Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * regmap based irq_chip
  3 *
  4 * Copyright 2011 Wolfson Microelectronics plc
  5 *
  6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 13#include <linux/device.h>
 14#include <linux/export.h>
 15#include <linux/interrupt.h>
 16#include <linux/irq.h>
 17#include <linux/irqdomain.h>
 18#include <linux/pm_runtime.h>
 19#include <linux/regmap.h>
 20#include <linux/slab.h>
 21
 22#include "internal.h"
 23
 24struct regmap_irq_chip_data {
 25	struct mutex lock;
 26	struct irq_chip irq_chip;
 27
 28	struct regmap *map;
 29	const struct regmap_irq_chip *chip;
 30
 31	int irq_base;
 32	struct irq_domain *domain;
 33
 34	int irq;
 35	int wake_count;
 36
 37	void *status_reg_buf;
 38	unsigned int *status_buf;
 39	unsigned int *mask_buf;
 40	unsigned int *mask_buf_def;
 41	unsigned int *wake_buf;
 42	unsigned int *type_buf;
 43	unsigned int *type_buf_def;
 44
 45	unsigned int irq_reg_stride;
 46	unsigned int type_reg_stride;
 47};
 48
 49static inline const
 50struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
 51				     int irq)
 52{
 53	return &data->chip->irqs[irq];
 54}
 55
 56static void regmap_irq_lock(struct irq_data *data)
 57{
 58	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 59
 60	mutex_lock(&d->lock);
 61}
 62
 63static void regmap_irq_sync_unlock(struct irq_data *data)
 64{
 65	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 66	struct regmap *map = d->map;
 67	int i, ret;
 68	u32 reg;
 69	u32 unmask_offset;
 70
 71	if (d->chip->runtime_pm) {
 72		ret = pm_runtime_get_sync(map->dev);
 73		if (ret < 0)
 74			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
 75				ret);
 76	}
 77
 78	/*
 79	 * If there's been a change in the mask write it back to the
 80	 * hardware.  We rely on the use of the regmap core cache to
 81	 * suppress pointless writes.
 82	 */
 83	for (i = 0; i < d->chip->num_regs; i++) {
 84		reg = d->chip->mask_base +
 85			(i * map->reg_stride * d->irq_reg_stride);
 86		if (d->chip->mask_invert) {
 87			ret = regmap_update_bits(d->map, reg,
 88					 d->mask_buf_def[i], ~d->mask_buf[i]);
 89		} else if (d->chip->unmask_base) {
 90			/* set mask with mask_base register */
 91			ret = regmap_update_bits(d->map, reg,
 92					d->mask_buf_def[i], ~d->mask_buf[i]);
 93			if (ret < 0)
 94				dev_err(d->map->dev,
 95					"Failed to sync unmasks in %x\n",
 96					reg);
 97			unmask_offset = d->chip->unmask_base -
 98							d->chip->mask_base;
 99			/* clear mask with unmask_base register */
100			ret = regmap_update_bits(d->map,
101					reg + unmask_offset,
102					d->mask_buf_def[i],
103					d->mask_buf[i]);
104		} else {
105			ret = regmap_update_bits(d->map, reg,
106					 d->mask_buf_def[i], d->mask_buf[i]);
107		}
108		if (ret != 0)
109			dev_err(d->map->dev, "Failed to sync masks in %x\n",
110				reg);
111
112		reg = d->chip->wake_base +
113			(i * map->reg_stride * d->irq_reg_stride);
114		if (d->wake_buf) {
115			if (d->chip->wake_invert)
116				ret = regmap_update_bits(d->map, reg,
117							 d->mask_buf_def[i],
118							 ~d->wake_buf[i]);
119			else
120				ret = regmap_update_bits(d->map, reg,
121							 d->mask_buf_def[i],
122							 d->wake_buf[i]);
123			if (ret != 0)
124				dev_err(d->map->dev,
125					"Failed to sync wakes in %x: %d\n",
126					reg, ret);
127		}
128
129		if (!d->chip->init_ack_masked)
130			continue;
131		/*
132		 * Ack all the masked interrupts unconditionally,
133		 * OR if there is masked interrupt which hasn't been Acked,
134		 * it'll be ignored in irq handler, then may introduce irq storm
135		 */
136		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
137			reg = d->chip->ack_base +
138				(i * map->reg_stride * d->irq_reg_stride);
139			/* some chips ack by write 0 */
140			if (d->chip->ack_invert)
141				ret = regmap_write(map, reg, ~d->mask_buf[i]);
142			else
143				ret = regmap_write(map, reg, d->mask_buf[i]);
144			if (ret != 0)
145				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
146					reg, ret);
147		}
148	}
149
150	for (i = 0; i < d->chip->num_type_reg; i++) {
151		if (!d->type_buf_def[i])
152			continue;
153		reg = d->chip->type_base +
154			(i * map->reg_stride * d->type_reg_stride);
155		if (d->chip->type_invert)
156			ret = regmap_update_bits(d->map, reg,
157				d->type_buf_def[i], ~d->type_buf[i]);
158		else
159			ret = regmap_update_bits(d->map, reg,
160				d->type_buf_def[i], d->type_buf[i]);
161		if (ret != 0)
162			dev_err(d->map->dev, "Failed to sync type in %x\n",
163				reg);
164	}
165
166	if (d->chip->runtime_pm)
167		pm_runtime_put(map->dev);
168
169	/* If we've changed our wakeup count propagate it to the parent */
170	if (d->wake_count < 0)
171		for (i = d->wake_count; i < 0; i++)
172			irq_set_irq_wake(d->irq, 0);
173	else if (d->wake_count > 0)
174		for (i = 0; i < d->wake_count; i++)
175			irq_set_irq_wake(d->irq, 1);
176
177	d->wake_count = 0;
178
179	mutex_unlock(&d->lock);
180}
181
182static void regmap_irq_enable(struct irq_data *data)
183{
184	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
185	struct regmap *map = d->map;
186	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
187
188	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
189}
190
191static void regmap_irq_disable(struct irq_data *data)
192{
193	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
194	struct regmap *map = d->map;
195	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
196
197	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
198}
199
200static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
201{
202	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
203	struct regmap *map = d->map;
204	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
205	int reg = irq_data->type_reg_offset / map->reg_stride;
206
207	if (!(irq_data->type_rising_mask | irq_data->type_falling_mask))
208		return 0;
209
210	d->type_buf[reg] &= ~(irq_data->type_falling_mask |
211					irq_data->type_rising_mask);
212	switch (type) {
213	case IRQ_TYPE_EDGE_FALLING:
214		d->type_buf[reg] |= irq_data->type_falling_mask;
215		break;
216
217	case IRQ_TYPE_EDGE_RISING:
218		d->type_buf[reg] |= irq_data->type_rising_mask;
219		break;
220
221	case IRQ_TYPE_EDGE_BOTH:
222		d->type_buf[reg] |= (irq_data->type_falling_mask |
223					irq_data->type_rising_mask);
224		break;
225
226	default:
227		return -EINVAL;
228	}
229	return 0;
230}
231
232static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
233{
234	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
235	struct regmap *map = d->map;
236	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
237
238	if (on) {
239		if (d->wake_buf)
240			d->wake_buf[irq_data->reg_offset / map->reg_stride]
241				&= ~irq_data->mask;
242		d->wake_count++;
243	} else {
244		if (d->wake_buf)
245			d->wake_buf[irq_data->reg_offset / map->reg_stride]
246				|= irq_data->mask;
247		d->wake_count--;
248	}
249
250	return 0;
251}
252
253static const struct irq_chip regmap_irq_chip = {
254	.irq_bus_lock		= regmap_irq_lock,
255	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
256	.irq_disable		= regmap_irq_disable,
257	.irq_enable		= regmap_irq_enable,
258	.irq_set_type		= regmap_irq_set_type,
259	.irq_set_wake		= regmap_irq_set_wake,
260};
261
262static irqreturn_t regmap_irq_thread(int irq, void *d)
263{
264	struct regmap_irq_chip_data *data = d;
265	const struct regmap_irq_chip *chip = data->chip;
266	struct regmap *map = data->map;
267	int ret, i;
268	bool handled = false;
269	u32 reg;
270
271	if (chip->handle_pre_irq)
272		chip->handle_pre_irq(chip->irq_drv_data);
273
274	if (chip->runtime_pm) {
275		ret = pm_runtime_get_sync(map->dev);
276		if (ret < 0) {
277			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
278				ret);
279			pm_runtime_put(map->dev);
280			goto exit;
281		}
282	}
283
284	/*
285	 * Read in the statuses, using a single bulk read if possible
286	 * in order to reduce the I/O overheads.
287	 */
288	if (!map->use_single_read && map->reg_stride == 1 &&
289	    data->irq_reg_stride == 1) {
290		u8 *buf8 = data->status_reg_buf;
291		u16 *buf16 = data->status_reg_buf;
292		u32 *buf32 = data->status_reg_buf;
293
294		BUG_ON(!data->status_reg_buf);
295
296		ret = regmap_bulk_read(map, chip->status_base,
297				       data->status_reg_buf,
298				       chip->num_regs);
299		if (ret != 0) {
300			dev_err(map->dev, "Failed to read IRQ status: %d\n",
301				ret);
302			goto exit;
303		}
304
305		for (i = 0; i < data->chip->num_regs; i++) {
306			switch (map->format.val_bytes) {
307			case 1:
308				data->status_buf[i] = buf8[i];
309				break;
310			case 2:
311				data->status_buf[i] = buf16[i];
312				break;
313			case 4:
314				data->status_buf[i] = buf32[i];
315				break;
316			default:
317				BUG();
318				goto exit;
319			}
320		}
321
322	} else {
323		for (i = 0; i < data->chip->num_regs; i++) {
324			ret = regmap_read(map, chip->status_base +
325					  (i * map->reg_stride
326					   * data->irq_reg_stride),
327					  &data->status_buf[i]);
328
329			if (ret != 0) {
330				dev_err(map->dev,
331					"Failed to read IRQ status: %d\n",
332					ret);
333				if (chip->runtime_pm)
334					pm_runtime_put(map->dev);
335				goto exit;
336			}
337		}
338	}
339
340	/*
341	 * Ignore masked IRQs and ack if we need to; we ack early so
342	 * there is no race between handling and acknowleding the
343	 * interrupt.  We assume that typically few of the interrupts
344	 * will fire simultaneously so don't worry about overhead from
345	 * doing a write per register.
346	 */
347	for (i = 0; i < data->chip->num_regs; i++) {
348		data->status_buf[i] &= ~data->mask_buf[i];
349
350		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
351			reg = chip->ack_base +
352				(i * map->reg_stride * data->irq_reg_stride);
353			ret = regmap_write(map, reg, data->status_buf[i]);
354			if (ret != 0)
355				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
356					reg, ret);
357		}
358	}
359
360	for (i = 0; i < chip->num_irqs; i++) {
361		if (data->status_buf[chip->irqs[i].reg_offset /
362				     map->reg_stride] & chip->irqs[i].mask) {
363			handle_nested_irq(irq_find_mapping(data->domain, i));
364			handled = true;
365		}
366	}
367
368	if (chip->runtime_pm)
369		pm_runtime_put(map->dev);
370
371exit:
372	if (chip->handle_post_irq)
373		chip->handle_post_irq(chip->irq_drv_data);
374
375	if (handled)
376		return IRQ_HANDLED;
377	else
378		return IRQ_NONE;
379}
380
381static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
382			  irq_hw_number_t hw)
383{
384	struct regmap_irq_chip_data *data = h->host_data;
385
386	irq_set_chip_data(virq, data);
387	irq_set_chip(virq, &data->irq_chip);
388	irq_set_nested_thread(virq, 1);
389	irq_set_parent(virq, data->irq);
390	irq_set_noprobe(virq);
391
392	return 0;
393}
394
395static const struct irq_domain_ops regmap_domain_ops = {
396	.map	= regmap_irq_map,
397	.xlate	= irq_domain_xlate_twocell,
398};
399
400/**
401 * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
402 *
403 * map:       The regmap for the device.
404 * irq:       The IRQ the device uses to signal interrupts
405 * irq_flags: The IRQF_ flags to use for the primary interrupt.
406 * chip:      Configuration for the interrupt controller.
407 * data:      Runtime data structure for the controller, allocated on success
408 *
409 * Returns 0 on success or an errno on failure.
410 *
411 * In order for this to be efficient the chip really should use a
412 * register cache.  The chip driver is responsible for restoring the
413 * register values used by the IRQ controller over suspend and resume.
414 */
415int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
416			int irq_base, const struct regmap_irq_chip *chip,
417			struct regmap_irq_chip_data **data)
418{
419	struct regmap_irq_chip_data *d;
420	int i;
421	int ret = -ENOMEM;
422	u32 reg;
423	u32 unmask_offset;
424
425	if (chip->num_regs <= 0)
426		return -EINVAL;
427
428	for (i = 0; i < chip->num_irqs; i++) {
429		if (chip->irqs[i].reg_offset % map->reg_stride)
430			return -EINVAL;
431		if (chip->irqs[i].reg_offset / map->reg_stride >=
432		    chip->num_regs)
433			return -EINVAL;
434	}
435
436	if (irq_base) {
437		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
438		if (irq_base < 0) {
439			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
440				 irq_base);
441			return irq_base;
442		}
443	}
444
445	d = kzalloc(sizeof(*d), GFP_KERNEL);
446	if (!d)
447		return -ENOMEM;
448
449	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
450				GFP_KERNEL);
451	if (!d->status_buf)
452		goto err_alloc;
453
454	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
455			      GFP_KERNEL);
456	if (!d->mask_buf)
457		goto err_alloc;
458
459	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
460				  GFP_KERNEL);
461	if (!d->mask_buf_def)
462		goto err_alloc;
463
464	if (chip->wake_base) {
465		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
466				      GFP_KERNEL);
467		if (!d->wake_buf)
468			goto err_alloc;
469	}
470
471	if (chip->num_type_reg) {
472		d->type_buf_def = kcalloc(chip->num_type_reg,
473					sizeof(unsigned int), GFP_KERNEL);
474		if (!d->type_buf_def)
475			goto err_alloc;
476
477		d->type_buf = kcalloc(chip->num_type_reg, sizeof(unsigned int),
478				      GFP_KERNEL);
479		if (!d->type_buf)
480			goto err_alloc;
481	}
482
483	d->irq_chip = regmap_irq_chip;
484	d->irq_chip.name = chip->name;
485	d->irq = irq;
486	d->map = map;
487	d->chip = chip;
488	d->irq_base = irq_base;
489
490	if (chip->irq_reg_stride)
491		d->irq_reg_stride = chip->irq_reg_stride;
492	else
493		d->irq_reg_stride = 1;
494
495	if (chip->type_reg_stride)
496		d->type_reg_stride = chip->type_reg_stride;
497	else
498		d->type_reg_stride = 1;
499
500	if (!map->use_single_read && map->reg_stride == 1 &&
501	    d->irq_reg_stride == 1) {
502		d->status_reg_buf = kmalloc_array(chip->num_regs,
503						  map->format.val_bytes,
504						  GFP_KERNEL);
505		if (!d->status_reg_buf)
506			goto err_alloc;
507	}
508
509	mutex_init(&d->lock);
510
511	for (i = 0; i < chip->num_irqs; i++)
512		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
513			|= chip->irqs[i].mask;
514
515	/* Mask all the interrupts by default */
516	for (i = 0; i < chip->num_regs; i++) {
517		d->mask_buf[i] = d->mask_buf_def[i];
518		reg = chip->mask_base +
519			(i * map->reg_stride * d->irq_reg_stride);
520		if (chip->mask_invert)
521			ret = regmap_update_bits(map, reg,
522					 d->mask_buf[i], ~d->mask_buf[i]);
523		else if (d->chip->unmask_base) {
524			unmask_offset = d->chip->unmask_base -
525					d->chip->mask_base;
526			ret = regmap_update_bits(d->map,
527					reg + unmask_offset,
528					d->mask_buf[i],
529					d->mask_buf[i]);
530		} else
531			ret = regmap_update_bits(map, reg,
532					 d->mask_buf[i], d->mask_buf[i]);
533		if (ret != 0) {
534			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
535				reg, ret);
536			goto err_alloc;
537		}
538
539		if (!chip->init_ack_masked)
540			continue;
541
542		/* Ack masked but set interrupts */
543		reg = chip->status_base +
544			(i * map->reg_stride * d->irq_reg_stride);
545		ret = regmap_read(map, reg, &d->status_buf[i]);
546		if (ret != 0) {
547			dev_err(map->dev, "Failed to read IRQ status: %d\n",
548				ret);
549			goto err_alloc;
550		}
551
552		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
553			reg = chip->ack_base +
554				(i * map->reg_stride * d->irq_reg_stride);
555			if (chip->ack_invert)
556				ret = regmap_write(map, reg,
557					~(d->status_buf[i] & d->mask_buf[i]));
558			else
559				ret = regmap_write(map, reg,
560					d->status_buf[i] & d->mask_buf[i]);
561			if (ret != 0) {
562				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
563					reg, ret);
564				goto err_alloc;
565			}
566		}
567	}
568
569	/* Wake is disabled by default */
570	if (d->wake_buf) {
571		for (i = 0; i < chip->num_regs; i++) {
572			d->wake_buf[i] = d->mask_buf_def[i];
573			reg = chip->wake_base +
574				(i * map->reg_stride * d->irq_reg_stride);
575
576			if (chip->wake_invert)
577				ret = regmap_update_bits(map, reg,
578							 d->mask_buf_def[i],
579							 0);
580			else
581				ret = regmap_update_bits(map, reg,
582							 d->mask_buf_def[i],
583							 d->wake_buf[i]);
584			if (ret != 0) {
585				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
586					reg, ret);
587				goto err_alloc;
588			}
589		}
590	}
591
592	if (chip->num_type_reg) {
593		for (i = 0; i < chip->num_irqs; i++) {
594			reg = chip->irqs[i].type_reg_offset / map->reg_stride;
595			d->type_buf_def[reg] |= chip->irqs[i].type_rising_mask |
596					chip->irqs[i].type_falling_mask;
597		}
598		for (i = 0; i < chip->num_type_reg; ++i) {
599			if (!d->type_buf_def[i])
600				continue;
601
602			reg = chip->type_base +
603				(i * map->reg_stride * d->type_reg_stride);
604			if (chip->type_invert)
605				ret = regmap_update_bits(map, reg,
606					d->type_buf_def[i], 0xFF);
607			else
608				ret = regmap_update_bits(map, reg,
609					d->type_buf_def[i], 0x0);
610			if (ret != 0) {
611				dev_err(map->dev,
612					"Failed to set type in 0x%x: %x\n",
613					reg, ret);
614				goto err_alloc;
615			}
616		}
617	}
618
619	if (irq_base)
620		d->domain = irq_domain_add_legacy(map->dev->of_node,
621						  chip->num_irqs, irq_base, 0,
622						  &regmap_domain_ops, d);
623	else
624		d->domain = irq_domain_add_linear(map->dev->of_node,
625						  chip->num_irqs,
626						  &regmap_domain_ops, d);
627	if (!d->domain) {
628		dev_err(map->dev, "Failed to create IRQ domain\n");
629		ret = -ENOMEM;
630		goto err_alloc;
631	}
632
633	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
634				   irq_flags | IRQF_ONESHOT,
635				   chip->name, d);
636	if (ret != 0) {
637		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
638			irq, chip->name, ret);
639		goto err_domain;
640	}
641
642	*data = d;
643
644	return 0;
645
646err_domain:
647	/* Should really dispose of the domain but... */
648err_alloc:
649	kfree(d->type_buf);
650	kfree(d->type_buf_def);
651	kfree(d->wake_buf);
652	kfree(d->mask_buf_def);
653	kfree(d->mask_buf);
654	kfree(d->status_buf);
655	kfree(d->status_reg_buf);
656	kfree(d);
657	return ret;
658}
659EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
660
661/**
662 * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
663 *
664 * @irq: Primary IRQ for the device
665 * @d:   regmap_irq_chip_data allocated by regmap_add_irq_chip()
666 *
667 * This function also dispose all mapped irq on chip.
668 */
669void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
670{
671	unsigned int virq;
672	int hwirq;
673
674	if (!d)
675		return;
676
677	free_irq(irq, d);
678
679	/* Dispose all virtual irq from irq domain before removing it */
680	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
681		/* Ignore hwirq if holes in the IRQ list */
682		if (!d->chip->irqs[hwirq].mask)
683			continue;
684
685		/*
686		 * Find the virtual irq of hwirq on chip and if it is
687		 * there then dispose it
688		 */
689		virq = irq_find_mapping(d->domain, hwirq);
690		if (virq)
691			irq_dispose_mapping(virq);
692	}
693
694	irq_domain_remove(d->domain);
695	kfree(d->type_buf);
696	kfree(d->type_buf_def);
697	kfree(d->wake_buf);
698	kfree(d->mask_buf_def);
699	kfree(d->mask_buf);
700	kfree(d->status_reg_buf);
701	kfree(d->status_buf);
702	kfree(d);
703}
704EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
705
706static void devm_regmap_irq_chip_release(struct device *dev, void *res)
707{
708	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
709
710	regmap_del_irq_chip(d->irq, d);
711}
712
713static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
714
715{
716	struct regmap_irq_chip_data **r = res;
717
718	if (!r || !*r) {
719		WARN_ON(!r || !*r);
720		return 0;
721	}
722	return *r == data;
723}
724
725/**
726 * devm_regmap_add_irq_chip(): Resource manager regmap_add_irq_chip()
727 *
728 * @dev:       The device pointer on which irq_chip belongs to.
729 * @map:       The regmap for the device.
730 * @irq:       The IRQ the device uses to signal interrupts
731 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
732 * @chip:      Configuration for the interrupt controller.
733 * @data:      Runtime data structure for the controller, allocated on success
734 *
735 * Returns 0 on success or an errno on failure.
736 *
737 * The regmap_irq_chip data automatically be released when the device is
738 * unbound.
739 */
740int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
741			     int irq_flags, int irq_base,
742			     const struct regmap_irq_chip *chip,
743			     struct regmap_irq_chip_data **data)
744{
745	struct regmap_irq_chip_data **ptr, *d;
746	int ret;
747
748	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
749			   GFP_KERNEL);
750	if (!ptr)
751		return -ENOMEM;
752
753	ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
754				  chip, &d);
755	if (ret < 0) {
756		devres_free(ptr);
757		return ret;
758	}
759
760	*ptr = d;
761	devres_add(dev, ptr);
762	*data = d;
763	return 0;
764}
765EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
766
767/**
768 * devm_regmap_del_irq_chip(): Resource managed regmap_del_irq_chip()
769 *
770 * @dev: Device for which which resource was allocated.
771 * @irq: Primary IRQ for the device
772 * @d:   regmap_irq_chip_data allocated by regmap_add_irq_chip()
773 */
774void devm_regmap_del_irq_chip(struct device *dev, int irq,
775			      struct regmap_irq_chip_data *data)
776{
777	int rc;
778
779	WARN_ON(irq != data->irq);
780	rc = devres_release(dev, devm_regmap_irq_chip_release,
781			    devm_regmap_irq_chip_match, data);
782
783	if (rc != 0)
784		WARN_ON(rc);
785}
786EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
787
788/**
789 * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
790 *
791 * Useful for drivers to request their own IRQs.
792 *
793 * @data: regmap_irq controller to operate on.
794 */
795int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
796{
797	WARN_ON(!data->irq_base);
798	return data->irq_base;
799}
800EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
801
802/**
803 * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
804 *
805 * Useful for drivers to request their own IRQs.
806 *
807 * @data: regmap_irq controller to operate on.
808 * @irq: index of the interrupt requested in the chip IRQs
809 */
810int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
811{
812	/* Handle holes in the IRQ list */
813	if (!data->chip->irqs[irq].mask)
814		return -EINVAL;
815
816	return irq_create_mapping(data->domain, irq);
817}
818EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
819
820/**
821 * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
822 *
823 * Useful for drivers to request their own IRQs and for integration
824 * with subsystems.  For ease of integration NULL is accepted as a
825 * domain, allowing devices to just call this even if no domain is
826 * allocated.
827 *
828 * @data: regmap_irq controller to operate on.
829 */
830struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
831{
832	if (data)
833		return data->domain;
834	else
835		return NULL;
836}
837EXPORT_SYMBOL_GPL(regmap_irq_get_domain);