Loading...
1#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) || \
2 defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_SB1)
3
4#define M_CONFIG1_PC (1 << 4)
5
6#define M_PERFCTL_EXL (1UL << 0)
7#define M_PERFCTL_KERNEL (1UL << 1)
8#define M_PERFCTL_SUPERVISOR (1UL << 2)
9#define M_PERFCTL_USER (1UL << 3)
10#define M_PERFCTL_INTERRUPT_ENABLE (1UL << 4)
11#define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
12#define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
13#define M_PERFCTL_MT_EN(filter) ((filter) << 20)
14#define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
15#define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
16#define M_TC_EN_TC M_PERFCTL_MT_EN(2)
17#define M_PERFCTL_TCID(tcid) ((tcid) << 22)
18#define M_PERFCTL_WIDE (1UL << 30)
19#define M_PERFCTL_MORE (1UL << 31)
20
21#define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
22 M_PERFCTL_KERNEL | \
23 M_PERFCTL_USER | \
24 M_PERFCTL_SUPERVISOR | \
25 M_PERFCTL_INTERRUPT_ENABLE)
26
27#ifdef CONFIG_MIPS_MT_SMP
28#define M_PERFCTL_CONFIG_MASK 0x3fff801f
29#else
30#define M_PERFCTL_CONFIG_MASK 0x1f
31#endif
32#define M_PERFCTL_EVENT_MASK 0xfe0
33
34#define M_COUNTER_OVERFLOW (1UL << 31)
35
36#ifdef CONFIG_MIPS_MT_SMP
37static int cpu_has_mipsmt_pertccounters;
38
39/*
40 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
41 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
42 */
43#if defined(CONFIG_HW_PERF_EVENTS)
44#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
45 0 : smp_processor_id())
46#else
47#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
48 0 : cpu_data[smp_processor_id()].vpe_id)
49#endif
50
51/* Copied from op_model_mipsxx.c */
52static inline unsigned int vpe_shift(void)
53{
54 if (num_possible_cpus() > 1)
55 return 1;
56
57 return 0;
58}
59#else /* !CONFIG_MIPS_MT_SMP */
60#define vpe_id() 0
61
62static inline unsigned int vpe_shift(void)
63{
64 return 0;
65}
66#endif /* CONFIG_MIPS_MT_SMP */
67
68static inline unsigned int
69counters_total_to_per_cpu(unsigned int counters)
70{
71 return counters >> vpe_shift();
72}
73
74static inline unsigned int
75counters_per_cpu_to_total(unsigned int counters)
76{
77 return counters << vpe_shift();
78}
79
80#define __define_perf_accessors(r, n, np) \
81 \
82static inline unsigned int r_c0_ ## r ## n(void) \
83{ \
84 unsigned int cpu = vpe_id(); \
85 \
86 switch (cpu) { \
87 case 0: \
88 return read_c0_ ## r ## n(); \
89 case 1: \
90 return read_c0_ ## r ## np(); \
91 default: \
92 BUG(); \
93 } \
94 return 0; \
95} \
96 \
97static inline void w_c0_ ## r ## n(unsigned int value) \
98{ \
99 unsigned int cpu = vpe_id(); \
100 \
101 switch (cpu) { \
102 case 0: \
103 write_c0_ ## r ## n(value); \
104 return; \
105 case 1: \
106 write_c0_ ## r ## np(value); \
107 return; \
108 default: \
109 BUG(); \
110 } \
111 return; \
112} \
113
114__define_perf_accessors(perfcntr, 0, 2)
115__define_perf_accessors(perfcntr, 1, 3)
116__define_perf_accessors(perfcntr, 2, 0)
117__define_perf_accessors(perfcntr, 3, 1)
118
119__define_perf_accessors(perfctrl, 0, 2)
120__define_perf_accessors(perfctrl, 1, 3)
121__define_perf_accessors(perfctrl, 2, 0)
122__define_perf_accessors(perfctrl, 3, 1)
123
124static inline int __n_counters(void)
125{
126 if (!(read_c0_config1() & M_CONFIG1_PC))
127 return 0;
128 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
129 return 1;
130 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
131 return 2;
132 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
133 return 3;
134
135 return 4;
136}
137
138static inline int n_counters(void)
139{
140 int counters;
141
142 switch (current_cpu_type()) {
143 case CPU_R10000:
144 counters = 2;
145 break;
146
147 case CPU_R12000:
148 case CPU_R14000:
149 counters = 4;
150 break;
151
152 default:
153 counters = __n_counters();
154 }
155
156 return counters;
157}
158
159static void reset_counters(void *arg)
160{
161 int counters = (int)(long)arg;
162 switch (counters) {
163 case 4:
164 w_c0_perfctrl3(0);
165 w_c0_perfcntr3(0);
166 case 3:
167 w_c0_perfctrl2(0);
168 w_c0_perfcntr2(0);
169 case 2:
170 w_c0_perfctrl1(0);
171 w_c0_perfcntr1(0);
172 case 1:
173 w_c0_perfctrl0(0);
174 w_c0_perfcntr0(0);
175 }
176}
177
178static inline u64
179mipsxx_pmu_read_counter(unsigned int idx)
180{
181 switch (idx) {
182 case 0:
183 return r_c0_perfcntr0();
184 case 1:
185 return r_c0_perfcntr1();
186 case 2:
187 return r_c0_perfcntr2();
188 case 3:
189 return r_c0_perfcntr3();
190 default:
191 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
192 return 0;
193 }
194}
195
196static inline void
197mipsxx_pmu_write_counter(unsigned int idx, u64 val)
198{
199 switch (idx) {
200 case 0:
201 w_c0_perfcntr0(val);
202 return;
203 case 1:
204 w_c0_perfcntr1(val);
205 return;
206 case 2:
207 w_c0_perfcntr2(val);
208 return;
209 case 3:
210 w_c0_perfcntr3(val);
211 return;
212 }
213}
214
215static inline unsigned int
216mipsxx_pmu_read_control(unsigned int idx)
217{
218 switch (idx) {
219 case 0:
220 return r_c0_perfctrl0();
221 case 1:
222 return r_c0_perfctrl1();
223 case 2:
224 return r_c0_perfctrl2();
225 case 3:
226 return r_c0_perfctrl3();
227 default:
228 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
229 return 0;
230 }
231}
232
233static inline void
234mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
235{
236 switch (idx) {
237 case 0:
238 w_c0_perfctrl0(val);
239 return;
240 case 1:
241 w_c0_perfctrl1(val);
242 return;
243 case 2:
244 w_c0_perfctrl2(val);
245 return;
246 case 3:
247 w_c0_perfctrl3(val);
248 return;
249 }
250}
251
252#ifdef CONFIG_MIPS_MT_SMP
253static DEFINE_RWLOCK(pmuint_rwlock);
254#endif
255
256/* 24K/34K/1004K cores can share the same event map. */
257static const struct mips_perf_event mipsxxcore_event_map
258 [PERF_COUNT_HW_MAX] = {
259 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
260 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
261 [PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
262 [PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
263 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
264 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
265 [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
266};
267
268/* 74K core has different branch event code. */
269static const struct mips_perf_event mipsxx74Kcore_event_map
270 [PERF_COUNT_HW_MAX] = {
271 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
272 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
273 [PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
274 [PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
275 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
276 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
277 [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
278};
279
280/* 24K/34K/1004K cores can share the same cache event map. */
281static const struct mips_perf_event mipsxxcore_cache_map
282 [PERF_COUNT_HW_CACHE_MAX]
283 [PERF_COUNT_HW_CACHE_OP_MAX]
284 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
285[C(L1D)] = {
286 /*
287 * Like some other architectures (e.g. ARM), the performance
288 * counters don't differentiate between read and write
289 * accesses/misses, so this isn't strictly correct, but it's the
290 * best we can do. Writes and reads get combined.
291 */
292 [C(OP_READ)] = {
293 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
294 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
295 },
296 [C(OP_WRITE)] = {
297 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
298 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
299 },
300 [C(OP_PREFETCH)] = {
301 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
302 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
303 },
304},
305[C(L1I)] = {
306 [C(OP_READ)] = {
307 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
308 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
309 },
310 [C(OP_WRITE)] = {
311 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
312 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
313 },
314 [C(OP_PREFETCH)] = {
315 [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
316 /*
317 * Note that MIPS has only "hit" events countable for
318 * the prefetch operation.
319 */
320 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
321 },
322},
323[C(LL)] = {
324 [C(OP_READ)] = {
325 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
326 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
327 },
328 [C(OP_WRITE)] = {
329 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
330 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
331 },
332 [C(OP_PREFETCH)] = {
333 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
334 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
335 },
336},
337[C(DTLB)] = {
338 [C(OP_READ)] = {
339 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
340 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
341 },
342 [C(OP_WRITE)] = {
343 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
344 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
345 },
346 [C(OP_PREFETCH)] = {
347 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
348 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
349 },
350},
351[C(ITLB)] = {
352 [C(OP_READ)] = {
353 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
354 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
355 },
356 [C(OP_WRITE)] = {
357 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
358 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
359 },
360 [C(OP_PREFETCH)] = {
361 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
362 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
363 },
364},
365[C(BPU)] = {
366 /* Using the same code for *HW_BRANCH* */
367 [C(OP_READ)] = {
368 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
369 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
370 },
371 [C(OP_WRITE)] = {
372 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
373 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
374 },
375 [C(OP_PREFETCH)] = {
376 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
377 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
378 },
379},
380[C(NODE)] = {
381 [C(OP_READ)] = {
382 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
383 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
384 },
385 [C(OP_WRITE)] = {
386 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
387 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
388 },
389 [C(OP_PREFETCH)] = {
390 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
391 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
392 },
393},
394};
395
396/* 74K core has completely different cache event map. */
397static const struct mips_perf_event mipsxx74Kcore_cache_map
398 [PERF_COUNT_HW_CACHE_MAX]
399 [PERF_COUNT_HW_CACHE_OP_MAX]
400 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
401[C(L1D)] = {
402 /*
403 * Like some other architectures (e.g. ARM), the performance
404 * counters don't differentiate between read and write
405 * accesses/misses, so this isn't strictly correct, but it's the
406 * best we can do. Writes and reads get combined.
407 */
408 [C(OP_READ)] = {
409 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
410 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
411 },
412 [C(OP_WRITE)] = {
413 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
414 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
415 },
416 [C(OP_PREFETCH)] = {
417 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
418 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
419 },
420},
421[C(L1I)] = {
422 [C(OP_READ)] = {
423 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
424 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
425 },
426 [C(OP_WRITE)] = {
427 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
428 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
429 },
430 [C(OP_PREFETCH)] = {
431 [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
432 /*
433 * Note that MIPS has only "hit" events countable for
434 * the prefetch operation.
435 */
436 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
437 },
438},
439[C(LL)] = {
440 [C(OP_READ)] = {
441 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
442 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
443 },
444 [C(OP_WRITE)] = {
445 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
446 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
447 },
448 [C(OP_PREFETCH)] = {
449 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
450 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
451 },
452},
453[C(DTLB)] = {
454 /* 74K core does not have specific DTLB events. */
455 [C(OP_READ)] = {
456 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
457 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
458 },
459 [C(OP_WRITE)] = {
460 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
461 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
462 },
463 [C(OP_PREFETCH)] = {
464 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
465 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
466 },
467},
468[C(ITLB)] = {
469 [C(OP_READ)] = {
470 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
471 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
472 },
473 [C(OP_WRITE)] = {
474 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
475 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
476 },
477 [C(OP_PREFETCH)] = {
478 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
479 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
480 },
481},
482[C(BPU)] = {
483 /* Using the same code for *HW_BRANCH* */
484 [C(OP_READ)] = {
485 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
486 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
487 },
488 [C(OP_WRITE)] = {
489 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
490 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
491 },
492 [C(OP_PREFETCH)] = {
493 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
494 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
495 },
496},
497[C(NODE)] = {
498 [C(OP_READ)] = {
499 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
500 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
501 },
502 [C(OP_WRITE)] = {
503 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
504 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
505 },
506 [C(OP_PREFETCH)] = {
507 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
508 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
509 },
510},
511};
512
513#ifdef CONFIG_MIPS_MT_SMP
514static void
515check_and_calc_range(struct perf_event *event,
516 const struct mips_perf_event *pev)
517{
518 struct hw_perf_event *hwc = &event->hw;
519
520 if (event->cpu >= 0) {
521 if (pev->range > V) {
522 /*
523 * The user selected an event that is processor
524 * wide, while expecting it to be VPE wide.
525 */
526 hwc->config_base |= M_TC_EN_ALL;
527 } else {
528 /*
529 * FIXME: cpu_data[event->cpu].vpe_id reports 0
530 * for both CPUs.
531 */
532 hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
533 hwc->config_base |= M_TC_EN_VPE;
534 }
535 } else
536 hwc->config_base |= M_TC_EN_ALL;
537}
538#else
539static void
540check_and_calc_range(struct perf_event *event,
541 const struct mips_perf_event *pev)
542{
543}
544#endif
545
546static int __hw_perf_event_init(struct perf_event *event)
547{
548 struct perf_event_attr *attr = &event->attr;
549 struct hw_perf_event *hwc = &event->hw;
550 const struct mips_perf_event *pev;
551 int err;
552
553 /* Returning MIPS event descriptor for generic perf event. */
554 if (PERF_TYPE_HARDWARE == event->attr.type) {
555 if (event->attr.config >= PERF_COUNT_HW_MAX)
556 return -EINVAL;
557 pev = mipspmu_map_general_event(event->attr.config);
558 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
559 pev = mipspmu_map_cache_event(event->attr.config);
560 } else if (PERF_TYPE_RAW == event->attr.type) {
561 /* We are working on the global raw event. */
562 mutex_lock(&raw_event_mutex);
563 pev = mipspmu->map_raw_event(event->attr.config);
564 } else {
565 /* The event type is not (yet) supported. */
566 return -EOPNOTSUPP;
567 }
568
569 if (IS_ERR(pev)) {
570 if (PERF_TYPE_RAW == event->attr.type)
571 mutex_unlock(&raw_event_mutex);
572 return PTR_ERR(pev);
573 }
574
575 /*
576 * We allow max flexibility on how each individual counter shared
577 * by the single CPU operates (the mode exclusion and the range).
578 */
579 hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
580
581 /* Calculate range bits and validate it. */
582 if (num_possible_cpus() > 1)
583 check_and_calc_range(event, pev);
584
585 hwc->event_base = mipspmu_perf_event_encode(pev);
586 if (PERF_TYPE_RAW == event->attr.type)
587 mutex_unlock(&raw_event_mutex);
588
589 if (!attr->exclude_user)
590 hwc->config_base |= M_PERFCTL_USER;
591 if (!attr->exclude_kernel) {
592 hwc->config_base |= M_PERFCTL_KERNEL;
593 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
594 hwc->config_base |= M_PERFCTL_EXL;
595 }
596 if (!attr->exclude_hv)
597 hwc->config_base |= M_PERFCTL_SUPERVISOR;
598
599 hwc->config_base &= M_PERFCTL_CONFIG_MASK;
600 /*
601 * The event can belong to another cpu. We do not assign a local
602 * counter for it for now.
603 */
604 hwc->idx = -1;
605 hwc->config = 0;
606
607 if (!hwc->sample_period) {
608 hwc->sample_period = MAX_PERIOD;
609 hwc->last_period = hwc->sample_period;
610 local64_set(&hwc->period_left, hwc->sample_period);
611 }
612
613 err = 0;
614 if (event->group_leader != event) {
615 err = validate_group(event);
616 if (err)
617 return -EINVAL;
618 }
619
620 event->destroy = hw_perf_event_destroy;
621
622 return err;
623}
624
625static void pause_local_counters(void)
626{
627 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
628 int counters = mipspmu->num_counters;
629 unsigned long flags;
630
631 local_irq_save(flags);
632 switch (counters) {
633 case 4:
634 cpuc->saved_ctrl[3] = r_c0_perfctrl3();
635 w_c0_perfctrl3(cpuc->saved_ctrl[3] &
636 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
637 case 3:
638 cpuc->saved_ctrl[2] = r_c0_perfctrl2();
639 w_c0_perfctrl2(cpuc->saved_ctrl[2] &
640 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
641 case 2:
642 cpuc->saved_ctrl[1] = r_c0_perfctrl1();
643 w_c0_perfctrl1(cpuc->saved_ctrl[1] &
644 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
645 case 1:
646 cpuc->saved_ctrl[0] = r_c0_perfctrl0();
647 w_c0_perfctrl0(cpuc->saved_ctrl[0] &
648 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
649 }
650 local_irq_restore(flags);
651}
652
653static void resume_local_counters(void)
654{
655 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
656 int counters = mipspmu->num_counters;
657 unsigned long flags;
658
659 local_irq_save(flags);
660 switch (counters) {
661 case 4:
662 w_c0_perfctrl3(cpuc->saved_ctrl[3]);
663 case 3:
664 w_c0_perfctrl2(cpuc->saved_ctrl[2]);
665 case 2:
666 w_c0_perfctrl1(cpuc->saved_ctrl[1]);
667 case 1:
668 w_c0_perfctrl0(cpuc->saved_ctrl[0]);
669 }
670 local_irq_restore(flags);
671}
672
673static int mipsxx_pmu_handle_shared_irq(void)
674{
675 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
676 struct perf_sample_data data;
677 unsigned int counters = mipspmu->num_counters;
678 unsigned int counter;
679 int handled = IRQ_NONE;
680 struct pt_regs *regs;
681
682 if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
683 return handled;
684
685 /*
686 * First we pause the local counters, so that when we are locked
687 * here, the counters are all paused. When it gets locked due to
688 * perf_disable(), the timer interrupt handler will be delayed.
689 *
690 * See also mipsxx_pmu_start().
691 */
692 pause_local_counters();
693#ifdef CONFIG_MIPS_MT_SMP
694 read_lock(&pmuint_rwlock);
695#endif
696
697 regs = get_irq_regs();
698
699 perf_sample_data_init(&data, 0);
700
701 switch (counters) {
702#define HANDLE_COUNTER(n) \
703 case n + 1: \
704 if (test_bit(n, cpuc->used_mask)) { \
705 counter = r_c0_perfcntr ## n(); \
706 if (counter & M_COUNTER_OVERFLOW) { \
707 w_c0_perfcntr ## n(counter & \
708 VALID_COUNT); \
709 if (test_and_change_bit(n, cpuc->msbs)) \
710 handle_associated_event(cpuc, \
711 n, &data, regs); \
712 handled = IRQ_HANDLED; \
713 } \
714 }
715 HANDLE_COUNTER(3)
716 HANDLE_COUNTER(2)
717 HANDLE_COUNTER(1)
718 HANDLE_COUNTER(0)
719 }
720
721 /*
722 * Do all the work for the pending perf events. We can do this
723 * in here because the performance counter interrupt is a regular
724 * interrupt, not NMI.
725 */
726 if (handled == IRQ_HANDLED)
727 irq_work_run();
728
729#ifdef CONFIG_MIPS_MT_SMP
730 read_unlock(&pmuint_rwlock);
731#endif
732 resume_local_counters();
733 return handled;
734}
735
736static irqreturn_t
737mipsxx_pmu_handle_irq(int irq, void *dev)
738{
739 return mipsxx_pmu_handle_shared_irq();
740}
741
742static void mipsxx_pmu_start(void)
743{
744#ifdef CONFIG_MIPS_MT_SMP
745 write_unlock(&pmuint_rwlock);
746#endif
747 resume_local_counters();
748}
749
750/*
751 * MIPS performance counters can be per-TC. The control registers can
752 * not be directly accessed across CPUs. Hence if we want to do global
753 * control, we need cross CPU calls. on_each_cpu() can help us, but we
754 * can not make sure this function is called with interrupts enabled. So
755 * here we pause local counters and then grab a rwlock and leave the
756 * counters on other CPUs alone. If any counter interrupt raises while
757 * we own the write lock, simply pause local counters on that CPU and
758 * spin in the handler. Also we know we won't be switched to another
759 * CPU after pausing local counters and before grabbing the lock.
760 */
761static void mipsxx_pmu_stop(void)
762{
763 pause_local_counters();
764#ifdef CONFIG_MIPS_MT_SMP
765 write_lock(&pmuint_rwlock);
766#endif
767}
768
769static int
770mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
771 struct hw_perf_event *hwc)
772{
773 int i;
774
775 /*
776 * We only need to care the counter mask. The range has been
777 * checked definitely.
778 */
779 unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
780
781 for (i = mipspmu->num_counters - 1; i >= 0; i--) {
782 /*
783 * Note that some MIPS perf events can be counted by both
784 * even and odd counters, wheresas many other are only by
785 * even _or_ odd counters. This introduces an issue that
786 * when the former kind of event takes the counter the
787 * latter kind of event wants to use, then the "counter
788 * allocation" for the latter event will fail. In fact if
789 * they can be dynamically swapped, they both feel happy.
790 * But here we leave this issue alone for now.
791 */
792 if (test_bit(i, &cntr_mask) &&
793 !test_and_set_bit(i, cpuc->used_mask))
794 return i;
795 }
796
797 return -EAGAIN;
798}
799
800static void
801mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
802{
803 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
804 unsigned long flags;
805
806 WARN_ON(idx < 0 || idx >= mipspmu->num_counters);
807
808 local_irq_save(flags);
809 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
810 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
811 /* Make sure interrupt enabled. */
812 M_PERFCTL_INTERRUPT_ENABLE;
813 /*
814 * We do not actually let the counter run. Leave it until start().
815 */
816 local_irq_restore(flags);
817}
818
819static void
820mipsxx_pmu_disable_event(int idx)
821{
822 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
823 unsigned long flags;
824
825 WARN_ON(idx < 0 || idx >= mipspmu->num_counters);
826
827 local_irq_save(flags);
828 cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
829 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
830 mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
831 local_irq_restore(flags);
832}
833
834/* 24K */
835#define IS_UNSUPPORTED_24K_EVENT(r, b) \
836 ((b) == 12 || (r) == 151 || (r) == 152 || (b) == 26 || \
837 (b) == 27 || (r) == 28 || (r) == 158 || (b) == 31 || \
838 (b) == 32 || (b) == 34 || (b) == 36 || (r) == 168 || \
839 (r) == 172 || (b) == 47 || ((b) >= 56 && (b) <= 63) || \
840 ((b) >= 68 && (b) <= 127))
841#define IS_BOTH_COUNTERS_24K_EVENT(b) \
842 ((b) == 0 || (b) == 1 || (b) == 11)
843
844/* 34K */
845#define IS_UNSUPPORTED_34K_EVENT(r, b) \
846 ((b) == 12 || (r) == 27 || (r) == 158 || (b) == 36 || \
847 (b) == 38 || (r) == 175 || ((b) >= 56 && (b) <= 63) || \
848 ((b) >= 68 && (b) <= 127))
849#define IS_BOTH_COUNTERS_34K_EVENT(b) \
850 ((b) == 0 || (b) == 1 || (b) == 11)
851#ifdef CONFIG_MIPS_MT_SMP
852#define IS_RANGE_P_34K_EVENT(r, b) \
853 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
854 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
855 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
856 ((b) >= 64 && (b) <= 67))
857#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
858#endif
859
860/* 74K */
861#define IS_UNSUPPORTED_74K_EVENT(r, b) \
862 ((r) == 5 || ((r) >= 135 && (r) <= 137) || \
863 ((b) >= 10 && (b) <= 12) || (b) == 22 || (b) == 27 || \
864 (b) == 33 || (b) == 34 || ((b) >= 47 && (b) <= 49) || \
865 (r) == 178 || (b) == 55 || (b) == 57 || (b) == 60 || \
866 (b) == 61 || (r) == 62 || (r) == 191 || \
867 ((b) >= 64 && (b) <= 127))
868#define IS_BOTH_COUNTERS_74K_EVENT(b) \
869 ((b) == 0 || (b) == 1)
870
871/* 1004K */
872#define IS_UNSUPPORTED_1004K_EVENT(r, b) \
873 ((b) == 12 || (r) == 27 || (r) == 158 || (b) == 38 || \
874 (r) == 175 || (b) == 63 || ((b) >= 68 && (b) <= 127))
875#define IS_BOTH_COUNTERS_1004K_EVENT(b) \
876 ((b) == 0 || (b) == 1 || (b) == 11)
877#ifdef CONFIG_MIPS_MT_SMP
878#define IS_RANGE_P_1004K_EVENT(r, b) \
879 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
880 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
881 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
882 (r) == 188 || (b) == 61 || (b) == 62 || \
883 ((b) >= 64 && (b) <= 67))
884#define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
885#endif
886
887/*
888 * User can use 0-255 raw events, where 0-127 for the events of even
889 * counters, and 128-255 for odd counters. Note that bit 7 is used to
890 * indicate the parity. So, for example, when user wants to take the
891 * Event Num of 15 for odd counters (by referring to the user manual),
892 * then 128 needs to be added to 15 as the input for the event config,
893 * i.e., 143 (0x8F) to be used.
894 */
895static const struct mips_perf_event *
896mipsxx_pmu_map_raw_event(u64 config)
897{
898 unsigned int raw_id = config & 0xff;
899 unsigned int base_id = raw_id & 0x7f;
900
901 switch (current_cpu_type()) {
902 case CPU_24K:
903 if (IS_UNSUPPORTED_24K_EVENT(raw_id, base_id))
904 return ERR_PTR(-EOPNOTSUPP);
905 raw_event.event_id = base_id;
906 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
907 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
908 else
909 raw_event.cntr_mask =
910 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
911#ifdef CONFIG_MIPS_MT_SMP
912 /*
913 * This is actually doing nothing. Non-multithreading
914 * CPUs will not check and calculate the range.
915 */
916 raw_event.range = P;
917#endif
918 break;
919 case CPU_34K:
920 if (IS_UNSUPPORTED_34K_EVENT(raw_id, base_id))
921 return ERR_PTR(-EOPNOTSUPP);
922 raw_event.event_id = base_id;
923 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
924 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
925 else
926 raw_event.cntr_mask =
927 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
928#ifdef CONFIG_MIPS_MT_SMP
929 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
930 raw_event.range = P;
931 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
932 raw_event.range = V;
933 else
934 raw_event.range = T;
935#endif
936 break;
937 case CPU_74K:
938 if (IS_UNSUPPORTED_74K_EVENT(raw_id, base_id))
939 return ERR_PTR(-EOPNOTSUPP);
940 raw_event.event_id = base_id;
941 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
942 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
943 else
944 raw_event.cntr_mask =
945 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
946#ifdef CONFIG_MIPS_MT_SMP
947 raw_event.range = P;
948#endif
949 break;
950 case CPU_1004K:
951 if (IS_UNSUPPORTED_1004K_EVENT(raw_id, base_id))
952 return ERR_PTR(-EOPNOTSUPP);
953 raw_event.event_id = base_id;
954 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
955 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
956 else
957 raw_event.cntr_mask =
958 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
959#ifdef CONFIG_MIPS_MT_SMP
960 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
961 raw_event.range = P;
962 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
963 raw_event.range = V;
964 else
965 raw_event.range = T;
966#endif
967 break;
968 }
969
970 return &raw_event;
971}
972
973static struct mips_pmu mipsxxcore_pmu = {
974 .handle_irq = mipsxx_pmu_handle_irq,
975 .handle_shared_irq = mipsxx_pmu_handle_shared_irq,
976 .start = mipsxx_pmu_start,
977 .stop = mipsxx_pmu_stop,
978 .alloc_counter = mipsxx_pmu_alloc_counter,
979 .read_counter = mipsxx_pmu_read_counter,
980 .write_counter = mipsxx_pmu_write_counter,
981 .enable_event = mipsxx_pmu_enable_event,
982 .disable_event = mipsxx_pmu_disable_event,
983 .map_raw_event = mipsxx_pmu_map_raw_event,
984 .general_event_map = &mipsxxcore_event_map,
985 .cache_event_map = &mipsxxcore_cache_map,
986};
987
988static struct mips_pmu mipsxx74Kcore_pmu = {
989 .handle_irq = mipsxx_pmu_handle_irq,
990 .handle_shared_irq = mipsxx_pmu_handle_shared_irq,
991 .start = mipsxx_pmu_start,
992 .stop = mipsxx_pmu_stop,
993 .alloc_counter = mipsxx_pmu_alloc_counter,
994 .read_counter = mipsxx_pmu_read_counter,
995 .write_counter = mipsxx_pmu_write_counter,
996 .enable_event = mipsxx_pmu_enable_event,
997 .disable_event = mipsxx_pmu_disable_event,
998 .map_raw_event = mipsxx_pmu_map_raw_event,
999 .general_event_map = &mipsxx74Kcore_event_map,
1000 .cache_event_map = &mipsxx74Kcore_cache_map,
1001};
1002
1003static int __init
1004init_hw_perf_events(void)
1005{
1006 int counters, irq;
1007
1008 pr_info("Performance counters: ");
1009
1010 counters = n_counters();
1011 if (counters == 0) {
1012 pr_cont("No available PMU.\n");
1013 return -ENODEV;
1014 }
1015
1016#ifdef CONFIG_MIPS_MT_SMP
1017 cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1018 if (!cpu_has_mipsmt_pertccounters)
1019 counters = counters_total_to_per_cpu(counters);
1020#endif
1021
1022#ifdef MSC01E_INT_BASE
1023 if (cpu_has_veic) {
1024 /*
1025 * Using platform specific interrupt controller defines.
1026 */
1027 irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1028 } else {
1029#endif
1030 if (cp0_perfcount_irq >= 0)
1031 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1032 else
1033 irq = -1;
1034#ifdef MSC01E_INT_BASE
1035 }
1036#endif
1037
1038 on_each_cpu(reset_counters, (void *)(long)counters, 1);
1039
1040 switch (current_cpu_type()) {
1041 case CPU_24K:
1042 mipsxxcore_pmu.name = "mips/24K";
1043 mipsxxcore_pmu.num_counters = counters;
1044 mipsxxcore_pmu.irq = irq;
1045 mipspmu = &mipsxxcore_pmu;
1046 break;
1047 case CPU_34K:
1048 mipsxxcore_pmu.name = "mips/34K";
1049 mipsxxcore_pmu.num_counters = counters;
1050 mipsxxcore_pmu.irq = irq;
1051 mipspmu = &mipsxxcore_pmu;
1052 break;
1053 case CPU_74K:
1054 mipsxx74Kcore_pmu.name = "mips/74K";
1055 mipsxx74Kcore_pmu.num_counters = counters;
1056 mipsxx74Kcore_pmu.irq = irq;
1057 mipspmu = &mipsxx74Kcore_pmu;
1058 break;
1059 case CPU_1004K:
1060 mipsxxcore_pmu.name = "mips/1004K";
1061 mipsxxcore_pmu.num_counters = counters;
1062 mipsxxcore_pmu.irq = irq;
1063 mipspmu = &mipsxxcore_pmu;
1064 break;
1065 default:
1066 pr_cont("Either hardware does not support performance "
1067 "counters, or not yet implemented.\n");
1068 return -ENODEV;
1069 }
1070
1071 if (mipspmu)
1072 pr_cont("%s PMU enabled, %d counters available to each "
1073 "CPU, irq %d%s\n", mipspmu->name, counters, irq,
1074 irq < 0 ? " (share with timer interrupt)" : "");
1075
1076 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1077
1078 return 0;
1079}
1080early_initcall(init_hw_perf_events);
1081
1082#endif /* defined(CONFIG_CPU_MIPS32)... */
1/*
2 * Linux performance counter support for MIPS.
3 *
4 * Copyright (C) 2010 MIPS Technologies, Inc.
5 * Copyright (C) 2011 Cavium Networks, Inc.
6 * Author: Deng-Cheng Zhu
7 *
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18#include <linux/cpumask.h>
19#include <linux/interrupt.h>
20#include <linux/smp.h>
21#include <linux/kernel.h>
22#include <linux/perf_event.h>
23#include <linux/uaccess.h>
24
25#include <asm/irq.h>
26#include <asm/irq_regs.h>
27#include <asm/stacktrace.h>
28#include <asm/time.h> /* For perf_irq */
29
30#define MIPS_MAX_HWEVENTS 4
31#define MIPS_TCS_PER_COUNTER 2
32#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
33
34struct cpu_hw_events {
35 /* Array of events on this cpu. */
36 struct perf_event *events[MIPS_MAX_HWEVENTS];
37
38 /*
39 * Set the bit (indexed by the counter number) when the counter
40 * is used for an event.
41 */
42 unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
43
44 /*
45 * Software copy of the control register for each performance counter.
46 * MIPS CPUs vary in performance counters. They use this differently,
47 * and even may not use it.
48 */
49 unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
50};
51DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52 .saved_ctrl = {0},
53};
54
55/* The description of MIPS performance events. */
56struct mips_perf_event {
57 unsigned int event_id;
58 /*
59 * MIPS performance counters are indexed starting from 0.
60 * CNTR_EVEN indicates the indexes of the counters to be used are
61 * even numbers.
62 */
63 unsigned int cntr_mask;
64 #define CNTR_EVEN 0x55555555
65 #define CNTR_ODD 0xaaaaaaaa
66 #define CNTR_ALL 0xffffffff
67#ifdef CONFIG_MIPS_MT_SMP
68 enum {
69 T = 0,
70 V = 1,
71 P = 2,
72 } range;
73#else
74 #define T
75 #define V
76 #define P
77#endif
78};
79
80static struct mips_perf_event raw_event;
81static DEFINE_MUTEX(raw_event_mutex);
82
83#define C(x) PERF_COUNT_HW_CACHE_##x
84
85struct mips_pmu {
86 u64 max_period;
87 u64 valid_count;
88 u64 overflow;
89 const char *name;
90 int irq;
91 u64 (*read_counter)(unsigned int idx);
92 void (*write_counter)(unsigned int idx, u64 val);
93 const struct mips_perf_event *(*map_raw_event)(u64 config);
94 const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
95 const struct mips_perf_event (*cache_event_map)
96 [PERF_COUNT_HW_CACHE_MAX]
97 [PERF_COUNT_HW_CACHE_OP_MAX]
98 [PERF_COUNT_HW_CACHE_RESULT_MAX];
99 unsigned int num_counters;
100};
101
102static struct mips_pmu mipspmu;
103
104#define M_PERFCTL_EVENT(event) (((event) << MIPS_PERFCTRL_EVENT_S) & \
105 MIPS_PERFCTRL_EVENT)
106#define M_PERFCTL_VPEID(vpe) ((vpe) << MIPS_PERFCTRL_VPEID_S)
107
108#ifdef CONFIG_CPU_BMIPS5000
109#define M_PERFCTL_MT_EN(filter) 0
110#else /* !CONFIG_CPU_BMIPS5000 */
111#define M_PERFCTL_MT_EN(filter) (filter)
112#endif /* CONFIG_CPU_BMIPS5000 */
113
114#define M_TC_EN_ALL M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
115#define M_TC_EN_VPE M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
116#define M_TC_EN_TC M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
117
118#define M_PERFCTL_COUNT_EVENT_WHENEVER (MIPS_PERFCTRL_EXL | \
119 MIPS_PERFCTRL_K | \
120 MIPS_PERFCTRL_U | \
121 MIPS_PERFCTRL_S | \
122 MIPS_PERFCTRL_IE)
123
124#ifdef CONFIG_MIPS_MT_SMP
125#define M_PERFCTL_CONFIG_MASK 0x3fff801f
126#else
127#define M_PERFCTL_CONFIG_MASK 0x1f
128#endif
129
130
131#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
132static int cpu_has_mipsmt_pertccounters;
133
134static DEFINE_RWLOCK(pmuint_rwlock);
135
136#if defined(CONFIG_CPU_BMIPS5000)
137#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
138 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
139#else
140/*
141 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
142 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
143 */
144#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
145 0 : smp_processor_id())
146#endif
147
148/* Copied from op_model_mipsxx.c */
149static unsigned int vpe_shift(void)
150{
151 if (num_possible_cpus() > 1)
152 return 1;
153
154 return 0;
155}
156
157static unsigned int counters_total_to_per_cpu(unsigned int counters)
158{
159 return counters >> vpe_shift();
160}
161
162#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
163#define vpe_id() 0
164
165#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
166
167static void resume_local_counters(void);
168static void pause_local_counters(void);
169static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
170static int mipsxx_pmu_handle_shared_irq(void);
171
172static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
173{
174 if (vpe_id() == 1)
175 idx = (idx + 2) & 3;
176 return idx;
177}
178
179static u64 mipsxx_pmu_read_counter(unsigned int idx)
180{
181 idx = mipsxx_pmu_swizzle_perf_idx(idx);
182
183 switch (idx) {
184 case 0:
185 /*
186 * The counters are unsigned, we must cast to truncate
187 * off the high bits.
188 */
189 return (u32)read_c0_perfcntr0();
190 case 1:
191 return (u32)read_c0_perfcntr1();
192 case 2:
193 return (u32)read_c0_perfcntr2();
194 case 3:
195 return (u32)read_c0_perfcntr3();
196 default:
197 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
198 return 0;
199 }
200}
201
202static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
203{
204 idx = mipsxx_pmu_swizzle_perf_idx(idx);
205
206 switch (idx) {
207 case 0:
208 return read_c0_perfcntr0_64();
209 case 1:
210 return read_c0_perfcntr1_64();
211 case 2:
212 return read_c0_perfcntr2_64();
213 case 3:
214 return read_c0_perfcntr3_64();
215 default:
216 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
217 return 0;
218 }
219}
220
221static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
222{
223 idx = mipsxx_pmu_swizzle_perf_idx(idx);
224
225 switch (idx) {
226 case 0:
227 write_c0_perfcntr0(val);
228 return;
229 case 1:
230 write_c0_perfcntr1(val);
231 return;
232 case 2:
233 write_c0_perfcntr2(val);
234 return;
235 case 3:
236 write_c0_perfcntr3(val);
237 return;
238 }
239}
240
241static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
242{
243 idx = mipsxx_pmu_swizzle_perf_idx(idx);
244
245 switch (idx) {
246 case 0:
247 write_c0_perfcntr0_64(val);
248 return;
249 case 1:
250 write_c0_perfcntr1_64(val);
251 return;
252 case 2:
253 write_c0_perfcntr2_64(val);
254 return;
255 case 3:
256 write_c0_perfcntr3_64(val);
257 return;
258 }
259}
260
261static unsigned int mipsxx_pmu_read_control(unsigned int idx)
262{
263 idx = mipsxx_pmu_swizzle_perf_idx(idx);
264
265 switch (idx) {
266 case 0:
267 return read_c0_perfctrl0();
268 case 1:
269 return read_c0_perfctrl1();
270 case 2:
271 return read_c0_perfctrl2();
272 case 3:
273 return read_c0_perfctrl3();
274 default:
275 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
276 return 0;
277 }
278}
279
280static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
281{
282 idx = mipsxx_pmu_swizzle_perf_idx(idx);
283
284 switch (idx) {
285 case 0:
286 write_c0_perfctrl0(val);
287 return;
288 case 1:
289 write_c0_perfctrl1(val);
290 return;
291 case 2:
292 write_c0_perfctrl2(val);
293 return;
294 case 3:
295 write_c0_perfctrl3(val);
296 return;
297 }
298}
299
300static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
301 struct hw_perf_event *hwc)
302{
303 int i;
304
305 /*
306 * We only need to care the counter mask. The range has been
307 * checked definitely.
308 */
309 unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
310
311 for (i = mipspmu.num_counters - 1; i >= 0; i--) {
312 /*
313 * Note that some MIPS perf events can be counted by both
314 * even and odd counters, wheresas many other are only by
315 * even _or_ odd counters. This introduces an issue that
316 * when the former kind of event takes the counter the
317 * latter kind of event wants to use, then the "counter
318 * allocation" for the latter event will fail. In fact if
319 * they can be dynamically swapped, they both feel happy.
320 * But here we leave this issue alone for now.
321 */
322 if (test_bit(i, &cntr_mask) &&
323 !test_and_set_bit(i, cpuc->used_mask))
324 return i;
325 }
326
327 return -EAGAIN;
328}
329
330static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
331{
332 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
333
334 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
335
336 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
337 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
338 /* Make sure interrupt enabled. */
339 MIPS_PERFCTRL_IE;
340 if (IS_ENABLED(CONFIG_CPU_BMIPS5000))
341 /* enable the counter for the calling thread */
342 cpuc->saved_ctrl[idx] |=
343 (1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC;
344
345 /*
346 * We do not actually let the counter run. Leave it until start().
347 */
348}
349
350static void mipsxx_pmu_disable_event(int idx)
351{
352 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
353 unsigned long flags;
354
355 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
356
357 local_irq_save(flags);
358 cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
359 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
360 mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
361 local_irq_restore(flags);
362}
363
364static int mipspmu_event_set_period(struct perf_event *event,
365 struct hw_perf_event *hwc,
366 int idx)
367{
368 u64 left = local64_read(&hwc->period_left);
369 u64 period = hwc->sample_period;
370 int ret = 0;
371
372 if (unlikely((left + period) & (1ULL << 63))) {
373 /* left underflowed by more than period. */
374 left = period;
375 local64_set(&hwc->period_left, left);
376 hwc->last_period = period;
377 ret = 1;
378 } else if (unlikely((left + period) <= period)) {
379 /* left underflowed by less than period. */
380 left += period;
381 local64_set(&hwc->period_left, left);
382 hwc->last_period = period;
383 ret = 1;
384 }
385
386 if (left > mipspmu.max_period) {
387 left = mipspmu.max_period;
388 local64_set(&hwc->period_left, left);
389 }
390
391 local64_set(&hwc->prev_count, mipspmu.overflow - left);
392
393 mipspmu.write_counter(idx, mipspmu.overflow - left);
394
395 perf_event_update_userpage(event);
396
397 return ret;
398}
399
400static void mipspmu_event_update(struct perf_event *event,
401 struct hw_perf_event *hwc,
402 int idx)
403{
404 u64 prev_raw_count, new_raw_count;
405 u64 delta;
406
407again:
408 prev_raw_count = local64_read(&hwc->prev_count);
409 new_raw_count = mipspmu.read_counter(idx);
410
411 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
412 new_raw_count) != prev_raw_count)
413 goto again;
414
415 delta = new_raw_count - prev_raw_count;
416
417 local64_add(delta, &event->count);
418 local64_sub(delta, &hwc->period_left);
419}
420
421static void mipspmu_start(struct perf_event *event, int flags)
422{
423 struct hw_perf_event *hwc = &event->hw;
424
425 if (flags & PERF_EF_RELOAD)
426 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
427
428 hwc->state = 0;
429
430 /* Set the period for the event. */
431 mipspmu_event_set_period(event, hwc, hwc->idx);
432
433 /* Enable the event. */
434 mipsxx_pmu_enable_event(hwc, hwc->idx);
435}
436
437static void mipspmu_stop(struct perf_event *event, int flags)
438{
439 struct hw_perf_event *hwc = &event->hw;
440
441 if (!(hwc->state & PERF_HES_STOPPED)) {
442 /* We are working on a local event. */
443 mipsxx_pmu_disable_event(hwc->idx);
444 barrier();
445 mipspmu_event_update(event, hwc, hwc->idx);
446 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
447 }
448}
449
450static int mipspmu_add(struct perf_event *event, int flags)
451{
452 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
453 struct hw_perf_event *hwc = &event->hw;
454 int idx;
455 int err = 0;
456
457 perf_pmu_disable(event->pmu);
458
459 /* To look for a free counter for this event. */
460 idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
461 if (idx < 0) {
462 err = idx;
463 goto out;
464 }
465
466 /*
467 * If there is an event in the counter we are going to use then
468 * make sure it is disabled.
469 */
470 event->hw.idx = idx;
471 mipsxx_pmu_disable_event(idx);
472 cpuc->events[idx] = event;
473
474 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
475 if (flags & PERF_EF_START)
476 mipspmu_start(event, PERF_EF_RELOAD);
477
478 /* Propagate our changes to the userspace mapping. */
479 perf_event_update_userpage(event);
480
481out:
482 perf_pmu_enable(event->pmu);
483 return err;
484}
485
486static void mipspmu_del(struct perf_event *event, int flags)
487{
488 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
489 struct hw_perf_event *hwc = &event->hw;
490 int idx = hwc->idx;
491
492 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
493
494 mipspmu_stop(event, PERF_EF_UPDATE);
495 cpuc->events[idx] = NULL;
496 clear_bit(idx, cpuc->used_mask);
497
498 perf_event_update_userpage(event);
499}
500
501static void mipspmu_read(struct perf_event *event)
502{
503 struct hw_perf_event *hwc = &event->hw;
504
505 /* Don't read disabled counters! */
506 if (hwc->idx < 0)
507 return;
508
509 mipspmu_event_update(event, hwc, hwc->idx);
510}
511
512static void mipspmu_enable(struct pmu *pmu)
513{
514#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
515 write_unlock(&pmuint_rwlock);
516#endif
517 resume_local_counters();
518}
519
520/*
521 * MIPS performance counters can be per-TC. The control registers can
522 * not be directly accessed across CPUs. Hence if we want to do global
523 * control, we need cross CPU calls. on_each_cpu() can help us, but we
524 * can not make sure this function is called with interrupts enabled. So
525 * here we pause local counters and then grab a rwlock and leave the
526 * counters on other CPUs alone. If any counter interrupt raises while
527 * we own the write lock, simply pause local counters on that CPU and
528 * spin in the handler. Also we know we won't be switched to another
529 * CPU after pausing local counters and before grabbing the lock.
530 */
531static void mipspmu_disable(struct pmu *pmu)
532{
533 pause_local_counters();
534#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
535 write_lock(&pmuint_rwlock);
536#endif
537}
538
539static atomic_t active_events = ATOMIC_INIT(0);
540static DEFINE_MUTEX(pmu_reserve_mutex);
541static int (*save_perf_irq)(void);
542
543static int mipspmu_get_irq(void)
544{
545 int err;
546
547 if (mipspmu.irq >= 0) {
548 /* Request my own irq handler. */
549 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
550 IRQF_PERCPU | IRQF_NOBALANCING |
551 IRQF_NO_THREAD | IRQF_NO_SUSPEND |
552 IRQF_SHARED,
553 "mips_perf_pmu", &mipspmu);
554 if (err) {
555 pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
556 mipspmu.irq);
557 }
558 } else if (cp0_perfcount_irq < 0) {
559 /*
560 * We are sharing the irq number with the timer interrupt.
561 */
562 save_perf_irq = perf_irq;
563 perf_irq = mipsxx_pmu_handle_shared_irq;
564 err = 0;
565 } else {
566 pr_warn("The platform hasn't properly defined its interrupt controller\n");
567 err = -ENOENT;
568 }
569
570 return err;
571}
572
573static void mipspmu_free_irq(void)
574{
575 if (mipspmu.irq >= 0)
576 free_irq(mipspmu.irq, &mipspmu);
577 else if (cp0_perfcount_irq < 0)
578 perf_irq = save_perf_irq;
579}
580
581/*
582 * mipsxx/rm9000/loongson2 have different performance counters, they have
583 * specific low-level init routines.
584 */
585static void reset_counters(void *arg);
586static int __hw_perf_event_init(struct perf_event *event);
587
588static void hw_perf_event_destroy(struct perf_event *event)
589{
590 if (atomic_dec_and_mutex_lock(&active_events,
591 &pmu_reserve_mutex)) {
592 /*
593 * We must not call the destroy function with interrupts
594 * disabled.
595 */
596 on_each_cpu(reset_counters,
597 (void *)(long)mipspmu.num_counters, 1);
598 mipspmu_free_irq();
599 mutex_unlock(&pmu_reserve_mutex);
600 }
601}
602
603static int mipspmu_event_init(struct perf_event *event)
604{
605 int err = 0;
606
607 /* does not support taken branch sampling */
608 if (has_branch_stack(event))
609 return -EOPNOTSUPP;
610
611 switch (event->attr.type) {
612 case PERF_TYPE_RAW:
613 case PERF_TYPE_HARDWARE:
614 case PERF_TYPE_HW_CACHE:
615 break;
616
617 default:
618 return -ENOENT;
619 }
620
621 if (event->cpu >= 0 && !cpu_online(event->cpu))
622 return -ENODEV;
623
624 if (!atomic_inc_not_zero(&active_events)) {
625 mutex_lock(&pmu_reserve_mutex);
626 if (atomic_read(&active_events) == 0)
627 err = mipspmu_get_irq();
628
629 if (!err)
630 atomic_inc(&active_events);
631 mutex_unlock(&pmu_reserve_mutex);
632 }
633
634 if (err)
635 return err;
636
637 return __hw_perf_event_init(event);
638}
639
640static struct pmu pmu = {
641 .pmu_enable = mipspmu_enable,
642 .pmu_disable = mipspmu_disable,
643 .event_init = mipspmu_event_init,
644 .add = mipspmu_add,
645 .del = mipspmu_del,
646 .start = mipspmu_start,
647 .stop = mipspmu_stop,
648 .read = mipspmu_read,
649};
650
651static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
652{
653/*
654 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
655 * event_id.
656 */
657#ifdef CONFIG_MIPS_MT_SMP
658 return ((unsigned int)pev->range << 24) |
659 (pev->cntr_mask & 0xffff00) |
660 (pev->event_id & 0xff);
661#else
662 return (pev->cntr_mask & 0xffff00) |
663 (pev->event_id & 0xff);
664#endif
665}
666
667static const struct mips_perf_event *mipspmu_map_general_event(int idx)
668{
669
670 if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
671 return ERR_PTR(-EOPNOTSUPP);
672 return &(*mipspmu.general_event_map)[idx];
673}
674
675static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
676{
677 unsigned int cache_type, cache_op, cache_result;
678 const struct mips_perf_event *pev;
679
680 cache_type = (config >> 0) & 0xff;
681 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
682 return ERR_PTR(-EINVAL);
683
684 cache_op = (config >> 8) & 0xff;
685 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
686 return ERR_PTR(-EINVAL);
687
688 cache_result = (config >> 16) & 0xff;
689 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
690 return ERR_PTR(-EINVAL);
691
692 pev = &((*mipspmu.cache_event_map)
693 [cache_type]
694 [cache_op]
695 [cache_result]);
696
697 if (pev->cntr_mask == 0)
698 return ERR_PTR(-EOPNOTSUPP);
699
700 return pev;
701
702}
703
704static int validate_group(struct perf_event *event)
705{
706 struct perf_event *sibling, *leader = event->group_leader;
707 struct cpu_hw_events fake_cpuc;
708
709 memset(&fake_cpuc, 0, sizeof(fake_cpuc));
710
711 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
712 return -EINVAL;
713
714 for_each_sibling_event(sibling, leader) {
715 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
716 return -EINVAL;
717 }
718
719 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
720 return -EINVAL;
721
722 return 0;
723}
724
725/* This is needed by specific irq handlers in perf_event_*.c */
726static void handle_associated_event(struct cpu_hw_events *cpuc,
727 int idx, struct perf_sample_data *data,
728 struct pt_regs *regs)
729{
730 struct perf_event *event = cpuc->events[idx];
731 struct hw_perf_event *hwc = &event->hw;
732
733 mipspmu_event_update(event, hwc, idx);
734 data->period = event->hw.last_period;
735 if (!mipspmu_event_set_period(event, hwc, idx))
736 return;
737
738 if (perf_event_overflow(event, data, regs))
739 mipsxx_pmu_disable_event(idx);
740}
741
742
743static int __n_counters(void)
744{
745 if (!cpu_has_perf)
746 return 0;
747 if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M))
748 return 1;
749 if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M))
750 return 2;
751 if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M))
752 return 3;
753
754 return 4;
755}
756
757static int n_counters(void)
758{
759 int counters;
760
761 switch (current_cpu_type()) {
762 case CPU_R10000:
763 counters = 2;
764 break;
765
766 case CPU_R12000:
767 case CPU_R14000:
768 case CPU_R16000:
769 counters = 4;
770 break;
771
772 default:
773 counters = __n_counters();
774 }
775
776 return counters;
777}
778
779static void reset_counters(void *arg)
780{
781 int counters = (int)(long)arg;
782 switch (counters) {
783 case 4:
784 mipsxx_pmu_write_control(3, 0);
785 mipspmu.write_counter(3, 0);
786 case 3:
787 mipsxx_pmu_write_control(2, 0);
788 mipspmu.write_counter(2, 0);
789 case 2:
790 mipsxx_pmu_write_control(1, 0);
791 mipspmu.write_counter(1, 0);
792 case 1:
793 mipsxx_pmu_write_control(0, 0);
794 mipspmu.write_counter(0, 0);
795 }
796}
797
798/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
799static const struct mips_perf_event mipsxxcore_event_map
800 [PERF_COUNT_HW_MAX] = {
801 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
802 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
803 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
804 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
805};
806
807/* 74K/proAptiv core has different branch event code. */
808static const struct mips_perf_event mipsxxcore_event_map2
809 [PERF_COUNT_HW_MAX] = {
810 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
811 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
812 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
813 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
814};
815
816static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = {
817 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD },
818 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD },
819 /* These only count dcache, not icache */
820 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x45, CNTR_EVEN | CNTR_ODD },
821 [PERF_COUNT_HW_CACHE_MISSES] = { 0x48, CNTR_EVEN | CNTR_ODD },
822 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
823 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x16, CNTR_EVEN | CNTR_ODD },
824};
825
826static const struct mips_perf_event loongson3_event_map[PERF_COUNT_HW_MAX] = {
827 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
828 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
829 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
830 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
831};
832
833static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
834 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
835 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
836 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
837 [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
838 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
839 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
840 [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
841};
842
843static const struct mips_perf_event bmips5000_event_map
844 [PERF_COUNT_HW_MAX] = {
845 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
846 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
847 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
848};
849
850static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
851 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
852 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
853 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
854 [PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
855 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
856 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
857};
858
859/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
860static const struct mips_perf_event mipsxxcore_cache_map
861 [PERF_COUNT_HW_CACHE_MAX]
862 [PERF_COUNT_HW_CACHE_OP_MAX]
863 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
864[C(L1D)] = {
865 /*
866 * Like some other architectures (e.g. ARM), the performance
867 * counters don't differentiate between read and write
868 * accesses/misses, so this isn't strictly correct, but it's the
869 * best we can do. Writes and reads get combined.
870 */
871 [C(OP_READ)] = {
872 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
873 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
874 },
875 [C(OP_WRITE)] = {
876 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
877 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
878 },
879},
880[C(L1I)] = {
881 [C(OP_READ)] = {
882 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
883 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
884 },
885 [C(OP_WRITE)] = {
886 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
887 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
888 },
889 [C(OP_PREFETCH)] = {
890 [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
891 /*
892 * Note that MIPS has only "hit" events countable for
893 * the prefetch operation.
894 */
895 },
896},
897[C(LL)] = {
898 [C(OP_READ)] = {
899 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
900 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
901 },
902 [C(OP_WRITE)] = {
903 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
904 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
905 },
906},
907[C(DTLB)] = {
908 [C(OP_READ)] = {
909 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
910 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
911 },
912 [C(OP_WRITE)] = {
913 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
914 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
915 },
916},
917[C(ITLB)] = {
918 [C(OP_READ)] = {
919 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
920 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
921 },
922 [C(OP_WRITE)] = {
923 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
924 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
925 },
926},
927[C(BPU)] = {
928 /* Using the same code for *HW_BRANCH* */
929 [C(OP_READ)] = {
930 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
931 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
932 },
933 [C(OP_WRITE)] = {
934 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
935 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
936 },
937},
938};
939
940/* 74K/proAptiv core has completely different cache event map. */
941static const struct mips_perf_event mipsxxcore_cache_map2
942 [PERF_COUNT_HW_CACHE_MAX]
943 [PERF_COUNT_HW_CACHE_OP_MAX]
944 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
945[C(L1D)] = {
946 /*
947 * Like some other architectures (e.g. ARM), the performance
948 * counters don't differentiate between read and write
949 * accesses/misses, so this isn't strictly correct, but it's the
950 * best we can do. Writes and reads get combined.
951 */
952 [C(OP_READ)] = {
953 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
954 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
955 },
956 [C(OP_WRITE)] = {
957 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
958 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
959 },
960},
961[C(L1I)] = {
962 [C(OP_READ)] = {
963 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
964 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
965 },
966 [C(OP_WRITE)] = {
967 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
968 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
969 },
970 [C(OP_PREFETCH)] = {
971 [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
972 /*
973 * Note that MIPS has only "hit" events countable for
974 * the prefetch operation.
975 */
976 },
977},
978[C(LL)] = {
979 [C(OP_READ)] = {
980 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
981 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
982 },
983 [C(OP_WRITE)] = {
984 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
985 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
986 },
987},
988/*
989 * 74K core does not have specific DTLB events. proAptiv core has
990 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
991 * not included here. One can use raw events if really needed.
992 */
993[C(ITLB)] = {
994 [C(OP_READ)] = {
995 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
996 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
997 },
998 [C(OP_WRITE)] = {
999 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
1000 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
1001 },
1002},
1003[C(BPU)] = {
1004 /* Using the same code for *HW_BRANCH* */
1005 [C(OP_READ)] = {
1006 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1007 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1008 },
1009 [C(OP_WRITE)] = {
1010 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1011 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1012 },
1013},
1014};
1015
1016static const struct mips_perf_event i6x00_cache_map
1017 [PERF_COUNT_HW_CACHE_MAX]
1018 [PERF_COUNT_HW_CACHE_OP_MAX]
1019 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1020[C(L1D)] = {
1021 [C(OP_READ)] = {
1022 [C(RESULT_ACCESS)] = { 0x46, CNTR_EVEN | CNTR_ODD },
1023 [C(RESULT_MISS)] = { 0x49, CNTR_EVEN | CNTR_ODD },
1024 },
1025 [C(OP_WRITE)] = {
1026 [C(RESULT_ACCESS)] = { 0x47, CNTR_EVEN | CNTR_ODD },
1027 [C(RESULT_MISS)] = { 0x4a, CNTR_EVEN | CNTR_ODD },
1028 },
1029},
1030[C(L1I)] = {
1031 [C(OP_READ)] = {
1032 [C(RESULT_ACCESS)] = { 0x84, CNTR_EVEN | CNTR_ODD },
1033 [C(RESULT_MISS)] = { 0x85, CNTR_EVEN | CNTR_ODD },
1034 },
1035},
1036[C(DTLB)] = {
1037 /* Can't distinguish read & write */
1038 [C(OP_READ)] = {
1039 [C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD },
1040 [C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD },
1041 },
1042 [C(OP_WRITE)] = {
1043 [C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD },
1044 [C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD },
1045 },
1046},
1047[C(BPU)] = {
1048 /* Conditional branches / mispredicted */
1049 [C(OP_READ)] = {
1050 [C(RESULT_ACCESS)] = { 0x15, CNTR_EVEN | CNTR_ODD },
1051 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN | CNTR_ODD },
1052 },
1053},
1054};
1055
1056static const struct mips_perf_event loongson3_cache_map
1057 [PERF_COUNT_HW_CACHE_MAX]
1058 [PERF_COUNT_HW_CACHE_OP_MAX]
1059 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1060[C(L1D)] = {
1061 /*
1062 * Like some other architectures (e.g. ARM), the performance
1063 * counters don't differentiate between read and write
1064 * accesses/misses, so this isn't strictly correct, but it's the
1065 * best we can do. Writes and reads get combined.
1066 */
1067 [C(OP_READ)] = {
1068 [C(RESULT_MISS)] = { 0x04, CNTR_ODD },
1069 },
1070 [C(OP_WRITE)] = {
1071 [C(RESULT_MISS)] = { 0x04, CNTR_ODD },
1072 },
1073},
1074[C(L1I)] = {
1075 [C(OP_READ)] = {
1076 [C(RESULT_MISS)] = { 0x04, CNTR_EVEN },
1077 },
1078 [C(OP_WRITE)] = {
1079 [C(RESULT_MISS)] = { 0x04, CNTR_EVEN },
1080 },
1081},
1082[C(DTLB)] = {
1083 [C(OP_READ)] = {
1084 [C(RESULT_MISS)] = { 0x09, CNTR_ODD },
1085 },
1086 [C(OP_WRITE)] = {
1087 [C(RESULT_MISS)] = { 0x09, CNTR_ODD },
1088 },
1089},
1090[C(ITLB)] = {
1091 [C(OP_READ)] = {
1092 [C(RESULT_MISS)] = { 0x0c, CNTR_ODD },
1093 },
1094 [C(OP_WRITE)] = {
1095 [C(RESULT_MISS)] = { 0x0c, CNTR_ODD },
1096 },
1097},
1098[C(BPU)] = {
1099 /* Using the same code for *HW_BRANCH* */
1100 [C(OP_READ)] = {
1101 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN },
1102 [C(RESULT_MISS)] = { 0x02, CNTR_ODD },
1103 },
1104 [C(OP_WRITE)] = {
1105 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN },
1106 [C(RESULT_MISS)] = { 0x02, CNTR_ODD },
1107 },
1108},
1109};
1110
1111/* BMIPS5000 */
1112static const struct mips_perf_event bmips5000_cache_map
1113 [PERF_COUNT_HW_CACHE_MAX]
1114 [PERF_COUNT_HW_CACHE_OP_MAX]
1115 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1116[C(L1D)] = {
1117 /*
1118 * Like some other architectures (e.g. ARM), the performance
1119 * counters don't differentiate between read and write
1120 * accesses/misses, so this isn't strictly correct, but it's the
1121 * best we can do. Writes and reads get combined.
1122 */
1123 [C(OP_READ)] = {
1124 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
1125 [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
1126 },
1127 [C(OP_WRITE)] = {
1128 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
1129 [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
1130 },
1131},
1132[C(L1I)] = {
1133 [C(OP_READ)] = {
1134 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
1135 [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
1136 },
1137 [C(OP_WRITE)] = {
1138 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
1139 [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
1140 },
1141 [C(OP_PREFETCH)] = {
1142 [C(RESULT_ACCESS)] = { 23, CNTR_EVEN, T },
1143 /*
1144 * Note that MIPS has only "hit" events countable for
1145 * the prefetch operation.
1146 */
1147 },
1148},
1149[C(LL)] = {
1150 [C(OP_READ)] = {
1151 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
1152 [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
1153 },
1154 [C(OP_WRITE)] = {
1155 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
1156 [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
1157 },
1158},
1159[C(BPU)] = {
1160 /* Using the same code for *HW_BRANCH* */
1161 [C(OP_READ)] = {
1162 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1163 },
1164 [C(OP_WRITE)] = {
1165 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1166 },
1167},
1168};
1169
1170
1171static const struct mips_perf_event octeon_cache_map
1172 [PERF_COUNT_HW_CACHE_MAX]
1173 [PERF_COUNT_HW_CACHE_OP_MAX]
1174 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1175[C(L1D)] = {
1176 [C(OP_READ)] = {
1177 [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
1178 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
1179 },
1180 [C(OP_WRITE)] = {
1181 [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
1182 },
1183},
1184[C(L1I)] = {
1185 [C(OP_READ)] = {
1186 [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
1187 },
1188 [C(OP_PREFETCH)] = {
1189 [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
1190 },
1191},
1192[C(DTLB)] = {
1193 /*
1194 * Only general DTLB misses are counted use the same event for
1195 * read and write.
1196 */
1197 [C(OP_READ)] = {
1198 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1199 },
1200 [C(OP_WRITE)] = {
1201 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1202 },
1203},
1204[C(ITLB)] = {
1205 [C(OP_READ)] = {
1206 [C(RESULT_MISS)] = { 0x37, CNTR_ALL },
1207 },
1208},
1209};
1210
1211static const struct mips_perf_event xlp_cache_map
1212 [PERF_COUNT_HW_CACHE_MAX]
1213 [PERF_COUNT_HW_CACHE_OP_MAX]
1214 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1215[C(L1D)] = {
1216 [C(OP_READ)] = {
1217 [C(RESULT_ACCESS)] = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1218 [C(RESULT_MISS)] = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1219 },
1220 [C(OP_WRITE)] = {
1221 [C(RESULT_ACCESS)] = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1222 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1223 },
1224},
1225[C(L1I)] = {
1226 [C(OP_READ)] = {
1227 [C(RESULT_ACCESS)] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1228 [C(RESULT_MISS)] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1229 },
1230},
1231[C(LL)] = {
1232 [C(OP_READ)] = {
1233 [C(RESULT_ACCESS)] = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1234 [C(RESULT_MISS)] = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1235 },
1236 [C(OP_WRITE)] = {
1237 [C(RESULT_ACCESS)] = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1238 [C(RESULT_MISS)] = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1239 },
1240},
1241[C(DTLB)] = {
1242 /*
1243 * Only general DTLB misses are counted use the same event for
1244 * read and write.
1245 */
1246 [C(OP_READ)] = {
1247 [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1248 },
1249 [C(OP_WRITE)] = {
1250 [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1251 },
1252},
1253[C(ITLB)] = {
1254 [C(OP_READ)] = {
1255 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1256 },
1257 [C(OP_WRITE)] = {
1258 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1259 },
1260},
1261[C(BPU)] = {
1262 [C(OP_READ)] = {
1263 [C(RESULT_MISS)] = { 0x25, CNTR_ALL },
1264 },
1265},
1266};
1267
1268#ifdef CONFIG_MIPS_MT_SMP
1269static void check_and_calc_range(struct perf_event *event,
1270 const struct mips_perf_event *pev)
1271{
1272 struct hw_perf_event *hwc = &event->hw;
1273
1274 if (event->cpu >= 0) {
1275 if (pev->range > V) {
1276 /*
1277 * The user selected an event that is processor
1278 * wide, while expecting it to be VPE wide.
1279 */
1280 hwc->config_base |= M_TC_EN_ALL;
1281 } else {
1282 /*
1283 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1284 * for both CPUs.
1285 */
1286 hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1287 hwc->config_base |= M_TC_EN_VPE;
1288 }
1289 } else
1290 hwc->config_base |= M_TC_EN_ALL;
1291}
1292#else
1293static void check_and_calc_range(struct perf_event *event,
1294 const struct mips_perf_event *pev)
1295{
1296}
1297#endif
1298
1299static int __hw_perf_event_init(struct perf_event *event)
1300{
1301 struct perf_event_attr *attr = &event->attr;
1302 struct hw_perf_event *hwc = &event->hw;
1303 const struct mips_perf_event *pev;
1304 int err;
1305
1306 /* Returning MIPS event descriptor for generic perf event. */
1307 if (PERF_TYPE_HARDWARE == event->attr.type) {
1308 if (event->attr.config >= PERF_COUNT_HW_MAX)
1309 return -EINVAL;
1310 pev = mipspmu_map_general_event(event->attr.config);
1311 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1312 pev = mipspmu_map_cache_event(event->attr.config);
1313 } else if (PERF_TYPE_RAW == event->attr.type) {
1314 /* We are working on the global raw event. */
1315 mutex_lock(&raw_event_mutex);
1316 pev = mipspmu.map_raw_event(event->attr.config);
1317 } else {
1318 /* The event type is not (yet) supported. */
1319 return -EOPNOTSUPP;
1320 }
1321
1322 if (IS_ERR(pev)) {
1323 if (PERF_TYPE_RAW == event->attr.type)
1324 mutex_unlock(&raw_event_mutex);
1325 return PTR_ERR(pev);
1326 }
1327
1328 /*
1329 * We allow max flexibility on how each individual counter shared
1330 * by the single CPU operates (the mode exclusion and the range).
1331 */
1332 hwc->config_base = MIPS_PERFCTRL_IE;
1333
1334 /* Calculate range bits and validate it. */
1335 if (num_possible_cpus() > 1)
1336 check_and_calc_range(event, pev);
1337
1338 hwc->event_base = mipspmu_perf_event_encode(pev);
1339 if (PERF_TYPE_RAW == event->attr.type)
1340 mutex_unlock(&raw_event_mutex);
1341
1342 if (!attr->exclude_user)
1343 hwc->config_base |= MIPS_PERFCTRL_U;
1344 if (!attr->exclude_kernel) {
1345 hwc->config_base |= MIPS_PERFCTRL_K;
1346 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1347 hwc->config_base |= MIPS_PERFCTRL_EXL;
1348 }
1349 if (!attr->exclude_hv)
1350 hwc->config_base |= MIPS_PERFCTRL_S;
1351
1352 hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1353 /*
1354 * The event can belong to another cpu. We do not assign a local
1355 * counter for it for now.
1356 */
1357 hwc->idx = -1;
1358 hwc->config = 0;
1359
1360 if (!hwc->sample_period) {
1361 hwc->sample_period = mipspmu.max_period;
1362 hwc->last_period = hwc->sample_period;
1363 local64_set(&hwc->period_left, hwc->sample_period);
1364 }
1365
1366 err = 0;
1367 if (event->group_leader != event)
1368 err = validate_group(event);
1369
1370 event->destroy = hw_perf_event_destroy;
1371
1372 if (err)
1373 event->destroy(event);
1374
1375 return err;
1376}
1377
1378static void pause_local_counters(void)
1379{
1380 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1381 int ctr = mipspmu.num_counters;
1382 unsigned long flags;
1383
1384 local_irq_save(flags);
1385 do {
1386 ctr--;
1387 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1388 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1389 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1390 } while (ctr > 0);
1391 local_irq_restore(flags);
1392}
1393
1394static void resume_local_counters(void)
1395{
1396 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1397 int ctr = mipspmu.num_counters;
1398
1399 do {
1400 ctr--;
1401 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1402 } while (ctr > 0);
1403}
1404
1405static int mipsxx_pmu_handle_shared_irq(void)
1406{
1407 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1408 struct perf_sample_data data;
1409 unsigned int counters = mipspmu.num_counters;
1410 u64 counter;
1411 int handled = IRQ_NONE;
1412 struct pt_regs *regs;
1413
1414 if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1415 return handled;
1416 /*
1417 * First we pause the local counters, so that when we are locked
1418 * here, the counters are all paused. When it gets locked due to
1419 * perf_disable(), the timer interrupt handler will be delayed.
1420 *
1421 * See also mipsxx_pmu_start().
1422 */
1423 pause_local_counters();
1424#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1425 read_lock(&pmuint_rwlock);
1426#endif
1427
1428 regs = get_irq_regs();
1429
1430 perf_sample_data_init(&data, 0, 0);
1431
1432 switch (counters) {
1433#define HANDLE_COUNTER(n) \
1434 case n + 1: \
1435 if (test_bit(n, cpuc->used_mask)) { \
1436 counter = mipspmu.read_counter(n); \
1437 if (counter & mipspmu.overflow) { \
1438 handle_associated_event(cpuc, n, &data, regs); \
1439 handled = IRQ_HANDLED; \
1440 } \
1441 }
1442 HANDLE_COUNTER(3)
1443 HANDLE_COUNTER(2)
1444 HANDLE_COUNTER(1)
1445 HANDLE_COUNTER(0)
1446 }
1447
1448#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1449 read_unlock(&pmuint_rwlock);
1450#endif
1451 resume_local_counters();
1452
1453 /*
1454 * Do all the work for the pending perf events. We can do this
1455 * in here because the performance counter interrupt is a regular
1456 * interrupt, not NMI.
1457 */
1458 if (handled == IRQ_HANDLED)
1459 irq_work_run();
1460
1461 return handled;
1462}
1463
1464static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1465{
1466 return mipsxx_pmu_handle_shared_irq();
1467}
1468
1469/* 24K */
1470#define IS_BOTH_COUNTERS_24K_EVENT(b) \
1471 ((b) == 0 || (b) == 1 || (b) == 11)
1472
1473/* 34K */
1474#define IS_BOTH_COUNTERS_34K_EVENT(b) \
1475 ((b) == 0 || (b) == 1 || (b) == 11)
1476#ifdef CONFIG_MIPS_MT_SMP
1477#define IS_RANGE_P_34K_EVENT(r, b) \
1478 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1479 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1480 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1481 ((b) >= 64 && (b) <= 67))
1482#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1483#endif
1484
1485/* 74K */
1486#define IS_BOTH_COUNTERS_74K_EVENT(b) \
1487 ((b) == 0 || (b) == 1)
1488
1489/* proAptiv */
1490#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b) \
1491 ((b) == 0 || (b) == 1)
1492/* P5600 */
1493#define IS_BOTH_COUNTERS_P5600_EVENT(b) \
1494 ((b) == 0 || (b) == 1)
1495
1496/* 1004K */
1497#define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1498 ((b) == 0 || (b) == 1 || (b) == 11)
1499#ifdef CONFIG_MIPS_MT_SMP
1500#define IS_RANGE_P_1004K_EVENT(r, b) \
1501 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1502 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1503 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1504 (r) == 188 || (b) == 61 || (b) == 62 || \
1505 ((b) >= 64 && (b) <= 67))
1506#define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1507#endif
1508
1509/* interAptiv */
1510#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b) \
1511 ((b) == 0 || (b) == 1 || (b) == 11)
1512#ifdef CONFIG_MIPS_MT_SMP
1513/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1514#define IS_RANGE_P_INTERAPTIV_EVENT(r, b) \
1515 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1516 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 || \
1517 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 && \
1518 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 || \
1519 ((b) >= 64 && (b) <= 67))
1520#define IS_RANGE_V_INTERAPTIV_EVENT(r) ((r) == 47 || (r) == 175)
1521#endif
1522
1523/* BMIPS5000 */
1524#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \
1525 ((b) == 0 || (b) == 1)
1526
1527
1528/*
1529 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1530 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1531 * indicate the even/odd bank selector. So, for example, when user wants to take
1532 * the Event Num of 15 for odd counters (by referring to the user manual), then
1533 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1534 * to be used.
1535 *
1536 * Some newer cores have even more events, in which case the user can use raw
1537 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1538 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1539 */
1540static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1541{
1542 /* currently most cores have 7-bit event numbers */
1543 unsigned int raw_id = config & 0xff;
1544 unsigned int base_id = raw_id & 0x7f;
1545
1546 switch (current_cpu_type()) {
1547 case CPU_24K:
1548 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1549 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1550 else
1551 raw_event.cntr_mask =
1552 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1553#ifdef CONFIG_MIPS_MT_SMP
1554 /*
1555 * This is actually doing nothing. Non-multithreading
1556 * CPUs will not check and calculate the range.
1557 */
1558 raw_event.range = P;
1559#endif
1560 break;
1561 case CPU_34K:
1562 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1563 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1564 else
1565 raw_event.cntr_mask =
1566 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1567#ifdef CONFIG_MIPS_MT_SMP
1568 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1569 raw_event.range = P;
1570 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1571 raw_event.range = V;
1572 else
1573 raw_event.range = T;
1574#endif
1575 break;
1576 case CPU_74K:
1577 case CPU_1074K:
1578 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1579 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1580 else
1581 raw_event.cntr_mask =
1582 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1583#ifdef CONFIG_MIPS_MT_SMP
1584 raw_event.range = P;
1585#endif
1586 break;
1587 case CPU_PROAPTIV:
1588 if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1589 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1590 else
1591 raw_event.cntr_mask =
1592 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1593#ifdef CONFIG_MIPS_MT_SMP
1594 raw_event.range = P;
1595#endif
1596 break;
1597 case CPU_P5600:
1598 case CPU_P6600:
1599 /* 8-bit event numbers */
1600 raw_id = config & 0x1ff;
1601 base_id = raw_id & 0xff;
1602 if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1603 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1604 else
1605 raw_event.cntr_mask =
1606 raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1607#ifdef CONFIG_MIPS_MT_SMP
1608 raw_event.range = P;
1609#endif
1610 break;
1611 case CPU_I6400:
1612 case CPU_I6500:
1613 /* 8-bit event numbers */
1614 base_id = config & 0xff;
1615 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1616 break;
1617 case CPU_1004K:
1618 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1619 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1620 else
1621 raw_event.cntr_mask =
1622 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1623#ifdef CONFIG_MIPS_MT_SMP
1624 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1625 raw_event.range = P;
1626 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1627 raw_event.range = V;
1628 else
1629 raw_event.range = T;
1630#endif
1631 break;
1632 case CPU_INTERAPTIV:
1633 if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1634 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1635 else
1636 raw_event.cntr_mask =
1637 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1638#ifdef CONFIG_MIPS_MT_SMP
1639 if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1640 raw_event.range = P;
1641 else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1642 raw_event.range = V;
1643 else
1644 raw_event.range = T;
1645#endif
1646 break;
1647 case CPU_BMIPS5000:
1648 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1649 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1650 else
1651 raw_event.cntr_mask =
1652 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1653 break;
1654 case CPU_LOONGSON3:
1655 raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1656 break;
1657 }
1658
1659 raw_event.event_id = base_id;
1660
1661 return &raw_event;
1662}
1663
1664static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1665{
1666 unsigned int raw_id = config & 0xff;
1667 unsigned int base_id = raw_id & 0x7f;
1668
1669
1670 raw_event.cntr_mask = CNTR_ALL;
1671 raw_event.event_id = base_id;
1672
1673 if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1674 if (base_id > 0x42)
1675 return ERR_PTR(-EOPNOTSUPP);
1676 } else {
1677 if (base_id > 0x3a)
1678 return ERR_PTR(-EOPNOTSUPP);
1679 }
1680
1681 switch (base_id) {
1682 case 0x00:
1683 case 0x0f:
1684 case 0x1e:
1685 case 0x1f:
1686 case 0x2f:
1687 case 0x34:
1688 case 0x3b ... 0x3f:
1689 return ERR_PTR(-EOPNOTSUPP);
1690 default:
1691 break;
1692 }
1693
1694 return &raw_event;
1695}
1696
1697static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1698{
1699 unsigned int raw_id = config & 0xff;
1700
1701 /* Only 1-63 are defined */
1702 if ((raw_id < 0x01) || (raw_id > 0x3f))
1703 return ERR_PTR(-EOPNOTSUPP);
1704
1705 raw_event.cntr_mask = CNTR_ALL;
1706 raw_event.event_id = raw_id;
1707
1708 return &raw_event;
1709}
1710
1711static int __init
1712init_hw_perf_events(void)
1713{
1714 int counters, irq;
1715 int counter_bits;
1716
1717 pr_info("Performance counters: ");
1718
1719 counters = n_counters();
1720 if (counters == 0) {
1721 pr_cont("No available PMU.\n");
1722 return -ENODEV;
1723 }
1724
1725#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1726 cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1727 if (!cpu_has_mipsmt_pertccounters)
1728 counters = counters_total_to_per_cpu(counters);
1729#endif
1730
1731 if (get_c0_perfcount_int)
1732 irq = get_c0_perfcount_int();
1733 else if (cp0_perfcount_irq >= 0)
1734 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1735 else
1736 irq = -1;
1737
1738 mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1739
1740 switch (current_cpu_type()) {
1741 case CPU_24K:
1742 mipspmu.name = "mips/24K";
1743 mipspmu.general_event_map = &mipsxxcore_event_map;
1744 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1745 break;
1746 case CPU_34K:
1747 mipspmu.name = "mips/34K";
1748 mipspmu.general_event_map = &mipsxxcore_event_map;
1749 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1750 break;
1751 case CPU_74K:
1752 mipspmu.name = "mips/74K";
1753 mipspmu.general_event_map = &mipsxxcore_event_map2;
1754 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1755 break;
1756 case CPU_PROAPTIV:
1757 mipspmu.name = "mips/proAptiv";
1758 mipspmu.general_event_map = &mipsxxcore_event_map2;
1759 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1760 break;
1761 case CPU_P5600:
1762 mipspmu.name = "mips/P5600";
1763 mipspmu.general_event_map = &mipsxxcore_event_map2;
1764 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1765 break;
1766 case CPU_P6600:
1767 mipspmu.name = "mips/P6600";
1768 mipspmu.general_event_map = &mipsxxcore_event_map2;
1769 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1770 break;
1771 case CPU_I6400:
1772 mipspmu.name = "mips/I6400";
1773 mipspmu.general_event_map = &i6x00_event_map;
1774 mipspmu.cache_event_map = &i6x00_cache_map;
1775 break;
1776 case CPU_I6500:
1777 mipspmu.name = "mips/I6500";
1778 mipspmu.general_event_map = &i6x00_event_map;
1779 mipspmu.cache_event_map = &i6x00_cache_map;
1780 break;
1781 case CPU_1004K:
1782 mipspmu.name = "mips/1004K";
1783 mipspmu.general_event_map = &mipsxxcore_event_map;
1784 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1785 break;
1786 case CPU_1074K:
1787 mipspmu.name = "mips/1074K";
1788 mipspmu.general_event_map = &mipsxxcore_event_map;
1789 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1790 break;
1791 case CPU_INTERAPTIV:
1792 mipspmu.name = "mips/interAptiv";
1793 mipspmu.general_event_map = &mipsxxcore_event_map;
1794 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1795 break;
1796 case CPU_LOONGSON1:
1797 mipspmu.name = "mips/loongson1";
1798 mipspmu.general_event_map = &mipsxxcore_event_map;
1799 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1800 break;
1801 case CPU_LOONGSON3:
1802 mipspmu.name = "mips/loongson3";
1803 mipspmu.general_event_map = &loongson3_event_map;
1804 mipspmu.cache_event_map = &loongson3_cache_map;
1805 break;
1806 case CPU_CAVIUM_OCTEON:
1807 case CPU_CAVIUM_OCTEON_PLUS:
1808 case CPU_CAVIUM_OCTEON2:
1809 mipspmu.name = "octeon";
1810 mipspmu.general_event_map = &octeon_event_map;
1811 mipspmu.cache_event_map = &octeon_cache_map;
1812 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1813 break;
1814 case CPU_BMIPS5000:
1815 mipspmu.name = "BMIPS5000";
1816 mipspmu.general_event_map = &bmips5000_event_map;
1817 mipspmu.cache_event_map = &bmips5000_cache_map;
1818 break;
1819 case CPU_XLP:
1820 mipspmu.name = "xlp";
1821 mipspmu.general_event_map = &xlp_event_map;
1822 mipspmu.cache_event_map = &xlp_cache_map;
1823 mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1824 break;
1825 default:
1826 pr_cont("Either hardware does not support performance "
1827 "counters, or not yet implemented.\n");
1828 return -ENODEV;
1829 }
1830
1831 mipspmu.num_counters = counters;
1832 mipspmu.irq = irq;
1833
1834 if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) {
1835 mipspmu.max_period = (1ULL << 63) - 1;
1836 mipspmu.valid_count = (1ULL << 63) - 1;
1837 mipspmu.overflow = 1ULL << 63;
1838 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1839 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1840 counter_bits = 64;
1841 } else {
1842 mipspmu.max_period = (1ULL << 31) - 1;
1843 mipspmu.valid_count = (1ULL << 31) - 1;
1844 mipspmu.overflow = 1ULL << 31;
1845 mipspmu.read_counter = mipsxx_pmu_read_counter;
1846 mipspmu.write_counter = mipsxx_pmu_write_counter;
1847 counter_bits = 32;
1848 }
1849
1850 on_each_cpu(reset_counters, (void *)(long)counters, 1);
1851
1852 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1853 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1854 irq < 0 ? " (share with timer interrupt)" : "");
1855
1856 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1857
1858 return 0;
1859}
1860early_initcall(init_hw_perf_events);