Linux Audio

Check our new training course

Loading...
v3.1
 
  1#include <linux/mm.h>
  2#include <linux/slab.h>
  3#include <linux/string.h>
  4#include <linux/module.h>
 
  5#include <linux/err.h>
  6#include <linux/sched.h>
  7#include <asm/uaccess.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  8
  9#include "internal.h"
 10
 11#define CREATE_TRACE_POINTS
 12#include <trace/events/kmem.h>
 
 
 
 
 
 
 
 
 
 
 13
 14/**
 15 * kstrdup - allocate space for and copy an existing string
 16 * @s: the string to duplicate
 17 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 
 
 18 */
 19char *kstrdup(const char *s, gfp_t gfp)
 20{
 21	size_t len;
 22	char *buf;
 23
 24	if (!s)
 25		return NULL;
 26
 27	len = strlen(s) + 1;
 28	buf = kmalloc_track_caller(len, gfp);
 29	if (buf)
 30		memcpy(buf, s, len);
 31	return buf;
 32}
 33EXPORT_SYMBOL(kstrdup);
 34
 35/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36 * kstrndup - allocate space for and copy an existing string
 37 * @s: the string to duplicate
 38 * @max: read at most @max chars from @s
 39 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 
 
 
 
 40 */
 41char *kstrndup(const char *s, size_t max, gfp_t gfp)
 42{
 43	size_t len;
 44	char *buf;
 45
 46	if (!s)
 47		return NULL;
 48
 49	len = strnlen(s, max);
 50	buf = kmalloc_track_caller(len+1, gfp);
 51	if (buf) {
 52		memcpy(buf, s, len);
 53		buf[len] = '\0';
 54	}
 55	return buf;
 56}
 57EXPORT_SYMBOL(kstrndup);
 58
 59/**
 60 * kmemdup - duplicate region of memory
 61 *
 62 * @src: memory region to duplicate
 63 * @len: memory region length
 64 * @gfp: GFP mask to use
 
 
 65 */
 66void *kmemdup(const void *src, size_t len, gfp_t gfp)
 67{
 68	void *p;
 69
 70	p = kmalloc_track_caller(len, gfp);
 71	if (p)
 72		memcpy(p, src, len);
 73	return p;
 74}
 75EXPORT_SYMBOL(kmemdup);
 76
 77/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 78 * memdup_user - duplicate memory region from user space
 79 *
 80 * @src: source address in user space
 81 * @len: number of bytes to copy
 82 *
 83 * Returns an ERR_PTR() on failure.
 
 84 */
 85void *memdup_user(const void __user *src, size_t len)
 86{
 87	void *p;
 88
 89	/*
 90	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
 91	 * cause pagefault, which makes it pointless to use GFP_NOFS
 92	 * or GFP_ATOMIC.
 93	 */
 94	p = kmalloc_track_caller(len, GFP_KERNEL);
 95	if (!p)
 96		return ERR_PTR(-ENOMEM);
 97
 98	if (copy_from_user(p, src, len)) {
 99		kfree(p);
100		return ERR_PTR(-EFAULT);
101	}
102
103	return p;
104}
105EXPORT_SYMBOL(memdup_user);
106
107/**
108 * __krealloc - like krealloc() but don't free @p.
109 * @p: object to reallocate memory for.
110 * @new_size: how many bytes of memory are required.
111 * @flags: the type of memory to allocate.
112 *
113 * This function is like krealloc() except it never frees the originally
114 * allocated buffer. Use this if you don't want to free the buffer immediately
115 * like, for example, with RCU.
116 */
117void *__krealloc(const void *p, size_t new_size, gfp_t flags)
118{
119	void *ret;
120	size_t ks = 0;
121
122	if (unlikely(!new_size))
123		return ZERO_SIZE_PTR;
124
125	if (p)
126		ks = ksize(p);
127
128	if (ks >= new_size)
129		return (void *)p;
130
131	ret = kmalloc_track_caller(new_size, flags);
132	if (ret && p)
133		memcpy(ret, p, ks);
134
135	return ret;
136}
137EXPORT_SYMBOL(__krealloc);
138
139/**
140 * krealloc - reallocate memory. The contents will remain unchanged.
141 * @p: object to reallocate memory for.
142 * @new_size: how many bytes of memory are required.
143 * @flags: the type of memory to allocate.
144 *
145 * The contents of the object pointed to are preserved up to the
146 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
147 * behaves exactly like kmalloc().  If @size is 0 and @p is not a
148 * %NULL pointer, the object pointed to is freed.
149 */
150void *krealloc(const void *p, size_t new_size, gfp_t flags)
151{
152	void *ret;
153
154	if (unlikely(!new_size)) {
155		kfree(p);
156		return ZERO_SIZE_PTR;
157	}
158
159	ret = __krealloc(p, new_size, flags);
160	if (ret && p != ret)
161		kfree(p);
 
162
163	return ret;
164}
165EXPORT_SYMBOL(krealloc);
166
167/**
168 * kzfree - like kfree but zero memory
169 * @p: object to free memory of
170 *
171 * The memory of the object @p points to is zeroed before freed.
172 * If @p is %NULL, kzfree() does nothing.
173 *
174 * Note: this function zeroes the whole allocated buffer which can be a good
175 * deal bigger than the requested buffer size passed to kmalloc(). So be
176 * careful when using this function in performance sensitive code.
177 */
178void kzfree(const void *p)
179{
180	size_t ks;
181	void *mem = (void *)p;
182
183	if (unlikely(ZERO_OR_NULL_PTR(mem)))
184		return;
185	ks = ksize(mem);
186	memset(mem, 0, ks);
187	kfree(mem);
188}
189EXPORT_SYMBOL(kzfree);
190
191/*
192 * strndup_user - duplicate an existing string from user space
193 * @s: The string to duplicate
194 * @n: Maximum number of bytes to copy, including the trailing NUL.
 
 
195 */
196char *strndup_user(const char __user *s, long n)
197{
198	char *p;
199	long length;
200
201	length = strnlen_user(s, n);
202
203	if (!length)
204		return ERR_PTR(-EFAULT);
205
206	if (length > n)
207		return ERR_PTR(-EINVAL);
208
209	p = memdup_user(s, length);
210
211	if (IS_ERR(p))
212		return p;
213
214	p[length - 1] = '\0';
215
216	return p;
217}
218EXPORT_SYMBOL(strndup_user);
219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
221		struct vm_area_struct *prev, struct rb_node *rb_parent)
222{
223	struct vm_area_struct *next;
224
225	vma->vm_prev = prev;
226	if (prev) {
227		next = prev->vm_next;
228		prev->vm_next = vma;
229	} else {
230		mm->mmap = vma;
231		if (rb_parent)
232			next = rb_entry(rb_parent,
233					struct vm_area_struct, vm_rb);
234		else
235			next = NULL;
236	}
237	vma->vm_next = next;
238	if (next)
239		next->vm_prev = vma;
240}
241
242#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
243void arch_pick_mmap_layout(struct mm_struct *mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244{
245	mm->mmap_base = TASK_UNMAPPED_BASE;
246	mm->get_unmapped_area = arch_get_unmapped_area;
247	mm->unmap_area = arch_unmap_area;
248}
249#endif
250
251/*
252 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
253 * back to the regular GUP.
254 * If the architecture not support this function, simply return with no
255 * page pinned
256 */
257int __attribute__((weak)) __get_user_pages_fast(unsigned long start,
258				 int nr_pages, int write, struct page **pages)
259{
260	return 0;
261}
262EXPORT_SYMBOL_GPL(__get_user_pages_fast);
263
264/**
265 * get_user_pages_fast() - pin user pages in memory
266 * @start:	starting user address
267 * @nr_pages:	number of pages from start to pin
268 * @write:	whether pages will be written to
269 * @pages:	array that receives pointers to the pages pinned.
270 *		Should be at least nr_pages long.
271 *
272 * Returns number of pages pinned. This may be fewer than the number
273 * requested. If nr_pages is 0 or negative, returns 0. If no pages
274 * were pinned, returns -errno.
275 *
276 * get_user_pages_fast provides equivalent functionality to get_user_pages,
277 * operating on current and current->mm, with force=0 and vma=NULL. However
278 * unlike get_user_pages, it must be called without mmap_sem held.
279 *
280 * get_user_pages_fast may take mmap_sem and page table locks, so no
281 * assumptions can be made about lack of locking. get_user_pages_fast is to be
282 * implemented in a way that is advantageous (vs get_user_pages()) when the
283 * user memory area is already faulted in and present in ptes. However if the
284 * pages have to be faulted in, it may turn out to be slightly slower so
285 * callers need to carefully consider what to use. On many architectures,
286 * get_user_pages_fast simply falls back to get_user_pages.
287 */
288int __attribute__((weak)) get_user_pages_fast(unsigned long start,
289				int nr_pages, int write, struct page **pages)
290{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
291	struct mm_struct *mm = current->mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
292	int ret;
293
294	down_read(&mm->mmap_sem);
295	ret = get_user_pages(current, mm, start, nr_pages,
296					write, 0, pages, NULL);
297	up_read(&mm->mmap_sem);
 
 
 
 
 
 
 
298
 
 
 
299	return ret;
300}
301EXPORT_SYMBOL_GPL(get_user_pages_fast);
302
303/* Tracepoints definitions. */
304EXPORT_TRACEPOINT_SYMBOL(kmalloc);
305EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
306EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
307EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
308EXPORT_TRACEPOINT_SYMBOL(kfree);
309EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2#include <linux/mm.h>
  3#include <linux/slab.h>
  4#include <linux/string.h>
  5#include <linux/compiler.h>
  6#include <linux/export.h>
  7#include <linux/err.h>
  8#include <linux/sched.h>
  9#include <linux/sched/mm.h>
 10#include <linux/sched/signal.h>
 11#include <linux/sched/task_stack.h>
 12#include <linux/security.h>
 13#include <linux/swap.h>
 14#include <linux/swapops.h>
 15#include <linux/mman.h>
 16#include <linux/hugetlb.h>
 17#include <linux/vmalloc.h>
 18#include <linux/userfaultfd_k.h>
 19#include <linux/elf.h>
 20#include <linux/elf-randomize.h>
 21#include <linux/personality.h>
 22#include <linux/random.h>
 23#include <linux/processor.h>
 24#include <linux/sizes.h>
 25#include <linux/compat.h>
 26
 27#include <linux/uaccess.h>
 28
 29#include "internal.h"
 30
 31/**
 32 * kfree_const - conditionally free memory
 33 * @x: pointer to the memory
 34 *
 35 * Function calls kfree only if @x is not in .rodata section.
 36 */
 37void kfree_const(const void *x)
 38{
 39	if (!is_kernel_rodata((unsigned long)x))
 40		kfree(x);
 41}
 42EXPORT_SYMBOL(kfree_const);
 43
 44/**
 45 * kstrdup - allocate space for and copy an existing string
 46 * @s: the string to duplicate
 47 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 48 *
 49 * Return: newly allocated copy of @s or %NULL in case of error
 50 */
 51char *kstrdup(const char *s, gfp_t gfp)
 52{
 53	size_t len;
 54	char *buf;
 55
 56	if (!s)
 57		return NULL;
 58
 59	len = strlen(s) + 1;
 60	buf = kmalloc_track_caller(len, gfp);
 61	if (buf)
 62		memcpy(buf, s, len);
 63	return buf;
 64}
 65EXPORT_SYMBOL(kstrdup);
 66
 67/**
 68 * kstrdup_const - conditionally duplicate an existing const string
 69 * @s: the string to duplicate
 70 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 71 *
 72 * Note: Strings allocated by kstrdup_const should be freed by kfree_const.
 73 *
 74 * Return: source string if it is in .rodata section otherwise
 75 * fallback to kstrdup.
 76 */
 77const char *kstrdup_const(const char *s, gfp_t gfp)
 78{
 79	if (is_kernel_rodata((unsigned long)s))
 80		return s;
 81
 82	return kstrdup(s, gfp);
 83}
 84EXPORT_SYMBOL(kstrdup_const);
 85
 86/**
 87 * kstrndup - allocate space for and copy an existing string
 88 * @s: the string to duplicate
 89 * @max: read at most @max chars from @s
 90 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 91 *
 92 * Note: Use kmemdup_nul() instead if the size is known exactly.
 93 *
 94 * Return: newly allocated copy of @s or %NULL in case of error
 95 */
 96char *kstrndup(const char *s, size_t max, gfp_t gfp)
 97{
 98	size_t len;
 99	char *buf;
100
101	if (!s)
102		return NULL;
103
104	len = strnlen(s, max);
105	buf = kmalloc_track_caller(len+1, gfp);
106	if (buf) {
107		memcpy(buf, s, len);
108		buf[len] = '\0';
109	}
110	return buf;
111}
112EXPORT_SYMBOL(kstrndup);
113
114/**
115 * kmemdup - duplicate region of memory
116 *
117 * @src: memory region to duplicate
118 * @len: memory region length
119 * @gfp: GFP mask to use
120 *
121 * Return: newly allocated copy of @src or %NULL in case of error
122 */
123void *kmemdup(const void *src, size_t len, gfp_t gfp)
124{
125	void *p;
126
127	p = kmalloc_track_caller(len, gfp);
128	if (p)
129		memcpy(p, src, len);
130	return p;
131}
132EXPORT_SYMBOL(kmemdup);
133
134/**
135 * kmemdup_nul - Create a NUL-terminated string from unterminated data
136 * @s: The data to stringify
137 * @len: The size of the data
138 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
139 *
140 * Return: newly allocated copy of @s with NUL-termination or %NULL in
141 * case of error
142 */
143char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
144{
145	char *buf;
146
147	if (!s)
148		return NULL;
149
150	buf = kmalloc_track_caller(len + 1, gfp);
151	if (buf) {
152		memcpy(buf, s, len);
153		buf[len] = '\0';
154	}
155	return buf;
156}
157EXPORT_SYMBOL(kmemdup_nul);
158
159/**
160 * memdup_user - duplicate memory region from user space
161 *
162 * @src: source address in user space
163 * @len: number of bytes to copy
164 *
165 * Return: an ERR_PTR() on failure.  Result is physically
166 * contiguous, to be freed by kfree().
167 */
168void *memdup_user(const void __user *src, size_t len)
169{
170	void *p;
171
172	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
 
 
 
 
 
173	if (!p)
174		return ERR_PTR(-ENOMEM);
175
176	if (copy_from_user(p, src, len)) {
177		kfree(p);
178		return ERR_PTR(-EFAULT);
179	}
180
181	return p;
182}
183EXPORT_SYMBOL(memdup_user);
184
185/**
186 * vmemdup_user - duplicate memory region from user space
187 *
188 * @src: source address in user space
189 * @len: number of bytes to copy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190 *
191 * Return: an ERR_PTR() on failure.  Result may be not
192 * physically contiguous.  Use kvfree() to free.
 
 
193 */
194void *vmemdup_user(const void __user *src, size_t len)
195{
196	void *p;
197
198	p = kvmalloc(len, GFP_USER);
199	if (!p)
200		return ERR_PTR(-ENOMEM);
 
201
202	if (copy_from_user(p, src, len)) {
203		kvfree(p);
204		return ERR_PTR(-EFAULT);
205	}
206
207	return p;
208}
209EXPORT_SYMBOL(vmemdup_user);
210
211/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212 * strndup_user - duplicate an existing string from user space
213 * @s: The string to duplicate
214 * @n: Maximum number of bytes to copy, including the trailing NUL.
215 *
216 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
217 */
218char *strndup_user(const char __user *s, long n)
219{
220	char *p;
221	long length;
222
223	length = strnlen_user(s, n);
224
225	if (!length)
226		return ERR_PTR(-EFAULT);
227
228	if (length > n)
229		return ERR_PTR(-EINVAL);
230
231	p = memdup_user(s, length);
232
233	if (IS_ERR(p))
234		return p;
235
236	p[length - 1] = '\0';
237
238	return p;
239}
240EXPORT_SYMBOL(strndup_user);
241
242/**
243 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
244 *
245 * @src: source address in user space
246 * @len: number of bytes to copy
247 *
248 * Return: an ERR_PTR() on failure.
249 */
250void *memdup_user_nul(const void __user *src, size_t len)
251{
252	char *p;
253
254	/*
255	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
256	 * cause pagefault, which makes it pointless to use GFP_NOFS
257	 * or GFP_ATOMIC.
258	 */
259	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
260	if (!p)
261		return ERR_PTR(-ENOMEM);
262
263	if (copy_from_user(p, src, len)) {
264		kfree(p);
265		return ERR_PTR(-EFAULT);
266	}
267	p[len] = '\0';
268
269	return p;
270}
271EXPORT_SYMBOL(memdup_user_nul);
272
273void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
274		struct vm_area_struct *prev, struct rb_node *rb_parent)
275{
276	struct vm_area_struct *next;
277
278	vma->vm_prev = prev;
279	if (prev) {
280		next = prev->vm_next;
281		prev->vm_next = vma;
282	} else {
283		mm->mmap = vma;
284		if (rb_parent)
285			next = rb_entry(rb_parent,
286					struct vm_area_struct, vm_rb);
287		else
288			next = NULL;
289	}
290	vma->vm_next = next;
291	if (next)
292		next->vm_prev = vma;
293}
294
295/* Check if the vma is being used as a stack by this task */
296int vma_is_stack_for_current(struct vm_area_struct *vma)
297{
298	struct task_struct * __maybe_unused t = current;
299
300	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
301}
302
303#ifndef STACK_RND_MASK
304#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
305#endif
306
307unsigned long randomize_stack_top(unsigned long stack_top)
308{
309	unsigned long random_variable = 0;
310
311	if (current->flags & PF_RANDOMIZE) {
312		random_variable = get_random_long();
313		random_variable &= STACK_RND_MASK;
314		random_variable <<= PAGE_SHIFT;
315	}
316#ifdef CONFIG_STACK_GROWSUP
317	return PAGE_ALIGN(stack_top) + random_variable;
318#else
319	return PAGE_ALIGN(stack_top) - random_variable;
320#endif
321}
322
323#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
324unsigned long arch_randomize_brk(struct mm_struct *mm)
325{
326	/* Is the current task 32bit ? */
327	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
328		return randomize_page(mm->brk, SZ_32M);
329
330	return randomize_page(mm->brk, SZ_1G);
331}
332
333unsigned long arch_mmap_rnd(void)
334{
335	unsigned long rnd;
336
337#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
338	if (is_compat_task())
339		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
340	else
341#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
342		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
343
344	return rnd << PAGE_SHIFT;
345}
346
347static int mmap_is_legacy(struct rlimit *rlim_stack)
348{
349	if (current->personality & ADDR_COMPAT_LAYOUT)
350		return 1;
351
352	if (rlim_stack->rlim_cur == RLIM_INFINITY)
353		return 1;
354
355	return sysctl_legacy_va_layout;
356}
357
358/*
359 * Leave enough space between the mmap area and the stack to honour ulimit in
360 * the face of randomisation.
361 */
362#define MIN_GAP		(SZ_128M)
363#define MAX_GAP		(STACK_TOP / 6 * 5)
364
365static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
366{
367	unsigned long gap = rlim_stack->rlim_cur;
368	unsigned long pad = stack_guard_gap;
369
370	/* Account for stack randomization if necessary */
371	if (current->flags & PF_RANDOMIZE)
372		pad += (STACK_RND_MASK << PAGE_SHIFT);
373
374	/* Values close to RLIM_INFINITY can overflow. */
375	if (gap + pad > gap)
376		gap += pad;
377
378	if (gap < MIN_GAP)
379		gap = MIN_GAP;
380	else if (gap > MAX_GAP)
381		gap = MAX_GAP;
382
383	return PAGE_ALIGN(STACK_TOP - gap - rnd);
384}
385
386void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
387{
388	unsigned long random_factor = 0UL;
389
390	if (current->flags & PF_RANDOMIZE)
391		random_factor = arch_mmap_rnd();
392
393	if (mmap_is_legacy(rlim_stack)) {
394		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
395		mm->get_unmapped_area = arch_get_unmapped_area;
396	} else {
397		mm->mmap_base = mmap_base(random_factor, rlim_stack);
398		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
399	}
400}
401#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
402void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
403{
404	mm->mmap_base = TASK_UNMAPPED_BASE;
405	mm->get_unmapped_area = arch_get_unmapped_area;
 
406}
407#endif
408
409/**
410 * __account_locked_vm - account locked pages to an mm's locked_vm
411 * @mm:          mm to account against
412 * @pages:       number of pages to account
413 * @inc:         %true if @pages should be considered positive, %false if not
414 * @task:        task used to check RLIMIT_MEMLOCK
415 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
416 *
417 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
418 * that mmap_sem is held as writer.
419 *
420 * Return:
421 * * 0       on success
422 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423 */
424int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
425			struct task_struct *task, bool bypass_rlim)
426{
427	unsigned long locked_vm, limit;
428	int ret = 0;
429
430	lockdep_assert_held_write(&mm->mmap_sem);
431
432	locked_vm = mm->locked_vm;
433	if (inc) {
434		if (!bypass_rlim) {
435			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
436			if (locked_vm + pages > limit)
437				ret = -ENOMEM;
438		}
439		if (!ret)
440			mm->locked_vm = locked_vm + pages;
441	} else {
442		WARN_ON_ONCE(pages > locked_vm);
443		mm->locked_vm = locked_vm - pages;
444	}
445
446	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
447		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
448		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
449		 ret ? " - exceeded" : "");
450
451	return ret;
452}
453EXPORT_SYMBOL_GPL(__account_locked_vm);
454
455/**
456 * account_locked_vm - account locked pages to an mm's locked_vm
457 * @mm:          mm to account against, may be NULL
458 * @pages:       number of pages to account
459 * @inc:         %true if @pages should be considered positive, %false if not
460 *
461 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
462 *
463 * Return:
464 * * 0       on success, or if mm is NULL
465 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
466 */
467int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
468{
469	int ret;
470
471	if (pages == 0 || !mm)
472		return 0;
473
474	down_write(&mm->mmap_sem);
475	ret = __account_locked_vm(mm, pages, inc, current,
476				  capable(CAP_IPC_LOCK));
477	up_write(&mm->mmap_sem);
478
479	return ret;
480}
481EXPORT_SYMBOL_GPL(account_locked_vm);
482
483unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
484	unsigned long len, unsigned long prot,
485	unsigned long flag, unsigned long pgoff)
486{
487	unsigned long ret;
488	struct mm_struct *mm = current->mm;
489	unsigned long populate;
490	LIST_HEAD(uf);
491
492	ret = security_mmap_file(file, prot, flag);
493	if (!ret) {
494		if (down_write_killable(&mm->mmap_sem))
495			return -EINTR;
496		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
497				    &populate, &uf);
498		up_write(&mm->mmap_sem);
499		userfaultfd_unmap_complete(mm, &uf);
500		if (populate)
501			mm_populate(ret, populate);
502	}
503	return ret;
504}
505
506unsigned long vm_mmap(struct file *file, unsigned long addr,
507	unsigned long len, unsigned long prot,
508	unsigned long flag, unsigned long offset)
509{
510	if (unlikely(offset + PAGE_ALIGN(len) < offset))
511		return -EINVAL;
512	if (unlikely(offset_in_page(offset)))
513		return -EINVAL;
514
515	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
516}
517EXPORT_SYMBOL(vm_mmap);
518
519/**
520 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
521 * failure, fall back to non-contiguous (vmalloc) allocation.
522 * @size: size of the request.
523 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
524 * @node: numa node to allocate from
525 *
526 * Uses kmalloc to get the memory but if the allocation fails then falls back
527 * to the vmalloc allocator. Use kvfree for freeing the memory.
528 *
529 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
530 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
531 * preferable to the vmalloc fallback, due to visible performance drawbacks.
532 *
533 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
534 * fall back to vmalloc.
535 *
536 * Return: pointer to the allocated memory of %NULL in case of failure
537 */
538void *kvmalloc_node(size_t size, gfp_t flags, int node)
539{
540	gfp_t kmalloc_flags = flags;
541	void *ret;
542
543	/*
544	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
545	 * so the given set of flags has to be compatible.
546	 */
547	if ((flags & GFP_KERNEL) != GFP_KERNEL)
548		return kmalloc_node(size, flags, node);
549
550	/*
551	 * We want to attempt a large physically contiguous block first because
552	 * it is less likely to fragment multiple larger blocks and therefore
553	 * contribute to a long term fragmentation less than vmalloc fallback.
554	 * However make sure that larger requests are not too disruptive - no
555	 * OOM killer and no allocation failure warnings as we have a fallback.
556	 */
557	if (size > PAGE_SIZE) {
558		kmalloc_flags |= __GFP_NOWARN;
559
560		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
561			kmalloc_flags |= __GFP_NORETRY;
562	}
563
564	ret = kmalloc_node(size, kmalloc_flags, node);
565
566	/*
567	 * It doesn't really make sense to fallback to vmalloc for sub page
568	 * requests
569	 */
570	if (ret || size <= PAGE_SIZE)
571		return ret;
572
573	return __vmalloc_node_flags_caller(size, node, flags,
574			__builtin_return_address(0));
575}
576EXPORT_SYMBOL(kvmalloc_node);
577
578/**
579 * kvfree() - Free memory.
580 * @addr: Pointer to allocated memory.
581 *
582 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
583 * It is slightly more efficient to use kfree() or vfree() if you are certain
584 * that you know which one to use.
585 *
586 * Context: Either preemptible task context or not-NMI interrupt.
587 */
588void kvfree(const void *addr)
589{
590	if (is_vmalloc_addr(addr))
591		vfree(addr);
592	else
593		kfree(addr);
594}
595EXPORT_SYMBOL(kvfree);
596
597static inline void *__page_rmapping(struct page *page)
598{
599	unsigned long mapping;
600
601	mapping = (unsigned long)page->mapping;
602	mapping &= ~PAGE_MAPPING_FLAGS;
603
604	return (void *)mapping;
605}
606
607/* Neutral page->mapping pointer to address_space or anon_vma or other */
608void *page_rmapping(struct page *page)
609{
610	page = compound_head(page);
611	return __page_rmapping(page);
612}
613
614/*
615 * Return true if this page is mapped into pagetables.
616 * For compound page it returns true if any subpage of compound page is mapped.
617 */
618bool page_mapped(struct page *page)
619{
620	int i;
621
622	if (likely(!PageCompound(page)))
623		return atomic_read(&page->_mapcount) >= 0;
624	page = compound_head(page);
625	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
626		return true;
627	if (PageHuge(page))
628		return false;
629	for (i = 0; i < compound_nr(page); i++) {
630		if (atomic_read(&page[i]._mapcount) >= 0)
631			return true;
632	}
633	return false;
634}
635EXPORT_SYMBOL(page_mapped);
636
637struct anon_vma *page_anon_vma(struct page *page)
638{
639	unsigned long mapping;
640
641	page = compound_head(page);
642	mapping = (unsigned long)page->mapping;
643	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
644		return NULL;
645	return __page_rmapping(page);
646}
647
648struct address_space *page_mapping(struct page *page)
649{
650	struct address_space *mapping;
651
652	page = compound_head(page);
653
654	/* This happens if someone calls flush_dcache_page on slab page */
655	if (unlikely(PageSlab(page)))
656		return NULL;
657
658	if (unlikely(PageSwapCache(page))) {
659		swp_entry_t entry;
660
661		entry.val = page_private(page);
662		return swap_address_space(entry);
663	}
664
665	mapping = page->mapping;
666	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
667		return NULL;
668
669	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
670}
671EXPORT_SYMBOL(page_mapping);
672
673/*
674 * For file cache pages, return the address_space, otherwise return NULL
675 */
676struct address_space *page_mapping_file(struct page *page)
677{
678	if (unlikely(PageSwapCache(page)))
679		return NULL;
680	return page_mapping(page);
681}
682
683/* Slow path of page_mapcount() for compound pages */
684int __page_mapcount(struct page *page)
685{
686	int ret;
687
688	ret = atomic_read(&page->_mapcount) + 1;
689	/*
690	 * For file THP page->_mapcount contains total number of mapping
691	 * of the page: no need to look into compound_mapcount.
692	 */
693	if (!PageAnon(page) && !PageHuge(page))
694		return ret;
695	page = compound_head(page);
696	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
697	if (PageDoubleMap(page))
698		ret--;
699	return ret;
700}
701EXPORT_SYMBOL_GPL(__page_mapcount);
702
703int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
704int sysctl_overcommit_ratio __read_mostly = 50;
705unsigned long sysctl_overcommit_kbytes __read_mostly;
706int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
707unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
708unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
709
710int overcommit_ratio_handler(struct ctl_table *table, int write,
711			     void __user *buffer, size_t *lenp,
712			     loff_t *ppos)
713{
714	int ret;
715
716	ret = proc_dointvec(table, write, buffer, lenp, ppos);
717	if (ret == 0 && write)
718		sysctl_overcommit_kbytes = 0;
719	return ret;
720}
721
722int overcommit_kbytes_handler(struct ctl_table *table, int write,
723			     void __user *buffer, size_t *lenp,
724			     loff_t *ppos)
725{
726	int ret;
727
728	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
729	if (ret == 0 && write)
730		sysctl_overcommit_ratio = 0;
731	return ret;
732}
 
733
734/*
735 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
736 */
737unsigned long vm_commit_limit(void)
738{
739	unsigned long allowed;
740
741	if (sysctl_overcommit_kbytes)
742		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
743	else
744		allowed = ((totalram_pages() - hugetlb_total_pages())
745			   * sysctl_overcommit_ratio / 100);
746	allowed += total_swap_pages;
747
748	return allowed;
749}
750
751/*
752 * Make sure vm_committed_as in one cacheline and not cacheline shared with
753 * other variables. It can be updated by several CPUs frequently.
754 */
755struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
756
757/*
758 * The global memory commitment made in the system can be a metric
759 * that can be used to drive ballooning decisions when Linux is hosted
760 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
761 * balancing memory across competing virtual machines that are hosted.
762 * Several metrics drive this policy engine including the guest reported
763 * memory commitment.
764 */
765unsigned long vm_memory_committed(void)
766{
767	return percpu_counter_read_positive(&vm_committed_as);
768}
769EXPORT_SYMBOL_GPL(vm_memory_committed);
770
771/*
772 * Check that a process has enough memory to allocate a new virtual
773 * mapping. 0 means there is enough memory for the allocation to
774 * succeed and -ENOMEM implies there is not.
775 *
776 * We currently support three overcommit policies, which are set via the
777 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
778 *
779 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
780 * Additional code 2002 Jul 20 by Robert Love.
781 *
782 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
783 *
784 * Note this is a helper function intended to be used by LSMs which
785 * wish to use this logic.
786 */
787int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
788{
789	long allowed;
790
791	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
792			-(s64)vm_committed_as_batch * num_online_cpus(),
793			"memory commitment underflow");
794
795	vm_acct_memory(pages);
796
797	/*
798	 * Sometimes we want to use more memory than we have
799	 */
800	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
801		return 0;
802
803	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
804		if (pages > totalram_pages() + total_swap_pages)
805			goto error;
806		return 0;
807	}
808
809	allowed = vm_commit_limit();
810	/*
811	 * Reserve some for root
812	 */
813	if (!cap_sys_admin)
814		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
815
816	/*
817	 * Don't let a single process grow so big a user can't recover
818	 */
819	if (mm) {
820		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
821
822		allowed -= min_t(long, mm->total_vm / 32, reserve);
823	}
824
825	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
826		return 0;
827error:
828	vm_unacct_memory(pages);
829
830	return -ENOMEM;
831}
832
833/**
834 * get_cmdline() - copy the cmdline value to a buffer.
835 * @task:     the task whose cmdline value to copy.
836 * @buffer:   the buffer to copy to.
837 * @buflen:   the length of the buffer. Larger cmdline values are truncated
838 *            to this length.
839 *
840 * Return: the size of the cmdline field copied. Note that the copy does
841 * not guarantee an ending NULL byte.
842 */
843int get_cmdline(struct task_struct *task, char *buffer, int buflen)
844{
845	int res = 0;
846	unsigned int len;
847	struct mm_struct *mm = get_task_mm(task);
848	unsigned long arg_start, arg_end, env_start, env_end;
849	if (!mm)
850		goto out;
851	if (!mm->arg_end)
852		goto out_mm;	/* Shh! No looking before we're done */
853
854	spin_lock(&mm->arg_lock);
855	arg_start = mm->arg_start;
856	arg_end = mm->arg_end;
857	env_start = mm->env_start;
858	env_end = mm->env_end;
859	spin_unlock(&mm->arg_lock);
860
861	len = arg_end - arg_start;
862
863	if (len > buflen)
864		len = buflen;
865
866	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
867
868	/*
869	 * If the nul at the end of args has been overwritten, then
870	 * assume application is using setproctitle(3).
871	 */
872	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
873		len = strnlen(buffer, res);
874		if (len < res) {
875			res = len;
876		} else {
877			len = env_end - env_start;
878			if (len > buflen - res)
879				len = buflen - res;
880			res += access_process_vm(task, env_start,
881						 buffer+res, len,
882						 FOLL_FORCE);
883			res = strnlen(buffer, res);
884		}
885	}
886out_mm:
887	mmput(mm);
888out:
889	return res;
890}
891
892int memcmp_pages(struct page *page1, struct page *page2)
893{
894	char *addr1, *addr2;
895	int ret;
896
897	addr1 = kmap_atomic(page1);
898	addr2 = kmap_atomic(page2);
899	ret = memcmp(addr1, addr2, PAGE_SIZE);
900	kunmap_atomic(addr2);
901	kunmap_atomic(addr1);
902	return ret;
903}