res)))
115 mtd->ecc_stats.failed +=
116 part->parent->ecc_stats.failed - stats.failed;
117 else
118 mtd->ecc_stats.corrected +=
119 part->parent->ecc_stats.corrected - stats.corrected;
120 return res;
121}
122
123static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
124 size_t len, size_t *retlen, u_char *buf)
125{
126 struct mtd_part *part = mtd_to_part(mtd);
127 return part->parent->_read_user_prot_reg(part->parent, from, len,
128 retlen, buf);
129}
130
131static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
132 size_t *retlen, struct otp_info *buf)
133{
134 struct mtd_part *part = mtd_to_part(mtd);
135 return part->parent->_get_user_prot_info(part->parent, len, retlen,
136 buf);
137}
138
139static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
140 size_t len, size_t *retlen, u_char *buf)
141{
142 struct mtd_part *part = mtd_to_part(mtd);
143 return part->parent->_read_fact_prot_reg(part->parent, from, len,
144 retlen, buf);
145}
146
147static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
148 size_t *retlen, struct otp_info *buf)
149{
150 struct mtd_part *part = mtd_to_part(mtd);
151 return part->parent->_get_fact_prot_info(part->parent, len, retlen,
152 buf);
153}
154
155static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
156 size_t *retlen, const u_char *buf)
157{
158 struct mtd_part *part = mtd_to_part(mtd);
159 return part->parent->_write(part->parent, to + part->offset, len,
160 retlen, buf);
161}
162
163static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
164 size_t *retlen, const u_char *buf)
165{
166 struct mtd_part *part = mtd_to_part(mtd);
167 return part->parent->_panic_write(part->parent, to + part->offset, len,
168 retlen, buf);
169}
170
171static int part_write_oob(struct mtd_info *mtd, loff_t to,
172 struct mtd_oob_ops *ops)
173{
174 struct mtd_part *part = mtd_to_part(mtd);
175
176 return part->parent->_write_oob(part->parent, to + part->offset, ops);
177}
178
179static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
180 size_t len, size_t *retlen, u_char *buf)
181{
182 struct mtd_part *part = mtd_to_part(mtd);
183 return part->parent->_write_user_prot_reg(part->parent, from, len,
184 retlen, buf);
185}
186
187static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
188 size_t len)
189{
190 struct mtd_part *part = mtd_to_part(mtd);
191 return part->parent->_lock_user_prot_reg(part->parent, from, len);
192}
193
194static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
195 unsigned long count, loff_t to, size_t *retlen)
196{
197 struct mtd_part *part = mtd_to_part(mtd);
198 return part->parent->_writev(part->parent, vecs, count,
199 to + part->offset, retlen);
200}
201
202static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
203{
204 struct mtd_part *part = mtd_to_part(mtd);
205 int ret;
206
207 instr->addr += part->offset;
208 ret = part->parent->_erase(part->parent, instr);
209 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
210 instr->fail_addr -= part->offset;
211 instr->addr -= part->offset;
212
213 return ret;
214}
215
216static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
217{
218 struct mtd_part *part = mtd_to_part(mtd);
219 return part->parent->_lock(part->parent, ofs + part->offset, len);
220}
221
222static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
223{
224 struct mtd_part *part = mtd_to_part(mtd);
225 return part->parent->_unlock(part->parent, ofs + part->offset, len);
226}
227
228static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
229{
230 struct mtd_part *part = mtd_to_part(mtd);
231 return part->parent->_is_locked(part->parent, ofs + part->offset, len);
232}
233
234static void part_sync(struct mtd_info *mtd)
235{
236 struct mtd_part *part = mtd_to_part(mtd);
237 part->parent->_sync(part->parent);
238}
239
240static int part_suspend(struct mtd_info *mtd)
241{
242 struct mtd_part *part = mtd_to_part(mtd);
243 return part->parent->_suspend(part->parent);
244}
245
246static void part_resume(struct mtd_info *mtd)
247{
248 struct mtd_part *part = mtd_to_part(mtd);
249 part->parent->_resume(part->parent);
250}
251
252static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
253{
254 struct mtd_part *part = mtd_to_part(mtd);
255 ofs += part->offset;
256 return part->parent->_block_isreserved(part->parent, ofs);
257}
258
259static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
260{
261 struct mtd_part *part = mtd_to_part(mtd);
262 ofs += part->offset;
263 return part->parent->_block_isbad(part->parent, ofs);
264}
265
266static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
267{
268 struct mtd_part *part = mtd_to_part(mtd);
269 int res;
270
271 ofs += part->offset;
272 res = part->parent->_block_markbad(part->parent, ofs);
273 if (!res)
274 mtd->ecc_stats.badblocks++;
275 return res;
276}
277
278static int part_get_device(struct mtd_info *mtd)
279{
280 struct mtd_part *part = mtd_to_part(mtd);
281 return part->parent->_get_device(part->parent);
282}
283
284static void part_put_device(struct mtd_info *mtd)
285{
286 struct mtd_part *part = mtd_to_part(mtd);
287 part->parent->_put_device(part->parent);
288}
289
290static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
291 struct mtd_oob_region *oobregion)
292{
293 struct mtd_part *part = mtd_to_part(mtd);
294
295 return mtd_ooblayout_ecc(part->parent, section, oobregion);
296}
297
298static int part_ooblayout_free(struct mtd_info *mtd, int section,
299 struct mtd_oob_region *oobregion)
300{
301 struct mtd_part *part = mtd_to_part(mtd);
302
303 return mtd_ooblayout_free(part->parent, section, oobregion);
304}
305
306static const struct mtd_ooblayout_ops part_ooblayout_ops = {
307 .ecc = part_ooblayout_ecc,
308 .free = part_ooblayout_free,
309};
310
311static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
312{
313 struct mtd_part *part = mtd_to_part(mtd);
314
315 return part->parent->_max_bad_blocks(part->parent,
316 ofs + part->offset, len);
317}
318
319static inline void free_partition(struct mtd_part *p)
320{
321 kfree(p->mtd.name);
322 kfree(p);
323}
324
325/**
326 * mtd_parse_part - parse MTD partition looking for subpartitions
327 *
328 * @slave: part that is supposed to be a container and should be parsed
329 * @types: NULL-terminated array with names of partition parsers to try
330 *
331 * Some partitions are kind of containers with extra subpartitions (volumes).
332 * There can be various formats of such containers. This function tries to use
333 * specified parsers to analyze given partition and registers found
334 * subpartitions on success.
335 */
336static int mtd_parse_part(struct mtd_part *slave, const char *const *types)
337{
338 struct mtd_partitions parsed;
339 int err;
340
341 err = parse_mtd_partitions(&slave->mtd, types, &parsed, NULL);
342 if (err)
343 return err;
344 else if (!parsed.nr_parts)
345 return -ENOENT;
346
347 err = add_mtd_partitions(&slave->mtd, parsed.parts, parsed.nr_parts);
348
349 mtd_part_parser_cleanup(&parsed);
350
351 return err;
352}
353
354static struct mtd_part *allocate_partition(struct mtd_info *parent,
355 const struct mtd_partition *part, int partno,
356 uint64_t cur_offset)
357{
358 int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize :
359 parent->erasesize;
360 struct mtd_part *slave;
361 u32 remainder;
362 char *name;
363 u64 tmp;
364
365 /* allocate the partition structure */
366 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
367 name = kstrdup(part->name, GFP_KERNEL);
368 if (!name || !slave) {
369 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
370 parent->name);
371 kfree(name);
372 kfree(slave);
373 return ERR_PTR(-ENOMEM);
374 }
375
376 /* set up the MTD object for this partition */
377 slave->mtd.type = parent->type;
378 slave->mtd.flags = parent->flags & ~part->mask_flags;
379 slave->mtd.size = part->size;
380 slave->mtd.writesize = parent->writesize;
381 slave->mtd.writebufsize = parent->writebufsize;
382 slave->mtd.oobsize = parent->oobsize;
383 slave->mtd.oobavail = parent->oobavail;
384 slave->mtd.subpage_sft = parent->subpage_sft;
385 slave->mtd.pairing = parent->pairing;
386
387 slave->mtd.name = name;
388 slave->mtd.owner = parent->owner;
389
390 /* NOTE: Historically, we didn't arrange MTDs as a tree out of
391 * concern for showing the same data in multiple partitions.
392 * However, it is very useful to have the master node present,
393 * so the MTD_PARTITIONED_MASTER option allows that. The master
394 * will have device nodes etc only if this is set, so make the
395 * parent conditional on that option. Note, this is a way to
396 * distinguish between the master and the partition in sysfs.
397 */
398 slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
399 &parent->dev :
400 parent->dev.parent;
401 slave->mtd.dev.of_node = part->of_node;
402
403 if (parent->_read)
404 slave->mtd._read = part_read;
405 if (parent->_write)
406 slave->mtd._write = part_write;
407
408 if (parent->_panic_write)
409 slave->mtd._panic_write = part_panic_write;
410
411 if (parent->_point && parent->_unpoint) {
412 slave->mtd._point = part_point;
413 slave->mtd._unpoint = part_unpoint;
414 }
415
416 if (parent->_read_oob)
417 slave->mtd._read_oob = part_read_oob;
418 if (parent->_write_oob)
419 slave->mtd._write_oob = part_write_oob;
420 if (parent->_read_user_prot_reg)
421 slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
422 if (parent->_read_fact_prot_reg)
423 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
424 if (parent->_write_user_prot_reg)
425 slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
426 if (parent->_lock_user_prot_reg)
427 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
428 if (parent->_get_user_prot_info)
429 slave->mtd._get_user_prot_info = part_get_user_prot_info;
430 if (parent->_get_fact_prot_info)
431 slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
432 if (parent->_sync)
433 slave->mtd._sync = part_sync;
434 if (!partno && !parent->dev.class && parent->_suspend &&
435 parent->_resume) {
436 slave->mtd._suspend = part_suspend;
437 slave->mtd._resume = part_resume;
438 }
439 if (parent->_writev)
440 slave->mtd._writev = part_writev;
441 if (parent->_lock)
442 slave->mtd._lock = part_lock;
443 if (parent->_unlock)
444 slave->mtd._unlock = part_unlock;
445 if (parent->_is_locked)
446 slave->mtd._is_locked = part_is_locked;
447 if (parent->_block_isreserved)
448 slave->mtd._block_isreserved = part_block_isreserved;
449 if (parent->_block_isbad)
450 slave->mtd._block_isbad = part_block_isbad;
451 if (parent->_block_markbad)
452 slave->mtd._block_markbad = part_block_markbad;
453 if (parent->_max_bad_blocks)
454 slave->mtd._max_bad_blocks = part_max_bad_blocks;
455
456 if (parent->_get_device)
457 slave->mtd._get_device = part_get_device;
458 if (parent->_put_device)
459 slave->mtd._put_device = part_put_device;
460
461 slave->mtd._erase = part_erase;
462 slave->parent = parent;
463 slave->offset = part->offset;
464
465 if (slave->offset == MTDPART_OFS_APPEND)
466 slave->offset = cur_offset;
467 if (slave->offset == MTDPART_OFS_NXTBLK) {
468 tmp = cur_offset;
469 slave->offset = cur_offset;
470 remainder = do_div(tmp, wr_alignment);
471 if (remainder) {
472 slave->offset += wr_alignment - remainder;
473 printk(KERN_NOTICE "Moving partition %d: "
474 "0x%012llx -> 0x%012llx\n", partno,
475 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
476 }
477 }
478 if (slave->offset == MTDPART_OFS_RETAIN) {
479 slave->offset = cur_offset;
480 if (parent->size - slave->offset >= slave->mtd.size) {
481 slave->mtd.size = parent->size - slave->offset
482 - slave->mtd.size;
483 } else {
484 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
485 part->name, parent->size - slave->offset,
486 slave->mtd.size);
487 /* register to preserve ordering */
488 goto out_register;
489 }
490 }
491 if (slave->mtd.size == MTDPART_SIZ_FULL)
492 slave->mtd.size = parent->size - slave->offset;
493
494 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
495 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
496
497 /* let's do some sanity checks */
498 if (slave->offset >= parent->size) {
499 /* let's register it anyway to preserve ordering */
500 slave->offset = 0;
501 slave->mtd.size = 0;
502 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
503 part->name);
504 goto out_register;
505 }
506 if (slave->offset + slave->mtd.size > parent->size) {
507 slave->mtd.size = parent->size - slave->offset;
508 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
509 part->name, parent->name, (unsigned long long)slave->mtd.size);
510 }
511 if (parent->numeraseregions > 1) {
512 /* Deal with variable erase size stuff */
513 int i, max = parent->numeraseregions;
514 u64 end = slave->offset + slave->mtd.size;
515 struct mtd_erase_region_info *regions = parent->eraseregions;
516
517 /* Find the first erase regions which is part of this
518 * partition. */
519 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
520 ;
521 /* The loop searched for the region _behind_ the first one */
522 if (i > 0)
523 i--;
524
525 /* Pick biggest erasesize */
526 for (; i < max && regions[i].offset < end; i++) {
527 if (slave->mtd.erasesize < regions[i].erasesize) {
528 slave->mtd.erasesize = regions[i].erasesize;
529 }
530 }
531 BUG_ON(slave->mtd.erasesize == 0);
532 } else {
533 /* Single erase size */
534 slave->mtd.erasesize = parent->erasesize;
535 }
536
537 /*
538 * Slave erasesize might differ from the master one if the master
539 * exposes several regions with different erasesize. Adjust
540 * wr_alignment accordingly.
541 */
542 if (!(slave->mtd.flags & MTD_NO_ERASE))
543 wr_alignment = slave->mtd.erasesize;
544
545 tmp = slave->offset;
546 remainder = do_div(tmp, wr_alignment);
547 if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
548 /* Doesn't start on a boundary of major erase size */
549 /* FIXME: Let it be writable if it is on a boundary of
550 * _minor_ erase size though */
551 slave->mtd.flags &= ~MTD_WRITEABLE;
552 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
553 part->name);
554 }
555
556 tmp = slave->mtd.size;
557 remainder = do_div(tmp, wr_alignment);
558 if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
559 slave->mtd.flags &= ~MTD_WRITEABLE;
560 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
561 part->name);
562 }
563
564 mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
565 slave->mtd.ecc_step_size = parent->ecc_step_size;
566 slave->mtd.ecc_strength = parent->ecc_strength;
567 slave->mtd.bitflip_threshold = parent->bitflip_threshold;
568
569 if (parent->_block_isbad) {
570 uint64_t offs = 0;
571
572 while (offs < slave->mtd.size) {
573 if (mtd_block_isreserved(parent, offs + slave->offset))
574 slave->mtd.ecc_stats.bbtblocks++;
575 else if (mtd_block_isbad(parent, offs + slave->offset))
576 slave->mtd.ecc_stats.badblocks++;
577 offs += slave->mtd.erasesize;
578 }
579 }
580
581out_register:
582 return slave;
583}
584
585static ssize_t mtd_partition_offset_show(struct device *dev,
586 struct device_attribute *attr, char *buf)
587{
588 struct mtd_info *mtd = dev_get_drvdata(dev);
589 struct mtd_part *part = mtd_to_part(mtd);
590 return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
591}
592
593static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
594
595static const struct attribute *mtd_partition_attrs[] = {
596 &dev_attr_offset.attr,
597 NULL
598};
599
600static int mtd_add_partition_attrs(struct mtd_part *new)
601{
602 int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
603 if (ret)
604 printk(KERN_WARNING
605 "mtd: failed to create partition attrs, err=%d\n", ret);
606 return ret;
607}
608
609int mtd_add_partition(struct mtd_info *parent, const char *name,
610 long long offset, long long length)
611{
612 struct mtd_partition part;
613 struct mtd_part *new;
614 int ret = 0;
615
616 /* the direct offset is expected */
617 if (offset == MTDPART_OFS_APPEND ||
618 offset == MTDPART_OFS_NXTBLK)
619 return -EINVAL;
620
621 if (length == MTDPART_SIZ_FULL)
622 length = parent->size - offset;
623
624 if (length <= 0)
625 return -EINVAL;
626
627 memset(&part, 0, sizeof(part));
628 part.name = name;
629 part.size = length;
630 part.offset = offset;
631
632 new = allocate_partition(parent, &part, -1, offset);
633 if (IS_ERR(new))
634 return PTR_ERR(new);
635
636 mutex_lock(&mtd_partitions_mutex);
637 list_add(&new->list, &mtd_partitions);
638 mutex_unlock(&mtd_partitions_mutex);
639
640 add_mtd_device(&new->mtd);
641
642 mtd_add_partition_attrs(new);
643
644 return ret;
645}
646EXPORT_SYMBOL_GPL(mtd_add_partition);
647
648/**
649 * __mtd_del_partition - delete MTD partition
650 *
651 * @priv: internal MTD struct for partition to be deleted
652 *
653 * This function must be called with the partitions mutex locked.
654 */
655static int __mtd_del_partition(struct mtd_part *priv)
656{
657 struct mtd_part *child, *next;
658 int err;
659
660 list_for_each_entry_safe(child, next, &mtd_partitions, list) {
661 if (child->parent == &priv->mtd) {
662 err = __mtd_del_partition(child);
663 if (err)
664 return err;
665 }
666 }
667
668 sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs);
669
670 err = del_mtd_device(&priv->mtd);
671 if (err)
672 return err;
673
674 list_del(&priv->list);
675 free_partition(priv);
676
677 return 0;
678}
679
680/*
681 * This function unregisters and destroy all slave MTD objects which are
682 * attached to the given MTD object.
683 */
684int del_mtd_partitions(struct mtd_info *mtd)
685{
686 struct mtd_part *slave, *next;
687 int ret, err = 0;
688
689 mutex_lock(&mtd_partitions_mutex);
690 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
691 if (slave->parent == mtd) {
692 ret = __mtd_del_partition(slave);
693 if (ret < 0)
694 err = ret;
695 }
696 mutex_unlock(&mtd_partitions_mutex);
697
698 return err;
699}
700
701int mtd_del_partition(struct mtd_info *mtd, int partno)
702{
703 struct mtd_part *slave, *next;
704 int ret = -EINVAL;
705
706 mutex_lock(&mtd_partitions_mutex);
707 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
708 if ((slave->parent == mtd) &&
709 (slave->mtd.index == partno)) {
710 ret = __mtd_del_partition(slave);
711 break;
712 }
713 mutex_unlock(&mtd_partitions_mutex);
714
715 return ret;
716}
717EXPORT_SYMBOL_GPL(mtd_del_partition);
718
719/*
720 * This function, given a master MTD object and a partition table, creates
721 * and registers slave MTD objects which are bound to the master according to
722 * the partition definitions.
723 *
724 * For historical reasons, this function's caller only registers the master
725 * if the MTD_PARTITIONED_MASTER config option is set.
726 */
727
728int add_mtd_partitions(struct mtd_info *master,
729 const struct mtd_partition *parts,
730 int nbparts)
731{
732 struct mtd_part *slave;
733 uint64_t cur_offset = 0;
734 int i;
735
736 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
737
738 for (i = 0; i < nbparts; i++) {
739 slave = allocate_partition(master, parts + i, i, cur_offset);
740 if (IS_ERR(slave)) {
741 del_mtd_partitions(master);
742 return PTR_ERR(slave);
743 }
744
745 mutex_lock(&mtd_partitions_mutex);
746 list_add(&slave->list, &mtd_partitions);
747 mutex_unlock(&mtd_partitions_mutex);
748
749 add_mtd_device(&slave->mtd);
750 mtd_add_partition_attrs(slave);
751 if (parts[i].types)
752 mtd_parse_part(slave, parts[i].types);
753
754 cur_offset = slave->offset + slave->mtd.size;
755 }
756
757 return 0;
758}
759
760static DEFINE_SPINLOCK(part_parser_lock);
761static LIST_HEAD(part_parsers);
762
763static struct mtd_part_parser *mtd_part_parser_get(const char *name)
764{
765 struct mtd_part_parser *p, *ret = NULL;
766
767 spin_lock(&part_parser_lock);
768
769 list_for_each_entry(p, &part_parsers, list)
770 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
771 ret = p;
772 break;
773 }
774
775 spin_unlock(&part_parser_lock);
776
777 return ret;
778}
779
780static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
781{
782 module_put(p->owner);
783}
784
785/*
786 * Many partition parsers just expected the core to kfree() all their data in
787 * one chunk. Do that by default.
788 */
789static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
790 int nr_parts)
791{
792 kfree(pparts);
793}
794
795int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
796{
797 p->owner = owner;
798
799 if (!p->cleanup)
800 p->cleanup = &mtd_part_parser_cleanup_default;
801
802 spin_lock(&part_parser_lock);
803 list_add(&p->list, &part_parsers);
804 spin_unlock(&part_parser_lock);
805
806 return 0;
807}
808EXPORT_SYMBOL_GPL(__register_mtd_parser);
809
810void deregister_mtd_parser(struct mtd_part_parser *p)
811{
812 spin_lock(&part_parser_lock);
813 list_del(&p->list);
814 spin_unlock(&part_parser_lock);
815}
816EXPORT_SYMBOL_GPL(deregister_mtd_parser);
817
818/*
819 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
820 * are changing this array!
821 */
822static const char * const default_mtd_part_types[] = {
823 "cmdlinepart",
824 "ofpart",
825 NULL
826};
827
828static int mtd_part_do_parse(struct mtd_part_parser *parser,
829 struct mtd_info *master,
830 struct mtd_partitions *pparts,
831 struct mtd_part_parser_data *data)
832{
833 int ret;
834
835 ret = (*parser->parse_fn)(master, &pparts->parts, data);
836 pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
837 if (ret <= 0)
838 return ret;
839
840 pr_notice("%d %s partitions found on MTD device %s\n", ret,
841 parser->name, master->name);
842
843 pparts->nr_parts = ret;
844 pparts->parser = parser;
845
846 return ret;
847}
848
849/**
850 * mtd_part_get_compatible_parser - find MTD parser by a compatible string
851 *
852 * @compat: compatible string describing partitions in a device tree
853 *
854 * MTD parsers can specify supported partitions by providing a table of
855 * compatibility strings. This function finds a parser that advertises support
856 * for a passed value of "compatible".
857 */
858static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat)
859{
860 struct mtd_part_parser *p, *ret = NULL;
861
862 spin_lock(&part_parser_lock);
863
864 list_for_each_entry(p, &part_parsers, list) {
865 const struct of_device_id *matches;
866
867 matches = p->of_match_table;
868 if (!matches)
869 continue;
870
871 for (; matches->compatible[0]; matches++) {
872 if (!strcmp(matches->compatible, compat) &&
873 try_module_get(p->owner)) {
874 ret = p;
875 break;
876 }
877 }
878
879 if (ret)
880 break;
881 }
882
883 spin_unlock(&part_parser_lock);
884
885 return ret;
886}
887
888static int mtd_part_of_parse(struct mtd_info *master,
889 struct mtd_partitions *pparts)
890{
891 struct mtd_part_parser *parser;
892 struct device_node *np;
893 struct property *prop;
894 const char *compat;
895 const char *fixed = "fixed-partitions";
896 int ret, err = 0;
897
898 np = of_get_child_by_name(mtd_get_of_node(master), "partitions");
899 of_property_for_each_string(np, "compatible", prop, compat) {
900 parser = mtd_part_get_compatible_parser(compat);
901 if (!parser)
902 continue;
903 ret = mtd_part_do_parse(parser, master, pparts, NULL);
904 if (ret > 0) {
905 of_node_put(np);
906 return ret;
907 }
908 mtd_part_parser_put(parser);
909 if (ret < 0 && !err)
910 err = ret;
911 }
912 of_node_put(np);
913
914 /*
915 * For backward compatibility we have to try the "fixed-partitions"
916 * parser. It supports old DT format with partitions specified as a
917 * direct subnodes of a flash device DT node without any compatibility
918 * specified we could match.
919 */
920 parser = mtd_part_parser_get(fixed);
921 if (!parser && !request_module("%s", fixed))
922 parser = mtd_part_parser_get(fixed);
923 if (parser) {
924 ret = mtd_part_do_parse(parser, master, pparts, NULL);
925 if (ret > 0)
926 return ret;
927 mtd_part_parser_put(parser);
928 if (ret < 0 && !err)
929 err = ret;
930 }
931
932 return err;
933}
934
935/**
936 * parse_mtd_partitions - parse MTD partitions
937 * @master: the master partition (describes whole MTD device)
938 * @types: names of partition parsers to try or %NULL
939 * @pparts: info about partitions found is returned here
940 * @data: MTD partition parser-specific data
941 *
942 * This function tries to find partition on MTD device @master. It uses MTD
943 * partition parsers, specified in @types. However, if @types is %NULL, then
944 * the default list of parsers is used. The default list contains only the
945 * "cmdlinepart" and "ofpart" parsers ATM.
946 * Note: If there are more then one parser in @types, the kernel only takes the
947 * partitions parsed out by the first parser.
948 *
949 * This function may return:
950 * o a negative error code in case of failure
951 * o zero otherwise, and @pparts will describe the partitions, number of
952 * partitions, and the parser which parsed them. Caller must release
953 * resources with mtd_part_parser_cleanup() when finished with the returned
954 * data.
955 */
956int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
957 struct mtd_partitions *pparts,
958 struct mtd_part_parser_data *data)
959{
960 struct mtd_part_parser *parser;
961 int ret, err = 0;
962
963 if (!types)
964 types = default_mtd_part_types;
965
966 for ( ; *types; types++) {
967 /*
968 * ofpart is a special type that means OF partitioning info
969 * should be used. It requires a bit different logic so it is
970 * handled in a separated function.
971 */
972 if (!strcmp(*types, "ofpart")) {
973 ret = mtd_part_of_parse(master, pparts);
974 } else {
975 pr_debug("%s: parsing partitions %s\n", master->name,
976 *types);
977 parser = mtd_part_parser_get(*types);
978 if (!parser && !request_module("%s", *types))
979 parser = mtd_part_parser_get(*types);
980 pr_debug("%s: got parser %s\n", master->name,
981 parser ? parser->name : NULL);
982 if (!parser)
983 continue;
984 ret = mtd_part_do_parse(parser, master, pparts, data);
985 if (ret <= 0)
986 mtd_part_parser_put(parser);
987 }
988 /* Found partitions! */
989 if (ret > 0)
990 return 0;
991 /*
992 * Stash the first error we see; only report it if no parser
993 * succeeds
994 */
995 if (ret < 0 && !err)
996 err = ret;
997 }
998 return err;
999}
1000
1001void mtd_part_parser_cleanup(struct mtd_partitions *parts)
1002{
1003 const struct mtd_part_parser *parser;
1004
1005 if (!parts)
1006 return;
1007
1008 parser = parts->parser;
1009 if (parser) {
1010 if (parser->cleanup)
1011 parser->cleanup(parts->parts, parts->nr_parts);
1012
1013 mtd_part_parser_put(parser);
1014 }
1015}
1016
1017int mtd_is_partition(const struct mtd_info *mtd)
1018{
1019 struct mtd_part *part;
1020 int ispart = 0;
1021
1022 mutex_lock(&mtd_partitions_mutex);
1023 list_for_each_entry(part, &mtd_partitions, list)
1024 if (&part->mtd == mtd) {
1025 ispart = 1;
1026 break;
1027 }
1028 mutex_unlock(&mtd_partitions_mutex);
1029
1030 return ispart;
1031}
1032EXPORT_SYMBOL_GPL(mtd_is_partition);
1033
1034/* Returns the size of the entire flash chip */
1035uint64_t mtd_get_device_size(const struct mtd_info *mtd)
1036{
1037 if (!mtd_is_partition(mtd))
1038 return mtd->size;
1039
1040 return mtd_get_device_size(mtd_to_part(mtd)->parent);
1041}
1042EXPORT_SYMBOL_GPL(mtd_get_device_size);