Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v3.1
   1#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) || \
   2    defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_SB1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#define M_CONFIG1_PC	(1 << 4)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5
   6#define M_PERFCTL_EXL			(1UL      <<  0)
   7#define M_PERFCTL_KERNEL		(1UL      <<  1)
   8#define M_PERFCTL_SUPERVISOR		(1UL      <<  2)
   9#define M_PERFCTL_USER			(1UL      <<  3)
  10#define M_PERFCTL_INTERRUPT_ENABLE	(1UL      <<  4)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  11#define M_PERFCTL_EVENT(event)		(((event) & 0x3ff)  << 5)
  12#define M_PERFCTL_VPEID(vpe)		((vpe)    << 16)
 
 
 
 
  13#define M_PERFCTL_MT_EN(filter)		((filter) << 20)
  14#define    M_TC_EN_ALL			M_PERFCTL_MT_EN(0)
  15#define    M_TC_EN_VPE			M_PERFCTL_MT_EN(1)
  16#define    M_TC_EN_TC			M_PERFCTL_MT_EN(2)
  17#define M_PERFCTL_TCID(tcid)		((tcid)   << 22)
  18#define M_PERFCTL_WIDE			(1UL      << 30)
  19#define M_PERFCTL_MORE			(1UL      << 31)
 
 
 
  20
  21#define M_PERFCTL_COUNT_EVENT_WHENEVER	(M_PERFCTL_EXL |		\
  22					M_PERFCTL_KERNEL |		\
  23					M_PERFCTL_USER |		\
  24					M_PERFCTL_SUPERVISOR |		\
  25					M_PERFCTL_INTERRUPT_ENABLE)
  26
  27#ifdef CONFIG_MIPS_MT_SMP
  28#define M_PERFCTL_CONFIG_MASK		0x3fff801f
  29#else
  30#define M_PERFCTL_CONFIG_MASK		0x1f
  31#endif
  32#define M_PERFCTL_EVENT_MASK		0xfe0
  33
  34#define M_COUNTER_OVERFLOW		(1UL      << 31)
  35
  36#ifdef CONFIG_MIPS_MT_SMP
  37static int cpu_has_mipsmt_pertccounters;
  38
 
 
 
 
 
 
  39/*
  40 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
  41 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
  42 */
  43#if defined(CONFIG_HW_PERF_EVENTS)
  44#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
  45			0 : smp_processor_id())
  46#else
  47#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
  48			0 : cpu_data[smp_processor_id()].vpe_id)
  49#endif
  50
  51/* Copied from op_model_mipsxx.c */
  52static inline unsigned int vpe_shift(void)
  53{
  54	if (num_possible_cpus() > 1)
  55		return 1;
  56
  57	return 0;
  58}
  59#else /* !CONFIG_MIPS_MT_SMP */
  60#define vpe_id()	0
  61
  62static inline unsigned int vpe_shift(void)
  63{
  64	return 0;
  65}
  66#endif /* CONFIG_MIPS_MT_SMP */
  67
  68static inline unsigned int
  69counters_total_to_per_cpu(unsigned int counters)
  70{
  71	return counters >> vpe_shift();
  72}
  73
  74static inline unsigned int
  75counters_per_cpu_to_total(unsigned int counters)
  76{
  77	return counters << vpe_shift();
  78}
  79
  80#define __define_perf_accessors(r, n, np)				\
  81									\
  82static inline unsigned int r_c0_ ## r ## n(void)			\
  83{									\
  84	unsigned int cpu = vpe_id();					\
  85									\
  86	switch (cpu) {							\
  87	case 0:								\
  88		return read_c0_ ## r ## n();				\
  89	case 1:								\
  90		return read_c0_ ## r ## np();				\
  91	default:							\
  92		BUG();							\
  93	}								\
  94	return 0;							\
  95}									\
  96									\
  97static inline void w_c0_ ## r ## n(unsigned int value)			\
  98{									\
  99	unsigned int cpu = vpe_id();					\
 100									\
 101	switch (cpu) {							\
 102	case 0:								\
 103		write_c0_ ## r ## n(value);				\
 104		return;							\
 105	case 1:								\
 106		write_c0_ ## r ## np(value);				\
 107		return;							\
 108	default:							\
 109		BUG();							\
 110	}								\
 111	return;								\
 112}									\
 113
 114__define_perf_accessors(perfcntr, 0, 2)
 115__define_perf_accessors(perfcntr, 1, 3)
 116__define_perf_accessors(perfcntr, 2, 0)
 117__define_perf_accessors(perfcntr, 3, 1)
 118
 119__define_perf_accessors(perfctrl, 0, 2)
 120__define_perf_accessors(perfctrl, 1, 3)
 121__define_perf_accessors(perfctrl, 2, 0)
 122__define_perf_accessors(perfctrl, 3, 1)
 123
 124static inline int __n_counters(void)
 125{
 126	if (!(read_c0_config1() & M_CONFIG1_PC))
 127		return 0;
 128	if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
 129		return 1;
 130	if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
 131		return 2;
 132	if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
 133		return 3;
 134
 135	return 4;
 
 
 
 
 136}
 137
 138static inline int n_counters(void)
 139{
 140	int counters;
 141
 142	switch (current_cpu_type()) {
 143	case CPU_R10000:
 144		counters = 2;
 145		break;
 146
 147	case CPU_R12000:
 148	case CPU_R14000:
 149		counters = 4;
 150		break;
 151
 
 
 
 
 
 
 
 
 
 
 
 
 
 152	default:
 153		counters = __n_counters();
 
 154	}
 155
 156	return counters;
 157}
 158
 159static void reset_counters(void *arg)
 160{
 161	int counters = (int)(long)arg;
 162	switch (counters) {
 163	case 4:
 164		w_c0_perfctrl3(0);
 165		w_c0_perfcntr3(0);
 166	case 3:
 167		w_c0_perfctrl2(0);
 168		w_c0_perfcntr2(0);
 169	case 2:
 170		w_c0_perfctrl1(0);
 171		w_c0_perfcntr1(0);
 172	case 1:
 173		w_c0_perfctrl0(0);
 174		w_c0_perfcntr0(0);
 
 
 
 
 
 
 175	}
 176}
 177
 178static inline u64
 179mipsxx_pmu_read_counter(unsigned int idx)
 180{
 
 
 181	switch (idx) {
 182	case 0:
 183		return r_c0_perfcntr0();
 
 184	case 1:
 185		return r_c0_perfcntr1();
 
 186	case 2:
 187		return r_c0_perfcntr2();
 
 188	case 3:
 189		return r_c0_perfcntr3();
 190	default:
 191		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 192		return 0;
 193	}
 194}
 195
 196static inline void
 197mipsxx_pmu_write_counter(unsigned int idx, u64 val)
 198{
 
 
 199	switch (idx) {
 200	case 0:
 201		w_c0_perfcntr0(val);
 202		return;
 203	case 1:
 204		w_c0_perfcntr1(val);
 205		return;
 206	case 2:
 207		w_c0_perfcntr2(val);
 208		return;
 209	case 3:
 210		w_c0_perfcntr3(val);
 211		return;
 212	}
 213}
 214
 215static inline unsigned int
 216mipsxx_pmu_read_control(unsigned int idx)
 217{
 
 
 218	switch (idx) {
 219	case 0:
 220		return r_c0_perfctrl0();
 221	case 1:
 222		return r_c0_perfctrl1();
 223	case 2:
 224		return r_c0_perfctrl2();
 225	case 3:
 226		return r_c0_perfctrl3();
 227	default:
 228		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 229		return 0;
 230	}
 231}
 232
 233static inline void
 234mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
 235{
 
 
 236	switch (idx) {
 237	case 0:
 238		w_c0_perfctrl0(val);
 239		return;
 240	case 1:
 241		w_c0_perfctrl1(val);
 242		return;
 243	case 2:
 244		w_c0_perfctrl2(val);
 245		return;
 246	case 3:
 247		w_c0_perfctrl3(val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 249	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250}
 251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 252#ifdef CONFIG_MIPS_MT_SMP
 253static DEFINE_RWLOCK(pmuint_rwlock);
 
 
 
 
 
 254#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 255
 256/* 24K/34K/1004K cores can share the same event map. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 257static const struct mips_perf_event mipsxxcore_event_map
 258				[PERF_COUNT_HW_MAX] = {
 259	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 260	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 261	[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
 262	[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
 263	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
 264	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
 265	[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
 266};
 267
 268/* 74K core has different branch event code. */
 269static const struct mips_perf_event mipsxx74Kcore_event_map
 270				[PERF_COUNT_HW_MAX] = {
 271	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 272	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 273	[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
 274	[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
 275	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
 276	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
 277	[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
 278};
 279
 280/* 24K/34K/1004K cores can share the same cache event map. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 281static const struct mips_perf_event mipsxxcore_cache_map
 282				[PERF_COUNT_HW_CACHE_MAX]
 283				[PERF_COUNT_HW_CACHE_OP_MAX]
 284				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 285[C(L1D)] = {
 286	/*
 287	 * Like some other architectures (e.g. ARM), the performance
 288	 * counters don't differentiate between read and write
 289	 * accesses/misses, so this isn't strictly correct, but it's the
 290	 * best we can do. Writes and reads get combined.
 291	 */
 292	[C(OP_READ)] = {
 293		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
 294		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
 295	},
 296	[C(OP_WRITE)] = {
 297		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
 298		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
 299	},
 300	[C(OP_PREFETCH)] = {
 301		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 302		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 303	},
 304},
 305[C(L1I)] = {
 306	[C(OP_READ)] = {
 307		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
 308		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
 309	},
 310	[C(OP_WRITE)] = {
 311		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
 312		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
 313	},
 314	[C(OP_PREFETCH)] = {
 315		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
 316		/*
 317		 * Note that MIPS has only "hit" events countable for
 318		 * the prefetch operation.
 319		 */
 320		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 321	},
 322},
 323[C(LL)] = {
 324	[C(OP_READ)] = {
 325		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
 326		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
 327	},
 328	[C(OP_WRITE)] = {
 329		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
 330		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
 331	},
 332	[C(OP_PREFETCH)] = {
 333		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 334		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 335	},
 336},
 337[C(DTLB)] = {
 338	[C(OP_READ)] = {
 339		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 340		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 341	},
 342	[C(OP_WRITE)] = {
 343		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 344		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 345	},
 346	[C(OP_PREFETCH)] = {
 347		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 348		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 349	},
 350},
 351[C(ITLB)] = {
 352	[C(OP_READ)] = {
 353		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
 354		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
 355	},
 356	[C(OP_WRITE)] = {
 357		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
 358		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
 359	},
 360	[C(OP_PREFETCH)] = {
 361		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 362		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 363	},
 364},
 365[C(BPU)] = {
 366	/* Using the same code for *HW_BRANCH* */
 367	[C(OP_READ)] = {
 368		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
 369		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
 370	},
 371	[C(OP_WRITE)] = {
 372		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
 373		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
 374	},
 375	[C(OP_PREFETCH)] = {
 376		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 377		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 378	},
 379},
 380[C(NODE)] = {
 381	[C(OP_READ)] = {
 382		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 383		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 384	},
 385	[C(OP_WRITE)] = {
 386		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 387		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 388	},
 389	[C(OP_PREFETCH)] = {
 390		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 391		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 392	},
 393},
 394};
 395
 396/* 74K core has completely different cache event map. */
 397static const struct mips_perf_event mipsxx74Kcore_cache_map
 398				[PERF_COUNT_HW_CACHE_MAX]
 399				[PERF_COUNT_HW_CACHE_OP_MAX]
 400				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 401[C(L1D)] = {
 402	/*
 403	 * Like some other architectures (e.g. ARM), the performance
 404	 * counters don't differentiate between read and write
 405	 * accesses/misses, so this isn't strictly correct, but it's the
 406	 * best we can do. Writes and reads get combined.
 407	 */
 408	[C(OP_READ)] = {
 409		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
 410		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
 411	},
 412	[C(OP_WRITE)] = {
 413		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
 414		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
 415	},
 416	[C(OP_PREFETCH)] = {
 417		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 418		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 419	},
 420},
 421[C(L1I)] = {
 422	[C(OP_READ)] = {
 423		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 424		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 425	},
 426	[C(OP_WRITE)] = {
 427		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 428		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 429	},
 430	[C(OP_PREFETCH)] = {
 431		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
 432		/*
 433		 * Note that MIPS has only "hit" events countable for
 434		 * the prefetch operation.
 435		 */
 436		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 437	},
 438},
 439[C(LL)] = {
 440	[C(OP_READ)] = {
 441		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
 442		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
 443	},
 444	[C(OP_WRITE)] = {
 445		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
 446		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
 447	},
 448	[C(OP_PREFETCH)] = {
 449		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 450		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451	},
 452},
 453[C(DTLB)] = {
 454	/* 74K core does not have specific DTLB events. */
 455	[C(OP_READ)] = {
 456		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 457		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 458	},
 459	[C(OP_WRITE)] = {
 460		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 461		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 462	},
 463	[C(OP_PREFETCH)] = {
 464		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 465		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466	},
 467},
 468[C(ITLB)] = {
 469	[C(OP_READ)] = {
 470		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
 471		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
 472	},
 473	[C(OP_WRITE)] = {
 474		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
 475		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476	},
 477	[C(OP_PREFETCH)] = {
 478		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 479		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 
 
 
 
 
 
 
 
 
 
 
 
 
 480	},
 481},
 482[C(BPU)] = {
 483	/* Using the same code for *HW_BRANCH* */
 484	[C(OP_READ)] = {
 485		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
 486		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
 487	},
 488	[C(OP_WRITE)] = {
 489		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
 490		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 491	},
 492	[C(OP_PREFETCH)] = {
 493		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 494		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 495	},
 496},
 497[C(NODE)] = {
 
 
 
 
 498	[C(OP_READ)] = {
 499		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 500		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 501	},
 502	[C(OP_WRITE)] = {
 503		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 504		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 505	},
 506	[C(OP_PREFETCH)] = {
 507		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 508		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 509	},
 510},
 511};
 512
 513#ifdef CONFIG_MIPS_MT_SMP
 514static void
 515check_and_calc_range(struct perf_event *event,
 516			const struct mips_perf_event *pev)
 517{
 518	struct hw_perf_event *hwc = &event->hw;
 519
 520	if (event->cpu >= 0) {
 521		if (pev->range > V) {
 522			/*
 523			 * The user selected an event that is processor
 524			 * wide, while expecting it to be VPE wide.
 525			 */
 526			hwc->config_base |= M_TC_EN_ALL;
 527		} else {
 528			/*
 529			 * FIXME: cpu_data[event->cpu].vpe_id reports 0
 530			 * for both CPUs.
 531			 */
 532			hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
 533			hwc->config_base |= M_TC_EN_VPE;
 534		}
 535	} else
 536		hwc->config_base |= M_TC_EN_ALL;
 537}
 538#else
 539static void
 540check_and_calc_range(struct perf_event *event,
 541			const struct mips_perf_event *pev)
 542{
 543}
 544#endif
 545
 546static int __hw_perf_event_init(struct perf_event *event)
 547{
 548	struct perf_event_attr *attr = &event->attr;
 549	struct hw_perf_event *hwc = &event->hw;
 550	const struct mips_perf_event *pev;
 551	int err;
 552
 553	/* Returning MIPS event descriptor for generic perf event. */
 554	if (PERF_TYPE_HARDWARE == event->attr.type) {
 555		if (event->attr.config >= PERF_COUNT_HW_MAX)
 556			return -EINVAL;
 557		pev = mipspmu_map_general_event(event->attr.config);
 558	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
 559		pev = mipspmu_map_cache_event(event->attr.config);
 560	} else if (PERF_TYPE_RAW == event->attr.type) {
 561		/* We are working on the global raw event. */
 562		mutex_lock(&raw_event_mutex);
 563		pev = mipspmu->map_raw_event(event->attr.config);
 564	} else {
 565		/* The event type is not (yet) supported. */
 566		return -EOPNOTSUPP;
 567	}
 568
 569	if (IS_ERR(pev)) {
 570		if (PERF_TYPE_RAW == event->attr.type)
 571			mutex_unlock(&raw_event_mutex);
 572		return PTR_ERR(pev);
 573	}
 574
 575	/*
 576	 * We allow max flexibility on how each individual counter shared
 577	 * by the single CPU operates (the mode exclusion and the range).
 578	 */
 579	hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
 580
 581	/* Calculate range bits and validate it. */
 582	if (num_possible_cpus() > 1)
 583		check_and_calc_range(event, pev);
 584
 585	hwc->event_base = mipspmu_perf_event_encode(pev);
 586	if (PERF_TYPE_RAW == event->attr.type)
 587		mutex_unlock(&raw_event_mutex);
 588
 589	if (!attr->exclude_user)
 590		hwc->config_base |= M_PERFCTL_USER;
 591	if (!attr->exclude_kernel) {
 592		hwc->config_base |= M_PERFCTL_KERNEL;
 593		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
 594		hwc->config_base |= M_PERFCTL_EXL;
 595	}
 596	if (!attr->exclude_hv)
 597		hwc->config_base |= M_PERFCTL_SUPERVISOR;
 598
 599	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
 600	/*
 601	 * The event can belong to another cpu. We do not assign a local
 602	 * counter for it for now.
 603	 */
 604	hwc->idx = -1;
 605	hwc->config = 0;
 606
 607	if (!hwc->sample_period) {
 608		hwc->sample_period  = MAX_PERIOD;
 609		hwc->last_period    = hwc->sample_period;
 610		local64_set(&hwc->period_left, hwc->sample_period);
 611	}
 612
 613	err = 0;
 614	if (event->group_leader != event) {
 615		err = validate_group(event);
 616		if (err)
 617			return -EINVAL;
 618	}
 619
 620	event->destroy = hw_perf_event_destroy;
 621
 
 
 
 622	return err;
 623}
 624
 625static void pause_local_counters(void)
 626{
 627	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 628	int counters = mipspmu->num_counters;
 629	unsigned long flags;
 630
 631	local_irq_save(flags);
 632	switch (counters) {
 633	case 4:
 634		cpuc->saved_ctrl[3] = r_c0_perfctrl3();
 635		w_c0_perfctrl3(cpuc->saved_ctrl[3] &
 636			~M_PERFCTL_COUNT_EVENT_WHENEVER);
 637	case 3:
 638		cpuc->saved_ctrl[2] = r_c0_perfctrl2();
 639		w_c0_perfctrl2(cpuc->saved_ctrl[2] &
 640			~M_PERFCTL_COUNT_EVENT_WHENEVER);
 641	case 2:
 642		cpuc->saved_ctrl[1] = r_c0_perfctrl1();
 643		w_c0_perfctrl1(cpuc->saved_ctrl[1] &
 644			~M_PERFCTL_COUNT_EVENT_WHENEVER);
 645	case 1:
 646		cpuc->saved_ctrl[0] = r_c0_perfctrl0();
 647		w_c0_perfctrl0(cpuc->saved_ctrl[0] &
 648			~M_PERFCTL_COUNT_EVENT_WHENEVER);
 649	}
 650	local_irq_restore(flags);
 651}
 652
 653static void resume_local_counters(void)
 654{
 655	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 656	int counters = mipspmu->num_counters;
 657	unsigned long flags;
 658
 659	local_irq_save(flags);
 660	switch (counters) {
 661	case 4:
 662		w_c0_perfctrl3(cpuc->saved_ctrl[3]);
 663	case 3:
 664		w_c0_perfctrl2(cpuc->saved_ctrl[2]);
 665	case 2:
 666		w_c0_perfctrl1(cpuc->saved_ctrl[1]);
 667	case 1:
 668		w_c0_perfctrl0(cpuc->saved_ctrl[0]);
 669	}
 670	local_irq_restore(flags);
 671}
 672
 673static int mipsxx_pmu_handle_shared_irq(void)
 674{
 675	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 676	struct perf_sample_data data;
 677	unsigned int counters = mipspmu->num_counters;
 678	unsigned int counter;
 679	int handled = IRQ_NONE;
 680	struct pt_regs *regs;
 681
 682	if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
 683		return handled;
 684
 685	/*
 686	 * First we pause the local counters, so that when we are locked
 687	 * here, the counters are all paused. When it gets locked due to
 688	 * perf_disable(), the timer interrupt handler will be delayed.
 689	 *
 690	 * See also mipsxx_pmu_start().
 691	 */
 692	pause_local_counters();
 693#ifdef CONFIG_MIPS_MT_SMP
 694	read_lock(&pmuint_rwlock);
 695#endif
 696
 697	regs = get_irq_regs();
 698
 699	perf_sample_data_init(&data, 0);
 700
 701	switch (counters) {
 702#define HANDLE_COUNTER(n)						\
 703	case n + 1:							\
 704		if (test_bit(n, cpuc->used_mask)) {			\
 705			counter = r_c0_perfcntr ## n();			\
 706			if (counter & M_COUNTER_OVERFLOW) {		\
 707				w_c0_perfcntr ## n(counter &		\
 708						VALID_COUNT);		\
 709				if (test_and_change_bit(n, cpuc->msbs))	\
 710					handle_associated_event(cpuc,	\
 711						n, &data, regs);	\
 712				handled = IRQ_HANDLED;			\
 713			}						\
 714		}
 715	HANDLE_COUNTER(3)
 716	HANDLE_COUNTER(2)
 717	HANDLE_COUNTER(1)
 718	HANDLE_COUNTER(0)
 719	}
 720
 721	/*
 722	 * Do all the work for the pending perf events. We can do this
 723	 * in here because the performance counter interrupt is a regular
 724	 * interrupt, not NMI.
 725	 */
 726	if (handled == IRQ_HANDLED)
 727		irq_work_run();
 728
 729#ifdef CONFIG_MIPS_MT_SMP
 730	read_unlock(&pmuint_rwlock);
 731#endif
 732	resume_local_counters();
 733	return handled;
 734}
 735
 736static irqreturn_t
 737mipsxx_pmu_handle_irq(int irq, void *dev)
 738{
 739	return mipsxx_pmu_handle_shared_irq();
 740}
 741
 742static void mipsxx_pmu_start(void)
 743{
 744#ifdef CONFIG_MIPS_MT_SMP
 745	write_unlock(&pmuint_rwlock);
 746#endif
 747	resume_local_counters();
 748}
 749
 750/*
 751 * MIPS performance counters can be per-TC. The control registers can
 752 * not be directly accessed across CPUs. Hence if we want to do global
 753 * control, we need cross CPU calls. on_each_cpu() can help us, but we
 754 * can not make sure this function is called with interrupts enabled. So
 755 * here we pause local counters and then grab a rwlock and leave the
 756 * counters on other CPUs alone. If any counter interrupt raises while
 757 * we own the write lock, simply pause local counters on that CPU and
 758 * spin in the handler. Also we know we won't be switched to another
 759 * CPU after pausing local counters and before grabbing the lock.
 760 */
 761static void mipsxx_pmu_stop(void)
 762{
 763	pause_local_counters();
 764#ifdef CONFIG_MIPS_MT_SMP
 765	write_lock(&pmuint_rwlock);
 766#endif
 767}
 768
 769static int
 770mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
 771			struct hw_perf_event *hwc)
 772{
 773	int i;
 774
 775	/*
 776	 * We only need to care the counter mask. The range has been
 777	 * checked definitely.
 778	 */
 779	unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
 780
 781	for (i = mipspmu->num_counters - 1; i >= 0; i--) {
 782		/*
 783		 * Note that some MIPS perf events can be counted by both
 784		 * even and odd counters, wheresas many other are only by
 785		 * even _or_ odd counters. This introduces an issue that
 786		 * when the former kind of event takes the counter the
 787		 * latter kind of event wants to use, then the "counter
 788		 * allocation" for the latter event will fail. In fact if
 789		 * they can be dynamically swapped, they both feel happy.
 790		 * But here we leave this issue alone for now.
 791		 */
 792		if (test_bit(i, &cntr_mask) &&
 793			!test_and_set_bit(i, cpuc->used_mask))
 794			return i;
 795	}
 796
 797	return -EAGAIN;
 798}
 799
 800static void
 801mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
 802{
 803	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 804	unsigned long flags;
 805
 806	WARN_ON(idx < 0 || idx >= mipspmu->num_counters);
 807
 808	local_irq_save(flags);
 809	cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
 810		(evt->config_base & M_PERFCTL_CONFIG_MASK) |
 811		/* Make sure interrupt enabled. */
 812		M_PERFCTL_INTERRUPT_ENABLE;
 813	/*
 814	 * We do not actually let the counter run. Leave it until start().
 815	 */
 816	local_irq_restore(flags);
 817}
 818
 819static void
 820mipsxx_pmu_disable_event(int idx)
 821{
 822	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 823	unsigned long flags;
 824
 825	WARN_ON(idx < 0 || idx >= mipspmu->num_counters);
 826
 827	local_irq_save(flags);
 828	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
 829		~M_PERFCTL_COUNT_EVENT_WHENEVER;
 830	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
 831	local_irq_restore(flags);
 832}
 833
 834/* 24K */
 835#define IS_UNSUPPORTED_24K_EVENT(r, b)					\
 836	((b) == 12 || (r) == 151 || (r) == 152 || (b) == 26 ||		\
 837	 (b) == 27 || (r) == 28 || (r) == 158 || (b) == 31 ||		\
 838	 (b) == 32 || (b) == 34 || (b) == 36 || (r) == 168 ||		\
 839	 (r) == 172 || (b) == 47 || ((b) >= 56 && (b) <= 63) ||		\
 840	 ((b) >= 68 && (b) <= 127))
 841#define IS_BOTH_COUNTERS_24K_EVENT(b)					\
 842	((b) == 0 || (b) == 1 || (b) == 11)
 843
 844/* 34K */
 845#define IS_UNSUPPORTED_34K_EVENT(r, b)					\
 846	((b) == 12 || (r) == 27 || (r) == 158 || (b) == 36 ||		\
 847	 (b) == 38 || (r) == 175 || ((b) >= 56 && (b) <= 63) ||		\
 848	 ((b) >= 68 && (b) <= 127))
 849#define IS_BOTH_COUNTERS_34K_EVENT(b)					\
 850	((b) == 0 || (b) == 1 || (b) == 11)
 851#ifdef CONFIG_MIPS_MT_SMP
 852#define IS_RANGE_P_34K_EVENT(r, b)					\
 853	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
 854	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
 855	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
 856	 ((b) >= 64 && (b) <= 67))
 857#define IS_RANGE_V_34K_EVENT(r)	((r) == 47)
 858#endif
 859
 860/* 74K */
 861#define IS_UNSUPPORTED_74K_EVENT(r, b)					\
 862	((r) == 5 || ((r) >= 135 && (r) <= 137) ||			\
 863	 ((b) >= 10 && (b) <= 12) || (b) == 22 || (b) == 27 ||		\
 864	 (b) == 33 || (b) == 34 || ((b) >= 47 && (b) <= 49) ||		\
 865	 (r) == 178 || (b) == 55 || (b) == 57 || (b) == 60 ||		\
 866	 (b) == 61 || (r) == 62 || (r) == 191 ||			\
 867	 ((b) >= 64 && (b) <= 127))
 868#define IS_BOTH_COUNTERS_74K_EVENT(b)					\
 869	((b) == 0 || (b) == 1)
 870
 
 
 
 
 
 
 
 871/* 1004K */
 872#define IS_UNSUPPORTED_1004K_EVENT(r, b)				\
 873	((b) == 12 || (r) == 27 || (r) == 158 || (b) == 38 ||		\
 874	 (r) == 175 || (b) == 63 || ((b) >= 68 && (b) <= 127))
 875#define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
 876	((b) == 0 || (b) == 1 || (b) == 11)
 877#ifdef CONFIG_MIPS_MT_SMP
 878#define IS_RANGE_P_1004K_EVENT(r, b)					\
 879	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
 880	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
 881	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
 882	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
 883	 ((b) >= 64 && (b) <= 67))
 884#define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
 885#endif
 886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 887/*
 888 * User can use 0-255 raw events, where 0-127 for the events of even
 889 * counters, and 128-255 for odd counters. Note that bit 7 is used to
 890 * indicate the parity. So, for example, when user wants to take the
 891 * Event Num of 15 for odd counters (by referring to the user manual),
 892 * then 128 needs to be added to 15 as the input for the event config,
 893 * i.e., 143 (0x8F) to be used.
 
 
 
 
 894 */
 895static const struct mips_perf_event *
 896mipsxx_pmu_map_raw_event(u64 config)
 897{
 
 898	unsigned int raw_id = config & 0xff;
 899	unsigned int base_id = raw_id & 0x7f;
 900
 901	switch (current_cpu_type()) {
 902	case CPU_24K:
 903		if (IS_UNSUPPORTED_24K_EVENT(raw_id, base_id))
 904			return ERR_PTR(-EOPNOTSUPP);
 905		raw_event.event_id = base_id;
 906		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
 907			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
 908		else
 909			raw_event.cntr_mask =
 910				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
 911#ifdef CONFIG_MIPS_MT_SMP
 912		/*
 913		 * This is actually doing nothing. Non-multithreading
 914		 * CPUs will not check and calculate the range.
 915		 */
 916		raw_event.range = P;
 917#endif
 918		break;
 919	case CPU_34K:
 920		if (IS_UNSUPPORTED_34K_EVENT(raw_id, base_id))
 921			return ERR_PTR(-EOPNOTSUPP);
 922		raw_event.event_id = base_id;
 923		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
 924			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
 925		else
 926			raw_event.cntr_mask =
 927				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
 928#ifdef CONFIG_MIPS_MT_SMP
 929		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
 930			raw_event.range = P;
 931		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
 932			raw_event.range = V;
 933		else
 934			raw_event.range = T;
 935#endif
 936		break;
 937	case CPU_74K:
 938		if (IS_UNSUPPORTED_74K_EVENT(raw_id, base_id))
 939			return ERR_PTR(-EOPNOTSUPP);
 940		raw_event.event_id = base_id;
 941		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
 942			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
 943		else
 944			raw_event.cntr_mask =
 945				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
 946#ifdef CONFIG_MIPS_MT_SMP
 947		raw_event.range = P;
 948#endif
 949		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 950	case CPU_1004K:
 951		if (IS_UNSUPPORTED_1004K_EVENT(raw_id, base_id))
 952			return ERR_PTR(-EOPNOTSUPP);
 953		raw_event.event_id = base_id;
 954		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
 955			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
 956		else
 957			raw_event.cntr_mask =
 958				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
 959#ifdef CONFIG_MIPS_MT_SMP
 960		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
 961			raw_event.range = P;
 962		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
 963			raw_event.range = V;
 964		else
 965			raw_event.range = T;
 966#endif
 967		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968	}
 969
 
 
 970	return &raw_event;
 971}
 972
 973static struct mips_pmu mipsxxcore_pmu = {
 974	.handle_irq = mipsxx_pmu_handle_irq,
 975	.handle_shared_irq = mipsxx_pmu_handle_shared_irq,
 976	.start = mipsxx_pmu_start,
 977	.stop = mipsxx_pmu_stop,
 978	.alloc_counter = mipsxx_pmu_alloc_counter,
 979	.read_counter = mipsxx_pmu_read_counter,
 980	.write_counter = mipsxx_pmu_write_counter,
 981	.enable_event = mipsxx_pmu_enable_event,
 982	.disable_event = mipsxx_pmu_disable_event,
 983	.map_raw_event = mipsxx_pmu_map_raw_event,
 984	.general_event_map = &mipsxxcore_event_map,
 985	.cache_event_map = &mipsxxcore_cache_map,
 986};
 987
 988static struct mips_pmu mipsxx74Kcore_pmu = {
 989	.handle_irq = mipsxx_pmu_handle_irq,
 990	.handle_shared_irq = mipsxx_pmu_handle_shared_irq,
 991	.start = mipsxx_pmu_start,
 992	.stop = mipsxx_pmu_stop,
 993	.alloc_counter = mipsxx_pmu_alloc_counter,
 994	.read_counter = mipsxx_pmu_read_counter,
 995	.write_counter = mipsxx_pmu_write_counter,
 996	.enable_event = mipsxx_pmu_enable_event,
 997	.disable_event = mipsxx_pmu_disable_event,
 998	.map_raw_event = mipsxx_pmu_map_raw_event,
 999	.general_event_map = &mipsxx74Kcore_event_map,
1000	.cache_event_map = &mipsxx74Kcore_cache_map,
1001};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002
1003static int __init
1004init_hw_perf_events(void)
1005{
1006	int counters, irq;
 
1007
1008	pr_info("Performance counters: ");
1009
1010	counters = n_counters();
1011	if (counters == 0) {
1012		pr_cont("No available PMU.\n");
1013		return -ENODEV;
1014	}
1015
1016#ifdef CONFIG_MIPS_MT_SMP
1017	cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1018	if (!cpu_has_mipsmt_pertccounters)
1019		counters = counters_total_to_per_cpu(counters);
1020#endif
1021
1022#ifdef MSC01E_INT_BASE
1023	if (cpu_has_veic) {
1024		/*
1025		 * Using platform specific interrupt controller defines.
1026		 */
1027		irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1028	} else {
1029#endif
1030		if (cp0_perfcount_irq >= 0)
1031			irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1032		else
1033			irq = -1;
1034#ifdef MSC01E_INT_BASE
1035	}
1036#endif
1037
1038	on_each_cpu(reset_counters, (void *)(long)counters, 1);
1039
1040	switch (current_cpu_type()) {
1041	case CPU_24K:
1042		mipsxxcore_pmu.name = "mips/24K";
1043		mipsxxcore_pmu.num_counters = counters;
1044		mipsxxcore_pmu.irq = irq;
1045		mipspmu = &mipsxxcore_pmu;
1046		break;
1047	case CPU_34K:
1048		mipsxxcore_pmu.name = "mips/34K";
1049		mipsxxcore_pmu.num_counters = counters;
1050		mipsxxcore_pmu.irq = irq;
1051		mipspmu = &mipsxxcore_pmu;
1052		break;
1053	case CPU_74K:
1054		mipsxx74Kcore_pmu.name = "mips/74K";
1055		mipsxx74Kcore_pmu.num_counters = counters;
1056		mipsxx74Kcore_pmu.irq = irq;
1057		mipspmu = &mipsxx74Kcore_pmu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1058		break;
1059	case CPU_1004K:
1060		mipsxxcore_pmu.name = "mips/1004K";
1061		mipsxxcore_pmu.num_counters = counters;
1062		mipsxxcore_pmu.irq = irq;
1063		mipspmu = &mipsxxcore_pmu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064		break;
1065	default:
1066		pr_cont("Either hardware does not support performance "
1067			"counters, or not yet implemented.\n");
1068		return -ENODEV;
1069	}
1070
1071	if (mipspmu)
1072		pr_cont("%s PMU enabled, %d counters available to each "
1073			"CPU, irq %d%s\n", mipspmu->name, counters, irq,
1074			irq < 0 ? " (share with timer interrupt)" : "");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075
1076	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1077
1078	return 0;
1079}
1080early_initcall(init_hw_perf_events);
1081
1082#endif /* defined(CONFIG_CPU_MIPS32)... */
v4.10.11
   1/*
   2 * Linux performance counter support for MIPS.
   3 *
   4 * Copyright (C) 2010 MIPS Technologies, Inc.
   5 * Copyright (C) 2011 Cavium Networks, Inc.
   6 * Author: Deng-Cheng Zhu
   7 *
   8 * This code is based on the implementation for ARM, which is in turn
   9 * based on the sparc64 perf event code and the x86 code. Performance
  10 * counter access is based on the MIPS Oprofile code. And the callchain
  11 * support references the code of MIPS stacktrace.c.
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 */
  17
  18#include <linux/cpumask.h>
  19#include <linux/interrupt.h>
  20#include <linux/smp.h>
  21#include <linux/kernel.h>
  22#include <linux/perf_event.h>
  23#include <linux/uaccess.h>
  24
  25#include <asm/irq.h>
  26#include <asm/irq_regs.h>
  27#include <asm/stacktrace.h>
  28#include <asm/time.h> /* For perf_irq */
  29
  30#define MIPS_MAX_HWEVENTS 4
  31#define MIPS_TCS_PER_COUNTER 2
  32#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
  33
  34struct cpu_hw_events {
  35	/* Array of events on this cpu. */
  36	struct perf_event	*events[MIPS_MAX_HWEVENTS];
  37
  38	/*
  39	 * Set the bit (indexed by the counter number) when the counter
  40	 * is used for an event.
  41	 */
  42	unsigned long		used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
  43
  44	/*
  45	 * Software copy of the control register for each performance counter.
  46	 * MIPS CPUs vary in performance counters. They use this differently,
  47	 * and even may not use it.
  48	 */
  49	unsigned int		saved_ctrl[MIPS_MAX_HWEVENTS];
  50};
  51DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  52	.saved_ctrl = {0},
  53};
  54
  55/* The description of MIPS performance events. */
  56struct mips_perf_event {
  57	unsigned int event_id;
  58	/*
  59	 * MIPS performance counters are indexed starting from 0.
  60	 * CNTR_EVEN indicates the indexes of the counters to be used are
  61	 * even numbers.
  62	 */
  63	unsigned int cntr_mask;
  64	#define CNTR_EVEN	0x55555555
  65	#define CNTR_ODD	0xaaaaaaaa
  66	#define CNTR_ALL	0xffffffff
  67#ifdef CONFIG_MIPS_MT_SMP
  68	enum {
  69		T  = 0,
  70		V  = 1,
  71		P  = 2,
  72	} range;
  73#else
  74	#define T
  75	#define V
  76	#define P
  77#endif
  78};
  79
  80static struct mips_perf_event raw_event;
  81static DEFINE_MUTEX(raw_event_mutex);
  82
  83#define C(x) PERF_COUNT_HW_CACHE_##x
  84
  85struct mips_pmu {
  86	u64		max_period;
  87	u64		valid_count;
  88	u64		overflow;
  89	const char	*name;
  90	int		irq;
  91	u64		(*read_counter)(unsigned int idx);
  92	void		(*write_counter)(unsigned int idx, u64 val);
  93	const struct mips_perf_event *(*map_raw_event)(u64 config);
  94	const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
  95	const struct mips_perf_event (*cache_event_map)
  96				[PERF_COUNT_HW_CACHE_MAX]
  97				[PERF_COUNT_HW_CACHE_OP_MAX]
  98				[PERF_COUNT_HW_CACHE_RESULT_MAX];
  99	unsigned int	num_counters;
 100};
 101
 102static struct mips_pmu mipspmu;
 103
 104#define M_PERFCTL_EXL			(1	<<  0)
 105#define M_PERFCTL_KERNEL		(1	<<  1)
 106#define M_PERFCTL_SUPERVISOR		(1	<<  2)
 107#define M_PERFCTL_USER			(1	<<  3)
 108#define M_PERFCTL_INTERRUPT_ENABLE	(1	<<  4)
 109#define M_PERFCTL_EVENT(event)		(((event) & 0x3ff)  << 5)
 110#define M_PERFCTL_VPEID(vpe)		((vpe)	  << 16)
 111
 112#ifdef CONFIG_CPU_BMIPS5000
 113#define M_PERFCTL_MT_EN(filter)		0
 114#else /* !CONFIG_CPU_BMIPS5000 */
 115#define M_PERFCTL_MT_EN(filter)		((filter) << 20)
 116#endif /* CONFIG_CPU_BMIPS5000 */
 117
 118#define	   M_TC_EN_ALL			M_PERFCTL_MT_EN(0)
 119#define	   M_TC_EN_VPE			M_PERFCTL_MT_EN(1)
 120#define	   M_TC_EN_TC			M_PERFCTL_MT_EN(2)
 121#define M_PERFCTL_TCID(tcid)		((tcid)	  << 22)
 122#define M_PERFCTL_WIDE			(1	<< 30)
 123#define M_PERFCTL_MORE			(1	<< 31)
 124#define M_PERFCTL_TC			(1	<< 30)
 125
 126#define M_PERFCTL_COUNT_EVENT_WHENEVER	(M_PERFCTL_EXL |		\
 127					M_PERFCTL_KERNEL |		\
 128					M_PERFCTL_USER |		\
 129					M_PERFCTL_SUPERVISOR |		\
 130					M_PERFCTL_INTERRUPT_ENABLE)
 131
 132#ifdef CONFIG_MIPS_MT_SMP
 133#define M_PERFCTL_CONFIG_MASK		0x3fff801f
 134#else
 135#define M_PERFCTL_CONFIG_MASK		0x1f
 136#endif
 137#define M_PERFCTL_EVENT_MASK		0xfe0
 138
 
 139
 140#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 141static int cpu_has_mipsmt_pertccounters;
 142
 143static DEFINE_RWLOCK(pmuint_rwlock);
 144
 145#if defined(CONFIG_CPU_BMIPS5000)
 146#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
 147			 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
 148#else
 149/*
 150 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
 151 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
 152 */
 
 153#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
 154			 0 : smp_processor_id())
 
 
 
 155#endif
 156
 157/* Copied from op_model_mipsxx.c */
 158static unsigned int vpe_shift(void)
 159{
 160	if (num_possible_cpus() > 1)
 161		return 1;
 162
 163	return 0;
 164}
 
 
 
 
 
 
 
 
 165
 166static unsigned int counters_total_to_per_cpu(unsigned int counters)
 
 167{
 168	return counters >> vpe_shift();
 169}
 170
 171#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
 172#define vpe_id()	0
 
 
 
 173
 174#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175
 176static void resume_local_counters(void);
 177static void pause_local_counters(void);
 178static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
 179static int mipsxx_pmu_handle_shared_irq(void);
 
 
 
 
 
 
 180
 181static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
 182{
 183	if (vpe_id() == 1)
 184		idx = (idx + 2) & 3;
 185	return idx;
 186}
 187
 188static u64 mipsxx_pmu_read_counter(unsigned int idx)
 189{
 190	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 
 
 
 
 
 
 
 
 
 
 191
 192	switch (idx) {
 193	case 0:
 194		/*
 195		 * The counters are unsigned, we must cast to truncate
 196		 * off the high bits.
 197		 */
 198		return (u32)read_c0_perfcntr0();
 199	case 1:
 200		return (u32)read_c0_perfcntr1();
 201	case 2:
 202		return (u32)read_c0_perfcntr2();
 203	case 3:
 204		return (u32)read_c0_perfcntr3();
 205	default:
 206		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 207		return 0;
 208	}
 
 
 209}
 210
 211static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
 212{
 213	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 214
 215	switch (idx) {
 216	case 0:
 217		return read_c0_perfcntr0_64();
 
 
 
 
 
 
 218	case 1:
 219		return read_c0_perfcntr1_64();
 220	case 2:
 221		return read_c0_perfcntr2_64();
 222	case 3:
 223		return read_c0_perfcntr3_64();
 224	default:
 225		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 226		return 0;
 227	}
 228}
 229
 230static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
 
 231{
 232	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 233
 234	switch (idx) {
 235	case 0:
 236		write_c0_perfcntr0(val);
 237		return;
 238	case 1:
 239		write_c0_perfcntr1(val);
 240		return;
 241	case 2:
 242		write_c0_perfcntr2(val);
 243		return;
 244	case 3:
 245		write_c0_perfcntr3(val);
 246		return;
 
 
 247	}
 248}
 249
 250static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
 
 251{
 252	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 253
 254	switch (idx) {
 255	case 0:
 256		write_c0_perfcntr0_64(val);
 257		return;
 258	case 1:
 259		write_c0_perfcntr1_64(val);
 260		return;
 261	case 2:
 262		write_c0_perfcntr2_64(val);
 263		return;
 264	case 3:
 265		write_c0_perfcntr3_64(val);
 266		return;
 267	}
 268}
 269
 270static unsigned int mipsxx_pmu_read_control(unsigned int idx)
 
 271{
 272	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 273
 274	switch (idx) {
 275	case 0:
 276		return read_c0_perfctrl0();
 277	case 1:
 278		return read_c0_perfctrl1();
 279	case 2:
 280		return read_c0_perfctrl2();
 281	case 3:
 282		return read_c0_perfctrl3();
 283	default:
 284		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 285		return 0;
 286	}
 287}
 288
 289static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
 
 290{
 291	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 292
 293	switch (idx) {
 294	case 0:
 295		write_c0_perfctrl0(val);
 296		return;
 297	case 1:
 298		write_c0_perfctrl1(val);
 299		return;
 300	case 2:
 301		write_c0_perfctrl2(val);
 302		return;
 303	case 3:
 304		write_c0_perfctrl3(val);
 305		return;
 306	}
 307}
 308
 309static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
 310				    struct hw_perf_event *hwc)
 311{
 312	int i;
 313
 314	/*
 315	 * We only need to care the counter mask. The range has been
 316	 * checked definitely.
 317	 */
 318	unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
 319
 320	for (i = mipspmu.num_counters - 1; i >= 0; i--) {
 321		/*
 322		 * Note that some MIPS perf events can be counted by both
 323		 * even and odd counters, wheresas many other are only by
 324		 * even _or_ odd counters. This introduces an issue that
 325		 * when the former kind of event takes the counter the
 326		 * latter kind of event wants to use, then the "counter
 327		 * allocation" for the latter event will fail. In fact if
 328		 * they can be dynamically swapped, they both feel happy.
 329		 * But here we leave this issue alone for now.
 330		 */
 331		if (test_bit(i, &cntr_mask) &&
 332			!test_and_set_bit(i, cpuc->used_mask))
 333			return i;
 334	}
 335
 336	return -EAGAIN;
 337}
 338
 339static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
 340{
 341	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 342
 343	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 344
 345	cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
 346		(evt->config_base & M_PERFCTL_CONFIG_MASK) |
 347		/* Make sure interrupt enabled. */
 348		M_PERFCTL_INTERRUPT_ENABLE;
 349	if (IS_ENABLED(CONFIG_CPU_BMIPS5000))
 350		/* enable the counter for the calling thread */
 351		cpuc->saved_ctrl[idx] |=
 352			(1 << (12 + vpe_id())) | M_PERFCTL_TC;
 353
 354	/*
 355	 * We do not actually let the counter run. Leave it until start().
 356	 */
 357}
 358
 359static void mipsxx_pmu_disable_event(int idx)
 360{
 361	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 362	unsigned long flags;
 363
 364	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 365
 366	local_irq_save(flags);
 367	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
 368		~M_PERFCTL_COUNT_EVENT_WHENEVER;
 369	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
 370	local_irq_restore(flags);
 371}
 372
 373static int mipspmu_event_set_period(struct perf_event *event,
 374				    struct hw_perf_event *hwc,
 375				    int idx)
 376{
 377	u64 left = local64_read(&hwc->period_left);
 378	u64 period = hwc->sample_period;
 379	int ret = 0;
 380
 381	if (unlikely((left + period) & (1ULL << 63))) {
 382		/* left underflowed by more than period. */
 383		left = period;
 384		local64_set(&hwc->period_left, left);
 385		hwc->last_period = period;
 386		ret = 1;
 387	} else	if (unlikely((left + period) <= period)) {
 388		/* left underflowed by less than period. */
 389		left += period;
 390		local64_set(&hwc->period_left, left);
 391		hwc->last_period = period;
 392		ret = 1;
 393	}
 394
 395	if (left > mipspmu.max_period) {
 396		left = mipspmu.max_period;
 397		local64_set(&hwc->period_left, left);
 398	}
 399
 400	local64_set(&hwc->prev_count, mipspmu.overflow - left);
 401
 402	mipspmu.write_counter(idx, mipspmu.overflow - left);
 403
 404	perf_event_update_userpage(event);
 405
 406	return ret;
 407}
 408
 409static void mipspmu_event_update(struct perf_event *event,
 410				 struct hw_perf_event *hwc,
 411				 int idx)
 412{
 413	u64 prev_raw_count, new_raw_count;
 414	u64 delta;
 415
 416again:
 417	prev_raw_count = local64_read(&hwc->prev_count);
 418	new_raw_count = mipspmu.read_counter(idx);
 419
 420	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 421				new_raw_count) != prev_raw_count)
 422		goto again;
 423
 424	delta = new_raw_count - prev_raw_count;
 425
 426	local64_add(delta, &event->count);
 427	local64_sub(delta, &hwc->period_left);
 428}
 429
 430static void mipspmu_start(struct perf_event *event, int flags)
 431{
 432	struct hw_perf_event *hwc = &event->hw;
 433
 434	if (flags & PERF_EF_RELOAD)
 435		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
 436
 437	hwc->state = 0;
 438
 439	/* Set the period for the event. */
 440	mipspmu_event_set_period(event, hwc, hwc->idx);
 441
 442	/* Enable the event. */
 443	mipsxx_pmu_enable_event(hwc, hwc->idx);
 444}
 445
 446static void mipspmu_stop(struct perf_event *event, int flags)
 447{
 448	struct hw_perf_event *hwc = &event->hw;
 449
 450	if (!(hwc->state & PERF_HES_STOPPED)) {
 451		/* We are working on a local event. */
 452		mipsxx_pmu_disable_event(hwc->idx);
 453		barrier();
 454		mipspmu_event_update(event, hwc, hwc->idx);
 455		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 456	}
 457}
 458
 459static int mipspmu_add(struct perf_event *event, int flags)
 460{
 461	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 462	struct hw_perf_event *hwc = &event->hw;
 463	int idx;
 464	int err = 0;
 465
 466	perf_pmu_disable(event->pmu);
 467
 468	/* To look for a free counter for this event. */
 469	idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
 470	if (idx < 0) {
 471		err = idx;
 472		goto out;
 473	}
 474
 475	/*
 476	 * If there is an event in the counter we are going to use then
 477	 * make sure it is disabled.
 478	 */
 479	event->hw.idx = idx;
 480	mipsxx_pmu_disable_event(idx);
 481	cpuc->events[idx] = event;
 482
 483	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 484	if (flags & PERF_EF_START)
 485		mipspmu_start(event, PERF_EF_RELOAD);
 486
 487	/* Propagate our changes to the userspace mapping. */
 488	perf_event_update_userpage(event);
 489
 490out:
 491	perf_pmu_enable(event->pmu);
 492	return err;
 493}
 494
 495static void mipspmu_del(struct perf_event *event, int flags)
 496{
 497	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 498	struct hw_perf_event *hwc = &event->hw;
 499	int idx = hwc->idx;
 500
 501	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 502
 503	mipspmu_stop(event, PERF_EF_UPDATE);
 504	cpuc->events[idx] = NULL;
 505	clear_bit(idx, cpuc->used_mask);
 506
 507	perf_event_update_userpage(event);
 508}
 509
 510static void mipspmu_read(struct perf_event *event)
 511{
 512	struct hw_perf_event *hwc = &event->hw;
 513
 514	/* Don't read disabled counters! */
 515	if (hwc->idx < 0)
 516		return;
 517
 518	mipspmu_event_update(event, hwc, hwc->idx);
 519}
 520
 521static void mipspmu_enable(struct pmu *pmu)
 522{
 523#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 524	write_unlock(&pmuint_rwlock);
 525#endif
 526	resume_local_counters();
 527}
 528
 529/*
 530 * MIPS performance counters can be per-TC. The control registers can
 531 * not be directly accessed across CPUs. Hence if we want to do global
 532 * control, we need cross CPU calls. on_each_cpu() can help us, but we
 533 * can not make sure this function is called with interrupts enabled. So
 534 * here we pause local counters and then grab a rwlock and leave the
 535 * counters on other CPUs alone. If any counter interrupt raises while
 536 * we own the write lock, simply pause local counters on that CPU and
 537 * spin in the handler. Also we know we won't be switched to another
 538 * CPU after pausing local counters and before grabbing the lock.
 539 */
 540static void mipspmu_disable(struct pmu *pmu)
 541{
 542	pause_local_counters();
 543#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 544	write_lock(&pmuint_rwlock);
 545#endif
 546}
 547
 548static atomic_t active_events = ATOMIC_INIT(0);
 549static DEFINE_MUTEX(pmu_reserve_mutex);
 550static int (*save_perf_irq)(void);
 551
 552static int mipspmu_get_irq(void)
 553{
 554	int err;
 555
 556	if (mipspmu.irq >= 0) {
 557		/* Request my own irq handler. */
 558		err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
 559				  IRQF_PERCPU | IRQF_NOBALANCING |
 560				  IRQF_NO_THREAD | IRQF_NO_SUSPEND |
 561				  IRQF_SHARED,
 562				  "mips_perf_pmu", &mipspmu);
 563		if (err) {
 564			pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
 565				mipspmu.irq);
 566		}
 567	} else if (cp0_perfcount_irq < 0) {
 568		/*
 569		 * We are sharing the irq number with the timer interrupt.
 570		 */
 571		save_perf_irq = perf_irq;
 572		perf_irq = mipsxx_pmu_handle_shared_irq;
 573		err = 0;
 574	} else {
 575		pr_warn("The platform hasn't properly defined its interrupt controller\n");
 576		err = -ENOENT;
 577	}
 578
 579	return err;
 580}
 581
 582static void mipspmu_free_irq(void)
 583{
 584	if (mipspmu.irq >= 0)
 585		free_irq(mipspmu.irq, &mipspmu);
 586	else if (cp0_perfcount_irq < 0)
 587		perf_irq = save_perf_irq;
 588}
 589
 590/*
 591 * mipsxx/rm9000/loongson2 have different performance counters, they have
 592 * specific low-level init routines.
 593 */
 594static void reset_counters(void *arg);
 595static int __hw_perf_event_init(struct perf_event *event);
 596
 597static void hw_perf_event_destroy(struct perf_event *event)
 598{
 599	if (atomic_dec_and_mutex_lock(&active_events,
 600				&pmu_reserve_mutex)) {
 601		/*
 602		 * We must not call the destroy function with interrupts
 603		 * disabled.
 604		 */
 605		on_each_cpu(reset_counters,
 606			(void *)(long)mipspmu.num_counters, 1);
 607		mipspmu_free_irq();
 608		mutex_unlock(&pmu_reserve_mutex);
 609	}
 610}
 611
 612static int mipspmu_event_init(struct perf_event *event)
 613{
 614	int err = 0;
 615
 616	/* does not support taken branch sampling */
 617	if (has_branch_stack(event))
 618		return -EOPNOTSUPP;
 619
 620	switch (event->attr.type) {
 621	case PERF_TYPE_RAW:
 622	case PERF_TYPE_HARDWARE:
 623	case PERF_TYPE_HW_CACHE:
 624		break;
 625
 626	default:
 627		return -ENOENT;
 628	}
 629
 630	if (event->cpu >= nr_cpumask_bits ||
 631	    (event->cpu >= 0 && !cpu_online(event->cpu)))
 632		return -ENODEV;
 633
 634	if (!atomic_inc_not_zero(&active_events)) {
 635		mutex_lock(&pmu_reserve_mutex);
 636		if (atomic_read(&active_events) == 0)
 637			err = mipspmu_get_irq();
 638
 639		if (!err)
 640			atomic_inc(&active_events);
 641		mutex_unlock(&pmu_reserve_mutex);
 642	}
 643
 644	if (err)
 645		return err;
 646
 647	return __hw_perf_event_init(event);
 648}
 649
 650static struct pmu pmu = {
 651	.pmu_enable	= mipspmu_enable,
 652	.pmu_disable	= mipspmu_disable,
 653	.event_init	= mipspmu_event_init,
 654	.add		= mipspmu_add,
 655	.del		= mipspmu_del,
 656	.start		= mipspmu_start,
 657	.stop		= mipspmu_stop,
 658	.read		= mipspmu_read,
 659};
 660
 661static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
 662{
 663/*
 664 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
 665 * event_id.
 666 */
 667#ifdef CONFIG_MIPS_MT_SMP
 668	return ((unsigned int)pev->range << 24) |
 669		(pev->cntr_mask & 0xffff00) |
 670		(pev->event_id & 0xff);
 671#else
 672	return (pev->cntr_mask & 0xffff00) |
 673		(pev->event_id & 0xff);
 674#endif
 675}
 676
 677static const struct mips_perf_event *mipspmu_map_general_event(int idx)
 678{
 679
 680	if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
 681		return ERR_PTR(-EOPNOTSUPP);
 682	return &(*mipspmu.general_event_map)[idx];
 683}
 684
 685static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
 686{
 687	unsigned int cache_type, cache_op, cache_result;
 688	const struct mips_perf_event *pev;
 689
 690	cache_type = (config >> 0) & 0xff;
 691	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 692		return ERR_PTR(-EINVAL);
 693
 694	cache_op = (config >> 8) & 0xff;
 695	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 696		return ERR_PTR(-EINVAL);
 697
 698	cache_result = (config >> 16) & 0xff;
 699	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 700		return ERR_PTR(-EINVAL);
 701
 702	pev = &((*mipspmu.cache_event_map)
 703					[cache_type]
 704					[cache_op]
 705					[cache_result]);
 706
 707	if (pev->cntr_mask == 0)
 708		return ERR_PTR(-EOPNOTSUPP);
 709
 710	return pev;
 711
 712}
 713
 714static int validate_group(struct perf_event *event)
 715{
 716	struct perf_event *sibling, *leader = event->group_leader;
 717	struct cpu_hw_events fake_cpuc;
 718
 719	memset(&fake_cpuc, 0, sizeof(fake_cpuc));
 720
 721	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
 722		return -EINVAL;
 723
 724	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
 725		if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
 726			return -EINVAL;
 727	}
 728
 729	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
 730		return -EINVAL;
 731
 732	return 0;
 733}
 734
 735/* This is needed by specific irq handlers in perf_event_*.c */
 736static void handle_associated_event(struct cpu_hw_events *cpuc,
 737				    int idx, struct perf_sample_data *data,
 738				    struct pt_regs *regs)
 739{
 740	struct perf_event *event = cpuc->events[idx];
 741	struct hw_perf_event *hwc = &event->hw;
 742
 743	mipspmu_event_update(event, hwc, idx);
 744	data->period = event->hw.last_period;
 745	if (!mipspmu_event_set_period(event, hwc, idx))
 746		return;
 747
 748	if (perf_event_overflow(event, data, regs))
 749		mipsxx_pmu_disable_event(idx);
 750}
 751
 752
 753static int __n_counters(void)
 754{
 755	if (!cpu_has_perf)
 756		return 0;
 757	if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
 758		return 1;
 759	if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
 760		return 2;
 761	if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
 762		return 3;
 763
 764	return 4;
 765}
 766
 767static int n_counters(void)
 768{
 769	int counters;
 770
 771	switch (current_cpu_type()) {
 772	case CPU_R10000:
 773		counters = 2;
 774		break;
 775
 776	case CPU_R12000:
 777	case CPU_R14000:
 778	case CPU_R16000:
 779		counters = 4;
 780		break;
 781
 782	default:
 783		counters = __n_counters();
 784	}
 785
 786	return counters;
 787}
 788
 789static void reset_counters(void *arg)
 790{
 791	int counters = (int)(long)arg;
 792	switch (counters) {
 793	case 4:
 794		mipsxx_pmu_write_control(3, 0);
 795		mipspmu.write_counter(3, 0);
 796	case 3:
 797		mipsxx_pmu_write_control(2, 0);
 798		mipspmu.write_counter(2, 0);
 799	case 2:
 800		mipsxx_pmu_write_control(1, 0);
 801		mipspmu.write_counter(1, 0);
 802	case 1:
 803		mipsxx_pmu_write_control(0, 0);
 804		mipspmu.write_counter(0, 0);
 805	}
 806}
 807
 808/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
 809static const struct mips_perf_event mipsxxcore_event_map
 810				[PERF_COUNT_HW_MAX] = {
 811	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 812	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 
 
 813	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
 814	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
 
 815};
 816
 817/* 74K/proAptiv core has different branch event code. */
 818static const struct mips_perf_event mipsxxcore_event_map2
 819				[PERF_COUNT_HW_MAX] = {
 820	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 821	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 
 
 822	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
 823	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
 
 824};
 825
 826static const struct mips_perf_event i6400_event_map[PERF_COUNT_HW_MAX] = {
 827	[PERF_COUNT_HW_CPU_CYCLES]          = { 0x00, CNTR_EVEN | CNTR_ODD },
 828	[PERF_COUNT_HW_INSTRUCTIONS]        = { 0x01, CNTR_EVEN | CNTR_ODD },
 829	/* These only count dcache, not icache */
 830	[PERF_COUNT_HW_CACHE_REFERENCES]    = { 0x45, CNTR_EVEN | CNTR_ODD },
 831	[PERF_COUNT_HW_CACHE_MISSES]        = { 0x48, CNTR_EVEN | CNTR_ODD },
 832	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
 833	[PERF_COUNT_HW_BRANCH_MISSES]       = { 0x16, CNTR_EVEN | CNTR_ODD },
 834};
 835
 836static const struct mips_perf_event loongson3_event_map[PERF_COUNT_HW_MAX] = {
 837	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
 838	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
 839	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
 840	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
 841};
 842
 843static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
 844	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
 845	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
 846	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
 847	[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL	 },
 848	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
 849	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
 850	[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
 851};
 852
 853static const struct mips_perf_event bmips5000_event_map
 854				[PERF_COUNT_HW_MAX] = {
 855	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
 856	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 857	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
 858};
 859
 860static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
 861	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
 862	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
 863	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
 864	[PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
 865	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
 866	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
 867};
 868
 869/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
 870static const struct mips_perf_event mipsxxcore_cache_map
 871				[PERF_COUNT_HW_CACHE_MAX]
 872				[PERF_COUNT_HW_CACHE_OP_MAX]
 873				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 874[C(L1D)] = {
 875	/*
 876	 * Like some other architectures (e.g. ARM), the performance
 877	 * counters don't differentiate between read and write
 878	 * accesses/misses, so this isn't strictly correct, but it's the
 879	 * best we can do. Writes and reads get combined.
 880	 */
 881	[C(OP_READ)] = {
 882		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
 883		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
 884	},
 885	[C(OP_WRITE)] = {
 886		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
 887		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
 888	},
 
 
 
 
 889},
 890[C(L1I)] = {
 891	[C(OP_READ)] = {
 892		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
 893		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
 894	},
 895	[C(OP_WRITE)] = {
 896		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
 897		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
 898	},
 899	[C(OP_PREFETCH)] = {
 900		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
 901		/*
 902		 * Note that MIPS has only "hit" events countable for
 903		 * the prefetch operation.
 904		 */
 
 905	},
 906},
 907[C(LL)] = {
 908	[C(OP_READ)] = {
 909		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
 910		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
 911	},
 912	[C(OP_WRITE)] = {
 913		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
 914		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
 915	},
 
 
 
 
 916},
 917[C(DTLB)] = {
 918	[C(OP_READ)] = {
 919		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 920		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 921	},
 922	[C(OP_WRITE)] = {
 923		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 924		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 925	},
 
 
 
 
 926},
 927[C(ITLB)] = {
 928	[C(OP_READ)] = {
 929		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
 930		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
 931	},
 932	[C(OP_WRITE)] = {
 933		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
 934		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
 935	},
 
 
 
 
 936},
 937[C(BPU)] = {
 938	/* Using the same code for *HW_BRANCH* */
 939	[C(OP_READ)] = {
 940		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
 941		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
 942	},
 943	[C(OP_WRITE)] = {
 944		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
 945		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
 946	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 947},
 948};
 949
 950/* 74K/proAptiv core has completely different cache event map. */
 951static const struct mips_perf_event mipsxxcore_cache_map2
 952				[PERF_COUNT_HW_CACHE_MAX]
 953				[PERF_COUNT_HW_CACHE_OP_MAX]
 954				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 955[C(L1D)] = {
 956	/*
 957	 * Like some other architectures (e.g. ARM), the performance
 958	 * counters don't differentiate between read and write
 959	 * accesses/misses, so this isn't strictly correct, but it's the
 960	 * best we can do. Writes and reads get combined.
 961	 */
 962	[C(OP_READ)] = {
 963		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
 964		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
 965	},
 966	[C(OP_WRITE)] = {
 967		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
 968		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
 969	},
 
 
 
 
 970},
 971[C(L1I)] = {
 972	[C(OP_READ)] = {
 973		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 974		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 975	},
 976	[C(OP_WRITE)] = {
 977		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 978		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 979	},
 980	[C(OP_PREFETCH)] = {
 981		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
 982		/*
 983		 * Note that MIPS has only "hit" events countable for
 984		 * the prefetch operation.
 985		 */
 
 986	},
 987},
 988[C(LL)] = {
 989	[C(OP_READ)] = {
 990		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
 991		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
 992	},
 993	[C(OP_WRITE)] = {
 994		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
 995		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
 996	},
 997},
 998/*
 999 * 74K core does not have specific DTLB events. proAptiv core has
1000 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
1001 * not included here. One can use raw events if really needed.
1002 */
1003[C(ITLB)] = {
1004	[C(OP_READ)] = {
1005		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1006		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1007	},
1008	[C(OP_WRITE)] = {
1009		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1010		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1011	},
1012},
1013[C(BPU)] = {
1014	/* Using the same code for *HW_BRANCH* */
1015	[C(OP_READ)] = {
1016		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1017		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1018	},
1019	[C(OP_WRITE)] = {
1020		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1021		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1022	},
1023},
1024};
1025
1026static const struct mips_perf_event i6400_cache_map
1027				[PERF_COUNT_HW_CACHE_MAX]
1028				[PERF_COUNT_HW_CACHE_OP_MAX]
1029				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1030[C(L1D)] = {
1031	[C(OP_READ)] = {
1032		[C(RESULT_ACCESS)]	= { 0x46, CNTR_EVEN | CNTR_ODD },
1033		[C(RESULT_MISS)]	= { 0x49, CNTR_EVEN | CNTR_ODD },
1034	},
1035	[C(OP_WRITE)] = {
1036		[C(RESULT_ACCESS)]	= { 0x47, CNTR_EVEN | CNTR_ODD },
1037		[C(RESULT_MISS)]	= { 0x4a, CNTR_EVEN | CNTR_ODD },
1038	},
1039},
1040[C(L1I)] = {
1041	[C(OP_READ)] = {
1042		[C(RESULT_ACCESS)]	= { 0x84, CNTR_EVEN | CNTR_ODD },
1043		[C(RESULT_MISS)]	= { 0x85, CNTR_EVEN | CNTR_ODD },
1044	},
1045},
1046[C(DTLB)] = {
1047	/* Can't distinguish read & write */
1048	[C(OP_READ)] = {
1049		[C(RESULT_ACCESS)]	= { 0x40, CNTR_EVEN | CNTR_ODD },
1050		[C(RESULT_MISS)]	= { 0x41, CNTR_EVEN | CNTR_ODD },
1051	},
1052	[C(OP_WRITE)] = {
1053		[C(RESULT_ACCESS)]	= { 0x40, CNTR_EVEN | CNTR_ODD },
1054		[C(RESULT_MISS)]	= { 0x41, CNTR_EVEN | CNTR_ODD },
1055	},
1056},
1057[C(BPU)] = {
1058	/* Conditional branches / mispredicted */
1059	[C(OP_READ)] = {
1060		[C(RESULT_ACCESS)]	= { 0x15, CNTR_EVEN | CNTR_ODD },
1061		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN | CNTR_ODD },
1062	},
1063},
1064};
1065
1066static const struct mips_perf_event loongson3_cache_map
1067				[PERF_COUNT_HW_CACHE_MAX]
1068				[PERF_COUNT_HW_CACHE_OP_MAX]
1069				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1070[C(L1D)] = {
1071	/*
1072	 * Like some other architectures (e.g. ARM), the performance
1073	 * counters don't differentiate between read and write
1074	 * accesses/misses, so this isn't strictly correct, but it's the
1075	 * best we can do. Writes and reads get combined.
1076	 */
1077	[C(OP_READ)] = {
1078		[C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1079	},
1080	[C(OP_WRITE)] = {
1081		[C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1082	},
1083},
1084[C(L1I)] = {
1085	[C(OP_READ)] = {
1086		[C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1087	},
1088	[C(OP_WRITE)] = {
1089		[C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1090	},
1091},
1092[C(DTLB)] = {
1093	[C(OP_READ)] = {
1094		[C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1095	},
1096	[C(OP_WRITE)] = {
1097		[C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1098	},
1099},
1100[C(ITLB)] = {
1101	[C(OP_READ)] = {
1102		[C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
 
1103	},
1104	[C(OP_WRITE)] = {
1105		[C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1106	},
1107},
1108[C(BPU)] = {
1109	/* Using the same code for *HW_BRANCH* */
1110	[C(OP_READ)] = {
1111		[C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1112		[C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1113	},
1114	[C(OP_WRITE)] = {
1115		[C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1116		[C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1117	},
1118},
1119};
1120
1121/* BMIPS5000 */
1122static const struct mips_perf_event bmips5000_cache_map
1123				[PERF_COUNT_HW_CACHE_MAX]
1124				[PERF_COUNT_HW_CACHE_OP_MAX]
1125				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1126[C(L1D)] = {
1127	/*
1128	 * Like some other architectures (e.g. ARM), the performance
1129	 * counters don't differentiate between read and write
1130	 * accesses/misses, so this isn't strictly correct, but it's the
1131	 * best we can do. Writes and reads get combined.
1132	 */
1133	[C(OP_READ)] = {
1134		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1135		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1136	},
1137	[C(OP_WRITE)] = {
1138		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1139		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1140	},
1141},
1142[C(L1I)] = {
1143	[C(OP_READ)] = {
1144		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1145		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1146	},
1147	[C(OP_WRITE)] = {
1148		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1149		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1150	},
1151	[C(OP_PREFETCH)] = {
1152		[C(RESULT_ACCESS)]	= { 23, CNTR_EVEN, T },
1153		/*
1154		 * Note that MIPS has only "hit" events countable for
1155		 * the prefetch operation.
1156		 */
1157	},
1158},
1159[C(LL)] = {
1160	[C(OP_READ)] = {
1161		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1162		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1163	},
1164	[C(OP_WRITE)] = {
1165		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1166		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1167	},
1168},
1169[C(BPU)] = {
1170	/* Using the same code for *HW_BRANCH* */
1171	[C(OP_READ)] = {
1172		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
 
1173	},
1174	[C(OP_WRITE)] = {
1175		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1176	},
1177},
1178};
1179
1180
1181static const struct mips_perf_event octeon_cache_map
1182				[PERF_COUNT_HW_CACHE_MAX]
1183				[PERF_COUNT_HW_CACHE_OP_MAX]
1184				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1185[C(L1D)] = {
1186	[C(OP_READ)] = {
1187		[C(RESULT_ACCESS)]	= { 0x2b, CNTR_ALL },
1188		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL },
1189	},
1190	[C(OP_WRITE)] = {
1191		[C(RESULT_ACCESS)]	= { 0x30, CNTR_ALL },
1192	},
1193},
1194[C(L1I)] = {
1195	[C(OP_READ)] = {
1196		[C(RESULT_ACCESS)]	= { 0x18, CNTR_ALL },
1197	},
1198	[C(OP_PREFETCH)] = {
1199		[C(RESULT_ACCESS)]	= { 0x19, CNTR_ALL },
 
1200	},
1201},
1202[C(DTLB)] = {
1203	/*
1204	 * Only general DTLB misses are counted use the same event for
1205	 * read and write.
1206	 */
1207	[C(OP_READ)] = {
1208		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
 
1209	},
1210	[C(OP_WRITE)] = {
1211		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
 
1212	},
1213},
1214[C(ITLB)] = {
1215	[C(OP_READ)] = {
1216		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL },
1217	},
1218},
1219};
1220
1221static const struct mips_perf_event xlp_cache_map
1222				[PERF_COUNT_HW_CACHE_MAX]
1223				[PERF_COUNT_HW_CACHE_OP_MAX]
1224				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1225[C(L1D)] = {
1226	[C(OP_READ)] = {
1227		[C(RESULT_ACCESS)]	= { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1228		[C(RESULT_MISS)]	= { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1229	},
1230	[C(OP_WRITE)] = {
1231		[C(RESULT_ACCESS)]	= { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1232		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1233	},
1234},
1235[C(L1I)] = {
1236	[C(OP_READ)] = {
1237		[C(RESULT_ACCESS)]	= { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1238		[C(RESULT_MISS)]	= { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1239	},
1240},
1241[C(LL)] = {
1242	[C(OP_READ)] = {
1243		[C(RESULT_ACCESS)]	= { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1244		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1245	},
1246	[C(OP_WRITE)] = {
1247		[C(RESULT_ACCESS)]	= { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1248		[C(RESULT_MISS)]	= { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1249	},
1250},
1251[C(DTLB)] = {
1252	/*
1253	 * Only general DTLB misses are counted use the same event for
1254	 * read and write.
1255	 */
1256	[C(OP_READ)] = {
1257		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1258	},
1259	[C(OP_WRITE)] = {
1260		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1261	},
1262},
1263[C(ITLB)] = {
1264	[C(OP_READ)] = {
1265		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1266	},
1267	[C(OP_WRITE)] = {
1268		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1269	},
1270},
1271[C(BPU)] = {
1272	[C(OP_READ)] = {
1273		[C(RESULT_MISS)]	= { 0x25, CNTR_ALL },
1274	},
1275},
1276};
1277
1278#ifdef CONFIG_MIPS_MT_SMP
1279static void check_and_calc_range(struct perf_event *event,
1280				 const struct mips_perf_event *pev)
 
1281{
1282	struct hw_perf_event *hwc = &event->hw;
1283
1284	if (event->cpu >= 0) {
1285		if (pev->range > V) {
1286			/*
1287			 * The user selected an event that is processor
1288			 * wide, while expecting it to be VPE wide.
1289			 */
1290			hwc->config_base |= M_TC_EN_ALL;
1291		} else {
1292			/*
1293			 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1294			 * for both CPUs.
1295			 */
1296			hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1297			hwc->config_base |= M_TC_EN_VPE;
1298		}
1299	} else
1300		hwc->config_base |= M_TC_EN_ALL;
1301}
1302#else
1303static void check_and_calc_range(struct perf_event *event,
1304				 const struct mips_perf_event *pev)
 
1305{
1306}
1307#endif
1308
1309static int __hw_perf_event_init(struct perf_event *event)
1310{
1311	struct perf_event_attr *attr = &event->attr;
1312	struct hw_perf_event *hwc = &event->hw;
1313	const struct mips_perf_event *pev;
1314	int err;
1315
1316	/* Returning MIPS event descriptor for generic perf event. */
1317	if (PERF_TYPE_HARDWARE == event->attr.type) {
1318		if (event->attr.config >= PERF_COUNT_HW_MAX)
1319			return -EINVAL;
1320		pev = mipspmu_map_general_event(event->attr.config);
1321	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1322		pev = mipspmu_map_cache_event(event->attr.config);
1323	} else if (PERF_TYPE_RAW == event->attr.type) {
1324		/* We are working on the global raw event. */
1325		mutex_lock(&raw_event_mutex);
1326		pev = mipspmu.map_raw_event(event->attr.config);
1327	} else {
1328		/* The event type is not (yet) supported. */
1329		return -EOPNOTSUPP;
1330	}
1331
1332	if (IS_ERR(pev)) {
1333		if (PERF_TYPE_RAW == event->attr.type)
1334			mutex_unlock(&raw_event_mutex);
1335		return PTR_ERR(pev);
1336	}
1337
1338	/*
1339	 * We allow max flexibility on how each individual counter shared
1340	 * by the single CPU operates (the mode exclusion and the range).
1341	 */
1342	hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1343
1344	/* Calculate range bits and validate it. */
1345	if (num_possible_cpus() > 1)
1346		check_and_calc_range(event, pev);
1347
1348	hwc->event_base = mipspmu_perf_event_encode(pev);
1349	if (PERF_TYPE_RAW == event->attr.type)
1350		mutex_unlock(&raw_event_mutex);
1351
1352	if (!attr->exclude_user)
1353		hwc->config_base |= M_PERFCTL_USER;
1354	if (!attr->exclude_kernel) {
1355		hwc->config_base |= M_PERFCTL_KERNEL;
1356		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1357		hwc->config_base |= M_PERFCTL_EXL;
1358	}
1359	if (!attr->exclude_hv)
1360		hwc->config_base |= M_PERFCTL_SUPERVISOR;
1361
1362	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1363	/*
1364	 * The event can belong to another cpu. We do not assign a local
1365	 * counter for it for now.
1366	 */
1367	hwc->idx = -1;
1368	hwc->config = 0;
1369
1370	if (!hwc->sample_period) {
1371		hwc->sample_period  = mipspmu.max_period;
1372		hwc->last_period    = hwc->sample_period;
1373		local64_set(&hwc->period_left, hwc->sample_period);
1374	}
1375
1376	err = 0;
1377	if (event->group_leader != event)
1378		err = validate_group(event);
 
 
 
1379
1380	event->destroy = hw_perf_event_destroy;
1381
1382	if (err)
1383		event->destroy(event);
1384
1385	return err;
1386}
1387
1388static void pause_local_counters(void)
1389{
1390	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1391	int ctr = mipspmu.num_counters;
1392	unsigned long flags;
1393
1394	local_irq_save(flags);
1395	do {
1396		ctr--;
1397		cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1398		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1399					 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1400	} while (ctr > 0);
 
 
 
 
 
 
 
 
 
 
 
 
1401	local_irq_restore(flags);
1402}
1403
1404static void resume_local_counters(void)
1405{
1406	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1407	int ctr = mipspmu.num_counters;
 
1408
1409	do {
1410		ctr--;
1411		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1412	} while (ctr > 0);
 
 
 
 
 
 
 
 
1413}
1414
1415static int mipsxx_pmu_handle_shared_irq(void)
1416{
1417	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1418	struct perf_sample_data data;
1419	unsigned int counters = mipspmu.num_counters;
1420	u64 counter;
1421	int handled = IRQ_NONE;
1422	struct pt_regs *regs;
1423
1424	if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1425		return handled;
 
1426	/*
1427	 * First we pause the local counters, so that when we are locked
1428	 * here, the counters are all paused. When it gets locked due to
1429	 * perf_disable(), the timer interrupt handler will be delayed.
1430	 *
1431	 * See also mipsxx_pmu_start().
1432	 */
1433	pause_local_counters();
1434#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1435	read_lock(&pmuint_rwlock);
1436#endif
1437
1438	regs = get_irq_regs();
1439
1440	perf_sample_data_init(&data, 0, 0);
1441
1442	switch (counters) {
1443#define HANDLE_COUNTER(n)						\
1444	case n + 1:							\
1445		if (test_bit(n, cpuc->used_mask)) {			\
1446			counter = mipspmu.read_counter(n);		\
1447			if (counter & mipspmu.overflow) {		\
1448				handle_associated_event(cpuc, n, &data, regs); \
 
 
 
 
1449				handled = IRQ_HANDLED;			\
1450			}						\
1451		}
1452	HANDLE_COUNTER(3)
1453	HANDLE_COUNTER(2)
1454	HANDLE_COUNTER(1)
1455	HANDLE_COUNTER(0)
1456	}
1457
1458	/*
1459	 * Do all the work for the pending perf events. We can do this
1460	 * in here because the performance counter interrupt is a regular
1461	 * interrupt, not NMI.
1462	 */
1463	if (handled == IRQ_HANDLED)
1464		irq_work_run();
1465
1466#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1467	read_unlock(&pmuint_rwlock);
1468#endif
1469	resume_local_counters();
1470	return handled;
1471}
1472
1473static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
 
1474{
1475	return mipsxx_pmu_handle_shared_irq();
1476}
1477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1478/* 24K */
 
 
 
 
 
 
1479#define IS_BOTH_COUNTERS_24K_EVENT(b)					\
1480	((b) == 0 || (b) == 1 || (b) == 11)
1481
1482/* 34K */
 
 
 
 
1483#define IS_BOTH_COUNTERS_34K_EVENT(b)					\
1484	((b) == 0 || (b) == 1 || (b) == 11)
1485#ifdef CONFIG_MIPS_MT_SMP
1486#define IS_RANGE_P_34K_EVENT(r, b)					\
1487	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1488	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
1489	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
1490	 ((b) >= 64 && (b) <= 67))
1491#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1492#endif
1493
1494/* 74K */
 
 
 
 
 
 
 
1495#define IS_BOTH_COUNTERS_74K_EVENT(b)					\
1496	((b) == 0 || (b) == 1)
1497
1498/* proAptiv */
1499#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)				\
1500	((b) == 0 || (b) == 1)
1501/* P5600 */
1502#define IS_BOTH_COUNTERS_P5600_EVENT(b)					\
1503	((b) == 0 || (b) == 1)
1504
1505/* 1004K */
 
 
 
1506#define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
1507	((b) == 0 || (b) == 1 || (b) == 11)
1508#ifdef CONFIG_MIPS_MT_SMP
1509#define IS_RANGE_P_1004K_EVENT(r, b)					\
1510	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1511	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
1512	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
1513	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
1514	 ((b) >= 64 && (b) <= 67))
1515#define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
1516#endif
1517
1518/* interAptiv */
1519#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)				\
1520	((b) == 0 || (b) == 1 || (b) == 11)
1521#ifdef CONFIG_MIPS_MT_SMP
1522/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1523#define IS_RANGE_P_INTERAPTIV_EVENT(r, b)				\
1524	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1525	 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||		\
1526	 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&		\
1527	 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||		\
1528	 ((b) >= 64 && (b) <= 67))
1529#define IS_RANGE_V_INTERAPTIV_EVENT(r)	((r) == 47 || (r) == 175)
1530#endif
1531
1532/* BMIPS5000 */
1533#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)				\
1534	((b) == 0 || (b) == 1)
1535
1536
1537/*
1538 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1539 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1540 * indicate the even/odd bank selector. So, for example, when user wants to take
1541 * the Event Num of 15 for odd counters (by referring to the user manual), then
1542 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1543 * to be used.
1544 *
1545 * Some newer cores have even more events, in which case the user can use raw
1546 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1547 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1548 */
1549static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
 
1550{
1551	/* currently most cores have 7-bit event numbers */
1552	unsigned int raw_id = config & 0xff;
1553	unsigned int base_id = raw_id & 0x7f;
1554
1555	switch (current_cpu_type()) {
1556	case CPU_24K:
 
 
 
1557		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1558			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1559		else
1560			raw_event.cntr_mask =
1561				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1562#ifdef CONFIG_MIPS_MT_SMP
1563		/*
1564		 * This is actually doing nothing. Non-multithreading
1565		 * CPUs will not check and calculate the range.
1566		 */
1567		raw_event.range = P;
1568#endif
1569		break;
1570	case CPU_34K:
 
 
 
1571		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1572			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1573		else
1574			raw_event.cntr_mask =
1575				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1576#ifdef CONFIG_MIPS_MT_SMP
1577		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1578			raw_event.range = P;
1579		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1580			raw_event.range = V;
1581		else
1582			raw_event.range = T;
1583#endif
1584		break;
1585	case CPU_74K:
1586	case CPU_1074K:
 
 
1587		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1588			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1589		else
1590			raw_event.cntr_mask =
1591				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1592#ifdef CONFIG_MIPS_MT_SMP
1593		raw_event.range = P;
1594#endif
1595		break;
1596	case CPU_PROAPTIV:
1597		if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1598			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1599		else
1600			raw_event.cntr_mask =
1601				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1602#ifdef CONFIG_MIPS_MT_SMP
1603		raw_event.range = P;
1604#endif
1605		break;
1606	case CPU_P5600:
1607	case CPU_P6600:
1608	case CPU_I6400:
1609		/* 8-bit event numbers */
1610		raw_id = config & 0x1ff;
1611		base_id = raw_id & 0xff;
1612		if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1613			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1614		else
1615			raw_event.cntr_mask =
1616				raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1617#ifdef CONFIG_MIPS_MT_SMP
1618		raw_event.range = P;
1619#endif
1620		break;
1621	case CPU_1004K:
 
 
 
1622		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1623			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1624		else
1625			raw_event.cntr_mask =
1626				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1627#ifdef CONFIG_MIPS_MT_SMP
1628		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1629			raw_event.range = P;
1630		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1631			raw_event.range = V;
1632		else
1633			raw_event.range = T;
1634#endif
1635		break;
1636	case CPU_INTERAPTIV:
1637		if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1638			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1639		else
1640			raw_event.cntr_mask =
1641				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1642#ifdef CONFIG_MIPS_MT_SMP
1643		if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1644			raw_event.range = P;
1645		else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1646			raw_event.range = V;
1647		else
1648			raw_event.range = T;
1649#endif
1650		break;
1651	case CPU_BMIPS5000:
1652		if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1653			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1654		else
1655			raw_event.cntr_mask =
1656				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1657		break;
1658	case CPU_LOONGSON3:
1659		raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1660	break;
1661	}
1662
1663	raw_event.event_id = base_id;
1664
1665	return &raw_event;
1666}
1667
1668static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1669{
1670	unsigned int raw_id = config & 0xff;
1671	unsigned int base_id = raw_id & 0x7f;
 
 
 
 
 
 
 
 
 
 
1672
1673
1674	raw_event.cntr_mask = CNTR_ALL;
1675	raw_event.event_id = base_id;
1676
1677	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1678		if (base_id > 0x42)
1679			return ERR_PTR(-EOPNOTSUPP);
1680	} else {
1681		if (base_id > 0x3a)
1682			return ERR_PTR(-EOPNOTSUPP);
1683	}
1684
1685	switch (base_id) {
1686	case 0x00:
1687	case 0x0f:
1688	case 0x1e:
1689	case 0x1f:
1690	case 0x2f:
1691	case 0x34:
1692	case 0x3b ... 0x3f:
1693		return ERR_PTR(-EOPNOTSUPP);
1694	default:
1695		break;
1696	}
1697
1698	return &raw_event;
1699}
1700
1701static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1702{
1703	unsigned int raw_id = config & 0xff;
1704
1705	/* Only 1-63 are defined */
1706	if ((raw_id < 0x01) || (raw_id > 0x3f))
1707		return ERR_PTR(-EOPNOTSUPP);
1708
1709	raw_event.cntr_mask = CNTR_ALL;
1710	raw_event.event_id = raw_id;
1711
1712	return &raw_event;
1713}
1714
1715static int __init
1716init_hw_perf_events(void)
1717{
1718	int counters, irq;
1719	int counter_bits;
1720
1721	pr_info("Performance counters: ");
1722
1723	counters = n_counters();
1724	if (counters == 0) {
1725		pr_cont("No available PMU.\n");
1726		return -ENODEV;
1727	}
1728
1729#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1730	cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1731	if (!cpu_has_mipsmt_pertccounters)
1732		counters = counters_total_to_per_cpu(counters);
1733#endif
1734
1735	if (get_c0_perfcount_int)
1736		irq = get_c0_perfcount_int();
1737	else if (cp0_perfcount_irq >= 0)
1738		irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1739	else
1740		irq = -1;
 
 
 
 
 
 
 
 
 
1741
1742	mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1743
1744	switch (current_cpu_type()) {
1745	case CPU_24K:
1746		mipspmu.name = "mips/24K";
1747		mipspmu.general_event_map = &mipsxxcore_event_map;
1748		mipspmu.cache_event_map = &mipsxxcore_cache_map;
 
1749		break;
1750	case CPU_34K:
1751		mipspmu.name = "mips/34K";
1752		mipspmu.general_event_map = &mipsxxcore_event_map;
1753		mipspmu.cache_event_map = &mipsxxcore_cache_map;
 
1754		break;
1755	case CPU_74K:
1756		mipspmu.name = "mips/74K";
1757		mipspmu.general_event_map = &mipsxxcore_event_map2;
1758		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1759		break;
1760	case CPU_PROAPTIV:
1761		mipspmu.name = "mips/proAptiv";
1762		mipspmu.general_event_map = &mipsxxcore_event_map2;
1763		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1764		break;
1765	case CPU_P5600:
1766		mipspmu.name = "mips/P5600";
1767		mipspmu.general_event_map = &mipsxxcore_event_map2;
1768		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1769		break;
1770	case CPU_P6600:
1771		mipspmu.name = "mips/P6600";
1772		mipspmu.general_event_map = &mipsxxcore_event_map2;
1773		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1774		break;
1775	case CPU_I6400:
1776		mipspmu.name = "mips/I6400";
1777		mipspmu.general_event_map = &i6400_event_map;
1778		mipspmu.cache_event_map = &i6400_cache_map;
1779		break;
1780	case CPU_1004K:
1781		mipspmu.name = "mips/1004K";
1782		mipspmu.general_event_map = &mipsxxcore_event_map;
1783		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1784		break;
1785	case CPU_1074K:
1786		mipspmu.name = "mips/1074K";
1787		mipspmu.general_event_map = &mipsxxcore_event_map;
1788		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1789		break;
1790	case CPU_INTERAPTIV:
1791		mipspmu.name = "mips/interAptiv";
1792		mipspmu.general_event_map = &mipsxxcore_event_map;
1793		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1794		break;
1795	case CPU_LOONGSON1:
1796		mipspmu.name = "mips/loongson1";
1797		mipspmu.general_event_map = &mipsxxcore_event_map;
1798		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1799		break;
1800	case CPU_LOONGSON3:
1801		mipspmu.name = "mips/loongson3";
1802		mipspmu.general_event_map = &loongson3_event_map;
1803		mipspmu.cache_event_map = &loongson3_cache_map;
1804		break;
1805	case CPU_CAVIUM_OCTEON:
1806	case CPU_CAVIUM_OCTEON_PLUS:
1807	case CPU_CAVIUM_OCTEON2:
1808		mipspmu.name = "octeon";
1809		mipspmu.general_event_map = &octeon_event_map;
1810		mipspmu.cache_event_map = &octeon_cache_map;
1811		mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1812		break;
1813	case CPU_BMIPS5000:
1814		mipspmu.name = "BMIPS5000";
1815		mipspmu.general_event_map = &bmips5000_event_map;
1816		mipspmu.cache_event_map = &bmips5000_cache_map;
1817		break;
1818	case CPU_XLP:
1819		mipspmu.name = "xlp";
1820		mipspmu.general_event_map = &xlp_event_map;
1821		mipspmu.cache_event_map = &xlp_cache_map;
1822		mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1823		break;
1824	default:
1825		pr_cont("Either hardware does not support performance "
1826			"counters, or not yet implemented.\n");
1827		return -ENODEV;
1828	}
1829
1830	mipspmu.num_counters = counters;
1831	mipspmu.irq = irq;
1832
1833	if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1834		mipspmu.max_period = (1ULL << 63) - 1;
1835		mipspmu.valid_count = (1ULL << 63) - 1;
1836		mipspmu.overflow = 1ULL << 63;
1837		mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1838		mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1839		counter_bits = 64;
1840	} else {
1841		mipspmu.max_period = (1ULL << 31) - 1;
1842		mipspmu.valid_count = (1ULL << 31) - 1;
1843		mipspmu.overflow = 1ULL << 31;
1844		mipspmu.read_counter = mipsxx_pmu_read_counter;
1845		mipspmu.write_counter = mipsxx_pmu_write_counter;
1846		counter_bits = 32;
1847	}
1848
1849	on_each_cpu(reset_counters, (void *)(long)counters, 1);
1850
1851	pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1852		"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1853		irq < 0 ? " (share with timer interrupt)" : "");
1854
1855	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1856
1857	return 0;
1858}
1859early_initcall(init_hw_perf_events);