Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Simple MTD partitioning layer
  3 *
  4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License as published by
 10 * the Free Software Foundation; either version 2 of the License, or
 11 * (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 21 *
 22 */
 23
 24#include <linux/module.h>
 25#include <linux/types.h>
 26#include <linux/kernel.h>
 27#include <linux/slab.h>
 28#include <linux/list.h>
 29#include <linux/kmod.h>
 30#include <linux/mtd/mtd.h>
 31#include <linux/mtd/partitions.h>
 32#include <linux/err.h>
 
 
 33
 34#include "mtdcore.h"
 35
 36/* Our partition linked list */
 37static LIST_HEAD(mtd_partitions);
 38static DEFINE_MUTEX(mtd_partitions_mutex);
 39
 40/* Our partition node structure */
 41struct mtd_part {
 42	struct mtd_info mtd;
 43	struct mtd_info *master;
 44	uint64_t offset;
 45	struct list_head list;
 46};
 47
 48/*
 49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
 50 * the pointer to that structure with this macro.
 51 */
 52#define PART(x)  ((struct mtd_part *)(x))
 53
 54
 55/*
 56 * MTD methods which simply translate the effective address and pass through
 57 * to the _real_ device.
 58 */
 59
 60static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
 61		size_t *retlen, u_char *buf)
 62{
 63	struct mtd_part *part = PART(mtd);
 64	struct mtd_ecc_stats stats;
 65	int res;
 66
 67	stats = part->master->ecc_stats;
 68
 69	if (from >= mtd->size)
 70		len = 0;
 71	else if (from + len > mtd->size)
 72		len = mtd->size - from;
 73	res = part->master->read(part->master, from + part->offset,
 74				   len, retlen, buf);
 75	if (unlikely(res)) {
 76		if (res == -EUCLEAN)
 77			mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
 78		if (res == -EBADMSG)
 79			mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
 80	}
 81	return res;
 82}
 83
 84static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
 85		size_t *retlen, void **virt, resource_size_t *phys)
 86{
 87	struct mtd_part *part = PART(mtd);
 88	if (from >= mtd->size)
 89		len = 0;
 90	else if (from + len > mtd->size)
 91		len = mtd->size - from;
 92	return part->master->point (part->master, from + part->offset,
 93				    len, retlen, virt, phys);
 94}
 95
 96static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
 97{
 98	struct mtd_part *part = PART(mtd);
 99
100	part->master->unpoint(part->master, from + part->offset, len);
101}
102
103static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
104					    unsigned long len,
105					    unsigned long offset,
106					    unsigned long flags)
107{
108	struct mtd_part *part = PART(mtd);
109
110	offset += part->offset;
111	return part->master->get_unmapped_area(part->master, len, offset,
112					       flags);
113}
114
115static int part_read_oob(struct mtd_info *mtd, loff_t from,
116		struct mtd_oob_ops *ops)
117{
118	struct mtd_part *part = PART(mtd);
119	int res;
120
121	if (from >= mtd->size)
122		return -EINVAL;
123	if (ops->datbuf && from + ops->len > mtd->size)
124		return -EINVAL;
125
126	/*
127	 * If OOB is also requested, make sure that we do not read past the end
128	 * of this partition.
129	 */
130	if (ops->oobbuf) {
131		size_t len, pages;
132
133		if (ops->mode == MTD_OOB_AUTO)
134			len = mtd->oobavail;
135		else
136			len = mtd->oobsize;
137		pages = mtd_div_by_ws(mtd->size, mtd);
138		pages -= mtd_div_by_ws(from, mtd);
139		if (ops->ooboffs + ops->ooblen > pages * len)
140			return -EINVAL;
141	}
142
143	res = part->master->read_oob(part->master, from + part->offset, ops);
144	if (unlikely(res)) {
145		if (res == -EUCLEAN)
146			mtd->ecc_stats.corrected++;
147		if (res == -EBADMSG)
148			mtd->ecc_stats.failed++;
149	}
150	return res;
151}
152
153static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
154		size_t len, size_t *retlen, u_char *buf)
155{
156	struct mtd_part *part = PART(mtd);
157	return part->master->read_user_prot_reg(part->master, from,
158					len, retlen, buf);
159}
160
161static int part_get_user_prot_info(struct mtd_info *mtd,
162		struct otp_info *buf, size_t len)
163{
164	struct mtd_part *part = PART(mtd);
165	return part->master->get_user_prot_info(part->master, buf, len);
166}
167
168static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
169		size_t len, size_t *retlen, u_char *buf)
170{
171	struct mtd_part *part = PART(mtd);
172	return part->master->read_fact_prot_reg(part->master, from,
173					len, retlen, buf);
174}
175
176static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
177		size_t len)
178{
179	struct mtd_part *part = PART(mtd);
180	return part->master->get_fact_prot_info(part->master, buf, len);
181}
182
183static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
184		size_t *retlen, const u_char *buf)
185{
186	struct mtd_part *part = PART(mtd);
187	if (!(mtd->flags & MTD_WRITEABLE))
188		return -EROFS;
189	if (to >= mtd->size)
190		len = 0;
191	else if (to + len > mtd->size)
192		len = mtd->size - to;
193	return part->master->write(part->master, to + part->offset,
194				    len, retlen, buf);
195}
196
197static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
198		size_t *retlen, const u_char *buf)
199{
200	struct mtd_part *part = PART(mtd);
201	if (!(mtd->flags & MTD_WRITEABLE))
202		return -EROFS;
203	if (to >= mtd->size)
204		len = 0;
205	else if (to + len > mtd->size)
206		len = mtd->size - to;
207	return part->master->panic_write(part->master, to + part->offset,
208				    len, retlen, buf);
209}
210
211static int part_write_oob(struct mtd_info *mtd, loff_t to,
212		struct mtd_oob_ops *ops)
213{
214	struct mtd_part *part = PART(mtd);
215
216	if (!(mtd->flags & MTD_WRITEABLE))
217		return -EROFS;
218
219	if (to >= mtd->size)
220		return -EINVAL;
221	if (ops->datbuf && to + ops->len > mtd->size)
222		return -EINVAL;
223	return part->master->write_oob(part->master, to + part->offset, ops);
224}
225
226static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
227		size_t len, size_t *retlen, u_char *buf)
228{
229	struct mtd_part *part = PART(mtd);
230	return part->master->write_user_prot_reg(part->master, from,
231					len, retlen, buf);
232}
233
234static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
235		size_t len)
236{
237	struct mtd_part *part = PART(mtd);
238	return part->master->lock_user_prot_reg(part->master, from, len);
239}
240
241static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
242		unsigned long count, loff_t to, size_t *retlen)
243{
244	struct mtd_part *part = PART(mtd);
245	if (!(mtd->flags & MTD_WRITEABLE))
246		return -EROFS;
247	return part->master->writev(part->master, vecs, count,
248					to + part->offset, retlen);
249}
250
251static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
252{
253	struct mtd_part *part = PART(mtd);
254	int ret;
255	if (!(mtd->flags & MTD_WRITEABLE))
256		return -EROFS;
257	if (instr->addr >= mtd->size)
258		return -EINVAL;
259	instr->addr += part->offset;
260	ret = part->master->erase(part->master, instr);
261	if (ret) {
262		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
263			instr->fail_addr -= part->offset;
264		instr->addr -= part->offset;
265	}
266	return ret;
267}
268
269void mtd_erase_callback(struct erase_info *instr)
270{
271	if (instr->mtd->erase == part_erase) {
272		struct mtd_part *part = PART(instr->mtd);
273
274		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
275			instr->fail_addr -= part->offset;
276		instr->addr -= part->offset;
277	}
278	if (instr->callback)
279		instr->callback(instr);
280}
281EXPORT_SYMBOL_GPL(mtd_erase_callback);
282
283static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
284{
285	struct mtd_part *part = PART(mtd);
286	if ((len + ofs) > mtd->size)
287		return -EINVAL;
288	return part->master->lock(part->master, ofs + part->offset, len);
289}
290
291static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
292{
293	struct mtd_part *part = PART(mtd);
294	if ((len + ofs) > mtd->size)
295		return -EINVAL;
296	return part->master->unlock(part->master, ofs + part->offset, len);
297}
298
299static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
300{
301	struct mtd_part *part = PART(mtd);
302	if ((len + ofs) > mtd->size)
303		return -EINVAL;
304	return part->master->is_locked(part->master, ofs + part->offset, len);
305}
306
307static void part_sync(struct mtd_info *mtd)
308{
309	struct mtd_part *part = PART(mtd);
310	part->master->sync(part->master);
311}
312
313static int part_suspend(struct mtd_info *mtd)
314{
315	struct mtd_part *part = PART(mtd);
316	return part->master->suspend(part->master);
317}
318
319static void part_resume(struct mtd_info *mtd)
320{
321	struct mtd_part *part = PART(mtd);
322	part->master->resume(part->master);
323}
324
325static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
326{
327	struct mtd_part *part = PART(mtd);
328	if (ofs >= mtd->size)
329		return -EINVAL;
330	ofs += part->offset;
331	return part->master->block_isbad(part->master, ofs);
332}
333
334static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
335{
336	struct mtd_part *part = PART(mtd);
337	int res;
338
339	if (!(mtd->flags & MTD_WRITEABLE))
340		return -EROFS;
341	if (ofs >= mtd->size)
342		return -EINVAL;
343	ofs += part->offset;
344	res = part->master->block_markbad(part->master, ofs);
345	if (!res)
346		mtd->ecc_stats.badblocks++;
347	return res;
348}
349
350static inline void free_partition(struct mtd_part *p)
351{
352	kfree(p->mtd.name);
353	kfree(p);
354}
355
356/*
357 * This function unregisters and destroy all slave MTD objects which are
358 * attached to the given master MTD object.
359 */
360
361int del_mtd_partitions(struct mtd_info *master)
362{
363	struct mtd_part *slave, *next;
364	int ret, err = 0;
365
366	mutex_lock(&mtd_partitions_mutex);
367	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
368		if (slave->master == master) {
369			ret = del_mtd_device(&slave->mtd);
370			if (ret < 0) {
371				err = ret;
372				continue;
373			}
374			list_del(&slave->list);
375			free_partition(slave);
376		}
377	mutex_unlock(&mtd_partitions_mutex);
378
379	return err;
380}
381
382static struct mtd_part *allocate_partition(struct mtd_info *master,
383			const struct mtd_partition *part, int partno,
384			uint64_t cur_offset)
385{
386	struct mtd_part *slave;
387	char *name;
 
388
389	/* allocate the partition structure */
390	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
391	name = kstrdup(part->name, GFP_KERNEL);
392	if (!name || !slave) {
393		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
394		       master->name);
395		kfree(name);
396		kfree(slave);
397		return ERR_PTR(-ENOMEM);
398	}
399
400	/* set up the MTD object for this partition */
401	slave->mtd.type = master->type;
402	slave->mtd.flags = master->flags & ~part->mask_flags;
403	slave->mtd.size = part->size;
404	slave->mtd.writesize = master->writesize;
405	slave->mtd.writebufsize = master->writebufsize;
406	slave->mtd.oobsize = master->oobsize;
407	slave->mtd.oobavail = master->oobavail;
408	slave->mtd.subpage_sft = master->subpage_sft;
409
410	slave->mtd.name = name;
411	slave->mtd.owner = master->owner;
412	slave->mtd.backing_dev_info = master->backing_dev_info;
413
414	/* NOTE:  we don't arrange MTDs as a tree; it'd be error-prone
415	 * to have the same data be in two different partitions.
 
 
 
 
 
 
416	 */
417	slave->mtd.dev.parent = master->dev.parent;
418
419	slave->mtd.read = part_read;
420	slave->mtd.write = part_write;
421
422	if (master->panic_write)
423		slave->mtd.panic_write = part_panic_write;
424
425	if (master->point && master->unpoint) {
426		slave->mtd.point = part_point;
427		slave->mtd.unpoint = part_unpoint;
428	}
429
430	if (master->get_unmapped_area)
431		slave->mtd.get_unmapped_area = part_get_unmapped_area;
432	if (master->read_oob)
433		slave->mtd.read_oob = part_read_oob;
434	if (master->write_oob)
435		slave->mtd.write_oob = part_write_oob;
436	if (master->read_user_prot_reg)
437		slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
438	if (master->read_fact_prot_reg)
439		slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
440	if (master->write_user_prot_reg)
441		slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
442	if (master->lock_user_prot_reg)
443		slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
444	if (master->get_user_prot_info)
445		slave->mtd.get_user_prot_info = part_get_user_prot_info;
446	if (master->get_fact_prot_info)
447		slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
448	if (master->sync)
449		slave->mtd.sync = part_sync;
450	if (!partno && !master->dev.class && master->suspend && master->resume) {
451			slave->mtd.suspend = part_suspend;
452			slave->mtd.resume = part_resume;
453	}
454	if (master->writev)
455		slave->mtd.writev = part_writev;
456	if (master->lock)
457		slave->mtd.lock = part_lock;
458	if (master->unlock)
459		slave->mtd.unlock = part_unlock;
460	if (master->is_locked)
461		slave->mtd.is_locked = part_is_locked;
462	if (master->block_isbad)
463		slave->mtd.block_isbad = part_block_isbad;
464	if (master->block_markbad)
465		slave->mtd.block_markbad = part_block_markbad;
466	slave->mtd.erase = part_erase;
467	slave->master = master;
468	slave->offset = part->offset;
469
470	if (slave->offset == MTDPART_OFS_APPEND)
471		slave->offset = cur_offset;
472	if (slave->offset == MTDPART_OFS_NXTBLK) {
473		slave->offset = cur_offset;
474		if (mtd_mod_by_eb(cur_offset, master) != 0) {
475			/* Round up to next erasesize */
476			slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
477			printk(KERN_NOTICE "Moving partition %d: "
478			       "0x%012llx -> 0x%012llx\n", partno,
479			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
480		}
481	}
482	if (slave->mtd.size == MTDPART_SIZ_FULL)
483		slave->mtd.size = master->size - slave->offset;
484
485	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
486		(unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
 
487
488	/* let's do some sanity checks */
489	if (slave->offset >= master->size) {
490		/* let's register it anyway to preserve ordering */
491		slave->offset = 0;
492		slave->mtd.size = 0;
 
 
 
493		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
494			part->name);
495		goto out_register;
496	}
497	if (slave->offset + slave->mtd.size > master->size) {
498		slave->mtd.size = master->size - slave->offset;
499		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
500			part->name, master->name, (unsigned long long)slave->mtd.size);
501	}
502	if (master->numeraseregions > 1) {
 
503		/* Deal with variable erase size stuff */
504		int i, max = master->numeraseregions;
505		u64 end = slave->offset + slave->mtd.size;
506		struct mtd_erase_region_info *regions = master->eraseregions;
507
508		/* Find the first erase regions which is part of this
509		 * partition. */
510		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
 
511			;
512		/* The loop searched for the region _behind_ the first one */
513		if (i > 0)
514			i--;
515
516		/* Pick biggest erasesize */
517		for (; i < max && regions[i].offset < end; i++) {
518			if (slave->mtd.erasesize < regions[i].erasesize) {
519				slave->mtd.erasesize = regions[i].erasesize;
520			}
521		}
522		BUG_ON(slave->mtd.erasesize == 0);
523	} else {
524		/* Single erase size */
525		slave->mtd.erasesize = master->erasesize;
526	}
527
528	if ((slave->mtd.flags & MTD_WRITEABLE) &&
529	    mtd_mod_by_eb(slave->offset, &slave->mtd)) {
 
 
 
 
 
 
 
 
 
530		/* Doesn't start on a boundary of major erase size */
531		/* FIXME: Let it be writable if it is on a boundary of
532		 * _minor_ erase size though */
533		slave->mtd.flags &= ~MTD_WRITEABLE;
534		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
535			part->name);
536	}
537	if ((slave->mtd.flags & MTD_WRITEABLE) &&
538	    mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
539		slave->mtd.flags &= ~MTD_WRITEABLE;
540		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
 
 
541			part->name);
542	}
543
544	slave->mtd.ecclayout = master->ecclayout;
545	if (master->block_isbad) {
 
 
 
 
546		uint64_t offs = 0;
547
548		while (offs < slave->mtd.size) {
549			if (master->block_isbad(master,
550						offs + slave->offset))
551				slave->mtd.ecc_stats.badblocks++;
552			offs += slave->mtd.erasesize;
 
553		}
554	}
555
556out_register:
557	return slave;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
558}
559
560int mtd_add_partition(struct mtd_info *master, char *name,
561		      long long offset, long long length)
562{
 
 
 
563	struct mtd_partition part;
564	struct mtd_part *p, *new;
565	uint64_t start, end;
566	int ret = 0;
567
568	/* the direct offset is expected */
569	if (offset == MTDPART_OFS_APPEND ||
570	    offset == MTDPART_OFS_NXTBLK)
571		return -EINVAL;
572
573	if (length == MTDPART_SIZ_FULL)
574		length = master->size - offset;
575
576	if (length <= 0)
577		return -EINVAL;
578
 
579	part.name = name;
580	part.size = length;
581	part.offset = offset;
582	part.mask_flags = 0;
583	part.ecclayout = NULL;
584
585	new = allocate_partition(master, &part, -1, offset);
586	if (IS_ERR(new))
587		return PTR_ERR(new);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
588
589	start = offset;
590	end = offset + length;
591
592	mutex_lock(&mtd_partitions_mutex);
593	list_for_each_entry(p, &mtd_partitions, list)
594		if (p->master == master) {
595			if ((start >= p->offset) &&
596			    (start < (p->offset + p->mtd.size)))
597				goto err_inv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
598
599			if ((end >= p->offset) &&
600			    (end < (p->offset + p->mtd.size)))
601				goto err_inv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
602		}
603
604	list_add(&new->list, &mtd_partitions);
605	mutex_unlock(&mtd_partitions_mutex);
 
 
 
 
 
 
 
 
 
606
607	add_mtd_device(&new->mtd);
 
 
 
 
608
609	return ret;
610err_inv:
611	mutex_unlock(&mtd_partitions_mutex);
612	free_partition(new);
613	return -EINVAL;
614}
615EXPORT_SYMBOL_GPL(mtd_add_partition);
616
617int mtd_del_partition(struct mtd_info *master, int partno)
618{
619	struct mtd_part *slave, *next;
620	int ret = -EINVAL;
621
622	mutex_lock(&mtd_partitions_mutex);
623	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
624		if ((slave->master == master) &&
625		    (slave->mtd.index == partno)) {
626			ret = del_mtd_device(&slave->mtd);
627			if (ret < 0)
628				break;
629
630			list_del(&slave->list);
631			free_partition(slave);
632			break;
633		}
634	mutex_unlock(&mtd_partitions_mutex);
 
635
636	return ret;
637}
638EXPORT_SYMBOL_GPL(mtd_del_partition);
639
640/*
641 * This function, given a master MTD object and a partition table, creates
642 * and registers slave MTD objects which are bound to the master according to
643 * the partition definitions.
644 *
645 * We don't register the master, or expect the caller to have done so,
646 * for reasons of data integrity.
647 */
648
649int add_mtd_partitions(struct mtd_info *master,
650		       const struct mtd_partition *parts,
651		       int nbparts)
652{
653	struct mtd_part *slave;
654	uint64_t cur_offset = 0;
655	int i;
656
657	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
 
658
659	for (i = 0; i < nbparts; i++) {
660		slave = allocate_partition(master, parts + i, i, cur_offset);
661		if (IS_ERR(slave))
662			return PTR_ERR(slave);
 
 
663
664		mutex_lock(&mtd_partitions_mutex);
665		list_add(&slave->list, &mtd_partitions);
666		mutex_unlock(&mtd_partitions_mutex);
 
 
 
 
 
 
667
668		add_mtd_device(&slave->mtd);
 
 
 
 
 
 
 
669
670		cur_offset = slave->offset + slave->mtd.size;
671	}
672
673	return 0;
 
 
 
 
 
674}
675
676static DEFINE_SPINLOCK(part_parser_lock);
677static LIST_HEAD(part_parsers);
678
679static struct mtd_part_parser *get_partition_parser(const char *name)
680{
681	struct mtd_part_parser *p, *ret = NULL;
682
683	spin_lock(&part_parser_lock);
684
685	list_for_each_entry(p, &part_parsers, list)
686		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
687			ret = p;
688			break;
689		}
690
691	spin_unlock(&part_parser_lock);
692
693	return ret;
694}
695
696int register_mtd_parser(struct mtd_part_parser *p)
697{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
698	spin_lock(&part_parser_lock);
699	list_add(&p->list, &part_parsers);
700	spin_unlock(&part_parser_lock);
701
702	return 0;
703}
704EXPORT_SYMBOL_GPL(register_mtd_parser);
705
706int deregister_mtd_parser(struct mtd_part_parser *p)
707{
708	spin_lock(&part_parser_lock);
709	list_del(&p->list);
710	spin_unlock(&part_parser_lock);
711	return 0;
712}
713EXPORT_SYMBOL_GPL(deregister_mtd_parser);
714
715int parse_mtd_partitions(struct mtd_info *master, const char **types,
716			 struct mtd_partition **pparts, unsigned long origin)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
717{
718	struct mtd_part_parser *parser;
719	int ret = 0;
 
 
 
 
 
720
721	for ( ; ret <= 0 && *types; types++) {
722		parser = get_partition_parser(*types);
723		if (!parser && !request_module("%s", *types))
724				parser = get_partition_parser(*types);
 
 
 
 
 
 
 
 
 
725		if (!parser)
726			continue;
727		ret = (*parser->parse_fn)(master, pparts, origin);
728		if (ret > 0) {
729			printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
730			       ret, parser->name, master->name);
 
731		}
732		put_partition_parser(parser);
 
 
733	}
734	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
735}
736EXPORT_SYMBOL_GPL(parse_mtd_partitions);
737
738int mtd_is_partition(struct mtd_info *mtd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
739{
740	struct mtd_part *part;
741	int ispart = 0;
 
742
743	mutex_lock(&mtd_partitions_mutex);
744	list_for_each_entry(part, &mtd_partitions, list)
745		if (&part->mtd == mtd) {
746			ispart = 1;
747			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
748		}
749	mutex_unlock(&mtd_partitions_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
750
751	return ispart;
752}
753EXPORT_SYMBOL_GPL(mtd_is_partition);
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Simple MTD partitioning layer
  4 *
  5 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  6 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  7 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  8 */
  9
 10#include <linux/module.h>
 11#include <linux/types.h>
 12#include <linux/kernel.h>
 13#include <linux/slab.h>
 14#include <linux/list.h>
 15#include <linux/kmod.h>
 16#include <linux/mtd/mtd.h>
 17#include <linux/mtd/partitions.h>
 18#include <linux/err.h>
 19#include <linux/of.h>
 20#include <linux/of_platform.h>
 21
 22#include "mtdcore.h"
 23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 24/*
 25 * MTD methods which simply translate the effective address and pass through
 26 * to the _real_ device.
 27 */
 28
 29static inline void free_partition(struct mtd_info *mtd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 30{
 31	kfree(mtd->name);
 32	kfree(mtd);
 
 
 
 33}
 34
 35static struct mtd_info *allocate_partition(struct mtd_info *parent,
 36					   const struct mtd_partition *part,
 37					   int partno, uint64_t cur_offset)
 38{
 39	struct mtd_info *master = mtd_get_master(parent);
 40	int wr_alignment = (parent->flags & MTD_NO_ERASE) ?
 41			   master->writesize : master->erasesize;
 42	u64 parent_size = mtd_is_partition(parent) ?
 43			  parent->part.size : parent->size;
 44	struct mtd_info *child;
 45	u32 remainder;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 46	char *name;
 47	u64 tmp;
 48
 49	/* allocate the partition structure */
 50	child = kzalloc(sizeof(*child), GFP_KERNEL);
 51	name = kstrdup(part->name, GFP_KERNEL);
 52	if (!name || !child) {
 53		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
 54		       parent->name);
 55		kfree(name);
 56		kfree(child);
 57		return ERR_PTR(-ENOMEM);
 58	}
 59
 60	/* set up the MTD object for this partition */
 61	child->type = parent->type;
 62	child->part.flags = parent->flags & ~part->mask_flags;
 63	child->part.flags |= part->add_flags;
 64	child->flags = child->part.flags;
 65	child->part.size = part->size;
 66	child->writesize = parent->writesize;
 67	child->writebufsize = parent->writebufsize;
 68	child->oobsize = parent->oobsize;
 69	child->oobavail = parent->oobavail;
 70	child->subpage_sft = parent->subpage_sft;
 71
 72	child->name = name;
 73	child->owner = parent->owner;
 74
 75	/* NOTE: Historically, we didn't arrange MTDs as a tree out of
 76	 * concern for showing the same data in multiple partitions.
 77	 * However, it is very useful to have the master node present,
 78	 * so the MTD_PARTITIONED_MASTER option allows that. The master
 79	 * will have device nodes etc only if this is set, so make the
 80	 * parent conditional on that option. Note, this is a way to
 81	 * distinguish between the parent and its partitions in sysfs.
 82	 */
 83	child->dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
 84			    &parent->dev : parent->dev.parent;
 85	child->dev.of_node = part->of_node;
 86	child->parent = parent;
 87	child->part.offset = part->offset;
 88	INIT_LIST_HEAD(&child->partitions);
 89
 90	if (child->part.offset == MTDPART_OFS_APPEND)
 91		child->part.offset = cur_offset;
 92	if (child->part.offset == MTDPART_OFS_NXTBLK) {
 93		tmp = cur_offset;
 94		child->part.offset = cur_offset;
 95		remainder = do_div(tmp, wr_alignment);
 96		if (remainder) {
 97			child->part.offset += wr_alignment - remainder;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 98			printk(KERN_NOTICE "Moving partition %d: "
 99			       "0x%012llx -> 0x%012llx\n", partno,
100			       (unsigned long long)cur_offset,
101			       child->part.offset);
102		}
103	}
104	if (child->part.offset == MTDPART_OFS_RETAIN) {
105		child->part.offset = cur_offset;
106		if (parent_size - child->part.offset >= child->part.size) {
107			child->part.size = parent_size - child->part.offset -
108					   child->part.size;
109		} else {
110			printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
111				part->name, parent_size - child->part.offset,
112				child->part.size);
113			/* register to preserve ordering */
114			goto out_register;
115		}
116	}
117	if (child->part.size == MTDPART_SIZ_FULL)
118		child->part.size = parent_size - child->part.offset;
119
120	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n",
121	       child->part.offset, child->part.offset + child->part.size,
122	       child->name);
123
124	/* let's do some sanity checks */
125	if (child->part.offset >= parent_size) {
126		/* let's register it anyway to preserve ordering */
127		child->part.offset = 0;
128		child->part.size = 0;
129
130		/* Initialize ->erasesize to make add_mtd_device() happy. */
131		child->erasesize = parent->erasesize;
132		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
133			part->name);
134		goto out_register;
135	}
136	if (child->part.offset + child->part.size > parent->size) {
137		child->part.size = parent_size - child->part.offset;
138		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
139			part->name, parent->name, child->part.size);
140	}
141
142	if (parent->numeraseregions > 1) {
143		/* Deal with variable erase size stuff */
144		int i, max = parent->numeraseregions;
145		u64 end = child->part.offset + child->part.size;
146		struct mtd_erase_region_info *regions = parent->eraseregions;
147
148		/* Find the first erase regions which is part of this
149		 * partition. */
150		for (i = 0; i < max && regions[i].offset <= child->part.offset;
151		     i++)
152			;
153		/* The loop searched for the region _behind_ the first one */
154		if (i > 0)
155			i--;
156
157		/* Pick biggest erasesize */
158		for (; i < max && regions[i].offset < end; i++) {
159			if (child->erasesize < regions[i].erasesize)
160				child->erasesize = regions[i].erasesize;
 
161		}
162		BUG_ON(child->erasesize == 0);
163	} else {
164		/* Single erase size */
165		child->erasesize = master->erasesize;
166	}
167
168	/*
169	 * Child erasesize might differ from the parent one if the parent
170	 * exposes several regions with different erasesize. Adjust
171	 * wr_alignment accordingly.
172	 */
173	if (!(child->flags & MTD_NO_ERASE))
174		wr_alignment = child->erasesize;
175
176	tmp = mtd_get_master_ofs(child, 0);
177	remainder = do_div(tmp, wr_alignment);
178	if ((child->flags & MTD_WRITEABLE) && remainder) {
179		/* Doesn't start on a boundary of major erase size */
180		/* FIXME: Let it be writable if it is on a boundary of
181		 * _minor_ erase size though */
182		child->flags &= ~MTD_WRITEABLE;
183		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
184			part->name);
185	}
186
187	tmp = mtd_get_master_ofs(child, 0) + child->part.size;
188	remainder = do_div(tmp, wr_alignment);
189	if ((child->flags & MTD_WRITEABLE) && remainder) {
190		child->flags &= ~MTD_WRITEABLE;
191		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
192			part->name);
193	}
194
195	child->size = child->part.size;
196	child->ecc_step_size = parent->ecc_step_size;
197	child->ecc_strength = parent->ecc_strength;
198	child->bitflip_threshold = parent->bitflip_threshold;
199
200	if (master->_block_isbad) {
201		uint64_t offs = 0;
202
203		while (offs < child->part.size) {
204			if (mtd_block_isreserved(child, offs))
205				child->ecc_stats.bbtblocks++;
206			else if (mtd_block_isbad(child, offs))
207				child->ecc_stats.badblocks++;
208			offs += child->erasesize;
209		}
210	}
211
212out_register:
213	return child;
214}
215
216static ssize_t offset_show(struct device *dev,
217			   struct device_attribute *attr, char *buf)
218{
219	struct mtd_info *mtd = dev_get_drvdata(dev);
220
221	return sysfs_emit(buf, "%lld\n", mtd->part.offset);
222}
223static DEVICE_ATTR_RO(offset);	/* mtd partition offset */
224
225static const struct attribute *mtd_partition_attrs[] = {
226	&dev_attr_offset.attr,
227	NULL
228};
229
230static int mtd_add_partition_attrs(struct mtd_info *new)
231{
232	int ret = sysfs_create_files(&new->dev.kobj, mtd_partition_attrs);
233	if (ret)
234		printk(KERN_WARNING
235		       "mtd: failed to create partition attrs, err=%d\n", ret);
236	return ret;
237}
238
239int mtd_add_partition(struct mtd_info *parent, const char *name,
240		      long long offset, long long length)
241{
242	struct mtd_info *master = mtd_get_master(parent);
243	u64 parent_size = mtd_is_partition(parent) ?
244			  parent->part.size : parent->size;
245	struct mtd_partition part;
246	struct mtd_info *child;
 
247	int ret = 0;
248
249	/* the direct offset is expected */
250	if (offset == MTDPART_OFS_APPEND ||
251	    offset == MTDPART_OFS_NXTBLK)
252		return -EINVAL;
253
254	if (length == MTDPART_SIZ_FULL)
255		length = parent_size - offset;
256
257	if (length <= 0)
258		return -EINVAL;
259
260	memset(&part, 0, sizeof(part));
261	part.name = name;
262	part.size = length;
263	part.offset = offset;
 
 
264
265	child = allocate_partition(parent, &part, -1, offset);
266	if (IS_ERR(child))
267		return PTR_ERR(child);
268
269	mutex_lock(&master->master.partitions_lock);
270	list_add_tail(&child->part.node, &parent->partitions);
271	mutex_unlock(&master->master.partitions_lock);
272
273	ret = add_mtd_device(child);
274	if (ret)
275		goto err_remove_part;
276
277	mtd_add_partition_attrs(child);
278
279	return 0;
280
281err_remove_part:
282	mutex_lock(&master->master.partitions_lock);
283	list_del(&child->part.node);
284	mutex_unlock(&master->master.partitions_lock);
285
286	free_partition(child);
 
287
288	return ret;
289}
290EXPORT_SYMBOL_GPL(mtd_add_partition);
291
292/**
293 * __mtd_del_partition - delete MTD partition
294 *
295 * @mtd: MTD structure to be deleted
296 *
297 * This function must be called with the partitions mutex locked.
298 */
299static int __mtd_del_partition(struct mtd_info *mtd)
300{
301	struct mtd_info *child, *next;
302	int err;
303
304	list_for_each_entry_safe(child, next, &mtd->partitions, part.node) {
305		err = __mtd_del_partition(child);
306		if (err)
307			return err;
308	}
309
310	sysfs_remove_files(&mtd->dev.kobj, mtd_partition_attrs);
311
312	err = del_mtd_device(mtd);
313	if (err)
314		return err;
315
316	list_del(&mtd->part.node);
317	free_partition(mtd);
318
319	return 0;
320}
321
322/*
323 * This function unregisters and destroy all slave MTD objects which are
324 * attached to the given MTD object, recursively.
325 */
326static int __del_mtd_partitions(struct mtd_info *mtd)
327{
328	struct mtd_info *child, *next;
329	LIST_HEAD(tmp_list);
330	int ret, err = 0;
331
332	list_for_each_entry_safe(child, next, &mtd->partitions, part.node) {
333		if (mtd_has_partitions(child))
334			__del_mtd_partitions(child);
335
336		pr_info("Deleting %s MTD partition\n", child->name);
337		ret = del_mtd_device(child);
338		if (ret < 0) {
339			pr_err("Error when deleting partition \"%s\" (%d)\n",
340			       child->name, ret);
341			err = ret;
342			continue;
343		}
344
345		list_del(&child->part.node);
346		free_partition(child);
347	}
348
349	return err;
350}
351
352int del_mtd_partitions(struct mtd_info *mtd)
353{
354	struct mtd_info *master = mtd_get_master(mtd);
355	int ret;
356
357	pr_info("Deleting MTD partitions on \"%s\":\n", mtd->name);
358
359	mutex_lock(&master->master.partitions_lock);
360	ret = __del_mtd_partitions(mtd);
361	mutex_unlock(&master->master.partitions_lock);
362
363	return ret;
 
 
 
 
364}
 
365
366int mtd_del_partition(struct mtd_info *mtd, int partno)
367{
368	struct mtd_info *child, *master = mtd_get_master(mtd);
369	int ret = -EINVAL;
370
371	mutex_lock(&master->master.partitions_lock);
372	list_for_each_entry(child, &mtd->partitions, part.node) {
373		if (child->index == partno) {
374			ret = __mtd_del_partition(child);
 
 
 
 
 
 
375			break;
376		}
377	}
378	mutex_unlock(&master->master.partitions_lock);
379
380	return ret;
381}
382EXPORT_SYMBOL_GPL(mtd_del_partition);
383
384/*
385 * This function, given a parent MTD object and a partition table, creates
386 * and registers the child MTD objects which are bound to the parent according
387 * to the partition definitions.
388 *
389 * For historical reasons, this function's caller only registers the parent
390 * if the MTD_PARTITIONED_MASTER config option is set.
391 */
392
393int add_mtd_partitions(struct mtd_info *parent,
394		       const struct mtd_partition *parts,
395		       int nbparts)
396{
397	struct mtd_info *child, *master = mtd_get_master(parent);
398	uint64_t cur_offset = 0;
399	int i, ret;
400
401	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n",
402	       nbparts, parent->name);
403
404	for (i = 0; i < nbparts; i++) {
405		child = allocate_partition(parent, parts + i, i, cur_offset);
406		if (IS_ERR(child)) {
407			ret = PTR_ERR(child);
408			goto err_del_partitions;
409		}
410
411		mutex_lock(&master->master.partitions_lock);
412		list_add_tail(&child->part.node, &parent->partitions);
413		mutex_unlock(&master->master.partitions_lock);
414
415		ret = add_mtd_device(child);
416		if (ret) {
417			mutex_lock(&master->master.partitions_lock);
418			list_del(&child->part.node);
419			mutex_unlock(&master->master.partitions_lock);
420
421			free_partition(child);
422			goto err_del_partitions;
423		}
424
425		mtd_add_partition_attrs(child);
426
427		/* Look for subpartitions */
428		parse_mtd_partitions(child, parts[i].types, NULL);
429
430		cur_offset = child->part.offset + child->part.size;
431	}
432
433	return 0;
434
435err_del_partitions:
436	del_mtd_partitions(master);
437
438	return ret;
439}
440
441static DEFINE_SPINLOCK(part_parser_lock);
442static LIST_HEAD(part_parsers);
443
444static struct mtd_part_parser *mtd_part_parser_get(const char *name)
445{
446	struct mtd_part_parser *p, *ret = NULL;
447
448	spin_lock(&part_parser_lock);
449
450	list_for_each_entry(p, &part_parsers, list)
451		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
452			ret = p;
453			break;
454		}
455
456	spin_unlock(&part_parser_lock);
457
458	return ret;
459}
460
461static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
462{
463	module_put(p->owner);
464}
465
466/*
467 * Many partition parsers just expected the core to kfree() all their data in
468 * one chunk. Do that by default.
469 */
470static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
471					    int nr_parts)
472{
473	kfree(pparts);
474}
475
476int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
477{
478	p->owner = owner;
479
480	if (!p->cleanup)
481		p->cleanup = &mtd_part_parser_cleanup_default;
482
483	spin_lock(&part_parser_lock);
484	list_add(&p->list, &part_parsers);
485	spin_unlock(&part_parser_lock);
486
487	return 0;
488}
489EXPORT_SYMBOL_GPL(__register_mtd_parser);
490
491void deregister_mtd_parser(struct mtd_part_parser *p)
492{
493	spin_lock(&part_parser_lock);
494	list_del(&p->list);
495	spin_unlock(&part_parser_lock);
 
496}
497EXPORT_SYMBOL_GPL(deregister_mtd_parser);
498
499/*
500 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
501 * are changing this array!
502 */
503static const char * const default_mtd_part_types[] = {
504	"cmdlinepart",
505	"ofpart",
506	NULL
507};
508
509/* Check DT only when looking for subpartitions. */
510static const char * const default_subpartition_types[] = {
511	"ofpart",
512	NULL
513};
514
515static int mtd_part_do_parse(struct mtd_part_parser *parser,
516			     struct mtd_info *master,
517			     struct mtd_partitions *pparts,
518			     struct mtd_part_parser_data *data)
519{
520	int ret;
521
522	ret = (*parser->parse_fn)(master, &pparts->parts, data);
523	pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
524	if (ret <= 0)
525		return ret;
526
527	pr_notice("%d %s partitions found on MTD device %s\n", ret,
528		  parser->name, master->name);
529
530	pparts->nr_parts = ret;
531	pparts->parser = parser;
532
533	return ret;
534}
535
536/**
537 * mtd_part_get_compatible_parser - find MTD parser by a compatible string
538 *
539 * @compat: compatible string describing partitions in a device tree
540 *
541 * MTD parsers can specify supported partitions by providing a table of
542 * compatibility strings. This function finds a parser that advertises support
543 * for a passed value of "compatible".
544 */
545static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat)
546{
547	struct mtd_part_parser *p, *ret = NULL;
548
549	spin_lock(&part_parser_lock);
550
551	list_for_each_entry(p, &part_parsers, list) {
552		const struct of_device_id *matches;
553
554		matches = p->of_match_table;
555		if (!matches)
556			continue;
557
558		for (; matches->compatible[0]; matches++) {
559			if (!strcmp(matches->compatible, compat) &&
560			    try_module_get(p->owner)) {
561				ret = p;
562				break;
563			}
564		}
565
566		if (ret)
567			break;
568	}
569
570	spin_unlock(&part_parser_lock);
571
572	return ret;
573}
574
575static int mtd_part_of_parse(struct mtd_info *master,
576			     struct mtd_partitions *pparts)
577{
578	struct mtd_part_parser *parser;
579	struct device_node *np;
580	struct property *prop;
581	struct device *dev;
582	const char *compat;
583	const char *fixed = "fixed-partitions";
584	int ret, err = 0;
585
586	dev = &master->dev;
587	/* Use parent device (controller) if the top level MTD is not registered */
588	if (!IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) && !mtd_is_partition(master))
589		dev = master->dev.parent;
590
591	np = mtd_get_of_node(master);
592	if (mtd_is_partition(master))
593		of_node_get(np);
594	else
595		np = of_get_child_by_name(np, "partitions");
596
597	of_property_for_each_string(np, "compatible", prop, compat) {
598		parser = mtd_part_get_compatible_parser(compat);
599		if (!parser)
600			continue;
601		ret = mtd_part_do_parse(parser, master, pparts, NULL);
602		if (ret > 0) {
603			of_platform_populate(np, NULL, NULL, dev);
604			of_node_put(np);
605			return ret;
606		}
607		mtd_part_parser_put(parser);
608		if (ret < 0 && !err)
609			err = ret;
610	}
611	of_platform_populate(np, NULL, NULL, dev);
612	of_node_put(np);
613
614	/*
615	 * For backward compatibility we have to try the "fixed-partitions"
616	 * parser. It supports old DT format with partitions specified as a
617	 * direct subnodes of a flash device DT node without any compatibility
618	 * specified we could match.
619	 */
620	parser = mtd_part_parser_get(fixed);
621	if (!parser && !request_module("%s", fixed))
622		parser = mtd_part_parser_get(fixed);
623	if (parser) {
624		ret = mtd_part_do_parse(parser, master, pparts, NULL);
625		if (ret > 0)
626			return ret;
627		mtd_part_parser_put(parser);
628		if (ret < 0 && !err)
629			err = ret;
630	}
631
632	return err;
633}
 
634
635/**
636 * parse_mtd_partitions - parse and register MTD partitions
637 *
638 * @master: the master partition (describes whole MTD device)
639 * @types: names of partition parsers to try or %NULL
640 * @data: MTD partition parser-specific data
641 *
642 * This function tries to find & register partitions on MTD device @master. It
643 * uses MTD partition parsers, specified in @types. However, if @types is %NULL,
644 * then the default list of parsers is used. The default list contains only the
645 * "cmdlinepart" and "ofpart" parsers ATM.
646 * Note: If there are more then one parser in @types, the kernel only takes the
647 * partitions parsed out by the first parser.
648 *
649 * This function may return:
650 * o a negative error code in case of failure
651 * o number of found partitions otherwise
652 */
653int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
654			 struct mtd_part_parser_data *data)
655{
656	struct mtd_partitions pparts = { };
657	struct mtd_part_parser *parser;
658	int ret, err = 0;
659
660	if (!types)
661		types = mtd_is_partition(master) ? default_subpartition_types :
662			default_mtd_part_types;
663
664	for ( ; *types; types++) {
665		/*
666		 * ofpart is a special type that means OF partitioning info
667		 * should be used. It requires a bit different logic so it is
668		 * handled in a separated function.
669		 */
670		if (!strcmp(*types, "ofpart")) {
671			ret = mtd_part_of_parse(master, &pparts);
672		} else {
673			pr_debug("%s: parsing partitions %s\n", master->name,
674				 *types);
675			parser = mtd_part_parser_get(*types);
676			if (!parser && !request_module("%s", *types))
677				parser = mtd_part_parser_get(*types);
678			pr_debug("%s: got parser %s\n", master->name,
679				parser ? parser->name : NULL);
680			if (!parser)
681				continue;
682			ret = mtd_part_do_parse(parser, master, &pparts, data);
683			if (ret <= 0)
684				mtd_part_parser_put(parser);
685		}
686		/* Found partitions! */
687		if (ret > 0) {
688			err = add_mtd_partitions(master, pparts.parts,
689						 pparts.nr_parts);
690			mtd_part_parser_cleanup(&pparts);
691			return err ? err : pparts.nr_parts;
692		}
693		/*
694		 * Stash the first error we see; only report it if no parser
695		 * succeeds
696		 */
697		if (ret < 0 && !err)
698			err = ret;
699	}
700	return err;
701}
702
703void mtd_part_parser_cleanup(struct mtd_partitions *parts)
704{
705	const struct mtd_part_parser *parser;
706
707	if (!parts)
708		return;
709
710	parser = parts->parser;
711	if (parser) {
712		if (parser->cleanup)
713			parser->cleanup(parts->parts, parts->nr_parts);
714
715		mtd_part_parser_put(parser);
716	}
717}
718
719/* Returns the size of the entire flash chip */
720uint64_t mtd_get_device_size(const struct mtd_info *mtd)
721{
722	struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
723
724	return master->size;
725}
726EXPORT_SYMBOL_GPL(mtd_get_device_size);