Linux Audio

Check our new training course

Loading...
v3.1
  1#include <linux/mm.h>
  2#include <linux/slab.h>
  3#include <linux/string.h>
  4#include <linux/module.h>
  5#include <linux/err.h>
  6#include <linux/sched.h>
 
  7#include <asm/uaccess.h>
  8
  9#include "internal.h"
 10
 11#define CREATE_TRACE_POINTS
 12#include <trace/events/kmem.h>
 13
 14/**
 15 * kstrdup - allocate space for and copy an existing string
 16 * @s: the string to duplicate
 17 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 18 */
 19char *kstrdup(const char *s, gfp_t gfp)
 20{
 21	size_t len;
 22	char *buf;
 23
 24	if (!s)
 25		return NULL;
 26
 27	len = strlen(s) + 1;
 28	buf = kmalloc_track_caller(len, gfp);
 29	if (buf)
 30		memcpy(buf, s, len);
 31	return buf;
 32}
 33EXPORT_SYMBOL(kstrdup);
 34
 35/**
 36 * kstrndup - allocate space for and copy an existing string
 37 * @s: the string to duplicate
 38 * @max: read at most @max chars from @s
 39 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 40 */
 41char *kstrndup(const char *s, size_t max, gfp_t gfp)
 42{
 43	size_t len;
 44	char *buf;
 45
 46	if (!s)
 47		return NULL;
 48
 49	len = strnlen(s, max);
 50	buf = kmalloc_track_caller(len+1, gfp);
 51	if (buf) {
 52		memcpy(buf, s, len);
 53		buf[len] = '\0';
 54	}
 55	return buf;
 56}
 57EXPORT_SYMBOL(kstrndup);
 58
 59/**
 60 * kmemdup - duplicate region of memory
 61 *
 62 * @src: memory region to duplicate
 63 * @len: memory region length
 64 * @gfp: GFP mask to use
 65 */
 66void *kmemdup(const void *src, size_t len, gfp_t gfp)
 67{
 68	void *p;
 69
 70	p = kmalloc_track_caller(len, gfp);
 71	if (p)
 72		memcpy(p, src, len);
 73	return p;
 74}
 75EXPORT_SYMBOL(kmemdup);
 76
 77/**
 78 * memdup_user - duplicate memory region from user space
 79 *
 80 * @src: source address in user space
 81 * @len: number of bytes to copy
 82 *
 83 * Returns an ERR_PTR() on failure.
 84 */
 85void *memdup_user(const void __user *src, size_t len)
 86{
 87	void *p;
 88
 89	/*
 90	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
 91	 * cause pagefault, which makes it pointless to use GFP_NOFS
 92	 * or GFP_ATOMIC.
 93	 */
 94	p = kmalloc_track_caller(len, GFP_KERNEL);
 95	if (!p)
 96		return ERR_PTR(-ENOMEM);
 97
 98	if (copy_from_user(p, src, len)) {
 99		kfree(p);
100		return ERR_PTR(-EFAULT);
101	}
102
103	return p;
104}
105EXPORT_SYMBOL(memdup_user);
106
107/**
108 * __krealloc - like krealloc() but don't free @p.
109 * @p: object to reallocate memory for.
110 * @new_size: how many bytes of memory are required.
111 * @flags: the type of memory to allocate.
112 *
113 * This function is like krealloc() except it never frees the originally
114 * allocated buffer. Use this if you don't want to free the buffer immediately
115 * like, for example, with RCU.
116 */
117void *__krealloc(const void *p, size_t new_size, gfp_t flags)
118{
119	void *ret;
120	size_t ks = 0;
121
122	if (unlikely(!new_size))
123		return ZERO_SIZE_PTR;
124
125	if (p)
126		ks = ksize(p);
127
128	if (ks >= new_size)
129		return (void *)p;
130
131	ret = kmalloc_track_caller(new_size, flags);
132	if (ret && p)
133		memcpy(ret, p, ks);
134
135	return ret;
136}
137EXPORT_SYMBOL(__krealloc);
138
139/**
140 * krealloc - reallocate memory. The contents will remain unchanged.
141 * @p: object to reallocate memory for.
142 * @new_size: how many bytes of memory are required.
143 * @flags: the type of memory to allocate.
144 *
145 * The contents of the object pointed to are preserved up to the
146 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
147 * behaves exactly like kmalloc().  If @size is 0 and @p is not a
148 * %NULL pointer, the object pointed to is freed.
149 */
150void *krealloc(const void *p, size_t new_size, gfp_t flags)
151{
152	void *ret;
153
154	if (unlikely(!new_size)) {
155		kfree(p);
156		return ZERO_SIZE_PTR;
157	}
158
159	ret = __krealloc(p, new_size, flags);
160	if (ret && p != ret)
161		kfree(p);
162
163	return ret;
164}
165EXPORT_SYMBOL(krealloc);
166
167/**
168 * kzfree - like kfree but zero memory
169 * @p: object to free memory of
170 *
171 * The memory of the object @p points to is zeroed before freed.
172 * If @p is %NULL, kzfree() does nothing.
173 *
174 * Note: this function zeroes the whole allocated buffer which can be a good
175 * deal bigger than the requested buffer size passed to kmalloc(). So be
176 * careful when using this function in performance sensitive code.
177 */
178void kzfree(const void *p)
179{
180	size_t ks;
181	void *mem = (void *)p;
182
183	if (unlikely(ZERO_OR_NULL_PTR(mem)))
184		return;
185	ks = ksize(mem);
186	memset(mem, 0, ks);
187	kfree(mem);
188}
189EXPORT_SYMBOL(kzfree);
190
191/*
192 * strndup_user - duplicate an existing string from user space
193 * @s: The string to duplicate
194 * @n: Maximum number of bytes to copy, including the trailing NUL.
195 */
196char *strndup_user(const char __user *s, long n)
197{
198	char *p;
199	long length;
200
201	length = strnlen_user(s, n);
202
203	if (!length)
204		return ERR_PTR(-EFAULT);
205
206	if (length > n)
207		return ERR_PTR(-EINVAL);
208
209	p = memdup_user(s, length);
210
211	if (IS_ERR(p))
212		return p;
213
214	p[length - 1] = '\0';
215
216	return p;
217}
218EXPORT_SYMBOL(strndup_user);
219
220void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
221		struct vm_area_struct *prev, struct rb_node *rb_parent)
222{
223	struct vm_area_struct *next;
224
225	vma->vm_prev = prev;
226	if (prev) {
227		next = prev->vm_next;
228		prev->vm_next = vma;
229	} else {
230		mm->mmap = vma;
231		if (rb_parent)
232			next = rb_entry(rb_parent,
233					struct vm_area_struct, vm_rb);
234		else
235			next = NULL;
236	}
237	vma->vm_next = next;
238	if (next)
239		next->vm_prev = vma;
240}
241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
243void arch_pick_mmap_layout(struct mm_struct *mm)
244{
245	mm->mmap_base = TASK_UNMAPPED_BASE;
246	mm->get_unmapped_area = arch_get_unmapped_area;
247	mm->unmap_area = arch_unmap_area;
248}
249#endif
250
251/*
252 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
253 * back to the regular GUP.
254 * If the architecture not support this function, simply return with no
255 * page pinned
256 */
257int __attribute__((weak)) __get_user_pages_fast(unsigned long start,
258				 int nr_pages, int write, struct page **pages)
259{
260	return 0;
261}
262EXPORT_SYMBOL_GPL(__get_user_pages_fast);
263
264/**
265 * get_user_pages_fast() - pin user pages in memory
266 * @start:	starting user address
267 * @nr_pages:	number of pages from start to pin
268 * @write:	whether pages will be written to
269 * @pages:	array that receives pointers to the pages pinned.
270 *		Should be at least nr_pages long.
271 *
272 * Returns number of pages pinned. This may be fewer than the number
273 * requested. If nr_pages is 0 or negative, returns 0. If no pages
274 * were pinned, returns -errno.
275 *
276 * get_user_pages_fast provides equivalent functionality to get_user_pages,
277 * operating on current and current->mm, with force=0 and vma=NULL. However
278 * unlike get_user_pages, it must be called without mmap_sem held.
279 *
280 * get_user_pages_fast may take mmap_sem and page table locks, so no
281 * assumptions can be made about lack of locking. get_user_pages_fast is to be
282 * implemented in a way that is advantageous (vs get_user_pages()) when the
283 * user memory area is already faulted in and present in ptes. However if the
284 * pages have to be faulted in, it may turn out to be slightly slower so
285 * callers need to carefully consider what to use. On many architectures,
286 * get_user_pages_fast simply falls back to get_user_pages.
287 */
288int __attribute__((weak)) get_user_pages_fast(unsigned long start,
289				int nr_pages, int write, struct page **pages)
290{
291	struct mm_struct *mm = current->mm;
292	int ret;
293
294	down_read(&mm->mmap_sem);
295	ret = get_user_pages(current, mm, start, nr_pages,
296					write, 0, pages, NULL);
297	up_read(&mm->mmap_sem);
298
299	return ret;
300}
301EXPORT_SYMBOL_GPL(get_user_pages_fast);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302
303/* Tracepoints definitions. */
304EXPORT_TRACEPOINT_SYMBOL(kmalloc);
305EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
306EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
307EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
308EXPORT_TRACEPOINT_SYMBOL(kfree);
309EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
v3.5.6
  1#include <linux/mm.h>
  2#include <linux/slab.h>
  3#include <linux/string.h>
  4#include <linux/export.h>
  5#include <linux/err.h>
  6#include <linux/sched.h>
  7#include <linux/security.h>
  8#include <asm/uaccess.h>
  9
 10#include "internal.h"
 11
 12#define CREATE_TRACE_POINTS
 13#include <trace/events/kmem.h>
 14
 15/**
 16 * kstrdup - allocate space for and copy an existing string
 17 * @s: the string to duplicate
 18 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 19 */
 20char *kstrdup(const char *s, gfp_t gfp)
 21{
 22	size_t len;
 23	char *buf;
 24
 25	if (!s)
 26		return NULL;
 27
 28	len = strlen(s) + 1;
 29	buf = kmalloc_track_caller(len, gfp);
 30	if (buf)
 31		memcpy(buf, s, len);
 32	return buf;
 33}
 34EXPORT_SYMBOL(kstrdup);
 35
 36/**
 37 * kstrndup - allocate space for and copy an existing string
 38 * @s: the string to duplicate
 39 * @max: read at most @max chars from @s
 40 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 41 */
 42char *kstrndup(const char *s, size_t max, gfp_t gfp)
 43{
 44	size_t len;
 45	char *buf;
 46
 47	if (!s)
 48		return NULL;
 49
 50	len = strnlen(s, max);
 51	buf = kmalloc_track_caller(len+1, gfp);
 52	if (buf) {
 53		memcpy(buf, s, len);
 54		buf[len] = '\0';
 55	}
 56	return buf;
 57}
 58EXPORT_SYMBOL(kstrndup);
 59
 60/**
 61 * kmemdup - duplicate region of memory
 62 *
 63 * @src: memory region to duplicate
 64 * @len: memory region length
 65 * @gfp: GFP mask to use
 66 */
 67void *kmemdup(const void *src, size_t len, gfp_t gfp)
 68{
 69	void *p;
 70
 71	p = kmalloc_track_caller(len, gfp);
 72	if (p)
 73		memcpy(p, src, len);
 74	return p;
 75}
 76EXPORT_SYMBOL(kmemdup);
 77
 78/**
 79 * memdup_user - duplicate memory region from user space
 80 *
 81 * @src: source address in user space
 82 * @len: number of bytes to copy
 83 *
 84 * Returns an ERR_PTR() on failure.
 85 */
 86void *memdup_user(const void __user *src, size_t len)
 87{
 88	void *p;
 89
 90	/*
 91	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
 92	 * cause pagefault, which makes it pointless to use GFP_NOFS
 93	 * or GFP_ATOMIC.
 94	 */
 95	p = kmalloc_track_caller(len, GFP_KERNEL);
 96	if (!p)
 97		return ERR_PTR(-ENOMEM);
 98
 99	if (copy_from_user(p, src, len)) {
100		kfree(p);
101		return ERR_PTR(-EFAULT);
102	}
103
104	return p;
105}
106EXPORT_SYMBOL(memdup_user);
107
108/**
109 * __krealloc - like krealloc() but don't free @p.
110 * @p: object to reallocate memory for.
111 * @new_size: how many bytes of memory are required.
112 * @flags: the type of memory to allocate.
113 *
114 * This function is like krealloc() except it never frees the originally
115 * allocated buffer. Use this if you don't want to free the buffer immediately
116 * like, for example, with RCU.
117 */
118void *__krealloc(const void *p, size_t new_size, gfp_t flags)
119{
120	void *ret;
121	size_t ks = 0;
122
123	if (unlikely(!new_size))
124		return ZERO_SIZE_PTR;
125
126	if (p)
127		ks = ksize(p);
128
129	if (ks >= new_size)
130		return (void *)p;
131
132	ret = kmalloc_track_caller(new_size, flags);
133	if (ret && p)
134		memcpy(ret, p, ks);
135
136	return ret;
137}
138EXPORT_SYMBOL(__krealloc);
139
140/**
141 * krealloc - reallocate memory. The contents will remain unchanged.
142 * @p: object to reallocate memory for.
143 * @new_size: how many bytes of memory are required.
144 * @flags: the type of memory to allocate.
145 *
146 * The contents of the object pointed to are preserved up to the
147 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
148 * behaves exactly like kmalloc().  If @size is 0 and @p is not a
149 * %NULL pointer, the object pointed to is freed.
150 */
151void *krealloc(const void *p, size_t new_size, gfp_t flags)
152{
153	void *ret;
154
155	if (unlikely(!new_size)) {
156		kfree(p);
157		return ZERO_SIZE_PTR;
158	}
159
160	ret = __krealloc(p, new_size, flags);
161	if (ret && p != ret)
162		kfree(p);
163
164	return ret;
165}
166EXPORT_SYMBOL(krealloc);
167
168/**
169 * kzfree - like kfree but zero memory
170 * @p: object to free memory of
171 *
172 * The memory of the object @p points to is zeroed before freed.
173 * If @p is %NULL, kzfree() does nothing.
174 *
175 * Note: this function zeroes the whole allocated buffer which can be a good
176 * deal bigger than the requested buffer size passed to kmalloc(). So be
177 * careful when using this function in performance sensitive code.
178 */
179void kzfree(const void *p)
180{
181	size_t ks;
182	void *mem = (void *)p;
183
184	if (unlikely(ZERO_OR_NULL_PTR(mem)))
185		return;
186	ks = ksize(mem);
187	memset(mem, 0, ks);
188	kfree(mem);
189}
190EXPORT_SYMBOL(kzfree);
191
192/*
193 * strndup_user - duplicate an existing string from user space
194 * @s: The string to duplicate
195 * @n: Maximum number of bytes to copy, including the trailing NUL.
196 */
197char *strndup_user(const char __user *s, long n)
198{
199	char *p;
200	long length;
201
202	length = strnlen_user(s, n);
203
204	if (!length)
205		return ERR_PTR(-EFAULT);
206
207	if (length > n)
208		return ERR_PTR(-EINVAL);
209
210	p = memdup_user(s, length);
211
212	if (IS_ERR(p))
213		return p;
214
215	p[length - 1] = '\0';
216
217	return p;
218}
219EXPORT_SYMBOL(strndup_user);
220
221void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
222		struct vm_area_struct *prev, struct rb_node *rb_parent)
223{
224	struct vm_area_struct *next;
225
226	vma->vm_prev = prev;
227	if (prev) {
228		next = prev->vm_next;
229		prev->vm_next = vma;
230	} else {
231		mm->mmap = vma;
232		if (rb_parent)
233			next = rb_entry(rb_parent,
234					struct vm_area_struct, vm_rb);
235		else
236			next = NULL;
237	}
238	vma->vm_next = next;
239	if (next)
240		next->vm_prev = vma;
241}
242
243/* Check if the vma is being used as a stack by this task */
244static int vm_is_stack_for_task(struct task_struct *t,
245				struct vm_area_struct *vma)
246{
247	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
248}
249
250/*
251 * Check if the vma is being used as a stack.
252 * If is_group is non-zero, check in the entire thread group or else
253 * just check in the current task. Returns the pid of the task that
254 * the vma is stack for.
255 */
256pid_t vm_is_stack(struct task_struct *task,
257		  struct vm_area_struct *vma, int in_group)
258{
259	pid_t ret = 0;
260
261	if (vm_is_stack_for_task(task, vma))
262		return task->pid;
263
264	if (in_group) {
265		struct task_struct *t;
266		rcu_read_lock();
267		if (!pid_alive(task))
268			goto done;
269
270		t = task;
271		do {
272			if (vm_is_stack_for_task(t, vma)) {
273				ret = t->pid;
274				goto done;
275			}
276		} while_each_thread(task, t);
277done:
278		rcu_read_unlock();
279	}
280
281	return ret;
282}
283
284#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
285void arch_pick_mmap_layout(struct mm_struct *mm)
286{
287	mm->mmap_base = TASK_UNMAPPED_BASE;
288	mm->get_unmapped_area = arch_get_unmapped_area;
289	mm->unmap_area = arch_unmap_area;
290}
291#endif
292
293/*
294 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
295 * back to the regular GUP.
296 * If the architecture not support this function, simply return with no
297 * page pinned
298 */
299int __attribute__((weak)) __get_user_pages_fast(unsigned long start,
300				 int nr_pages, int write, struct page **pages)
301{
302	return 0;
303}
304EXPORT_SYMBOL_GPL(__get_user_pages_fast);
305
306/**
307 * get_user_pages_fast() - pin user pages in memory
308 * @start:	starting user address
309 * @nr_pages:	number of pages from start to pin
310 * @write:	whether pages will be written to
311 * @pages:	array that receives pointers to the pages pinned.
312 *		Should be at least nr_pages long.
313 *
314 * Returns number of pages pinned. This may be fewer than the number
315 * requested. If nr_pages is 0 or negative, returns 0. If no pages
316 * were pinned, returns -errno.
317 *
318 * get_user_pages_fast provides equivalent functionality to get_user_pages,
319 * operating on current and current->mm, with force=0 and vma=NULL. However
320 * unlike get_user_pages, it must be called without mmap_sem held.
321 *
322 * get_user_pages_fast may take mmap_sem and page table locks, so no
323 * assumptions can be made about lack of locking. get_user_pages_fast is to be
324 * implemented in a way that is advantageous (vs get_user_pages()) when the
325 * user memory area is already faulted in and present in ptes. However if the
326 * pages have to be faulted in, it may turn out to be slightly slower so
327 * callers need to carefully consider what to use. On many architectures,
328 * get_user_pages_fast simply falls back to get_user_pages.
329 */
330int __attribute__((weak)) get_user_pages_fast(unsigned long start,
331				int nr_pages, int write, struct page **pages)
332{
333	struct mm_struct *mm = current->mm;
334	int ret;
335
336	down_read(&mm->mmap_sem);
337	ret = get_user_pages(current, mm, start, nr_pages,
338					write, 0, pages, NULL);
339	up_read(&mm->mmap_sem);
340
341	return ret;
342}
343EXPORT_SYMBOL_GPL(get_user_pages_fast);
344
345unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
346	unsigned long len, unsigned long prot,
347	unsigned long flag, unsigned long pgoff)
348{
349	unsigned long ret;
350	struct mm_struct *mm = current->mm;
351
352	ret = security_mmap_file(file, prot, flag);
353	if (!ret) {
354		down_write(&mm->mmap_sem);
355		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff);
356		up_write(&mm->mmap_sem);
357	}
358	return ret;
359}
360
361unsigned long vm_mmap(struct file *file, unsigned long addr,
362	unsigned long len, unsigned long prot,
363	unsigned long flag, unsigned long offset)
364{
365	if (unlikely(offset + PAGE_ALIGN(len) < offset))
366		return -EINVAL;
367	if (unlikely(offset & ~PAGE_MASK))
368		return -EINVAL;
369
370	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
371}
372EXPORT_SYMBOL(vm_mmap);
373
374/* Tracepoints definitions. */
375EXPORT_TRACEPOINT_SYMBOL(kmalloc);
376EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
377EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
378EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
379EXPORT_TRACEPOINT_SYMBOL(kfree);
380EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);