Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/mm.h>
3#include <linux/slab.h>
4#include <linux/string.h>
5#include <linux/compiler.h>
6#include <linux/export.h>
7#include <linux/err.h>
8#include <linux/sched.h>
9#include <linux/sched/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/sched/task_stack.h>
12#include <linux/security.h>
13#include <linux/swap.h>
14#include <linux/swapops.h>
15#include <linux/mman.h>
16#include <linux/hugetlb.h>
17#include <linux/vmalloc.h>
18#include <linux/userfaultfd_k.h>
19#include <linux/elf.h>
20#include <linux/elf-randomize.h>
21#include <linux/personality.h>
22#include <linux/random.h>
23#include <linux/processor.h>
24#include <linux/sizes.h>
25#include <linux/compat.h>
26
27#include <linux/uaccess.h>
28
29#include <kunit/visibility.h>
30
31#include "internal.h"
32#include "swap.h"
33
34/**
35 * kfree_const - conditionally free memory
36 * @x: pointer to the memory
37 *
38 * Function calls kfree only if @x is not in .rodata section.
39 */
40void kfree_const(const void *x)
41{
42 if (!is_kernel_rodata((unsigned long)x))
43 kfree(x);
44}
45EXPORT_SYMBOL(kfree_const);
46
47/**
48 * __kmemdup_nul - Create a NUL-terminated string from @s, which might be unterminated.
49 * @s: The data to copy
50 * @len: The size of the data, not including the NUL terminator
51 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
52 *
53 * Return: newly allocated copy of @s with NUL-termination or %NULL in
54 * case of error
55 */
56static __always_inline char *__kmemdup_nul(const char *s, size_t len, gfp_t gfp)
57{
58 char *buf;
59
60 /* '+1' for the NUL terminator */
61 buf = kmalloc_track_caller(len + 1, gfp);
62 if (!buf)
63 return NULL;
64
65 memcpy(buf, s, len);
66 /* Ensure the buf is always NUL-terminated, regardless of @s. */
67 buf[len] = '\0';
68 return buf;
69}
70
71/**
72 * kstrdup - allocate space for and copy an existing string
73 * @s: the string to duplicate
74 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
75 *
76 * Return: newly allocated copy of @s or %NULL in case of error
77 */
78noinline
79char *kstrdup(const char *s, gfp_t gfp)
80{
81 return s ? __kmemdup_nul(s, strlen(s), gfp) : NULL;
82}
83EXPORT_SYMBOL(kstrdup);
84
85/**
86 * kstrdup_const - conditionally duplicate an existing const string
87 * @s: the string to duplicate
88 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
89 *
90 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
91 * must not be passed to krealloc().
92 *
93 * Return: source string if it is in .rodata section otherwise
94 * fallback to kstrdup.
95 */
96const char *kstrdup_const(const char *s, gfp_t gfp)
97{
98 if (is_kernel_rodata((unsigned long)s))
99 return s;
100
101 return kstrdup(s, gfp);
102}
103EXPORT_SYMBOL(kstrdup_const);
104
105/**
106 * kstrndup - allocate space for and copy an existing string
107 * @s: the string to duplicate
108 * @max: read at most @max chars from @s
109 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
110 *
111 * Note: Use kmemdup_nul() instead if the size is known exactly.
112 *
113 * Return: newly allocated copy of @s or %NULL in case of error
114 */
115char *kstrndup(const char *s, size_t max, gfp_t gfp)
116{
117 return s ? __kmemdup_nul(s, strnlen(s, max), gfp) : NULL;
118}
119EXPORT_SYMBOL(kstrndup);
120
121/**
122 * kmemdup - duplicate region of memory
123 *
124 * @src: memory region to duplicate
125 * @len: memory region length
126 * @gfp: GFP mask to use
127 *
128 * Return: newly allocated copy of @src or %NULL in case of error,
129 * result is physically contiguous. Use kfree() to free.
130 */
131void *kmemdup_noprof(const void *src, size_t len, gfp_t gfp)
132{
133 void *p;
134
135 p = kmalloc_node_track_caller_noprof(len, gfp, NUMA_NO_NODE, _RET_IP_);
136 if (p)
137 memcpy(p, src, len);
138 return p;
139}
140EXPORT_SYMBOL(kmemdup_noprof);
141
142/**
143 * kmemdup_array - duplicate a given array.
144 *
145 * @src: array to duplicate.
146 * @count: number of elements to duplicate from array.
147 * @element_size: size of each element of array.
148 * @gfp: GFP mask to use.
149 *
150 * Return: duplicated array of @src or %NULL in case of error,
151 * result is physically contiguous. Use kfree() to free.
152 */
153void *kmemdup_array(const void *src, size_t count, size_t element_size, gfp_t gfp)
154{
155 return kmemdup(src, size_mul(element_size, count), gfp);
156}
157EXPORT_SYMBOL(kmemdup_array);
158
159/**
160 * kvmemdup - duplicate region of memory
161 *
162 * @src: memory region to duplicate
163 * @len: memory region length
164 * @gfp: GFP mask to use
165 *
166 * Return: newly allocated copy of @src or %NULL in case of error,
167 * result may be not physically contiguous. Use kvfree() to free.
168 */
169void *kvmemdup(const void *src, size_t len, gfp_t gfp)
170{
171 void *p;
172
173 p = kvmalloc(len, gfp);
174 if (p)
175 memcpy(p, src, len);
176 return p;
177}
178EXPORT_SYMBOL(kvmemdup);
179
180/**
181 * kmemdup_nul - Create a NUL-terminated string from unterminated data
182 * @s: The data to stringify
183 * @len: The size of the data
184 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
185 *
186 * Return: newly allocated copy of @s with NUL-termination or %NULL in
187 * case of error
188 */
189char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
190{
191 return s ? __kmemdup_nul(s, len, gfp) : NULL;
192}
193EXPORT_SYMBOL(kmemdup_nul);
194
195static kmem_buckets *user_buckets __ro_after_init;
196
197static int __init init_user_buckets(void)
198{
199 user_buckets = kmem_buckets_create("memdup_user", 0, 0, INT_MAX, NULL);
200
201 return 0;
202}
203subsys_initcall(init_user_buckets);
204
205/**
206 * memdup_user - duplicate memory region from user space
207 *
208 * @src: source address in user space
209 * @len: number of bytes to copy
210 *
211 * Return: an ERR_PTR() on failure. Result is physically
212 * contiguous, to be freed by kfree().
213 */
214void *memdup_user(const void __user *src, size_t len)
215{
216 void *p;
217
218 p = kmem_buckets_alloc_track_caller(user_buckets, len, GFP_USER | __GFP_NOWARN);
219 if (!p)
220 return ERR_PTR(-ENOMEM);
221
222 if (copy_from_user(p, src, len)) {
223 kfree(p);
224 return ERR_PTR(-EFAULT);
225 }
226
227 return p;
228}
229EXPORT_SYMBOL(memdup_user);
230
231/**
232 * vmemdup_user - duplicate memory region from user space
233 *
234 * @src: source address in user space
235 * @len: number of bytes to copy
236 *
237 * Return: an ERR_PTR() on failure. Result may be not
238 * physically contiguous. Use kvfree() to free.
239 */
240void *vmemdup_user(const void __user *src, size_t len)
241{
242 void *p;
243
244 p = kmem_buckets_valloc(user_buckets, len, GFP_USER);
245 if (!p)
246 return ERR_PTR(-ENOMEM);
247
248 if (copy_from_user(p, src, len)) {
249 kvfree(p);
250 return ERR_PTR(-EFAULT);
251 }
252
253 return p;
254}
255EXPORT_SYMBOL(vmemdup_user);
256
257/**
258 * strndup_user - duplicate an existing string from user space
259 * @s: The string to duplicate
260 * @n: Maximum number of bytes to copy, including the trailing NUL.
261 *
262 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
263 */
264char *strndup_user(const char __user *s, long n)
265{
266 char *p;
267 long length;
268
269 length = strnlen_user(s, n);
270
271 if (!length)
272 return ERR_PTR(-EFAULT);
273
274 if (length > n)
275 return ERR_PTR(-EINVAL);
276
277 p = memdup_user(s, length);
278
279 if (IS_ERR(p))
280 return p;
281
282 p[length - 1] = '\0';
283
284 return p;
285}
286EXPORT_SYMBOL(strndup_user);
287
288/**
289 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
290 *
291 * @src: source address in user space
292 * @len: number of bytes to copy
293 *
294 * Return: an ERR_PTR() on failure.
295 */
296void *memdup_user_nul(const void __user *src, size_t len)
297{
298 char *p;
299
300 p = kmem_buckets_alloc_track_caller(user_buckets, len + 1, GFP_USER | __GFP_NOWARN);
301 if (!p)
302 return ERR_PTR(-ENOMEM);
303
304 if (copy_from_user(p, src, len)) {
305 kfree(p);
306 return ERR_PTR(-EFAULT);
307 }
308 p[len] = '\0';
309
310 return p;
311}
312EXPORT_SYMBOL(memdup_user_nul);
313
314/* Check if the vma is being used as a stack by this task */
315int vma_is_stack_for_current(struct vm_area_struct *vma)
316{
317 struct task_struct * __maybe_unused t = current;
318
319 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
320}
321
322/*
323 * Change backing file, only valid to use during initial VMA setup.
324 */
325void vma_set_file(struct vm_area_struct *vma, struct file *file)
326{
327 /* Changing an anonymous vma with this is illegal */
328 get_file(file);
329 swap(vma->vm_file, file);
330 fput(file);
331}
332EXPORT_SYMBOL(vma_set_file);
333
334#ifndef STACK_RND_MASK
335#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
336#endif
337
338unsigned long randomize_stack_top(unsigned long stack_top)
339{
340 unsigned long random_variable = 0;
341
342 if (current->flags & PF_RANDOMIZE) {
343 random_variable = get_random_long();
344 random_variable &= STACK_RND_MASK;
345 random_variable <<= PAGE_SHIFT;
346 }
347#ifdef CONFIG_STACK_GROWSUP
348 return PAGE_ALIGN(stack_top) + random_variable;
349#else
350 return PAGE_ALIGN(stack_top) - random_variable;
351#endif
352}
353
354/**
355 * randomize_page - Generate a random, page aligned address
356 * @start: The smallest acceptable address the caller will take.
357 * @range: The size of the area, starting at @start, within which the
358 * random address must fall.
359 *
360 * If @start + @range would overflow, @range is capped.
361 *
362 * NOTE: Historical use of randomize_range, which this replaces, presumed that
363 * @start was already page aligned. We now align it regardless.
364 *
365 * Return: A page aligned address within [start, start + range). On error,
366 * @start is returned.
367 */
368unsigned long randomize_page(unsigned long start, unsigned long range)
369{
370 if (!PAGE_ALIGNED(start)) {
371 range -= PAGE_ALIGN(start) - start;
372 start = PAGE_ALIGN(start);
373 }
374
375 if (start > ULONG_MAX - range)
376 range = ULONG_MAX - start;
377
378 range >>= PAGE_SHIFT;
379
380 if (range == 0)
381 return start;
382
383 return start + (get_random_long() % range << PAGE_SHIFT);
384}
385
386#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
387unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
388{
389 /* Is the current task 32bit ? */
390 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
391 return randomize_page(mm->brk, SZ_32M);
392
393 return randomize_page(mm->brk, SZ_1G);
394}
395
396unsigned long arch_mmap_rnd(void)
397{
398 unsigned long rnd;
399
400#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
401 if (is_compat_task())
402 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
403 else
404#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
405 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
406
407 return rnd << PAGE_SHIFT;
408}
409
410static int mmap_is_legacy(struct rlimit *rlim_stack)
411{
412 if (current->personality & ADDR_COMPAT_LAYOUT)
413 return 1;
414
415 /* On parisc the stack always grows up - so a unlimited stack should
416 * not be an indicator to use the legacy memory layout. */
417 if (rlim_stack->rlim_cur == RLIM_INFINITY &&
418 !IS_ENABLED(CONFIG_STACK_GROWSUP))
419 return 1;
420
421 return sysctl_legacy_va_layout;
422}
423
424/*
425 * Leave enough space between the mmap area and the stack to honour ulimit in
426 * the face of randomisation.
427 */
428#define MIN_GAP (SZ_128M)
429#define MAX_GAP (STACK_TOP / 6 * 5)
430
431static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
432{
433#ifdef CONFIG_STACK_GROWSUP
434 /*
435 * For an upwards growing stack the calculation is much simpler.
436 * Memory for the maximum stack size is reserved at the top of the
437 * task. mmap_base starts directly below the stack and grows
438 * downwards.
439 */
440 return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd);
441#else
442 unsigned long gap = rlim_stack->rlim_cur;
443 unsigned long pad = stack_guard_gap;
444
445 /* Account for stack randomization if necessary */
446 if (current->flags & PF_RANDOMIZE)
447 pad += (STACK_RND_MASK << PAGE_SHIFT);
448
449 /* Values close to RLIM_INFINITY can overflow. */
450 if (gap + pad > gap)
451 gap += pad;
452
453 if (gap < MIN_GAP && MIN_GAP < MAX_GAP)
454 gap = MIN_GAP;
455 else if (gap > MAX_GAP)
456 gap = MAX_GAP;
457
458 return PAGE_ALIGN(STACK_TOP - gap - rnd);
459#endif
460}
461
462void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
463{
464 unsigned long random_factor = 0UL;
465
466 if (current->flags & PF_RANDOMIZE)
467 random_factor = arch_mmap_rnd();
468
469 if (mmap_is_legacy(rlim_stack)) {
470 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
471 clear_bit(MMF_TOPDOWN, &mm->flags);
472 } else {
473 mm->mmap_base = mmap_base(random_factor, rlim_stack);
474 set_bit(MMF_TOPDOWN, &mm->flags);
475 }
476}
477#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
478void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
479{
480 mm->mmap_base = TASK_UNMAPPED_BASE;
481 clear_bit(MMF_TOPDOWN, &mm->flags);
482}
483#endif
484#ifdef CONFIG_MMU
485EXPORT_SYMBOL_IF_KUNIT(arch_pick_mmap_layout);
486#endif
487
488/**
489 * __account_locked_vm - account locked pages to an mm's locked_vm
490 * @mm: mm to account against
491 * @pages: number of pages to account
492 * @inc: %true if @pages should be considered positive, %false if not
493 * @task: task used to check RLIMIT_MEMLOCK
494 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
495 *
496 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
497 * that mmap_lock is held as writer.
498 *
499 * Return:
500 * * 0 on success
501 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
502 */
503int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
504 struct task_struct *task, bool bypass_rlim)
505{
506 unsigned long locked_vm, limit;
507 int ret = 0;
508
509 mmap_assert_write_locked(mm);
510
511 locked_vm = mm->locked_vm;
512 if (inc) {
513 if (!bypass_rlim) {
514 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
515 if (locked_vm + pages > limit)
516 ret = -ENOMEM;
517 }
518 if (!ret)
519 mm->locked_vm = locked_vm + pages;
520 } else {
521 WARN_ON_ONCE(pages > locked_vm);
522 mm->locked_vm = locked_vm - pages;
523 }
524
525 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
526 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
527 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
528 ret ? " - exceeded" : "");
529
530 return ret;
531}
532EXPORT_SYMBOL_GPL(__account_locked_vm);
533
534/**
535 * account_locked_vm - account locked pages to an mm's locked_vm
536 * @mm: mm to account against, may be NULL
537 * @pages: number of pages to account
538 * @inc: %true if @pages should be considered positive, %false if not
539 *
540 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
541 *
542 * Return:
543 * * 0 on success, or if mm is NULL
544 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
545 */
546int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
547{
548 int ret;
549
550 if (pages == 0 || !mm)
551 return 0;
552
553 mmap_write_lock(mm);
554 ret = __account_locked_vm(mm, pages, inc, current,
555 capable(CAP_IPC_LOCK));
556 mmap_write_unlock(mm);
557
558 return ret;
559}
560EXPORT_SYMBOL_GPL(account_locked_vm);
561
562unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
563 unsigned long len, unsigned long prot,
564 unsigned long flag, unsigned long pgoff)
565{
566 unsigned long ret;
567 struct mm_struct *mm = current->mm;
568 unsigned long populate;
569 LIST_HEAD(uf);
570
571 ret = security_mmap_file(file, prot, flag);
572 if (!ret) {
573 if (mmap_write_lock_killable(mm))
574 return -EINTR;
575 ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate,
576 &uf);
577 mmap_write_unlock(mm);
578 userfaultfd_unmap_complete(mm, &uf);
579 if (populate)
580 mm_populate(ret, populate);
581 }
582 return ret;
583}
584
585unsigned long vm_mmap(struct file *file, unsigned long addr,
586 unsigned long len, unsigned long prot,
587 unsigned long flag, unsigned long offset)
588{
589 if (unlikely(offset + PAGE_ALIGN(len) < offset))
590 return -EINVAL;
591 if (unlikely(offset_in_page(offset)))
592 return -EINVAL;
593
594 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
595}
596EXPORT_SYMBOL(vm_mmap);
597
598static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
599{
600 /*
601 * We want to attempt a large physically contiguous block first because
602 * it is less likely to fragment multiple larger blocks and therefore
603 * contribute to a long term fragmentation less than vmalloc fallback.
604 * However make sure that larger requests are not too disruptive - no
605 * OOM killer and no allocation failure warnings as we have a fallback.
606 */
607 if (size > PAGE_SIZE) {
608 flags |= __GFP_NOWARN;
609
610 if (!(flags & __GFP_RETRY_MAYFAIL))
611 flags |= __GFP_NORETRY;
612
613 /* nofail semantic is implemented by the vmalloc fallback */
614 flags &= ~__GFP_NOFAIL;
615 }
616
617 return flags;
618}
619
620/**
621 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
622 * failure, fall back to non-contiguous (vmalloc) allocation.
623 * @size: size of the request.
624 * @b: which set of kmalloc buckets to allocate from.
625 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
626 * @node: numa node to allocate from
627 *
628 * Uses kmalloc to get the memory but if the allocation fails then falls back
629 * to the vmalloc allocator. Use kvfree for freeing the memory.
630 *
631 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
632 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
633 * preferable to the vmalloc fallback, due to visible performance drawbacks.
634 *
635 * Return: pointer to the allocated memory of %NULL in case of failure
636 */
637void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
638{
639 void *ret;
640
641 /*
642 * It doesn't really make sense to fallback to vmalloc for sub page
643 * requests
644 */
645 ret = __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, b),
646 kmalloc_gfp_adjust(flags, size),
647 node);
648 if (ret || size <= PAGE_SIZE)
649 return ret;
650
651 /* non-sleeping allocations are not supported by vmalloc */
652 if (!gfpflags_allow_blocking(flags))
653 return NULL;
654
655 /* Don't even allow crazy sizes */
656 if (unlikely(size > INT_MAX)) {
657 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
658 return NULL;
659 }
660
661 /*
662 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
663 * since the callers already cannot assume anything
664 * about the resulting pointer, and cannot play
665 * protection games.
666 */
667 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
668 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
669 node, __builtin_return_address(0));
670}
671EXPORT_SYMBOL(__kvmalloc_node_noprof);
672
673/**
674 * kvfree() - Free memory.
675 * @addr: Pointer to allocated memory.
676 *
677 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
678 * It is slightly more efficient to use kfree() or vfree() if you are certain
679 * that you know which one to use.
680 *
681 * Context: Either preemptible task context or not-NMI interrupt.
682 */
683void kvfree(const void *addr)
684{
685 if (is_vmalloc_addr(addr))
686 vfree(addr);
687 else
688 kfree(addr);
689}
690EXPORT_SYMBOL(kvfree);
691
692/**
693 * kvfree_sensitive - Free a data object containing sensitive information.
694 * @addr: address of the data object to be freed.
695 * @len: length of the data object.
696 *
697 * Use the special memzero_explicit() function to clear the content of a
698 * kvmalloc'ed object containing sensitive data to make sure that the
699 * compiler won't optimize out the data clearing.
700 */
701void kvfree_sensitive(const void *addr, size_t len)
702{
703 if (likely(!ZERO_OR_NULL_PTR(addr))) {
704 memzero_explicit((void *)addr, len);
705 kvfree(addr);
706 }
707}
708EXPORT_SYMBOL(kvfree_sensitive);
709
710/**
711 * kvrealloc - reallocate memory; contents remain unchanged
712 * @p: object to reallocate memory for
713 * @size: the size to reallocate
714 * @flags: the flags for the page level allocator
715 *
716 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
717 * and @p is not a %NULL pointer, the object pointed to is freed.
718 *
719 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
720 * initial memory allocation, every subsequent call to this API for the same
721 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
722 * __GFP_ZERO is not fully honored by this API.
723 *
724 * In any case, the contents of the object pointed to are preserved up to the
725 * lesser of the new and old sizes.
726 *
727 * This function must not be called concurrently with itself or kvfree() for the
728 * same memory allocation.
729 *
730 * Return: pointer to the allocated memory or %NULL in case of error
731 */
732void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
733{
734 void *n;
735
736 if (is_vmalloc_addr(p))
737 return vrealloc_noprof(p, size, flags);
738
739 n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size));
740 if (!n) {
741 /* We failed to krealloc(), fall back to kvmalloc(). */
742 n = kvmalloc_noprof(size, flags);
743 if (!n)
744 return NULL;
745
746 if (p) {
747 /* We already know that `p` is not a vmalloc address. */
748 kasan_disable_current();
749 memcpy(n, kasan_reset_tag(p), ksize(p));
750 kasan_enable_current();
751
752 kfree(p);
753 }
754 }
755
756 return n;
757}
758EXPORT_SYMBOL(kvrealloc_noprof);
759
760/**
761 * __vmalloc_array - allocate memory for a virtually contiguous array.
762 * @n: number of elements.
763 * @size: element size.
764 * @flags: the type of memory to allocate (see kmalloc).
765 */
766void *__vmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
767{
768 size_t bytes;
769
770 if (unlikely(check_mul_overflow(n, size, &bytes)))
771 return NULL;
772 return __vmalloc_noprof(bytes, flags);
773}
774EXPORT_SYMBOL(__vmalloc_array_noprof);
775
776/**
777 * vmalloc_array - allocate memory for a virtually contiguous array.
778 * @n: number of elements.
779 * @size: element size.
780 */
781void *vmalloc_array_noprof(size_t n, size_t size)
782{
783 return __vmalloc_array_noprof(n, size, GFP_KERNEL);
784}
785EXPORT_SYMBOL(vmalloc_array_noprof);
786
787/**
788 * __vcalloc - allocate and zero memory for a virtually contiguous array.
789 * @n: number of elements.
790 * @size: element size.
791 * @flags: the type of memory to allocate (see kmalloc).
792 */
793void *__vcalloc_noprof(size_t n, size_t size, gfp_t flags)
794{
795 return __vmalloc_array_noprof(n, size, flags | __GFP_ZERO);
796}
797EXPORT_SYMBOL(__vcalloc_noprof);
798
799/**
800 * vcalloc - allocate and zero memory for a virtually contiguous array.
801 * @n: number of elements.
802 * @size: element size.
803 */
804void *vcalloc_noprof(size_t n, size_t size)
805{
806 return __vmalloc_array_noprof(n, size, GFP_KERNEL | __GFP_ZERO);
807}
808EXPORT_SYMBOL(vcalloc_noprof);
809
810struct anon_vma *folio_anon_vma(const struct folio *folio)
811{
812 unsigned long mapping = (unsigned long)folio->mapping;
813
814 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
815 return NULL;
816 return (void *)(mapping - PAGE_MAPPING_ANON);
817}
818
819/**
820 * folio_mapping - Find the mapping where this folio is stored.
821 * @folio: The folio.
822 *
823 * For folios which are in the page cache, return the mapping that this
824 * page belongs to. Folios in the swap cache return the swap mapping
825 * this page is stored in (which is different from the mapping for the
826 * swap file or swap device where the data is stored).
827 *
828 * You can call this for folios which aren't in the swap cache or page
829 * cache and it will return NULL.
830 */
831struct address_space *folio_mapping(struct folio *folio)
832{
833 struct address_space *mapping;
834
835 /* This happens if someone calls flush_dcache_page on slab page */
836 if (unlikely(folio_test_slab(folio)))
837 return NULL;
838
839 if (unlikely(folio_test_swapcache(folio)))
840 return swap_address_space(folio->swap);
841
842 mapping = folio->mapping;
843 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
844 return NULL;
845
846 return mapping;
847}
848EXPORT_SYMBOL(folio_mapping);
849
850/**
851 * folio_copy - Copy the contents of one folio to another.
852 * @dst: Folio to copy to.
853 * @src: Folio to copy from.
854 *
855 * The bytes in the folio represented by @src are copied to @dst.
856 * Assumes the caller has validated that @dst is at least as large as @src.
857 * Can be called in atomic context for order-0 folios, but if the folio is
858 * larger, it may sleep.
859 */
860void folio_copy(struct folio *dst, struct folio *src)
861{
862 long i = 0;
863 long nr = folio_nr_pages(src);
864
865 for (;;) {
866 copy_highpage(folio_page(dst, i), folio_page(src, i));
867 if (++i == nr)
868 break;
869 cond_resched();
870 }
871}
872EXPORT_SYMBOL(folio_copy);
873
874int folio_mc_copy(struct folio *dst, struct folio *src)
875{
876 long nr = folio_nr_pages(src);
877 long i = 0;
878
879 for (;;) {
880 if (copy_mc_highpage(folio_page(dst, i), folio_page(src, i)))
881 return -EHWPOISON;
882 if (++i == nr)
883 break;
884 cond_resched();
885 }
886
887 return 0;
888}
889EXPORT_SYMBOL(folio_mc_copy);
890
891int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
892int sysctl_overcommit_ratio __read_mostly = 50;
893unsigned long sysctl_overcommit_kbytes __read_mostly;
894int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
895unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
896unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
897
898int overcommit_ratio_handler(const struct ctl_table *table, int write, void *buffer,
899 size_t *lenp, loff_t *ppos)
900{
901 int ret;
902
903 ret = proc_dointvec(table, write, buffer, lenp, ppos);
904 if (ret == 0 && write)
905 sysctl_overcommit_kbytes = 0;
906 return ret;
907}
908
909static void sync_overcommit_as(struct work_struct *dummy)
910{
911 percpu_counter_sync(&vm_committed_as);
912}
913
914int overcommit_policy_handler(const struct ctl_table *table, int write, void *buffer,
915 size_t *lenp, loff_t *ppos)
916{
917 struct ctl_table t;
918 int new_policy = -1;
919 int ret;
920
921 /*
922 * The deviation of sync_overcommit_as could be big with loose policy
923 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
924 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
925 * with the strict "NEVER", and to avoid possible race condition (even
926 * though user usually won't too frequently do the switching to policy
927 * OVERCOMMIT_NEVER), the switch is done in the following order:
928 * 1. changing the batch
929 * 2. sync percpu count on each CPU
930 * 3. switch the policy
931 */
932 if (write) {
933 t = *table;
934 t.data = &new_policy;
935 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
936 if (ret || new_policy == -1)
937 return ret;
938
939 mm_compute_batch(new_policy);
940 if (new_policy == OVERCOMMIT_NEVER)
941 schedule_on_each_cpu(sync_overcommit_as);
942 sysctl_overcommit_memory = new_policy;
943 } else {
944 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
945 }
946
947 return ret;
948}
949
950int overcommit_kbytes_handler(const struct ctl_table *table, int write, void *buffer,
951 size_t *lenp, loff_t *ppos)
952{
953 int ret;
954
955 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
956 if (ret == 0 && write)
957 sysctl_overcommit_ratio = 0;
958 return ret;
959}
960
961/*
962 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
963 */
964unsigned long vm_commit_limit(void)
965{
966 unsigned long allowed;
967
968 if (sysctl_overcommit_kbytes)
969 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
970 else
971 allowed = ((totalram_pages() - hugetlb_total_pages())
972 * sysctl_overcommit_ratio / 100);
973 allowed += total_swap_pages;
974
975 return allowed;
976}
977
978/*
979 * Make sure vm_committed_as in one cacheline and not cacheline shared with
980 * other variables. It can be updated by several CPUs frequently.
981 */
982struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
983
984/*
985 * The global memory commitment made in the system can be a metric
986 * that can be used to drive ballooning decisions when Linux is hosted
987 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
988 * balancing memory across competing virtual machines that are hosted.
989 * Several metrics drive this policy engine including the guest reported
990 * memory commitment.
991 *
992 * The time cost of this is very low for small platforms, and for big
993 * platform like a 2S/36C/72T Skylake server, in worst case where
994 * vm_committed_as's spinlock is under severe contention, the time cost
995 * could be about 30~40 microseconds.
996 */
997unsigned long vm_memory_committed(void)
998{
999 return percpu_counter_sum_positive(&vm_committed_as);
1000}
1001EXPORT_SYMBOL_GPL(vm_memory_committed);
1002
1003/*
1004 * Check that a process has enough memory to allocate a new virtual
1005 * mapping. 0 means there is enough memory for the allocation to
1006 * succeed and -ENOMEM implies there is not.
1007 *
1008 * We currently support three overcommit policies, which are set via the
1009 * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst
1010 *
1011 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1012 * Additional code 2002 Jul 20 by Robert Love.
1013 *
1014 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1015 *
1016 * Note this is a helper function intended to be used by LSMs which
1017 * wish to use this logic.
1018 */
1019int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1020{
1021 long allowed;
1022 unsigned long bytes_failed;
1023
1024 vm_acct_memory(pages);
1025
1026 /*
1027 * Sometimes we want to use more memory than we have
1028 */
1029 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1030 return 0;
1031
1032 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1033 if (pages > totalram_pages() + total_swap_pages)
1034 goto error;
1035 return 0;
1036 }
1037
1038 allowed = vm_commit_limit();
1039 /*
1040 * Reserve some for root
1041 */
1042 if (!cap_sys_admin)
1043 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1044
1045 /*
1046 * Don't let a single process grow so big a user can't recover
1047 */
1048 if (mm) {
1049 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1050
1051 allowed -= min_t(long, mm->total_vm / 32, reserve);
1052 }
1053
1054 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1055 return 0;
1056error:
1057 bytes_failed = pages << PAGE_SHIFT;
1058 pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n",
1059 __func__, current->pid, current->comm, bytes_failed);
1060 vm_unacct_memory(pages);
1061
1062 return -ENOMEM;
1063}
1064
1065/**
1066 * get_cmdline() - copy the cmdline value to a buffer.
1067 * @task: the task whose cmdline value to copy.
1068 * @buffer: the buffer to copy to.
1069 * @buflen: the length of the buffer. Larger cmdline values are truncated
1070 * to this length.
1071 *
1072 * Return: the size of the cmdline field copied. Note that the copy does
1073 * not guarantee an ending NULL byte.
1074 */
1075int get_cmdline(struct task_struct *task, char *buffer, int buflen)
1076{
1077 int res = 0;
1078 unsigned int len;
1079 struct mm_struct *mm = get_task_mm(task);
1080 unsigned long arg_start, arg_end, env_start, env_end;
1081 if (!mm)
1082 goto out;
1083 if (!mm->arg_end)
1084 goto out_mm; /* Shh! No looking before we're done */
1085
1086 spin_lock(&mm->arg_lock);
1087 arg_start = mm->arg_start;
1088 arg_end = mm->arg_end;
1089 env_start = mm->env_start;
1090 env_end = mm->env_end;
1091 spin_unlock(&mm->arg_lock);
1092
1093 len = arg_end - arg_start;
1094
1095 if (len > buflen)
1096 len = buflen;
1097
1098 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
1099
1100 /*
1101 * If the nul at the end of args has been overwritten, then
1102 * assume application is using setproctitle(3).
1103 */
1104 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1105 len = strnlen(buffer, res);
1106 if (len < res) {
1107 res = len;
1108 } else {
1109 len = env_end - env_start;
1110 if (len > buflen - res)
1111 len = buflen - res;
1112 res += access_process_vm(task, env_start,
1113 buffer+res, len,
1114 FOLL_FORCE);
1115 res = strnlen(buffer, res);
1116 }
1117 }
1118out_mm:
1119 mmput(mm);
1120out:
1121 return res;
1122}
1123
1124int __weak memcmp_pages(struct page *page1, struct page *page2)
1125{
1126 char *addr1, *addr2;
1127 int ret;
1128
1129 addr1 = kmap_local_page(page1);
1130 addr2 = kmap_local_page(page2);
1131 ret = memcmp(addr1, addr2, PAGE_SIZE);
1132 kunmap_local(addr2);
1133 kunmap_local(addr1);
1134 return ret;
1135}
1136
1137#ifdef CONFIG_PRINTK
1138/**
1139 * mem_dump_obj - Print available provenance information
1140 * @object: object for which to find provenance information.
1141 *
1142 * This function uses pr_cont(), so that the caller is expected to have
1143 * printed out whatever preamble is appropriate. The provenance information
1144 * depends on the type of object and on how much debugging is enabled.
1145 * For example, for a slab-cache object, the slab name is printed, and,
1146 * if available, the return address and stack trace from the allocation
1147 * and last free path of that object.
1148 */
1149void mem_dump_obj(void *object)
1150{
1151 const char *type;
1152
1153 if (kmem_dump_obj(object))
1154 return;
1155
1156 if (vmalloc_dump_obj(object))
1157 return;
1158
1159 if (is_vmalloc_addr(object))
1160 type = "vmalloc memory";
1161 else if (virt_addr_valid(object))
1162 type = "non-slab/vmalloc memory";
1163 else if (object == NULL)
1164 type = "NULL pointer";
1165 else if (object == ZERO_SIZE_PTR)
1166 type = "zero-size pointer";
1167 else
1168 type = "non-paged memory";
1169
1170 pr_cont(" %s\n", type);
1171}
1172EXPORT_SYMBOL_GPL(mem_dump_obj);
1173#endif
1174
1175/*
1176 * A driver might set a page logically offline -- PageOffline() -- and
1177 * turn the page inaccessible in the hypervisor; after that, access to page
1178 * content can be fatal.
1179 *
1180 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1181 * pages after checking PageOffline(); however, these PFN walkers can race
1182 * with drivers that set PageOffline().
1183 *
1184 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1185 * synchronize with such drivers, achieving that a page cannot be set
1186 * PageOffline() while frozen.
1187 *
1188 * page_offline_begin()/page_offline_end() is used by drivers that care about
1189 * such races when setting a page PageOffline().
1190 */
1191static DECLARE_RWSEM(page_offline_rwsem);
1192
1193void page_offline_freeze(void)
1194{
1195 down_read(&page_offline_rwsem);
1196}
1197
1198void page_offline_thaw(void)
1199{
1200 up_read(&page_offline_rwsem);
1201}
1202
1203void page_offline_begin(void)
1204{
1205 down_write(&page_offline_rwsem);
1206}
1207EXPORT_SYMBOL(page_offline_begin);
1208
1209void page_offline_end(void)
1210{
1211 up_write(&page_offline_rwsem);
1212}
1213EXPORT_SYMBOL(page_offline_end);
1214
1215#ifndef flush_dcache_folio
1216void flush_dcache_folio(struct folio *folio)
1217{
1218 long i, nr = folio_nr_pages(folio);
1219
1220 for (i = 0; i < nr; i++)
1221 flush_dcache_page(folio_page(folio, i));
1222}
1223EXPORT_SYMBOL(flush_dcache_folio);
1224#endif