Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v3.1
   1#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) || \
   2    defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_SB1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#define M_CONFIG1_PC	(1 << 4)
   5
   6#define M_PERFCTL_EXL			(1UL      <<  0)
   7#define M_PERFCTL_KERNEL		(1UL      <<  1)
   8#define M_PERFCTL_SUPERVISOR		(1UL      <<  2)
   9#define M_PERFCTL_USER			(1UL      <<  3)
  10#define M_PERFCTL_INTERRUPT_ENABLE	(1UL      <<  4)
  11#define M_PERFCTL_EVENT(event)		(((event) & 0x3ff)  << 5)
  12#define M_PERFCTL_VPEID(vpe)		((vpe)    << 16)
  13#define M_PERFCTL_MT_EN(filter)		((filter) << 20)
  14#define    M_TC_EN_ALL			M_PERFCTL_MT_EN(0)
  15#define    M_TC_EN_VPE			M_PERFCTL_MT_EN(1)
  16#define    M_TC_EN_TC			M_PERFCTL_MT_EN(2)
  17#define M_PERFCTL_TCID(tcid)		((tcid)   << 22)
  18#define M_PERFCTL_WIDE			(1UL      << 30)
  19#define M_PERFCTL_MORE			(1UL      << 31)
  20
  21#define M_PERFCTL_COUNT_EVENT_WHENEVER	(M_PERFCTL_EXL |		\
  22					M_PERFCTL_KERNEL |		\
  23					M_PERFCTL_USER |		\
  24					M_PERFCTL_SUPERVISOR |		\
  25					M_PERFCTL_INTERRUPT_ENABLE)
  26
  27#ifdef CONFIG_MIPS_MT_SMP
  28#define M_PERFCTL_CONFIG_MASK		0x3fff801f
  29#else
  30#define M_PERFCTL_CONFIG_MASK		0x1f
  31#endif
  32#define M_PERFCTL_EVENT_MASK		0xfe0
  33
  34#define M_COUNTER_OVERFLOW		(1UL      << 31)
  35
  36#ifdef CONFIG_MIPS_MT_SMP
  37static int cpu_has_mipsmt_pertccounters;
  38
 
 
  39/*
  40 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
  41 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
  42 */
  43#if defined(CONFIG_HW_PERF_EVENTS)
  44#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
  45			0 : smp_processor_id())
  46#else
  47#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
  48			0 : cpu_data[smp_processor_id()].vpe_id)
  49#endif
  50
  51/* Copied from op_model_mipsxx.c */
  52static inline unsigned int vpe_shift(void)
  53{
  54	if (num_possible_cpus() > 1)
  55		return 1;
  56
  57	return 0;
  58}
  59#else /* !CONFIG_MIPS_MT_SMP */
  60#define vpe_id()	0
  61
  62static inline unsigned int vpe_shift(void)
  63{
  64	return 0;
  65}
  66#endif /* CONFIG_MIPS_MT_SMP */
  67
  68static inline unsigned int
  69counters_total_to_per_cpu(unsigned int counters)
  70{
  71	return counters >> vpe_shift();
  72}
  73
  74static inline unsigned int
  75counters_per_cpu_to_total(unsigned int counters)
  76{
  77	return counters << vpe_shift();
  78}
  79
  80#define __define_perf_accessors(r, n, np)				\
  81									\
  82static inline unsigned int r_c0_ ## r ## n(void)			\
  83{									\
  84	unsigned int cpu = vpe_id();					\
  85									\
  86	switch (cpu) {							\
  87	case 0:								\
  88		return read_c0_ ## r ## n();				\
  89	case 1:								\
  90		return read_c0_ ## r ## np();				\
  91	default:							\
  92		BUG();							\
  93	}								\
  94	return 0;							\
  95}									\
  96									\
  97static inline void w_c0_ ## r ## n(unsigned int value)			\
  98{									\
  99	unsigned int cpu = vpe_id();					\
 100									\
 101	switch (cpu) {							\
 102	case 0:								\
 103		write_c0_ ## r ## n(value);				\
 104		return;							\
 105	case 1:								\
 106		write_c0_ ## r ## np(value);				\
 107		return;							\
 108	default:							\
 109		BUG();							\
 110	}								\
 111	return;								\
 112}									\
 113
 114__define_perf_accessors(perfcntr, 0, 2)
 115__define_perf_accessors(perfcntr, 1, 3)
 116__define_perf_accessors(perfcntr, 2, 0)
 117__define_perf_accessors(perfcntr, 3, 1)
 118
 119__define_perf_accessors(perfctrl, 0, 2)
 120__define_perf_accessors(perfctrl, 1, 3)
 121__define_perf_accessors(perfctrl, 2, 0)
 122__define_perf_accessors(perfctrl, 3, 1)
 123
 124static inline int __n_counters(void)
 125{
 126	if (!(read_c0_config1() & M_CONFIG1_PC))
 127		return 0;
 128	if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
 129		return 1;
 130	if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
 131		return 2;
 132	if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
 133		return 3;
 134
 135	return 4;
 
 
 
 
 136}
 137
 138static inline int n_counters(void)
 139{
 140	int counters;
 141
 142	switch (current_cpu_type()) {
 143	case CPU_R10000:
 144		counters = 2;
 145		break;
 146
 147	case CPU_R12000:
 148	case CPU_R14000:
 149		counters = 4;
 150		break;
 151
 
 
 
 
 
 
 
 
 
 
 
 
 
 152	default:
 153		counters = __n_counters();
 
 154	}
 155
 156	return counters;
 157}
 158
 159static void reset_counters(void *arg)
 160{
 161	int counters = (int)(long)arg;
 162	switch (counters) {
 163	case 4:
 164		w_c0_perfctrl3(0);
 165		w_c0_perfcntr3(0);
 166	case 3:
 167		w_c0_perfctrl2(0);
 168		w_c0_perfcntr2(0);
 169	case 2:
 170		w_c0_perfctrl1(0);
 171		w_c0_perfcntr1(0);
 172	case 1:
 173		w_c0_perfctrl0(0);
 174		w_c0_perfcntr0(0);
 
 
 
 
 
 
 175	}
 176}
 177
 178static inline u64
 179mipsxx_pmu_read_counter(unsigned int idx)
 180{
 
 
 181	switch (idx) {
 182	case 0:
 183		return r_c0_perfcntr0();
 
 184	case 1:
 185		return r_c0_perfcntr1();
 
 186	case 2:
 187		return r_c0_perfcntr2();
 
 188	case 3:
 189		return r_c0_perfcntr3();
 190	default:
 191		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 192		return 0;
 193	}
 194}
 195
 196static inline void
 197mipsxx_pmu_write_counter(unsigned int idx, u64 val)
 198{
 
 
 199	switch (idx) {
 200	case 0:
 201		w_c0_perfcntr0(val);
 202		return;
 203	case 1:
 204		w_c0_perfcntr1(val);
 205		return;
 206	case 2:
 207		w_c0_perfcntr2(val);
 208		return;
 209	case 3:
 210		w_c0_perfcntr3(val);
 211		return;
 212	}
 213}
 214
 215static inline unsigned int
 216mipsxx_pmu_read_control(unsigned int idx)
 217{
 
 
 218	switch (idx) {
 219	case 0:
 220		return r_c0_perfctrl0();
 221	case 1:
 222		return r_c0_perfctrl1();
 223	case 2:
 224		return r_c0_perfctrl2();
 225	case 3:
 226		return r_c0_perfctrl3();
 227	default:
 228		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 229		return 0;
 230	}
 231}
 232
 233static inline void
 234mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
 235{
 
 
 236	switch (idx) {
 237	case 0:
 238		w_c0_perfctrl0(val);
 239		return;
 240	case 1:
 241		w_c0_perfctrl1(val);
 242		return;
 243	case 2:
 244		w_c0_perfctrl2(val);
 245		return;
 246	case 3:
 247		w_c0_perfctrl3(val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 249	}
 
 
 
 
 
 250}
 251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 252#ifdef CONFIG_MIPS_MT_SMP
 253static DEFINE_RWLOCK(pmuint_rwlock);
 
 
 
 
 
 254#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 255
 256/* 24K/34K/1004K cores can share the same event map. */
 257static const struct mips_perf_event mipsxxcore_event_map
 258				[PERF_COUNT_HW_MAX] = {
 259	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 260	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 261	[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
 262	[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
 263	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
 264	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
 265	[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
 266};
 267
 268/* 74K core has different branch event code. */
 269static const struct mips_perf_event mipsxx74Kcore_event_map
 270				[PERF_COUNT_HW_MAX] = {
 271	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 272	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 273	[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
 274	[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
 275	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
 276	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
 277	[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
 278};
 279
 
 
 
 
 
 
 
 
 
 
 280/* 24K/34K/1004K cores can share the same cache event map. */
 281static const struct mips_perf_event mipsxxcore_cache_map
 282				[PERF_COUNT_HW_CACHE_MAX]
 283				[PERF_COUNT_HW_CACHE_OP_MAX]
 284				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 285[C(L1D)] = {
 286	/*
 287	 * Like some other architectures (e.g. ARM), the performance
 288	 * counters don't differentiate between read and write
 289	 * accesses/misses, so this isn't strictly correct, but it's the
 290	 * best we can do. Writes and reads get combined.
 291	 */
 292	[C(OP_READ)] = {
 293		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
 294		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
 295	},
 296	[C(OP_WRITE)] = {
 297		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
 298		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
 299	},
 300	[C(OP_PREFETCH)] = {
 301		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 302		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 303	},
 304},
 305[C(L1I)] = {
 306	[C(OP_READ)] = {
 307		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
 308		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
 309	},
 310	[C(OP_WRITE)] = {
 311		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
 312		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
 313	},
 314	[C(OP_PREFETCH)] = {
 315		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
 316		/*
 317		 * Note that MIPS has only "hit" events countable for
 318		 * the prefetch operation.
 319		 */
 320		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 321	},
 322},
 323[C(LL)] = {
 324	[C(OP_READ)] = {
 325		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
 326		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
 327	},
 328	[C(OP_WRITE)] = {
 329		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
 330		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
 331	},
 332	[C(OP_PREFETCH)] = {
 333		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 334		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 335	},
 336},
 337[C(DTLB)] = {
 338	[C(OP_READ)] = {
 339		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 340		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 341	},
 342	[C(OP_WRITE)] = {
 343		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 344		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 345	},
 346	[C(OP_PREFETCH)] = {
 347		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 348		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 349	},
 350},
 351[C(ITLB)] = {
 352	[C(OP_READ)] = {
 353		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
 354		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
 355	},
 356	[C(OP_WRITE)] = {
 357		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
 358		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
 359	},
 360	[C(OP_PREFETCH)] = {
 361		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 362		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 363	},
 364},
 365[C(BPU)] = {
 366	/* Using the same code for *HW_BRANCH* */
 367	[C(OP_READ)] = {
 368		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
 369		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
 370	},
 371	[C(OP_WRITE)] = {
 372		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
 373		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
 374	},
 375	[C(OP_PREFETCH)] = {
 376		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 377		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 378	},
 379},
 380[C(NODE)] = {
 381	[C(OP_READ)] = {
 382		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 383		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 384	},
 385	[C(OP_WRITE)] = {
 386		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 387		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 388	},
 389	[C(OP_PREFETCH)] = {
 390		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 391		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 392	},
 393},
 394};
 395
 396/* 74K core has completely different cache event map. */
 397static const struct mips_perf_event mipsxx74Kcore_cache_map
 398				[PERF_COUNT_HW_CACHE_MAX]
 399				[PERF_COUNT_HW_CACHE_OP_MAX]
 400				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 401[C(L1D)] = {
 402	/*
 403	 * Like some other architectures (e.g. ARM), the performance
 404	 * counters don't differentiate between read and write
 405	 * accesses/misses, so this isn't strictly correct, but it's the
 406	 * best we can do. Writes and reads get combined.
 407	 */
 408	[C(OP_READ)] = {
 409		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
 410		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
 411	},
 412	[C(OP_WRITE)] = {
 413		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
 414		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
 415	},
 416	[C(OP_PREFETCH)] = {
 417		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 418		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 419	},
 420},
 421[C(L1I)] = {
 422	[C(OP_READ)] = {
 423		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 424		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 425	},
 426	[C(OP_WRITE)] = {
 427		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 428		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 429	},
 430	[C(OP_PREFETCH)] = {
 431		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
 432		/*
 433		 * Note that MIPS has only "hit" events countable for
 434		 * the prefetch operation.
 435		 */
 436		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 437	},
 438},
 439[C(LL)] = {
 440	[C(OP_READ)] = {
 441		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
 442		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
 443	},
 444	[C(OP_WRITE)] = {
 445		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
 446		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
 447	},
 448	[C(OP_PREFETCH)] = {
 449		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 450		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 451	},
 452},
 453[C(DTLB)] = {
 454	/* 74K core does not have specific DTLB events. */
 455	[C(OP_READ)] = {
 456		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 457		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 458	},
 459	[C(OP_WRITE)] = {
 460		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 461		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 462	},
 463	[C(OP_PREFETCH)] = {
 464		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 465		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 466	},
 467},
 468[C(ITLB)] = {
 469	[C(OP_READ)] = {
 470		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
 471		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
 472	},
 473	[C(OP_WRITE)] = {
 474		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
 475		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
 476	},
 477	[C(OP_PREFETCH)] = {
 478		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 479		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 480	},
 481},
 482[C(BPU)] = {
 483	/* Using the same code for *HW_BRANCH* */
 484	[C(OP_READ)] = {
 485		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
 486		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
 487	},
 488	[C(OP_WRITE)] = {
 489		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
 490		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
 491	},
 492	[C(OP_PREFETCH)] = {
 493		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 494		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 495	},
 496},
 497[C(NODE)] = {
 498	[C(OP_READ)] = {
 499		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 500		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 501	},
 502	[C(OP_WRITE)] = {
 503		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 504		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 505	},
 506	[C(OP_PREFETCH)] = {
 507		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 508		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 509	},
 510},
 511};
 512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 513#ifdef CONFIG_MIPS_MT_SMP
 514static void
 515check_and_calc_range(struct perf_event *event,
 516			const struct mips_perf_event *pev)
 517{
 518	struct hw_perf_event *hwc = &event->hw;
 519
 520	if (event->cpu >= 0) {
 521		if (pev->range > V) {
 522			/*
 523			 * The user selected an event that is processor
 524			 * wide, while expecting it to be VPE wide.
 525			 */
 526			hwc->config_base |= M_TC_EN_ALL;
 527		} else {
 528			/*
 529			 * FIXME: cpu_data[event->cpu].vpe_id reports 0
 530			 * for both CPUs.
 531			 */
 532			hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
 533			hwc->config_base |= M_TC_EN_VPE;
 534		}
 535	} else
 536		hwc->config_base |= M_TC_EN_ALL;
 537}
 538#else
 539static void
 540check_and_calc_range(struct perf_event *event,
 541			const struct mips_perf_event *pev)
 542{
 543}
 544#endif
 545
 546static int __hw_perf_event_init(struct perf_event *event)
 547{
 548	struct perf_event_attr *attr = &event->attr;
 549	struct hw_perf_event *hwc = &event->hw;
 550	const struct mips_perf_event *pev;
 551	int err;
 552
 553	/* Returning MIPS event descriptor for generic perf event. */
 554	if (PERF_TYPE_HARDWARE == event->attr.type) {
 555		if (event->attr.config >= PERF_COUNT_HW_MAX)
 556			return -EINVAL;
 557		pev = mipspmu_map_general_event(event->attr.config);
 558	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
 559		pev = mipspmu_map_cache_event(event->attr.config);
 560	} else if (PERF_TYPE_RAW == event->attr.type) {
 561		/* We are working on the global raw event. */
 562		mutex_lock(&raw_event_mutex);
 563		pev = mipspmu->map_raw_event(event->attr.config);
 564	} else {
 565		/* The event type is not (yet) supported. */
 566		return -EOPNOTSUPP;
 567	}
 568
 569	if (IS_ERR(pev)) {
 570		if (PERF_TYPE_RAW == event->attr.type)
 571			mutex_unlock(&raw_event_mutex);
 572		return PTR_ERR(pev);
 573	}
 574
 575	/*
 576	 * We allow max flexibility on how each individual counter shared
 577	 * by the single CPU operates (the mode exclusion and the range).
 578	 */
 579	hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
 580
 581	/* Calculate range bits and validate it. */
 582	if (num_possible_cpus() > 1)
 583		check_and_calc_range(event, pev);
 584
 585	hwc->event_base = mipspmu_perf_event_encode(pev);
 586	if (PERF_TYPE_RAW == event->attr.type)
 587		mutex_unlock(&raw_event_mutex);
 588
 589	if (!attr->exclude_user)
 590		hwc->config_base |= M_PERFCTL_USER;
 591	if (!attr->exclude_kernel) {
 592		hwc->config_base |= M_PERFCTL_KERNEL;
 593		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
 594		hwc->config_base |= M_PERFCTL_EXL;
 595	}
 596	if (!attr->exclude_hv)
 597		hwc->config_base |= M_PERFCTL_SUPERVISOR;
 598
 599	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
 600	/*
 601	 * The event can belong to another cpu. We do not assign a local
 602	 * counter for it for now.
 603	 */
 604	hwc->idx = -1;
 605	hwc->config = 0;
 606
 607	if (!hwc->sample_period) {
 608		hwc->sample_period  = MAX_PERIOD;
 609		hwc->last_period    = hwc->sample_period;
 610		local64_set(&hwc->period_left, hwc->sample_period);
 611	}
 612
 613	err = 0;
 614	if (event->group_leader != event) {
 615		err = validate_group(event);
 616		if (err)
 617			return -EINVAL;
 618	}
 619
 620	event->destroy = hw_perf_event_destroy;
 621
 
 
 
 622	return err;
 623}
 624
 625static void pause_local_counters(void)
 626{
 627	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 628	int counters = mipspmu->num_counters;
 629	unsigned long flags;
 630
 631	local_irq_save(flags);
 632	switch (counters) {
 633	case 4:
 634		cpuc->saved_ctrl[3] = r_c0_perfctrl3();
 635		w_c0_perfctrl3(cpuc->saved_ctrl[3] &
 636			~M_PERFCTL_COUNT_EVENT_WHENEVER);
 637	case 3:
 638		cpuc->saved_ctrl[2] = r_c0_perfctrl2();
 639		w_c0_perfctrl2(cpuc->saved_ctrl[2] &
 640			~M_PERFCTL_COUNT_EVENT_WHENEVER);
 641	case 2:
 642		cpuc->saved_ctrl[1] = r_c0_perfctrl1();
 643		w_c0_perfctrl1(cpuc->saved_ctrl[1] &
 644			~M_PERFCTL_COUNT_EVENT_WHENEVER);
 645	case 1:
 646		cpuc->saved_ctrl[0] = r_c0_perfctrl0();
 647		w_c0_perfctrl0(cpuc->saved_ctrl[0] &
 648			~M_PERFCTL_COUNT_EVENT_WHENEVER);
 649	}
 650	local_irq_restore(flags);
 651}
 652
 653static void resume_local_counters(void)
 654{
 655	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 656	int counters = mipspmu->num_counters;
 657	unsigned long flags;
 658
 659	local_irq_save(flags);
 660	switch (counters) {
 661	case 4:
 662		w_c0_perfctrl3(cpuc->saved_ctrl[3]);
 663	case 3:
 664		w_c0_perfctrl2(cpuc->saved_ctrl[2]);
 665	case 2:
 666		w_c0_perfctrl1(cpuc->saved_ctrl[1]);
 667	case 1:
 668		w_c0_perfctrl0(cpuc->saved_ctrl[0]);
 669	}
 670	local_irq_restore(flags);
 671}
 672
 673static int mipsxx_pmu_handle_shared_irq(void)
 674{
 675	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 676	struct perf_sample_data data;
 677	unsigned int counters = mipspmu->num_counters;
 678	unsigned int counter;
 679	int handled = IRQ_NONE;
 680	struct pt_regs *regs;
 681
 682	if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
 683		return handled;
 684
 685	/*
 686	 * First we pause the local counters, so that when we are locked
 687	 * here, the counters are all paused. When it gets locked due to
 688	 * perf_disable(), the timer interrupt handler will be delayed.
 689	 *
 690	 * See also mipsxx_pmu_start().
 691	 */
 692	pause_local_counters();
 693#ifdef CONFIG_MIPS_MT_SMP
 694	read_lock(&pmuint_rwlock);
 695#endif
 696
 697	regs = get_irq_regs();
 698
 699	perf_sample_data_init(&data, 0);
 700
 701	switch (counters) {
 702#define HANDLE_COUNTER(n)						\
 703	case n + 1:							\
 704		if (test_bit(n, cpuc->used_mask)) {			\
 705			counter = r_c0_perfcntr ## n();			\
 706			if (counter & M_COUNTER_OVERFLOW) {		\
 707				w_c0_perfcntr ## n(counter &		\
 708						VALID_COUNT);		\
 709				if (test_and_change_bit(n, cpuc->msbs))	\
 710					handle_associated_event(cpuc,	\
 711						n, &data, regs);	\
 712				handled = IRQ_HANDLED;			\
 713			}						\
 714		}
 715	HANDLE_COUNTER(3)
 716	HANDLE_COUNTER(2)
 717	HANDLE_COUNTER(1)
 718	HANDLE_COUNTER(0)
 719	}
 720
 721	/*
 722	 * Do all the work for the pending perf events. We can do this
 723	 * in here because the performance counter interrupt is a regular
 724	 * interrupt, not NMI.
 725	 */
 726	if (handled == IRQ_HANDLED)
 727		irq_work_run();
 728
 729#ifdef CONFIG_MIPS_MT_SMP
 730	read_unlock(&pmuint_rwlock);
 731#endif
 732	resume_local_counters();
 733	return handled;
 734}
 735
 736static irqreturn_t
 737mipsxx_pmu_handle_irq(int irq, void *dev)
 738{
 739	return mipsxx_pmu_handle_shared_irq();
 740}
 741
 742static void mipsxx_pmu_start(void)
 743{
 744#ifdef CONFIG_MIPS_MT_SMP
 745	write_unlock(&pmuint_rwlock);
 746#endif
 747	resume_local_counters();
 748}
 749
 750/*
 751 * MIPS performance counters can be per-TC. The control registers can
 752 * not be directly accessed across CPUs. Hence if we want to do global
 753 * control, we need cross CPU calls. on_each_cpu() can help us, but we
 754 * can not make sure this function is called with interrupts enabled. So
 755 * here we pause local counters and then grab a rwlock and leave the
 756 * counters on other CPUs alone. If any counter interrupt raises while
 757 * we own the write lock, simply pause local counters on that CPU and
 758 * spin in the handler. Also we know we won't be switched to another
 759 * CPU after pausing local counters and before grabbing the lock.
 760 */
 761static void mipsxx_pmu_stop(void)
 762{
 763	pause_local_counters();
 764#ifdef CONFIG_MIPS_MT_SMP
 765	write_lock(&pmuint_rwlock);
 766#endif
 767}
 768
 769static int
 770mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
 771			struct hw_perf_event *hwc)
 772{
 773	int i;
 774
 775	/*
 776	 * We only need to care the counter mask. The range has been
 777	 * checked definitely.
 778	 */
 779	unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
 780
 781	for (i = mipspmu->num_counters - 1; i >= 0; i--) {
 782		/*
 783		 * Note that some MIPS perf events can be counted by both
 784		 * even and odd counters, wheresas many other are only by
 785		 * even _or_ odd counters. This introduces an issue that
 786		 * when the former kind of event takes the counter the
 787		 * latter kind of event wants to use, then the "counter
 788		 * allocation" for the latter event will fail. In fact if
 789		 * they can be dynamically swapped, they both feel happy.
 790		 * But here we leave this issue alone for now.
 791		 */
 792		if (test_bit(i, &cntr_mask) &&
 793			!test_and_set_bit(i, cpuc->used_mask))
 794			return i;
 795	}
 796
 797	return -EAGAIN;
 798}
 799
 800static void
 801mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
 802{
 803	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 804	unsigned long flags;
 805
 806	WARN_ON(idx < 0 || idx >= mipspmu->num_counters);
 807
 808	local_irq_save(flags);
 809	cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
 810		(evt->config_base & M_PERFCTL_CONFIG_MASK) |
 811		/* Make sure interrupt enabled. */
 812		M_PERFCTL_INTERRUPT_ENABLE;
 813	/*
 814	 * We do not actually let the counter run. Leave it until start().
 815	 */
 816	local_irq_restore(flags);
 817}
 818
 819static void
 820mipsxx_pmu_disable_event(int idx)
 821{
 822	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 823	unsigned long flags;
 824
 825	WARN_ON(idx < 0 || idx >= mipspmu->num_counters);
 826
 827	local_irq_save(flags);
 828	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
 829		~M_PERFCTL_COUNT_EVENT_WHENEVER;
 830	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
 831	local_irq_restore(flags);
 832}
 833
 834/* 24K */
 835#define IS_UNSUPPORTED_24K_EVENT(r, b)					\
 836	((b) == 12 || (r) == 151 || (r) == 152 || (b) == 26 ||		\
 837	 (b) == 27 || (r) == 28 || (r) == 158 || (b) == 31 ||		\
 838	 (b) == 32 || (b) == 34 || (b) == 36 || (r) == 168 ||		\
 839	 (r) == 172 || (b) == 47 || ((b) >= 56 && (b) <= 63) ||		\
 840	 ((b) >= 68 && (b) <= 127))
 841#define IS_BOTH_COUNTERS_24K_EVENT(b)					\
 842	((b) == 0 || (b) == 1 || (b) == 11)
 843
 844/* 34K */
 845#define IS_UNSUPPORTED_34K_EVENT(r, b)					\
 846	((b) == 12 || (r) == 27 || (r) == 158 || (b) == 36 ||		\
 847	 (b) == 38 || (r) == 175 || ((b) >= 56 && (b) <= 63) ||		\
 848	 ((b) >= 68 && (b) <= 127))
 849#define IS_BOTH_COUNTERS_34K_EVENT(b)					\
 850	((b) == 0 || (b) == 1 || (b) == 11)
 851#ifdef CONFIG_MIPS_MT_SMP
 852#define IS_RANGE_P_34K_EVENT(r, b)					\
 853	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
 854	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
 855	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
 856	 ((b) >= 64 && (b) <= 67))
 857#define IS_RANGE_V_34K_EVENT(r)	((r) == 47)
 858#endif
 859
 860/* 74K */
 861#define IS_UNSUPPORTED_74K_EVENT(r, b)					\
 862	((r) == 5 || ((r) >= 135 && (r) <= 137) ||			\
 863	 ((b) >= 10 && (b) <= 12) || (b) == 22 || (b) == 27 ||		\
 864	 (b) == 33 || (b) == 34 || ((b) >= 47 && (b) <= 49) ||		\
 865	 (r) == 178 || (b) == 55 || (b) == 57 || (b) == 60 ||		\
 866	 (b) == 61 || (r) == 62 || (r) == 191 ||			\
 867	 ((b) >= 64 && (b) <= 127))
 868#define IS_BOTH_COUNTERS_74K_EVENT(b)					\
 869	((b) == 0 || (b) == 1)
 870
 871/* 1004K */
 872#define IS_UNSUPPORTED_1004K_EVENT(r, b)				\
 873	((b) == 12 || (r) == 27 || (r) == 158 || (b) == 38 ||		\
 874	 (r) == 175 || (b) == 63 || ((b) >= 68 && (b) <= 127))
 875#define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
 876	((b) == 0 || (b) == 1 || (b) == 11)
 877#ifdef CONFIG_MIPS_MT_SMP
 878#define IS_RANGE_P_1004K_EVENT(r, b)					\
 879	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
 880	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
 881	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
 882	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
 883	 ((b) >= 64 && (b) <= 67))
 884#define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
 885#endif
 886
 887/*
 888 * User can use 0-255 raw events, where 0-127 for the events of even
 889 * counters, and 128-255 for odd counters. Note that bit 7 is used to
 890 * indicate the parity. So, for example, when user wants to take the
 891 * Event Num of 15 for odd counters (by referring to the user manual),
 892 * then 128 needs to be added to 15 as the input for the event config,
 893 * i.e., 143 (0x8F) to be used.
 894 */
 895static const struct mips_perf_event *
 896mipsxx_pmu_map_raw_event(u64 config)
 897{
 898	unsigned int raw_id = config & 0xff;
 899	unsigned int base_id = raw_id & 0x7f;
 900
 
 
 901	switch (current_cpu_type()) {
 902	case CPU_24K:
 903		if (IS_UNSUPPORTED_24K_EVENT(raw_id, base_id))
 904			return ERR_PTR(-EOPNOTSUPP);
 905		raw_event.event_id = base_id;
 906		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
 907			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
 908		else
 909			raw_event.cntr_mask =
 910				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
 911#ifdef CONFIG_MIPS_MT_SMP
 912		/*
 913		 * This is actually doing nothing. Non-multithreading
 914		 * CPUs will not check and calculate the range.
 915		 */
 916		raw_event.range = P;
 917#endif
 918		break;
 919	case CPU_34K:
 920		if (IS_UNSUPPORTED_34K_EVENT(raw_id, base_id))
 921			return ERR_PTR(-EOPNOTSUPP);
 922		raw_event.event_id = base_id;
 923		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
 924			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
 925		else
 926			raw_event.cntr_mask =
 927				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
 928#ifdef CONFIG_MIPS_MT_SMP
 929		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
 930			raw_event.range = P;
 931		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
 932			raw_event.range = V;
 933		else
 934			raw_event.range = T;
 935#endif
 936		break;
 937	case CPU_74K:
 938		if (IS_UNSUPPORTED_74K_EVENT(raw_id, base_id))
 939			return ERR_PTR(-EOPNOTSUPP);
 940		raw_event.event_id = base_id;
 941		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
 942			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
 943		else
 944			raw_event.cntr_mask =
 945				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
 946#ifdef CONFIG_MIPS_MT_SMP
 947		raw_event.range = P;
 948#endif
 949		break;
 950	case CPU_1004K:
 951		if (IS_UNSUPPORTED_1004K_EVENT(raw_id, base_id))
 952			return ERR_PTR(-EOPNOTSUPP);
 953		raw_event.event_id = base_id;
 954		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
 955			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
 956		else
 957			raw_event.cntr_mask =
 958				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
 959#ifdef CONFIG_MIPS_MT_SMP
 960		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
 961			raw_event.range = P;
 962		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
 963			raw_event.range = V;
 964		else
 965			raw_event.range = T;
 966#endif
 967		break;
 968	}
 969
 970	return &raw_event;
 971}
 972
 973static struct mips_pmu mipsxxcore_pmu = {
 974	.handle_irq = mipsxx_pmu_handle_irq,
 975	.handle_shared_irq = mipsxx_pmu_handle_shared_irq,
 976	.start = mipsxx_pmu_start,
 977	.stop = mipsxx_pmu_stop,
 978	.alloc_counter = mipsxx_pmu_alloc_counter,
 979	.read_counter = mipsxx_pmu_read_counter,
 980	.write_counter = mipsxx_pmu_write_counter,
 981	.enable_event = mipsxx_pmu_enable_event,
 982	.disable_event = mipsxx_pmu_disable_event,
 983	.map_raw_event = mipsxx_pmu_map_raw_event,
 984	.general_event_map = &mipsxxcore_event_map,
 985	.cache_event_map = &mipsxxcore_cache_map,
 986};
 987
 988static struct mips_pmu mipsxx74Kcore_pmu = {
 989	.handle_irq = mipsxx_pmu_handle_irq,
 990	.handle_shared_irq = mipsxx_pmu_handle_shared_irq,
 991	.start = mipsxx_pmu_start,
 992	.stop = mipsxx_pmu_stop,
 993	.alloc_counter = mipsxx_pmu_alloc_counter,
 994	.read_counter = mipsxx_pmu_read_counter,
 995	.write_counter = mipsxx_pmu_write_counter,
 996	.enable_event = mipsxx_pmu_enable_event,
 997	.disable_event = mipsxx_pmu_disable_event,
 998	.map_raw_event = mipsxx_pmu_map_raw_event,
 999	.general_event_map = &mipsxx74Kcore_event_map,
1000	.cache_event_map = &mipsxx74Kcore_cache_map,
1001};
 
 
 
 
 
 
 
 
 
 
 
 
 
1002
1003static int __init
1004init_hw_perf_events(void)
1005{
1006	int counters, irq;
 
1007
1008	pr_info("Performance counters: ");
1009
1010	counters = n_counters();
1011	if (counters == 0) {
1012		pr_cont("No available PMU.\n");
1013		return -ENODEV;
1014	}
1015
1016#ifdef CONFIG_MIPS_MT_SMP
1017	cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1018	if (!cpu_has_mipsmt_pertccounters)
1019		counters = counters_total_to_per_cpu(counters);
1020#endif
1021
1022#ifdef MSC01E_INT_BASE
1023	if (cpu_has_veic) {
1024		/*
1025		 * Using platform specific interrupt controller defines.
1026		 */
1027		irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1028	} else {
1029#endif
1030		if (cp0_perfcount_irq >= 0)
 
1031			irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1032		else
1033			irq = -1;
1034#ifdef MSC01E_INT_BASE
1035	}
1036#endif
1037
1038	on_each_cpu(reset_counters, (void *)(long)counters, 1);
1039
1040	switch (current_cpu_type()) {
1041	case CPU_24K:
1042		mipsxxcore_pmu.name = "mips/24K";
1043		mipsxxcore_pmu.num_counters = counters;
1044		mipsxxcore_pmu.irq = irq;
1045		mipspmu = &mipsxxcore_pmu;
1046		break;
1047	case CPU_34K:
1048		mipsxxcore_pmu.name = "mips/34K";
1049		mipsxxcore_pmu.num_counters = counters;
1050		mipsxxcore_pmu.irq = irq;
1051		mipspmu = &mipsxxcore_pmu;
1052		break;
1053	case CPU_74K:
1054		mipsxx74Kcore_pmu.name = "mips/74K";
1055		mipsxx74Kcore_pmu.num_counters = counters;
1056		mipsxx74Kcore_pmu.irq = irq;
1057		mipspmu = &mipsxx74Kcore_pmu;
1058		break;
1059	case CPU_1004K:
1060		mipsxxcore_pmu.name = "mips/1004K";
1061		mipsxxcore_pmu.num_counters = counters;
1062		mipsxxcore_pmu.irq = irq;
1063		mipspmu = &mipsxxcore_pmu;
 
 
 
 
 
 
 
1064		break;
1065	default:
1066		pr_cont("Either hardware does not support performance "
1067			"counters, or not yet implemented.\n");
1068		return -ENODEV;
1069	}
1070
1071	if (mipspmu)
1072		pr_cont("%s PMU enabled, %d counters available to each "
1073			"CPU, irq %d%s\n", mipspmu->name, counters, irq,
1074			irq < 0 ? " (share with timer interrupt)" : "");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075
1076	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1077
1078	return 0;
1079}
1080early_initcall(init_hw_perf_events);
1081
1082#endif /* defined(CONFIG_CPU_MIPS32)... */
v3.5.6
   1/*
   2 * Linux performance counter support for MIPS.
   3 *
   4 * Copyright (C) 2010 MIPS Technologies, Inc.
   5 * Copyright (C) 2011 Cavium Networks, Inc.
   6 * Author: Deng-Cheng Zhu
   7 *
   8 * This code is based on the implementation for ARM, which is in turn
   9 * based on the sparc64 perf event code and the x86 code. Performance
  10 * counter access is based on the MIPS Oprofile code. And the callchain
  11 * support references the code of MIPS stacktrace.c.
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 */
  17
  18#include <linux/cpumask.h>
  19#include <linux/interrupt.h>
  20#include <linux/smp.h>
  21#include <linux/kernel.h>
  22#include <linux/perf_event.h>
  23#include <linux/uaccess.h>
  24
  25#include <asm/irq.h>
  26#include <asm/irq_regs.h>
  27#include <asm/stacktrace.h>
  28#include <asm/time.h> /* For perf_irq */
  29
  30#define MIPS_MAX_HWEVENTS 4
  31
  32struct cpu_hw_events {
  33	/* Array of events on this cpu. */
  34	struct perf_event	*events[MIPS_MAX_HWEVENTS];
  35
  36	/*
  37	 * Set the bit (indexed by the counter number) when the counter
  38	 * is used for an event.
  39	 */
  40	unsigned long		used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
  41
  42	/*
  43	 * Software copy of the control register for each performance counter.
  44	 * MIPS CPUs vary in performance counters. They use this differently,
  45	 * and even may not use it.
  46	 */
  47	unsigned int		saved_ctrl[MIPS_MAX_HWEVENTS];
  48};
  49DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  50	.saved_ctrl = {0},
  51};
  52
  53/* The description of MIPS performance events. */
  54struct mips_perf_event {
  55	unsigned int event_id;
  56	/*
  57	 * MIPS performance counters are indexed starting from 0.
  58	 * CNTR_EVEN indicates the indexes of the counters to be used are
  59	 * even numbers.
  60	 */
  61	unsigned int cntr_mask;
  62	#define CNTR_EVEN	0x55555555
  63	#define CNTR_ODD	0xaaaaaaaa
  64	#define CNTR_ALL	0xffffffff
  65#ifdef CONFIG_MIPS_MT_SMP
  66	enum {
  67		T  = 0,
  68		V  = 1,
  69		P  = 2,
  70	} range;
  71#else
  72	#define T
  73	#define V
  74	#define P
  75#endif
  76};
  77
  78static struct mips_perf_event raw_event;
  79static DEFINE_MUTEX(raw_event_mutex);
  80
  81#define UNSUPPORTED_PERF_EVENT_ID 0xffffffff
  82#define C(x) PERF_COUNT_HW_CACHE_##x
  83
  84struct mips_pmu {
  85	u64		max_period;
  86	u64		valid_count;
  87	u64		overflow;
  88	const char	*name;
  89	int		irq;
  90	u64		(*read_counter)(unsigned int idx);
  91	void		(*write_counter)(unsigned int idx, u64 val);
  92	const struct mips_perf_event *(*map_raw_event)(u64 config);
  93	const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
  94	const struct mips_perf_event (*cache_event_map)
  95				[PERF_COUNT_HW_CACHE_MAX]
  96				[PERF_COUNT_HW_CACHE_OP_MAX]
  97				[PERF_COUNT_HW_CACHE_RESULT_MAX];
  98	unsigned int	num_counters;
  99};
 100
 101static struct mips_pmu mipspmu;
 102
 103#define M_CONFIG1_PC	(1 << 4)
 104
 105#define M_PERFCTL_EXL			(1      <<  0)
 106#define M_PERFCTL_KERNEL		(1      <<  1)
 107#define M_PERFCTL_SUPERVISOR		(1      <<  2)
 108#define M_PERFCTL_USER			(1      <<  3)
 109#define M_PERFCTL_INTERRUPT_ENABLE	(1      <<  4)
 110#define M_PERFCTL_EVENT(event)		(((event) & 0x3ff)  << 5)
 111#define M_PERFCTL_VPEID(vpe)		((vpe)    << 16)
 112#define M_PERFCTL_MT_EN(filter)		((filter) << 20)
 113#define    M_TC_EN_ALL			M_PERFCTL_MT_EN(0)
 114#define    M_TC_EN_VPE			M_PERFCTL_MT_EN(1)
 115#define    M_TC_EN_TC			M_PERFCTL_MT_EN(2)
 116#define M_PERFCTL_TCID(tcid)		((tcid)   << 22)
 117#define M_PERFCTL_WIDE			(1      << 30)
 118#define M_PERFCTL_MORE			(1      << 31)
 119
 120#define M_PERFCTL_COUNT_EVENT_WHENEVER	(M_PERFCTL_EXL |		\
 121					M_PERFCTL_KERNEL |		\
 122					M_PERFCTL_USER |		\
 123					M_PERFCTL_SUPERVISOR |		\
 124					M_PERFCTL_INTERRUPT_ENABLE)
 125
 126#ifdef CONFIG_MIPS_MT_SMP
 127#define M_PERFCTL_CONFIG_MASK		0x3fff801f
 128#else
 129#define M_PERFCTL_CONFIG_MASK		0x1f
 130#endif
 131#define M_PERFCTL_EVENT_MASK		0xfe0
 132
 
 133
 134#ifdef CONFIG_MIPS_MT_SMP
 135static int cpu_has_mipsmt_pertccounters;
 136
 137static DEFINE_RWLOCK(pmuint_rwlock);
 138
 139/*
 140 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
 141 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
 142 */
 143#if defined(CONFIG_HW_PERF_EVENTS)
 144#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
 145			0 : smp_processor_id())
 146#else
 147#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
 148			0 : cpu_data[smp_processor_id()].vpe_id)
 149#endif
 150
 151/* Copied from op_model_mipsxx.c */
 152static unsigned int vpe_shift(void)
 153{
 154	if (num_possible_cpus() > 1)
 155		return 1;
 156
 157	return 0;
 158}
 
 
 
 
 
 
 
 
 159
 160static unsigned int counters_total_to_per_cpu(unsigned int counters)
 
 161{
 162	return counters >> vpe_shift();
 163}
 164
 165#else /* !CONFIG_MIPS_MT_SMP */
 166#define vpe_id()	0
 
 
 
 167
 168#endif /* CONFIG_MIPS_MT_SMP */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 169
 170static void resume_local_counters(void);
 171static void pause_local_counters(void);
 172static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
 173static int mipsxx_pmu_handle_shared_irq(void);
 
 
 
 
 
 
 174
 175static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
 176{
 177	if (vpe_id() == 1)
 178		idx = (idx + 2) & 3;
 179	return idx;
 180}
 181
 182static u64 mipsxx_pmu_read_counter(unsigned int idx)
 183{
 184	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 
 
 
 
 
 
 
 
 
 
 185
 186	switch (idx) {
 187	case 0:
 188		/*
 189		 * The counters are unsigned, we must cast to truncate
 190		 * off the high bits.
 191		 */
 192		return (u32)read_c0_perfcntr0();
 193	case 1:
 194		return (u32)read_c0_perfcntr1();
 195	case 2:
 196		return (u32)read_c0_perfcntr2();
 197	case 3:
 198		return (u32)read_c0_perfcntr3();
 199	default:
 200		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 201		return 0;
 202	}
 
 
 203}
 204
 205static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
 206{
 207	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 208
 209	switch (idx) {
 210	case 0:
 211		return read_c0_perfcntr0_64();
 
 
 
 
 
 
 212	case 1:
 213		return read_c0_perfcntr1_64();
 214	case 2:
 215		return read_c0_perfcntr2_64();
 216	case 3:
 217		return read_c0_perfcntr3_64();
 218	default:
 219		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 220		return 0;
 221	}
 222}
 223
 224static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
 
 225{
 226	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 227
 228	switch (idx) {
 229	case 0:
 230		write_c0_perfcntr0(val);
 231		return;
 232	case 1:
 233		write_c0_perfcntr1(val);
 234		return;
 235	case 2:
 236		write_c0_perfcntr2(val);
 237		return;
 238	case 3:
 239		write_c0_perfcntr3(val);
 240		return;
 
 
 241	}
 242}
 243
 244static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
 
 245{
 246	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 247
 248	switch (idx) {
 249	case 0:
 250		write_c0_perfcntr0_64(val);
 251		return;
 252	case 1:
 253		write_c0_perfcntr1_64(val);
 254		return;
 255	case 2:
 256		write_c0_perfcntr2_64(val);
 257		return;
 258	case 3:
 259		write_c0_perfcntr3_64(val);
 260		return;
 261	}
 262}
 263
 264static unsigned int mipsxx_pmu_read_control(unsigned int idx)
 
 265{
 266	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 267
 268	switch (idx) {
 269	case 0:
 270		return read_c0_perfctrl0();
 271	case 1:
 272		return read_c0_perfctrl1();
 273	case 2:
 274		return read_c0_perfctrl2();
 275	case 3:
 276		return read_c0_perfctrl3();
 277	default:
 278		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 279		return 0;
 280	}
 281}
 282
 283static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
 
 284{
 285	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 286
 287	switch (idx) {
 288	case 0:
 289		write_c0_perfctrl0(val);
 290		return;
 291	case 1:
 292		write_c0_perfctrl1(val);
 293		return;
 294	case 2:
 295		write_c0_perfctrl2(val);
 296		return;
 297	case 3:
 298		write_c0_perfctrl3(val);
 299		return;
 300	}
 301}
 302
 303static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
 304				    struct hw_perf_event *hwc)
 305{
 306	int i;
 307
 308	/*
 309	 * We only need to care the counter mask. The range has been
 310	 * checked definitely.
 311	 */
 312	unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
 313
 314	for (i = mipspmu.num_counters - 1; i >= 0; i--) {
 315		/*
 316		 * Note that some MIPS perf events can be counted by both
 317		 * even and odd counters, wheresas many other are only by
 318		 * even _or_ odd counters. This introduces an issue that
 319		 * when the former kind of event takes the counter the
 320		 * latter kind of event wants to use, then the "counter
 321		 * allocation" for the latter event will fail. In fact if
 322		 * they can be dynamically swapped, they both feel happy.
 323		 * But here we leave this issue alone for now.
 324		 */
 325		if (test_bit(i, &cntr_mask) &&
 326			!test_and_set_bit(i, cpuc->used_mask))
 327			return i;
 328	}
 329
 330	return -EAGAIN;
 331}
 332
 333static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
 334{
 335	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 336
 337	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 338
 339	cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
 340		(evt->config_base & M_PERFCTL_CONFIG_MASK) |
 341		/* Make sure interrupt enabled. */
 342		M_PERFCTL_INTERRUPT_ENABLE;
 343	/*
 344	 * We do not actually let the counter run. Leave it until start().
 345	 */
 346}
 347
 348static void mipsxx_pmu_disable_event(int idx)
 349{
 350	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 351	unsigned long flags;
 352
 353	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 354
 355	local_irq_save(flags);
 356	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
 357		~M_PERFCTL_COUNT_EVENT_WHENEVER;
 358	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
 359	local_irq_restore(flags);
 360}
 361
 362static int mipspmu_event_set_period(struct perf_event *event,
 363				    struct hw_perf_event *hwc,
 364				    int idx)
 365{
 366	u64 left = local64_read(&hwc->period_left);
 367	u64 period = hwc->sample_period;
 368	int ret = 0;
 369
 370	if (unlikely((left + period) & (1ULL << 63))) {
 371		/* left underflowed by more than period. */
 372		left = period;
 373		local64_set(&hwc->period_left, left);
 374		hwc->last_period = period;
 375		ret = 1;
 376	} else	if (unlikely((left + period) <= period)) {
 377		/* left underflowed by less than period. */
 378		left += period;
 379		local64_set(&hwc->period_left, left);
 380		hwc->last_period = period;
 381		ret = 1;
 382	}
 383
 384	if (left > mipspmu.max_period) {
 385		left = mipspmu.max_period;
 386		local64_set(&hwc->period_left, left);
 387	}
 388
 389	local64_set(&hwc->prev_count, mipspmu.overflow - left);
 390
 391	mipspmu.write_counter(idx, mipspmu.overflow - left);
 392
 393	perf_event_update_userpage(event);
 394
 395	return ret;
 396}
 397
 398static void mipspmu_event_update(struct perf_event *event,
 399				 struct hw_perf_event *hwc,
 400				 int idx)
 401{
 402	u64 prev_raw_count, new_raw_count;
 403	u64 delta;
 404
 405again:
 406	prev_raw_count = local64_read(&hwc->prev_count);
 407	new_raw_count = mipspmu.read_counter(idx);
 408
 409	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 410				new_raw_count) != prev_raw_count)
 411		goto again;
 412
 413	delta = new_raw_count - prev_raw_count;
 414
 415	local64_add(delta, &event->count);
 416	local64_sub(delta, &hwc->period_left);
 417}
 418
 419static void mipspmu_start(struct perf_event *event, int flags)
 420{
 421	struct hw_perf_event *hwc = &event->hw;
 422
 423	if (flags & PERF_EF_RELOAD)
 424		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
 425
 426	hwc->state = 0;
 427
 428	/* Set the period for the event. */
 429	mipspmu_event_set_period(event, hwc, hwc->idx);
 430
 431	/* Enable the event. */
 432	mipsxx_pmu_enable_event(hwc, hwc->idx);
 433}
 434
 435static void mipspmu_stop(struct perf_event *event, int flags)
 436{
 437	struct hw_perf_event *hwc = &event->hw;
 438
 439	if (!(hwc->state & PERF_HES_STOPPED)) {
 440		/* We are working on a local event. */
 441		mipsxx_pmu_disable_event(hwc->idx);
 442		barrier();
 443		mipspmu_event_update(event, hwc, hwc->idx);
 444		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 445	}
 446}
 447
 448static int mipspmu_add(struct perf_event *event, int flags)
 449{
 450	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 451	struct hw_perf_event *hwc = &event->hw;
 452	int idx;
 453	int err = 0;
 454
 455	perf_pmu_disable(event->pmu);
 456
 457	/* To look for a free counter for this event. */
 458	idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
 459	if (idx < 0) {
 460		err = idx;
 461		goto out;
 462	}
 463
 464	/*
 465	 * If there is an event in the counter we are going to use then
 466	 * make sure it is disabled.
 467	 */
 468	event->hw.idx = idx;
 469	mipsxx_pmu_disable_event(idx);
 470	cpuc->events[idx] = event;
 471
 472	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 473	if (flags & PERF_EF_START)
 474		mipspmu_start(event, PERF_EF_RELOAD);
 475
 476	/* Propagate our changes to the userspace mapping. */
 477	perf_event_update_userpage(event);
 478
 479out:
 480	perf_pmu_enable(event->pmu);
 481	return err;
 482}
 483
 484static void mipspmu_del(struct perf_event *event, int flags)
 485{
 486	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 487	struct hw_perf_event *hwc = &event->hw;
 488	int idx = hwc->idx;
 489
 490	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 491
 492	mipspmu_stop(event, PERF_EF_UPDATE);
 493	cpuc->events[idx] = NULL;
 494	clear_bit(idx, cpuc->used_mask);
 495
 496	perf_event_update_userpage(event);
 497}
 498
 499static void mipspmu_read(struct perf_event *event)
 500{
 501	struct hw_perf_event *hwc = &event->hw;
 502
 503	/* Don't read disabled counters! */
 504	if (hwc->idx < 0)
 505		return;
 506
 507	mipspmu_event_update(event, hwc, hwc->idx);
 508}
 509
 510static void mipspmu_enable(struct pmu *pmu)
 511{
 512#ifdef CONFIG_MIPS_MT_SMP
 513	write_unlock(&pmuint_rwlock);
 514#endif
 515	resume_local_counters();
 516}
 517
 518/*
 519 * MIPS performance counters can be per-TC. The control registers can
 520 * not be directly accessed accross CPUs. Hence if we want to do global
 521 * control, we need cross CPU calls. on_each_cpu() can help us, but we
 522 * can not make sure this function is called with interrupts enabled. So
 523 * here we pause local counters and then grab a rwlock and leave the
 524 * counters on other CPUs alone. If any counter interrupt raises while
 525 * we own the write lock, simply pause local counters on that CPU and
 526 * spin in the handler. Also we know we won't be switched to another
 527 * CPU after pausing local counters and before grabbing the lock.
 528 */
 529static void mipspmu_disable(struct pmu *pmu)
 530{
 531	pause_local_counters();
 532#ifdef CONFIG_MIPS_MT_SMP
 533	write_lock(&pmuint_rwlock);
 534#endif
 535}
 536
 537static atomic_t active_events = ATOMIC_INIT(0);
 538static DEFINE_MUTEX(pmu_reserve_mutex);
 539static int (*save_perf_irq)(void);
 540
 541static int mipspmu_get_irq(void)
 542{
 543	int err;
 544
 545	if (mipspmu.irq >= 0) {
 546		/* Request my own irq handler. */
 547		err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
 548			IRQF_PERCPU | IRQF_NOBALANCING,
 549			"mips_perf_pmu", NULL);
 550		if (err) {
 551			pr_warning("Unable to request IRQ%d for MIPS "
 552			   "performance counters!\n", mipspmu.irq);
 553		}
 554	} else if (cp0_perfcount_irq < 0) {
 555		/*
 556		 * We are sharing the irq number with the timer interrupt.
 557		 */
 558		save_perf_irq = perf_irq;
 559		perf_irq = mipsxx_pmu_handle_shared_irq;
 560		err = 0;
 561	} else {
 562		pr_warning("The platform hasn't properly defined its "
 563			"interrupt controller.\n");
 564		err = -ENOENT;
 565	}
 566
 567	return err;
 568}
 569
 570static void mipspmu_free_irq(void)
 571{
 572	if (mipspmu.irq >= 0)
 573		free_irq(mipspmu.irq, NULL);
 574	else if (cp0_perfcount_irq < 0)
 575		perf_irq = save_perf_irq;
 576}
 577
 578/*
 579 * mipsxx/rm9000/loongson2 have different performance counters, they have
 580 * specific low-level init routines.
 581 */
 582static void reset_counters(void *arg);
 583static int __hw_perf_event_init(struct perf_event *event);
 584
 585static void hw_perf_event_destroy(struct perf_event *event)
 586{
 587	if (atomic_dec_and_mutex_lock(&active_events,
 588				&pmu_reserve_mutex)) {
 589		/*
 590		 * We must not call the destroy function with interrupts
 591		 * disabled.
 592		 */
 593		on_each_cpu(reset_counters,
 594			(void *)(long)mipspmu.num_counters, 1);
 595		mipspmu_free_irq();
 596		mutex_unlock(&pmu_reserve_mutex);
 597	}
 598}
 599
 600static int mipspmu_event_init(struct perf_event *event)
 601{
 602	int err = 0;
 603
 604	/* does not support taken branch sampling */
 605	if (has_branch_stack(event))
 606		return -EOPNOTSUPP;
 607
 608	switch (event->attr.type) {
 609	case PERF_TYPE_RAW:
 610	case PERF_TYPE_HARDWARE:
 611	case PERF_TYPE_HW_CACHE:
 612		break;
 613
 614	default:
 615		return -ENOENT;
 616	}
 617
 618	if (event->cpu >= nr_cpumask_bits ||
 619	    (event->cpu >= 0 && !cpu_online(event->cpu)))
 620		return -ENODEV;
 621
 622	if (!atomic_inc_not_zero(&active_events)) {
 623		mutex_lock(&pmu_reserve_mutex);
 624		if (atomic_read(&active_events) == 0)
 625			err = mipspmu_get_irq();
 626
 627		if (!err)
 628			atomic_inc(&active_events);
 629		mutex_unlock(&pmu_reserve_mutex);
 630	}
 631
 632	if (err)
 633		return err;
 634
 635	return __hw_perf_event_init(event);
 636}
 637
 638static struct pmu pmu = {
 639	.pmu_enable	= mipspmu_enable,
 640	.pmu_disable	= mipspmu_disable,
 641	.event_init	= mipspmu_event_init,
 642	.add		= mipspmu_add,
 643	.del		= mipspmu_del,
 644	.start		= mipspmu_start,
 645	.stop		= mipspmu_stop,
 646	.read		= mipspmu_read,
 647};
 648
 649static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
 650{
 651/*
 652 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
 653 * event_id.
 654 */
 655#ifdef CONFIG_MIPS_MT_SMP
 656	return ((unsigned int)pev->range << 24) |
 657		(pev->cntr_mask & 0xffff00) |
 658		(pev->event_id & 0xff);
 659#else
 660	return (pev->cntr_mask & 0xffff00) |
 661		(pev->event_id & 0xff);
 662#endif
 663}
 664
 665static const struct mips_perf_event *mipspmu_map_general_event(int idx)
 666{
 667	const struct mips_perf_event *pev;
 668
 669	pev = ((*mipspmu.general_event_map)[idx].event_id ==
 670		UNSUPPORTED_PERF_EVENT_ID ? ERR_PTR(-EOPNOTSUPP) :
 671		&(*mipspmu.general_event_map)[idx]);
 672
 673	return pev;
 674}
 675
 676static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
 677{
 678	unsigned int cache_type, cache_op, cache_result;
 679	const struct mips_perf_event *pev;
 680
 681	cache_type = (config >> 0) & 0xff;
 682	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 683		return ERR_PTR(-EINVAL);
 684
 685	cache_op = (config >> 8) & 0xff;
 686	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 687		return ERR_PTR(-EINVAL);
 688
 689	cache_result = (config >> 16) & 0xff;
 690	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 691		return ERR_PTR(-EINVAL);
 692
 693	pev = &((*mipspmu.cache_event_map)
 694					[cache_type]
 695					[cache_op]
 696					[cache_result]);
 697
 698	if (pev->event_id == UNSUPPORTED_PERF_EVENT_ID)
 699		return ERR_PTR(-EOPNOTSUPP);
 700
 701	return pev;
 702
 703}
 704
 705static int validate_group(struct perf_event *event)
 706{
 707	struct perf_event *sibling, *leader = event->group_leader;
 708	struct cpu_hw_events fake_cpuc;
 709
 710	memset(&fake_cpuc, 0, sizeof(fake_cpuc));
 711
 712	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
 713		return -EINVAL;
 714
 715	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
 716		if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
 717			return -EINVAL;
 718	}
 719
 720	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
 721		return -EINVAL;
 722
 723	return 0;
 724}
 725
 726/* This is needed by specific irq handlers in perf_event_*.c */
 727static void handle_associated_event(struct cpu_hw_events *cpuc,
 728				    int idx, struct perf_sample_data *data,
 729				    struct pt_regs *regs)
 730{
 731	struct perf_event *event = cpuc->events[idx];
 732	struct hw_perf_event *hwc = &event->hw;
 733
 734	mipspmu_event_update(event, hwc, idx);
 735	data->period = event->hw.last_period;
 736	if (!mipspmu_event_set_period(event, hwc, idx))
 737		return;
 738
 739	if (perf_event_overflow(event, data, regs))
 740		mipsxx_pmu_disable_event(idx);
 741}
 742
 743
 744static int __n_counters(void)
 745{
 746	if (!(read_c0_config1() & M_CONFIG1_PC))
 747		return 0;
 748	if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
 749		return 1;
 750	if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
 751		return 2;
 752	if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
 753		return 3;
 754
 755	return 4;
 756}
 757
 758static int n_counters(void)
 759{
 760	int counters;
 761
 762	switch (current_cpu_type()) {
 763	case CPU_R10000:
 764		counters = 2;
 765		break;
 766
 767	case CPU_R12000:
 768	case CPU_R14000:
 769		counters = 4;
 770		break;
 771
 772	default:
 773		counters = __n_counters();
 774	}
 775
 776	return counters;
 777}
 778
 779static void reset_counters(void *arg)
 780{
 781	int counters = (int)(long)arg;
 782	switch (counters) {
 783	case 4:
 784		mipsxx_pmu_write_control(3, 0);
 785		mipspmu.write_counter(3, 0);
 786	case 3:
 787		mipsxx_pmu_write_control(2, 0);
 788		mipspmu.write_counter(2, 0);
 789	case 2:
 790		mipsxx_pmu_write_control(1, 0);
 791		mipspmu.write_counter(1, 0);
 792	case 1:
 793		mipsxx_pmu_write_control(0, 0);
 794		mipspmu.write_counter(0, 0);
 795	}
 796}
 797
 798/* 24K/34K/1004K cores can share the same event map. */
 799static const struct mips_perf_event mipsxxcore_event_map
 800				[PERF_COUNT_HW_MAX] = {
 801	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 802	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 803	[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
 804	[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
 805	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
 806	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
 807	[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
 808};
 809
 810/* 74K core has different branch event code. */
 811static const struct mips_perf_event mipsxx74Kcore_event_map
 812				[PERF_COUNT_HW_MAX] = {
 813	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 814	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 815	[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
 816	[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
 817	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
 818	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
 819	[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
 820};
 821
 822static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
 823	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
 824	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
 825	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
 826	[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL  },
 827	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
 828	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
 829	[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
 830};
 831
 832/* 24K/34K/1004K cores can share the same cache event map. */
 833static const struct mips_perf_event mipsxxcore_cache_map
 834				[PERF_COUNT_HW_CACHE_MAX]
 835				[PERF_COUNT_HW_CACHE_OP_MAX]
 836				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 837[C(L1D)] = {
 838	/*
 839	 * Like some other architectures (e.g. ARM), the performance
 840	 * counters don't differentiate between read and write
 841	 * accesses/misses, so this isn't strictly correct, but it's the
 842	 * best we can do. Writes and reads get combined.
 843	 */
 844	[C(OP_READ)] = {
 845		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
 846		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
 847	},
 848	[C(OP_WRITE)] = {
 849		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
 850		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
 851	},
 852	[C(OP_PREFETCH)] = {
 853		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 854		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 855	},
 856},
 857[C(L1I)] = {
 858	[C(OP_READ)] = {
 859		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
 860		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
 861	},
 862	[C(OP_WRITE)] = {
 863		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
 864		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
 865	},
 866	[C(OP_PREFETCH)] = {
 867		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
 868		/*
 869		 * Note that MIPS has only "hit" events countable for
 870		 * the prefetch operation.
 871		 */
 872		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 873	},
 874},
 875[C(LL)] = {
 876	[C(OP_READ)] = {
 877		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
 878		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
 879	},
 880	[C(OP_WRITE)] = {
 881		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
 882		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
 883	},
 884	[C(OP_PREFETCH)] = {
 885		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 886		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 887	},
 888},
 889[C(DTLB)] = {
 890	[C(OP_READ)] = {
 891		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 892		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 893	},
 894	[C(OP_WRITE)] = {
 895		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 896		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 897	},
 898	[C(OP_PREFETCH)] = {
 899		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 900		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 901	},
 902},
 903[C(ITLB)] = {
 904	[C(OP_READ)] = {
 905		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
 906		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
 907	},
 908	[C(OP_WRITE)] = {
 909		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
 910		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
 911	},
 912	[C(OP_PREFETCH)] = {
 913		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 914		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 915	},
 916},
 917[C(BPU)] = {
 918	/* Using the same code for *HW_BRANCH* */
 919	[C(OP_READ)] = {
 920		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
 921		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
 922	},
 923	[C(OP_WRITE)] = {
 924		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
 925		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
 926	},
 927	[C(OP_PREFETCH)] = {
 928		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 929		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 930	},
 931},
 932[C(NODE)] = {
 933	[C(OP_READ)] = {
 934		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 935		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 936	},
 937	[C(OP_WRITE)] = {
 938		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 939		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 940	},
 941	[C(OP_PREFETCH)] = {
 942		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 943		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 944	},
 945},
 946};
 947
 948/* 74K core has completely different cache event map. */
 949static const struct mips_perf_event mipsxx74Kcore_cache_map
 950				[PERF_COUNT_HW_CACHE_MAX]
 951				[PERF_COUNT_HW_CACHE_OP_MAX]
 952				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 953[C(L1D)] = {
 954	/*
 955	 * Like some other architectures (e.g. ARM), the performance
 956	 * counters don't differentiate between read and write
 957	 * accesses/misses, so this isn't strictly correct, but it's the
 958	 * best we can do. Writes and reads get combined.
 959	 */
 960	[C(OP_READ)] = {
 961		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
 962		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
 963	},
 964	[C(OP_WRITE)] = {
 965		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
 966		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
 967	},
 968	[C(OP_PREFETCH)] = {
 969		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 970		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 971	},
 972},
 973[C(L1I)] = {
 974	[C(OP_READ)] = {
 975		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 976		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 977	},
 978	[C(OP_WRITE)] = {
 979		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 980		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 981	},
 982	[C(OP_PREFETCH)] = {
 983		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
 984		/*
 985		 * Note that MIPS has only "hit" events countable for
 986		 * the prefetch operation.
 987		 */
 988		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 989	},
 990},
 991[C(LL)] = {
 992	[C(OP_READ)] = {
 993		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
 994		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
 995	},
 996	[C(OP_WRITE)] = {
 997		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
 998		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
 999	},
1000	[C(OP_PREFETCH)] = {
1001		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1002		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1003	},
1004},
1005[C(DTLB)] = {
1006	/* 74K core does not have specific DTLB events. */
1007	[C(OP_READ)] = {
1008		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1009		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1010	},
1011	[C(OP_WRITE)] = {
1012		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1013		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1014	},
1015	[C(OP_PREFETCH)] = {
1016		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1017		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1018	},
1019},
1020[C(ITLB)] = {
1021	[C(OP_READ)] = {
1022		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1023		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1024	},
1025	[C(OP_WRITE)] = {
1026		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1027		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1028	},
1029	[C(OP_PREFETCH)] = {
1030		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1031		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1032	},
1033},
1034[C(BPU)] = {
1035	/* Using the same code for *HW_BRANCH* */
1036	[C(OP_READ)] = {
1037		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1038		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1039	},
1040	[C(OP_WRITE)] = {
1041		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1042		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1043	},
1044	[C(OP_PREFETCH)] = {
1045		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1046		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1047	},
1048},
1049[C(NODE)] = {
1050	[C(OP_READ)] = {
1051		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1052		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1053	},
1054	[C(OP_WRITE)] = {
1055		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1056		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1057	},
1058	[C(OP_PREFETCH)] = {
1059		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1060		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1061	},
1062},
1063};
1064
1065
1066static const struct mips_perf_event octeon_cache_map
1067				[PERF_COUNT_HW_CACHE_MAX]
1068				[PERF_COUNT_HW_CACHE_OP_MAX]
1069				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1070[C(L1D)] = {
1071	[C(OP_READ)] = {
1072		[C(RESULT_ACCESS)]	= { 0x2b, CNTR_ALL },
1073		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL },
1074	},
1075	[C(OP_WRITE)] = {
1076		[C(RESULT_ACCESS)]	= { 0x30, CNTR_ALL },
1077		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1078	},
1079	[C(OP_PREFETCH)] = {
1080		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1081		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1082	},
1083},
1084[C(L1I)] = {
1085	[C(OP_READ)] = {
1086		[C(RESULT_ACCESS)]	= { 0x18, CNTR_ALL },
1087		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1088	},
1089	[C(OP_WRITE)] = {
1090		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1091		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1092	},
1093	[C(OP_PREFETCH)] = {
1094		[C(RESULT_ACCESS)]	= { 0x19, CNTR_ALL },
1095		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1096	},
1097},
1098[C(LL)] = {
1099	[C(OP_READ)] = {
1100		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1101		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1102	},
1103	[C(OP_WRITE)] = {
1104		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1105		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1106	},
1107	[C(OP_PREFETCH)] = {
1108		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1109		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1110	},
1111},
1112[C(DTLB)] = {
1113	/*
1114	 * Only general DTLB misses are counted use the same event for
1115	 * read and write.
1116	 */
1117	[C(OP_READ)] = {
1118		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1119		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1120	},
1121	[C(OP_WRITE)] = {
1122		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1123		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1124	},
1125	[C(OP_PREFETCH)] = {
1126		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1127		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1128	},
1129},
1130[C(ITLB)] = {
1131	[C(OP_READ)] = {
1132		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1133		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL },
1134	},
1135	[C(OP_WRITE)] = {
1136		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1137		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1138	},
1139	[C(OP_PREFETCH)] = {
1140		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1141		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1142	},
1143},
1144[C(BPU)] = {
1145	/* Using the same code for *HW_BRANCH* */
1146	[C(OP_READ)] = {
1147		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1148		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1149	},
1150	[C(OP_WRITE)] = {
1151		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1152		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1153	},
1154	[C(OP_PREFETCH)] = {
1155		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1156		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1157	},
1158},
1159};
1160
1161#ifdef CONFIG_MIPS_MT_SMP
1162static void check_and_calc_range(struct perf_event *event,
1163				 const struct mips_perf_event *pev)
 
1164{
1165	struct hw_perf_event *hwc = &event->hw;
1166
1167	if (event->cpu >= 0) {
1168		if (pev->range > V) {
1169			/*
1170			 * The user selected an event that is processor
1171			 * wide, while expecting it to be VPE wide.
1172			 */
1173			hwc->config_base |= M_TC_EN_ALL;
1174		} else {
1175			/*
1176			 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1177			 * for both CPUs.
1178			 */
1179			hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1180			hwc->config_base |= M_TC_EN_VPE;
1181		}
1182	} else
1183		hwc->config_base |= M_TC_EN_ALL;
1184}
1185#else
1186static void check_and_calc_range(struct perf_event *event,
1187				 const struct mips_perf_event *pev)
 
1188{
1189}
1190#endif
1191
1192static int __hw_perf_event_init(struct perf_event *event)
1193{
1194	struct perf_event_attr *attr = &event->attr;
1195	struct hw_perf_event *hwc = &event->hw;
1196	const struct mips_perf_event *pev;
1197	int err;
1198
1199	/* Returning MIPS event descriptor for generic perf event. */
1200	if (PERF_TYPE_HARDWARE == event->attr.type) {
1201		if (event->attr.config >= PERF_COUNT_HW_MAX)
1202			return -EINVAL;
1203		pev = mipspmu_map_general_event(event->attr.config);
1204	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1205		pev = mipspmu_map_cache_event(event->attr.config);
1206	} else if (PERF_TYPE_RAW == event->attr.type) {
1207		/* We are working on the global raw event. */
1208		mutex_lock(&raw_event_mutex);
1209		pev = mipspmu.map_raw_event(event->attr.config);
1210	} else {
1211		/* The event type is not (yet) supported. */
1212		return -EOPNOTSUPP;
1213	}
1214
1215	if (IS_ERR(pev)) {
1216		if (PERF_TYPE_RAW == event->attr.type)
1217			mutex_unlock(&raw_event_mutex);
1218		return PTR_ERR(pev);
1219	}
1220
1221	/*
1222	 * We allow max flexibility on how each individual counter shared
1223	 * by the single CPU operates (the mode exclusion and the range).
1224	 */
1225	hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1226
1227	/* Calculate range bits and validate it. */
1228	if (num_possible_cpus() > 1)
1229		check_and_calc_range(event, pev);
1230
1231	hwc->event_base = mipspmu_perf_event_encode(pev);
1232	if (PERF_TYPE_RAW == event->attr.type)
1233		mutex_unlock(&raw_event_mutex);
1234
1235	if (!attr->exclude_user)
1236		hwc->config_base |= M_PERFCTL_USER;
1237	if (!attr->exclude_kernel) {
1238		hwc->config_base |= M_PERFCTL_KERNEL;
1239		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1240		hwc->config_base |= M_PERFCTL_EXL;
1241	}
1242	if (!attr->exclude_hv)
1243		hwc->config_base |= M_PERFCTL_SUPERVISOR;
1244
1245	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1246	/*
1247	 * The event can belong to another cpu. We do not assign a local
1248	 * counter for it for now.
1249	 */
1250	hwc->idx = -1;
1251	hwc->config = 0;
1252
1253	if (!hwc->sample_period) {
1254		hwc->sample_period  = mipspmu.max_period;
1255		hwc->last_period    = hwc->sample_period;
1256		local64_set(&hwc->period_left, hwc->sample_period);
1257	}
1258
1259	err = 0;
1260	if (event->group_leader != event)
1261		err = validate_group(event);
 
 
 
1262
1263	event->destroy = hw_perf_event_destroy;
1264
1265	if (err)
1266		event->destroy(event);
1267
1268	return err;
1269}
1270
1271static void pause_local_counters(void)
1272{
1273	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1274	int ctr = mipspmu.num_counters;
1275	unsigned long flags;
1276
1277	local_irq_save(flags);
1278	do {
1279		ctr--;
1280		cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1281		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1282					 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1283	} while (ctr > 0);
 
 
 
 
 
 
 
 
 
 
 
 
1284	local_irq_restore(flags);
1285}
1286
1287static void resume_local_counters(void)
1288{
1289	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1290	int ctr = mipspmu.num_counters;
 
1291
1292	do {
1293		ctr--;
1294		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1295	} while (ctr > 0);
 
 
 
 
 
 
 
 
1296}
1297
1298static int mipsxx_pmu_handle_shared_irq(void)
1299{
1300	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1301	struct perf_sample_data data;
1302	unsigned int counters = mipspmu.num_counters;
1303	u64 counter;
1304	int handled = IRQ_NONE;
1305	struct pt_regs *regs;
1306
1307	if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
1308		return handled;
 
1309	/*
1310	 * First we pause the local counters, so that when we are locked
1311	 * here, the counters are all paused. When it gets locked due to
1312	 * perf_disable(), the timer interrupt handler will be delayed.
1313	 *
1314	 * See also mipsxx_pmu_start().
1315	 */
1316	pause_local_counters();
1317#ifdef CONFIG_MIPS_MT_SMP
1318	read_lock(&pmuint_rwlock);
1319#endif
1320
1321	regs = get_irq_regs();
1322
1323	perf_sample_data_init(&data, 0, 0);
1324
1325	switch (counters) {
1326#define HANDLE_COUNTER(n)						\
1327	case n + 1:							\
1328		if (test_bit(n, cpuc->used_mask)) {			\
1329			counter = mipspmu.read_counter(n);		\
1330			if (counter & mipspmu.overflow) {		\
1331				handle_associated_event(cpuc, n, &data, regs); \
 
 
 
 
1332				handled = IRQ_HANDLED;			\
1333			}						\
1334		}
1335	HANDLE_COUNTER(3)
1336	HANDLE_COUNTER(2)
1337	HANDLE_COUNTER(1)
1338	HANDLE_COUNTER(0)
1339	}
1340
1341	/*
1342	 * Do all the work for the pending perf events. We can do this
1343	 * in here because the performance counter interrupt is a regular
1344	 * interrupt, not NMI.
1345	 */
1346	if (handled == IRQ_HANDLED)
1347		irq_work_run();
1348
1349#ifdef CONFIG_MIPS_MT_SMP
1350	read_unlock(&pmuint_rwlock);
1351#endif
1352	resume_local_counters();
1353	return handled;
1354}
1355
1356static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
 
1357{
1358	return mipsxx_pmu_handle_shared_irq();
1359}
1360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1361/* 24K */
 
 
 
 
 
 
1362#define IS_BOTH_COUNTERS_24K_EVENT(b)					\
1363	((b) == 0 || (b) == 1 || (b) == 11)
1364
1365/* 34K */
 
 
 
 
1366#define IS_BOTH_COUNTERS_34K_EVENT(b)					\
1367	((b) == 0 || (b) == 1 || (b) == 11)
1368#ifdef CONFIG_MIPS_MT_SMP
1369#define IS_RANGE_P_34K_EVENT(r, b)					\
1370	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1371	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
1372	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
1373	 ((b) >= 64 && (b) <= 67))
1374#define IS_RANGE_V_34K_EVENT(r)	((r) == 47)
1375#endif
1376
1377/* 74K */
 
 
 
 
 
 
 
1378#define IS_BOTH_COUNTERS_74K_EVENT(b)					\
1379	((b) == 0 || (b) == 1)
1380
1381/* 1004K */
 
 
 
1382#define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
1383	((b) == 0 || (b) == 1 || (b) == 11)
1384#ifdef CONFIG_MIPS_MT_SMP
1385#define IS_RANGE_P_1004K_EVENT(r, b)					\
1386	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1387	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
1388	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
1389	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
1390	 ((b) >= 64 && (b) <= 67))
1391#define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
1392#endif
1393
1394/*
1395 * User can use 0-255 raw events, where 0-127 for the events of even
1396 * counters, and 128-255 for odd counters. Note that bit 7 is used to
1397 * indicate the parity. So, for example, when user wants to take the
1398 * Event Num of 15 for odd counters (by referring to the user manual),
1399 * then 128 needs to be added to 15 as the input for the event config,
1400 * i.e., 143 (0x8F) to be used.
1401 */
1402static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
 
1403{
1404	unsigned int raw_id = config & 0xff;
1405	unsigned int base_id = raw_id & 0x7f;
1406
1407	raw_event.event_id = base_id;
1408
1409	switch (current_cpu_type()) {
1410	case CPU_24K:
 
 
 
1411		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1412			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1413		else
1414			raw_event.cntr_mask =
1415				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1416#ifdef CONFIG_MIPS_MT_SMP
1417		/*
1418		 * This is actually doing nothing. Non-multithreading
1419		 * CPUs will not check and calculate the range.
1420		 */
1421		raw_event.range = P;
1422#endif
1423		break;
1424	case CPU_34K:
 
 
 
1425		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1426			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1427		else
1428			raw_event.cntr_mask =
1429				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1430#ifdef CONFIG_MIPS_MT_SMP
1431		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1432			raw_event.range = P;
1433		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1434			raw_event.range = V;
1435		else
1436			raw_event.range = T;
1437#endif
1438		break;
1439	case CPU_74K:
 
 
 
1440		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1441			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1442		else
1443			raw_event.cntr_mask =
1444				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1445#ifdef CONFIG_MIPS_MT_SMP
1446		raw_event.range = P;
1447#endif
1448		break;
1449	case CPU_1004K:
 
 
 
1450		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1451			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1452		else
1453			raw_event.cntr_mask =
1454				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1455#ifdef CONFIG_MIPS_MT_SMP
1456		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1457			raw_event.range = P;
1458		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1459			raw_event.range = V;
1460		else
1461			raw_event.range = T;
1462#endif
1463		break;
1464	}
1465
1466	return &raw_event;
1467}
1468
1469static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1470{
1471	unsigned int raw_id = config & 0xff;
1472	unsigned int base_id = raw_id & 0x7f;
 
 
 
 
 
 
 
 
 
 
1473
1474
1475	raw_event.cntr_mask = CNTR_ALL;
1476	raw_event.event_id = base_id;
1477
1478	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1479		if (base_id > 0x42)
1480			return ERR_PTR(-EOPNOTSUPP);
1481	} else {
1482		if (base_id > 0x3a)
1483			return ERR_PTR(-EOPNOTSUPP);
1484	}
1485
1486	switch (base_id) {
1487	case 0x00:
1488	case 0x0f:
1489	case 0x1e:
1490	case 0x1f:
1491	case 0x2f:
1492	case 0x34:
1493	case 0x3b ... 0x3f:
1494		return ERR_PTR(-EOPNOTSUPP);
1495	default:
1496		break;
1497	}
1498
1499	return &raw_event;
1500}
1501
1502static int __init
1503init_hw_perf_events(void)
1504{
1505	int counters, irq;
1506	int counter_bits;
1507
1508	pr_info("Performance counters: ");
1509
1510	counters = n_counters();
1511	if (counters == 0) {
1512		pr_cont("No available PMU.\n");
1513		return -ENODEV;
1514	}
1515
1516#ifdef CONFIG_MIPS_MT_SMP
1517	cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1518	if (!cpu_has_mipsmt_pertccounters)
1519		counters = counters_total_to_per_cpu(counters);
1520#endif
1521
1522#ifdef MSC01E_INT_BASE
1523	if (cpu_has_veic) {
1524		/*
1525		 * Using platform specific interrupt controller defines.
1526		 */
1527		irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1528	} else {
1529#endif
1530		if ((cp0_perfcount_irq >= 0) &&
1531				(cp0_compare_irq != cp0_perfcount_irq))
1532			irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1533		else
1534			irq = -1;
1535#ifdef MSC01E_INT_BASE
1536	}
1537#endif
1538
1539	mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1540
1541	switch (current_cpu_type()) {
1542	case CPU_24K:
1543		mipspmu.name = "mips/24K";
1544		mipspmu.general_event_map = &mipsxxcore_event_map;
1545		mipspmu.cache_event_map = &mipsxxcore_cache_map;
 
1546		break;
1547	case CPU_34K:
1548		mipspmu.name = "mips/34K";
1549		mipspmu.general_event_map = &mipsxxcore_event_map;
1550		mipspmu.cache_event_map = &mipsxxcore_cache_map;
 
1551		break;
1552	case CPU_74K:
1553		mipspmu.name = "mips/74K";
1554		mipspmu.general_event_map = &mipsxx74Kcore_event_map;
1555		mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
 
1556		break;
1557	case CPU_1004K:
1558		mipspmu.name = "mips/1004K";
1559		mipspmu.general_event_map = &mipsxxcore_event_map;
1560		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1561		break;
1562	case CPU_CAVIUM_OCTEON:
1563	case CPU_CAVIUM_OCTEON_PLUS:
1564	case CPU_CAVIUM_OCTEON2:
1565		mipspmu.name = "octeon";
1566		mipspmu.general_event_map = &octeon_event_map;
1567		mipspmu.cache_event_map = &octeon_cache_map;
1568		mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1569		break;
1570	default:
1571		pr_cont("Either hardware does not support performance "
1572			"counters, or not yet implemented.\n");
1573		return -ENODEV;
1574	}
1575
1576	mipspmu.num_counters = counters;
1577	mipspmu.irq = irq;
1578
1579	if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1580		mipspmu.max_period = (1ULL << 63) - 1;
1581		mipspmu.valid_count = (1ULL << 63) - 1;
1582		mipspmu.overflow = 1ULL << 63;
1583		mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1584		mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1585		counter_bits = 64;
1586	} else {
1587		mipspmu.max_period = (1ULL << 31) - 1;
1588		mipspmu.valid_count = (1ULL << 31) - 1;
1589		mipspmu.overflow = 1ULL << 31;
1590		mipspmu.read_counter = mipsxx_pmu_read_counter;
1591		mipspmu.write_counter = mipsxx_pmu_write_counter;
1592		counter_bits = 32;
1593	}
1594
1595	on_each_cpu(reset_counters, (void *)(long)counters, 1);
1596
1597	pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1598		"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1599		irq < 0 ? " (share with timer interrupt)" : "");
1600
1601	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1602
1603	return 0;
1604}
1605early_initcall(init_hw_perf_events);