Loading...
1#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) || \
2 defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_SB1)
3
4#define M_CONFIG1_PC (1 << 4)
5
6#define M_PERFCTL_EXL (1UL << 0)
7#define M_PERFCTL_KERNEL (1UL << 1)
8#define M_PERFCTL_SUPERVISOR (1UL << 2)
9#define M_PERFCTL_USER (1UL << 3)
10#define M_PERFCTL_INTERRUPT_ENABLE (1UL << 4)
11#define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
12#define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
13#define M_PERFCTL_MT_EN(filter) ((filter) << 20)
14#define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
15#define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
16#define M_TC_EN_TC M_PERFCTL_MT_EN(2)
17#define M_PERFCTL_TCID(tcid) ((tcid) << 22)
18#define M_PERFCTL_WIDE (1UL << 30)
19#define M_PERFCTL_MORE (1UL << 31)
20
21#define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
22 M_PERFCTL_KERNEL | \
23 M_PERFCTL_USER | \
24 M_PERFCTL_SUPERVISOR | \
25 M_PERFCTL_INTERRUPT_ENABLE)
26
27#ifdef CONFIG_MIPS_MT_SMP
28#define M_PERFCTL_CONFIG_MASK 0x3fff801f
29#else
30#define M_PERFCTL_CONFIG_MASK 0x1f
31#endif
32#define M_PERFCTL_EVENT_MASK 0xfe0
33
34#define M_COUNTER_OVERFLOW (1UL << 31)
35
36#ifdef CONFIG_MIPS_MT_SMP
37static int cpu_has_mipsmt_pertccounters;
38
39/*
40 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
41 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
42 */
43#if defined(CONFIG_HW_PERF_EVENTS)
44#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
45 0 : smp_processor_id())
46#else
47#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
48 0 : cpu_data[smp_processor_id()].vpe_id)
49#endif
50
51/* Copied from op_model_mipsxx.c */
52static inline unsigned int vpe_shift(void)
53{
54 if (num_possible_cpus() > 1)
55 return 1;
56
57 return 0;
58}
59#else /* !CONFIG_MIPS_MT_SMP */
60#define vpe_id() 0
61
62static inline unsigned int vpe_shift(void)
63{
64 return 0;
65}
66#endif /* CONFIG_MIPS_MT_SMP */
67
68static inline unsigned int
69counters_total_to_per_cpu(unsigned int counters)
70{
71 return counters >> vpe_shift();
72}
73
74static inline unsigned int
75counters_per_cpu_to_total(unsigned int counters)
76{
77 return counters << vpe_shift();
78}
79
80#define __define_perf_accessors(r, n, np) \
81 \
82static inline unsigned int r_c0_ ## r ## n(void) \
83{ \
84 unsigned int cpu = vpe_id(); \
85 \
86 switch (cpu) { \
87 case 0: \
88 return read_c0_ ## r ## n(); \
89 case 1: \
90 return read_c0_ ## r ## np(); \
91 default: \
92 BUG(); \
93 } \
94 return 0; \
95} \
96 \
97static inline void w_c0_ ## r ## n(unsigned int value) \
98{ \
99 unsigned int cpu = vpe_id(); \
100 \
101 switch (cpu) { \
102 case 0: \
103 write_c0_ ## r ## n(value); \
104 return; \
105 case 1: \
106 write_c0_ ## r ## np(value); \
107 return; \
108 default: \
109 BUG(); \
110 } \
111 return; \
112} \
113
114__define_perf_accessors(perfcntr, 0, 2)
115__define_perf_accessors(perfcntr, 1, 3)
116__define_perf_accessors(perfcntr, 2, 0)
117__define_perf_accessors(perfcntr, 3, 1)
118
119__define_perf_accessors(perfctrl, 0, 2)
120__define_perf_accessors(perfctrl, 1, 3)
121__define_perf_accessors(perfctrl, 2, 0)
122__define_perf_accessors(perfctrl, 3, 1)
123
124static inline int __n_counters(void)
125{
126 if (!(read_c0_config1() & M_CONFIG1_PC))
127 return 0;
128 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
129 return 1;
130 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
131 return 2;
132 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
133 return 3;
134
135 return 4;
136}
137
138static inline int n_counters(void)
139{
140 int counters;
141
142 switch (current_cpu_type()) {
143 case CPU_R10000:
144 counters = 2;
145 break;
146
147 case CPU_R12000:
148 case CPU_R14000:
149 counters = 4;
150 break;
151
152 default:
153 counters = __n_counters();
154 }
155
156 return counters;
157}
158
159static void reset_counters(void *arg)
160{
161 int counters = (int)(long)arg;
162 switch (counters) {
163 case 4:
164 w_c0_perfctrl3(0);
165 w_c0_perfcntr3(0);
166 case 3:
167 w_c0_perfctrl2(0);
168 w_c0_perfcntr2(0);
169 case 2:
170 w_c0_perfctrl1(0);
171 w_c0_perfcntr1(0);
172 case 1:
173 w_c0_perfctrl0(0);
174 w_c0_perfcntr0(0);
175 }
176}
177
178static inline u64
179mipsxx_pmu_read_counter(unsigned int idx)
180{
181 switch (idx) {
182 case 0:
183 return r_c0_perfcntr0();
184 case 1:
185 return r_c0_perfcntr1();
186 case 2:
187 return r_c0_perfcntr2();
188 case 3:
189 return r_c0_perfcntr3();
190 default:
191 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
192 return 0;
193 }
194}
195
196static inline void
197mipsxx_pmu_write_counter(unsigned int idx, u64 val)
198{
199 switch (idx) {
200 case 0:
201 w_c0_perfcntr0(val);
202 return;
203 case 1:
204 w_c0_perfcntr1(val);
205 return;
206 case 2:
207 w_c0_perfcntr2(val);
208 return;
209 case 3:
210 w_c0_perfcntr3(val);
211 return;
212 }
213}
214
215static inline unsigned int
216mipsxx_pmu_read_control(unsigned int idx)
217{
218 switch (idx) {
219 case 0:
220 return r_c0_perfctrl0();
221 case 1:
222 return r_c0_perfctrl1();
223 case 2:
224 return r_c0_perfctrl2();
225 case 3:
226 return r_c0_perfctrl3();
227 default:
228 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
229 return 0;
230 }
231}
232
233static inline void
234mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
235{
236 switch (idx) {
237 case 0:
238 w_c0_perfctrl0(val);
239 return;
240 case 1:
241 w_c0_perfctrl1(val);
242 return;
243 case 2:
244 w_c0_perfctrl2(val);
245 return;
246 case 3:
247 w_c0_perfctrl3(val);
248 return;
249 }
250}
251
252#ifdef CONFIG_MIPS_MT_SMP
253static DEFINE_RWLOCK(pmuint_rwlock);
254#endif
255
256/* 24K/34K/1004K cores can share the same event map. */
257static const struct mips_perf_event mipsxxcore_event_map
258 [PERF_COUNT_HW_MAX] = {
259 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
260 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
261 [PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
262 [PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
263 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
264 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
265 [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
266};
267
268/* 74K core has different branch event code. */
269static const struct mips_perf_event mipsxx74Kcore_event_map
270 [PERF_COUNT_HW_MAX] = {
271 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
272 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
273 [PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
274 [PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
275 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
276 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
277 [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
278};
279
280/* 24K/34K/1004K cores can share the same cache event map. */
281static const struct mips_perf_event mipsxxcore_cache_map
282 [PERF_COUNT_HW_CACHE_MAX]
283 [PERF_COUNT_HW_CACHE_OP_MAX]
284 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
285[C(L1D)] = {
286 /*
287 * Like some other architectures (e.g. ARM), the performance
288 * counters don't differentiate between read and write
289 * accesses/misses, so this isn't strictly correct, but it's the
290 * best we can do. Writes and reads get combined.
291 */
292 [C(OP_READ)] = {
293 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
294 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
295 },
296 [C(OP_WRITE)] = {
297 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
298 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
299 },
300 [C(OP_PREFETCH)] = {
301 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
302 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
303 },
304},
305[C(L1I)] = {
306 [C(OP_READ)] = {
307 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
308 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
309 },
310 [C(OP_WRITE)] = {
311 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
312 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
313 },
314 [C(OP_PREFETCH)] = {
315 [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
316 /*
317 * Note that MIPS has only "hit" events countable for
318 * the prefetch operation.
319 */
320 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
321 },
322},
323[C(LL)] = {
324 [C(OP_READ)] = {
325 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
326 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
327 },
328 [C(OP_WRITE)] = {
329 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
330 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
331 },
332 [C(OP_PREFETCH)] = {
333 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
334 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
335 },
336},
337[C(DTLB)] = {
338 [C(OP_READ)] = {
339 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
340 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
341 },
342 [C(OP_WRITE)] = {
343 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
344 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
345 },
346 [C(OP_PREFETCH)] = {
347 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
348 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
349 },
350},
351[C(ITLB)] = {
352 [C(OP_READ)] = {
353 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
354 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
355 },
356 [C(OP_WRITE)] = {
357 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
358 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
359 },
360 [C(OP_PREFETCH)] = {
361 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
362 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
363 },
364},
365[C(BPU)] = {
366 /* Using the same code for *HW_BRANCH* */
367 [C(OP_READ)] = {
368 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
369 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
370 },
371 [C(OP_WRITE)] = {
372 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
373 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
374 },
375 [C(OP_PREFETCH)] = {
376 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
377 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
378 },
379},
380[C(NODE)] = {
381 [C(OP_READ)] = {
382 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
383 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
384 },
385 [C(OP_WRITE)] = {
386 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
387 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
388 },
389 [C(OP_PREFETCH)] = {
390 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
391 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
392 },
393},
394};
395
396/* 74K core has completely different cache event map. */
397static const struct mips_perf_event mipsxx74Kcore_cache_map
398 [PERF_COUNT_HW_CACHE_MAX]
399 [PERF_COUNT_HW_CACHE_OP_MAX]
400 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
401[C(L1D)] = {
402 /*
403 * Like some other architectures (e.g. ARM), the performance
404 * counters don't differentiate between read and write
405 * accesses/misses, so this isn't strictly correct, but it's the
406 * best we can do. Writes and reads get combined.
407 */
408 [C(OP_READ)] = {
409 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
410 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
411 },
412 [C(OP_WRITE)] = {
413 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
414 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
415 },
416 [C(OP_PREFETCH)] = {
417 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
418 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
419 },
420},
421[C(L1I)] = {
422 [C(OP_READ)] = {
423 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
424 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
425 },
426 [C(OP_WRITE)] = {
427 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
428 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
429 },
430 [C(OP_PREFETCH)] = {
431 [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
432 /*
433 * Note that MIPS has only "hit" events countable for
434 * the prefetch operation.
435 */
436 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
437 },
438},
439[C(LL)] = {
440 [C(OP_READ)] = {
441 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
442 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
443 },
444 [C(OP_WRITE)] = {
445 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
446 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
447 },
448 [C(OP_PREFETCH)] = {
449 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
450 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
451 },
452},
453[C(DTLB)] = {
454 /* 74K core does not have specific DTLB events. */
455 [C(OP_READ)] = {
456 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
457 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
458 },
459 [C(OP_WRITE)] = {
460 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
461 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
462 },
463 [C(OP_PREFETCH)] = {
464 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
465 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
466 },
467},
468[C(ITLB)] = {
469 [C(OP_READ)] = {
470 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
471 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
472 },
473 [C(OP_WRITE)] = {
474 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
475 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
476 },
477 [C(OP_PREFETCH)] = {
478 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
479 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
480 },
481},
482[C(BPU)] = {
483 /* Using the same code for *HW_BRANCH* */
484 [C(OP_READ)] = {
485 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
486 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
487 },
488 [C(OP_WRITE)] = {
489 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
490 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
491 },
492 [C(OP_PREFETCH)] = {
493 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
494 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
495 },
496},
497[C(NODE)] = {
498 [C(OP_READ)] = {
499 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
500 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
501 },
502 [C(OP_WRITE)] = {
503 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
504 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
505 },
506 [C(OP_PREFETCH)] = {
507 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
508 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
509 },
510},
511};
512
513#ifdef CONFIG_MIPS_MT_SMP
514static void
515check_and_calc_range(struct perf_event *event,
516 const struct mips_perf_event *pev)
517{
518 struct hw_perf_event *hwc = &event->hw;
519
520 if (event->cpu >= 0) {
521 if (pev->range > V) {
522 /*
523 * The user selected an event that is processor
524 * wide, while expecting it to be VPE wide.
525 */
526 hwc->config_base |= M_TC_EN_ALL;
527 } else {
528 /*
529 * FIXME: cpu_data[event->cpu].vpe_id reports 0
530 * for both CPUs.
531 */
532 hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
533 hwc->config_base |= M_TC_EN_VPE;
534 }
535 } else
536 hwc->config_base |= M_TC_EN_ALL;
537}
538#else
539static void
540check_and_calc_range(struct perf_event *event,
541 const struct mips_perf_event *pev)
542{
543}
544#endif
545
546static int __hw_perf_event_init(struct perf_event *event)
547{
548 struct perf_event_attr *attr = &event->attr;
549 struct hw_perf_event *hwc = &event->hw;
550 const struct mips_perf_event *pev;
551 int err;
552
553 /* Returning MIPS event descriptor for generic perf event. */
554 if (PERF_TYPE_HARDWARE == event->attr.type) {
555 if (event->attr.config >= PERF_COUNT_HW_MAX)
556 return -EINVAL;
557 pev = mipspmu_map_general_event(event->attr.config);
558 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
559 pev = mipspmu_map_cache_event(event->attr.config);
560 } else if (PERF_TYPE_RAW == event->attr.type) {
561 /* We are working on the global raw event. */
562 mutex_lock(&raw_event_mutex);
563 pev = mipspmu->map_raw_event(event->attr.config);
564 } else {
565 /* The event type is not (yet) supported. */
566 return -EOPNOTSUPP;
567 }
568
569 if (IS_ERR(pev)) {
570 if (PERF_TYPE_RAW == event->attr.type)
571 mutex_unlock(&raw_event_mutex);
572 return PTR_ERR(pev);
573 }
574
575 /*
576 * We allow max flexibility on how each individual counter shared
577 * by the single CPU operates (the mode exclusion and the range).
578 */
579 hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
580
581 /* Calculate range bits and validate it. */
582 if (num_possible_cpus() > 1)
583 check_and_calc_range(event, pev);
584
585 hwc->event_base = mipspmu_perf_event_encode(pev);
586 if (PERF_TYPE_RAW == event->attr.type)
587 mutex_unlock(&raw_event_mutex);
588
589 if (!attr->exclude_user)
590 hwc->config_base |= M_PERFCTL_USER;
591 if (!attr->exclude_kernel) {
592 hwc->config_base |= M_PERFCTL_KERNEL;
593 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
594 hwc->config_base |= M_PERFCTL_EXL;
595 }
596 if (!attr->exclude_hv)
597 hwc->config_base |= M_PERFCTL_SUPERVISOR;
598
599 hwc->config_base &= M_PERFCTL_CONFIG_MASK;
600 /*
601 * The event can belong to another cpu. We do not assign a local
602 * counter for it for now.
603 */
604 hwc->idx = -1;
605 hwc->config = 0;
606
607 if (!hwc->sample_period) {
608 hwc->sample_period = MAX_PERIOD;
609 hwc->last_period = hwc->sample_period;
610 local64_set(&hwc->period_left, hwc->sample_period);
611 }
612
613 err = 0;
614 if (event->group_leader != event) {
615 err = validate_group(event);
616 if (err)
617 return -EINVAL;
618 }
619
620 event->destroy = hw_perf_event_destroy;
621
622 return err;
623}
624
625static void pause_local_counters(void)
626{
627 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
628 int counters = mipspmu->num_counters;
629 unsigned long flags;
630
631 local_irq_save(flags);
632 switch (counters) {
633 case 4:
634 cpuc->saved_ctrl[3] = r_c0_perfctrl3();
635 w_c0_perfctrl3(cpuc->saved_ctrl[3] &
636 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
637 case 3:
638 cpuc->saved_ctrl[2] = r_c0_perfctrl2();
639 w_c0_perfctrl2(cpuc->saved_ctrl[2] &
640 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
641 case 2:
642 cpuc->saved_ctrl[1] = r_c0_perfctrl1();
643 w_c0_perfctrl1(cpuc->saved_ctrl[1] &
644 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
645 case 1:
646 cpuc->saved_ctrl[0] = r_c0_perfctrl0();
647 w_c0_perfctrl0(cpuc->saved_ctrl[0] &
648 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
649 }
650 local_irq_restore(flags);
651}
652
653static void resume_local_counters(void)
654{
655 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
656 int counters = mipspmu->num_counters;
657 unsigned long flags;
658
659 local_irq_save(flags);
660 switch (counters) {
661 case 4:
662 w_c0_perfctrl3(cpuc->saved_ctrl[3]);
663 case 3:
664 w_c0_perfctrl2(cpuc->saved_ctrl[2]);
665 case 2:
666 w_c0_perfctrl1(cpuc->saved_ctrl[1]);
667 case 1:
668 w_c0_perfctrl0(cpuc->saved_ctrl[0]);
669 }
670 local_irq_restore(flags);
671}
672
673static int mipsxx_pmu_handle_shared_irq(void)
674{
675 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
676 struct perf_sample_data data;
677 unsigned int counters = mipspmu->num_counters;
678 unsigned int counter;
679 int handled = IRQ_NONE;
680 struct pt_regs *regs;
681
682 if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
683 return handled;
684
685 /*
686 * First we pause the local counters, so that when we are locked
687 * here, the counters are all paused. When it gets locked due to
688 * perf_disable(), the timer interrupt handler will be delayed.
689 *
690 * See also mipsxx_pmu_start().
691 */
692 pause_local_counters();
693#ifdef CONFIG_MIPS_MT_SMP
694 read_lock(&pmuint_rwlock);
695#endif
696
697 regs = get_irq_regs();
698
699 perf_sample_data_init(&data, 0);
700
701 switch (counters) {
702#define HANDLE_COUNTER(n) \
703 case n + 1: \
704 if (test_bit(n, cpuc->used_mask)) { \
705 counter = r_c0_perfcntr ## n(); \
706 if (counter & M_COUNTER_OVERFLOW) { \
707 w_c0_perfcntr ## n(counter & \
708 VALID_COUNT); \
709 if (test_and_change_bit(n, cpuc->msbs)) \
710 handle_associated_event(cpuc, \
711 n, &data, regs); \
712 handled = IRQ_HANDLED; \
713 } \
714 }
715 HANDLE_COUNTER(3)
716 HANDLE_COUNTER(2)
717 HANDLE_COUNTER(1)
718 HANDLE_COUNTER(0)
719 }
720
721 /*
722 * Do all the work for the pending perf events. We can do this
723 * in here because the performance counter interrupt is a regular
724 * interrupt, not NMI.
725 */
726 if (handled == IRQ_HANDLED)
727 irq_work_run();
728
729#ifdef CONFIG_MIPS_MT_SMP
730 read_unlock(&pmuint_rwlock);
731#endif
732 resume_local_counters();
733 return handled;
734}
735
736static irqreturn_t
737mipsxx_pmu_handle_irq(int irq, void *dev)
738{
739 return mipsxx_pmu_handle_shared_irq();
740}
741
742static void mipsxx_pmu_start(void)
743{
744#ifdef CONFIG_MIPS_MT_SMP
745 write_unlock(&pmuint_rwlock);
746#endif
747 resume_local_counters();
748}
749
750/*
751 * MIPS performance counters can be per-TC. The control registers can
752 * not be directly accessed across CPUs. Hence if we want to do global
753 * control, we need cross CPU calls. on_each_cpu() can help us, but we
754 * can not make sure this function is called with interrupts enabled. So
755 * here we pause local counters and then grab a rwlock and leave the
756 * counters on other CPUs alone. If any counter interrupt raises while
757 * we own the write lock, simply pause local counters on that CPU and
758 * spin in the handler. Also we know we won't be switched to another
759 * CPU after pausing local counters and before grabbing the lock.
760 */
761static void mipsxx_pmu_stop(void)
762{
763 pause_local_counters();
764#ifdef CONFIG_MIPS_MT_SMP
765 write_lock(&pmuint_rwlock);
766#endif
767}
768
769static int
770mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
771 struct hw_perf_event *hwc)
772{
773 int i;
774
775 /*
776 * We only need to care the counter mask. The range has been
777 * checked definitely.
778 */
779 unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
780
781 for (i = mipspmu->num_counters - 1; i >= 0; i--) {
782 /*
783 * Note that some MIPS perf events can be counted by both
784 * even and odd counters, wheresas many other are only by
785 * even _or_ odd counters. This introduces an issue that
786 * when the former kind of event takes the counter the
787 * latter kind of event wants to use, then the "counter
788 * allocation" for the latter event will fail. In fact if
789 * they can be dynamically swapped, they both feel happy.
790 * But here we leave this issue alone for now.
791 */
792 if (test_bit(i, &cntr_mask) &&
793 !test_and_set_bit(i, cpuc->used_mask))
794 return i;
795 }
796
797 return -EAGAIN;
798}
799
800static void
801mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
802{
803 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
804 unsigned long flags;
805
806 WARN_ON(idx < 0 || idx >= mipspmu->num_counters);
807
808 local_irq_save(flags);
809 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
810 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
811 /* Make sure interrupt enabled. */
812 M_PERFCTL_INTERRUPT_ENABLE;
813 /*
814 * We do not actually let the counter run. Leave it until start().
815 */
816 local_irq_restore(flags);
817}
818
819static void
820mipsxx_pmu_disable_event(int idx)
821{
822 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
823 unsigned long flags;
824
825 WARN_ON(idx < 0 || idx >= mipspmu->num_counters);
826
827 local_irq_save(flags);
828 cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
829 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
830 mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
831 local_irq_restore(flags);
832}
833
834/* 24K */
835#define IS_UNSUPPORTED_24K_EVENT(r, b) \
836 ((b) == 12 || (r) == 151 || (r) == 152 || (b) == 26 || \
837 (b) == 27 || (r) == 28 || (r) == 158 || (b) == 31 || \
838 (b) == 32 || (b) == 34 || (b) == 36 || (r) == 168 || \
839 (r) == 172 || (b) == 47 || ((b) >= 56 && (b) <= 63) || \
840 ((b) >= 68 && (b) <= 127))
841#define IS_BOTH_COUNTERS_24K_EVENT(b) \
842 ((b) == 0 || (b) == 1 || (b) == 11)
843
844/* 34K */
845#define IS_UNSUPPORTED_34K_EVENT(r, b) \
846 ((b) == 12 || (r) == 27 || (r) == 158 || (b) == 36 || \
847 (b) == 38 || (r) == 175 || ((b) >= 56 && (b) <= 63) || \
848 ((b) >= 68 && (b) <= 127))
849#define IS_BOTH_COUNTERS_34K_EVENT(b) \
850 ((b) == 0 || (b) == 1 || (b) == 11)
851#ifdef CONFIG_MIPS_MT_SMP
852#define IS_RANGE_P_34K_EVENT(r, b) \
853 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
854 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
855 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
856 ((b) >= 64 && (b) <= 67))
857#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
858#endif
859
860/* 74K */
861#define IS_UNSUPPORTED_74K_EVENT(r, b) \
862 ((r) == 5 || ((r) >= 135 && (r) <= 137) || \
863 ((b) >= 10 && (b) <= 12) || (b) == 22 || (b) == 27 || \
864 (b) == 33 || (b) == 34 || ((b) >= 47 && (b) <= 49) || \
865 (r) == 178 || (b) == 55 || (b) == 57 || (b) == 60 || \
866 (b) == 61 || (r) == 62 || (r) == 191 || \
867 ((b) >= 64 && (b) <= 127))
868#define IS_BOTH_COUNTERS_74K_EVENT(b) \
869 ((b) == 0 || (b) == 1)
870
871/* 1004K */
872#define IS_UNSUPPORTED_1004K_EVENT(r, b) \
873 ((b) == 12 || (r) == 27 || (r) == 158 || (b) == 38 || \
874 (r) == 175 || (b) == 63 || ((b) >= 68 && (b) <= 127))
875#define IS_BOTH_COUNTERS_1004K_EVENT(b) \
876 ((b) == 0 || (b) == 1 || (b) == 11)
877#ifdef CONFIG_MIPS_MT_SMP
878#define IS_RANGE_P_1004K_EVENT(r, b) \
879 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
880 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
881 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
882 (r) == 188 || (b) == 61 || (b) == 62 || \
883 ((b) >= 64 && (b) <= 67))
884#define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
885#endif
886
887/*
888 * User can use 0-255 raw events, where 0-127 for the events of even
889 * counters, and 128-255 for odd counters. Note that bit 7 is used to
890 * indicate the parity. So, for example, when user wants to take the
891 * Event Num of 15 for odd counters (by referring to the user manual),
892 * then 128 needs to be added to 15 as the input for the event config,
893 * i.e., 143 (0x8F) to be used.
894 */
895static const struct mips_perf_event *
896mipsxx_pmu_map_raw_event(u64 config)
897{
898 unsigned int raw_id = config & 0xff;
899 unsigned int base_id = raw_id & 0x7f;
900
901 switch (current_cpu_type()) {
902 case CPU_24K:
903 if (IS_UNSUPPORTED_24K_EVENT(raw_id, base_id))
904 return ERR_PTR(-EOPNOTSUPP);
905 raw_event.event_id = base_id;
906 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
907 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
908 else
909 raw_event.cntr_mask =
910 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
911#ifdef CONFIG_MIPS_MT_SMP
912 /*
913 * This is actually doing nothing. Non-multithreading
914 * CPUs will not check and calculate the range.
915 */
916 raw_event.range = P;
917#endif
918 break;
919 case CPU_34K:
920 if (IS_UNSUPPORTED_34K_EVENT(raw_id, base_id))
921 return ERR_PTR(-EOPNOTSUPP);
922 raw_event.event_id = base_id;
923 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
924 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
925 else
926 raw_event.cntr_mask =
927 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
928#ifdef CONFIG_MIPS_MT_SMP
929 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
930 raw_event.range = P;
931 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
932 raw_event.range = V;
933 else
934 raw_event.range = T;
935#endif
936 break;
937 case CPU_74K:
938 if (IS_UNSUPPORTED_74K_EVENT(raw_id, base_id))
939 return ERR_PTR(-EOPNOTSUPP);
940 raw_event.event_id = base_id;
941 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
942 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
943 else
944 raw_event.cntr_mask =
945 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
946#ifdef CONFIG_MIPS_MT_SMP
947 raw_event.range = P;
948#endif
949 break;
950 case CPU_1004K:
951 if (IS_UNSUPPORTED_1004K_EVENT(raw_id, base_id))
952 return ERR_PTR(-EOPNOTSUPP);
953 raw_event.event_id = base_id;
954 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
955 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
956 else
957 raw_event.cntr_mask =
958 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
959#ifdef CONFIG_MIPS_MT_SMP
960 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
961 raw_event.range = P;
962 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
963 raw_event.range = V;
964 else
965 raw_event.range = T;
966#endif
967 break;
968 }
969
970 return &raw_event;
971}
972
973static struct mips_pmu mipsxxcore_pmu = {
974 .handle_irq = mipsxx_pmu_handle_irq,
975 .handle_shared_irq = mipsxx_pmu_handle_shared_irq,
976 .start = mipsxx_pmu_start,
977 .stop = mipsxx_pmu_stop,
978 .alloc_counter = mipsxx_pmu_alloc_counter,
979 .read_counter = mipsxx_pmu_read_counter,
980 .write_counter = mipsxx_pmu_write_counter,
981 .enable_event = mipsxx_pmu_enable_event,
982 .disable_event = mipsxx_pmu_disable_event,
983 .map_raw_event = mipsxx_pmu_map_raw_event,
984 .general_event_map = &mipsxxcore_event_map,
985 .cache_event_map = &mipsxxcore_cache_map,
986};
987
988static struct mips_pmu mipsxx74Kcore_pmu = {
989 .handle_irq = mipsxx_pmu_handle_irq,
990 .handle_shared_irq = mipsxx_pmu_handle_shared_irq,
991 .start = mipsxx_pmu_start,
992 .stop = mipsxx_pmu_stop,
993 .alloc_counter = mipsxx_pmu_alloc_counter,
994 .read_counter = mipsxx_pmu_read_counter,
995 .write_counter = mipsxx_pmu_write_counter,
996 .enable_event = mipsxx_pmu_enable_event,
997 .disable_event = mipsxx_pmu_disable_event,
998 .map_raw_event = mipsxx_pmu_map_raw_event,
999 .general_event_map = &mipsxx74Kcore_event_map,
1000 .cache_event_map = &mipsxx74Kcore_cache_map,
1001};
1002
1003static int __init
1004init_hw_perf_events(void)
1005{
1006 int counters, irq;
1007
1008 pr_info("Performance counters: ");
1009
1010 counters = n_counters();
1011 if (counters == 0) {
1012 pr_cont("No available PMU.\n");
1013 return -ENODEV;
1014 }
1015
1016#ifdef CONFIG_MIPS_MT_SMP
1017 cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1018 if (!cpu_has_mipsmt_pertccounters)
1019 counters = counters_total_to_per_cpu(counters);
1020#endif
1021
1022#ifdef MSC01E_INT_BASE
1023 if (cpu_has_veic) {
1024 /*
1025 * Using platform specific interrupt controller defines.
1026 */
1027 irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1028 } else {
1029#endif
1030 if (cp0_perfcount_irq >= 0)
1031 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1032 else
1033 irq = -1;
1034#ifdef MSC01E_INT_BASE
1035 }
1036#endif
1037
1038 on_each_cpu(reset_counters, (void *)(long)counters, 1);
1039
1040 switch (current_cpu_type()) {
1041 case CPU_24K:
1042 mipsxxcore_pmu.name = "mips/24K";
1043 mipsxxcore_pmu.num_counters = counters;
1044 mipsxxcore_pmu.irq = irq;
1045 mipspmu = &mipsxxcore_pmu;
1046 break;
1047 case CPU_34K:
1048 mipsxxcore_pmu.name = "mips/34K";
1049 mipsxxcore_pmu.num_counters = counters;
1050 mipsxxcore_pmu.irq = irq;
1051 mipspmu = &mipsxxcore_pmu;
1052 break;
1053 case CPU_74K:
1054 mipsxx74Kcore_pmu.name = "mips/74K";
1055 mipsxx74Kcore_pmu.num_counters = counters;
1056 mipsxx74Kcore_pmu.irq = irq;
1057 mipspmu = &mipsxx74Kcore_pmu;
1058 break;
1059 case CPU_1004K:
1060 mipsxxcore_pmu.name = "mips/1004K";
1061 mipsxxcore_pmu.num_counters = counters;
1062 mipsxxcore_pmu.irq = irq;
1063 mipspmu = &mipsxxcore_pmu;
1064 break;
1065 default:
1066 pr_cont("Either hardware does not support performance "
1067 "counters, or not yet implemented.\n");
1068 return -ENODEV;
1069 }
1070
1071 if (mipspmu)
1072 pr_cont("%s PMU enabled, %d counters available to each "
1073 "CPU, irq %d%s\n", mipspmu->name, counters, irq,
1074 irq < 0 ? " (share with timer interrupt)" : "");
1075
1076 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1077
1078 return 0;
1079}
1080early_initcall(init_hw_perf_events);
1081
1082#endif /* defined(CONFIG_CPU_MIPS32)... */
1/*
2 * Linux performance counter support for MIPS.
3 *
4 * Copyright (C) 2010 MIPS Technologies, Inc.
5 * Copyright (C) 2011 Cavium Networks, Inc.
6 * Author: Deng-Cheng Zhu
7 *
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18#include <linux/cpumask.h>
19#include <linux/interrupt.h>
20#include <linux/smp.h>
21#include <linux/kernel.h>
22#include <linux/perf_event.h>
23#include <linux/uaccess.h>
24
25#include <asm/irq.h>
26#include <asm/irq_regs.h>
27#include <asm/stacktrace.h>
28#include <asm/time.h> /* For perf_irq */
29
30#define MIPS_MAX_HWEVENTS 4
31
32struct cpu_hw_events {
33 /* Array of events on this cpu. */
34 struct perf_event *events[MIPS_MAX_HWEVENTS];
35
36 /*
37 * Set the bit (indexed by the counter number) when the counter
38 * is used for an event.
39 */
40 unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
41
42 /*
43 * Software copy of the control register for each performance counter.
44 * MIPS CPUs vary in performance counters. They use this differently,
45 * and even may not use it.
46 */
47 unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
48};
49DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
50 .saved_ctrl = {0},
51};
52
53/* The description of MIPS performance events. */
54struct mips_perf_event {
55 unsigned int event_id;
56 /*
57 * MIPS performance counters are indexed starting from 0.
58 * CNTR_EVEN indicates the indexes of the counters to be used are
59 * even numbers.
60 */
61 unsigned int cntr_mask;
62 #define CNTR_EVEN 0x55555555
63 #define CNTR_ODD 0xaaaaaaaa
64 #define CNTR_ALL 0xffffffff
65#ifdef CONFIG_MIPS_MT_SMP
66 enum {
67 T = 0,
68 V = 1,
69 P = 2,
70 } range;
71#else
72 #define T
73 #define V
74 #define P
75#endif
76};
77
78static struct mips_perf_event raw_event;
79static DEFINE_MUTEX(raw_event_mutex);
80
81#define UNSUPPORTED_PERF_EVENT_ID 0xffffffff
82#define C(x) PERF_COUNT_HW_CACHE_##x
83
84struct mips_pmu {
85 u64 max_period;
86 u64 valid_count;
87 u64 overflow;
88 const char *name;
89 int irq;
90 u64 (*read_counter)(unsigned int idx);
91 void (*write_counter)(unsigned int idx, u64 val);
92 const struct mips_perf_event *(*map_raw_event)(u64 config);
93 const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
94 const struct mips_perf_event (*cache_event_map)
95 [PERF_COUNT_HW_CACHE_MAX]
96 [PERF_COUNT_HW_CACHE_OP_MAX]
97 [PERF_COUNT_HW_CACHE_RESULT_MAX];
98 unsigned int num_counters;
99};
100
101static struct mips_pmu mipspmu;
102
103#define M_CONFIG1_PC (1 << 4)
104
105#define M_PERFCTL_EXL (1 << 0)
106#define M_PERFCTL_KERNEL (1 << 1)
107#define M_PERFCTL_SUPERVISOR (1 << 2)
108#define M_PERFCTL_USER (1 << 3)
109#define M_PERFCTL_INTERRUPT_ENABLE (1 << 4)
110#define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
111#define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
112#define M_PERFCTL_MT_EN(filter) ((filter) << 20)
113#define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
114#define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
115#define M_TC_EN_TC M_PERFCTL_MT_EN(2)
116#define M_PERFCTL_TCID(tcid) ((tcid) << 22)
117#define M_PERFCTL_WIDE (1 << 30)
118#define M_PERFCTL_MORE (1 << 31)
119
120#define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
121 M_PERFCTL_KERNEL | \
122 M_PERFCTL_USER | \
123 M_PERFCTL_SUPERVISOR | \
124 M_PERFCTL_INTERRUPT_ENABLE)
125
126#ifdef CONFIG_MIPS_MT_SMP
127#define M_PERFCTL_CONFIG_MASK 0x3fff801f
128#else
129#define M_PERFCTL_CONFIG_MASK 0x1f
130#endif
131#define M_PERFCTL_EVENT_MASK 0xfe0
132
133
134#ifdef CONFIG_MIPS_MT_SMP
135static int cpu_has_mipsmt_pertccounters;
136
137static DEFINE_RWLOCK(pmuint_rwlock);
138
139/*
140 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
141 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
142 */
143#if defined(CONFIG_HW_PERF_EVENTS)
144#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
145 0 : smp_processor_id())
146#else
147#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
148 0 : cpu_data[smp_processor_id()].vpe_id)
149#endif
150
151/* Copied from op_model_mipsxx.c */
152static unsigned int vpe_shift(void)
153{
154 if (num_possible_cpus() > 1)
155 return 1;
156
157 return 0;
158}
159
160static unsigned int counters_total_to_per_cpu(unsigned int counters)
161{
162 return counters >> vpe_shift();
163}
164
165#else /* !CONFIG_MIPS_MT_SMP */
166#define vpe_id() 0
167
168#endif /* CONFIG_MIPS_MT_SMP */
169
170static void resume_local_counters(void);
171static void pause_local_counters(void);
172static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
173static int mipsxx_pmu_handle_shared_irq(void);
174
175static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
176{
177 if (vpe_id() == 1)
178 idx = (idx + 2) & 3;
179 return idx;
180}
181
182static u64 mipsxx_pmu_read_counter(unsigned int idx)
183{
184 idx = mipsxx_pmu_swizzle_perf_idx(idx);
185
186 switch (idx) {
187 case 0:
188 /*
189 * The counters are unsigned, we must cast to truncate
190 * off the high bits.
191 */
192 return (u32)read_c0_perfcntr0();
193 case 1:
194 return (u32)read_c0_perfcntr1();
195 case 2:
196 return (u32)read_c0_perfcntr2();
197 case 3:
198 return (u32)read_c0_perfcntr3();
199 default:
200 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
201 return 0;
202 }
203}
204
205static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
206{
207 idx = mipsxx_pmu_swizzle_perf_idx(idx);
208
209 switch (idx) {
210 case 0:
211 return read_c0_perfcntr0_64();
212 case 1:
213 return read_c0_perfcntr1_64();
214 case 2:
215 return read_c0_perfcntr2_64();
216 case 3:
217 return read_c0_perfcntr3_64();
218 default:
219 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
220 return 0;
221 }
222}
223
224static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
225{
226 idx = mipsxx_pmu_swizzle_perf_idx(idx);
227
228 switch (idx) {
229 case 0:
230 write_c0_perfcntr0(val);
231 return;
232 case 1:
233 write_c0_perfcntr1(val);
234 return;
235 case 2:
236 write_c0_perfcntr2(val);
237 return;
238 case 3:
239 write_c0_perfcntr3(val);
240 return;
241 }
242}
243
244static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
245{
246 idx = mipsxx_pmu_swizzle_perf_idx(idx);
247
248 switch (idx) {
249 case 0:
250 write_c0_perfcntr0_64(val);
251 return;
252 case 1:
253 write_c0_perfcntr1_64(val);
254 return;
255 case 2:
256 write_c0_perfcntr2_64(val);
257 return;
258 case 3:
259 write_c0_perfcntr3_64(val);
260 return;
261 }
262}
263
264static unsigned int mipsxx_pmu_read_control(unsigned int idx)
265{
266 idx = mipsxx_pmu_swizzle_perf_idx(idx);
267
268 switch (idx) {
269 case 0:
270 return read_c0_perfctrl0();
271 case 1:
272 return read_c0_perfctrl1();
273 case 2:
274 return read_c0_perfctrl2();
275 case 3:
276 return read_c0_perfctrl3();
277 default:
278 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
279 return 0;
280 }
281}
282
283static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
284{
285 idx = mipsxx_pmu_swizzle_perf_idx(idx);
286
287 switch (idx) {
288 case 0:
289 write_c0_perfctrl0(val);
290 return;
291 case 1:
292 write_c0_perfctrl1(val);
293 return;
294 case 2:
295 write_c0_perfctrl2(val);
296 return;
297 case 3:
298 write_c0_perfctrl3(val);
299 return;
300 }
301}
302
303static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
304 struct hw_perf_event *hwc)
305{
306 int i;
307
308 /*
309 * We only need to care the counter mask. The range has been
310 * checked definitely.
311 */
312 unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
313
314 for (i = mipspmu.num_counters - 1; i >= 0; i--) {
315 /*
316 * Note that some MIPS perf events can be counted by both
317 * even and odd counters, wheresas many other are only by
318 * even _or_ odd counters. This introduces an issue that
319 * when the former kind of event takes the counter the
320 * latter kind of event wants to use, then the "counter
321 * allocation" for the latter event will fail. In fact if
322 * they can be dynamically swapped, they both feel happy.
323 * But here we leave this issue alone for now.
324 */
325 if (test_bit(i, &cntr_mask) &&
326 !test_and_set_bit(i, cpuc->used_mask))
327 return i;
328 }
329
330 return -EAGAIN;
331}
332
333static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
334{
335 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
336
337 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
338
339 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
340 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
341 /* Make sure interrupt enabled. */
342 M_PERFCTL_INTERRUPT_ENABLE;
343 /*
344 * We do not actually let the counter run. Leave it until start().
345 */
346}
347
348static void mipsxx_pmu_disable_event(int idx)
349{
350 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
351 unsigned long flags;
352
353 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
354
355 local_irq_save(flags);
356 cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
357 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
358 mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
359 local_irq_restore(flags);
360}
361
362static int mipspmu_event_set_period(struct perf_event *event,
363 struct hw_perf_event *hwc,
364 int idx)
365{
366 u64 left = local64_read(&hwc->period_left);
367 u64 period = hwc->sample_period;
368 int ret = 0;
369
370 if (unlikely((left + period) & (1ULL << 63))) {
371 /* left underflowed by more than period. */
372 left = period;
373 local64_set(&hwc->period_left, left);
374 hwc->last_period = period;
375 ret = 1;
376 } else if (unlikely((left + period) <= period)) {
377 /* left underflowed by less than period. */
378 left += period;
379 local64_set(&hwc->period_left, left);
380 hwc->last_period = period;
381 ret = 1;
382 }
383
384 if (left > mipspmu.max_period) {
385 left = mipspmu.max_period;
386 local64_set(&hwc->period_left, left);
387 }
388
389 local64_set(&hwc->prev_count, mipspmu.overflow - left);
390
391 mipspmu.write_counter(idx, mipspmu.overflow - left);
392
393 perf_event_update_userpage(event);
394
395 return ret;
396}
397
398static void mipspmu_event_update(struct perf_event *event,
399 struct hw_perf_event *hwc,
400 int idx)
401{
402 u64 prev_raw_count, new_raw_count;
403 u64 delta;
404
405again:
406 prev_raw_count = local64_read(&hwc->prev_count);
407 new_raw_count = mipspmu.read_counter(idx);
408
409 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
410 new_raw_count) != prev_raw_count)
411 goto again;
412
413 delta = new_raw_count - prev_raw_count;
414
415 local64_add(delta, &event->count);
416 local64_sub(delta, &hwc->period_left);
417}
418
419static void mipspmu_start(struct perf_event *event, int flags)
420{
421 struct hw_perf_event *hwc = &event->hw;
422
423 if (flags & PERF_EF_RELOAD)
424 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
425
426 hwc->state = 0;
427
428 /* Set the period for the event. */
429 mipspmu_event_set_period(event, hwc, hwc->idx);
430
431 /* Enable the event. */
432 mipsxx_pmu_enable_event(hwc, hwc->idx);
433}
434
435static void mipspmu_stop(struct perf_event *event, int flags)
436{
437 struct hw_perf_event *hwc = &event->hw;
438
439 if (!(hwc->state & PERF_HES_STOPPED)) {
440 /* We are working on a local event. */
441 mipsxx_pmu_disable_event(hwc->idx);
442 barrier();
443 mipspmu_event_update(event, hwc, hwc->idx);
444 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
445 }
446}
447
448static int mipspmu_add(struct perf_event *event, int flags)
449{
450 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
451 struct hw_perf_event *hwc = &event->hw;
452 int idx;
453 int err = 0;
454
455 perf_pmu_disable(event->pmu);
456
457 /* To look for a free counter for this event. */
458 idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
459 if (idx < 0) {
460 err = idx;
461 goto out;
462 }
463
464 /*
465 * If there is an event in the counter we are going to use then
466 * make sure it is disabled.
467 */
468 event->hw.idx = idx;
469 mipsxx_pmu_disable_event(idx);
470 cpuc->events[idx] = event;
471
472 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
473 if (flags & PERF_EF_START)
474 mipspmu_start(event, PERF_EF_RELOAD);
475
476 /* Propagate our changes to the userspace mapping. */
477 perf_event_update_userpage(event);
478
479out:
480 perf_pmu_enable(event->pmu);
481 return err;
482}
483
484static void mipspmu_del(struct perf_event *event, int flags)
485{
486 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
487 struct hw_perf_event *hwc = &event->hw;
488 int idx = hwc->idx;
489
490 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
491
492 mipspmu_stop(event, PERF_EF_UPDATE);
493 cpuc->events[idx] = NULL;
494 clear_bit(idx, cpuc->used_mask);
495
496 perf_event_update_userpage(event);
497}
498
499static void mipspmu_read(struct perf_event *event)
500{
501 struct hw_perf_event *hwc = &event->hw;
502
503 /* Don't read disabled counters! */
504 if (hwc->idx < 0)
505 return;
506
507 mipspmu_event_update(event, hwc, hwc->idx);
508}
509
510static void mipspmu_enable(struct pmu *pmu)
511{
512#ifdef CONFIG_MIPS_MT_SMP
513 write_unlock(&pmuint_rwlock);
514#endif
515 resume_local_counters();
516}
517
518/*
519 * MIPS performance counters can be per-TC. The control registers can
520 * not be directly accessed accross CPUs. Hence if we want to do global
521 * control, we need cross CPU calls. on_each_cpu() can help us, but we
522 * can not make sure this function is called with interrupts enabled. So
523 * here we pause local counters and then grab a rwlock and leave the
524 * counters on other CPUs alone. If any counter interrupt raises while
525 * we own the write lock, simply pause local counters on that CPU and
526 * spin in the handler. Also we know we won't be switched to another
527 * CPU after pausing local counters and before grabbing the lock.
528 */
529static void mipspmu_disable(struct pmu *pmu)
530{
531 pause_local_counters();
532#ifdef CONFIG_MIPS_MT_SMP
533 write_lock(&pmuint_rwlock);
534#endif
535}
536
537static atomic_t active_events = ATOMIC_INIT(0);
538static DEFINE_MUTEX(pmu_reserve_mutex);
539static int (*save_perf_irq)(void);
540
541static int mipspmu_get_irq(void)
542{
543 int err;
544
545 if (mipspmu.irq >= 0) {
546 /* Request my own irq handler. */
547 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
548 IRQF_PERCPU | IRQF_NOBALANCING,
549 "mips_perf_pmu", NULL);
550 if (err) {
551 pr_warning("Unable to request IRQ%d for MIPS "
552 "performance counters!\n", mipspmu.irq);
553 }
554 } else if (cp0_perfcount_irq < 0) {
555 /*
556 * We are sharing the irq number with the timer interrupt.
557 */
558 save_perf_irq = perf_irq;
559 perf_irq = mipsxx_pmu_handle_shared_irq;
560 err = 0;
561 } else {
562 pr_warning("The platform hasn't properly defined its "
563 "interrupt controller.\n");
564 err = -ENOENT;
565 }
566
567 return err;
568}
569
570static void mipspmu_free_irq(void)
571{
572 if (mipspmu.irq >= 0)
573 free_irq(mipspmu.irq, NULL);
574 else if (cp0_perfcount_irq < 0)
575 perf_irq = save_perf_irq;
576}
577
578/*
579 * mipsxx/rm9000/loongson2 have different performance counters, they have
580 * specific low-level init routines.
581 */
582static void reset_counters(void *arg);
583static int __hw_perf_event_init(struct perf_event *event);
584
585static void hw_perf_event_destroy(struct perf_event *event)
586{
587 if (atomic_dec_and_mutex_lock(&active_events,
588 &pmu_reserve_mutex)) {
589 /*
590 * We must not call the destroy function with interrupts
591 * disabled.
592 */
593 on_each_cpu(reset_counters,
594 (void *)(long)mipspmu.num_counters, 1);
595 mipspmu_free_irq();
596 mutex_unlock(&pmu_reserve_mutex);
597 }
598}
599
600static int mipspmu_event_init(struct perf_event *event)
601{
602 int err = 0;
603
604 /* does not support taken branch sampling */
605 if (has_branch_stack(event))
606 return -EOPNOTSUPP;
607
608 switch (event->attr.type) {
609 case PERF_TYPE_RAW:
610 case PERF_TYPE_HARDWARE:
611 case PERF_TYPE_HW_CACHE:
612 break;
613
614 default:
615 return -ENOENT;
616 }
617
618 if (event->cpu >= nr_cpumask_bits ||
619 (event->cpu >= 0 && !cpu_online(event->cpu)))
620 return -ENODEV;
621
622 if (!atomic_inc_not_zero(&active_events)) {
623 mutex_lock(&pmu_reserve_mutex);
624 if (atomic_read(&active_events) == 0)
625 err = mipspmu_get_irq();
626
627 if (!err)
628 atomic_inc(&active_events);
629 mutex_unlock(&pmu_reserve_mutex);
630 }
631
632 if (err)
633 return err;
634
635 return __hw_perf_event_init(event);
636}
637
638static struct pmu pmu = {
639 .pmu_enable = mipspmu_enable,
640 .pmu_disable = mipspmu_disable,
641 .event_init = mipspmu_event_init,
642 .add = mipspmu_add,
643 .del = mipspmu_del,
644 .start = mipspmu_start,
645 .stop = mipspmu_stop,
646 .read = mipspmu_read,
647};
648
649static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
650{
651/*
652 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
653 * event_id.
654 */
655#ifdef CONFIG_MIPS_MT_SMP
656 return ((unsigned int)pev->range << 24) |
657 (pev->cntr_mask & 0xffff00) |
658 (pev->event_id & 0xff);
659#else
660 return (pev->cntr_mask & 0xffff00) |
661 (pev->event_id & 0xff);
662#endif
663}
664
665static const struct mips_perf_event *mipspmu_map_general_event(int idx)
666{
667 const struct mips_perf_event *pev;
668
669 pev = ((*mipspmu.general_event_map)[idx].event_id ==
670 UNSUPPORTED_PERF_EVENT_ID ? ERR_PTR(-EOPNOTSUPP) :
671 &(*mipspmu.general_event_map)[idx]);
672
673 return pev;
674}
675
676static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
677{
678 unsigned int cache_type, cache_op, cache_result;
679 const struct mips_perf_event *pev;
680
681 cache_type = (config >> 0) & 0xff;
682 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
683 return ERR_PTR(-EINVAL);
684
685 cache_op = (config >> 8) & 0xff;
686 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
687 return ERR_PTR(-EINVAL);
688
689 cache_result = (config >> 16) & 0xff;
690 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
691 return ERR_PTR(-EINVAL);
692
693 pev = &((*mipspmu.cache_event_map)
694 [cache_type]
695 [cache_op]
696 [cache_result]);
697
698 if (pev->event_id == UNSUPPORTED_PERF_EVENT_ID)
699 return ERR_PTR(-EOPNOTSUPP);
700
701 return pev;
702
703}
704
705static int validate_group(struct perf_event *event)
706{
707 struct perf_event *sibling, *leader = event->group_leader;
708 struct cpu_hw_events fake_cpuc;
709
710 memset(&fake_cpuc, 0, sizeof(fake_cpuc));
711
712 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
713 return -EINVAL;
714
715 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
716 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
717 return -EINVAL;
718 }
719
720 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
721 return -EINVAL;
722
723 return 0;
724}
725
726/* This is needed by specific irq handlers in perf_event_*.c */
727static void handle_associated_event(struct cpu_hw_events *cpuc,
728 int idx, struct perf_sample_data *data,
729 struct pt_regs *regs)
730{
731 struct perf_event *event = cpuc->events[idx];
732 struct hw_perf_event *hwc = &event->hw;
733
734 mipspmu_event_update(event, hwc, idx);
735 data->period = event->hw.last_period;
736 if (!mipspmu_event_set_period(event, hwc, idx))
737 return;
738
739 if (perf_event_overflow(event, data, regs))
740 mipsxx_pmu_disable_event(idx);
741}
742
743
744static int __n_counters(void)
745{
746 if (!(read_c0_config1() & M_CONFIG1_PC))
747 return 0;
748 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
749 return 1;
750 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
751 return 2;
752 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
753 return 3;
754
755 return 4;
756}
757
758static int n_counters(void)
759{
760 int counters;
761
762 switch (current_cpu_type()) {
763 case CPU_R10000:
764 counters = 2;
765 break;
766
767 case CPU_R12000:
768 case CPU_R14000:
769 counters = 4;
770 break;
771
772 default:
773 counters = __n_counters();
774 }
775
776 return counters;
777}
778
779static void reset_counters(void *arg)
780{
781 int counters = (int)(long)arg;
782 switch (counters) {
783 case 4:
784 mipsxx_pmu_write_control(3, 0);
785 mipspmu.write_counter(3, 0);
786 case 3:
787 mipsxx_pmu_write_control(2, 0);
788 mipspmu.write_counter(2, 0);
789 case 2:
790 mipsxx_pmu_write_control(1, 0);
791 mipspmu.write_counter(1, 0);
792 case 1:
793 mipsxx_pmu_write_control(0, 0);
794 mipspmu.write_counter(0, 0);
795 }
796}
797
798/* 24K/34K/1004K cores can share the same event map. */
799static const struct mips_perf_event mipsxxcore_event_map
800 [PERF_COUNT_HW_MAX] = {
801 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
802 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
803 [PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
804 [PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
805 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
806 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
807 [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
808};
809
810/* 74K core has different branch event code. */
811static const struct mips_perf_event mipsxx74Kcore_event_map
812 [PERF_COUNT_HW_MAX] = {
813 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
814 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
815 [PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
816 [PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
817 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
818 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
819 [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
820};
821
822static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
823 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
824 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
825 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
826 [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
827 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
828 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
829 [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
830};
831
832/* 24K/34K/1004K cores can share the same cache event map. */
833static const struct mips_perf_event mipsxxcore_cache_map
834 [PERF_COUNT_HW_CACHE_MAX]
835 [PERF_COUNT_HW_CACHE_OP_MAX]
836 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
837[C(L1D)] = {
838 /*
839 * Like some other architectures (e.g. ARM), the performance
840 * counters don't differentiate between read and write
841 * accesses/misses, so this isn't strictly correct, but it's the
842 * best we can do. Writes and reads get combined.
843 */
844 [C(OP_READ)] = {
845 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
846 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
847 },
848 [C(OP_WRITE)] = {
849 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
850 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
851 },
852 [C(OP_PREFETCH)] = {
853 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
854 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
855 },
856},
857[C(L1I)] = {
858 [C(OP_READ)] = {
859 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
860 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
861 },
862 [C(OP_WRITE)] = {
863 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
864 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
865 },
866 [C(OP_PREFETCH)] = {
867 [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
868 /*
869 * Note that MIPS has only "hit" events countable for
870 * the prefetch operation.
871 */
872 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
873 },
874},
875[C(LL)] = {
876 [C(OP_READ)] = {
877 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
878 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
879 },
880 [C(OP_WRITE)] = {
881 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
882 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
883 },
884 [C(OP_PREFETCH)] = {
885 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
886 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
887 },
888},
889[C(DTLB)] = {
890 [C(OP_READ)] = {
891 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
892 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
893 },
894 [C(OP_WRITE)] = {
895 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
896 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
897 },
898 [C(OP_PREFETCH)] = {
899 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
900 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
901 },
902},
903[C(ITLB)] = {
904 [C(OP_READ)] = {
905 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
906 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
907 },
908 [C(OP_WRITE)] = {
909 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
910 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
911 },
912 [C(OP_PREFETCH)] = {
913 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
914 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
915 },
916},
917[C(BPU)] = {
918 /* Using the same code for *HW_BRANCH* */
919 [C(OP_READ)] = {
920 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
921 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
922 },
923 [C(OP_WRITE)] = {
924 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
925 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
926 },
927 [C(OP_PREFETCH)] = {
928 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
929 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
930 },
931},
932[C(NODE)] = {
933 [C(OP_READ)] = {
934 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
935 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
936 },
937 [C(OP_WRITE)] = {
938 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
939 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
940 },
941 [C(OP_PREFETCH)] = {
942 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
943 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
944 },
945},
946};
947
948/* 74K core has completely different cache event map. */
949static const struct mips_perf_event mipsxx74Kcore_cache_map
950 [PERF_COUNT_HW_CACHE_MAX]
951 [PERF_COUNT_HW_CACHE_OP_MAX]
952 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
953[C(L1D)] = {
954 /*
955 * Like some other architectures (e.g. ARM), the performance
956 * counters don't differentiate between read and write
957 * accesses/misses, so this isn't strictly correct, but it's the
958 * best we can do. Writes and reads get combined.
959 */
960 [C(OP_READ)] = {
961 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
962 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
963 },
964 [C(OP_WRITE)] = {
965 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
966 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
967 },
968 [C(OP_PREFETCH)] = {
969 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
970 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
971 },
972},
973[C(L1I)] = {
974 [C(OP_READ)] = {
975 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
976 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
977 },
978 [C(OP_WRITE)] = {
979 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
980 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
981 },
982 [C(OP_PREFETCH)] = {
983 [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
984 /*
985 * Note that MIPS has only "hit" events countable for
986 * the prefetch operation.
987 */
988 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
989 },
990},
991[C(LL)] = {
992 [C(OP_READ)] = {
993 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
994 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
995 },
996 [C(OP_WRITE)] = {
997 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
998 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
999 },
1000 [C(OP_PREFETCH)] = {
1001 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1002 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1003 },
1004},
1005[C(DTLB)] = {
1006 /* 74K core does not have specific DTLB events. */
1007 [C(OP_READ)] = {
1008 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1009 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1010 },
1011 [C(OP_WRITE)] = {
1012 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1013 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1014 },
1015 [C(OP_PREFETCH)] = {
1016 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1017 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1018 },
1019},
1020[C(ITLB)] = {
1021 [C(OP_READ)] = {
1022 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
1023 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
1024 },
1025 [C(OP_WRITE)] = {
1026 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
1027 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
1028 },
1029 [C(OP_PREFETCH)] = {
1030 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1031 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1032 },
1033},
1034[C(BPU)] = {
1035 /* Using the same code for *HW_BRANCH* */
1036 [C(OP_READ)] = {
1037 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1038 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1039 },
1040 [C(OP_WRITE)] = {
1041 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1042 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1043 },
1044 [C(OP_PREFETCH)] = {
1045 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1046 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1047 },
1048},
1049[C(NODE)] = {
1050 [C(OP_READ)] = {
1051 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1052 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1053 },
1054 [C(OP_WRITE)] = {
1055 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1056 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1057 },
1058 [C(OP_PREFETCH)] = {
1059 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1060 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1061 },
1062},
1063};
1064
1065
1066static const struct mips_perf_event octeon_cache_map
1067 [PERF_COUNT_HW_CACHE_MAX]
1068 [PERF_COUNT_HW_CACHE_OP_MAX]
1069 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1070[C(L1D)] = {
1071 [C(OP_READ)] = {
1072 [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
1073 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
1074 },
1075 [C(OP_WRITE)] = {
1076 [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
1077 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1078 },
1079 [C(OP_PREFETCH)] = {
1080 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1081 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1082 },
1083},
1084[C(L1I)] = {
1085 [C(OP_READ)] = {
1086 [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
1087 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1088 },
1089 [C(OP_WRITE)] = {
1090 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1091 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1092 },
1093 [C(OP_PREFETCH)] = {
1094 [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
1095 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1096 },
1097},
1098[C(LL)] = {
1099 [C(OP_READ)] = {
1100 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1101 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1102 },
1103 [C(OP_WRITE)] = {
1104 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1105 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1106 },
1107 [C(OP_PREFETCH)] = {
1108 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1109 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1110 },
1111},
1112[C(DTLB)] = {
1113 /*
1114 * Only general DTLB misses are counted use the same event for
1115 * read and write.
1116 */
1117 [C(OP_READ)] = {
1118 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1119 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1120 },
1121 [C(OP_WRITE)] = {
1122 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1123 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1124 },
1125 [C(OP_PREFETCH)] = {
1126 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1127 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1128 },
1129},
1130[C(ITLB)] = {
1131 [C(OP_READ)] = {
1132 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1133 [C(RESULT_MISS)] = { 0x37, CNTR_ALL },
1134 },
1135 [C(OP_WRITE)] = {
1136 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1137 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1138 },
1139 [C(OP_PREFETCH)] = {
1140 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1141 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1142 },
1143},
1144[C(BPU)] = {
1145 /* Using the same code for *HW_BRANCH* */
1146 [C(OP_READ)] = {
1147 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1148 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1149 },
1150 [C(OP_WRITE)] = {
1151 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1152 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1153 },
1154 [C(OP_PREFETCH)] = {
1155 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1156 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1157 },
1158},
1159};
1160
1161#ifdef CONFIG_MIPS_MT_SMP
1162static void check_and_calc_range(struct perf_event *event,
1163 const struct mips_perf_event *pev)
1164{
1165 struct hw_perf_event *hwc = &event->hw;
1166
1167 if (event->cpu >= 0) {
1168 if (pev->range > V) {
1169 /*
1170 * The user selected an event that is processor
1171 * wide, while expecting it to be VPE wide.
1172 */
1173 hwc->config_base |= M_TC_EN_ALL;
1174 } else {
1175 /*
1176 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1177 * for both CPUs.
1178 */
1179 hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1180 hwc->config_base |= M_TC_EN_VPE;
1181 }
1182 } else
1183 hwc->config_base |= M_TC_EN_ALL;
1184}
1185#else
1186static void check_and_calc_range(struct perf_event *event,
1187 const struct mips_perf_event *pev)
1188{
1189}
1190#endif
1191
1192static int __hw_perf_event_init(struct perf_event *event)
1193{
1194 struct perf_event_attr *attr = &event->attr;
1195 struct hw_perf_event *hwc = &event->hw;
1196 const struct mips_perf_event *pev;
1197 int err;
1198
1199 /* Returning MIPS event descriptor for generic perf event. */
1200 if (PERF_TYPE_HARDWARE == event->attr.type) {
1201 if (event->attr.config >= PERF_COUNT_HW_MAX)
1202 return -EINVAL;
1203 pev = mipspmu_map_general_event(event->attr.config);
1204 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1205 pev = mipspmu_map_cache_event(event->attr.config);
1206 } else if (PERF_TYPE_RAW == event->attr.type) {
1207 /* We are working on the global raw event. */
1208 mutex_lock(&raw_event_mutex);
1209 pev = mipspmu.map_raw_event(event->attr.config);
1210 } else {
1211 /* The event type is not (yet) supported. */
1212 return -EOPNOTSUPP;
1213 }
1214
1215 if (IS_ERR(pev)) {
1216 if (PERF_TYPE_RAW == event->attr.type)
1217 mutex_unlock(&raw_event_mutex);
1218 return PTR_ERR(pev);
1219 }
1220
1221 /*
1222 * We allow max flexibility on how each individual counter shared
1223 * by the single CPU operates (the mode exclusion and the range).
1224 */
1225 hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1226
1227 /* Calculate range bits and validate it. */
1228 if (num_possible_cpus() > 1)
1229 check_and_calc_range(event, pev);
1230
1231 hwc->event_base = mipspmu_perf_event_encode(pev);
1232 if (PERF_TYPE_RAW == event->attr.type)
1233 mutex_unlock(&raw_event_mutex);
1234
1235 if (!attr->exclude_user)
1236 hwc->config_base |= M_PERFCTL_USER;
1237 if (!attr->exclude_kernel) {
1238 hwc->config_base |= M_PERFCTL_KERNEL;
1239 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1240 hwc->config_base |= M_PERFCTL_EXL;
1241 }
1242 if (!attr->exclude_hv)
1243 hwc->config_base |= M_PERFCTL_SUPERVISOR;
1244
1245 hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1246 /*
1247 * The event can belong to another cpu. We do not assign a local
1248 * counter for it for now.
1249 */
1250 hwc->idx = -1;
1251 hwc->config = 0;
1252
1253 if (!hwc->sample_period) {
1254 hwc->sample_period = mipspmu.max_period;
1255 hwc->last_period = hwc->sample_period;
1256 local64_set(&hwc->period_left, hwc->sample_period);
1257 }
1258
1259 err = 0;
1260 if (event->group_leader != event)
1261 err = validate_group(event);
1262
1263 event->destroy = hw_perf_event_destroy;
1264
1265 if (err)
1266 event->destroy(event);
1267
1268 return err;
1269}
1270
1271static void pause_local_counters(void)
1272{
1273 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1274 int ctr = mipspmu.num_counters;
1275 unsigned long flags;
1276
1277 local_irq_save(flags);
1278 do {
1279 ctr--;
1280 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1281 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1282 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1283 } while (ctr > 0);
1284 local_irq_restore(flags);
1285}
1286
1287static void resume_local_counters(void)
1288{
1289 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1290 int ctr = mipspmu.num_counters;
1291
1292 do {
1293 ctr--;
1294 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1295 } while (ctr > 0);
1296}
1297
1298static int mipsxx_pmu_handle_shared_irq(void)
1299{
1300 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1301 struct perf_sample_data data;
1302 unsigned int counters = mipspmu.num_counters;
1303 u64 counter;
1304 int handled = IRQ_NONE;
1305 struct pt_regs *regs;
1306
1307 if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
1308 return handled;
1309 /*
1310 * First we pause the local counters, so that when we are locked
1311 * here, the counters are all paused. When it gets locked due to
1312 * perf_disable(), the timer interrupt handler will be delayed.
1313 *
1314 * See also mipsxx_pmu_start().
1315 */
1316 pause_local_counters();
1317#ifdef CONFIG_MIPS_MT_SMP
1318 read_lock(&pmuint_rwlock);
1319#endif
1320
1321 regs = get_irq_regs();
1322
1323 perf_sample_data_init(&data, 0, 0);
1324
1325 switch (counters) {
1326#define HANDLE_COUNTER(n) \
1327 case n + 1: \
1328 if (test_bit(n, cpuc->used_mask)) { \
1329 counter = mipspmu.read_counter(n); \
1330 if (counter & mipspmu.overflow) { \
1331 handle_associated_event(cpuc, n, &data, regs); \
1332 handled = IRQ_HANDLED; \
1333 } \
1334 }
1335 HANDLE_COUNTER(3)
1336 HANDLE_COUNTER(2)
1337 HANDLE_COUNTER(1)
1338 HANDLE_COUNTER(0)
1339 }
1340
1341 /*
1342 * Do all the work for the pending perf events. We can do this
1343 * in here because the performance counter interrupt is a regular
1344 * interrupt, not NMI.
1345 */
1346 if (handled == IRQ_HANDLED)
1347 irq_work_run();
1348
1349#ifdef CONFIG_MIPS_MT_SMP
1350 read_unlock(&pmuint_rwlock);
1351#endif
1352 resume_local_counters();
1353 return handled;
1354}
1355
1356static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1357{
1358 return mipsxx_pmu_handle_shared_irq();
1359}
1360
1361/* 24K */
1362#define IS_BOTH_COUNTERS_24K_EVENT(b) \
1363 ((b) == 0 || (b) == 1 || (b) == 11)
1364
1365/* 34K */
1366#define IS_BOTH_COUNTERS_34K_EVENT(b) \
1367 ((b) == 0 || (b) == 1 || (b) == 11)
1368#ifdef CONFIG_MIPS_MT_SMP
1369#define IS_RANGE_P_34K_EVENT(r, b) \
1370 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1371 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1372 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1373 ((b) >= 64 && (b) <= 67))
1374#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1375#endif
1376
1377/* 74K */
1378#define IS_BOTH_COUNTERS_74K_EVENT(b) \
1379 ((b) == 0 || (b) == 1)
1380
1381/* 1004K */
1382#define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1383 ((b) == 0 || (b) == 1 || (b) == 11)
1384#ifdef CONFIG_MIPS_MT_SMP
1385#define IS_RANGE_P_1004K_EVENT(r, b) \
1386 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1387 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1388 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1389 (r) == 188 || (b) == 61 || (b) == 62 || \
1390 ((b) >= 64 && (b) <= 67))
1391#define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1392#endif
1393
1394/*
1395 * User can use 0-255 raw events, where 0-127 for the events of even
1396 * counters, and 128-255 for odd counters. Note that bit 7 is used to
1397 * indicate the parity. So, for example, when user wants to take the
1398 * Event Num of 15 for odd counters (by referring to the user manual),
1399 * then 128 needs to be added to 15 as the input for the event config,
1400 * i.e., 143 (0x8F) to be used.
1401 */
1402static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1403{
1404 unsigned int raw_id = config & 0xff;
1405 unsigned int base_id = raw_id & 0x7f;
1406
1407 raw_event.event_id = base_id;
1408
1409 switch (current_cpu_type()) {
1410 case CPU_24K:
1411 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1412 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1413 else
1414 raw_event.cntr_mask =
1415 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1416#ifdef CONFIG_MIPS_MT_SMP
1417 /*
1418 * This is actually doing nothing. Non-multithreading
1419 * CPUs will not check and calculate the range.
1420 */
1421 raw_event.range = P;
1422#endif
1423 break;
1424 case CPU_34K:
1425 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1426 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1427 else
1428 raw_event.cntr_mask =
1429 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1430#ifdef CONFIG_MIPS_MT_SMP
1431 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1432 raw_event.range = P;
1433 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1434 raw_event.range = V;
1435 else
1436 raw_event.range = T;
1437#endif
1438 break;
1439 case CPU_74K:
1440 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1441 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1442 else
1443 raw_event.cntr_mask =
1444 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1445#ifdef CONFIG_MIPS_MT_SMP
1446 raw_event.range = P;
1447#endif
1448 break;
1449 case CPU_1004K:
1450 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1451 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1452 else
1453 raw_event.cntr_mask =
1454 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1455#ifdef CONFIG_MIPS_MT_SMP
1456 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1457 raw_event.range = P;
1458 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1459 raw_event.range = V;
1460 else
1461 raw_event.range = T;
1462#endif
1463 break;
1464 }
1465
1466 return &raw_event;
1467}
1468
1469static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1470{
1471 unsigned int raw_id = config & 0xff;
1472 unsigned int base_id = raw_id & 0x7f;
1473
1474
1475 raw_event.cntr_mask = CNTR_ALL;
1476 raw_event.event_id = base_id;
1477
1478 if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1479 if (base_id > 0x42)
1480 return ERR_PTR(-EOPNOTSUPP);
1481 } else {
1482 if (base_id > 0x3a)
1483 return ERR_PTR(-EOPNOTSUPP);
1484 }
1485
1486 switch (base_id) {
1487 case 0x00:
1488 case 0x0f:
1489 case 0x1e:
1490 case 0x1f:
1491 case 0x2f:
1492 case 0x34:
1493 case 0x3b ... 0x3f:
1494 return ERR_PTR(-EOPNOTSUPP);
1495 default:
1496 break;
1497 }
1498
1499 return &raw_event;
1500}
1501
1502static int __init
1503init_hw_perf_events(void)
1504{
1505 int counters, irq;
1506 int counter_bits;
1507
1508 pr_info("Performance counters: ");
1509
1510 counters = n_counters();
1511 if (counters == 0) {
1512 pr_cont("No available PMU.\n");
1513 return -ENODEV;
1514 }
1515
1516#ifdef CONFIG_MIPS_MT_SMP
1517 cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1518 if (!cpu_has_mipsmt_pertccounters)
1519 counters = counters_total_to_per_cpu(counters);
1520#endif
1521
1522#ifdef MSC01E_INT_BASE
1523 if (cpu_has_veic) {
1524 /*
1525 * Using platform specific interrupt controller defines.
1526 */
1527 irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1528 } else {
1529#endif
1530 if ((cp0_perfcount_irq >= 0) &&
1531 (cp0_compare_irq != cp0_perfcount_irq))
1532 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1533 else
1534 irq = -1;
1535#ifdef MSC01E_INT_BASE
1536 }
1537#endif
1538
1539 mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1540
1541 switch (current_cpu_type()) {
1542 case CPU_24K:
1543 mipspmu.name = "mips/24K";
1544 mipspmu.general_event_map = &mipsxxcore_event_map;
1545 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1546 break;
1547 case CPU_34K:
1548 mipspmu.name = "mips/34K";
1549 mipspmu.general_event_map = &mipsxxcore_event_map;
1550 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1551 break;
1552 case CPU_74K:
1553 mipspmu.name = "mips/74K";
1554 mipspmu.general_event_map = &mipsxx74Kcore_event_map;
1555 mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
1556 break;
1557 case CPU_1004K:
1558 mipspmu.name = "mips/1004K";
1559 mipspmu.general_event_map = &mipsxxcore_event_map;
1560 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1561 break;
1562 case CPU_CAVIUM_OCTEON:
1563 case CPU_CAVIUM_OCTEON_PLUS:
1564 case CPU_CAVIUM_OCTEON2:
1565 mipspmu.name = "octeon";
1566 mipspmu.general_event_map = &octeon_event_map;
1567 mipspmu.cache_event_map = &octeon_cache_map;
1568 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1569 break;
1570 default:
1571 pr_cont("Either hardware does not support performance "
1572 "counters, or not yet implemented.\n");
1573 return -ENODEV;
1574 }
1575
1576 mipspmu.num_counters = counters;
1577 mipspmu.irq = irq;
1578
1579 if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1580 mipspmu.max_period = (1ULL << 63) - 1;
1581 mipspmu.valid_count = (1ULL << 63) - 1;
1582 mipspmu.overflow = 1ULL << 63;
1583 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1584 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1585 counter_bits = 64;
1586 } else {
1587 mipspmu.max_period = (1ULL << 31) - 1;
1588 mipspmu.valid_count = (1ULL << 31) - 1;
1589 mipspmu.overflow = 1ULL << 31;
1590 mipspmu.read_counter = mipsxx_pmu_read_counter;
1591 mipspmu.write_counter = mipsxx_pmu_write_counter;
1592 counter_bits = 32;
1593 }
1594
1595 on_each_cpu(reset_counters, (void *)(long)counters, 1);
1596
1597 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1598 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1599 irq < 0 ? " (share with timer interrupt)" : "");
1600
1601 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1602
1603 return 0;
1604}
1605early_initcall(init_hw_perf_events);