Loading...
1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3/*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29#include <linux/sysrq.h>
30#include <linux/slab.h>
31#include "drmP.h"
32#include "drm.h"
33#include "i915_drm.h"
34#include "i915_drv.h"
35#include "i915_trace.h"
36#include "intel_drv.h"
37
38#define MAX_NOPID ((u32)~0)
39
40/**
41 * Interrupts that are always left unmasked.
42 *
43 * Since pipe events are edge-triggered from the PIPESTAT register to IIR,
44 * we leave them always unmasked in IMR and then control enabling them through
45 * PIPESTAT alone.
46 */
47#define I915_INTERRUPT_ENABLE_FIX \
48 (I915_ASLE_INTERRUPT | \
49 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | \
50 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | \
51 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | \
52 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT | \
53 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
54
55/** Interrupts that we mask and unmask at runtime. */
56#define I915_INTERRUPT_ENABLE_VAR (I915_USER_INTERRUPT | I915_BSD_USER_INTERRUPT)
57
58#define I915_PIPE_VBLANK_STATUS (PIPE_START_VBLANK_INTERRUPT_STATUS |\
59 PIPE_VBLANK_INTERRUPT_STATUS)
60
61#define I915_PIPE_VBLANK_ENABLE (PIPE_START_VBLANK_INTERRUPT_ENABLE |\
62 PIPE_VBLANK_INTERRUPT_ENABLE)
63
64#define DRM_I915_VBLANK_PIPE_ALL (DRM_I915_VBLANK_PIPE_A | \
65 DRM_I915_VBLANK_PIPE_B)
66
67/* For display hotplug interrupt */
68static void
69ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
70{
71 if ((dev_priv->irq_mask & mask) != 0) {
72 dev_priv->irq_mask &= ~mask;
73 I915_WRITE(DEIMR, dev_priv->irq_mask);
74 POSTING_READ(DEIMR);
75 }
76}
77
78static inline void
79ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
80{
81 if ((dev_priv->irq_mask & mask) != mask) {
82 dev_priv->irq_mask |= mask;
83 I915_WRITE(DEIMR, dev_priv->irq_mask);
84 POSTING_READ(DEIMR);
85 }
86}
87
88void
89i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
90{
91 if ((dev_priv->pipestat[pipe] & mask) != mask) {
92 u32 reg = PIPESTAT(pipe);
93
94 dev_priv->pipestat[pipe] |= mask;
95 /* Enable the interrupt, clear any pending status */
96 I915_WRITE(reg, dev_priv->pipestat[pipe] | (mask >> 16));
97 POSTING_READ(reg);
98 }
99}
100
101void
102i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
103{
104 if ((dev_priv->pipestat[pipe] & mask) != 0) {
105 u32 reg = PIPESTAT(pipe);
106
107 dev_priv->pipestat[pipe] &= ~mask;
108 I915_WRITE(reg, dev_priv->pipestat[pipe]);
109 POSTING_READ(reg);
110 }
111}
112
113/**
114 * intel_enable_asle - enable ASLE interrupt for OpRegion
115 */
116void intel_enable_asle(struct drm_device *dev)
117{
118 drm_i915_private_t *dev_priv = dev->dev_private;
119 unsigned long irqflags;
120
121 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
122
123 if (HAS_PCH_SPLIT(dev))
124 ironlake_enable_display_irq(dev_priv, DE_GSE);
125 else {
126 i915_enable_pipestat(dev_priv, 1,
127 PIPE_LEGACY_BLC_EVENT_ENABLE);
128 if (INTEL_INFO(dev)->gen >= 4)
129 i915_enable_pipestat(dev_priv, 0,
130 PIPE_LEGACY_BLC_EVENT_ENABLE);
131 }
132
133 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
134}
135
136/**
137 * i915_pipe_enabled - check if a pipe is enabled
138 * @dev: DRM device
139 * @pipe: pipe to check
140 *
141 * Reading certain registers when the pipe is disabled can hang the chip.
142 * Use this routine to make sure the PLL is running and the pipe is active
143 * before reading such registers if unsure.
144 */
145static int
146i915_pipe_enabled(struct drm_device *dev, int pipe)
147{
148 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
149 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
150}
151
152/* Called from drm generic code, passed a 'crtc', which
153 * we use as a pipe index
154 */
155static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
156{
157 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
158 unsigned long high_frame;
159 unsigned long low_frame;
160 u32 high1, high2, low;
161
162 if (!i915_pipe_enabled(dev, pipe)) {
163 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
164 "pipe %c\n", pipe_name(pipe));
165 return 0;
166 }
167
168 high_frame = PIPEFRAME(pipe);
169 low_frame = PIPEFRAMEPIXEL(pipe);
170
171 /*
172 * High & low register fields aren't synchronized, so make sure
173 * we get a low value that's stable across two reads of the high
174 * register.
175 */
176 do {
177 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
178 low = I915_READ(low_frame) & PIPE_FRAME_LOW_MASK;
179 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
180 } while (high1 != high2);
181
182 high1 >>= PIPE_FRAME_HIGH_SHIFT;
183 low >>= PIPE_FRAME_LOW_SHIFT;
184 return (high1 << 8) | low;
185}
186
187static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
188{
189 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
190 int reg = PIPE_FRMCOUNT_GM45(pipe);
191
192 if (!i915_pipe_enabled(dev, pipe)) {
193 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
194 "pipe %c\n", pipe_name(pipe));
195 return 0;
196 }
197
198 return I915_READ(reg);
199}
200
201static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
202 int *vpos, int *hpos)
203{
204 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
205 u32 vbl = 0, position = 0;
206 int vbl_start, vbl_end, htotal, vtotal;
207 bool in_vbl = true;
208 int ret = 0;
209
210 if (!i915_pipe_enabled(dev, pipe)) {
211 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
212 "pipe %c\n", pipe_name(pipe));
213 return 0;
214 }
215
216 /* Get vtotal. */
217 vtotal = 1 + ((I915_READ(VTOTAL(pipe)) >> 16) & 0x1fff);
218
219 if (INTEL_INFO(dev)->gen >= 4) {
220 /* No obvious pixelcount register. Only query vertical
221 * scanout position from Display scan line register.
222 */
223 position = I915_READ(PIPEDSL(pipe));
224
225 /* Decode into vertical scanout position. Don't have
226 * horizontal scanout position.
227 */
228 *vpos = position & 0x1fff;
229 *hpos = 0;
230 } else {
231 /* Have access to pixelcount since start of frame.
232 * We can split this into vertical and horizontal
233 * scanout position.
234 */
235 position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
236
237 htotal = 1 + ((I915_READ(HTOTAL(pipe)) >> 16) & 0x1fff);
238 *vpos = position / htotal;
239 *hpos = position - (*vpos * htotal);
240 }
241
242 /* Query vblank area. */
243 vbl = I915_READ(VBLANK(pipe));
244
245 /* Test position against vblank region. */
246 vbl_start = vbl & 0x1fff;
247 vbl_end = (vbl >> 16) & 0x1fff;
248
249 if ((*vpos < vbl_start) || (*vpos > vbl_end))
250 in_vbl = false;
251
252 /* Inside "upper part" of vblank area? Apply corrective offset: */
253 if (in_vbl && (*vpos >= vbl_start))
254 *vpos = *vpos - vtotal;
255
256 /* Readouts valid? */
257 if (vbl > 0)
258 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
259
260 /* In vblank? */
261 if (in_vbl)
262 ret |= DRM_SCANOUTPOS_INVBL;
263
264 return ret;
265}
266
267static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
268 int *max_error,
269 struct timeval *vblank_time,
270 unsigned flags)
271{
272 struct drm_i915_private *dev_priv = dev->dev_private;
273 struct drm_crtc *crtc;
274
275 if (pipe < 0 || pipe >= dev_priv->num_pipe) {
276 DRM_ERROR("Invalid crtc %d\n", pipe);
277 return -EINVAL;
278 }
279
280 /* Get drm_crtc to timestamp: */
281 crtc = intel_get_crtc_for_pipe(dev, pipe);
282 if (crtc == NULL) {
283 DRM_ERROR("Invalid crtc %d\n", pipe);
284 return -EINVAL;
285 }
286
287 if (!crtc->enabled) {
288 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
289 return -EBUSY;
290 }
291
292 /* Helper routine in DRM core does all the work: */
293 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
294 vblank_time, flags,
295 crtc);
296}
297
298/*
299 * Handle hotplug events outside the interrupt handler proper.
300 */
301static void i915_hotplug_work_func(struct work_struct *work)
302{
303 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
304 hotplug_work);
305 struct drm_device *dev = dev_priv->dev;
306 struct drm_mode_config *mode_config = &dev->mode_config;
307 struct intel_encoder *encoder;
308
309 mutex_lock(&mode_config->mutex);
310 DRM_DEBUG_KMS("running encoder hotplug functions\n");
311
312 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
313 if (encoder->hot_plug)
314 encoder->hot_plug(encoder);
315
316 mutex_unlock(&mode_config->mutex);
317
318 /* Just fire off a uevent and let userspace tell us what to do */
319 drm_helper_hpd_irq_event(dev);
320}
321
322static void i915_handle_rps_change(struct drm_device *dev)
323{
324 drm_i915_private_t *dev_priv = dev->dev_private;
325 u32 busy_up, busy_down, max_avg, min_avg;
326 u8 new_delay = dev_priv->cur_delay;
327
328 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
329 busy_up = I915_READ(RCPREVBSYTUPAVG);
330 busy_down = I915_READ(RCPREVBSYTDNAVG);
331 max_avg = I915_READ(RCBMAXAVG);
332 min_avg = I915_READ(RCBMINAVG);
333
334 /* Handle RCS change request from hw */
335 if (busy_up > max_avg) {
336 if (dev_priv->cur_delay != dev_priv->max_delay)
337 new_delay = dev_priv->cur_delay - 1;
338 if (new_delay < dev_priv->max_delay)
339 new_delay = dev_priv->max_delay;
340 } else if (busy_down < min_avg) {
341 if (dev_priv->cur_delay != dev_priv->min_delay)
342 new_delay = dev_priv->cur_delay + 1;
343 if (new_delay > dev_priv->min_delay)
344 new_delay = dev_priv->min_delay;
345 }
346
347 if (ironlake_set_drps(dev, new_delay))
348 dev_priv->cur_delay = new_delay;
349
350 return;
351}
352
353static void notify_ring(struct drm_device *dev,
354 struct intel_ring_buffer *ring)
355{
356 struct drm_i915_private *dev_priv = dev->dev_private;
357 u32 seqno;
358
359 if (ring->obj == NULL)
360 return;
361
362 seqno = ring->get_seqno(ring);
363 trace_i915_gem_request_complete(ring, seqno);
364
365 ring->irq_seqno = seqno;
366 wake_up_all(&ring->irq_queue);
367 if (i915_enable_hangcheck) {
368 dev_priv->hangcheck_count = 0;
369 mod_timer(&dev_priv->hangcheck_timer,
370 jiffies +
371 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
372 }
373}
374
375static void gen6_pm_rps_work(struct work_struct *work)
376{
377 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
378 rps_work);
379 u8 new_delay = dev_priv->cur_delay;
380 u32 pm_iir, pm_imr;
381
382 spin_lock_irq(&dev_priv->rps_lock);
383 pm_iir = dev_priv->pm_iir;
384 dev_priv->pm_iir = 0;
385 pm_imr = I915_READ(GEN6_PMIMR);
386 spin_unlock_irq(&dev_priv->rps_lock);
387
388 if (!pm_iir)
389 return;
390
391 mutex_lock(&dev_priv->dev->struct_mutex);
392 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
393 if (dev_priv->cur_delay != dev_priv->max_delay)
394 new_delay = dev_priv->cur_delay + 1;
395 if (new_delay > dev_priv->max_delay)
396 new_delay = dev_priv->max_delay;
397 } else if (pm_iir & (GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT)) {
398 gen6_gt_force_wake_get(dev_priv);
399 if (dev_priv->cur_delay != dev_priv->min_delay)
400 new_delay = dev_priv->cur_delay - 1;
401 if (new_delay < dev_priv->min_delay) {
402 new_delay = dev_priv->min_delay;
403 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
404 I915_READ(GEN6_RP_INTERRUPT_LIMITS) |
405 ((new_delay << 16) & 0x3f0000));
406 } else {
407 /* Make sure we continue to get down interrupts
408 * until we hit the minimum frequency */
409 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
410 I915_READ(GEN6_RP_INTERRUPT_LIMITS) & ~0x3f0000);
411 }
412 gen6_gt_force_wake_put(dev_priv);
413 }
414
415 gen6_set_rps(dev_priv->dev, new_delay);
416 dev_priv->cur_delay = new_delay;
417
418 /*
419 * rps_lock not held here because clearing is non-destructive. There is
420 * an *extremely* unlikely race with gen6_rps_enable() that is prevented
421 * by holding struct_mutex for the duration of the write.
422 */
423 I915_WRITE(GEN6_PMIMR, pm_imr & ~pm_iir);
424 mutex_unlock(&dev_priv->dev->struct_mutex);
425}
426
427static void pch_irq_handler(struct drm_device *dev)
428{
429 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
430 u32 pch_iir;
431 int pipe;
432
433 pch_iir = I915_READ(SDEIIR);
434
435 if (pch_iir & SDE_AUDIO_POWER_MASK)
436 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
437 (pch_iir & SDE_AUDIO_POWER_MASK) >>
438 SDE_AUDIO_POWER_SHIFT);
439
440 if (pch_iir & SDE_GMBUS)
441 DRM_DEBUG_DRIVER("PCH GMBUS interrupt\n");
442
443 if (pch_iir & SDE_AUDIO_HDCP_MASK)
444 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
445
446 if (pch_iir & SDE_AUDIO_TRANS_MASK)
447 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
448
449 if (pch_iir & SDE_POISON)
450 DRM_ERROR("PCH poison interrupt\n");
451
452 if (pch_iir & SDE_FDI_MASK)
453 for_each_pipe(pipe)
454 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
455 pipe_name(pipe),
456 I915_READ(FDI_RX_IIR(pipe)));
457
458 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
459 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
460
461 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
462 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
463
464 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
465 DRM_DEBUG_DRIVER("PCH transcoder B underrun interrupt\n");
466 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
467 DRM_DEBUG_DRIVER("PCH transcoder A underrun interrupt\n");
468}
469
470static irqreturn_t ivybridge_irq_handler(DRM_IRQ_ARGS)
471{
472 struct drm_device *dev = (struct drm_device *) arg;
473 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
474 int ret = IRQ_NONE;
475 u32 de_iir, gt_iir, de_ier, pch_iir, pm_iir;
476 struct drm_i915_master_private *master_priv;
477
478 atomic_inc(&dev_priv->irq_received);
479
480 /* disable master interrupt before clearing iir */
481 de_ier = I915_READ(DEIER);
482 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
483 POSTING_READ(DEIER);
484
485 de_iir = I915_READ(DEIIR);
486 gt_iir = I915_READ(GTIIR);
487 pch_iir = I915_READ(SDEIIR);
488 pm_iir = I915_READ(GEN6_PMIIR);
489
490 if (de_iir == 0 && gt_iir == 0 && pch_iir == 0 && pm_iir == 0)
491 goto done;
492
493 ret = IRQ_HANDLED;
494
495 if (dev->primary->master) {
496 master_priv = dev->primary->master->driver_priv;
497 if (master_priv->sarea_priv)
498 master_priv->sarea_priv->last_dispatch =
499 READ_BREADCRUMB(dev_priv);
500 }
501
502 if (gt_iir & (GT_USER_INTERRUPT | GT_PIPE_NOTIFY))
503 notify_ring(dev, &dev_priv->ring[RCS]);
504 if (gt_iir & GT_GEN6_BSD_USER_INTERRUPT)
505 notify_ring(dev, &dev_priv->ring[VCS]);
506 if (gt_iir & GT_BLT_USER_INTERRUPT)
507 notify_ring(dev, &dev_priv->ring[BCS]);
508
509 if (de_iir & DE_GSE_IVB)
510 intel_opregion_gse_intr(dev);
511
512 if (de_iir & DE_PLANEA_FLIP_DONE_IVB) {
513 intel_prepare_page_flip(dev, 0);
514 intel_finish_page_flip_plane(dev, 0);
515 }
516
517 if (de_iir & DE_PLANEB_FLIP_DONE_IVB) {
518 intel_prepare_page_flip(dev, 1);
519 intel_finish_page_flip_plane(dev, 1);
520 }
521
522 if (de_iir & DE_PIPEA_VBLANK_IVB)
523 drm_handle_vblank(dev, 0);
524
525 if (de_iir & DE_PIPEB_VBLANK_IVB)
526 drm_handle_vblank(dev, 1);
527
528 /* check event from PCH */
529 if (de_iir & DE_PCH_EVENT_IVB) {
530 if (pch_iir & SDE_HOTPLUG_MASK_CPT)
531 queue_work(dev_priv->wq, &dev_priv->hotplug_work);
532 pch_irq_handler(dev);
533 }
534
535 if (pm_iir & GEN6_PM_DEFERRED_EVENTS) {
536 unsigned long flags;
537 spin_lock_irqsave(&dev_priv->rps_lock, flags);
538 WARN(dev_priv->pm_iir & pm_iir, "Missed a PM interrupt\n");
539 I915_WRITE(GEN6_PMIMR, pm_iir);
540 dev_priv->pm_iir |= pm_iir;
541 spin_unlock_irqrestore(&dev_priv->rps_lock, flags);
542 queue_work(dev_priv->wq, &dev_priv->rps_work);
543 }
544
545 /* should clear PCH hotplug event before clear CPU irq */
546 I915_WRITE(SDEIIR, pch_iir);
547 I915_WRITE(GTIIR, gt_iir);
548 I915_WRITE(DEIIR, de_iir);
549 I915_WRITE(GEN6_PMIIR, pm_iir);
550
551done:
552 I915_WRITE(DEIER, de_ier);
553 POSTING_READ(DEIER);
554
555 return ret;
556}
557
558static irqreturn_t ironlake_irq_handler(DRM_IRQ_ARGS)
559{
560 struct drm_device *dev = (struct drm_device *) arg;
561 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
562 int ret = IRQ_NONE;
563 u32 de_iir, gt_iir, de_ier, pch_iir, pm_iir;
564 u32 hotplug_mask;
565 struct drm_i915_master_private *master_priv;
566 u32 bsd_usr_interrupt = GT_BSD_USER_INTERRUPT;
567
568 atomic_inc(&dev_priv->irq_received);
569
570 if (IS_GEN6(dev))
571 bsd_usr_interrupt = GT_GEN6_BSD_USER_INTERRUPT;
572
573 /* disable master interrupt before clearing iir */
574 de_ier = I915_READ(DEIER);
575 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
576 POSTING_READ(DEIER);
577
578 de_iir = I915_READ(DEIIR);
579 gt_iir = I915_READ(GTIIR);
580 pch_iir = I915_READ(SDEIIR);
581 pm_iir = I915_READ(GEN6_PMIIR);
582
583 if (de_iir == 0 && gt_iir == 0 && pch_iir == 0 &&
584 (!IS_GEN6(dev) || pm_iir == 0))
585 goto done;
586
587 if (HAS_PCH_CPT(dev))
588 hotplug_mask = SDE_HOTPLUG_MASK_CPT;
589 else
590 hotplug_mask = SDE_HOTPLUG_MASK;
591
592 ret = IRQ_HANDLED;
593
594 if (dev->primary->master) {
595 master_priv = dev->primary->master->driver_priv;
596 if (master_priv->sarea_priv)
597 master_priv->sarea_priv->last_dispatch =
598 READ_BREADCRUMB(dev_priv);
599 }
600
601 if (gt_iir & (GT_USER_INTERRUPT | GT_PIPE_NOTIFY))
602 notify_ring(dev, &dev_priv->ring[RCS]);
603 if (gt_iir & bsd_usr_interrupt)
604 notify_ring(dev, &dev_priv->ring[VCS]);
605 if (gt_iir & GT_BLT_USER_INTERRUPT)
606 notify_ring(dev, &dev_priv->ring[BCS]);
607
608 if (de_iir & DE_GSE)
609 intel_opregion_gse_intr(dev);
610
611 if (de_iir & DE_PLANEA_FLIP_DONE) {
612 intel_prepare_page_flip(dev, 0);
613 intel_finish_page_flip_plane(dev, 0);
614 }
615
616 if (de_iir & DE_PLANEB_FLIP_DONE) {
617 intel_prepare_page_flip(dev, 1);
618 intel_finish_page_flip_plane(dev, 1);
619 }
620
621 if (de_iir & DE_PIPEA_VBLANK)
622 drm_handle_vblank(dev, 0);
623
624 if (de_iir & DE_PIPEB_VBLANK)
625 drm_handle_vblank(dev, 1);
626
627 /* check event from PCH */
628 if (de_iir & DE_PCH_EVENT) {
629 if (pch_iir & hotplug_mask)
630 queue_work(dev_priv->wq, &dev_priv->hotplug_work);
631 pch_irq_handler(dev);
632 }
633
634 if (de_iir & DE_PCU_EVENT) {
635 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
636 i915_handle_rps_change(dev);
637 }
638
639 if (IS_GEN6(dev) && pm_iir & GEN6_PM_DEFERRED_EVENTS) {
640 /*
641 * IIR bits should never already be set because IMR should
642 * prevent an interrupt from being shown in IIR. The warning
643 * displays a case where we've unsafely cleared
644 * dev_priv->pm_iir. Although missing an interrupt of the same
645 * type is not a problem, it displays a problem in the logic.
646 *
647 * The mask bit in IMR is cleared by rps_work.
648 */
649 unsigned long flags;
650 spin_lock_irqsave(&dev_priv->rps_lock, flags);
651 WARN(dev_priv->pm_iir & pm_iir, "Missed a PM interrupt\n");
652 I915_WRITE(GEN6_PMIMR, pm_iir);
653 dev_priv->pm_iir |= pm_iir;
654 spin_unlock_irqrestore(&dev_priv->rps_lock, flags);
655 queue_work(dev_priv->wq, &dev_priv->rps_work);
656 }
657
658 /* should clear PCH hotplug event before clear CPU irq */
659 I915_WRITE(SDEIIR, pch_iir);
660 I915_WRITE(GTIIR, gt_iir);
661 I915_WRITE(DEIIR, de_iir);
662 I915_WRITE(GEN6_PMIIR, pm_iir);
663
664done:
665 I915_WRITE(DEIER, de_ier);
666 POSTING_READ(DEIER);
667
668 return ret;
669}
670
671/**
672 * i915_error_work_func - do process context error handling work
673 * @work: work struct
674 *
675 * Fire an error uevent so userspace can see that a hang or error
676 * was detected.
677 */
678static void i915_error_work_func(struct work_struct *work)
679{
680 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
681 error_work);
682 struct drm_device *dev = dev_priv->dev;
683 char *error_event[] = { "ERROR=1", NULL };
684 char *reset_event[] = { "RESET=1", NULL };
685 char *reset_done_event[] = { "ERROR=0", NULL };
686
687 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
688
689 if (atomic_read(&dev_priv->mm.wedged)) {
690 DRM_DEBUG_DRIVER("resetting chip\n");
691 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, reset_event);
692 if (!i915_reset(dev, GRDOM_RENDER)) {
693 atomic_set(&dev_priv->mm.wedged, 0);
694 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, reset_done_event);
695 }
696 complete_all(&dev_priv->error_completion);
697 }
698}
699
700#ifdef CONFIG_DEBUG_FS
701static struct drm_i915_error_object *
702i915_error_object_create(struct drm_i915_private *dev_priv,
703 struct drm_i915_gem_object *src)
704{
705 struct drm_i915_error_object *dst;
706 int page, page_count;
707 u32 reloc_offset;
708
709 if (src == NULL || src->pages == NULL)
710 return NULL;
711
712 page_count = src->base.size / PAGE_SIZE;
713
714 dst = kmalloc(sizeof(*dst) + page_count * sizeof (u32 *), GFP_ATOMIC);
715 if (dst == NULL)
716 return NULL;
717
718 reloc_offset = src->gtt_offset;
719 for (page = 0; page < page_count; page++) {
720 unsigned long flags;
721 void __iomem *s;
722 void *d;
723
724 d = kmalloc(PAGE_SIZE, GFP_ATOMIC);
725 if (d == NULL)
726 goto unwind;
727
728 local_irq_save(flags);
729 s = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
730 reloc_offset);
731 memcpy_fromio(d, s, PAGE_SIZE);
732 io_mapping_unmap_atomic(s);
733 local_irq_restore(flags);
734
735 dst->pages[page] = d;
736
737 reloc_offset += PAGE_SIZE;
738 }
739 dst->page_count = page_count;
740 dst->gtt_offset = src->gtt_offset;
741
742 return dst;
743
744unwind:
745 while (page--)
746 kfree(dst->pages[page]);
747 kfree(dst);
748 return NULL;
749}
750
751static void
752i915_error_object_free(struct drm_i915_error_object *obj)
753{
754 int page;
755
756 if (obj == NULL)
757 return;
758
759 for (page = 0; page < obj->page_count; page++)
760 kfree(obj->pages[page]);
761
762 kfree(obj);
763}
764
765static void
766i915_error_state_free(struct drm_device *dev,
767 struct drm_i915_error_state *error)
768{
769 int i;
770
771 for (i = 0; i < ARRAY_SIZE(error->batchbuffer); i++)
772 i915_error_object_free(error->batchbuffer[i]);
773
774 for (i = 0; i < ARRAY_SIZE(error->ringbuffer); i++)
775 i915_error_object_free(error->ringbuffer[i]);
776
777 kfree(error->active_bo);
778 kfree(error->overlay);
779 kfree(error);
780}
781
782static u32 capture_bo_list(struct drm_i915_error_buffer *err,
783 int count,
784 struct list_head *head)
785{
786 struct drm_i915_gem_object *obj;
787 int i = 0;
788
789 list_for_each_entry(obj, head, mm_list) {
790 err->size = obj->base.size;
791 err->name = obj->base.name;
792 err->seqno = obj->last_rendering_seqno;
793 err->gtt_offset = obj->gtt_offset;
794 err->read_domains = obj->base.read_domains;
795 err->write_domain = obj->base.write_domain;
796 err->fence_reg = obj->fence_reg;
797 err->pinned = 0;
798 if (obj->pin_count > 0)
799 err->pinned = 1;
800 if (obj->user_pin_count > 0)
801 err->pinned = -1;
802 err->tiling = obj->tiling_mode;
803 err->dirty = obj->dirty;
804 err->purgeable = obj->madv != I915_MADV_WILLNEED;
805 err->ring = obj->ring ? obj->ring->id : 0;
806 err->cache_level = obj->cache_level;
807
808 if (++i == count)
809 break;
810
811 err++;
812 }
813
814 return i;
815}
816
817static void i915_gem_record_fences(struct drm_device *dev,
818 struct drm_i915_error_state *error)
819{
820 struct drm_i915_private *dev_priv = dev->dev_private;
821 int i;
822
823 /* Fences */
824 switch (INTEL_INFO(dev)->gen) {
825 case 6:
826 for (i = 0; i < 16; i++)
827 error->fence[i] = I915_READ64(FENCE_REG_SANDYBRIDGE_0 + (i * 8));
828 break;
829 case 5:
830 case 4:
831 for (i = 0; i < 16; i++)
832 error->fence[i] = I915_READ64(FENCE_REG_965_0 + (i * 8));
833 break;
834 case 3:
835 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
836 for (i = 0; i < 8; i++)
837 error->fence[i+8] = I915_READ(FENCE_REG_945_8 + (i * 4));
838 case 2:
839 for (i = 0; i < 8; i++)
840 error->fence[i] = I915_READ(FENCE_REG_830_0 + (i * 4));
841 break;
842
843 }
844}
845
846static struct drm_i915_error_object *
847i915_error_first_batchbuffer(struct drm_i915_private *dev_priv,
848 struct intel_ring_buffer *ring)
849{
850 struct drm_i915_gem_object *obj;
851 u32 seqno;
852
853 if (!ring->get_seqno)
854 return NULL;
855
856 seqno = ring->get_seqno(ring);
857 list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list) {
858 if (obj->ring != ring)
859 continue;
860
861 if (i915_seqno_passed(seqno, obj->last_rendering_seqno))
862 continue;
863
864 if ((obj->base.read_domains & I915_GEM_DOMAIN_COMMAND) == 0)
865 continue;
866
867 /* We need to copy these to an anonymous buffer as the simplest
868 * method to avoid being overwritten by userspace.
869 */
870 return i915_error_object_create(dev_priv, obj);
871 }
872
873 return NULL;
874}
875
876/**
877 * i915_capture_error_state - capture an error record for later analysis
878 * @dev: drm device
879 *
880 * Should be called when an error is detected (either a hang or an error
881 * interrupt) to capture error state from the time of the error. Fills
882 * out a structure which becomes available in debugfs for user level tools
883 * to pick up.
884 */
885static void i915_capture_error_state(struct drm_device *dev)
886{
887 struct drm_i915_private *dev_priv = dev->dev_private;
888 struct drm_i915_gem_object *obj;
889 struct drm_i915_error_state *error;
890 unsigned long flags;
891 int i, pipe;
892
893 spin_lock_irqsave(&dev_priv->error_lock, flags);
894 error = dev_priv->first_error;
895 spin_unlock_irqrestore(&dev_priv->error_lock, flags);
896 if (error)
897 return;
898
899 /* Account for pipe specific data like PIPE*STAT */
900 error = kmalloc(sizeof(*error), GFP_ATOMIC);
901 if (!error) {
902 DRM_DEBUG_DRIVER("out of memory, not capturing error state\n");
903 return;
904 }
905
906 DRM_INFO("capturing error event; look for more information in /debug/dri/%d/i915_error_state\n",
907 dev->primary->index);
908
909 error->seqno = dev_priv->ring[RCS].get_seqno(&dev_priv->ring[RCS]);
910 error->eir = I915_READ(EIR);
911 error->pgtbl_er = I915_READ(PGTBL_ER);
912 for_each_pipe(pipe)
913 error->pipestat[pipe] = I915_READ(PIPESTAT(pipe));
914 error->instpm = I915_READ(INSTPM);
915 error->error = 0;
916 if (INTEL_INFO(dev)->gen >= 6) {
917 error->error = I915_READ(ERROR_GEN6);
918
919 error->bcs_acthd = I915_READ(BCS_ACTHD);
920 error->bcs_ipehr = I915_READ(BCS_IPEHR);
921 error->bcs_ipeir = I915_READ(BCS_IPEIR);
922 error->bcs_instdone = I915_READ(BCS_INSTDONE);
923 error->bcs_seqno = 0;
924 if (dev_priv->ring[BCS].get_seqno)
925 error->bcs_seqno = dev_priv->ring[BCS].get_seqno(&dev_priv->ring[BCS]);
926
927 error->vcs_acthd = I915_READ(VCS_ACTHD);
928 error->vcs_ipehr = I915_READ(VCS_IPEHR);
929 error->vcs_ipeir = I915_READ(VCS_IPEIR);
930 error->vcs_instdone = I915_READ(VCS_INSTDONE);
931 error->vcs_seqno = 0;
932 if (dev_priv->ring[VCS].get_seqno)
933 error->vcs_seqno = dev_priv->ring[VCS].get_seqno(&dev_priv->ring[VCS]);
934 }
935 if (INTEL_INFO(dev)->gen >= 4) {
936 error->ipeir = I915_READ(IPEIR_I965);
937 error->ipehr = I915_READ(IPEHR_I965);
938 error->instdone = I915_READ(INSTDONE_I965);
939 error->instps = I915_READ(INSTPS);
940 error->instdone1 = I915_READ(INSTDONE1);
941 error->acthd = I915_READ(ACTHD_I965);
942 error->bbaddr = I915_READ64(BB_ADDR);
943 } else {
944 error->ipeir = I915_READ(IPEIR);
945 error->ipehr = I915_READ(IPEHR);
946 error->instdone = I915_READ(INSTDONE);
947 error->acthd = I915_READ(ACTHD);
948 error->bbaddr = 0;
949 }
950 i915_gem_record_fences(dev, error);
951
952 /* Record the active batch and ring buffers */
953 for (i = 0; i < I915_NUM_RINGS; i++) {
954 error->batchbuffer[i] =
955 i915_error_first_batchbuffer(dev_priv,
956 &dev_priv->ring[i]);
957
958 error->ringbuffer[i] =
959 i915_error_object_create(dev_priv,
960 dev_priv->ring[i].obj);
961 }
962
963 /* Record buffers on the active and pinned lists. */
964 error->active_bo = NULL;
965 error->pinned_bo = NULL;
966
967 i = 0;
968 list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list)
969 i++;
970 error->active_bo_count = i;
971 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
972 i++;
973 error->pinned_bo_count = i - error->active_bo_count;
974
975 error->active_bo = NULL;
976 error->pinned_bo = NULL;
977 if (i) {
978 error->active_bo = kmalloc(sizeof(*error->active_bo)*i,
979 GFP_ATOMIC);
980 if (error->active_bo)
981 error->pinned_bo =
982 error->active_bo + error->active_bo_count;
983 }
984
985 if (error->active_bo)
986 error->active_bo_count =
987 capture_bo_list(error->active_bo,
988 error->active_bo_count,
989 &dev_priv->mm.active_list);
990
991 if (error->pinned_bo)
992 error->pinned_bo_count =
993 capture_bo_list(error->pinned_bo,
994 error->pinned_bo_count,
995 &dev_priv->mm.pinned_list);
996
997 do_gettimeofday(&error->time);
998
999 error->overlay = intel_overlay_capture_error_state(dev);
1000 error->display = intel_display_capture_error_state(dev);
1001
1002 spin_lock_irqsave(&dev_priv->error_lock, flags);
1003 if (dev_priv->first_error == NULL) {
1004 dev_priv->first_error = error;
1005 error = NULL;
1006 }
1007 spin_unlock_irqrestore(&dev_priv->error_lock, flags);
1008
1009 if (error)
1010 i915_error_state_free(dev, error);
1011}
1012
1013void i915_destroy_error_state(struct drm_device *dev)
1014{
1015 struct drm_i915_private *dev_priv = dev->dev_private;
1016 struct drm_i915_error_state *error;
1017
1018 spin_lock(&dev_priv->error_lock);
1019 error = dev_priv->first_error;
1020 dev_priv->first_error = NULL;
1021 spin_unlock(&dev_priv->error_lock);
1022
1023 if (error)
1024 i915_error_state_free(dev, error);
1025}
1026#else
1027#define i915_capture_error_state(x)
1028#endif
1029
1030static void i915_report_and_clear_eir(struct drm_device *dev)
1031{
1032 struct drm_i915_private *dev_priv = dev->dev_private;
1033 u32 eir = I915_READ(EIR);
1034 int pipe;
1035
1036 if (!eir)
1037 return;
1038
1039 printk(KERN_ERR "render error detected, EIR: 0x%08x\n",
1040 eir);
1041
1042 if (IS_G4X(dev)) {
1043 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1044 u32 ipeir = I915_READ(IPEIR_I965);
1045
1046 printk(KERN_ERR " IPEIR: 0x%08x\n",
1047 I915_READ(IPEIR_I965));
1048 printk(KERN_ERR " IPEHR: 0x%08x\n",
1049 I915_READ(IPEHR_I965));
1050 printk(KERN_ERR " INSTDONE: 0x%08x\n",
1051 I915_READ(INSTDONE_I965));
1052 printk(KERN_ERR " INSTPS: 0x%08x\n",
1053 I915_READ(INSTPS));
1054 printk(KERN_ERR " INSTDONE1: 0x%08x\n",
1055 I915_READ(INSTDONE1));
1056 printk(KERN_ERR " ACTHD: 0x%08x\n",
1057 I915_READ(ACTHD_I965));
1058 I915_WRITE(IPEIR_I965, ipeir);
1059 POSTING_READ(IPEIR_I965);
1060 }
1061 if (eir & GM45_ERROR_PAGE_TABLE) {
1062 u32 pgtbl_err = I915_READ(PGTBL_ER);
1063 printk(KERN_ERR "page table error\n");
1064 printk(KERN_ERR " PGTBL_ER: 0x%08x\n",
1065 pgtbl_err);
1066 I915_WRITE(PGTBL_ER, pgtbl_err);
1067 POSTING_READ(PGTBL_ER);
1068 }
1069 }
1070
1071 if (!IS_GEN2(dev)) {
1072 if (eir & I915_ERROR_PAGE_TABLE) {
1073 u32 pgtbl_err = I915_READ(PGTBL_ER);
1074 printk(KERN_ERR "page table error\n");
1075 printk(KERN_ERR " PGTBL_ER: 0x%08x\n",
1076 pgtbl_err);
1077 I915_WRITE(PGTBL_ER, pgtbl_err);
1078 POSTING_READ(PGTBL_ER);
1079 }
1080 }
1081
1082 if (eir & I915_ERROR_MEMORY_REFRESH) {
1083 printk(KERN_ERR "memory refresh error:\n");
1084 for_each_pipe(pipe)
1085 printk(KERN_ERR "pipe %c stat: 0x%08x\n",
1086 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1087 /* pipestat has already been acked */
1088 }
1089 if (eir & I915_ERROR_INSTRUCTION) {
1090 printk(KERN_ERR "instruction error\n");
1091 printk(KERN_ERR " INSTPM: 0x%08x\n",
1092 I915_READ(INSTPM));
1093 if (INTEL_INFO(dev)->gen < 4) {
1094 u32 ipeir = I915_READ(IPEIR);
1095
1096 printk(KERN_ERR " IPEIR: 0x%08x\n",
1097 I915_READ(IPEIR));
1098 printk(KERN_ERR " IPEHR: 0x%08x\n",
1099 I915_READ(IPEHR));
1100 printk(KERN_ERR " INSTDONE: 0x%08x\n",
1101 I915_READ(INSTDONE));
1102 printk(KERN_ERR " ACTHD: 0x%08x\n",
1103 I915_READ(ACTHD));
1104 I915_WRITE(IPEIR, ipeir);
1105 POSTING_READ(IPEIR);
1106 } else {
1107 u32 ipeir = I915_READ(IPEIR_I965);
1108
1109 printk(KERN_ERR " IPEIR: 0x%08x\n",
1110 I915_READ(IPEIR_I965));
1111 printk(KERN_ERR " IPEHR: 0x%08x\n",
1112 I915_READ(IPEHR_I965));
1113 printk(KERN_ERR " INSTDONE: 0x%08x\n",
1114 I915_READ(INSTDONE_I965));
1115 printk(KERN_ERR " INSTPS: 0x%08x\n",
1116 I915_READ(INSTPS));
1117 printk(KERN_ERR " INSTDONE1: 0x%08x\n",
1118 I915_READ(INSTDONE1));
1119 printk(KERN_ERR " ACTHD: 0x%08x\n",
1120 I915_READ(ACTHD_I965));
1121 I915_WRITE(IPEIR_I965, ipeir);
1122 POSTING_READ(IPEIR_I965);
1123 }
1124 }
1125
1126 I915_WRITE(EIR, eir);
1127 POSTING_READ(EIR);
1128 eir = I915_READ(EIR);
1129 if (eir) {
1130 /*
1131 * some errors might have become stuck,
1132 * mask them.
1133 */
1134 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1135 I915_WRITE(EMR, I915_READ(EMR) | eir);
1136 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1137 }
1138}
1139
1140/**
1141 * i915_handle_error - handle an error interrupt
1142 * @dev: drm device
1143 *
1144 * Do some basic checking of regsiter state at error interrupt time and
1145 * dump it to the syslog. Also call i915_capture_error_state() to make
1146 * sure we get a record and make it available in debugfs. Fire a uevent
1147 * so userspace knows something bad happened (should trigger collection
1148 * of a ring dump etc.).
1149 */
1150void i915_handle_error(struct drm_device *dev, bool wedged)
1151{
1152 struct drm_i915_private *dev_priv = dev->dev_private;
1153
1154 i915_capture_error_state(dev);
1155 i915_report_and_clear_eir(dev);
1156
1157 if (wedged) {
1158 INIT_COMPLETION(dev_priv->error_completion);
1159 atomic_set(&dev_priv->mm.wedged, 1);
1160
1161 /*
1162 * Wakeup waiting processes so they don't hang
1163 */
1164 wake_up_all(&dev_priv->ring[RCS].irq_queue);
1165 if (HAS_BSD(dev))
1166 wake_up_all(&dev_priv->ring[VCS].irq_queue);
1167 if (HAS_BLT(dev))
1168 wake_up_all(&dev_priv->ring[BCS].irq_queue);
1169 }
1170
1171 queue_work(dev_priv->wq, &dev_priv->error_work);
1172}
1173
1174static void i915_pageflip_stall_check(struct drm_device *dev, int pipe)
1175{
1176 drm_i915_private_t *dev_priv = dev->dev_private;
1177 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1178 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1179 struct drm_i915_gem_object *obj;
1180 struct intel_unpin_work *work;
1181 unsigned long flags;
1182 bool stall_detected;
1183
1184 /* Ignore early vblank irqs */
1185 if (intel_crtc == NULL)
1186 return;
1187
1188 spin_lock_irqsave(&dev->event_lock, flags);
1189 work = intel_crtc->unpin_work;
1190
1191 if (work == NULL || work->pending || !work->enable_stall_check) {
1192 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
1193 spin_unlock_irqrestore(&dev->event_lock, flags);
1194 return;
1195 }
1196
1197 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1198 obj = work->pending_flip_obj;
1199 if (INTEL_INFO(dev)->gen >= 4) {
1200 int dspsurf = DSPSURF(intel_crtc->plane);
1201 stall_detected = I915_READ(dspsurf) == obj->gtt_offset;
1202 } else {
1203 int dspaddr = DSPADDR(intel_crtc->plane);
1204 stall_detected = I915_READ(dspaddr) == (obj->gtt_offset +
1205 crtc->y * crtc->fb->pitch +
1206 crtc->x * crtc->fb->bits_per_pixel/8);
1207 }
1208
1209 spin_unlock_irqrestore(&dev->event_lock, flags);
1210
1211 if (stall_detected) {
1212 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1213 intel_prepare_page_flip(dev, intel_crtc->plane);
1214 }
1215}
1216
1217static irqreturn_t i915_driver_irq_handler(DRM_IRQ_ARGS)
1218{
1219 struct drm_device *dev = (struct drm_device *) arg;
1220 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1221 struct drm_i915_master_private *master_priv;
1222 u32 iir, new_iir;
1223 u32 pipe_stats[I915_MAX_PIPES];
1224 u32 vblank_status;
1225 int vblank = 0;
1226 unsigned long irqflags;
1227 int irq_received;
1228 int ret = IRQ_NONE, pipe;
1229 bool blc_event = false;
1230
1231 atomic_inc(&dev_priv->irq_received);
1232
1233 iir = I915_READ(IIR);
1234
1235 if (INTEL_INFO(dev)->gen >= 4)
1236 vblank_status = PIPE_START_VBLANK_INTERRUPT_STATUS;
1237 else
1238 vblank_status = PIPE_VBLANK_INTERRUPT_STATUS;
1239
1240 for (;;) {
1241 irq_received = iir != 0;
1242
1243 /* Can't rely on pipestat interrupt bit in iir as it might
1244 * have been cleared after the pipestat interrupt was received.
1245 * It doesn't set the bit in iir again, but it still produces
1246 * interrupts (for non-MSI).
1247 */
1248 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1249 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
1250 i915_handle_error(dev, false);
1251
1252 for_each_pipe(pipe) {
1253 int reg = PIPESTAT(pipe);
1254 pipe_stats[pipe] = I915_READ(reg);
1255
1256 /*
1257 * Clear the PIPE*STAT regs before the IIR
1258 */
1259 if (pipe_stats[pipe] & 0x8000ffff) {
1260 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1261 DRM_DEBUG_DRIVER("pipe %c underrun\n",
1262 pipe_name(pipe));
1263 I915_WRITE(reg, pipe_stats[pipe]);
1264 irq_received = 1;
1265 }
1266 }
1267 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1268
1269 if (!irq_received)
1270 break;
1271
1272 ret = IRQ_HANDLED;
1273
1274 /* Consume port. Then clear IIR or we'll miss events */
1275 if ((I915_HAS_HOTPLUG(dev)) &&
1276 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
1277 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1278
1279 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1280 hotplug_status);
1281 if (hotplug_status & dev_priv->hotplug_supported_mask)
1282 queue_work(dev_priv->wq,
1283 &dev_priv->hotplug_work);
1284
1285 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1286 I915_READ(PORT_HOTPLUG_STAT);
1287 }
1288
1289 I915_WRITE(IIR, iir);
1290 new_iir = I915_READ(IIR); /* Flush posted writes */
1291
1292 if (dev->primary->master) {
1293 master_priv = dev->primary->master->driver_priv;
1294 if (master_priv->sarea_priv)
1295 master_priv->sarea_priv->last_dispatch =
1296 READ_BREADCRUMB(dev_priv);
1297 }
1298
1299 if (iir & I915_USER_INTERRUPT)
1300 notify_ring(dev, &dev_priv->ring[RCS]);
1301 if (iir & I915_BSD_USER_INTERRUPT)
1302 notify_ring(dev, &dev_priv->ring[VCS]);
1303
1304 if (iir & I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT) {
1305 intel_prepare_page_flip(dev, 0);
1306 if (dev_priv->flip_pending_is_done)
1307 intel_finish_page_flip_plane(dev, 0);
1308 }
1309
1310 if (iir & I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT) {
1311 intel_prepare_page_flip(dev, 1);
1312 if (dev_priv->flip_pending_is_done)
1313 intel_finish_page_flip_plane(dev, 1);
1314 }
1315
1316 for_each_pipe(pipe) {
1317 if (pipe_stats[pipe] & vblank_status &&
1318 drm_handle_vblank(dev, pipe)) {
1319 vblank++;
1320 if (!dev_priv->flip_pending_is_done) {
1321 i915_pageflip_stall_check(dev, pipe);
1322 intel_finish_page_flip(dev, pipe);
1323 }
1324 }
1325
1326 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1327 blc_event = true;
1328 }
1329
1330
1331 if (blc_event || (iir & I915_ASLE_INTERRUPT))
1332 intel_opregion_asle_intr(dev);
1333
1334 /* With MSI, interrupts are only generated when iir
1335 * transitions from zero to nonzero. If another bit got
1336 * set while we were handling the existing iir bits, then
1337 * we would never get another interrupt.
1338 *
1339 * This is fine on non-MSI as well, as if we hit this path
1340 * we avoid exiting the interrupt handler only to generate
1341 * another one.
1342 *
1343 * Note that for MSI this could cause a stray interrupt report
1344 * if an interrupt landed in the time between writing IIR and
1345 * the posting read. This should be rare enough to never
1346 * trigger the 99% of 100,000 interrupts test for disabling
1347 * stray interrupts.
1348 */
1349 iir = new_iir;
1350 }
1351
1352 return ret;
1353}
1354
1355static int i915_emit_irq(struct drm_device * dev)
1356{
1357 drm_i915_private_t *dev_priv = dev->dev_private;
1358 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1359
1360 i915_kernel_lost_context(dev);
1361
1362 DRM_DEBUG_DRIVER("\n");
1363
1364 dev_priv->counter++;
1365 if (dev_priv->counter > 0x7FFFFFFFUL)
1366 dev_priv->counter = 1;
1367 if (master_priv->sarea_priv)
1368 master_priv->sarea_priv->last_enqueue = dev_priv->counter;
1369
1370 if (BEGIN_LP_RING(4) == 0) {
1371 OUT_RING(MI_STORE_DWORD_INDEX);
1372 OUT_RING(I915_BREADCRUMB_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1373 OUT_RING(dev_priv->counter);
1374 OUT_RING(MI_USER_INTERRUPT);
1375 ADVANCE_LP_RING();
1376 }
1377
1378 return dev_priv->counter;
1379}
1380
1381static int i915_wait_irq(struct drm_device * dev, int irq_nr)
1382{
1383 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1384 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1385 int ret = 0;
1386 struct intel_ring_buffer *ring = LP_RING(dev_priv);
1387
1388 DRM_DEBUG_DRIVER("irq_nr=%d breadcrumb=%d\n", irq_nr,
1389 READ_BREADCRUMB(dev_priv));
1390
1391 if (READ_BREADCRUMB(dev_priv) >= irq_nr) {
1392 if (master_priv->sarea_priv)
1393 master_priv->sarea_priv->last_dispatch = READ_BREADCRUMB(dev_priv);
1394 return 0;
1395 }
1396
1397 if (master_priv->sarea_priv)
1398 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1399
1400 if (ring->irq_get(ring)) {
1401 DRM_WAIT_ON(ret, ring->irq_queue, 3 * DRM_HZ,
1402 READ_BREADCRUMB(dev_priv) >= irq_nr);
1403 ring->irq_put(ring);
1404 } else if (wait_for(READ_BREADCRUMB(dev_priv) >= irq_nr, 3000))
1405 ret = -EBUSY;
1406
1407 if (ret == -EBUSY) {
1408 DRM_ERROR("EBUSY -- rec: %d emitted: %d\n",
1409 READ_BREADCRUMB(dev_priv), (int)dev_priv->counter);
1410 }
1411
1412 return ret;
1413}
1414
1415/* Needs the lock as it touches the ring.
1416 */
1417int i915_irq_emit(struct drm_device *dev, void *data,
1418 struct drm_file *file_priv)
1419{
1420 drm_i915_private_t *dev_priv = dev->dev_private;
1421 drm_i915_irq_emit_t *emit = data;
1422 int result;
1423
1424 if (!dev_priv || !LP_RING(dev_priv)->virtual_start) {
1425 DRM_ERROR("called with no initialization\n");
1426 return -EINVAL;
1427 }
1428
1429 RING_LOCK_TEST_WITH_RETURN(dev, file_priv);
1430
1431 mutex_lock(&dev->struct_mutex);
1432 result = i915_emit_irq(dev);
1433 mutex_unlock(&dev->struct_mutex);
1434
1435 if (DRM_COPY_TO_USER(emit->irq_seq, &result, sizeof(int))) {
1436 DRM_ERROR("copy_to_user\n");
1437 return -EFAULT;
1438 }
1439
1440 return 0;
1441}
1442
1443/* Doesn't need the hardware lock.
1444 */
1445int i915_irq_wait(struct drm_device *dev, void *data,
1446 struct drm_file *file_priv)
1447{
1448 drm_i915_private_t *dev_priv = dev->dev_private;
1449 drm_i915_irq_wait_t *irqwait = data;
1450
1451 if (!dev_priv) {
1452 DRM_ERROR("called with no initialization\n");
1453 return -EINVAL;
1454 }
1455
1456 return i915_wait_irq(dev, irqwait->irq_seq);
1457}
1458
1459/* Called from drm generic code, passed 'crtc' which
1460 * we use as a pipe index
1461 */
1462static int i915_enable_vblank(struct drm_device *dev, int pipe)
1463{
1464 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1465 unsigned long irqflags;
1466
1467 if (!i915_pipe_enabled(dev, pipe))
1468 return -EINVAL;
1469
1470 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1471 if (INTEL_INFO(dev)->gen >= 4)
1472 i915_enable_pipestat(dev_priv, pipe,
1473 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1474 else
1475 i915_enable_pipestat(dev_priv, pipe,
1476 PIPE_VBLANK_INTERRUPT_ENABLE);
1477
1478 /* maintain vblank delivery even in deep C-states */
1479 if (dev_priv->info->gen == 3)
1480 I915_WRITE(INSTPM, INSTPM_AGPBUSY_DIS << 16);
1481 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1482
1483 return 0;
1484}
1485
1486static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1487{
1488 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1489 unsigned long irqflags;
1490
1491 if (!i915_pipe_enabled(dev, pipe))
1492 return -EINVAL;
1493
1494 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1495 ironlake_enable_display_irq(dev_priv, (pipe == 0) ?
1496 DE_PIPEA_VBLANK: DE_PIPEB_VBLANK);
1497 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1498
1499 return 0;
1500}
1501
1502static int ivybridge_enable_vblank(struct drm_device *dev, int pipe)
1503{
1504 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1505 unsigned long irqflags;
1506
1507 if (!i915_pipe_enabled(dev, pipe))
1508 return -EINVAL;
1509
1510 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1511 ironlake_enable_display_irq(dev_priv, (pipe == 0) ?
1512 DE_PIPEA_VBLANK_IVB : DE_PIPEB_VBLANK_IVB);
1513 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1514
1515 return 0;
1516}
1517
1518/* Called from drm generic code, passed 'crtc' which
1519 * we use as a pipe index
1520 */
1521static void i915_disable_vblank(struct drm_device *dev, int pipe)
1522{
1523 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1524 unsigned long irqflags;
1525
1526 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1527 if (dev_priv->info->gen == 3)
1528 I915_WRITE(INSTPM,
1529 INSTPM_AGPBUSY_DIS << 16 | INSTPM_AGPBUSY_DIS);
1530
1531 i915_disable_pipestat(dev_priv, pipe,
1532 PIPE_VBLANK_INTERRUPT_ENABLE |
1533 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1534 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1535}
1536
1537static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
1538{
1539 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1540 unsigned long irqflags;
1541
1542 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1543 ironlake_disable_display_irq(dev_priv, (pipe == 0) ?
1544 DE_PIPEA_VBLANK: DE_PIPEB_VBLANK);
1545 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1546}
1547
1548static void ivybridge_disable_vblank(struct drm_device *dev, int pipe)
1549{
1550 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1551 unsigned long irqflags;
1552
1553 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1554 ironlake_disable_display_irq(dev_priv, (pipe == 0) ?
1555 DE_PIPEA_VBLANK_IVB : DE_PIPEB_VBLANK_IVB);
1556 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1557}
1558
1559/* Set the vblank monitor pipe
1560 */
1561int i915_vblank_pipe_set(struct drm_device *dev, void *data,
1562 struct drm_file *file_priv)
1563{
1564 drm_i915_private_t *dev_priv = dev->dev_private;
1565
1566 if (!dev_priv) {
1567 DRM_ERROR("called with no initialization\n");
1568 return -EINVAL;
1569 }
1570
1571 return 0;
1572}
1573
1574int i915_vblank_pipe_get(struct drm_device *dev, void *data,
1575 struct drm_file *file_priv)
1576{
1577 drm_i915_private_t *dev_priv = dev->dev_private;
1578 drm_i915_vblank_pipe_t *pipe = data;
1579
1580 if (!dev_priv) {
1581 DRM_ERROR("called with no initialization\n");
1582 return -EINVAL;
1583 }
1584
1585 pipe->pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B;
1586
1587 return 0;
1588}
1589
1590/**
1591 * Schedule buffer swap at given vertical blank.
1592 */
1593int i915_vblank_swap(struct drm_device *dev, void *data,
1594 struct drm_file *file_priv)
1595{
1596 /* The delayed swap mechanism was fundamentally racy, and has been
1597 * removed. The model was that the client requested a delayed flip/swap
1598 * from the kernel, then waited for vblank before continuing to perform
1599 * rendering. The problem was that the kernel might wake the client
1600 * up before it dispatched the vblank swap (since the lock has to be
1601 * held while touching the ringbuffer), in which case the client would
1602 * clear and start the next frame before the swap occurred, and
1603 * flicker would occur in addition to likely missing the vblank.
1604 *
1605 * In the absence of this ioctl, userland falls back to a correct path
1606 * of waiting for a vblank, then dispatching the swap on its own.
1607 * Context switching to userland and back is plenty fast enough for
1608 * meeting the requirements of vblank swapping.
1609 */
1610 return -EINVAL;
1611}
1612
1613static u32
1614ring_last_seqno(struct intel_ring_buffer *ring)
1615{
1616 return list_entry(ring->request_list.prev,
1617 struct drm_i915_gem_request, list)->seqno;
1618}
1619
1620static bool i915_hangcheck_ring_idle(struct intel_ring_buffer *ring, bool *err)
1621{
1622 if (list_empty(&ring->request_list) ||
1623 i915_seqno_passed(ring->get_seqno(ring), ring_last_seqno(ring))) {
1624 /* Issue a wake-up to catch stuck h/w. */
1625 if (ring->waiting_seqno && waitqueue_active(&ring->irq_queue)) {
1626 DRM_ERROR("Hangcheck timer elapsed... %s idle [waiting on %d, at %d], missed IRQ?\n",
1627 ring->name,
1628 ring->waiting_seqno,
1629 ring->get_seqno(ring));
1630 wake_up_all(&ring->irq_queue);
1631 *err = true;
1632 }
1633 return true;
1634 }
1635 return false;
1636}
1637
1638static bool kick_ring(struct intel_ring_buffer *ring)
1639{
1640 struct drm_device *dev = ring->dev;
1641 struct drm_i915_private *dev_priv = dev->dev_private;
1642 u32 tmp = I915_READ_CTL(ring);
1643 if (tmp & RING_WAIT) {
1644 DRM_ERROR("Kicking stuck wait on %s\n",
1645 ring->name);
1646 I915_WRITE_CTL(ring, tmp);
1647 return true;
1648 }
1649 if (IS_GEN6(dev) &&
1650 (tmp & RING_WAIT_SEMAPHORE)) {
1651 DRM_ERROR("Kicking stuck semaphore on %s\n",
1652 ring->name);
1653 I915_WRITE_CTL(ring, tmp);
1654 return true;
1655 }
1656 return false;
1657}
1658
1659/**
1660 * This is called when the chip hasn't reported back with completed
1661 * batchbuffers in a long time. The first time this is called we simply record
1662 * ACTHD. If ACTHD hasn't changed by the time the hangcheck timer elapses
1663 * again, we assume the chip is wedged and try to fix it.
1664 */
1665void i915_hangcheck_elapsed(unsigned long data)
1666{
1667 struct drm_device *dev = (struct drm_device *)data;
1668 drm_i915_private_t *dev_priv = dev->dev_private;
1669 uint32_t acthd, instdone, instdone1;
1670 bool err = false;
1671
1672 if (!i915_enable_hangcheck)
1673 return;
1674
1675 /* If all work is done then ACTHD clearly hasn't advanced. */
1676 if (i915_hangcheck_ring_idle(&dev_priv->ring[RCS], &err) &&
1677 i915_hangcheck_ring_idle(&dev_priv->ring[VCS], &err) &&
1678 i915_hangcheck_ring_idle(&dev_priv->ring[BCS], &err)) {
1679 dev_priv->hangcheck_count = 0;
1680 if (err)
1681 goto repeat;
1682 return;
1683 }
1684
1685 if (INTEL_INFO(dev)->gen < 4) {
1686 acthd = I915_READ(ACTHD);
1687 instdone = I915_READ(INSTDONE);
1688 instdone1 = 0;
1689 } else {
1690 acthd = I915_READ(ACTHD_I965);
1691 instdone = I915_READ(INSTDONE_I965);
1692 instdone1 = I915_READ(INSTDONE1);
1693 }
1694
1695 if (dev_priv->last_acthd == acthd &&
1696 dev_priv->last_instdone == instdone &&
1697 dev_priv->last_instdone1 == instdone1) {
1698 if (dev_priv->hangcheck_count++ > 1) {
1699 DRM_ERROR("Hangcheck timer elapsed... GPU hung\n");
1700
1701 if (!IS_GEN2(dev)) {
1702 /* Is the chip hanging on a WAIT_FOR_EVENT?
1703 * If so we can simply poke the RB_WAIT bit
1704 * and break the hang. This should work on
1705 * all but the second generation chipsets.
1706 */
1707
1708 if (kick_ring(&dev_priv->ring[RCS]))
1709 goto repeat;
1710
1711 if (HAS_BSD(dev) &&
1712 kick_ring(&dev_priv->ring[VCS]))
1713 goto repeat;
1714
1715 if (HAS_BLT(dev) &&
1716 kick_ring(&dev_priv->ring[BCS]))
1717 goto repeat;
1718 }
1719
1720 i915_handle_error(dev, true);
1721 return;
1722 }
1723 } else {
1724 dev_priv->hangcheck_count = 0;
1725
1726 dev_priv->last_acthd = acthd;
1727 dev_priv->last_instdone = instdone;
1728 dev_priv->last_instdone1 = instdone1;
1729 }
1730
1731repeat:
1732 /* Reset timer case chip hangs without another request being added */
1733 mod_timer(&dev_priv->hangcheck_timer,
1734 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1735}
1736
1737/* drm_dma.h hooks
1738*/
1739static void ironlake_irq_preinstall(struct drm_device *dev)
1740{
1741 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1742
1743 atomic_set(&dev_priv->irq_received, 0);
1744
1745 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
1746 INIT_WORK(&dev_priv->error_work, i915_error_work_func);
1747 if (IS_GEN6(dev) || IS_IVYBRIDGE(dev))
1748 INIT_WORK(&dev_priv->rps_work, gen6_pm_rps_work);
1749
1750 I915_WRITE(HWSTAM, 0xeffe);
1751 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1752 /* Workaround stalls observed on Sandy Bridge GPUs by
1753 * making the blitter command streamer generate a
1754 * write to the Hardware Status Page for
1755 * MI_USER_INTERRUPT. This appears to serialize the
1756 * previous seqno write out before the interrupt
1757 * happens.
1758 */
1759 I915_WRITE(GEN6_BLITTER_HWSTAM, ~GEN6_BLITTER_USER_INTERRUPT);
1760 I915_WRITE(GEN6_BSD_HWSTAM, ~GEN6_BSD_USER_INTERRUPT);
1761 }
1762
1763 /* XXX hotplug from PCH */
1764
1765 I915_WRITE(DEIMR, 0xffffffff);
1766 I915_WRITE(DEIER, 0x0);
1767 POSTING_READ(DEIER);
1768
1769 /* and GT */
1770 I915_WRITE(GTIMR, 0xffffffff);
1771 I915_WRITE(GTIER, 0x0);
1772 POSTING_READ(GTIER);
1773
1774 /* south display irq */
1775 I915_WRITE(SDEIMR, 0xffffffff);
1776 I915_WRITE(SDEIER, 0x0);
1777 POSTING_READ(SDEIER);
1778}
1779
1780static int ironlake_irq_postinstall(struct drm_device *dev)
1781{
1782 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1783 /* enable kind of interrupts always enabled */
1784 u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
1785 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE;
1786 u32 render_irqs;
1787 u32 hotplug_mask;
1788
1789 DRM_INIT_WAITQUEUE(&dev_priv->ring[RCS].irq_queue);
1790 if (HAS_BSD(dev))
1791 DRM_INIT_WAITQUEUE(&dev_priv->ring[VCS].irq_queue);
1792 if (HAS_BLT(dev))
1793 DRM_INIT_WAITQUEUE(&dev_priv->ring[BCS].irq_queue);
1794
1795 dev_priv->vblank_pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B;
1796 dev_priv->irq_mask = ~display_mask;
1797
1798 /* should always can generate irq */
1799 I915_WRITE(DEIIR, I915_READ(DEIIR));
1800 I915_WRITE(DEIMR, dev_priv->irq_mask);
1801 I915_WRITE(DEIER, display_mask | DE_PIPEA_VBLANK | DE_PIPEB_VBLANK);
1802 POSTING_READ(DEIER);
1803
1804 dev_priv->gt_irq_mask = ~0;
1805
1806 I915_WRITE(GTIIR, I915_READ(GTIIR));
1807 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1808
1809 if (IS_GEN6(dev))
1810 render_irqs =
1811 GT_USER_INTERRUPT |
1812 GT_GEN6_BSD_USER_INTERRUPT |
1813 GT_BLT_USER_INTERRUPT;
1814 else
1815 render_irqs =
1816 GT_USER_INTERRUPT |
1817 GT_PIPE_NOTIFY |
1818 GT_BSD_USER_INTERRUPT;
1819 I915_WRITE(GTIER, render_irqs);
1820 POSTING_READ(GTIER);
1821
1822 if (HAS_PCH_CPT(dev)) {
1823 hotplug_mask = (SDE_CRT_HOTPLUG_CPT |
1824 SDE_PORTB_HOTPLUG_CPT |
1825 SDE_PORTC_HOTPLUG_CPT |
1826 SDE_PORTD_HOTPLUG_CPT);
1827 } else {
1828 hotplug_mask = (SDE_CRT_HOTPLUG |
1829 SDE_PORTB_HOTPLUG |
1830 SDE_PORTC_HOTPLUG |
1831 SDE_PORTD_HOTPLUG |
1832 SDE_AUX_MASK);
1833 }
1834
1835 dev_priv->pch_irq_mask = ~hotplug_mask;
1836
1837 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
1838 I915_WRITE(SDEIMR, dev_priv->pch_irq_mask);
1839 I915_WRITE(SDEIER, hotplug_mask);
1840 POSTING_READ(SDEIER);
1841
1842 if (IS_IRONLAKE_M(dev)) {
1843 /* Clear & enable PCU event interrupts */
1844 I915_WRITE(DEIIR, DE_PCU_EVENT);
1845 I915_WRITE(DEIER, I915_READ(DEIER) | DE_PCU_EVENT);
1846 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
1847 }
1848
1849 return 0;
1850}
1851
1852static int ivybridge_irq_postinstall(struct drm_device *dev)
1853{
1854 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1855 /* enable kind of interrupts always enabled */
1856 u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
1857 DE_PCH_EVENT_IVB | DE_PLANEA_FLIP_DONE_IVB |
1858 DE_PLANEB_FLIP_DONE_IVB;
1859 u32 render_irqs;
1860 u32 hotplug_mask;
1861
1862 DRM_INIT_WAITQUEUE(&dev_priv->ring[RCS].irq_queue);
1863 if (HAS_BSD(dev))
1864 DRM_INIT_WAITQUEUE(&dev_priv->ring[VCS].irq_queue);
1865 if (HAS_BLT(dev))
1866 DRM_INIT_WAITQUEUE(&dev_priv->ring[BCS].irq_queue);
1867
1868 dev_priv->vblank_pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B;
1869 dev_priv->irq_mask = ~display_mask;
1870
1871 /* should always can generate irq */
1872 I915_WRITE(DEIIR, I915_READ(DEIIR));
1873 I915_WRITE(DEIMR, dev_priv->irq_mask);
1874 I915_WRITE(DEIER, display_mask | DE_PIPEA_VBLANK_IVB |
1875 DE_PIPEB_VBLANK_IVB);
1876 POSTING_READ(DEIER);
1877
1878 dev_priv->gt_irq_mask = ~0;
1879
1880 I915_WRITE(GTIIR, I915_READ(GTIIR));
1881 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1882
1883 render_irqs = GT_USER_INTERRUPT | GT_GEN6_BSD_USER_INTERRUPT |
1884 GT_BLT_USER_INTERRUPT;
1885 I915_WRITE(GTIER, render_irqs);
1886 POSTING_READ(GTIER);
1887
1888 hotplug_mask = (SDE_CRT_HOTPLUG_CPT |
1889 SDE_PORTB_HOTPLUG_CPT |
1890 SDE_PORTC_HOTPLUG_CPT |
1891 SDE_PORTD_HOTPLUG_CPT);
1892 dev_priv->pch_irq_mask = ~hotplug_mask;
1893
1894 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
1895 I915_WRITE(SDEIMR, dev_priv->pch_irq_mask);
1896 I915_WRITE(SDEIER, hotplug_mask);
1897 POSTING_READ(SDEIER);
1898
1899 return 0;
1900}
1901
1902static void i915_driver_irq_preinstall(struct drm_device * dev)
1903{
1904 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1905 int pipe;
1906
1907 atomic_set(&dev_priv->irq_received, 0);
1908
1909 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
1910 INIT_WORK(&dev_priv->error_work, i915_error_work_func);
1911
1912 if (I915_HAS_HOTPLUG(dev)) {
1913 I915_WRITE(PORT_HOTPLUG_EN, 0);
1914 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
1915 }
1916
1917 I915_WRITE(HWSTAM, 0xeffe);
1918 for_each_pipe(pipe)
1919 I915_WRITE(PIPESTAT(pipe), 0);
1920 I915_WRITE(IMR, 0xffffffff);
1921 I915_WRITE(IER, 0x0);
1922 POSTING_READ(IER);
1923}
1924
1925/*
1926 * Must be called after intel_modeset_init or hotplug interrupts won't be
1927 * enabled correctly.
1928 */
1929static int i915_driver_irq_postinstall(struct drm_device *dev)
1930{
1931 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1932 u32 enable_mask = I915_INTERRUPT_ENABLE_FIX | I915_INTERRUPT_ENABLE_VAR;
1933 u32 error_mask;
1934
1935 dev_priv->vblank_pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B;
1936
1937 /* Unmask the interrupts that we always want on. */
1938 dev_priv->irq_mask = ~I915_INTERRUPT_ENABLE_FIX;
1939
1940 dev_priv->pipestat[0] = 0;
1941 dev_priv->pipestat[1] = 0;
1942
1943 if (I915_HAS_HOTPLUG(dev)) {
1944 /* Enable in IER... */
1945 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
1946 /* and unmask in IMR */
1947 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
1948 }
1949
1950 /*
1951 * Enable some error detection, note the instruction error mask
1952 * bit is reserved, so we leave it masked.
1953 */
1954 if (IS_G4X(dev)) {
1955 error_mask = ~(GM45_ERROR_PAGE_TABLE |
1956 GM45_ERROR_MEM_PRIV |
1957 GM45_ERROR_CP_PRIV |
1958 I915_ERROR_MEMORY_REFRESH);
1959 } else {
1960 error_mask = ~(I915_ERROR_PAGE_TABLE |
1961 I915_ERROR_MEMORY_REFRESH);
1962 }
1963 I915_WRITE(EMR, error_mask);
1964
1965 I915_WRITE(IMR, dev_priv->irq_mask);
1966 I915_WRITE(IER, enable_mask);
1967 POSTING_READ(IER);
1968
1969 if (I915_HAS_HOTPLUG(dev)) {
1970 u32 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
1971
1972 /* Note HDMI and DP share bits */
1973 if (dev_priv->hotplug_supported_mask & HDMIB_HOTPLUG_INT_STATUS)
1974 hotplug_en |= HDMIB_HOTPLUG_INT_EN;
1975 if (dev_priv->hotplug_supported_mask & HDMIC_HOTPLUG_INT_STATUS)
1976 hotplug_en |= HDMIC_HOTPLUG_INT_EN;
1977 if (dev_priv->hotplug_supported_mask & HDMID_HOTPLUG_INT_STATUS)
1978 hotplug_en |= HDMID_HOTPLUG_INT_EN;
1979 if (dev_priv->hotplug_supported_mask & SDVOC_HOTPLUG_INT_STATUS)
1980 hotplug_en |= SDVOC_HOTPLUG_INT_EN;
1981 if (dev_priv->hotplug_supported_mask & SDVOB_HOTPLUG_INT_STATUS)
1982 hotplug_en |= SDVOB_HOTPLUG_INT_EN;
1983 if (dev_priv->hotplug_supported_mask & CRT_HOTPLUG_INT_STATUS) {
1984 hotplug_en |= CRT_HOTPLUG_INT_EN;
1985
1986 /* Programming the CRT detection parameters tends
1987 to generate a spurious hotplug event about three
1988 seconds later. So just do it once.
1989 */
1990 if (IS_G4X(dev))
1991 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
1992 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
1993 }
1994
1995 /* Ignore TV since it's buggy */
1996
1997 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
1998 }
1999
2000 intel_opregion_enable_asle(dev);
2001
2002 return 0;
2003}
2004
2005static void ironlake_irq_uninstall(struct drm_device *dev)
2006{
2007 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2008
2009 if (!dev_priv)
2010 return;
2011
2012 dev_priv->vblank_pipe = 0;
2013
2014 I915_WRITE(HWSTAM, 0xffffffff);
2015
2016 I915_WRITE(DEIMR, 0xffffffff);
2017 I915_WRITE(DEIER, 0x0);
2018 I915_WRITE(DEIIR, I915_READ(DEIIR));
2019
2020 I915_WRITE(GTIMR, 0xffffffff);
2021 I915_WRITE(GTIER, 0x0);
2022 I915_WRITE(GTIIR, I915_READ(GTIIR));
2023}
2024
2025static void i915_driver_irq_uninstall(struct drm_device * dev)
2026{
2027 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2028 int pipe;
2029
2030 if (!dev_priv)
2031 return;
2032
2033 dev_priv->vblank_pipe = 0;
2034
2035 if (I915_HAS_HOTPLUG(dev)) {
2036 I915_WRITE(PORT_HOTPLUG_EN, 0);
2037 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2038 }
2039
2040 I915_WRITE(HWSTAM, 0xffffffff);
2041 for_each_pipe(pipe)
2042 I915_WRITE(PIPESTAT(pipe), 0);
2043 I915_WRITE(IMR, 0xffffffff);
2044 I915_WRITE(IER, 0x0);
2045
2046 for_each_pipe(pipe)
2047 I915_WRITE(PIPESTAT(pipe),
2048 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
2049 I915_WRITE(IIR, I915_READ(IIR));
2050}
2051
2052void intel_irq_init(struct drm_device *dev)
2053{
2054 dev->driver->get_vblank_counter = i915_get_vblank_counter;
2055 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
2056 if (IS_G4X(dev) || IS_GEN5(dev) || IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
2057 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
2058 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
2059 }
2060
2061 if (drm_core_check_feature(dev, DRIVER_MODESET))
2062 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
2063 else
2064 dev->driver->get_vblank_timestamp = NULL;
2065 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
2066
2067 if (IS_IVYBRIDGE(dev)) {
2068 /* Share pre & uninstall handlers with ILK/SNB */
2069 dev->driver->irq_handler = ivybridge_irq_handler;
2070 dev->driver->irq_preinstall = ironlake_irq_preinstall;
2071 dev->driver->irq_postinstall = ivybridge_irq_postinstall;
2072 dev->driver->irq_uninstall = ironlake_irq_uninstall;
2073 dev->driver->enable_vblank = ivybridge_enable_vblank;
2074 dev->driver->disable_vblank = ivybridge_disable_vblank;
2075 } else if (HAS_PCH_SPLIT(dev)) {
2076 dev->driver->irq_handler = ironlake_irq_handler;
2077 dev->driver->irq_preinstall = ironlake_irq_preinstall;
2078 dev->driver->irq_postinstall = ironlake_irq_postinstall;
2079 dev->driver->irq_uninstall = ironlake_irq_uninstall;
2080 dev->driver->enable_vblank = ironlake_enable_vblank;
2081 dev->driver->disable_vblank = ironlake_disable_vblank;
2082 } else {
2083 dev->driver->irq_preinstall = i915_driver_irq_preinstall;
2084 dev->driver->irq_postinstall = i915_driver_irq_postinstall;
2085 dev->driver->irq_uninstall = i915_driver_irq_uninstall;
2086 dev->driver->irq_handler = i915_driver_irq_handler;
2087 dev->driver->enable_vblank = i915_enable_vblank;
2088 dev->driver->disable_vblank = i915_disable_vblank;
2089 }
2090}
1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3/*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31#include <linux/sysrq.h>
32#include <linux/slab.h>
33#include <linux/circ_buf.h>
34#include <drm/drmP.h>
35#include <drm/i915_drm.h>
36#include "i915_drv.h"
37#include "i915_trace.h"
38#include "intel_drv.h"
39
40/**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50};
51
52static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54};
55
56static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58};
59
60static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66};
67
68static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74};
75
76static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82};
83
84static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91};
92
93static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100};
101
102static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109};
110
111/* BXT hpd list */
112static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116};
117
118/* IIR can theoretically queue up two events. Be paranoid. */
119#define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127} while (0)
128
129#define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137} while (0)
138
139/*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144{
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156}
157
158#define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163} while (0)
164
165#define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170} while (0)
171
172static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174
175/* For display hotplug interrupt */
176static inline void
177i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178 uint32_t mask,
179 uint32_t bits)
180{
181 uint32_t val;
182
183 assert_spin_locked(&dev_priv->irq_lock);
184 WARN_ON(bits & ~mask);
185
186 val = I915_READ(PORT_HOTPLUG_EN);
187 val &= ~mask;
188 val |= bits;
189 I915_WRITE(PORT_HOTPLUG_EN, val);
190}
191
192/**
193 * i915_hotplug_interrupt_update - update hotplug interrupt enable
194 * @dev_priv: driver private
195 * @mask: bits to update
196 * @bits: bits to enable
197 * NOTE: the HPD enable bits are modified both inside and outside
198 * of an interrupt context. To avoid that read-modify-write cycles
199 * interfer, these bits are protected by a spinlock. Since this
200 * function is usually not called from a context where the lock is
201 * held already, this function acquires the lock itself. A non-locking
202 * version is also available.
203 */
204void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205 uint32_t mask,
206 uint32_t bits)
207{
208 spin_lock_irq(&dev_priv->irq_lock);
209 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210 spin_unlock_irq(&dev_priv->irq_lock);
211}
212
213/**
214 * ilk_update_display_irq - update DEIMR
215 * @dev_priv: driver private
216 * @interrupt_mask: mask of interrupt bits to update
217 * @enabled_irq_mask: mask of interrupt bits to enable
218 */
219void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220 uint32_t interrupt_mask,
221 uint32_t enabled_irq_mask)
222{
223 uint32_t new_val;
224
225 assert_spin_locked(&dev_priv->irq_lock);
226
227 WARN_ON(enabled_irq_mask & ~interrupt_mask);
228
229 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230 return;
231
232 new_val = dev_priv->irq_mask;
233 new_val &= ~interrupt_mask;
234 new_val |= (~enabled_irq_mask & interrupt_mask);
235
236 if (new_val != dev_priv->irq_mask) {
237 dev_priv->irq_mask = new_val;
238 I915_WRITE(DEIMR, dev_priv->irq_mask);
239 POSTING_READ(DEIMR);
240 }
241}
242
243/**
244 * ilk_update_gt_irq - update GTIMR
245 * @dev_priv: driver private
246 * @interrupt_mask: mask of interrupt bits to update
247 * @enabled_irq_mask: mask of interrupt bits to enable
248 */
249static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250 uint32_t interrupt_mask,
251 uint32_t enabled_irq_mask)
252{
253 assert_spin_locked(&dev_priv->irq_lock);
254
255 WARN_ON(enabled_irq_mask & ~interrupt_mask);
256
257 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 return;
259
260 dev_priv->gt_irq_mask &= ~interrupt_mask;
261 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263}
264
265void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266{
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 POSTING_READ_FW(GTIMR);
269}
270
271void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272{
273 ilk_update_gt_irq(dev_priv, mask, 0);
274}
275
276static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277{
278 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279}
280
281static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282{
283 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284}
285
286static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287{
288 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289}
290
291/**
292 * snb_update_pm_irq - update GEN6_PMIMR
293 * @dev_priv: driver private
294 * @interrupt_mask: mask of interrupt bits to update
295 * @enabled_irq_mask: mask of interrupt bits to enable
296 */
297static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298 uint32_t interrupt_mask,
299 uint32_t enabled_irq_mask)
300{
301 uint32_t new_val;
302
303 WARN_ON(enabled_irq_mask & ~interrupt_mask);
304
305 assert_spin_locked(&dev_priv->irq_lock);
306
307 new_val = dev_priv->pm_imr;
308 new_val &= ~interrupt_mask;
309 new_val |= (~enabled_irq_mask & interrupt_mask);
310
311 if (new_val != dev_priv->pm_imr) {
312 dev_priv->pm_imr = new_val;
313 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314 POSTING_READ(gen6_pm_imr(dev_priv));
315 }
316}
317
318void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319{
320 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321 return;
322
323 snb_update_pm_irq(dev_priv, mask, mask);
324}
325
326static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327{
328 snb_update_pm_irq(dev_priv, mask, 0);
329}
330
331void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332{
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_mask_pm_irq(dev_priv, mask);
337}
338
339void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340{
341 i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343 assert_spin_locked(&dev_priv->irq_lock);
344
345 I915_WRITE(reg, reset_mask);
346 I915_WRITE(reg, reset_mask);
347 POSTING_READ(reg);
348}
349
350void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351{
352 assert_spin_locked(&dev_priv->irq_lock);
353
354 dev_priv->pm_ier |= enable_mask;
355 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356 gen6_unmask_pm_irq(dev_priv, enable_mask);
357 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358}
359
360void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361{
362 assert_spin_locked(&dev_priv->irq_lock);
363
364 dev_priv->pm_ier &= ~disable_mask;
365 __gen6_mask_pm_irq(dev_priv, disable_mask);
366 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367 /* though a barrier is missing here, but don't really need a one */
368}
369
370void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371{
372 spin_lock_irq(&dev_priv->irq_lock);
373 gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374 dev_priv->rps.pm_iir = 0;
375 spin_unlock_irq(&dev_priv->irq_lock);
376}
377
378void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379{
380 if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381 return;
382
383 spin_lock_irq(&dev_priv->irq_lock);
384 WARN_ON_ONCE(dev_priv->rps.pm_iir);
385 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386 dev_priv->rps.interrupts_enabled = true;
387 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388
389 spin_unlock_irq(&dev_priv->irq_lock);
390}
391
392u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
393{
394 return (mask & ~dev_priv->rps.pm_intr_keep);
395}
396
397void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
398{
399 if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
400 return;
401
402 spin_lock_irq(&dev_priv->irq_lock);
403 dev_priv->rps.interrupts_enabled = false;
404
405 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
406
407 gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
408
409 spin_unlock_irq(&dev_priv->irq_lock);
410 synchronize_irq(dev_priv->drm.irq);
411
412 /* Now that we will not be generating any more work, flush any
413 * outsanding tasks. As we are called on the RPS idle path,
414 * we will reset the GPU to minimum frequencies, so the current
415 * state of the worker can be discarded.
416 */
417 cancel_work_sync(&dev_priv->rps.work);
418 gen6_reset_rps_interrupts(dev_priv);
419}
420
421void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
422{
423 spin_lock_irq(&dev_priv->irq_lock);
424 gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
425 spin_unlock_irq(&dev_priv->irq_lock);
426}
427
428void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
429{
430 spin_lock_irq(&dev_priv->irq_lock);
431 if (!dev_priv->guc.interrupts_enabled) {
432 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
433 dev_priv->pm_guc_events);
434 dev_priv->guc.interrupts_enabled = true;
435 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
436 }
437 spin_unlock_irq(&dev_priv->irq_lock);
438}
439
440void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
441{
442 spin_lock_irq(&dev_priv->irq_lock);
443 dev_priv->guc.interrupts_enabled = false;
444
445 gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
446
447 spin_unlock_irq(&dev_priv->irq_lock);
448 synchronize_irq(dev_priv->drm.irq);
449
450 gen9_reset_guc_interrupts(dev_priv);
451}
452
453/**
454 * bdw_update_port_irq - update DE port interrupt
455 * @dev_priv: driver private
456 * @interrupt_mask: mask of interrupt bits to update
457 * @enabled_irq_mask: mask of interrupt bits to enable
458 */
459static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
460 uint32_t interrupt_mask,
461 uint32_t enabled_irq_mask)
462{
463 uint32_t new_val;
464 uint32_t old_val;
465
466 assert_spin_locked(&dev_priv->irq_lock);
467
468 WARN_ON(enabled_irq_mask & ~interrupt_mask);
469
470 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
471 return;
472
473 old_val = I915_READ(GEN8_DE_PORT_IMR);
474
475 new_val = old_val;
476 new_val &= ~interrupt_mask;
477 new_val |= (~enabled_irq_mask & interrupt_mask);
478
479 if (new_val != old_val) {
480 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
481 POSTING_READ(GEN8_DE_PORT_IMR);
482 }
483}
484
485/**
486 * bdw_update_pipe_irq - update DE pipe interrupt
487 * @dev_priv: driver private
488 * @pipe: pipe whose interrupt to update
489 * @interrupt_mask: mask of interrupt bits to update
490 * @enabled_irq_mask: mask of interrupt bits to enable
491 */
492void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
493 enum pipe pipe,
494 uint32_t interrupt_mask,
495 uint32_t enabled_irq_mask)
496{
497 uint32_t new_val;
498
499 assert_spin_locked(&dev_priv->irq_lock);
500
501 WARN_ON(enabled_irq_mask & ~interrupt_mask);
502
503 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
504 return;
505
506 new_val = dev_priv->de_irq_mask[pipe];
507 new_val &= ~interrupt_mask;
508 new_val |= (~enabled_irq_mask & interrupt_mask);
509
510 if (new_val != dev_priv->de_irq_mask[pipe]) {
511 dev_priv->de_irq_mask[pipe] = new_val;
512 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
513 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
514 }
515}
516
517/**
518 * ibx_display_interrupt_update - update SDEIMR
519 * @dev_priv: driver private
520 * @interrupt_mask: mask of interrupt bits to update
521 * @enabled_irq_mask: mask of interrupt bits to enable
522 */
523void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
524 uint32_t interrupt_mask,
525 uint32_t enabled_irq_mask)
526{
527 uint32_t sdeimr = I915_READ(SDEIMR);
528 sdeimr &= ~interrupt_mask;
529 sdeimr |= (~enabled_irq_mask & interrupt_mask);
530
531 WARN_ON(enabled_irq_mask & ~interrupt_mask);
532
533 assert_spin_locked(&dev_priv->irq_lock);
534
535 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
536 return;
537
538 I915_WRITE(SDEIMR, sdeimr);
539 POSTING_READ(SDEIMR);
540}
541
542static void
543__i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
544 u32 enable_mask, u32 status_mask)
545{
546 i915_reg_t reg = PIPESTAT(pipe);
547 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
548
549 assert_spin_locked(&dev_priv->irq_lock);
550 WARN_ON(!intel_irqs_enabled(dev_priv));
551
552 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
553 status_mask & ~PIPESTAT_INT_STATUS_MASK,
554 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
555 pipe_name(pipe), enable_mask, status_mask))
556 return;
557
558 if ((pipestat & enable_mask) == enable_mask)
559 return;
560
561 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
562
563 /* Enable the interrupt, clear any pending status */
564 pipestat |= enable_mask | status_mask;
565 I915_WRITE(reg, pipestat);
566 POSTING_READ(reg);
567}
568
569static void
570__i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
571 u32 enable_mask, u32 status_mask)
572{
573 i915_reg_t reg = PIPESTAT(pipe);
574 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
575
576 assert_spin_locked(&dev_priv->irq_lock);
577 WARN_ON(!intel_irqs_enabled(dev_priv));
578
579 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
580 status_mask & ~PIPESTAT_INT_STATUS_MASK,
581 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
582 pipe_name(pipe), enable_mask, status_mask))
583 return;
584
585 if ((pipestat & enable_mask) == 0)
586 return;
587
588 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
589
590 pipestat &= ~enable_mask;
591 I915_WRITE(reg, pipestat);
592 POSTING_READ(reg);
593}
594
595static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
596{
597 u32 enable_mask = status_mask << 16;
598
599 /*
600 * On pipe A we don't support the PSR interrupt yet,
601 * on pipe B and C the same bit MBZ.
602 */
603 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
604 return 0;
605 /*
606 * On pipe B and C we don't support the PSR interrupt yet, on pipe
607 * A the same bit is for perf counters which we don't use either.
608 */
609 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
610 return 0;
611
612 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
613 SPRITE0_FLIP_DONE_INT_EN_VLV |
614 SPRITE1_FLIP_DONE_INT_EN_VLV);
615 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
616 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
617 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
618 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
619
620 return enable_mask;
621}
622
623void
624i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
625 u32 status_mask)
626{
627 u32 enable_mask;
628
629 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
630 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
631 status_mask);
632 else
633 enable_mask = status_mask << 16;
634 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
635}
636
637void
638i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
639 u32 status_mask)
640{
641 u32 enable_mask;
642
643 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
644 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
645 status_mask);
646 else
647 enable_mask = status_mask << 16;
648 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
649}
650
651/**
652 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
653 * @dev_priv: i915 device private
654 */
655static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
656{
657 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
658 return;
659
660 spin_lock_irq(&dev_priv->irq_lock);
661
662 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
663 if (INTEL_GEN(dev_priv) >= 4)
664 i915_enable_pipestat(dev_priv, PIPE_A,
665 PIPE_LEGACY_BLC_EVENT_STATUS);
666
667 spin_unlock_irq(&dev_priv->irq_lock);
668}
669
670/*
671 * This timing diagram depicts the video signal in and
672 * around the vertical blanking period.
673 *
674 * Assumptions about the fictitious mode used in this example:
675 * vblank_start >= 3
676 * vsync_start = vblank_start + 1
677 * vsync_end = vblank_start + 2
678 * vtotal = vblank_start + 3
679 *
680 * start of vblank:
681 * latch double buffered registers
682 * increment frame counter (ctg+)
683 * generate start of vblank interrupt (gen4+)
684 * |
685 * | frame start:
686 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
687 * | may be shifted forward 1-3 extra lines via PIPECONF
688 * | |
689 * | | start of vsync:
690 * | | generate vsync interrupt
691 * | | |
692 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
693 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
694 * ----va---> <-----------------vb--------------------> <--------va-------------
695 * | | <----vs-----> |
696 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
697 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
698 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
699 * | | |
700 * last visible pixel first visible pixel
701 * | increment frame counter (gen3/4)
702 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
703 *
704 * x = horizontal active
705 * _ = horizontal blanking
706 * hs = horizontal sync
707 * va = vertical active
708 * vb = vertical blanking
709 * vs = vertical sync
710 * vbs = vblank_start (number)
711 *
712 * Summary:
713 * - most events happen at the start of horizontal sync
714 * - frame start happens at the start of horizontal blank, 1-4 lines
715 * (depending on PIPECONF settings) after the start of vblank
716 * - gen3/4 pixel and frame counter are synchronized with the start
717 * of horizontal active on the first line of vertical active
718 */
719
720/* Called from drm generic code, passed a 'crtc', which
721 * we use as a pipe index
722 */
723static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
724{
725 struct drm_i915_private *dev_priv = to_i915(dev);
726 i915_reg_t high_frame, low_frame;
727 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
728 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
729 pipe);
730 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
731
732 htotal = mode->crtc_htotal;
733 hsync_start = mode->crtc_hsync_start;
734 vbl_start = mode->crtc_vblank_start;
735 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
736 vbl_start = DIV_ROUND_UP(vbl_start, 2);
737
738 /* Convert to pixel count */
739 vbl_start *= htotal;
740
741 /* Start of vblank event occurs at start of hsync */
742 vbl_start -= htotal - hsync_start;
743
744 high_frame = PIPEFRAME(pipe);
745 low_frame = PIPEFRAMEPIXEL(pipe);
746
747 /*
748 * High & low register fields aren't synchronized, so make sure
749 * we get a low value that's stable across two reads of the high
750 * register.
751 */
752 do {
753 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
754 low = I915_READ(low_frame);
755 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
756 } while (high1 != high2);
757
758 high1 >>= PIPE_FRAME_HIGH_SHIFT;
759 pixel = low & PIPE_PIXEL_MASK;
760 low >>= PIPE_FRAME_LOW_SHIFT;
761
762 /*
763 * The frame counter increments at beginning of active.
764 * Cook up a vblank counter by also checking the pixel
765 * counter against vblank start.
766 */
767 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
768}
769
770static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
771{
772 struct drm_i915_private *dev_priv = to_i915(dev);
773
774 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
775}
776
777/* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
778static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
779{
780 struct drm_device *dev = crtc->base.dev;
781 struct drm_i915_private *dev_priv = to_i915(dev);
782 const struct drm_display_mode *mode = &crtc->base.hwmode;
783 enum pipe pipe = crtc->pipe;
784 int position, vtotal;
785
786 vtotal = mode->crtc_vtotal;
787 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
788 vtotal /= 2;
789
790 if (IS_GEN2(dev_priv))
791 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
792 else
793 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
794
795 /*
796 * On HSW, the DSL reg (0x70000) appears to return 0 if we
797 * read it just before the start of vblank. So try it again
798 * so we don't accidentally end up spanning a vblank frame
799 * increment, causing the pipe_update_end() code to squak at us.
800 *
801 * The nature of this problem means we can't simply check the ISR
802 * bit and return the vblank start value; nor can we use the scanline
803 * debug register in the transcoder as it appears to have the same
804 * problem. We may need to extend this to include other platforms,
805 * but so far testing only shows the problem on HSW.
806 */
807 if (HAS_DDI(dev_priv) && !position) {
808 int i, temp;
809
810 for (i = 0; i < 100; i++) {
811 udelay(1);
812 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
813 DSL_LINEMASK_GEN3;
814 if (temp != position) {
815 position = temp;
816 break;
817 }
818 }
819 }
820
821 /*
822 * See update_scanline_offset() for the details on the
823 * scanline_offset adjustment.
824 */
825 return (position + crtc->scanline_offset) % vtotal;
826}
827
828static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
829 unsigned int flags, int *vpos, int *hpos,
830 ktime_t *stime, ktime_t *etime,
831 const struct drm_display_mode *mode)
832{
833 struct drm_i915_private *dev_priv = to_i915(dev);
834 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
835 pipe);
836 int position;
837 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
838 bool in_vbl = true;
839 int ret = 0;
840 unsigned long irqflags;
841
842 if (WARN_ON(!mode->crtc_clock)) {
843 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
844 "pipe %c\n", pipe_name(pipe));
845 return 0;
846 }
847
848 htotal = mode->crtc_htotal;
849 hsync_start = mode->crtc_hsync_start;
850 vtotal = mode->crtc_vtotal;
851 vbl_start = mode->crtc_vblank_start;
852 vbl_end = mode->crtc_vblank_end;
853
854 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
855 vbl_start = DIV_ROUND_UP(vbl_start, 2);
856 vbl_end /= 2;
857 vtotal /= 2;
858 }
859
860 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
861
862 /*
863 * Lock uncore.lock, as we will do multiple timing critical raw
864 * register reads, potentially with preemption disabled, so the
865 * following code must not block on uncore.lock.
866 */
867 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
868
869 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
870
871 /* Get optional system timestamp before query. */
872 if (stime)
873 *stime = ktime_get();
874
875 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
876 /* No obvious pixelcount register. Only query vertical
877 * scanout position from Display scan line register.
878 */
879 position = __intel_get_crtc_scanline(intel_crtc);
880 } else {
881 /* Have access to pixelcount since start of frame.
882 * We can split this into vertical and horizontal
883 * scanout position.
884 */
885 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
886
887 /* convert to pixel counts */
888 vbl_start *= htotal;
889 vbl_end *= htotal;
890 vtotal *= htotal;
891
892 /*
893 * In interlaced modes, the pixel counter counts all pixels,
894 * so one field will have htotal more pixels. In order to avoid
895 * the reported position from jumping backwards when the pixel
896 * counter is beyond the length of the shorter field, just
897 * clamp the position the length of the shorter field. This
898 * matches how the scanline counter based position works since
899 * the scanline counter doesn't count the two half lines.
900 */
901 if (position >= vtotal)
902 position = vtotal - 1;
903
904 /*
905 * Start of vblank interrupt is triggered at start of hsync,
906 * just prior to the first active line of vblank. However we
907 * consider lines to start at the leading edge of horizontal
908 * active. So, should we get here before we've crossed into
909 * the horizontal active of the first line in vblank, we would
910 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
911 * always add htotal-hsync_start to the current pixel position.
912 */
913 position = (position + htotal - hsync_start) % vtotal;
914 }
915
916 /* Get optional system timestamp after query. */
917 if (etime)
918 *etime = ktime_get();
919
920 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
921
922 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
923
924 in_vbl = position >= vbl_start && position < vbl_end;
925
926 /*
927 * While in vblank, position will be negative
928 * counting up towards 0 at vbl_end. And outside
929 * vblank, position will be positive counting
930 * up since vbl_end.
931 */
932 if (position >= vbl_start)
933 position -= vbl_end;
934 else
935 position += vtotal - vbl_end;
936
937 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
938 *vpos = position;
939 *hpos = 0;
940 } else {
941 *vpos = position / htotal;
942 *hpos = position - (*vpos * htotal);
943 }
944
945 /* In vblank? */
946 if (in_vbl)
947 ret |= DRM_SCANOUTPOS_IN_VBLANK;
948
949 return ret;
950}
951
952int intel_get_crtc_scanline(struct intel_crtc *crtc)
953{
954 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
955 unsigned long irqflags;
956 int position;
957
958 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
959 position = __intel_get_crtc_scanline(crtc);
960 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
961
962 return position;
963}
964
965static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
966 int *max_error,
967 struct timeval *vblank_time,
968 unsigned flags)
969{
970 struct drm_i915_private *dev_priv = to_i915(dev);
971 struct intel_crtc *crtc;
972
973 if (pipe >= INTEL_INFO(dev_priv)->num_pipes) {
974 DRM_ERROR("Invalid crtc %u\n", pipe);
975 return -EINVAL;
976 }
977
978 /* Get drm_crtc to timestamp: */
979 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
980 if (crtc == NULL) {
981 DRM_ERROR("Invalid crtc %u\n", pipe);
982 return -EINVAL;
983 }
984
985 if (!crtc->base.hwmode.crtc_clock) {
986 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
987 return -EBUSY;
988 }
989
990 /* Helper routine in DRM core does all the work: */
991 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
992 vblank_time, flags,
993 &crtc->base.hwmode);
994}
995
996static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
997{
998 u32 busy_up, busy_down, max_avg, min_avg;
999 u8 new_delay;
1000
1001 spin_lock(&mchdev_lock);
1002
1003 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1004
1005 new_delay = dev_priv->ips.cur_delay;
1006
1007 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1008 busy_up = I915_READ(RCPREVBSYTUPAVG);
1009 busy_down = I915_READ(RCPREVBSYTDNAVG);
1010 max_avg = I915_READ(RCBMAXAVG);
1011 min_avg = I915_READ(RCBMINAVG);
1012
1013 /* Handle RCS change request from hw */
1014 if (busy_up > max_avg) {
1015 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1016 new_delay = dev_priv->ips.cur_delay - 1;
1017 if (new_delay < dev_priv->ips.max_delay)
1018 new_delay = dev_priv->ips.max_delay;
1019 } else if (busy_down < min_avg) {
1020 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1021 new_delay = dev_priv->ips.cur_delay + 1;
1022 if (new_delay > dev_priv->ips.min_delay)
1023 new_delay = dev_priv->ips.min_delay;
1024 }
1025
1026 if (ironlake_set_drps(dev_priv, new_delay))
1027 dev_priv->ips.cur_delay = new_delay;
1028
1029 spin_unlock(&mchdev_lock);
1030
1031 return;
1032}
1033
1034static void notify_ring(struct intel_engine_cs *engine)
1035{
1036 smp_store_mb(engine->breadcrumbs.irq_posted, true);
1037 if (intel_engine_wakeup(engine))
1038 trace_i915_gem_request_notify(engine);
1039}
1040
1041static void vlv_c0_read(struct drm_i915_private *dev_priv,
1042 struct intel_rps_ei *ei)
1043{
1044 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1045 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1046 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1047}
1048
1049void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1050{
1051 memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
1052}
1053
1054static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1055{
1056 const struct intel_rps_ei *prev = &dev_priv->rps.ei;
1057 struct intel_rps_ei now;
1058 u32 events = 0;
1059
1060 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1061 return 0;
1062
1063 vlv_c0_read(dev_priv, &now);
1064 if (now.cz_clock == 0)
1065 return 0;
1066
1067 if (prev->cz_clock) {
1068 u64 time, c0;
1069 unsigned int mul;
1070
1071 mul = VLV_CZ_CLOCK_TO_MILLI_SEC * 100; /* scale to threshold% */
1072 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1073 mul <<= 8;
1074
1075 time = now.cz_clock - prev->cz_clock;
1076 time *= dev_priv->czclk_freq;
1077
1078 /* Workload can be split between render + media,
1079 * e.g. SwapBuffers being blitted in X after being rendered in
1080 * mesa. To account for this we need to combine both engines
1081 * into our activity counter.
1082 */
1083 c0 = now.render_c0 - prev->render_c0;
1084 c0 += now.media_c0 - prev->media_c0;
1085 c0 *= mul;
1086
1087 if (c0 > time * dev_priv->rps.up_threshold)
1088 events = GEN6_PM_RP_UP_THRESHOLD;
1089 else if (c0 < time * dev_priv->rps.down_threshold)
1090 events = GEN6_PM_RP_DOWN_THRESHOLD;
1091 }
1092
1093 dev_priv->rps.ei = now;
1094 return events;
1095}
1096
1097static bool any_waiters(struct drm_i915_private *dev_priv)
1098{
1099 struct intel_engine_cs *engine;
1100 enum intel_engine_id id;
1101
1102 for_each_engine(engine, dev_priv, id)
1103 if (intel_engine_has_waiter(engine))
1104 return true;
1105
1106 return false;
1107}
1108
1109static void gen6_pm_rps_work(struct work_struct *work)
1110{
1111 struct drm_i915_private *dev_priv =
1112 container_of(work, struct drm_i915_private, rps.work);
1113 bool client_boost;
1114 int new_delay, adj, min, max;
1115 u32 pm_iir;
1116
1117 spin_lock_irq(&dev_priv->irq_lock);
1118 /* Speed up work cancelation during disabling rps interrupts. */
1119 if (!dev_priv->rps.interrupts_enabled) {
1120 spin_unlock_irq(&dev_priv->irq_lock);
1121 return;
1122 }
1123
1124 pm_iir = dev_priv->rps.pm_iir;
1125 dev_priv->rps.pm_iir = 0;
1126 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1127 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1128 client_boost = dev_priv->rps.client_boost;
1129 dev_priv->rps.client_boost = false;
1130 spin_unlock_irq(&dev_priv->irq_lock);
1131
1132 /* Make sure we didn't queue anything we're not going to process. */
1133 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1134
1135 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1136 return;
1137
1138 mutex_lock(&dev_priv->rps.hw_lock);
1139
1140 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1141
1142 adj = dev_priv->rps.last_adj;
1143 new_delay = dev_priv->rps.cur_freq;
1144 min = dev_priv->rps.min_freq_softlimit;
1145 max = dev_priv->rps.max_freq_softlimit;
1146 if (client_boost || any_waiters(dev_priv))
1147 max = dev_priv->rps.max_freq;
1148 if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1149 new_delay = dev_priv->rps.boost_freq;
1150 adj = 0;
1151 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1152 if (adj > 0)
1153 adj *= 2;
1154 else /* CHV needs even encode values */
1155 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1156 /*
1157 * For better performance, jump directly
1158 * to RPe if we're below it.
1159 */
1160 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1161 new_delay = dev_priv->rps.efficient_freq;
1162 adj = 0;
1163 }
1164 } else if (client_boost || any_waiters(dev_priv)) {
1165 adj = 0;
1166 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1167 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1168 new_delay = dev_priv->rps.efficient_freq;
1169 else
1170 new_delay = dev_priv->rps.min_freq_softlimit;
1171 adj = 0;
1172 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1173 if (adj < 0)
1174 adj *= 2;
1175 else /* CHV needs even encode values */
1176 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1177 } else { /* unknown event */
1178 adj = 0;
1179 }
1180
1181 dev_priv->rps.last_adj = adj;
1182
1183 /* sysfs frequency interfaces may have snuck in while servicing the
1184 * interrupt
1185 */
1186 new_delay += adj;
1187 new_delay = clamp_t(int, new_delay, min, max);
1188
1189 intel_set_rps(dev_priv, new_delay);
1190
1191 mutex_unlock(&dev_priv->rps.hw_lock);
1192}
1193
1194
1195/**
1196 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1197 * occurred.
1198 * @work: workqueue struct
1199 *
1200 * Doesn't actually do anything except notify userspace. As a consequence of
1201 * this event, userspace should try to remap the bad rows since statistically
1202 * it is likely the same row is more likely to go bad again.
1203 */
1204static void ivybridge_parity_work(struct work_struct *work)
1205{
1206 struct drm_i915_private *dev_priv =
1207 container_of(work, struct drm_i915_private, l3_parity.error_work);
1208 u32 error_status, row, bank, subbank;
1209 char *parity_event[6];
1210 uint32_t misccpctl;
1211 uint8_t slice = 0;
1212
1213 /* We must turn off DOP level clock gating to access the L3 registers.
1214 * In order to prevent a get/put style interface, acquire struct mutex
1215 * any time we access those registers.
1216 */
1217 mutex_lock(&dev_priv->drm.struct_mutex);
1218
1219 /* If we've screwed up tracking, just let the interrupt fire again */
1220 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1221 goto out;
1222
1223 misccpctl = I915_READ(GEN7_MISCCPCTL);
1224 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1225 POSTING_READ(GEN7_MISCCPCTL);
1226
1227 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1228 i915_reg_t reg;
1229
1230 slice--;
1231 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1232 break;
1233
1234 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1235
1236 reg = GEN7_L3CDERRST1(slice);
1237
1238 error_status = I915_READ(reg);
1239 row = GEN7_PARITY_ERROR_ROW(error_status);
1240 bank = GEN7_PARITY_ERROR_BANK(error_status);
1241 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1242
1243 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1244 POSTING_READ(reg);
1245
1246 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1247 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1248 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1249 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1250 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1251 parity_event[5] = NULL;
1252
1253 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1254 KOBJ_CHANGE, parity_event);
1255
1256 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1257 slice, row, bank, subbank);
1258
1259 kfree(parity_event[4]);
1260 kfree(parity_event[3]);
1261 kfree(parity_event[2]);
1262 kfree(parity_event[1]);
1263 }
1264
1265 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1266
1267out:
1268 WARN_ON(dev_priv->l3_parity.which_slice);
1269 spin_lock_irq(&dev_priv->irq_lock);
1270 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1271 spin_unlock_irq(&dev_priv->irq_lock);
1272
1273 mutex_unlock(&dev_priv->drm.struct_mutex);
1274}
1275
1276static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1277 u32 iir)
1278{
1279 if (!HAS_L3_DPF(dev_priv))
1280 return;
1281
1282 spin_lock(&dev_priv->irq_lock);
1283 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1284 spin_unlock(&dev_priv->irq_lock);
1285
1286 iir &= GT_PARITY_ERROR(dev_priv);
1287 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1288 dev_priv->l3_parity.which_slice |= 1 << 1;
1289
1290 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1291 dev_priv->l3_parity.which_slice |= 1 << 0;
1292
1293 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1294}
1295
1296static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1297 u32 gt_iir)
1298{
1299 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1300 notify_ring(dev_priv->engine[RCS]);
1301 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1302 notify_ring(dev_priv->engine[VCS]);
1303}
1304
1305static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1306 u32 gt_iir)
1307{
1308 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1309 notify_ring(dev_priv->engine[RCS]);
1310 if (gt_iir & GT_BSD_USER_INTERRUPT)
1311 notify_ring(dev_priv->engine[VCS]);
1312 if (gt_iir & GT_BLT_USER_INTERRUPT)
1313 notify_ring(dev_priv->engine[BCS]);
1314
1315 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1316 GT_BSD_CS_ERROR_INTERRUPT |
1317 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1318 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1319
1320 if (gt_iir & GT_PARITY_ERROR(dev_priv))
1321 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1322}
1323
1324static __always_inline void
1325gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1326{
1327 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1328 notify_ring(engine);
1329 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1330 tasklet_schedule(&engine->irq_tasklet);
1331}
1332
1333static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1334 u32 master_ctl,
1335 u32 gt_iir[4])
1336{
1337 irqreturn_t ret = IRQ_NONE;
1338
1339 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1340 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1341 if (gt_iir[0]) {
1342 I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1343 ret = IRQ_HANDLED;
1344 } else
1345 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1346 }
1347
1348 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1349 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1350 if (gt_iir[1]) {
1351 I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1352 ret = IRQ_HANDLED;
1353 } else
1354 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1355 }
1356
1357 if (master_ctl & GEN8_GT_VECS_IRQ) {
1358 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1359 if (gt_iir[3]) {
1360 I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1361 ret = IRQ_HANDLED;
1362 } else
1363 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1364 }
1365
1366 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1367 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1368 if (gt_iir[2] & (dev_priv->pm_rps_events |
1369 dev_priv->pm_guc_events)) {
1370 I915_WRITE_FW(GEN8_GT_IIR(2),
1371 gt_iir[2] & (dev_priv->pm_rps_events |
1372 dev_priv->pm_guc_events));
1373 ret = IRQ_HANDLED;
1374 } else
1375 DRM_ERROR("The master control interrupt lied (PM)!\n");
1376 }
1377
1378 return ret;
1379}
1380
1381static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1382 u32 gt_iir[4])
1383{
1384 if (gt_iir[0]) {
1385 gen8_cs_irq_handler(dev_priv->engine[RCS],
1386 gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1387 gen8_cs_irq_handler(dev_priv->engine[BCS],
1388 gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1389 }
1390
1391 if (gt_iir[1]) {
1392 gen8_cs_irq_handler(dev_priv->engine[VCS],
1393 gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1394 gen8_cs_irq_handler(dev_priv->engine[VCS2],
1395 gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1396 }
1397
1398 if (gt_iir[3])
1399 gen8_cs_irq_handler(dev_priv->engine[VECS],
1400 gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1401
1402 if (gt_iir[2] & dev_priv->pm_rps_events)
1403 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1404
1405 if (gt_iir[2] & dev_priv->pm_guc_events)
1406 gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1407}
1408
1409static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1410{
1411 switch (port) {
1412 case PORT_A:
1413 return val & PORTA_HOTPLUG_LONG_DETECT;
1414 case PORT_B:
1415 return val & PORTB_HOTPLUG_LONG_DETECT;
1416 case PORT_C:
1417 return val & PORTC_HOTPLUG_LONG_DETECT;
1418 default:
1419 return false;
1420 }
1421}
1422
1423static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1424{
1425 switch (port) {
1426 case PORT_E:
1427 return val & PORTE_HOTPLUG_LONG_DETECT;
1428 default:
1429 return false;
1430 }
1431}
1432
1433static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1434{
1435 switch (port) {
1436 case PORT_A:
1437 return val & PORTA_HOTPLUG_LONG_DETECT;
1438 case PORT_B:
1439 return val & PORTB_HOTPLUG_LONG_DETECT;
1440 case PORT_C:
1441 return val & PORTC_HOTPLUG_LONG_DETECT;
1442 case PORT_D:
1443 return val & PORTD_HOTPLUG_LONG_DETECT;
1444 default:
1445 return false;
1446 }
1447}
1448
1449static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1450{
1451 switch (port) {
1452 case PORT_A:
1453 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1454 default:
1455 return false;
1456 }
1457}
1458
1459static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1460{
1461 switch (port) {
1462 case PORT_B:
1463 return val & PORTB_HOTPLUG_LONG_DETECT;
1464 case PORT_C:
1465 return val & PORTC_HOTPLUG_LONG_DETECT;
1466 case PORT_D:
1467 return val & PORTD_HOTPLUG_LONG_DETECT;
1468 default:
1469 return false;
1470 }
1471}
1472
1473static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1474{
1475 switch (port) {
1476 case PORT_B:
1477 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1478 case PORT_C:
1479 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1480 case PORT_D:
1481 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1482 default:
1483 return false;
1484 }
1485}
1486
1487/*
1488 * Get a bit mask of pins that have triggered, and which ones may be long.
1489 * This can be called multiple times with the same masks to accumulate
1490 * hotplug detection results from several registers.
1491 *
1492 * Note that the caller is expected to zero out the masks initially.
1493 */
1494static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1495 u32 hotplug_trigger, u32 dig_hotplug_reg,
1496 const u32 hpd[HPD_NUM_PINS],
1497 bool long_pulse_detect(enum port port, u32 val))
1498{
1499 enum port port;
1500 int i;
1501
1502 for_each_hpd_pin(i) {
1503 if ((hpd[i] & hotplug_trigger) == 0)
1504 continue;
1505
1506 *pin_mask |= BIT(i);
1507
1508 if (!intel_hpd_pin_to_port(i, &port))
1509 continue;
1510
1511 if (long_pulse_detect(port, dig_hotplug_reg))
1512 *long_mask |= BIT(i);
1513 }
1514
1515 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1516 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1517
1518}
1519
1520static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1521{
1522 wake_up_all(&dev_priv->gmbus_wait_queue);
1523}
1524
1525static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1526{
1527 wake_up_all(&dev_priv->gmbus_wait_queue);
1528}
1529
1530#if defined(CONFIG_DEBUG_FS)
1531static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1532 enum pipe pipe,
1533 uint32_t crc0, uint32_t crc1,
1534 uint32_t crc2, uint32_t crc3,
1535 uint32_t crc4)
1536{
1537 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1538 struct intel_pipe_crc_entry *entry;
1539 int head, tail;
1540
1541 spin_lock(&pipe_crc->lock);
1542
1543 if (!pipe_crc->entries) {
1544 spin_unlock(&pipe_crc->lock);
1545 DRM_DEBUG_KMS("spurious interrupt\n");
1546 return;
1547 }
1548
1549 head = pipe_crc->head;
1550 tail = pipe_crc->tail;
1551
1552 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1553 spin_unlock(&pipe_crc->lock);
1554 DRM_ERROR("CRC buffer overflowing\n");
1555 return;
1556 }
1557
1558 entry = &pipe_crc->entries[head];
1559
1560 entry->frame = dev_priv->drm.driver->get_vblank_counter(&dev_priv->drm,
1561 pipe);
1562 entry->crc[0] = crc0;
1563 entry->crc[1] = crc1;
1564 entry->crc[2] = crc2;
1565 entry->crc[3] = crc3;
1566 entry->crc[4] = crc4;
1567
1568 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1569 pipe_crc->head = head;
1570
1571 spin_unlock(&pipe_crc->lock);
1572
1573 wake_up_interruptible(&pipe_crc->wq);
1574}
1575#else
1576static inline void
1577display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1578 enum pipe pipe,
1579 uint32_t crc0, uint32_t crc1,
1580 uint32_t crc2, uint32_t crc3,
1581 uint32_t crc4) {}
1582#endif
1583
1584
1585static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1586 enum pipe pipe)
1587{
1588 display_pipe_crc_irq_handler(dev_priv, pipe,
1589 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1590 0, 0, 0, 0);
1591}
1592
1593static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1594 enum pipe pipe)
1595{
1596 display_pipe_crc_irq_handler(dev_priv, pipe,
1597 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1598 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1599 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1600 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1601 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1602}
1603
1604static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1605 enum pipe pipe)
1606{
1607 uint32_t res1, res2;
1608
1609 if (INTEL_GEN(dev_priv) >= 3)
1610 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1611 else
1612 res1 = 0;
1613
1614 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1615 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1616 else
1617 res2 = 0;
1618
1619 display_pipe_crc_irq_handler(dev_priv, pipe,
1620 I915_READ(PIPE_CRC_RES_RED(pipe)),
1621 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1622 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1623 res1, res2);
1624}
1625
1626/* The RPS events need forcewake, so we add them to a work queue and mask their
1627 * IMR bits until the work is done. Other interrupts can be processed without
1628 * the work queue. */
1629static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1630{
1631 if (pm_iir & dev_priv->pm_rps_events) {
1632 spin_lock(&dev_priv->irq_lock);
1633 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1634 if (dev_priv->rps.interrupts_enabled) {
1635 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1636 schedule_work(&dev_priv->rps.work);
1637 }
1638 spin_unlock(&dev_priv->irq_lock);
1639 }
1640
1641 if (INTEL_INFO(dev_priv)->gen >= 8)
1642 return;
1643
1644 if (HAS_VEBOX(dev_priv)) {
1645 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1646 notify_ring(dev_priv->engine[VECS]);
1647
1648 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1649 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1650 }
1651}
1652
1653static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1654{
1655 if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1656 /* Sample the log buffer flush related bits & clear them out now
1657 * itself from the message identity register to minimize the
1658 * probability of losing a flush interrupt, when there are back
1659 * to back flush interrupts.
1660 * There can be a new flush interrupt, for different log buffer
1661 * type (like for ISR), whilst Host is handling one (for DPC).
1662 * Since same bit is used in message register for ISR & DPC, it
1663 * could happen that GuC sets the bit for 2nd interrupt but Host
1664 * clears out the bit on handling the 1st interrupt.
1665 */
1666 u32 msg, flush;
1667
1668 msg = I915_READ(SOFT_SCRATCH(15));
1669 flush = msg & (GUC2HOST_MSG_CRASH_DUMP_POSTED |
1670 GUC2HOST_MSG_FLUSH_LOG_BUFFER);
1671 if (flush) {
1672 /* Clear the message bits that are handled */
1673 I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1674
1675 /* Handle flush interrupt in bottom half */
1676 queue_work(dev_priv->guc.log.flush_wq,
1677 &dev_priv->guc.log.flush_work);
1678
1679 dev_priv->guc.log.flush_interrupt_count++;
1680 } else {
1681 /* Not clearing of unhandled event bits won't result in
1682 * re-triggering of the interrupt.
1683 */
1684 }
1685 }
1686}
1687
1688static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1689 enum pipe pipe)
1690{
1691 bool ret;
1692
1693 ret = drm_handle_vblank(&dev_priv->drm, pipe);
1694 if (ret)
1695 intel_finish_page_flip_mmio(dev_priv, pipe);
1696
1697 return ret;
1698}
1699
1700static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1701 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1702{
1703 int pipe;
1704
1705 spin_lock(&dev_priv->irq_lock);
1706
1707 if (!dev_priv->display_irqs_enabled) {
1708 spin_unlock(&dev_priv->irq_lock);
1709 return;
1710 }
1711
1712 for_each_pipe(dev_priv, pipe) {
1713 i915_reg_t reg;
1714 u32 mask, iir_bit = 0;
1715
1716 /*
1717 * PIPESTAT bits get signalled even when the interrupt is
1718 * disabled with the mask bits, and some of the status bits do
1719 * not generate interrupts at all (like the underrun bit). Hence
1720 * we need to be careful that we only handle what we want to
1721 * handle.
1722 */
1723
1724 /* fifo underruns are filterered in the underrun handler. */
1725 mask = PIPE_FIFO_UNDERRUN_STATUS;
1726
1727 switch (pipe) {
1728 case PIPE_A:
1729 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1730 break;
1731 case PIPE_B:
1732 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1733 break;
1734 case PIPE_C:
1735 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1736 break;
1737 }
1738 if (iir & iir_bit)
1739 mask |= dev_priv->pipestat_irq_mask[pipe];
1740
1741 if (!mask)
1742 continue;
1743
1744 reg = PIPESTAT(pipe);
1745 mask |= PIPESTAT_INT_ENABLE_MASK;
1746 pipe_stats[pipe] = I915_READ(reg) & mask;
1747
1748 /*
1749 * Clear the PIPE*STAT regs before the IIR
1750 */
1751 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1752 PIPESTAT_INT_STATUS_MASK))
1753 I915_WRITE(reg, pipe_stats[pipe]);
1754 }
1755 spin_unlock(&dev_priv->irq_lock);
1756}
1757
1758static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1759 u32 pipe_stats[I915_MAX_PIPES])
1760{
1761 enum pipe pipe;
1762
1763 for_each_pipe(dev_priv, pipe) {
1764 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1765 intel_pipe_handle_vblank(dev_priv, pipe))
1766 intel_check_page_flip(dev_priv, pipe);
1767
1768 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1769 intel_finish_page_flip_cs(dev_priv, pipe);
1770
1771 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1772 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1773
1774 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1775 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1776 }
1777
1778 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1779 gmbus_irq_handler(dev_priv);
1780}
1781
1782static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1783{
1784 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1785
1786 if (hotplug_status)
1787 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1788
1789 return hotplug_status;
1790}
1791
1792static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1793 u32 hotplug_status)
1794{
1795 u32 pin_mask = 0, long_mask = 0;
1796
1797 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1798 IS_CHERRYVIEW(dev_priv)) {
1799 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1800
1801 if (hotplug_trigger) {
1802 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1803 hotplug_trigger, hpd_status_g4x,
1804 i9xx_port_hotplug_long_detect);
1805
1806 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1807 }
1808
1809 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1810 dp_aux_irq_handler(dev_priv);
1811 } else {
1812 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1813
1814 if (hotplug_trigger) {
1815 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1816 hotplug_trigger, hpd_status_i915,
1817 i9xx_port_hotplug_long_detect);
1818 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1819 }
1820 }
1821}
1822
1823static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1824{
1825 struct drm_device *dev = arg;
1826 struct drm_i915_private *dev_priv = to_i915(dev);
1827 irqreturn_t ret = IRQ_NONE;
1828
1829 if (!intel_irqs_enabled(dev_priv))
1830 return IRQ_NONE;
1831
1832 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1833 disable_rpm_wakeref_asserts(dev_priv);
1834
1835 do {
1836 u32 iir, gt_iir, pm_iir;
1837 u32 pipe_stats[I915_MAX_PIPES] = {};
1838 u32 hotplug_status = 0;
1839 u32 ier = 0;
1840
1841 gt_iir = I915_READ(GTIIR);
1842 pm_iir = I915_READ(GEN6_PMIIR);
1843 iir = I915_READ(VLV_IIR);
1844
1845 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1846 break;
1847
1848 ret = IRQ_HANDLED;
1849
1850 /*
1851 * Theory on interrupt generation, based on empirical evidence:
1852 *
1853 * x = ((VLV_IIR & VLV_IER) ||
1854 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1855 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1856 *
1857 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1858 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1859 * guarantee the CPU interrupt will be raised again even if we
1860 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1861 * bits this time around.
1862 */
1863 I915_WRITE(VLV_MASTER_IER, 0);
1864 ier = I915_READ(VLV_IER);
1865 I915_WRITE(VLV_IER, 0);
1866
1867 if (gt_iir)
1868 I915_WRITE(GTIIR, gt_iir);
1869 if (pm_iir)
1870 I915_WRITE(GEN6_PMIIR, pm_iir);
1871
1872 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1873 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1874
1875 /* Call regardless, as some status bits might not be
1876 * signalled in iir */
1877 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1878
1879 /*
1880 * VLV_IIR is single buffered, and reflects the level
1881 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1882 */
1883 if (iir)
1884 I915_WRITE(VLV_IIR, iir);
1885
1886 I915_WRITE(VLV_IER, ier);
1887 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1888 POSTING_READ(VLV_MASTER_IER);
1889
1890 if (gt_iir)
1891 snb_gt_irq_handler(dev_priv, gt_iir);
1892 if (pm_iir)
1893 gen6_rps_irq_handler(dev_priv, pm_iir);
1894
1895 if (hotplug_status)
1896 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1897
1898 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1899 } while (0);
1900
1901 enable_rpm_wakeref_asserts(dev_priv);
1902
1903 return ret;
1904}
1905
1906static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1907{
1908 struct drm_device *dev = arg;
1909 struct drm_i915_private *dev_priv = to_i915(dev);
1910 irqreturn_t ret = IRQ_NONE;
1911
1912 if (!intel_irqs_enabled(dev_priv))
1913 return IRQ_NONE;
1914
1915 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1916 disable_rpm_wakeref_asserts(dev_priv);
1917
1918 do {
1919 u32 master_ctl, iir;
1920 u32 gt_iir[4] = {};
1921 u32 pipe_stats[I915_MAX_PIPES] = {};
1922 u32 hotplug_status = 0;
1923 u32 ier = 0;
1924
1925 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1926 iir = I915_READ(VLV_IIR);
1927
1928 if (master_ctl == 0 && iir == 0)
1929 break;
1930
1931 ret = IRQ_HANDLED;
1932
1933 /*
1934 * Theory on interrupt generation, based on empirical evidence:
1935 *
1936 * x = ((VLV_IIR & VLV_IER) ||
1937 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1938 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1939 *
1940 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1941 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1942 * guarantee the CPU interrupt will be raised again even if we
1943 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1944 * bits this time around.
1945 */
1946 I915_WRITE(GEN8_MASTER_IRQ, 0);
1947 ier = I915_READ(VLV_IER);
1948 I915_WRITE(VLV_IER, 0);
1949
1950 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1951
1952 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1953 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1954
1955 /* Call regardless, as some status bits might not be
1956 * signalled in iir */
1957 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1958
1959 /*
1960 * VLV_IIR is single buffered, and reflects the level
1961 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1962 */
1963 if (iir)
1964 I915_WRITE(VLV_IIR, iir);
1965
1966 I915_WRITE(VLV_IER, ier);
1967 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1968 POSTING_READ(GEN8_MASTER_IRQ);
1969
1970 gen8_gt_irq_handler(dev_priv, gt_iir);
1971
1972 if (hotplug_status)
1973 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1974
1975 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1976 } while (0);
1977
1978 enable_rpm_wakeref_asserts(dev_priv);
1979
1980 return ret;
1981}
1982
1983static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1984 u32 hotplug_trigger,
1985 const u32 hpd[HPD_NUM_PINS])
1986{
1987 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1988
1989 /*
1990 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1991 * unless we touch the hotplug register, even if hotplug_trigger is
1992 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1993 * errors.
1994 */
1995 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1996 if (!hotplug_trigger) {
1997 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1998 PORTD_HOTPLUG_STATUS_MASK |
1999 PORTC_HOTPLUG_STATUS_MASK |
2000 PORTB_HOTPLUG_STATUS_MASK;
2001 dig_hotplug_reg &= ~mask;
2002 }
2003
2004 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2005 if (!hotplug_trigger)
2006 return;
2007
2008 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2009 dig_hotplug_reg, hpd,
2010 pch_port_hotplug_long_detect);
2011
2012 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2013}
2014
2015static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2016{
2017 int pipe;
2018 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2019
2020 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2021
2022 if (pch_iir & SDE_AUDIO_POWER_MASK) {
2023 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2024 SDE_AUDIO_POWER_SHIFT);
2025 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2026 port_name(port));
2027 }
2028
2029 if (pch_iir & SDE_AUX_MASK)
2030 dp_aux_irq_handler(dev_priv);
2031
2032 if (pch_iir & SDE_GMBUS)
2033 gmbus_irq_handler(dev_priv);
2034
2035 if (pch_iir & SDE_AUDIO_HDCP_MASK)
2036 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2037
2038 if (pch_iir & SDE_AUDIO_TRANS_MASK)
2039 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2040
2041 if (pch_iir & SDE_POISON)
2042 DRM_ERROR("PCH poison interrupt\n");
2043
2044 if (pch_iir & SDE_FDI_MASK)
2045 for_each_pipe(dev_priv, pipe)
2046 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2047 pipe_name(pipe),
2048 I915_READ(FDI_RX_IIR(pipe)));
2049
2050 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2051 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2052
2053 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2054 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2055
2056 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2057 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2058
2059 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2060 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2061}
2062
2063static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2064{
2065 u32 err_int = I915_READ(GEN7_ERR_INT);
2066 enum pipe pipe;
2067
2068 if (err_int & ERR_INT_POISON)
2069 DRM_ERROR("Poison interrupt\n");
2070
2071 for_each_pipe(dev_priv, pipe) {
2072 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2073 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2074
2075 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2076 if (IS_IVYBRIDGE(dev_priv))
2077 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2078 else
2079 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2080 }
2081 }
2082
2083 I915_WRITE(GEN7_ERR_INT, err_int);
2084}
2085
2086static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2087{
2088 u32 serr_int = I915_READ(SERR_INT);
2089
2090 if (serr_int & SERR_INT_POISON)
2091 DRM_ERROR("PCH poison interrupt\n");
2092
2093 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2094 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2095
2096 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2097 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2098
2099 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2100 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2101
2102 I915_WRITE(SERR_INT, serr_int);
2103}
2104
2105static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2106{
2107 int pipe;
2108 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2109
2110 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2111
2112 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2113 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2114 SDE_AUDIO_POWER_SHIFT_CPT);
2115 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2116 port_name(port));
2117 }
2118
2119 if (pch_iir & SDE_AUX_MASK_CPT)
2120 dp_aux_irq_handler(dev_priv);
2121
2122 if (pch_iir & SDE_GMBUS_CPT)
2123 gmbus_irq_handler(dev_priv);
2124
2125 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2126 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2127
2128 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2129 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2130
2131 if (pch_iir & SDE_FDI_MASK_CPT)
2132 for_each_pipe(dev_priv, pipe)
2133 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2134 pipe_name(pipe),
2135 I915_READ(FDI_RX_IIR(pipe)));
2136
2137 if (pch_iir & SDE_ERROR_CPT)
2138 cpt_serr_int_handler(dev_priv);
2139}
2140
2141static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2142{
2143 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2144 ~SDE_PORTE_HOTPLUG_SPT;
2145 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2146 u32 pin_mask = 0, long_mask = 0;
2147
2148 if (hotplug_trigger) {
2149 u32 dig_hotplug_reg;
2150
2151 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2152 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2153
2154 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2155 dig_hotplug_reg, hpd_spt,
2156 spt_port_hotplug_long_detect);
2157 }
2158
2159 if (hotplug2_trigger) {
2160 u32 dig_hotplug_reg;
2161
2162 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2163 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2164
2165 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2166 dig_hotplug_reg, hpd_spt,
2167 spt_port_hotplug2_long_detect);
2168 }
2169
2170 if (pin_mask)
2171 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2172
2173 if (pch_iir & SDE_GMBUS_CPT)
2174 gmbus_irq_handler(dev_priv);
2175}
2176
2177static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2178 u32 hotplug_trigger,
2179 const u32 hpd[HPD_NUM_PINS])
2180{
2181 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2182
2183 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2184 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2185
2186 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2187 dig_hotplug_reg, hpd,
2188 ilk_port_hotplug_long_detect);
2189
2190 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2191}
2192
2193static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2194 u32 de_iir)
2195{
2196 enum pipe pipe;
2197 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2198
2199 if (hotplug_trigger)
2200 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2201
2202 if (de_iir & DE_AUX_CHANNEL_A)
2203 dp_aux_irq_handler(dev_priv);
2204
2205 if (de_iir & DE_GSE)
2206 intel_opregion_asle_intr(dev_priv);
2207
2208 if (de_iir & DE_POISON)
2209 DRM_ERROR("Poison interrupt\n");
2210
2211 for_each_pipe(dev_priv, pipe) {
2212 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2213 intel_pipe_handle_vblank(dev_priv, pipe))
2214 intel_check_page_flip(dev_priv, pipe);
2215
2216 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2217 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2218
2219 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2220 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2221
2222 /* plane/pipes map 1:1 on ilk+ */
2223 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2224 intel_finish_page_flip_cs(dev_priv, pipe);
2225 }
2226
2227 /* check event from PCH */
2228 if (de_iir & DE_PCH_EVENT) {
2229 u32 pch_iir = I915_READ(SDEIIR);
2230
2231 if (HAS_PCH_CPT(dev_priv))
2232 cpt_irq_handler(dev_priv, pch_iir);
2233 else
2234 ibx_irq_handler(dev_priv, pch_iir);
2235
2236 /* should clear PCH hotplug event before clear CPU irq */
2237 I915_WRITE(SDEIIR, pch_iir);
2238 }
2239
2240 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2241 ironlake_rps_change_irq_handler(dev_priv);
2242}
2243
2244static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2245 u32 de_iir)
2246{
2247 enum pipe pipe;
2248 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2249
2250 if (hotplug_trigger)
2251 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2252
2253 if (de_iir & DE_ERR_INT_IVB)
2254 ivb_err_int_handler(dev_priv);
2255
2256 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2257 dp_aux_irq_handler(dev_priv);
2258
2259 if (de_iir & DE_GSE_IVB)
2260 intel_opregion_asle_intr(dev_priv);
2261
2262 for_each_pipe(dev_priv, pipe) {
2263 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2264 intel_pipe_handle_vblank(dev_priv, pipe))
2265 intel_check_page_flip(dev_priv, pipe);
2266
2267 /* plane/pipes map 1:1 on ilk+ */
2268 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2269 intel_finish_page_flip_cs(dev_priv, pipe);
2270 }
2271
2272 /* check event from PCH */
2273 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2274 u32 pch_iir = I915_READ(SDEIIR);
2275
2276 cpt_irq_handler(dev_priv, pch_iir);
2277
2278 /* clear PCH hotplug event before clear CPU irq */
2279 I915_WRITE(SDEIIR, pch_iir);
2280 }
2281}
2282
2283/*
2284 * To handle irqs with the minimum potential races with fresh interrupts, we:
2285 * 1 - Disable Master Interrupt Control.
2286 * 2 - Find the source(s) of the interrupt.
2287 * 3 - Clear the Interrupt Identity bits (IIR).
2288 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2289 * 5 - Re-enable Master Interrupt Control.
2290 */
2291static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2292{
2293 struct drm_device *dev = arg;
2294 struct drm_i915_private *dev_priv = to_i915(dev);
2295 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2296 irqreturn_t ret = IRQ_NONE;
2297
2298 if (!intel_irqs_enabled(dev_priv))
2299 return IRQ_NONE;
2300
2301 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2302 disable_rpm_wakeref_asserts(dev_priv);
2303
2304 /* disable master interrupt before clearing iir */
2305 de_ier = I915_READ(DEIER);
2306 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2307 POSTING_READ(DEIER);
2308
2309 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2310 * interrupts will will be stored on its back queue, and then we'll be
2311 * able to process them after we restore SDEIER (as soon as we restore
2312 * it, we'll get an interrupt if SDEIIR still has something to process
2313 * due to its back queue). */
2314 if (!HAS_PCH_NOP(dev_priv)) {
2315 sde_ier = I915_READ(SDEIER);
2316 I915_WRITE(SDEIER, 0);
2317 POSTING_READ(SDEIER);
2318 }
2319
2320 /* Find, clear, then process each source of interrupt */
2321
2322 gt_iir = I915_READ(GTIIR);
2323 if (gt_iir) {
2324 I915_WRITE(GTIIR, gt_iir);
2325 ret = IRQ_HANDLED;
2326 if (INTEL_GEN(dev_priv) >= 6)
2327 snb_gt_irq_handler(dev_priv, gt_iir);
2328 else
2329 ilk_gt_irq_handler(dev_priv, gt_iir);
2330 }
2331
2332 de_iir = I915_READ(DEIIR);
2333 if (de_iir) {
2334 I915_WRITE(DEIIR, de_iir);
2335 ret = IRQ_HANDLED;
2336 if (INTEL_GEN(dev_priv) >= 7)
2337 ivb_display_irq_handler(dev_priv, de_iir);
2338 else
2339 ilk_display_irq_handler(dev_priv, de_iir);
2340 }
2341
2342 if (INTEL_GEN(dev_priv) >= 6) {
2343 u32 pm_iir = I915_READ(GEN6_PMIIR);
2344 if (pm_iir) {
2345 I915_WRITE(GEN6_PMIIR, pm_iir);
2346 ret = IRQ_HANDLED;
2347 gen6_rps_irq_handler(dev_priv, pm_iir);
2348 }
2349 }
2350
2351 I915_WRITE(DEIER, de_ier);
2352 POSTING_READ(DEIER);
2353 if (!HAS_PCH_NOP(dev_priv)) {
2354 I915_WRITE(SDEIER, sde_ier);
2355 POSTING_READ(SDEIER);
2356 }
2357
2358 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2359 enable_rpm_wakeref_asserts(dev_priv);
2360
2361 return ret;
2362}
2363
2364static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2365 u32 hotplug_trigger,
2366 const u32 hpd[HPD_NUM_PINS])
2367{
2368 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2369
2370 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2371 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2372
2373 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2374 dig_hotplug_reg, hpd,
2375 bxt_port_hotplug_long_detect);
2376
2377 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2378}
2379
2380static irqreturn_t
2381gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2382{
2383 irqreturn_t ret = IRQ_NONE;
2384 u32 iir;
2385 enum pipe pipe;
2386
2387 if (master_ctl & GEN8_DE_MISC_IRQ) {
2388 iir = I915_READ(GEN8_DE_MISC_IIR);
2389 if (iir) {
2390 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2391 ret = IRQ_HANDLED;
2392 if (iir & GEN8_DE_MISC_GSE)
2393 intel_opregion_asle_intr(dev_priv);
2394 else
2395 DRM_ERROR("Unexpected DE Misc interrupt\n");
2396 }
2397 else
2398 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2399 }
2400
2401 if (master_ctl & GEN8_DE_PORT_IRQ) {
2402 iir = I915_READ(GEN8_DE_PORT_IIR);
2403 if (iir) {
2404 u32 tmp_mask;
2405 bool found = false;
2406
2407 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2408 ret = IRQ_HANDLED;
2409
2410 tmp_mask = GEN8_AUX_CHANNEL_A;
2411 if (INTEL_INFO(dev_priv)->gen >= 9)
2412 tmp_mask |= GEN9_AUX_CHANNEL_B |
2413 GEN9_AUX_CHANNEL_C |
2414 GEN9_AUX_CHANNEL_D;
2415
2416 if (iir & tmp_mask) {
2417 dp_aux_irq_handler(dev_priv);
2418 found = true;
2419 }
2420
2421 if (IS_BROXTON(dev_priv)) {
2422 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2423 if (tmp_mask) {
2424 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2425 hpd_bxt);
2426 found = true;
2427 }
2428 } else if (IS_BROADWELL(dev_priv)) {
2429 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2430 if (tmp_mask) {
2431 ilk_hpd_irq_handler(dev_priv,
2432 tmp_mask, hpd_bdw);
2433 found = true;
2434 }
2435 }
2436
2437 if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2438 gmbus_irq_handler(dev_priv);
2439 found = true;
2440 }
2441
2442 if (!found)
2443 DRM_ERROR("Unexpected DE Port interrupt\n");
2444 }
2445 else
2446 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2447 }
2448
2449 for_each_pipe(dev_priv, pipe) {
2450 u32 flip_done, fault_errors;
2451
2452 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2453 continue;
2454
2455 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2456 if (!iir) {
2457 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2458 continue;
2459 }
2460
2461 ret = IRQ_HANDLED;
2462 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2463
2464 if (iir & GEN8_PIPE_VBLANK &&
2465 intel_pipe_handle_vblank(dev_priv, pipe))
2466 intel_check_page_flip(dev_priv, pipe);
2467
2468 flip_done = iir;
2469 if (INTEL_INFO(dev_priv)->gen >= 9)
2470 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2471 else
2472 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2473
2474 if (flip_done)
2475 intel_finish_page_flip_cs(dev_priv, pipe);
2476
2477 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2478 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2479
2480 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2481 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2482
2483 fault_errors = iir;
2484 if (INTEL_INFO(dev_priv)->gen >= 9)
2485 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2486 else
2487 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2488
2489 if (fault_errors)
2490 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2491 pipe_name(pipe),
2492 fault_errors);
2493 }
2494
2495 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2496 master_ctl & GEN8_DE_PCH_IRQ) {
2497 /*
2498 * FIXME(BDW): Assume for now that the new interrupt handling
2499 * scheme also closed the SDE interrupt handling race we've seen
2500 * on older pch-split platforms. But this needs testing.
2501 */
2502 iir = I915_READ(SDEIIR);
2503 if (iir) {
2504 I915_WRITE(SDEIIR, iir);
2505 ret = IRQ_HANDLED;
2506
2507 if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2508 spt_irq_handler(dev_priv, iir);
2509 else
2510 cpt_irq_handler(dev_priv, iir);
2511 } else {
2512 /*
2513 * Like on previous PCH there seems to be something
2514 * fishy going on with forwarding PCH interrupts.
2515 */
2516 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2517 }
2518 }
2519
2520 return ret;
2521}
2522
2523static irqreturn_t gen8_irq_handler(int irq, void *arg)
2524{
2525 struct drm_device *dev = arg;
2526 struct drm_i915_private *dev_priv = to_i915(dev);
2527 u32 master_ctl;
2528 u32 gt_iir[4] = {};
2529 irqreturn_t ret;
2530
2531 if (!intel_irqs_enabled(dev_priv))
2532 return IRQ_NONE;
2533
2534 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2535 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2536 if (!master_ctl)
2537 return IRQ_NONE;
2538
2539 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2540
2541 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2542 disable_rpm_wakeref_asserts(dev_priv);
2543
2544 /* Find, clear, then process each source of interrupt */
2545 ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2546 gen8_gt_irq_handler(dev_priv, gt_iir);
2547 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2548
2549 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2550 POSTING_READ_FW(GEN8_MASTER_IRQ);
2551
2552 enable_rpm_wakeref_asserts(dev_priv);
2553
2554 return ret;
2555}
2556
2557static void i915_error_wake_up(struct drm_i915_private *dev_priv)
2558{
2559 /*
2560 * Notify all waiters for GPU completion events that reset state has
2561 * been changed, and that they need to restart their wait after
2562 * checking for potential errors (and bail out to drop locks if there is
2563 * a gpu reset pending so that i915_error_work_func can acquire them).
2564 */
2565
2566 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2567 wake_up_all(&dev_priv->gpu_error.wait_queue);
2568
2569 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2570 wake_up_all(&dev_priv->pending_flip_queue);
2571}
2572
2573/**
2574 * i915_reset_and_wakeup - do process context error handling work
2575 * @dev_priv: i915 device private
2576 *
2577 * Fire an error uevent so userspace can see that a hang or error
2578 * was detected.
2579 */
2580static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2581{
2582 struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2583 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2584 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2585 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2586
2587 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2588
2589 DRM_DEBUG_DRIVER("resetting chip\n");
2590 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2591
2592 /*
2593 * In most cases it's guaranteed that we get here with an RPM
2594 * reference held, for example because there is a pending GPU
2595 * request that won't finish until the reset is done. This
2596 * isn't the case at least when we get here by doing a
2597 * simulated reset via debugs, so get an RPM reference.
2598 */
2599 intel_runtime_pm_get(dev_priv);
2600 intel_prepare_reset(dev_priv);
2601
2602 do {
2603 /*
2604 * All state reset _must_ be completed before we update the
2605 * reset counter, for otherwise waiters might miss the reset
2606 * pending state and not properly drop locks, resulting in
2607 * deadlocks with the reset work.
2608 */
2609 if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2610 i915_reset(dev_priv);
2611 mutex_unlock(&dev_priv->drm.struct_mutex);
2612 }
2613
2614 /* We need to wait for anyone holding the lock to wakeup */
2615 } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2616 I915_RESET_IN_PROGRESS,
2617 TASK_UNINTERRUPTIBLE,
2618 HZ));
2619
2620 intel_finish_reset(dev_priv);
2621 intel_runtime_pm_put(dev_priv);
2622
2623 if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2624 kobject_uevent_env(kobj,
2625 KOBJ_CHANGE, reset_done_event);
2626
2627 /*
2628 * Note: The wake_up also serves as a memory barrier so that
2629 * waiters see the updated value of the dev_priv->gpu_error.
2630 */
2631 wake_up_all(&dev_priv->gpu_error.reset_queue);
2632}
2633
2634static inline void
2635i915_err_print_instdone(struct drm_i915_private *dev_priv,
2636 struct intel_instdone *instdone)
2637{
2638 int slice;
2639 int subslice;
2640
2641 pr_err(" INSTDONE: 0x%08x\n", instdone->instdone);
2642
2643 if (INTEL_GEN(dev_priv) <= 3)
2644 return;
2645
2646 pr_err(" SC_INSTDONE: 0x%08x\n", instdone->slice_common);
2647
2648 if (INTEL_GEN(dev_priv) <= 6)
2649 return;
2650
2651 for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2652 pr_err(" SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
2653 slice, subslice, instdone->sampler[slice][subslice]);
2654
2655 for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2656 pr_err(" ROW_INSTDONE[%d][%d]: 0x%08x\n",
2657 slice, subslice, instdone->row[slice][subslice]);
2658}
2659
2660static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2661{
2662 u32 eir;
2663
2664 if (!IS_GEN2(dev_priv))
2665 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2666
2667 if (INTEL_GEN(dev_priv) < 4)
2668 I915_WRITE(IPEIR, I915_READ(IPEIR));
2669 else
2670 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2671
2672 I915_WRITE(EIR, I915_READ(EIR));
2673 eir = I915_READ(EIR);
2674 if (eir) {
2675 /*
2676 * some errors might have become stuck,
2677 * mask them.
2678 */
2679 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2680 I915_WRITE(EMR, I915_READ(EMR) | eir);
2681 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2682 }
2683}
2684
2685/**
2686 * i915_handle_error - handle a gpu error
2687 * @dev_priv: i915 device private
2688 * @engine_mask: mask representing engines that are hung
2689 * Do some basic checking of register state at error time and
2690 * dump it to the syslog. Also call i915_capture_error_state() to make
2691 * sure we get a record and make it available in debugfs. Fire a uevent
2692 * so userspace knows something bad happened (should trigger collection
2693 * of a ring dump etc.).
2694 * @fmt: Error message format string
2695 */
2696void i915_handle_error(struct drm_i915_private *dev_priv,
2697 u32 engine_mask,
2698 const char *fmt, ...)
2699{
2700 va_list args;
2701 char error_msg[80];
2702
2703 va_start(args, fmt);
2704 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2705 va_end(args);
2706
2707 i915_capture_error_state(dev_priv, engine_mask, error_msg);
2708 i915_clear_error_registers(dev_priv);
2709
2710 if (!engine_mask)
2711 return;
2712
2713 if (test_and_set_bit(I915_RESET_IN_PROGRESS,
2714 &dev_priv->gpu_error.flags))
2715 return;
2716
2717 /*
2718 * Wakeup waiting processes so that the reset function
2719 * i915_reset_and_wakeup doesn't deadlock trying to grab
2720 * various locks. By bumping the reset counter first, the woken
2721 * processes will see a reset in progress and back off,
2722 * releasing their locks and then wait for the reset completion.
2723 * We must do this for _all_ gpu waiters that might hold locks
2724 * that the reset work needs to acquire.
2725 *
2726 * Note: The wake_up also provides a memory barrier to ensure that the
2727 * waiters see the updated value of the reset flags.
2728 */
2729 i915_error_wake_up(dev_priv);
2730
2731 i915_reset_and_wakeup(dev_priv);
2732}
2733
2734/* Called from drm generic code, passed 'crtc' which
2735 * we use as a pipe index
2736 */
2737static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2738{
2739 struct drm_i915_private *dev_priv = to_i915(dev);
2740 unsigned long irqflags;
2741
2742 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2743 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2744 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2745
2746 return 0;
2747}
2748
2749static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2750{
2751 struct drm_i915_private *dev_priv = to_i915(dev);
2752 unsigned long irqflags;
2753
2754 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2755 i915_enable_pipestat(dev_priv, pipe,
2756 PIPE_START_VBLANK_INTERRUPT_STATUS);
2757 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2758
2759 return 0;
2760}
2761
2762static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2763{
2764 struct drm_i915_private *dev_priv = to_i915(dev);
2765 unsigned long irqflags;
2766 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2767 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2768
2769 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2770 ilk_enable_display_irq(dev_priv, bit);
2771 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2772
2773 return 0;
2774}
2775
2776static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2777{
2778 struct drm_i915_private *dev_priv = to_i915(dev);
2779 unsigned long irqflags;
2780
2781 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2782 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2783 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2784
2785 return 0;
2786}
2787
2788/* Called from drm generic code, passed 'crtc' which
2789 * we use as a pipe index
2790 */
2791static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2792{
2793 struct drm_i915_private *dev_priv = to_i915(dev);
2794 unsigned long irqflags;
2795
2796 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2797 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2798 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2799}
2800
2801static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2802{
2803 struct drm_i915_private *dev_priv = to_i915(dev);
2804 unsigned long irqflags;
2805
2806 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2807 i915_disable_pipestat(dev_priv, pipe,
2808 PIPE_START_VBLANK_INTERRUPT_STATUS);
2809 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2810}
2811
2812static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2813{
2814 struct drm_i915_private *dev_priv = to_i915(dev);
2815 unsigned long irqflags;
2816 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2817 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2818
2819 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2820 ilk_disable_display_irq(dev_priv, bit);
2821 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2822}
2823
2824static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2825{
2826 struct drm_i915_private *dev_priv = to_i915(dev);
2827 unsigned long irqflags;
2828
2829 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2830 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2831 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2832}
2833
2834static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2835{
2836 if (HAS_PCH_NOP(dev_priv))
2837 return;
2838
2839 GEN5_IRQ_RESET(SDE);
2840
2841 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2842 I915_WRITE(SERR_INT, 0xffffffff);
2843}
2844
2845/*
2846 * SDEIER is also touched by the interrupt handler to work around missed PCH
2847 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2848 * instead we unconditionally enable all PCH interrupt sources here, but then
2849 * only unmask them as needed with SDEIMR.
2850 *
2851 * This function needs to be called before interrupts are enabled.
2852 */
2853static void ibx_irq_pre_postinstall(struct drm_device *dev)
2854{
2855 struct drm_i915_private *dev_priv = to_i915(dev);
2856
2857 if (HAS_PCH_NOP(dev_priv))
2858 return;
2859
2860 WARN_ON(I915_READ(SDEIER) != 0);
2861 I915_WRITE(SDEIER, 0xffffffff);
2862 POSTING_READ(SDEIER);
2863}
2864
2865static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2866{
2867 GEN5_IRQ_RESET(GT);
2868 if (INTEL_GEN(dev_priv) >= 6)
2869 GEN5_IRQ_RESET(GEN6_PM);
2870}
2871
2872static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2873{
2874 enum pipe pipe;
2875
2876 if (IS_CHERRYVIEW(dev_priv))
2877 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2878 else
2879 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2880
2881 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2882 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2883
2884 for_each_pipe(dev_priv, pipe) {
2885 I915_WRITE(PIPESTAT(pipe),
2886 PIPE_FIFO_UNDERRUN_STATUS |
2887 PIPESTAT_INT_STATUS_MASK);
2888 dev_priv->pipestat_irq_mask[pipe] = 0;
2889 }
2890
2891 GEN5_IRQ_RESET(VLV_);
2892 dev_priv->irq_mask = ~0;
2893}
2894
2895static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2896{
2897 u32 pipestat_mask;
2898 u32 enable_mask;
2899 enum pipe pipe;
2900
2901 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2902 PIPE_CRC_DONE_INTERRUPT_STATUS;
2903
2904 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2905 for_each_pipe(dev_priv, pipe)
2906 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2907
2908 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2909 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2910 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2911 if (IS_CHERRYVIEW(dev_priv))
2912 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2913
2914 WARN_ON(dev_priv->irq_mask != ~0);
2915
2916 dev_priv->irq_mask = ~enable_mask;
2917
2918 GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2919}
2920
2921/* drm_dma.h hooks
2922*/
2923static void ironlake_irq_reset(struct drm_device *dev)
2924{
2925 struct drm_i915_private *dev_priv = to_i915(dev);
2926
2927 I915_WRITE(HWSTAM, 0xffffffff);
2928
2929 GEN5_IRQ_RESET(DE);
2930 if (IS_GEN7(dev_priv))
2931 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2932
2933 gen5_gt_irq_reset(dev_priv);
2934
2935 ibx_irq_reset(dev_priv);
2936}
2937
2938static void valleyview_irq_preinstall(struct drm_device *dev)
2939{
2940 struct drm_i915_private *dev_priv = to_i915(dev);
2941
2942 I915_WRITE(VLV_MASTER_IER, 0);
2943 POSTING_READ(VLV_MASTER_IER);
2944
2945 gen5_gt_irq_reset(dev_priv);
2946
2947 spin_lock_irq(&dev_priv->irq_lock);
2948 if (dev_priv->display_irqs_enabled)
2949 vlv_display_irq_reset(dev_priv);
2950 spin_unlock_irq(&dev_priv->irq_lock);
2951}
2952
2953static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
2954{
2955 GEN8_IRQ_RESET_NDX(GT, 0);
2956 GEN8_IRQ_RESET_NDX(GT, 1);
2957 GEN8_IRQ_RESET_NDX(GT, 2);
2958 GEN8_IRQ_RESET_NDX(GT, 3);
2959}
2960
2961static void gen8_irq_reset(struct drm_device *dev)
2962{
2963 struct drm_i915_private *dev_priv = to_i915(dev);
2964 int pipe;
2965
2966 I915_WRITE(GEN8_MASTER_IRQ, 0);
2967 POSTING_READ(GEN8_MASTER_IRQ);
2968
2969 gen8_gt_irq_reset(dev_priv);
2970
2971 for_each_pipe(dev_priv, pipe)
2972 if (intel_display_power_is_enabled(dev_priv,
2973 POWER_DOMAIN_PIPE(pipe)))
2974 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
2975
2976 GEN5_IRQ_RESET(GEN8_DE_PORT_);
2977 GEN5_IRQ_RESET(GEN8_DE_MISC_);
2978 GEN5_IRQ_RESET(GEN8_PCU_);
2979
2980 if (HAS_PCH_SPLIT(dev_priv))
2981 ibx_irq_reset(dev_priv);
2982}
2983
2984void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2985 unsigned int pipe_mask)
2986{
2987 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2988 enum pipe pipe;
2989
2990 spin_lock_irq(&dev_priv->irq_lock);
2991 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2992 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
2993 dev_priv->de_irq_mask[pipe],
2994 ~dev_priv->de_irq_mask[pipe] | extra_ier);
2995 spin_unlock_irq(&dev_priv->irq_lock);
2996}
2997
2998void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
2999 unsigned int pipe_mask)
3000{
3001 enum pipe pipe;
3002
3003 spin_lock_irq(&dev_priv->irq_lock);
3004 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3005 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3006 spin_unlock_irq(&dev_priv->irq_lock);
3007
3008 /* make sure we're done processing display irqs */
3009 synchronize_irq(dev_priv->drm.irq);
3010}
3011
3012static void cherryview_irq_preinstall(struct drm_device *dev)
3013{
3014 struct drm_i915_private *dev_priv = to_i915(dev);
3015
3016 I915_WRITE(GEN8_MASTER_IRQ, 0);
3017 POSTING_READ(GEN8_MASTER_IRQ);
3018
3019 gen8_gt_irq_reset(dev_priv);
3020
3021 GEN5_IRQ_RESET(GEN8_PCU_);
3022
3023 spin_lock_irq(&dev_priv->irq_lock);
3024 if (dev_priv->display_irqs_enabled)
3025 vlv_display_irq_reset(dev_priv);
3026 spin_unlock_irq(&dev_priv->irq_lock);
3027}
3028
3029static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3030 const u32 hpd[HPD_NUM_PINS])
3031{
3032 struct intel_encoder *encoder;
3033 u32 enabled_irqs = 0;
3034
3035 for_each_intel_encoder(&dev_priv->drm, encoder)
3036 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3037 enabled_irqs |= hpd[encoder->hpd_pin];
3038
3039 return enabled_irqs;
3040}
3041
3042static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3043{
3044 u32 hotplug_irqs, hotplug, enabled_irqs;
3045
3046 if (HAS_PCH_IBX(dev_priv)) {
3047 hotplug_irqs = SDE_HOTPLUG_MASK;
3048 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3049 } else {
3050 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3051 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3052 }
3053
3054 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3055
3056 /*
3057 * Enable digital hotplug on the PCH, and configure the DP short pulse
3058 * duration to 2ms (which is the minimum in the Display Port spec).
3059 * The pulse duration bits are reserved on LPT+.
3060 */
3061 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3062 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3063 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3064 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3065 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3066 /*
3067 * When CPU and PCH are on the same package, port A
3068 * HPD must be enabled in both north and south.
3069 */
3070 if (HAS_PCH_LPT_LP(dev_priv))
3071 hotplug |= PORTA_HOTPLUG_ENABLE;
3072 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3073}
3074
3075static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3076{
3077 u32 hotplug;
3078
3079 /* Enable digital hotplug on the PCH */
3080 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3081 hotplug |= PORTA_HOTPLUG_ENABLE |
3082 PORTB_HOTPLUG_ENABLE |
3083 PORTC_HOTPLUG_ENABLE |
3084 PORTD_HOTPLUG_ENABLE;
3085 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3086
3087 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3088 hotplug |= PORTE_HOTPLUG_ENABLE;
3089 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3090}
3091
3092static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3093{
3094 u32 hotplug_irqs, enabled_irqs;
3095
3096 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3097 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3098
3099 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3100
3101 spt_hpd_detection_setup(dev_priv);
3102}
3103
3104static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3105{
3106 u32 hotplug_irqs, hotplug, enabled_irqs;
3107
3108 if (INTEL_GEN(dev_priv) >= 8) {
3109 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3110 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3111
3112 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3113 } else if (INTEL_GEN(dev_priv) >= 7) {
3114 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3115 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3116
3117 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3118 } else {
3119 hotplug_irqs = DE_DP_A_HOTPLUG;
3120 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3121
3122 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3123 }
3124
3125 /*
3126 * Enable digital hotplug on the CPU, and configure the DP short pulse
3127 * duration to 2ms (which is the minimum in the Display Port spec)
3128 * The pulse duration bits are reserved on HSW+.
3129 */
3130 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3131 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3132 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3133 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3134
3135 ibx_hpd_irq_setup(dev_priv);
3136}
3137
3138static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3139 u32 enabled_irqs)
3140{
3141 u32 hotplug;
3142
3143 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3144 hotplug |= PORTA_HOTPLUG_ENABLE |
3145 PORTB_HOTPLUG_ENABLE |
3146 PORTC_HOTPLUG_ENABLE;
3147
3148 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3149 hotplug, enabled_irqs);
3150 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3151
3152 /*
3153 * For BXT invert bit has to be set based on AOB design
3154 * for HPD detection logic, update it based on VBT fields.
3155 */
3156 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3157 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3158 hotplug |= BXT_DDIA_HPD_INVERT;
3159 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3160 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3161 hotplug |= BXT_DDIB_HPD_INVERT;
3162 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3163 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3164 hotplug |= BXT_DDIC_HPD_INVERT;
3165
3166 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3167}
3168
3169static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3170{
3171 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3172}
3173
3174static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3175{
3176 u32 hotplug_irqs, enabled_irqs;
3177
3178 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3179 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3180
3181 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3182
3183 __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3184}
3185
3186static void ibx_irq_postinstall(struct drm_device *dev)
3187{
3188 struct drm_i915_private *dev_priv = to_i915(dev);
3189 u32 mask;
3190
3191 if (HAS_PCH_NOP(dev_priv))
3192 return;
3193
3194 if (HAS_PCH_IBX(dev_priv))
3195 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3196 else
3197 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3198
3199 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3200 I915_WRITE(SDEIMR, ~mask);
3201
3202 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3203 HAS_PCH_LPT(dev_priv))
3204 ; /* TODO: Enable HPD detection on older PCH platforms too */
3205 else
3206 spt_hpd_detection_setup(dev_priv);
3207}
3208
3209static void gen5_gt_irq_postinstall(struct drm_device *dev)
3210{
3211 struct drm_i915_private *dev_priv = to_i915(dev);
3212 u32 pm_irqs, gt_irqs;
3213
3214 pm_irqs = gt_irqs = 0;
3215
3216 dev_priv->gt_irq_mask = ~0;
3217 if (HAS_L3_DPF(dev_priv)) {
3218 /* L3 parity interrupt is always unmasked. */
3219 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3220 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3221 }
3222
3223 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3224 if (IS_GEN5(dev_priv)) {
3225 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3226 } else {
3227 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3228 }
3229
3230 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3231
3232 if (INTEL_GEN(dev_priv) >= 6) {
3233 /*
3234 * RPS interrupts will get enabled/disabled on demand when RPS
3235 * itself is enabled/disabled.
3236 */
3237 if (HAS_VEBOX(dev_priv)) {
3238 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3239 dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3240 }
3241
3242 dev_priv->pm_imr = 0xffffffff;
3243 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3244 }
3245}
3246
3247static int ironlake_irq_postinstall(struct drm_device *dev)
3248{
3249 struct drm_i915_private *dev_priv = to_i915(dev);
3250 u32 display_mask, extra_mask;
3251
3252 if (INTEL_GEN(dev_priv) >= 7) {
3253 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3254 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3255 DE_PLANEB_FLIP_DONE_IVB |
3256 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3257 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3258 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3259 DE_DP_A_HOTPLUG_IVB);
3260 } else {
3261 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3262 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3263 DE_AUX_CHANNEL_A |
3264 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3265 DE_POISON);
3266 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3267 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3268 DE_DP_A_HOTPLUG);
3269 }
3270
3271 dev_priv->irq_mask = ~display_mask;
3272
3273 I915_WRITE(HWSTAM, 0xeffe);
3274
3275 ibx_irq_pre_postinstall(dev);
3276
3277 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3278
3279 gen5_gt_irq_postinstall(dev);
3280
3281 ibx_irq_postinstall(dev);
3282
3283 if (IS_IRONLAKE_M(dev_priv)) {
3284 /* Enable PCU event interrupts
3285 *
3286 * spinlocking not required here for correctness since interrupt
3287 * setup is guaranteed to run in single-threaded context. But we
3288 * need it to make the assert_spin_locked happy. */
3289 spin_lock_irq(&dev_priv->irq_lock);
3290 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3291 spin_unlock_irq(&dev_priv->irq_lock);
3292 }
3293
3294 return 0;
3295}
3296
3297void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3298{
3299 assert_spin_locked(&dev_priv->irq_lock);
3300
3301 if (dev_priv->display_irqs_enabled)
3302 return;
3303
3304 dev_priv->display_irqs_enabled = true;
3305
3306 if (intel_irqs_enabled(dev_priv)) {
3307 vlv_display_irq_reset(dev_priv);
3308 vlv_display_irq_postinstall(dev_priv);
3309 }
3310}
3311
3312void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3313{
3314 assert_spin_locked(&dev_priv->irq_lock);
3315
3316 if (!dev_priv->display_irqs_enabled)
3317 return;
3318
3319 dev_priv->display_irqs_enabled = false;
3320
3321 if (intel_irqs_enabled(dev_priv))
3322 vlv_display_irq_reset(dev_priv);
3323}
3324
3325
3326static int valleyview_irq_postinstall(struct drm_device *dev)
3327{
3328 struct drm_i915_private *dev_priv = to_i915(dev);
3329
3330 gen5_gt_irq_postinstall(dev);
3331
3332 spin_lock_irq(&dev_priv->irq_lock);
3333 if (dev_priv->display_irqs_enabled)
3334 vlv_display_irq_postinstall(dev_priv);
3335 spin_unlock_irq(&dev_priv->irq_lock);
3336
3337 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3338 POSTING_READ(VLV_MASTER_IER);
3339
3340 return 0;
3341}
3342
3343static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3344{
3345 /* These are interrupts we'll toggle with the ring mask register */
3346 uint32_t gt_interrupts[] = {
3347 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3348 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3349 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3350 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3351 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3352 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3353 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3354 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3355 0,
3356 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3357 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3358 };
3359
3360 if (HAS_L3_DPF(dev_priv))
3361 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3362
3363 dev_priv->pm_ier = 0x0;
3364 dev_priv->pm_imr = ~dev_priv->pm_ier;
3365 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3366 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3367 /*
3368 * RPS interrupts will get enabled/disabled on demand when RPS itself
3369 * is enabled/disabled. Same wil be the case for GuC interrupts.
3370 */
3371 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3372 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3373}
3374
3375static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3376{
3377 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3378 uint32_t de_pipe_enables;
3379 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3380 u32 de_port_enables;
3381 u32 de_misc_masked = GEN8_DE_MISC_GSE;
3382 enum pipe pipe;
3383
3384 if (INTEL_INFO(dev_priv)->gen >= 9) {
3385 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3386 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3387 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3388 GEN9_AUX_CHANNEL_D;
3389 if (IS_BROXTON(dev_priv))
3390 de_port_masked |= BXT_DE_PORT_GMBUS;
3391 } else {
3392 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3393 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3394 }
3395
3396 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3397 GEN8_PIPE_FIFO_UNDERRUN;
3398
3399 de_port_enables = de_port_masked;
3400 if (IS_BROXTON(dev_priv))
3401 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3402 else if (IS_BROADWELL(dev_priv))
3403 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3404
3405 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3406 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3407 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3408
3409 for_each_pipe(dev_priv, pipe)
3410 if (intel_display_power_is_enabled(dev_priv,
3411 POWER_DOMAIN_PIPE(pipe)))
3412 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3413 dev_priv->de_irq_mask[pipe],
3414 de_pipe_enables);
3415
3416 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3417 GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3418
3419 if (IS_BROXTON(dev_priv))
3420 bxt_hpd_detection_setup(dev_priv);
3421}
3422
3423static int gen8_irq_postinstall(struct drm_device *dev)
3424{
3425 struct drm_i915_private *dev_priv = to_i915(dev);
3426
3427 if (HAS_PCH_SPLIT(dev_priv))
3428 ibx_irq_pre_postinstall(dev);
3429
3430 gen8_gt_irq_postinstall(dev_priv);
3431 gen8_de_irq_postinstall(dev_priv);
3432
3433 if (HAS_PCH_SPLIT(dev_priv))
3434 ibx_irq_postinstall(dev);
3435
3436 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3437 POSTING_READ(GEN8_MASTER_IRQ);
3438
3439 return 0;
3440}
3441
3442static int cherryview_irq_postinstall(struct drm_device *dev)
3443{
3444 struct drm_i915_private *dev_priv = to_i915(dev);
3445
3446 gen8_gt_irq_postinstall(dev_priv);
3447
3448 spin_lock_irq(&dev_priv->irq_lock);
3449 if (dev_priv->display_irqs_enabled)
3450 vlv_display_irq_postinstall(dev_priv);
3451 spin_unlock_irq(&dev_priv->irq_lock);
3452
3453 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3454 POSTING_READ(GEN8_MASTER_IRQ);
3455
3456 return 0;
3457}
3458
3459static void gen8_irq_uninstall(struct drm_device *dev)
3460{
3461 struct drm_i915_private *dev_priv = to_i915(dev);
3462
3463 if (!dev_priv)
3464 return;
3465
3466 gen8_irq_reset(dev);
3467}
3468
3469static void valleyview_irq_uninstall(struct drm_device *dev)
3470{
3471 struct drm_i915_private *dev_priv = to_i915(dev);
3472
3473 if (!dev_priv)
3474 return;
3475
3476 I915_WRITE(VLV_MASTER_IER, 0);
3477 POSTING_READ(VLV_MASTER_IER);
3478
3479 gen5_gt_irq_reset(dev_priv);
3480
3481 I915_WRITE(HWSTAM, 0xffffffff);
3482
3483 spin_lock_irq(&dev_priv->irq_lock);
3484 if (dev_priv->display_irqs_enabled)
3485 vlv_display_irq_reset(dev_priv);
3486 spin_unlock_irq(&dev_priv->irq_lock);
3487}
3488
3489static void cherryview_irq_uninstall(struct drm_device *dev)
3490{
3491 struct drm_i915_private *dev_priv = to_i915(dev);
3492
3493 if (!dev_priv)
3494 return;
3495
3496 I915_WRITE(GEN8_MASTER_IRQ, 0);
3497 POSTING_READ(GEN8_MASTER_IRQ);
3498
3499 gen8_gt_irq_reset(dev_priv);
3500
3501 GEN5_IRQ_RESET(GEN8_PCU_);
3502
3503 spin_lock_irq(&dev_priv->irq_lock);
3504 if (dev_priv->display_irqs_enabled)
3505 vlv_display_irq_reset(dev_priv);
3506 spin_unlock_irq(&dev_priv->irq_lock);
3507}
3508
3509static void ironlake_irq_uninstall(struct drm_device *dev)
3510{
3511 struct drm_i915_private *dev_priv = to_i915(dev);
3512
3513 if (!dev_priv)
3514 return;
3515
3516 ironlake_irq_reset(dev);
3517}
3518
3519static void i8xx_irq_preinstall(struct drm_device * dev)
3520{
3521 struct drm_i915_private *dev_priv = to_i915(dev);
3522 int pipe;
3523
3524 for_each_pipe(dev_priv, pipe)
3525 I915_WRITE(PIPESTAT(pipe), 0);
3526 I915_WRITE16(IMR, 0xffff);
3527 I915_WRITE16(IER, 0x0);
3528 POSTING_READ16(IER);
3529}
3530
3531static int i8xx_irq_postinstall(struct drm_device *dev)
3532{
3533 struct drm_i915_private *dev_priv = to_i915(dev);
3534
3535 I915_WRITE16(EMR,
3536 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3537
3538 /* Unmask the interrupts that we always want on. */
3539 dev_priv->irq_mask =
3540 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3541 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3542 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3543 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3544 I915_WRITE16(IMR, dev_priv->irq_mask);
3545
3546 I915_WRITE16(IER,
3547 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3548 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3549 I915_USER_INTERRUPT);
3550 POSTING_READ16(IER);
3551
3552 /* Interrupt setup is already guaranteed to be single-threaded, this is
3553 * just to make the assert_spin_locked check happy. */
3554 spin_lock_irq(&dev_priv->irq_lock);
3555 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3556 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3557 spin_unlock_irq(&dev_priv->irq_lock);
3558
3559 return 0;
3560}
3561
3562/*
3563 * Returns true when a page flip has completed.
3564 */
3565static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3566 int plane, int pipe, u32 iir)
3567{
3568 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3569
3570 if (!intel_pipe_handle_vblank(dev_priv, pipe))
3571 return false;
3572
3573 if ((iir & flip_pending) == 0)
3574 goto check_page_flip;
3575
3576 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3577 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3578 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3579 * the flip is completed (no longer pending). Since this doesn't raise
3580 * an interrupt per se, we watch for the change at vblank.
3581 */
3582 if (I915_READ16(ISR) & flip_pending)
3583 goto check_page_flip;
3584
3585 intel_finish_page_flip_cs(dev_priv, pipe);
3586 return true;
3587
3588check_page_flip:
3589 intel_check_page_flip(dev_priv, pipe);
3590 return false;
3591}
3592
3593static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3594{
3595 struct drm_device *dev = arg;
3596 struct drm_i915_private *dev_priv = to_i915(dev);
3597 u16 iir, new_iir;
3598 u32 pipe_stats[2];
3599 int pipe;
3600 u16 flip_mask =
3601 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3602 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3603 irqreturn_t ret;
3604
3605 if (!intel_irqs_enabled(dev_priv))
3606 return IRQ_NONE;
3607
3608 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3609 disable_rpm_wakeref_asserts(dev_priv);
3610
3611 ret = IRQ_NONE;
3612 iir = I915_READ16(IIR);
3613 if (iir == 0)
3614 goto out;
3615
3616 while (iir & ~flip_mask) {
3617 /* Can't rely on pipestat interrupt bit in iir as it might
3618 * have been cleared after the pipestat interrupt was received.
3619 * It doesn't set the bit in iir again, but it still produces
3620 * interrupts (for non-MSI).
3621 */
3622 spin_lock(&dev_priv->irq_lock);
3623 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3624 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3625
3626 for_each_pipe(dev_priv, pipe) {
3627 i915_reg_t reg = PIPESTAT(pipe);
3628 pipe_stats[pipe] = I915_READ(reg);
3629
3630 /*
3631 * Clear the PIPE*STAT regs before the IIR
3632 */
3633 if (pipe_stats[pipe] & 0x8000ffff)
3634 I915_WRITE(reg, pipe_stats[pipe]);
3635 }
3636 spin_unlock(&dev_priv->irq_lock);
3637
3638 I915_WRITE16(IIR, iir & ~flip_mask);
3639 new_iir = I915_READ16(IIR); /* Flush posted writes */
3640
3641 if (iir & I915_USER_INTERRUPT)
3642 notify_ring(dev_priv->engine[RCS]);
3643
3644 for_each_pipe(dev_priv, pipe) {
3645 int plane = pipe;
3646 if (HAS_FBC(dev_priv))
3647 plane = !plane;
3648
3649 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3650 i8xx_handle_vblank(dev_priv, plane, pipe, iir))
3651 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3652
3653 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3654 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3655
3656 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3657 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3658 pipe);
3659 }
3660
3661 iir = new_iir;
3662 }
3663 ret = IRQ_HANDLED;
3664
3665out:
3666 enable_rpm_wakeref_asserts(dev_priv);
3667
3668 return ret;
3669}
3670
3671static void i8xx_irq_uninstall(struct drm_device * dev)
3672{
3673 struct drm_i915_private *dev_priv = to_i915(dev);
3674 int pipe;
3675
3676 for_each_pipe(dev_priv, pipe) {
3677 /* Clear enable bits; then clear status bits */
3678 I915_WRITE(PIPESTAT(pipe), 0);
3679 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3680 }
3681 I915_WRITE16(IMR, 0xffff);
3682 I915_WRITE16(IER, 0x0);
3683 I915_WRITE16(IIR, I915_READ16(IIR));
3684}
3685
3686static void i915_irq_preinstall(struct drm_device * dev)
3687{
3688 struct drm_i915_private *dev_priv = to_i915(dev);
3689 int pipe;
3690
3691 if (I915_HAS_HOTPLUG(dev_priv)) {
3692 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3693 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3694 }
3695
3696 I915_WRITE16(HWSTAM, 0xeffe);
3697 for_each_pipe(dev_priv, pipe)
3698 I915_WRITE(PIPESTAT(pipe), 0);
3699 I915_WRITE(IMR, 0xffffffff);
3700 I915_WRITE(IER, 0x0);
3701 POSTING_READ(IER);
3702}
3703
3704static int i915_irq_postinstall(struct drm_device *dev)
3705{
3706 struct drm_i915_private *dev_priv = to_i915(dev);
3707 u32 enable_mask;
3708
3709 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3710
3711 /* Unmask the interrupts that we always want on. */
3712 dev_priv->irq_mask =
3713 ~(I915_ASLE_INTERRUPT |
3714 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3715 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3716 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3717 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3718
3719 enable_mask =
3720 I915_ASLE_INTERRUPT |
3721 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3722 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3723 I915_USER_INTERRUPT;
3724
3725 if (I915_HAS_HOTPLUG(dev_priv)) {
3726 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3727 POSTING_READ(PORT_HOTPLUG_EN);
3728
3729 /* Enable in IER... */
3730 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3731 /* and unmask in IMR */
3732 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3733 }
3734
3735 I915_WRITE(IMR, dev_priv->irq_mask);
3736 I915_WRITE(IER, enable_mask);
3737 POSTING_READ(IER);
3738
3739 i915_enable_asle_pipestat(dev_priv);
3740
3741 /* Interrupt setup is already guaranteed to be single-threaded, this is
3742 * just to make the assert_spin_locked check happy. */
3743 spin_lock_irq(&dev_priv->irq_lock);
3744 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3745 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3746 spin_unlock_irq(&dev_priv->irq_lock);
3747
3748 return 0;
3749}
3750
3751/*
3752 * Returns true when a page flip has completed.
3753 */
3754static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
3755 int plane, int pipe, u32 iir)
3756{
3757 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3758
3759 if (!intel_pipe_handle_vblank(dev_priv, pipe))
3760 return false;
3761
3762 if ((iir & flip_pending) == 0)
3763 goto check_page_flip;
3764
3765 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3766 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3767 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3768 * the flip is completed (no longer pending). Since this doesn't raise
3769 * an interrupt per se, we watch for the change at vblank.
3770 */
3771 if (I915_READ(ISR) & flip_pending)
3772 goto check_page_flip;
3773
3774 intel_finish_page_flip_cs(dev_priv, pipe);
3775 return true;
3776
3777check_page_flip:
3778 intel_check_page_flip(dev_priv, pipe);
3779 return false;
3780}
3781
3782static irqreturn_t i915_irq_handler(int irq, void *arg)
3783{
3784 struct drm_device *dev = arg;
3785 struct drm_i915_private *dev_priv = to_i915(dev);
3786 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3787 u32 flip_mask =
3788 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3789 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3790 int pipe, ret = IRQ_NONE;
3791
3792 if (!intel_irqs_enabled(dev_priv))
3793 return IRQ_NONE;
3794
3795 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3796 disable_rpm_wakeref_asserts(dev_priv);
3797
3798 iir = I915_READ(IIR);
3799 do {
3800 bool irq_received = (iir & ~flip_mask) != 0;
3801 bool blc_event = false;
3802
3803 /* Can't rely on pipestat interrupt bit in iir as it might
3804 * have been cleared after the pipestat interrupt was received.
3805 * It doesn't set the bit in iir again, but it still produces
3806 * interrupts (for non-MSI).
3807 */
3808 spin_lock(&dev_priv->irq_lock);
3809 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3810 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3811
3812 for_each_pipe(dev_priv, pipe) {
3813 i915_reg_t reg = PIPESTAT(pipe);
3814 pipe_stats[pipe] = I915_READ(reg);
3815
3816 /* Clear the PIPE*STAT regs before the IIR */
3817 if (pipe_stats[pipe] & 0x8000ffff) {
3818 I915_WRITE(reg, pipe_stats[pipe]);
3819 irq_received = true;
3820 }
3821 }
3822 spin_unlock(&dev_priv->irq_lock);
3823
3824 if (!irq_received)
3825 break;
3826
3827 /* Consume port. Then clear IIR or we'll miss events */
3828 if (I915_HAS_HOTPLUG(dev_priv) &&
3829 iir & I915_DISPLAY_PORT_INTERRUPT) {
3830 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3831 if (hotplug_status)
3832 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3833 }
3834
3835 I915_WRITE(IIR, iir & ~flip_mask);
3836 new_iir = I915_READ(IIR); /* Flush posted writes */
3837
3838 if (iir & I915_USER_INTERRUPT)
3839 notify_ring(dev_priv->engine[RCS]);
3840
3841 for_each_pipe(dev_priv, pipe) {
3842 int plane = pipe;
3843 if (HAS_FBC(dev_priv))
3844 plane = !plane;
3845
3846 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3847 i915_handle_vblank(dev_priv, plane, pipe, iir))
3848 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3849
3850 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3851 blc_event = true;
3852
3853 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3854 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3855
3856 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3857 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3858 pipe);
3859 }
3860
3861 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3862 intel_opregion_asle_intr(dev_priv);
3863
3864 /* With MSI, interrupts are only generated when iir
3865 * transitions from zero to nonzero. If another bit got
3866 * set while we were handling the existing iir bits, then
3867 * we would never get another interrupt.
3868 *
3869 * This is fine on non-MSI as well, as if we hit this path
3870 * we avoid exiting the interrupt handler only to generate
3871 * another one.
3872 *
3873 * Note that for MSI this could cause a stray interrupt report
3874 * if an interrupt landed in the time between writing IIR and
3875 * the posting read. This should be rare enough to never
3876 * trigger the 99% of 100,000 interrupts test for disabling
3877 * stray interrupts.
3878 */
3879 ret = IRQ_HANDLED;
3880 iir = new_iir;
3881 } while (iir & ~flip_mask);
3882
3883 enable_rpm_wakeref_asserts(dev_priv);
3884
3885 return ret;
3886}
3887
3888static void i915_irq_uninstall(struct drm_device * dev)
3889{
3890 struct drm_i915_private *dev_priv = to_i915(dev);
3891 int pipe;
3892
3893 if (I915_HAS_HOTPLUG(dev_priv)) {
3894 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3895 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3896 }
3897
3898 I915_WRITE16(HWSTAM, 0xffff);
3899 for_each_pipe(dev_priv, pipe) {
3900 /* Clear enable bits; then clear status bits */
3901 I915_WRITE(PIPESTAT(pipe), 0);
3902 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3903 }
3904 I915_WRITE(IMR, 0xffffffff);
3905 I915_WRITE(IER, 0x0);
3906
3907 I915_WRITE(IIR, I915_READ(IIR));
3908}
3909
3910static void i965_irq_preinstall(struct drm_device * dev)
3911{
3912 struct drm_i915_private *dev_priv = to_i915(dev);
3913 int pipe;
3914
3915 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3916 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3917
3918 I915_WRITE(HWSTAM, 0xeffe);
3919 for_each_pipe(dev_priv, pipe)
3920 I915_WRITE(PIPESTAT(pipe), 0);
3921 I915_WRITE(IMR, 0xffffffff);
3922 I915_WRITE(IER, 0x0);
3923 POSTING_READ(IER);
3924}
3925
3926static int i965_irq_postinstall(struct drm_device *dev)
3927{
3928 struct drm_i915_private *dev_priv = to_i915(dev);
3929 u32 enable_mask;
3930 u32 error_mask;
3931
3932 /* Unmask the interrupts that we always want on. */
3933 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3934 I915_DISPLAY_PORT_INTERRUPT |
3935 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3936 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3937 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3938 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3939 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3940
3941 enable_mask = ~dev_priv->irq_mask;
3942 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3943 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3944 enable_mask |= I915_USER_INTERRUPT;
3945
3946 if (IS_G4X(dev_priv))
3947 enable_mask |= I915_BSD_USER_INTERRUPT;
3948
3949 /* Interrupt setup is already guaranteed to be single-threaded, this is
3950 * just to make the assert_spin_locked check happy. */
3951 spin_lock_irq(&dev_priv->irq_lock);
3952 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3953 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3954 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3955 spin_unlock_irq(&dev_priv->irq_lock);
3956
3957 /*
3958 * Enable some error detection, note the instruction error mask
3959 * bit is reserved, so we leave it masked.
3960 */
3961 if (IS_G4X(dev_priv)) {
3962 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3963 GM45_ERROR_MEM_PRIV |
3964 GM45_ERROR_CP_PRIV |
3965 I915_ERROR_MEMORY_REFRESH);
3966 } else {
3967 error_mask = ~(I915_ERROR_PAGE_TABLE |
3968 I915_ERROR_MEMORY_REFRESH);
3969 }
3970 I915_WRITE(EMR, error_mask);
3971
3972 I915_WRITE(IMR, dev_priv->irq_mask);
3973 I915_WRITE(IER, enable_mask);
3974 POSTING_READ(IER);
3975
3976 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3977 POSTING_READ(PORT_HOTPLUG_EN);
3978
3979 i915_enable_asle_pipestat(dev_priv);
3980
3981 return 0;
3982}
3983
3984static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3985{
3986 u32 hotplug_en;
3987
3988 assert_spin_locked(&dev_priv->irq_lock);
3989
3990 /* Note HDMI and DP share hotplug bits */
3991 /* enable bits are the same for all generations */
3992 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3993 /* Programming the CRT detection parameters tends
3994 to generate a spurious hotplug event about three
3995 seconds later. So just do it once.
3996 */
3997 if (IS_G4X(dev_priv))
3998 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3999 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4000
4001 /* Ignore TV since it's buggy */
4002 i915_hotplug_interrupt_update_locked(dev_priv,
4003 HOTPLUG_INT_EN_MASK |
4004 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4005 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4006 hotplug_en);
4007}
4008
4009static irqreturn_t i965_irq_handler(int irq, void *arg)
4010{
4011 struct drm_device *dev = arg;
4012 struct drm_i915_private *dev_priv = to_i915(dev);
4013 u32 iir, new_iir;
4014 u32 pipe_stats[I915_MAX_PIPES];
4015 int ret = IRQ_NONE, pipe;
4016 u32 flip_mask =
4017 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4018 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4019
4020 if (!intel_irqs_enabled(dev_priv))
4021 return IRQ_NONE;
4022
4023 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4024 disable_rpm_wakeref_asserts(dev_priv);
4025
4026 iir = I915_READ(IIR);
4027
4028 for (;;) {
4029 bool irq_received = (iir & ~flip_mask) != 0;
4030 bool blc_event = false;
4031
4032 /* Can't rely on pipestat interrupt bit in iir as it might
4033 * have been cleared after the pipestat interrupt was received.
4034 * It doesn't set the bit in iir again, but it still produces
4035 * interrupts (for non-MSI).
4036 */
4037 spin_lock(&dev_priv->irq_lock);
4038 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4039 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4040
4041 for_each_pipe(dev_priv, pipe) {
4042 i915_reg_t reg = PIPESTAT(pipe);
4043 pipe_stats[pipe] = I915_READ(reg);
4044
4045 /*
4046 * Clear the PIPE*STAT regs before the IIR
4047 */
4048 if (pipe_stats[pipe] & 0x8000ffff) {
4049 I915_WRITE(reg, pipe_stats[pipe]);
4050 irq_received = true;
4051 }
4052 }
4053 spin_unlock(&dev_priv->irq_lock);
4054
4055 if (!irq_received)
4056 break;
4057
4058 ret = IRQ_HANDLED;
4059
4060 /* Consume port. Then clear IIR or we'll miss events */
4061 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4062 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4063 if (hotplug_status)
4064 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4065 }
4066
4067 I915_WRITE(IIR, iir & ~flip_mask);
4068 new_iir = I915_READ(IIR); /* Flush posted writes */
4069
4070 if (iir & I915_USER_INTERRUPT)
4071 notify_ring(dev_priv->engine[RCS]);
4072 if (iir & I915_BSD_USER_INTERRUPT)
4073 notify_ring(dev_priv->engine[VCS]);
4074
4075 for_each_pipe(dev_priv, pipe) {
4076 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4077 i915_handle_vblank(dev_priv, pipe, pipe, iir))
4078 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4079
4080 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4081 blc_event = true;
4082
4083 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4084 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4085
4086 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4087 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4088 }
4089
4090 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4091 intel_opregion_asle_intr(dev_priv);
4092
4093 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4094 gmbus_irq_handler(dev_priv);
4095
4096 /* With MSI, interrupts are only generated when iir
4097 * transitions from zero to nonzero. If another bit got
4098 * set while we were handling the existing iir bits, then
4099 * we would never get another interrupt.
4100 *
4101 * This is fine on non-MSI as well, as if we hit this path
4102 * we avoid exiting the interrupt handler only to generate
4103 * another one.
4104 *
4105 * Note that for MSI this could cause a stray interrupt report
4106 * if an interrupt landed in the time between writing IIR and
4107 * the posting read. This should be rare enough to never
4108 * trigger the 99% of 100,000 interrupts test for disabling
4109 * stray interrupts.
4110 */
4111 iir = new_iir;
4112 }
4113
4114 enable_rpm_wakeref_asserts(dev_priv);
4115
4116 return ret;
4117}
4118
4119static void i965_irq_uninstall(struct drm_device * dev)
4120{
4121 struct drm_i915_private *dev_priv = to_i915(dev);
4122 int pipe;
4123
4124 if (!dev_priv)
4125 return;
4126
4127 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4128 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4129
4130 I915_WRITE(HWSTAM, 0xffffffff);
4131 for_each_pipe(dev_priv, pipe)
4132 I915_WRITE(PIPESTAT(pipe), 0);
4133 I915_WRITE(IMR, 0xffffffff);
4134 I915_WRITE(IER, 0x0);
4135
4136 for_each_pipe(dev_priv, pipe)
4137 I915_WRITE(PIPESTAT(pipe),
4138 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4139 I915_WRITE(IIR, I915_READ(IIR));
4140}
4141
4142/**
4143 * intel_irq_init - initializes irq support
4144 * @dev_priv: i915 device instance
4145 *
4146 * This function initializes all the irq support including work items, timers
4147 * and all the vtables. It does not setup the interrupt itself though.
4148 */
4149void intel_irq_init(struct drm_i915_private *dev_priv)
4150{
4151 struct drm_device *dev = &dev_priv->drm;
4152
4153 intel_hpd_init_work(dev_priv);
4154
4155 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4156 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4157
4158 if (HAS_GUC_SCHED(dev_priv))
4159 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4160
4161 /* Let's track the enabled rps events */
4162 if (IS_VALLEYVIEW(dev_priv))
4163 /* WaGsvRC0ResidencyMethod:vlv */
4164 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4165 else
4166 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4167
4168 dev_priv->rps.pm_intr_keep = 0;
4169
4170 /*
4171 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
4172 * if GEN6_PM_UP_EI_EXPIRED is masked.
4173 *
4174 * TODO: verify if this can be reproduced on VLV,CHV.
4175 */
4176 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
4177 dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
4178
4179 if (INTEL_INFO(dev_priv)->gen >= 8)
4180 dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_GUC;
4181
4182 if (IS_GEN2(dev_priv)) {
4183 /* Gen2 doesn't have a hardware frame counter */
4184 dev->max_vblank_count = 0;
4185 dev->driver->get_vblank_counter = drm_vblank_no_hw_counter;
4186 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4187 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4188 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4189 } else {
4190 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4191 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4192 }
4193
4194 /*
4195 * Opt out of the vblank disable timer on everything except gen2.
4196 * Gen2 doesn't have a hardware frame counter and so depends on
4197 * vblank interrupts to produce sane vblank seuquence numbers.
4198 */
4199 if (!IS_GEN2(dev_priv))
4200 dev->vblank_disable_immediate = true;
4201
4202 /* Most platforms treat the display irq block as an always-on
4203 * power domain. vlv/chv can disable it at runtime and need
4204 * special care to avoid writing any of the display block registers
4205 * outside of the power domain. We defer setting up the display irqs
4206 * in this case to the runtime pm.
4207 */
4208 dev_priv->display_irqs_enabled = true;
4209 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4210 dev_priv->display_irqs_enabled = false;
4211
4212 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4213 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4214
4215 if (IS_CHERRYVIEW(dev_priv)) {
4216 dev->driver->irq_handler = cherryview_irq_handler;
4217 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4218 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4219 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4220 dev->driver->enable_vblank = i965_enable_vblank;
4221 dev->driver->disable_vblank = i965_disable_vblank;
4222 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4223 } else if (IS_VALLEYVIEW(dev_priv)) {
4224 dev->driver->irq_handler = valleyview_irq_handler;
4225 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4226 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4227 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4228 dev->driver->enable_vblank = i965_enable_vblank;
4229 dev->driver->disable_vblank = i965_disable_vblank;
4230 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4231 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4232 dev->driver->irq_handler = gen8_irq_handler;
4233 dev->driver->irq_preinstall = gen8_irq_reset;
4234 dev->driver->irq_postinstall = gen8_irq_postinstall;
4235 dev->driver->irq_uninstall = gen8_irq_uninstall;
4236 dev->driver->enable_vblank = gen8_enable_vblank;
4237 dev->driver->disable_vblank = gen8_disable_vblank;
4238 if (IS_BROXTON(dev_priv))
4239 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4240 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
4241 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4242 else
4243 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4244 } else if (HAS_PCH_SPLIT(dev_priv)) {
4245 dev->driver->irq_handler = ironlake_irq_handler;
4246 dev->driver->irq_preinstall = ironlake_irq_reset;
4247 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4248 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4249 dev->driver->enable_vblank = ironlake_enable_vblank;
4250 dev->driver->disable_vblank = ironlake_disable_vblank;
4251 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4252 } else {
4253 if (IS_GEN2(dev_priv)) {
4254 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4255 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4256 dev->driver->irq_handler = i8xx_irq_handler;
4257 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4258 dev->driver->enable_vblank = i8xx_enable_vblank;
4259 dev->driver->disable_vblank = i8xx_disable_vblank;
4260 } else if (IS_GEN3(dev_priv)) {
4261 dev->driver->irq_preinstall = i915_irq_preinstall;
4262 dev->driver->irq_postinstall = i915_irq_postinstall;
4263 dev->driver->irq_uninstall = i915_irq_uninstall;
4264 dev->driver->irq_handler = i915_irq_handler;
4265 dev->driver->enable_vblank = i8xx_enable_vblank;
4266 dev->driver->disable_vblank = i8xx_disable_vblank;
4267 } else {
4268 dev->driver->irq_preinstall = i965_irq_preinstall;
4269 dev->driver->irq_postinstall = i965_irq_postinstall;
4270 dev->driver->irq_uninstall = i965_irq_uninstall;
4271 dev->driver->irq_handler = i965_irq_handler;
4272 dev->driver->enable_vblank = i965_enable_vblank;
4273 dev->driver->disable_vblank = i965_disable_vblank;
4274 }
4275 if (I915_HAS_HOTPLUG(dev_priv))
4276 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4277 }
4278}
4279
4280/**
4281 * intel_irq_install - enables the hardware interrupt
4282 * @dev_priv: i915 device instance
4283 *
4284 * This function enables the hardware interrupt handling, but leaves the hotplug
4285 * handling still disabled. It is called after intel_irq_init().
4286 *
4287 * In the driver load and resume code we need working interrupts in a few places
4288 * but don't want to deal with the hassle of concurrent probe and hotplug
4289 * workers. Hence the split into this two-stage approach.
4290 */
4291int intel_irq_install(struct drm_i915_private *dev_priv)
4292{
4293 /*
4294 * We enable some interrupt sources in our postinstall hooks, so mark
4295 * interrupts as enabled _before_ actually enabling them to avoid
4296 * special cases in our ordering checks.
4297 */
4298 dev_priv->pm.irqs_enabled = true;
4299
4300 return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4301}
4302
4303/**
4304 * intel_irq_uninstall - finilizes all irq handling
4305 * @dev_priv: i915 device instance
4306 *
4307 * This stops interrupt and hotplug handling and unregisters and frees all
4308 * resources acquired in the init functions.
4309 */
4310void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4311{
4312 drm_irq_uninstall(&dev_priv->drm);
4313 intel_hpd_cancel_work(dev_priv);
4314 dev_priv->pm.irqs_enabled = false;
4315}
4316
4317/**
4318 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4319 * @dev_priv: i915 device instance
4320 *
4321 * This function is used to disable interrupts at runtime, both in the runtime
4322 * pm and the system suspend/resume code.
4323 */
4324void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4325{
4326 dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4327 dev_priv->pm.irqs_enabled = false;
4328 synchronize_irq(dev_priv->drm.irq);
4329}
4330
4331/**
4332 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4333 * @dev_priv: i915 device instance
4334 *
4335 * This function is used to enable interrupts at runtime, both in the runtime
4336 * pm and the system suspend/resume code.
4337 */
4338void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4339{
4340 dev_priv->pm.irqs_enabled = true;
4341 dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4342 dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4343}