Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Written for linux by Johan Myreen as a translation from
   3 * the assembly version by Linus (with diacriticals added)
   4 *
   5 * Some additional features added by Christoph Niemann (ChN), March 1993
   6 *
   7 * Loadable keymaps by Risto Kankkunen, May 1993
   8 *
   9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  10 * Added decr/incr_console, dynamic keymaps, Unicode support,
  11 * dynamic function/string keys, led setting,  Sept 1994
  12 * `Sticky' modifier keys, 951006.
  13 *
  14 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  15 *
  16 * Modified to provide 'generic' keyboard support by Hamish Macdonald
  17 * Merge with the m68k keyboard driver and split-off of the PC low-level
  18 * parts by Geert Uytterhoeven, May 1997
  19 *
  20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  21 * 30-07-98: Dead keys redone, aeb@cwi.nl.
  22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  23 */
  24
  25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26
  27#include <linux/consolemap.h>
  28#include <linux/module.h>
  29#include <linux/sched.h>
  30#include <linux/tty.h>
  31#include <linux/tty_flip.h>
  32#include <linux/mm.h>
  33#include <linux/string.h>
  34#include <linux/init.h>
  35#include <linux/slab.h>
  36#include <linux/irq.h>
  37
  38#include <linux/kbd_kern.h>
  39#include <linux/kbd_diacr.h>
  40#include <linux/vt_kern.h>
  41#include <linux/input.h>
  42#include <linux/reboot.h>
  43#include <linux/notifier.h>
  44#include <linux/jiffies.h>
 
 
 
  45
  46extern void ctrl_alt_del(void);
  47
  48/*
  49 * Exported functions/variables
  50 */
  51
  52#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
  53
  54/*
  55 * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
  56 * This seems a good reason to start with NumLock off. On HIL keyboards
  57 * of PARISC machines however there is no NumLock key and everyone expects the keypad
  58 * to be used for numbers.
  59 */
  60
  61#if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
  62#define KBD_DEFLEDS (1 << VC_NUMLOCK)
  63#else
  64#define KBD_DEFLEDS 0
 
 
 
  65#endif
  66
  67#define KBD_DEFLOCK 0
  68
  69void compute_shiftstate(void);
  70
  71/*
  72 * Handler Tables.
  73 */
  74
  75#define K_HANDLERS\
  76	k_self,		k_fn,		k_spec,		k_pad,\
  77	k_dead,		k_cons,		k_cur,		k_shift,\
  78	k_meta,		k_ascii,	k_lock,		k_lowercase,\
  79	k_slock,	k_dead2,	k_brl,		k_ignore
  80
  81typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  82			    char up_flag);
  83static k_handler_fn K_HANDLERS;
  84static k_handler_fn *k_handler[16] = { K_HANDLERS };
  85
  86#define FN_HANDLERS\
  87	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
  88	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
  89	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
  90	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
  91	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
  92
  93typedef void (fn_handler_fn)(struct vc_data *vc);
  94static fn_handler_fn FN_HANDLERS;
  95static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  96
  97/*
  98 * Variables exported for vt_ioctl.c
  99 */
 100
 101/* maximum values each key_handler can handle */
 102const int max_vals[] = {
 103	255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
 104	NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
 105	255, NR_LOCK - 1, 255, NR_BRL - 1
 106};
 107
 108const int NR_TYPES = ARRAY_SIZE(max_vals);
 109
 110struct kbd_struct kbd_table[MAX_NR_CONSOLES];
 111EXPORT_SYMBOL_GPL(kbd_table);
 112static struct kbd_struct *kbd = kbd_table;
 113
 114struct vt_spawn_console vt_spawn_con = {
 115	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
 116	.pid  = NULL,
 117	.sig  = 0,
 118};
 119
 120/*
 121 * Variables exported for vt.c
 122 */
 123
 124int shift_state = 0;
 125
 126/*
 127 * Internal Data.
 128 */
 129
 
 
 
 
 
 
 
 
 
 
 
 
 130static struct input_handler kbd_handler;
 131static DEFINE_SPINLOCK(kbd_event_lock);
 132static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */
 133static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
 134static bool dead_key_next;
 135static int npadch = -1;					/* -1 or number assembled on pad */
 136static unsigned int diacr;
 137static char rep;					/* flag telling character repeat */
 138
 
 
 139static unsigned char ledstate = 0xff;			/* undefined */
 140static unsigned char ledioctl;
 141
 142static struct ledptr {
 143	unsigned int *addr;
 144	unsigned int mask;
 145	unsigned char valid:1;
 146} ledptrs[3];
 147
 148/*
 149 * Notifier list for console keyboard events
 150 */
 151static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
 152
 153int register_keyboard_notifier(struct notifier_block *nb)
 154{
 155	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
 156}
 157EXPORT_SYMBOL_GPL(register_keyboard_notifier);
 158
 159int unregister_keyboard_notifier(struct notifier_block *nb)
 160{
 161	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
 162}
 163EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
 164
 165/*
 166 * Translation of scancodes to keycodes. We set them on only the first
 167 * keyboard in the list that accepts the scancode and keycode.
 168 * Explanation for not choosing the first attached keyboard anymore:
 169 *  USB keyboards for example have two event devices: one for all "normal"
 170 *  keys and one for extra function keys (like "volume up", "make coffee",
 171 *  etc.). So this means that scancodes for the extra function keys won't
 172 *  be valid for the first event device, but will be for the second.
 173 */
 174
 175struct getset_keycode_data {
 176	struct input_keymap_entry ke;
 177	int error;
 178};
 179
 180static int getkeycode_helper(struct input_handle *handle, void *data)
 181{
 182	struct getset_keycode_data *d = data;
 183
 184	d->error = input_get_keycode(handle->dev, &d->ke);
 185
 186	return d->error == 0; /* stop as soon as we successfully get one */
 187}
 188
 189int getkeycode(unsigned int scancode)
 190{
 191	struct getset_keycode_data d = {
 192		.ke	= {
 193			.flags		= 0,
 194			.len		= sizeof(scancode),
 195			.keycode	= 0,
 196		},
 197		.error	= -ENODEV,
 198	};
 199
 200	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 201
 202	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
 203
 204	return d.error ?: d.ke.keycode;
 205}
 206
 207static int setkeycode_helper(struct input_handle *handle, void *data)
 208{
 209	struct getset_keycode_data *d = data;
 210
 211	d->error = input_set_keycode(handle->dev, &d->ke);
 212
 213	return d->error == 0; /* stop as soon as we successfully set one */
 214}
 215
 216int setkeycode(unsigned int scancode, unsigned int keycode)
 217{
 218	struct getset_keycode_data d = {
 219		.ke	= {
 220			.flags		= 0,
 221			.len		= sizeof(scancode),
 222			.keycode	= keycode,
 223		},
 224		.error	= -ENODEV,
 225	};
 226
 227	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 228
 229	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
 230
 231	return d.error;
 232}
 233
 234/*
 235 * Making beeps and bells. Note that we prefer beeps to bells, but when
 236 * shutting the sound off we do both.
 237 */
 238
 239static int kd_sound_helper(struct input_handle *handle, void *data)
 240{
 241	unsigned int *hz = data;
 242	struct input_dev *dev = handle->dev;
 243
 244	if (test_bit(EV_SND, dev->evbit)) {
 245		if (test_bit(SND_TONE, dev->sndbit)) {
 246			input_inject_event(handle, EV_SND, SND_TONE, *hz);
 247			if (*hz)
 248				return 0;
 249		}
 250		if (test_bit(SND_BELL, dev->sndbit))
 251			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
 252	}
 253
 254	return 0;
 255}
 256
 257static void kd_nosound(unsigned long ignored)
 258{
 259	static unsigned int zero;
 260
 261	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
 262}
 263
 264static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
 265
 266void kd_mksound(unsigned int hz, unsigned int ticks)
 267{
 268	del_timer_sync(&kd_mksound_timer);
 269
 270	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
 271
 272	if (hz && ticks)
 273		mod_timer(&kd_mksound_timer, jiffies + ticks);
 274}
 275EXPORT_SYMBOL(kd_mksound);
 276
 277/*
 278 * Setting the keyboard rate.
 279 */
 280
 281static int kbd_rate_helper(struct input_handle *handle, void *data)
 282{
 283	struct input_dev *dev = handle->dev;
 284	struct kbd_repeat *rep = data;
 285
 286	if (test_bit(EV_REP, dev->evbit)) {
 287
 288		if (rep[0].delay > 0)
 289			input_inject_event(handle,
 290					   EV_REP, REP_DELAY, rep[0].delay);
 291		if (rep[0].period > 0)
 292			input_inject_event(handle,
 293					   EV_REP, REP_PERIOD, rep[0].period);
 294
 295		rep[1].delay = dev->rep[REP_DELAY];
 296		rep[1].period = dev->rep[REP_PERIOD];
 297	}
 298
 299	return 0;
 300}
 301
 302int kbd_rate(struct kbd_repeat *rep)
 303{
 304	struct kbd_repeat data[2] = { *rep };
 305
 306	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
 307	*rep = data[1];	/* Copy currently used settings */
 308
 309	return 0;
 310}
 311
 312/*
 313 * Helper Functions.
 314 */
 315static void put_queue(struct vc_data *vc, int ch)
 316{
 317	struct tty_struct *tty = vc->port.tty;
 318
 319	if (tty) {
 320		tty_insert_flip_char(tty, ch, 0);
 321		con_schedule_flip(tty);
 322	}
 323}
 324
 325static void puts_queue(struct vc_data *vc, char *cp)
 326{
 327	struct tty_struct *tty = vc->port.tty;
 328
 329	if (!tty)
 330		return;
 331
 332	while (*cp) {
 333		tty_insert_flip_char(tty, *cp, 0);
 334		cp++;
 335	}
 336	con_schedule_flip(tty);
 337}
 338
 339static void applkey(struct vc_data *vc, int key, char mode)
 340{
 341	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
 342
 343	buf[1] = (mode ? 'O' : '[');
 344	buf[2] = key;
 345	puts_queue(vc, buf);
 346}
 347
 348/*
 349 * Many other routines do put_queue, but I think either
 350 * they produce ASCII, or they produce some user-assigned
 351 * string, and in both cases we might assume that it is
 352 * in utf-8 already.
 353 */
 354static void to_utf8(struct vc_data *vc, uint c)
 355{
 356	if (c < 0x80)
 357		/*  0******* */
 358		put_queue(vc, c);
 359	else if (c < 0x800) {
 360		/* 110***** 10****** */
 361		put_queue(vc, 0xc0 | (c >> 6));
 362		put_queue(vc, 0x80 | (c & 0x3f));
 363	} else if (c < 0x10000) {
 364		if (c >= 0xD800 && c < 0xE000)
 365			return;
 366		if (c == 0xFFFF)
 367			return;
 368		/* 1110**** 10****** 10****** */
 369		put_queue(vc, 0xe0 | (c >> 12));
 370		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 371		put_queue(vc, 0x80 | (c & 0x3f));
 372	} else if (c < 0x110000) {
 373		/* 11110*** 10****** 10****** 10****** */
 374		put_queue(vc, 0xf0 | (c >> 18));
 375		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
 376		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 377		put_queue(vc, 0x80 | (c & 0x3f));
 378	}
 379}
 380
 381/*
 382 * Called after returning from RAW mode or when changing consoles - recompute
 383 * shift_down[] and shift_state from key_down[] maybe called when keymap is
 384 * undefined, so that shiftkey release is seen
 
 385 */
 386void compute_shiftstate(void)
 
 387{
 388	unsigned int i, j, k, sym, val;
 389
 390	shift_state = 0;
 391	memset(shift_down, 0, sizeof(shift_down));
 392
 393	for (i = 0; i < ARRAY_SIZE(key_down); i++) {
 394
 395		if (!key_down[i])
 396			continue;
 397
 398		k = i * BITS_PER_LONG;
 399
 400		for (j = 0; j < BITS_PER_LONG; j++, k++) {
 401
 402			if (!test_bit(k, key_down))
 403				continue;
 404
 405			sym = U(key_maps[0][k]);
 406			if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
 407				continue;
 408
 409			val = KVAL(sym);
 410			if (val == KVAL(K_CAPSSHIFT))
 411				val = KVAL(K_SHIFT);
 412
 413			shift_down[val]++;
 414			shift_state |= (1 << val);
 415		}
 416	}
 417}
 418
 
 
 
 
 
 
 
 
 
 419/*
 420 * We have a combining character DIACR here, followed by the character CH.
 421 * If the combination occurs in the table, return the corresponding value.
 422 * Otherwise, if CH is a space or equals DIACR, return DIACR.
 423 * Otherwise, conclude that DIACR was not combining after all,
 424 * queue it and return CH.
 425 */
 426static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
 427{
 428	unsigned int d = diacr;
 429	unsigned int i;
 430
 431	diacr = 0;
 432
 433	if ((d & ~0xff) == BRL_UC_ROW) {
 434		if ((ch & ~0xff) == BRL_UC_ROW)
 435			return d | ch;
 436	} else {
 437		for (i = 0; i < accent_table_size; i++)
 438			if (accent_table[i].diacr == d && accent_table[i].base == ch)
 439				return accent_table[i].result;
 440	}
 441
 442	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
 443		return d;
 444
 445	if (kbd->kbdmode == VC_UNICODE)
 446		to_utf8(vc, d);
 447	else {
 448		int c = conv_uni_to_8bit(d);
 449		if (c != -1)
 450			put_queue(vc, c);
 451	}
 452
 453	return ch;
 454}
 455
 456/*
 457 * Special function handlers
 458 */
 459static void fn_enter(struct vc_data *vc)
 460{
 461	if (diacr) {
 462		if (kbd->kbdmode == VC_UNICODE)
 463			to_utf8(vc, diacr);
 464		else {
 465			int c = conv_uni_to_8bit(diacr);
 466			if (c != -1)
 467				put_queue(vc, c);
 468		}
 469		diacr = 0;
 470	}
 471
 472	put_queue(vc, 13);
 473	if (vc_kbd_mode(kbd, VC_CRLF))
 474		put_queue(vc, 10);
 475}
 476
 477static void fn_caps_toggle(struct vc_data *vc)
 478{
 479	if (rep)
 480		return;
 481
 482	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
 483}
 484
 485static void fn_caps_on(struct vc_data *vc)
 486{
 487	if (rep)
 488		return;
 489
 490	set_vc_kbd_led(kbd, VC_CAPSLOCK);
 491}
 492
 493static void fn_show_ptregs(struct vc_data *vc)
 494{
 495	struct pt_regs *regs = get_irq_regs();
 496
 497	if (regs)
 498		show_regs(regs);
 499}
 500
 501static void fn_hold(struct vc_data *vc)
 502{
 503	struct tty_struct *tty = vc->port.tty;
 504
 505	if (rep || !tty)
 506		return;
 507
 508	/*
 509	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
 510	 * these routines are also activated by ^S/^Q.
 511	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
 512	 */
 513	if (tty->stopped)
 514		start_tty(tty);
 515	else
 516		stop_tty(tty);
 517}
 518
 519static void fn_num(struct vc_data *vc)
 520{
 521	if (vc_kbd_mode(kbd, VC_APPLIC))
 522		applkey(vc, 'P', 1);
 523	else
 524		fn_bare_num(vc);
 525}
 526
 527/*
 528 * Bind this to Shift-NumLock if you work in application keypad mode
 529 * but want to be able to change the NumLock flag.
 530 * Bind this to NumLock if you prefer that the NumLock key always
 531 * changes the NumLock flag.
 532 */
 533static void fn_bare_num(struct vc_data *vc)
 534{
 535	if (!rep)
 536		chg_vc_kbd_led(kbd, VC_NUMLOCK);
 537}
 538
 539static void fn_lastcons(struct vc_data *vc)
 540{
 541	/* switch to the last used console, ChN */
 542	set_console(last_console);
 543}
 544
 545static void fn_dec_console(struct vc_data *vc)
 546{
 547	int i, cur = fg_console;
 548
 549	/* Currently switching?  Queue this next switch relative to that. */
 550	if (want_console != -1)
 551		cur = want_console;
 552
 553	for (i = cur - 1; i != cur; i--) {
 554		if (i == -1)
 555			i = MAX_NR_CONSOLES - 1;
 556		if (vc_cons_allocated(i))
 557			break;
 558	}
 559	set_console(i);
 560}
 561
 562static void fn_inc_console(struct vc_data *vc)
 563{
 564	int i, cur = fg_console;
 565
 566	/* Currently switching?  Queue this next switch relative to that. */
 567	if (want_console != -1)
 568		cur = want_console;
 569
 570	for (i = cur+1; i != cur; i++) {
 571		if (i == MAX_NR_CONSOLES)
 572			i = 0;
 573		if (vc_cons_allocated(i))
 574			break;
 575	}
 576	set_console(i);
 577}
 578
 579static void fn_send_intr(struct vc_data *vc)
 580{
 581	struct tty_struct *tty = vc->port.tty;
 582
 583	if (!tty)
 584		return;
 585	tty_insert_flip_char(tty, 0, TTY_BREAK);
 586	con_schedule_flip(tty);
 587}
 588
 589static void fn_scroll_forw(struct vc_data *vc)
 590{
 591	scrollfront(vc, 0);
 592}
 593
 594static void fn_scroll_back(struct vc_data *vc)
 595{
 596	scrollback(vc, 0);
 597}
 598
 599static void fn_show_mem(struct vc_data *vc)
 600{
 601	show_mem(0);
 602}
 603
 604static void fn_show_state(struct vc_data *vc)
 605{
 606	show_state();
 607}
 608
 609static void fn_boot_it(struct vc_data *vc)
 610{
 611	ctrl_alt_del();
 612}
 613
 614static void fn_compose(struct vc_data *vc)
 615{
 616	dead_key_next = true;
 617}
 618
 619static void fn_spawn_con(struct vc_data *vc)
 620{
 621	spin_lock(&vt_spawn_con.lock);
 622	if (vt_spawn_con.pid)
 623		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
 624			put_pid(vt_spawn_con.pid);
 625			vt_spawn_con.pid = NULL;
 626		}
 627	spin_unlock(&vt_spawn_con.lock);
 628}
 629
 630static void fn_SAK(struct vc_data *vc)
 631{
 632	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
 633	schedule_work(SAK_work);
 634}
 635
 636static void fn_null(struct vc_data *vc)
 637{
 638	compute_shiftstate();
 639}
 640
 641/*
 642 * Special key handlers
 643 */
 644static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
 645{
 646}
 647
 648static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
 649{
 650	if (up_flag)
 651		return;
 652	if (value >= ARRAY_SIZE(fn_handler))
 653		return;
 654	if ((kbd->kbdmode == VC_RAW ||
 655	     kbd->kbdmode == VC_MEDIUMRAW ||
 656	     kbd->kbdmode == VC_OFF) &&
 657	     value != KVAL(K_SAK))
 658		return;		/* SAK is allowed even in raw mode */
 659	fn_handler[value](vc);
 660}
 661
 662static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
 663{
 664	pr_err("k_lowercase was called - impossible\n");
 665}
 666
 667static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
 668{
 669	if (up_flag)
 670		return;		/* no action, if this is a key release */
 671
 672	if (diacr)
 673		value = handle_diacr(vc, value);
 674
 675	if (dead_key_next) {
 676		dead_key_next = false;
 677		diacr = value;
 678		return;
 679	}
 680	if (kbd->kbdmode == VC_UNICODE)
 681		to_utf8(vc, value);
 682	else {
 683		int c = conv_uni_to_8bit(value);
 684		if (c != -1)
 685			put_queue(vc, c);
 686	}
 687}
 688
 689/*
 690 * Handle dead key. Note that we now may have several
 691 * dead keys modifying the same character. Very useful
 692 * for Vietnamese.
 693 */
 694static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
 695{
 696	if (up_flag)
 697		return;
 698
 699	diacr = (diacr ? handle_diacr(vc, value) : value);
 700}
 701
 702static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
 703{
 704	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
 705}
 706
 707static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
 708{
 709	k_deadunicode(vc, value, up_flag);
 710}
 711
 712/*
 713 * Obsolete - for backwards compatibility only
 714 */
 715static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
 716{
 717	static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
 718
 719	k_deadunicode(vc, ret_diacr[value], up_flag);
 720}
 721
 722static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
 723{
 724	if (up_flag)
 725		return;
 726
 727	set_console(value);
 728}
 729
 730static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
 731{
 732	if (up_flag)
 733		return;
 734
 735	if ((unsigned)value < ARRAY_SIZE(func_table)) {
 736		if (func_table[value])
 737			puts_queue(vc, func_table[value]);
 738	} else
 739		pr_err("k_fn called with value=%d\n", value);
 740}
 741
 742static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
 743{
 744	static const char cur_chars[] = "BDCA";
 745
 746	if (up_flag)
 747		return;
 748
 749	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
 750}
 751
 752static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
 753{
 754	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
 755	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
 756
 757	if (up_flag)
 758		return;		/* no action, if this is a key release */
 759
 760	/* kludge... shift forces cursor/number keys */
 761	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
 762		applkey(vc, app_map[value], 1);
 763		return;
 764	}
 765
 766	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
 767
 768		switch (value) {
 769		case KVAL(K_PCOMMA):
 770		case KVAL(K_PDOT):
 771			k_fn(vc, KVAL(K_REMOVE), 0);
 772			return;
 773		case KVAL(K_P0):
 774			k_fn(vc, KVAL(K_INSERT), 0);
 775			return;
 776		case KVAL(K_P1):
 777			k_fn(vc, KVAL(K_SELECT), 0);
 778			return;
 779		case KVAL(K_P2):
 780			k_cur(vc, KVAL(K_DOWN), 0);
 781			return;
 782		case KVAL(K_P3):
 783			k_fn(vc, KVAL(K_PGDN), 0);
 784			return;
 785		case KVAL(K_P4):
 786			k_cur(vc, KVAL(K_LEFT), 0);
 787			return;
 788		case KVAL(K_P6):
 789			k_cur(vc, KVAL(K_RIGHT), 0);
 790			return;
 791		case KVAL(K_P7):
 792			k_fn(vc, KVAL(K_FIND), 0);
 793			return;
 794		case KVAL(K_P8):
 795			k_cur(vc, KVAL(K_UP), 0);
 796			return;
 797		case KVAL(K_P9):
 798			k_fn(vc, KVAL(K_PGUP), 0);
 799			return;
 800		case KVAL(K_P5):
 801			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
 802			return;
 803		}
 804	}
 805
 806	put_queue(vc, pad_chars[value]);
 807	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
 808		put_queue(vc, 10);
 809}
 810
 811static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
 812{
 813	int old_state = shift_state;
 814
 815	if (rep)
 816		return;
 817	/*
 818	 * Mimic typewriter:
 819	 * a CapsShift key acts like Shift but undoes CapsLock
 820	 */
 821	if (value == KVAL(K_CAPSSHIFT)) {
 822		value = KVAL(K_SHIFT);
 823		if (!up_flag)
 824			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
 825	}
 826
 827	if (up_flag) {
 828		/*
 829		 * handle the case that two shift or control
 830		 * keys are depressed simultaneously
 831		 */
 832		if (shift_down[value])
 833			shift_down[value]--;
 834	} else
 835		shift_down[value]++;
 836
 837	if (shift_down[value])
 838		shift_state |= (1 << value);
 839	else
 840		shift_state &= ~(1 << value);
 841
 842	/* kludge */
 843	if (up_flag && shift_state != old_state && npadch != -1) {
 844		if (kbd->kbdmode == VC_UNICODE)
 845			to_utf8(vc, npadch);
 846		else
 847			put_queue(vc, npadch & 0xff);
 848		npadch = -1;
 849	}
 850}
 851
 852static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
 853{
 854	if (up_flag)
 855		return;
 856
 857	if (vc_kbd_mode(kbd, VC_META)) {
 858		put_queue(vc, '\033');
 859		put_queue(vc, value);
 860	} else
 861		put_queue(vc, value | 0x80);
 862}
 863
 864static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
 865{
 866	int base;
 867
 868	if (up_flag)
 869		return;
 870
 871	if (value < 10) {
 872		/* decimal input of code, while Alt depressed */
 873		base = 10;
 874	} else {
 875		/* hexadecimal input of code, while AltGr depressed */
 876		value -= 10;
 877		base = 16;
 878	}
 879
 880	if (npadch == -1)
 881		npadch = value;
 882	else
 883		npadch = npadch * base + value;
 884}
 885
 886static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
 887{
 888	if (up_flag || rep)
 889		return;
 890
 891	chg_vc_kbd_lock(kbd, value);
 892}
 893
 894static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
 895{
 896	k_shift(vc, value, up_flag);
 897	if (up_flag || rep)
 898		return;
 899
 900	chg_vc_kbd_slock(kbd, value);
 901	/* try to make Alt, oops, AltGr and such work */
 902	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
 903		kbd->slockstate = 0;
 904		chg_vc_kbd_slock(kbd, value);
 905	}
 906}
 907
 908/* by default, 300ms interval for combination release */
 909static unsigned brl_timeout = 300;
 910MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
 911module_param(brl_timeout, uint, 0644);
 912
 913static unsigned brl_nbchords = 1;
 914MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
 915module_param(brl_nbchords, uint, 0644);
 916
 917static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
 918{
 919	static unsigned long chords;
 920	static unsigned committed;
 921
 922	if (!brl_nbchords)
 923		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
 924	else {
 925		committed |= pattern;
 926		chords++;
 927		if (chords == brl_nbchords) {
 928			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
 929			chords = 0;
 930			committed = 0;
 931		}
 932	}
 933}
 934
 935static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
 936{
 937	static unsigned pressed, committing;
 938	static unsigned long releasestart;
 939
 940	if (kbd->kbdmode != VC_UNICODE) {
 941		if (!up_flag)
 942			pr_warning("keyboard mode must be unicode for braille patterns\n");
 943		return;
 944	}
 945
 946	if (!value) {
 947		k_unicode(vc, BRL_UC_ROW, up_flag);
 948		return;
 949	}
 950
 951	if (value > 8)
 952		return;
 953
 954	if (!up_flag) {
 955		pressed |= 1 << (value - 1);
 956		if (!brl_timeout)
 957			committing = pressed;
 958	} else if (brl_timeout) {
 959		if (!committing ||
 960		    time_after(jiffies,
 961			       releasestart + msecs_to_jiffies(brl_timeout))) {
 962			committing = pressed;
 963			releasestart = jiffies;
 964		}
 965		pressed &= ~(1 << (value - 1));
 966		if (!pressed && committing) {
 967			k_brlcommit(vc, committing, 0);
 968			committing = 0;
 969		}
 970	} else {
 971		if (committing) {
 972			k_brlcommit(vc, committing, 0);
 973			committing = 0;
 974		}
 975		pressed &= ~(1 << (value - 1));
 976	}
 977}
 978
 979/*
 980 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
 981 * or (ii) whatever pattern of lights people want to show using KDSETLED,
 982 * or (iii) specified bits of specified words in kernel memory.
 983 */
 984unsigned char getledstate(void)
 985{
 986	return ledstate;
 987}
 988
 989void setledstate(struct kbd_struct *kbd, unsigned int led)
 990{
 
 
 991	if (!(led & ~7)) {
 992		ledioctl = led;
 993		kbd->ledmode = LED_SHOW_IOCTL;
 994	} else
 995		kbd->ledmode = LED_SHOW_FLAGS;
 996
 997	set_leds();
 
 998}
 999
1000static inline unsigned char getleds(void)
1001{
1002	struct kbd_struct *kbd = kbd_table + fg_console;
1003	unsigned char leds;
1004	int i;
1005
1006	if (kbd->ledmode == LED_SHOW_IOCTL)
1007		return ledioctl;
1008
1009	leds = kbd->ledflagstate;
1010
1011	if (kbd->ledmode == LED_SHOW_MEM) {
1012		for (i = 0; i < 3; i++)
1013			if (ledptrs[i].valid) {
1014				if (*ledptrs[i].addr & ledptrs[i].mask)
1015					leds |= (1 << i);
1016				else
1017					leds &= ~(1 << i);
1018			}
1019	}
1020	return leds;
1021}
1022
1023static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1024{
1025	unsigned char leds = *(unsigned char *)data;
1026
1027	if (test_bit(EV_LED, handle->dev->evbit)) {
1028		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1029		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1030		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1031		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1032	}
1033
1034	return 0;
1035}
1036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037/*
1038 * This is the tasklet that updates LED state on all keyboards
1039 * attached to the box. The reason we use tasklet is that we
1040 * need to handle the scenario when keyboard handler is not
1041 * registered yet but we already getting updates form VT to
1042 * update led state.
1043 */
1044static void kbd_bh(unsigned long dummy)
1045{
1046	unsigned char leds = getleds();
1047
1048	if (leds != ledstate) {
1049		input_handler_for_each_handle(&kbd_handler, &leds,
1050					      kbd_update_leds_helper);
1051		ledstate = leds;
1052	}
1053}
1054
1055DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1056
1057#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1058    defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1059    defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1060    (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1061    defined(CONFIG_AVR32)
1062
1063#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1064			((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1065
1066static const unsigned short x86_keycodes[256] =
1067	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1068	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1069	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1070	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1071	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1072	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1073	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1074	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1075	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1076	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1077	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1078	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1079	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1080	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1081	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1082
1083#ifdef CONFIG_SPARC
1084static int sparc_l1_a_state;
1085extern void sun_do_break(void);
1086#endif
1087
1088static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1089		       unsigned char up_flag)
1090{
1091	int code;
1092
1093	switch (keycode) {
1094
1095	case KEY_PAUSE:
1096		put_queue(vc, 0xe1);
1097		put_queue(vc, 0x1d | up_flag);
1098		put_queue(vc, 0x45 | up_flag);
1099		break;
1100
1101	case KEY_HANGEUL:
1102		if (!up_flag)
1103			put_queue(vc, 0xf2);
1104		break;
1105
1106	case KEY_HANJA:
1107		if (!up_flag)
1108			put_queue(vc, 0xf1);
1109		break;
1110
1111	case KEY_SYSRQ:
1112		/*
1113		 * Real AT keyboards (that's what we're trying
1114		 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1115		 * pressing PrtSc/SysRq alone, but simply 0x54
1116		 * when pressing Alt+PrtSc/SysRq.
1117		 */
1118		if (test_bit(KEY_LEFTALT, key_down) ||
1119		    test_bit(KEY_RIGHTALT, key_down)) {
1120			put_queue(vc, 0x54 | up_flag);
1121		} else {
1122			put_queue(vc, 0xe0);
1123			put_queue(vc, 0x2a | up_flag);
1124			put_queue(vc, 0xe0);
1125			put_queue(vc, 0x37 | up_flag);
1126		}
1127		break;
1128
1129	default:
1130		if (keycode > 255)
1131			return -1;
1132
1133		code = x86_keycodes[keycode];
1134		if (!code)
1135			return -1;
1136
1137		if (code & 0x100)
1138			put_queue(vc, 0xe0);
1139		put_queue(vc, (code & 0x7f) | up_flag);
1140
1141		break;
1142	}
1143
1144	return 0;
1145}
1146
1147#else
1148
1149#define HW_RAW(dev)	0
1150
1151static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1152{
1153	if (keycode > 127)
1154		return -1;
1155
1156	put_queue(vc, keycode | up_flag);
1157	return 0;
1158}
1159#endif
1160
1161static void kbd_rawcode(unsigned char data)
1162{
1163	struct vc_data *vc = vc_cons[fg_console].d;
1164
1165	kbd = kbd_table + vc->vc_num;
1166	if (kbd->kbdmode == VC_RAW)
1167		put_queue(vc, data);
1168}
1169
1170static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1171{
1172	struct vc_data *vc = vc_cons[fg_console].d;
1173	unsigned short keysym, *key_map;
1174	unsigned char type;
1175	bool raw_mode;
1176	struct tty_struct *tty;
1177	int shift_final;
1178	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1179	int rc;
1180
1181	tty = vc->port.tty;
1182
1183	if (tty && (!tty->driver_data)) {
1184		/* No driver data? Strange. Okay we fix it then. */
1185		tty->driver_data = vc;
1186	}
1187
1188	kbd = kbd_table + vc->vc_num;
1189
1190#ifdef CONFIG_SPARC
1191	if (keycode == KEY_STOP)
1192		sparc_l1_a_state = down;
1193#endif
1194
1195	rep = (down == 2);
1196
1197	raw_mode = (kbd->kbdmode == VC_RAW);
1198	if (raw_mode && !hw_raw)
1199		if (emulate_raw(vc, keycode, !down << 7))
1200			if (keycode < BTN_MISC && printk_ratelimit())
1201				pr_warning("can't emulate rawmode for keycode %d\n",
1202					   keycode);
1203
1204#ifdef CONFIG_SPARC
1205	if (keycode == KEY_A && sparc_l1_a_state) {
1206		sparc_l1_a_state = false;
1207		sun_do_break();
1208	}
1209#endif
1210
1211	if (kbd->kbdmode == VC_MEDIUMRAW) {
1212		/*
1213		 * This is extended medium raw mode, with keys above 127
1214		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1215		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1216		 * interfere with anything else. The two bytes after 0 will
1217		 * always have the up flag set not to interfere with older
1218		 * applications. This allows for 16384 different keycodes,
1219		 * which should be enough.
1220		 */
1221		if (keycode < 128) {
1222			put_queue(vc, keycode | (!down << 7));
1223		} else {
1224			put_queue(vc, !down << 7);
1225			put_queue(vc, (keycode >> 7) | 0x80);
1226			put_queue(vc, keycode | 0x80);
1227		}
1228		raw_mode = true;
1229	}
1230
1231	if (down)
1232		set_bit(keycode, key_down);
1233	else
1234		clear_bit(keycode, key_down);
1235
1236	if (rep &&
1237	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1238	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1239		/*
1240		 * Don't repeat a key if the input buffers are not empty and the
1241		 * characters get aren't echoed locally. This makes key repeat
1242		 * usable with slow applications and under heavy loads.
1243		 */
1244		return;
1245	}
1246
1247	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1248	param.ledstate = kbd->ledflagstate;
1249	key_map = key_maps[shift_final];
1250
1251	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1252					KBD_KEYCODE, &param);
1253	if (rc == NOTIFY_STOP || !key_map) {
1254		atomic_notifier_call_chain(&keyboard_notifier_list,
1255					   KBD_UNBOUND_KEYCODE, &param);
1256		compute_shiftstate();
1257		kbd->slockstate = 0;
1258		return;
1259	}
1260
1261	if (keycode < NR_KEYS)
1262		keysym = key_map[keycode];
1263	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1264		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1265	else
1266		return;
1267
1268	type = KTYP(keysym);
1269
1270	if (type < 0xf0) {
1271		param.value = keysym;
1272		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1273						KBD_UNICODE, &param);
1274		if (rc != NOTIFY_STOP)
1275			if (down && !raw_mode)
1276				to_utf8(vc, keysym);
1277		return;
1278	}
1279
1280	type -= 0xf0;
1281
1282	if (type == KT_LETTER) {
1283		type = KT_LATIN;
1284		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1285			key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1286			if (key_map)
1287				keysym = key_map[keycode];
1288		}
1289	}
1290
1291	param.value = keysym;
1292	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1293					KBD_KEYSYM, &param);
1294	if (rc == NOTIFY_STOP)
1295		return;
1296
1297	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1298		return;
1299
1300	(*k_handler[type])(vc, keysym & 0xff, !down);
1301
1302	param.ledstate = kbd->ledflagstate;
1303	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1304
1305	if (type != KT_SLOCK)
1306		kbd->slockstate = 0;
1307}
1308
1309static void kbd_event(struct input_handle *handle, unsigned int event_type,
1310		      unsigned int event_code, int value)
1311{
1312	/* We are called with interrupts disabled, just take the lock */
1313	spin_lock(&kbd_event_lock);
1314
1315	if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1316		kbd_rawcode(value);
1317	if (event_type == EV_KEY)
1318		kbd_keycode(event_code, value, HW_RAW(handle->dev));
1319
1320	spin_unlock(&kbd_event_lock);
1321
1322	tasklet_schedule(&keyboard_tasklet);
1323	do_poke_blanked_console = 1;
1324	schedule_console_callback();
1325}
1326
1327static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1328{
1329	int i;
1330
1331	if (test_bit(EV_SND, dev->evbit))
1332		return true;
1333
1334	if (test_bit(EV_KEY, dev->evbit)) {
1335		for (i = KEY_RESERVED; i < BTN_MISC; i++)
1336			if (test_bit(i, dev->keybit))
1337				return true;
1338		for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1339			if (test_bit(i, dev->keybit))
1340				return true;
1341	}
1342
1343	return false;
1344}
1345
1346/*
1347 * When a keyboard (or other input device) is found, the kbd_connect
1348 * function is called. The function then looks at the device, and if it
1349 * likes it, it can open it and get events from it. In this (kbd_connect)
1350 * function, we should decide which VT to bind that keyboard to initially.
1351 */
1352static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1353			const struct input_device_id *id)
1354{
1355	struct input_handle *handle;
1356	int error;
1357
1358	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1359	if (!handle)
1360		return -ENOMEM;
1361
1362	handle->dev = dev;
1363	handle->handler = handler;
1364	handle->name = "kbd";
1365
1366	error = input_register_handle(handle);
1367	if (error)
1368		goto err_free_handle;
1369
1370	error = input_open_device(handle);
1371	if (error)
1372		goto err_unregister_handle;
1373
1374	return 0;
1375
1376 err_unregister_handle:
1377	input_unregister_handle(handle);
1378 err_free_handle:
1379	kfree(handle);
1380	return error;
1381}
1382
1383static void kbd_disconnect(struct input_handle *handle)
1384{
1385	input_close_device(handle);
1386	input_unregister_handle(handle);
1387	kfree(handle);
1388}
1389
1390/*
1391 * Start keyboard handler on the new keyboard by refreshing LED state to
1392 * match the rest of the system.
1393 */
1394static void kbd_start(struct input_handle *handle)
1395{
1396	tasklet_disable(&keyboard_tasklet);
1397
1398	if (ledstate != 0xff)
1399		kbd_update_leds_helper(handle, &ledstate);
1400
1401	tasklet_enable(&keyboard_tasklet);
1402}
1403
1404static const struct input_device_id kbd_ids[] = {
1405	{
1406                .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1407                .evbit = { BIT_MASK(EV_KEY) },
1408        },
1409
1410	{
1411                .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1412                .evbit = { BIT_MASK(EV_SND) },
1413        },
1414
1415	{ },    /* Terminating entry */
1416};
1417
1418MODULE_DEVICE_TABLE(input, kbd_ids);
1419
1420static struct input_handler kbd_handler = {
1421	.event		= kbd_event,
1422	.match		= kbd_match,
1423	.connect	= kbd_connect,
1424	.disconnect	= kbd_disconnect,
1425	.start		= kbd_start,
1426	.name		= "kbd",
1427	.id_table	= kbd_ids,
1428};
1429
1430int __init kbd_init(void)
1431{
1432	int i;
1433	int error;
1434
1435        for (i = 0; i < MAX_NR_CONSOLES; i++) {
1436		kbd_table[i].ledflagstate = KBD_DEFLEDS;
1437		kbd_table[i].default_ledflagstate = KBD_DEFLEDS;
1438		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1439		kbd_table[i].lockstate = KBD_DEFLOCK;
1440		kbd_table[i].slockstate = 0;
1441		kbd_table[i].modeflags = KBD_DEFMODE;
1442		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1443	}
1444
1445	error = input_register_handler(&kbd_handler);
1446	if (error)
1447		return error;
1448
1449	tasklet_enable(&keyboard_tasklet);
1450	tasklet_schedule(&keyboard_tasklet);
1451
1452	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453}
v3.5.6
   1/*
   2 * Written for linux by Johan Myreen as a translation from
   3 * the assembly version by Linus (with diacriticals added)
   4 *
   5 * Some additional features added by Christoph Niemann (ChN), March 1993
   6 *
   7 * Loadable keymaps by Risto Kankkunen, May 1993
   8 *
   9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  10 * Added decr/incr_console, dynamic keymaps, Unicode support,
  11 * dynamic function/string keys, led setting,  Sept 1994
  12 * `Sticky' modifier keys, 951006.
  13 *
  14 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  15 *
  16 * Modified to provide 'generic' keyboard support by Hamish Macdonald
  17 * Merge with the m68k keyboard driver and split-off of the PC low-level
  18 * parts by Geert Uytterhoeven, May 1997
  19 *
  20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  21 * 30-07-98: Dead keys redone, aeb@cwi.nl.
  22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  23 */
  24
  25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26
  27#include <linux/consolemap.h>
  28#include <linux/module.h>
  29#include <linux/sched.h>
  30#include <linux/tty.h>
  31#include <linux/tty_flip.h>
  32#include <linux/mm.h>
  33#include <linux/string.h>
  34#include <linux/init.h>
  35#include <linux/slab.h>
 
  36
  37#include <linux/kbd_kern.h>
  38#include <linux/kbd_diacr.h>
  39#include <linux/vt_kern.h>
  40#include <linux/input.h>
  41#include <linux/reboot.h>
  42#include <linux/notifier.h>
  43#include <linux/jiffies.h>
  44#include <linux/uaccess.h>
  45
  46#include <asm/irq_regs.h>
  47
  48extern void ctrl_alt_del(void);
  49
  50/*
  51 * Exported functions/variables
  52 */
  53
  54#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
  55
  56#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
  57#include <asm/kbdleds.h>
 
 
 
 
 
 
 
  58#else
  59static inline int kbd_defleds(void)
  60{
  61	return 0;
  62}
  63#endif
  64
  65#define KBD_DEFLOCK 0
  66
 
 
  67/*
  68 * Handler Tables.
  69 */
  70
  71#define K_HANDLERS\
  72	k_self,		k_fn,		k_spec,		k_pad,\
  73	k_dead,		k_cons,		k_cur,		k_shift,\
  74	k_meta,		k_ascii,	k_lock,		k_lowercase,\
  75	k_slock,	k_dead2,	k_brl,		k_ignore
  76
  77typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  78			    char up_flag);
  79static k_handler_fn K_HANDLERS;
  80static k_handler_fn *k_handler[16] = { K_HANDLERS };
  81
  82#define FN_HANDLERS\
  83	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
  84	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
  85	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
  86	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
  87	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
  88
  89typedef void (fn_handler_fn)(struct vc_data *vc);
  90static fn_handler_fn FN_HANDLERS;
  91static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  92
  93/*
  94 * Variables exported for vt_ioctl.c
  95 */
  96
 
 
 
 
 
 
 
 
 
 
 
 
 
  97struct vt_spawn_console vt_spawn_con = {
  98	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
  99	.pid  = NULL,
 100	.sig  = 0,
 101};
 102
 
 
 
 
 
 103
 104/*
 105 * Internal Data.
 106 */
 107
 108static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
 109static struct kbd_struct *kbd = kbd_table;
 110
 111/* maximum values each key_handler can handle */
 112static const int max_vals[] = {
 113	255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
 114	NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
 115	255, NR_LOCK - 1, 255, NR_BRL - 1
 116};
 117
 118static const int NR_TYPES = ARRAY_SIZE(max_vals);
 119
 120static struct input_handler kbd_handler;
 121static DEFINE_SPINLOCK(kbd_event_lock);
 122static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */
 123static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
 124static bool dead_key_next;
 125static int npadch = -1;					/* -1 or number assembled on pad */
 126static unsigned int diacr;
 127static char rep;					/* flag telling character repeat */
 128
 129static int shift_state = 0;
 130
 131static unsigned char ledstate = 0xff;			/* undefined */
 132static unsigned char ledioctl;
 133
 134static struct ledptr {
 135	unsigned int *addr;
 136	unsigned int mask;
 137	unsigned char valid:1;
 138} ledptrs[3];
 139
 140/*
 141 * Notifier list for console keyboard events
 142 */
 143static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
 144
 145int register_keyboard_notifier(struct notifier_block *nb)
 146{
 147	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
 148}
 149EXPORT_SYMBOL_GPL(register_keyboard_notifier);
 150
 151int unregister_keyboard_notifier(struct notifier_block *nb)
 152{
 153	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
 154}
 155EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
 156
 157/*
 158 * Translation of scancodes to keycodes. We set them on only the first
 159 * keyboard in the list that accepts the scancode and keycode.
 160 * Explanation for not choosing the first attached keyboard anymore:
 161 *  USB keyboards for example have two event devices: one for all "normal"
 162 *  keys and one for extra function keys (like "volume up", "make coffee",
 163 *  etc.). So this means that scancodes for the extra function keys won't
 164 *  be valid for the first event device, but will be for the second.
 165 */
 166
 167struct getset_keycode_data {
 168	struct input_keymap_entry ke;
 169	int error;
 170};
 171
 172static int getkeycode_helper(struct input_handle *handle, void *data)
 173{
 174	struct getset_keycode_data *d = data;
 175
 176	d->error = input_get_keycode(handle->dev, &d->ke);
 177
 178	return d->error == 0; /* stop as soon as we successfully get one */
 179}
 180
 181static int getkeycode(unsigned int scancode)
 182{
 183	struct getset_keycode_data d = {
 184		.ke	= {
 185			.flags		= 0,
 186			.len		= sizeof(scancode),
 187			.keycode	= 0,
 188		},
 189		.error	= -ENODEV,
 190	};
 191
 192	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 193
 194	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
 195
 196	return d.error ?: d.ke.keycode;
 197}
 198
 199static int setkeycode_helper(struct input_handle *handle, void *data)
 200{
 201	struct getset_keycode_data *d = data;
 202
 203	d->error = input_set_keycode(handle->dev, &d->ke);
 204
 205	return d->error == 0; /* stop as soon as we successfully set one */
 206}
 207
 208static int setkeycode(unsigned int scancode, unsigned int keycode)
 209{
 210	struct getset_keycode_data d = {
 211		.ke	= {
 212			.flags		= 0,
 213			.len		= sizeof(scancode),
 214			.keycode	= keycode,
 215		},
 216		.error	= -ENODEV,
 217	};
 218
 219	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 220
 221	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
 222
 223	return d.error;
 224}
 225
 226/*
 227 * Making beeps and bells. Note that we prefer beeps to bells, but when
 228 * shutting the sound off we do both.
 229 */
 230
 231static int kd_sound_helper(struct input_handle *handle, void *data)
 232{
 233	unsigned int *hz = data;
 234	struct input_dev *dev = handle->dev;
 235
 236	if (test_bit(EV_SND, dev->evbit)) {
 237		if (test_bit(SND_TONE, dev->sndbit)) {
 238			input_inject_event(handle, EV_SND, SND_TONE, *hz);
 239			if (*hz)
 240				return 0;
 241		}
 242		if (test_bit(SND_BELL, dev->sndbit))
 243			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
 244	}
 245
 246	return 0;
 247}
 248
 249static void kd_nosound(unsigned long ignored)
 250{
 251	static unsigned int zero;
 252
 253	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
 254}
 255
 256static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
 257
 258void kd_mksound(unsigned int hz, unsigned int ticks)
 259{
 260	del_timer_sync(&kd_mksound_timer);
 261
 262	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
 263
 264	if (hz && ticks)
 265		mod_timer(&kd_mksound_timer, jiffies + ticks);
 266}
 267EXPORT_SYMBOL(kd_mksound);
 268
 269/*
 270 * Setting the keyboard rate.
 271 */
 272
 273static int kbd_rate_helper(struct input_handle *handle, void *data)
 274{
 275	struct input_dev *dev = handle->dev;
 276	struct kbd_repeat *rep = data;
 277
 278	if (test_bit(EV_REP, dev->evbit)) {
 279
 280		if (rep[0].delay > 0)
 281			input_inject_event(handle,
 282					   EV_REP, REP_DELAY, rep[0].delay);
 283		if (rep[0].period > 0)
 284			input_inject_event(handle,
 285					   EV_REP, REP_PERIOD, rep[0].period);
 286
 287		rep[1].delay = dev->rep[REP_DELAY];
 288		rep[1].period = dev->rep[REP_PERIOD];
 289	}
 290
 291	return 0;
 292}
 293
 294int kbd_rate(struct kbd_repeat *rep)
 295{
 296	struct kbd_repeat data[2] = { *rep };
 297
 298	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
 299	*rep = data[1];	/* Copy currently used settings */
 300
 301	return 0;
 302}
 303
 304/*
 305 * Helper Functions.
 306 */
 307static void put_queue(struct vc_data *vc, int ch)
 308{
 309	struct tty_struct *tty = vc->port.tty;
 310
 311	if (tty) {
 312		tty_insert_flip_char(tty, ch, 0);
 313		con_schedule_flip(tty);
 314	}
 315}
 316
 317static void puts_queue(struct vc_data *vc, char *cp)
 318{
 319	struct tty_struct *tty = vc->port.tty;
 320
 321	if (!tty)
 322		return;
 323
 324	while (*cp) {
 325		tty_insert_flip_char(tty, *cp, 0);
 326		cp++;
 327	}
 328	con_schedule_flip(tty);
 329}
 330
 331static void applkey(struct vc_data *vc, int key, char mode)
 332{
 333	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
 334
 335	buf[1] = (mode ? 'O' : '[');
 336	buf[2] = key;
 337	puts_queue(vc, buf);
 338}
 339
 340/*
 341 * Many other routines do put_queue, but I think either
 342 * they produce ASCII, or they produce some user-assigned
 343 * string, and in both cases we might assume that it is
 344 * in utf-8 already.
 345 */
 346static void to_utf8(struct vc_data *vc, uint c)
 347{
 348	if (c < 0x80)
 349		/*  0******* */
 350		put_queue(vc, c);
 351	else if (c < 0x800) {
 352		/* 110***** 10****** */
 353		put_queue(vc, 0xc0 | (c >> 6));
 354		put_queue(vc, 0x80 | (c & 0x3f));
 355	} else if (c < 0x10000) {
 356		if (c >= 0xD800 && c < 0xE000)
 357			return;
 358		if (c == 0xFFFF)
 359			return;
 360		/* 1110**** 10****** 10****** */
 361		put_queue(vc, 0xe0 | (c >> 12));
 362		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 363		put_queue(vc, 0x80 | (c & 0x3f));
 364	} else if (c < 0x110000) {
 365		/* 11110*** 10****** 10****** 10****** */
 366		put_queue(vc, 0xf0 | (c >> 18));
 367		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
 368		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 369		put_queue(vc, 0x80 | (c & 0x3f));
 370	}
 371}
 372
 373/*
 374 * Called after returning from RAW mode or when changing consoles - recompute
 375 * shift_down[] and shift_state from key_down[] maybe called when keymap is
 376 * undefined, so that shiftkey release is seen. The caller must hold the
 377 * kbd_event_lock.
 378 */
 379
 380static void do_compute_shiftstate(void)
 381{
 382	unsigned int i, j, k, sym, val;
 383
 384	shift_state = 0;
 385	memset(shift_down, 0, sizeof(shift_down));
 386
 387	for (i = 0; i < ARRAY_SIZE(key_down); i++) {
 388
 389		if (!key_down[i])
 390			continue;
 391
 392		k = i * BITS_PER_LONG;
 393
 394		for (j = 0; j < BITS_PER_LONG; j++, k++) {
 395
 396			if (!test_bit(k, key_down))
 397				continue;
 398
 399			sym = U(key_maps[0][k]);
 400			if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
 401				continue;
 402
 403			val = KVAL(sym);
 404			if (val == KVAL(K_CAPSSHIFT))
 405				val = KVAL(K_SHIFT);
 406
 407			shift_down[val]++;
 408			shift_state |= (1 << val);
 409		}
 410	}
 411}
 412
 413/* We still have to export this method to vt.c */
 414void compute_shiftstate(void)
 415{
 416	unsigned long flags;
 417	spin_lock_irqsave(&kbd_event_lock, flags);
 418	do_compute_shiftstate();
 419	spin_unlock_irqrestore(&kbd_event_lock, flags);
 420}
 421
 422/*
 423 * We have a combining character DIACR here, followed by the character CH.
 424 * If the combination occurs in the table, return the corresponding value.
 425 * Otherwise, if CH is a space or equals DIACR, return DIACR.
 426 * Otherwise, conclude that DIACR was not combining after all,
 427 * queue it and return CH.
 428 */
 429static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
 430{
 431	unsigned int d = diacr;
 432	unsigned int i;
 433
 434	diacr = 0;
 435
 436	if ((d & ~0xff) == BRL_UC_ROW) {
 437		if ((ch & ~0xff) == BRL_UC_ROW)
 438			return d | ch;
 439	} else {
 440		for (i = 0; i < accent_table_size; i++)
 441			if (accent_table[i].diacr == d && accent_table[i].base == ch)
 442				return accent_table[i].result;
 443	}
 444
 445	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
 446		return d;
 447
 448	if (kbd->kbdmode == VC_UNICODE)
 449		to_utf8(vc, d);
 450	else {
 451		int c = conv_uni_to_8bit(d);
 452		if (c != -1)
 453			put_queue(vc, c);
 454	}
 455
 456	return ch;
 457}
 458
 459/*
 460 * Special function handlers
 461 */
 462static void fn_enter(struct vc_data *vc)
 463{
 464	if (diacr) {
 465		if (kbd->kbdmode == VC_UNICODE)
 466			to_utf8(vc, diacr);
 467		else {
 468			int c = conv_uni_to_8bit(diacr);
 469			if (c != -1)
 470				put_queue(vc, c);
 471		}
 472		diacr = 0;
 473	}
 474
 475	put_queue(vc, 13);
 476	if (vc_kbd_mode(kbd, VC_CRLF))
 477		put_queue(vc, 10);
 478}
 479
 480static void fn_caps_toggle(struct vc_data *vc)
 481{
 482	if (rep)
 483		return;
 484
 485	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
 486}
 487
 488static void fn_caps_on(struct vc_data *vc)
 489{
 490	if (rep)
 491		return;
 492
 493	set_vc_kbd_led(kbd, VC_CAPSLOCK);
 494}
 495
 496static void fn_show_ptregs(struct vc_data *vc)
 497{
 498	struct pt_regs *regs = get_irq_regs();
 499
 500	if (regs)
 501		show_regs(regs);
 502}
 503
 504static void fn_hold(struct vc_data *vc)
 505{
 506	struct tty_struct *tty = vc->port.tty;
 507
 508	if (rep || !tty)
 509		return;
 510
 511	/*
 512	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
 513	 * these routines are also activated by ^S/^Q.
 514	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
 515	 */
 516	if (tty->stopped)
 517		start_tty(tty);
 518	else
 519		stop_tty(tty);
 520}
 521
 522static void fn_num(struct vc_data *vc)
 523{
 524	if (vc_kbd_mode(kbd, VC_APPLIC))
 525		applkey(vc, 'P', 1);
 526	else
 527		fn_bare_num(vc);
 528}
 529
 530/*
 531 * Bind this to Shift-NumLock if you work in application keypad mode
 532 * but want to be able to change the NumLock flag.
 533 * Bind this to NumLock if you prefer that the NumLock key always
 534 * changes the NumLock flag.
 535 */
 536static void fn_bare_num(struct vc_data *vc)
 537{
 538	if (!rep)
 539		chg_vc_kbd_led(kbd, VC_NUMLOCK);
 540}
 541
 542static void fn_lastcons(struct vc_data *vc)
 543{
 544	/* switch to the last used console, ChN */
 545	set_console(last_console);
 546}
 547
 548static void fn_dec_console(struct vc_data *vc)
 549{
 550	int i, cur = fg_console;
 551
 552	/* Currently switching?  Queue this next switch relative to that. */
 553	if (want_console != -1)
 554		cur = want_console;
 555
 556	for (i = cur - 1; i != cur; i--) {
 557		if (i == -1)
 558			i = MAX_NR_CONSOLES - 1;
 559		if (vc_cons_allocated(i))
 560			break;
 561	}
 562	set_console(i);
 563}
 564
 565static void fn_inc_console(struct vc_data *vc)
 566{
 567	int i, cur = fg_console;
 568
 569	/* Currently switching?  Queue this next switch relative to that. */
 570	if (want_console != -1)
 571		cur = want_console;
 572
 573	for (i = cur+1; i != cur; i++) {
 574		if (i == MAX_NR_CONSOLES)
 575			i = 0;
 576		if (vc_cons_allocated(i))
 577			break;
 578	}
 579	set_console(i);
 580}
 581
 582static void fn_send_intr(struct vc_data *vc)
 583{
 584	struct tty_struct *tty = vc->port.tty;
 585
 586	if (!tty)
 587		return;
 588	tty_insert_flip_char(tty, 0, TTY_BREAK);
 589	con_schedule_flip(tty);
 590}
 591
 592static void fn_scroll_forw(struct vc_data *vc)
 593{
 594	scrollfront(vc, 0);
 595}
 596
 597static void fn_scroll_back(struct vc_data *vc)
 598{
 599	scrollback(vc, 0);
 600}
 601
 602static void fn_show_mem(struct vc_data *vc)
 603{
 604	show_mem(0);
 605}
 606
 607static void fn_show_state(struct vc_data *vc)
 608{
 609	show_state();
 610}
 611
 612static void fn_boot_it(struct vc_data *vc)
 613{
 614	ctrl_alt_del();
 615}
 616
 617static void fn_compose(struct vc_data *vc)
 618{
 619	dead_key_next = true;
 620}
 621
 622static void fn_spawn_con(struct vc_data *vc)
 623{
 624	spin_lock(&vt_spawn_con.lock);
 625	if (vt_spawn_con.pid)
 626		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
 627			put_pid(vt_spawn_con.pid);
 628			vt_spawn_con.pid = NULL;
 629		}
 630	spin_unlock(&vt_spawn_con.lock);
 631}
 632
 633static void fn_SAK(struct vc_data *vc)
 634{
 635	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
 636	schedule_work(SAK_work);
 637}
 638
 639static void fn_null(struct vc_data *vc)
 640{
 641	do_compute_shiftstate();
 642}
 643
 644/*
 645 * Special key handlers
 646 */
 647static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
 648{
 649}
 650
 651static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
 652{
 653	if (up_flag)
 654		return;
 655	if (value >= ARRAY_SIZE(fn_handler))
 656		return;
 657	if ((kbd->kbdmode == VC_RAW ||
 658	     kbd->kbdmode == VC_MEDIUMRAW ||
 659	     kbd->kbdmode == VC_OFF) &&
 660	     value != KVAL(K_SAK))
 661		return;		/* SAK is allowed even in raw mode */
 662	fn_handler[value](vc);
 663}
 664
 665static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
 666{
 667	pr_err("k_lowercase was called - impossible\n");
 668}
 669
 670static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
 671{
 672	if (up_flag)
 673		return;		/* no action, if this is a key release */
 674
 675	if (diacr)
 676		value = handle_diacr(vc, value);
 677
 678	if (dead_key_next) {
 679		dead_key_next = false;
 680		diacr = value;
 681		return;
 682	}
 683	if (kbd->kbdmode == VC_UNICODE)
 684		to_utf8(vc, value);
 685	else {
 686		int c = conv_uni_to_8bit(value);
 687		if (c != -1)
 688			put_queue(vc, c);
 689	}
 690}
 691
 692/*
 693 * Handle dead key. Note that we now may have several
 694 * dead keys modifying the same character. Very useful
 695 * for Vietnamese.
 696 */
 697static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
 698{
 699	if (up_flag)
 700		return;
 701
 702	diacr = (diacr ? handle_diacr(vc, value) : value);
 703}
 704
 705static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
 706{
 707	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
 708}
 709
 710static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
 711{
 712	k_deadunicode(vc, value, up_flag);
 713}
 714
 715/*
 716 * Obsolete - for backwards compatibility only
 717 */
 718static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
 719{
 720	static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
 721
 722	k_deadunicode(vc, ret_diacr[value], up_flag);
 723}
 724
 725static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
 726{
 727	if (up_flag)
 728		return;
 729
 730	set_console(value);
 731}
 732
 733static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
 734{
 735	if (up_flag)
 736		return;
 737
 738	if ((unsigned)value < ARRAY_SIZE(func_table)) {
 739		if (func_table[value])
 740			puts_queue(vc, func_table[value]);
 741	} else
 742		pr_err("k_fn called with value=%d\n", value);
 743}
 744
 745static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
 746{
 747	static const char cur_chars[] = "BDCA";
 748
 749	if (up_flag)
 750		return;
 751
 752	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
 753}
 754
 755static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
 756{
 757	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
 758	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
 759
 760	if (up_flag)
 761		return;		/* no action, if this is a key release */
 762
 763	/* kludge... shift forces cursor/number keys */
 764	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
 765		applkey(vc, app_map[value], 1);
 766		return;
 767	}
 768
 769	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
 770
 771		switch (value) {
 772		case KVAL(K_PCOMMA):
 773		case KVAL(K_PDOT):
 774			k_fn(vc, KVAL(K_REMOVE), 0);
 775			return;
 776		case KVAL(K_P0):
 777			k_fn(vc, KVAL(K_INSERT), 0);
 778			return;
 779		case KVAL(K_P1):
 780			k_fn(vc, KVAL(K_SELECT), 0);
 781			return;
 782		case KVAL(K_P2):
 783			k_cur(vc, KVAL(K_DOWN), 0);
 784			return;
 785		case KVAL(K_P3):
 786			k_fn(vc, KVAL(K_PGDN), 0);
 787			return;
 788		case KVAL(K_P4):
 789			k_cur(vc, KVAL(K_LEFT), 0);
 790			return;
 791		case KVAL(K_P6):
 792			k_cur(vc, KVAL(K_RIGHT), 0);
 793			return;
 794		case KVAL(K_P7):
 795			k_fn(vc, KVAL(K_FIND), 0);
 796			return;
 797		case KVAL(K_P8):
 798			k_cur(vc, KVAL(K_UP), 0);
 799			return;
 800		case KVAL(K_P9):
 801			k_fn(vc, KVAL(K_PGUP), 0);
 802			return;
 803		case KVAL(K_P5):
 804			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
 805			return;
 806		}
 807	}
 808
 809	put_queue(vc, pad_chars[value]);
 810	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
 811		put_queue(vc, 10);
 812}
 813
 814static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
 815{
 816	int old_state = shift_state;
 817
 818	if (rep)
 819		return;
 820	/*
 821	 * Mimic typewriter:
 822	 * a CapsShift key acts like Shift but undoes CapsLock
 823	 */
 824	if (value == KVAL(K_CAPSSHIFT)) {
 825		value = KVAL(K_SHIFT);
 826		if (!up_flag)
 827			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
 828	}
 829
 830	if (up_flag) {
 831		/*
 832		 * handle the case that two shift or control
 833		 * keys are depressed simultaneously
 834		 */
 835		if (shift_down[value])
 836			shift_down[value]--;
 837	} else
 838		shift_down[value]++;
 839
 840	if (shift_down[value])
 841		shift_state |= (1 << value);
 842	else
 843		shift_state &= ~(1 << value);
 844
 845	/* kludge */
 846	if (up_flag && shift_state != old_state && npadch != -1) {
 847		if (kbd->kbdmode == VC_UNICODE)
 848			to_utf8(vc, npadch);
 849		else
 850			put_queue(vc, npadch & 0xff);
 851		npadch = -1;
 852	}
 853}
 854
 855static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
 856{
 857	if (up_flag)
 858		return;
 859
 860	if (vc_kbd_mode(kbd, VC_META)) {
 861		put_queue(vc, '\033');
 862		put_queue(vc, value);
 863	} else
 864		put_queue(vc, value | 0x80);
 865}
 866
 867static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
 868{
 869	int base;
 870
 871	if (up_flag)
 872		return;
 873
 874	if (value < 10) {
 875		/* decimal input of code, while Alt depressed */
 876		base = 10;
 877	} else {
 878		/* hexadecimal input of code, while AltGr depressed */
 879		value -= 10;
 880		base = 16;
 881	}
 882
 883	if (npadch == -1)
 884		npadch = value;
 885	else
 886		npadch = npadch * base + value;
 887}
 888
 889static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
 890{
 891	if (up_flag || rep)
 892		return;
 893
 894	chg_vc_kbd_lock(kbd, value);
 895}
 896
 897static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
 898{
 899	k_shift(vc, value, up_flag);
 900	if (up_flag || rep)
 901		return;
 902
 903	chg_vc_kbd_slock(kbd, value);
 904	/* try to make Alt, oops, AltGr and such work */
 905	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
 906		kbd->slockstate = 0;
 907		chg_vc_kbd_slock(kbd, value);
 908	}
 909}
 910
 911/* by default, 300ms interval for combination release */
 912static unsigned brl_timeout = 300;
 913MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
 914module_param(brl_timeout, uint, 0644);
 915
 916static unsigned brl_nbchords = 1;
 917MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
 918module_param(brl_nbchords, uint, 0644);
 919
 920static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
 921{
 922	static unsigned long chords;
 923	static unsigned committed;
 924
 925	if (!brl_nbchords)
 926		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
 927	else {
 928		committed |= pattern;
 929		chords++;
 930		if (chords == brl_nbchords) {
 931			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
 932			chords = 0;
 933			committed = 0;
 934		}
 935	}
 936}
 937
 938static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
 939{
 940	static unsigned pressed, committing;
 941	static unsigned long releasestart;
 942
 943	if (kbd->kbdmode != VC_UNICODE) {
 944		if (!up_flag)
 945			pr_warning("keyboard mode must be unicode for braille patterns\n");
 946		return;
 947	}
 948
 949	if (!value) {
 950		k_unicode(vc, BRL_UC_ROW, up_flag);
 951		return;
 952	}
 953
 954	if (value > 8)
 955		return;
 956
 957	if (!up_flag) {
 958		pressed |= 1 << (value - 1);
 959		if (!brl_timeout)
 960			committing = pressed;
 961	} else if (brl_timeout) {
 962		if (!committing ||
 963		    time_after(jiffies,
 964			       releasestart + msecs_to_jiffies(brl_timeout))) {
 965			committing = pressed;
 966			releasestart = jiffies;
 967		}
 968		pressed &= ~(1 << (value - 1));
 969		if (!pressed && committing) {
 970			k_brlcommit(vc, committing, 0);
 971			committing = 0;
 972		}
 973	} else {
 974		if (committing) {
 975			k_brlcommit(vc, committing, 0);
 976			committing = 0;
 977		}
 978		pressed &= ~(1 << (value - 1));
 979	}
 980}
 981
 982/*
 983 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
 984 * or (ii) whatever pattern of lights people want to show using KDSETLED,
 985 * or (iii) specified bits of specified words in kernel memory.
 986 */
 987unsigned char getledstate(void)
 988{
 989	return ledstate;
 990}
 991
 992void setledstate(struct kbd_struct *kbd, unsigned int led)
 993{
 994        unsigned long flags;
 995        spin_lock_irqsave(&kbd_event_lock, flags);
 996	if (!(led & ~7)) {
 997		ledioctl = led;
 998		kbd->ledmode = LED_SHOW_IOCTL;
 999	} else
1000		kbd->ledmode = LED_SHOW_FLAGS;
1001
1002	set_leds();
1003	spin_unlock_irqrestore(&kbd_event_lock, flags);
1004}
1005
1006static inline unsigned char getleds(void)
1007{
1008	struct kbd_struct *kbd = kbd_table + fg_console;
1009	unsigned char leds;
1010	int i;
1011
1012	if (kbd->ledmode == LED_SHOW_IOCTL)
1013		return ledioctl;
1014
1015	leds = kbd->ledflagstate;
1016
1017	if (kbd->ledmode == LED_SHOW_MEM) {
1018		for (i = 0; i < 3; i++)
1019			if (ledptrs[i].valid) {
1020				if (*ledptrs[i].addr & ledptrs[i].mask)
1021					leds |= (1 << i);
1022				else
1023					leds &= ~(1 << i);
1024			}
1025	}
1026	return leds;
1027}
1028
1029static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1030{
1031	unsigned char leds = *(unsigned char *)data;
1032
1033	if (test_bit(EV_LED, handle->dev->evbit)) {
1034		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1035		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1036		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1037		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1038	}
1039
1040	return 0;
1041}
1042
1043/**
1044 *	vt_get_leds	-	helper for braille console
1045 *	@console: console to read
1046 *	@flag: flag we want to check
1047 *
1048 *	Check the status of a keyboard led flag and report it back
1049 */
1050int vt_get_leds(int console, int flag)
1051{
1052	struct kbd_struct * kbd = kbd_table + console;
1053	int ret;
1054
1055	ret = vc_kbd_led(kbd, flag);
1056
1057	return ret;
1058}
1059EXPORT_SYMBOL_GPL(vt_get_leds);
1060
1061/**
1062 *	vt_set_led_state	-	set LED state of a console
1063 *	@console: console to set
1064 *	@leds: LED bits
1065 *
1066 *	Set the LEDs on a console. This is a wrapper for the VT layer
1067 *	so that we can keep kbd knowledge internal
1068 */
1069void vt_set_led_state(int console, int leds)
1070{
1071	struct kbd_struct * kbd = kbd_table + console;
1072	setledstate(kbd, leds);
1073}
1074
1075/**
1076 *	vt_kbd_con_start	-	Keyboard side of console start
1077 *	@console: console
1078 *
1079 *	Handle console start. This is a wrapper for the VT layer
1080 *	so that we can keep kbd knowledge internal
1081 *
1082 *	FIXME: We eventually need to hold the kbd lock here to protect
1083 *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1084 *	and start_tty under the kbd_event_lock, while normal tty paths
1085 *	don't hold the lock. We probably need to split out an LED lock
1086 *	but not during an -rc release!
1087 */
1088void vt_kbd_con_start(int console)
1089{
1090	struct kbd_struct * kbd = kbd_table + console;
1091/*	unsigned long flags; */
1092/*	spin_lock_irqsave(&kbd_event_lock, flags); */
1093	clr_vc_kbd_led(kbd, VC_SCROLLOCK);
1094	set_leds();
1095/*	spin_unlock_irqrestore(&kbd_event_lock, flags); */
1096}
1097
1098/**
1099 *	vt_kbd_con_stop		-	Keyboard side of console stop
1100 *	@console: console
1101 *
1102 *	Handle console stop. This is a wrapper for the VT layer
1103 *	so that we can keep kbd knowledge internal
1104 *
1105 *	FIXME: We eventually need to hold the kbd lock here to protect
1106 *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1107 *	and start_tty under the kbd_event_lock, while normal tty paths
1108 *	don't hold the lock. We probably need to split out an LED lock
1109 *	but not during an -rc release!
1110 */
1111void vt_kbd_con_stop(int console)
1112{
1113	struct kbd_struct * kbd = kbd_table + console;
1114/*	unsigned long flags; */
1115/*	spin_lock_irqsave(&kbd_event_lock, flags); */
1116	set_vc_kbd_led(kbd, VC_SCROLLOCK);
1117	set_leds();
1118/*	spin_unlock_irqrestore(&kbd_event_lock, flags); */
1119}
1120
1121/*
1122 * This is the tasklet that updates LED state on all keyboards
1123 * attached to the box. The reason we use tasklet is that we
1124 * need to handle the scenario when keyboard handler is not
1125 * registered yet but we already getting updates from the VT to
1126 * update led state.
1127 */
1128static void kbd_bh(unsigned long dummy)
1129{
1130	unsigned char leds = getleds();
1131
1132	if (leds != ledstate) {
1133		input_handler_for_each_handle(&kbd_handler, &leds,
1134					      kbd_update_leds_helper);
1135		ledstate = leds;
1136	}
1137}
1138
1139DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1140
1141#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1142    defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1143    defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1144    (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1145    defined(CONFIG_AVR32)
1146
1147#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1148			((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1149
1150static const unsigned short x86_keycodes[256] =
1151	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1152	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1153	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1154	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1155	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1156	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1157	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1158	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1159	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1160	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1161	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1162	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1163	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1164	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1165	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1166
1167#ifdef CONFIG_SPARC
1168static int sparc_l1_a_state;
1169extern void sun_do_break(void);
1170#endif
1171
1172static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1173		       unsigned char up_flag)
1174{
1175	int code;
1176
1177	switch (keycode) {
1178
1179	case KEY_PAUSE:
1180		put_queue(vc, 0xe1);
1181		put_queue(vc, 0x1d | up_flag);
1182		put_queue(vc, 0x45 | up_flag);
1183		break;
1184
1185	case KEY_HANGEUL:
1186		if (!up_flag)
1187			put_queue(vc, 0xf2);
1188		break;
1189
1190	case KEY_HANJA:
1191		if (!up_flag)
1192			put_queue(vc, 0xf1);
1193		break;
1194
1195	case KEY_SYSRQ:
1196		/*
1197		 * Real AT keyboards (that's what we're trying
1198		 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1199		 * pressing PrtSc/SysRq alone, but simply 0x54
1200		 * when pressing Alt+PrtSc/SysRq.
1201		 */
1202		if (test_bit(KEY_LEFTALT, key_down) ||
1203		    test_bit(KEY_RIGHTALT, key_down)) {
1204			put_queue(vc, 0x54 | up_flag);
1205		} else {
1206			put_queue(vc, 0xe0);
1207			put_queue(vc, 0x2a | up_flag);
1208			put_queue(vc, 0xe0);
1209			put_queue(vc, 0x37 | up_flag);
1210		}
1211		break;
1212
1213	default:
1214		if (keycode > 255)
1215			return -1;
1216
1217		code = x86_keycodes[keycode];
1218		if (!code)
1219			return -1;
1220
1221		if (code & 0x100)
1222			put_queue(vc, 0xe0);
1223		put_queue(vc, (code & 0x7f) | up_flag);
1224
1225		break;
1226	}
1227
1228	return 0;
1229}
1230
1231#else
1232
1233#define HW_RAW(dev)	0
1234
1235static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1236{
1237	if (keycode > 127)
1238		return -1;
1239
1240	put_queue(vc, keycode | up_flag);
1241	return 0;
1242}
1243#endif
1244
1245static void kbd_rawcode(unsigned char data)
1246{
1247	struct vc_data *vc = vc_cons[fg_console].d;
1248
1249	kbd = kbd_table + vc->vc_num;
1250	if (kbd->kbdmode == VC_RAW)
1251		put_queue(vc, data);
1252}
1253
1254static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1255{
1256	struct vc_data *vc = vc_cons[fg_console].d;
1257	unsigned short keysym, *key_map;
1258	unsigned char type;
1259	bool raw_mode;
1260	struct tty_struct *tty;
1261	int shift_final;
1262	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1263	int rc;
1264
1265	tty = vc->port.tty;
1266
1267	if (tty && (!tty->driver_data)) {
1268		/* No driver data? Strange. Okay we fix it then. */
1269		tty->driver_data = vc;
1270	}
1271
1272	kbd = kbd_table + vc->vc_num;
1273
1274#ifdef CONFIG_SPARC
1275	if (keycode == KEY_STOP)
1276		sparc_l1_a_state = down;
1277#endif
1278
1279	rep = (down == 2);
1280
1281	raw_mode = (kbd->kbdmode == VC_RAW);
1282	if (raw_mode && !hw_raw)
1283		if (emulate_raw(vc, keycode, !down << 7))
1284			if (keycode < BTN_MISC && printk_ratelimit())
1285				pr_warning("can't emulate rawmode for keycode %d\n",
1286					   keycode);
1287
1288#ifdef CONFIG_SPARC
1289	if (keycode == KEY_A && sparc_l1_a_state) {
1290		sparc_l1_a_state = false;
1291		sun_do_break();
1292	}
1293#endif
1294
1295	if (kbd->kbdmode == VC_MEDIUMRAW) {
1296		/*
1297		 * This is extended medium raw mode, with keys above 127
1298		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1299		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1300		 * interfere with anything else. The two bytes after 0 will
1301		 * always have the up flag set not to interfere with older
1302		 * applications. This allows for 16384 different keycodes,
1303		 * which should be enough.
1304		 */
1305		if (keycode < 128) {
1306			put_queue(vc, keycode | (!down << 7));
1307		} else {
1308			put_queue(vc, !down << 7);
1309			put_queue(vc, (keycode >> 7) | 0x80);
1310			put_queue(vc, keycode | 0x80);
1311		}
1312		raw_mode = true;
1313	}
1314
1315	if (down)
1316		set_bit(keycode, key_down);
1317	else
1318		clear_bit(keycode, key_down);
1319
1320	if (rep &&
1321	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1322	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1323		/*
1324		 * Don't repeat a key if the input buffers are not empty and the
1325		 * characters get aren't echoed locally. This makes key repeat
1326		 * usable with slow applications and under heavy loads.
1327		 */
1328		return;
1329	}
1330
1331	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1332	param.ledstate = kbd->ledflagstate;
1333	key_map = key_maps[shift_final];
1334
1335	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1336					KBD_KEYCODE, &param);
1337	if (rc == NOTIFY_STOP || !key_map) {
1338		atomic_notifier_call_chain(&keyboard_notifier_list,
1339					   KBD_UNBOUND_KEYCODE, &param);
1340		do_compute_shiftstate();
1341		kbd->slockstate = 0;
1342		return;
1343	}
1344
1345	if (keycode < NR_KEYS)
1346		keysym = key_map[keycode];
1347	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1348		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1349	else
1350		return;
1351
1352	type = KTYP(keysym);
1353
1354	if (type < 0xf0) {
1355		param.value = keysym;
1356		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1357						KBD_UNICODE, &param);
1358		if (rc != NOTIFY_STOP)
1359			if (down && !raw_mode)
1360				to_utf8(vc, keysym);
1361		return;
1362	}
1363
1364	type -= 0xf0;
1365
1366	if (type == KT_LETTER) {
1367		type = KT_LATIN;
1368		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1369			key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1370			if (key_map)
1371				keysym = key_map[keycode];
1372		}
1373	}
1374
1375	param.value = keysym;
1376	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1377					KBD_KEYSYM, &param);
1378	if (rc == NOTIFY_STOP)
1379		return;
1380
1381	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1382		return;
1383
1384	(*k_handler[type])(vc, keysym & 0xff, !down);
1385
1386	param.ledstate = kbd->ledflagstate;
1387	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1388
1389	if (type != KT_SLOCK)
1390		kbd->slockstate = 0;
1391}
1392
1393static void kbd_event(struct input_handle *handle, unsigned int event_type,
1394		      unsigned int event_code, int value)
1395{
1396	/* We are called with interrupts disabled, just take the lock */
1397	spin_lock(&kbd_event_lock);
1398
1399	if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1400		kbd_rawcode(value);
1401	if (event_type == EV_KEY)
1402		kbd_keycode(event_code, value, HW_RAW(handle->dev));
1403
1404	spin_unlock(&kbd_event_lock);
1405
1406	tasklet_schedule(&keyboard_tasklet);
1407	do_poke_blanked_console = 1;
1408	schedule_console_callback();
1409}
1410
1411static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1412{
1413	int i;
1414
1415	if (test_bit(EV_SND, dev->evbit))
1416		return true;
1417
1418	if (test_bit(EV_KEY, dev->evbit)) {
1419		for (i = KEY_RESERVED; i < BTN_MISC; i++)
1420			if (test_bit(i, dev->keybit))
1421				return true;
1422		for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1423			if (test_bit(i, dev->keybit))
1424				return true;
1425	}
1426
1427	return false;
1428}
1429
1430/*
1431 * When a keyboard (or other input device) is found, the kbd_connect
1432 * function is called. The function then looks at the device, and if it
1433 * likes it, it can open it and get events from it. In this (kbd_connect)
1434 * function, we should decide which VT to bind that keyboard to initially.
1435 */
1436static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1437			const struct input_device_id *id)
1438{
1439	struct input_handle *handle;
1440	int error;
1441
1442	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1443	if (!handle)
1444		return -ENOMEM;
1445
1446	handle->dev = dev;
1447	handle->handler = handler;
1448	handle->name = "kbd";
1449
1450	error = input_register_handle(handle);
1451	if (error)
1452		goto err_free_handle;
1453
1454	error = input_open_device(handle);
1455	if (error)
1456		goto err_unregister_handle;
1457
1458	return 0;
1459
1460 err_unregister_handle:
1461	input_unregister_handle(handle);
1462 err_free_handle:
1463	kfree(handle);
1464	return error;
1465}
1466
1467static void kbd_disconnect(struct input_handle *handle)
1468{
1469	input_close_device(handle);
1470	input_unregister_handle(handle);
1471	kfree(handle);
1472}
1473
1474/*
1475 * Start keyboard handler on the new keyboard by refreshing LED state to
1476 * match the rest of the system.
1477 */
1478static void kbd_start(struct input_handle *handle)
1479{
1480	tasklet_disable(&keyboard_tasklet);
1481
1482	if (ledstate != 0xff)
1483		kbd_update_leds_helper(handle, &ledstate);
1484
1485	tasklet_enable(&keyboard_tasklet);
1486}
1487
1488static const struct input_device_id kbd_ids[] = {
1489	{
1490		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1491		.evbit = { BIT_MASK(EV_KEY) },
1492	},
1493
1494	{
1495		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1496		.evbit = { BIT_MASK(EV_SND) },
1497	},
1498
1499	{ },    /* Terminating entry */
1500};
1501
1502MODULE_DEVICE_TABLE(input, kbd_ids);
1503
1504static struct input_handler kbd_handler = {
1505	.event		= kbd_event,
1506	.match		= kbd_match,
1507	.connect	= kbd_connect,
1508	.disconnect	= kbd_disconnect,
1509	.start		= kbd_start,
1510	.name		= "kbd",
1511	.id_table	= kbd_ids,
1512};
1513
1514int __init kbd_init(void)
1515{
1516	int i;
1517	int error;
1518
1519	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1520		kbd_table[i].ledflagstate = kbd_defleds();
1521		kbd_table[i].default_ledflagstate = kbd_defleds();
1522		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1523		kbd_table[i].lockstate = KBD_DEFLOCK;
1524		kbd_table[i].slockstate = 0;
1525		kbd_table[i].modeflags = KBD_DEFMODE;
1526		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1527	}
1528
1529	error = input_register_handler(&kbd_handler);
1530	if (error)
1531		return error;
1532
1533	tasklet_enable(&keyboard_tasklet);
1534	tasklet_schedule(&keyboard_tasklet);
1535
1536	return 0;
1537}
1538
1539/* Ioctl support code */
1540
1541/**
1542 *	vt_do_diacrit		-	diacritical table updates
1543 *	@cmd: ioctl request
1544 *	@up: pointer to user data for ioctl
1545 *	@perm: permissions check computed by caller
1546 *
1547 *	Update the diacritical tables atomically and safely. Lock them
1548 *	against simultaneous keypresses
1549 */
1550int vt_do_diacrit(unsigned int cmd, void __user *up, int perm)
1551{
1552	struct kbdiacrs __user *a = up;
1553	unsigned long flags;
1554	int asize;
1555	int ret = 0;
1556
1557	switch (cmd) {
1558	case KDGKBDIACR:
1559	{
1560		struct kbdiacr *diacr;
1561		int i;
1562
1563		diacr = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1564								GFP_KERNEL);
1565		if (diacr == NULL)
1566			return -ENOMEM;
1567
1568		/* Lock the diacriticals table, make a copy and then
1569		   copy it after we unlock */
1570		spin_lock_irqsave(&kbd_event_lock, flags);
1571
1572		asize = accent_table_size;
1573		for (i = 0; i < asize; i++) {
1574			diacr[i].diacr = conv_uni_to_8bit(
1575						accent_table[i].diacr);
1576			diacr[i].base = conv_uni_to_8bit(
1577						accent_table[i].base);
1578			diacr[i].result = conv_uni_to_8bit(
1579						accent_table[i].result);
1580		}
1581		spin_unlock_irqrestore(&kbd_event_lock, flags);
1582
1583		if (put_user(asize, &a->kb_cnt))
1584			ret = -EFAULT;
1585		else  if (copy_to_user(a->kbdiacr, diacr,
1586				asize * sizeof(struct kbdiacr)))
1587			ret = -EFAULT;
1588		kfree(diacr);
1589		return ret;
1590	}
1591	case KDGKBDIACRUC:
1592	{
1593		struct kbdiacrsuc __user *a = up;
1594		void *buf;
1595
1596		buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1597								GFP_KERNEL);
1598		if (buf == NULL)
1599			return -ENOMEM;
1600
1601		/* Lock the diacriticals table, make a copy and then
1602		   copy it after we unlock */
1603		spin_lock_irqsave(&kbd_event_lock, flags);
1604
1605		asize = accent_table_size;
1606		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1607
1608		spin_unlock_irqrestore(&kbd_event_lock, flags);
1609
1610		if (put_user(asize, &a->kb_cnt))
1611			ret = -EFAULT;
1612		else if (copy_to_user(a->kbdiacruc, buf,
1613				asize*sizeof(struct kbdiacruc)))
1614			ret = -EFAULT;
1615		kfree(buf);
1616		return ret;
1617	}
1618
1619	case KDSKBDIACR:
1620	{
1621		struct kbdiacrs __user *a = up;
1622		struct kbdiacr *diacr = NULL;
1623		unsigned int ct;
1624		int i;
1625
1626		if (!perm)
1627			return -EPERM;
1628		if (get_user(ct, &a->kb_cnt))
1629			return -EFAULT;
1630		if (ct >= MAX_DIACR)
1631			return -EINVAL;
1632
1633		if (ct) {
1634			diacr = kmalloc(sizeof(struct kbdiacr) * ct,
1635								GFP_KERNEL);
1636			if (diacr == NULL)
1637				return -ENOMEM;
1638
1639			if (copy_from_user(diacr, a->kbdiacr,
1640					sizeof(struct kbdiacr) * ct)) {
1641				kfree(diacr);
1642				return -EFAULT;
1643			}
1644		}
1645
1646		spin_lock_irqsave(&kbd_event_lock, flags);
1647		accent_table_size = ct;
1648		for (i = 0; i < ct; i++) {
1649			accent_table[i].diacr =
1650					conv_8bit_to_uni(diacr[i].diacr);
1651			accent_table[i].base =
1652					conv_8bit_to_uni(diacr[i].base);
1653			accent_table[i].result =
1654					conv_8bit_to_uni(diacr[i].result);
1655		}
1656		spin_unlock_irqrestore(&kbd_event_lock, flags);
1657		kfree(diacr);
1658		return 0;
1659	}
1660
1661	case KDSKBDIACRUC:
1662	{
1663		struct kbdiacrsuc __user *a = up;
1664		unsigned int ct;
1665		void *buf = NULL;
1666
1667		if (!perm)
1668			return -EPERM;
1669
1670		if (get_user(ct, &a->kb_cnt))
1671			return -EFAULT;
1672
1673		if (ct >= MAX_DIACR)
1674			return -EINVAL;
1675
1676		if (ct) {
1677			buf = kmalloc(ct * sizeof(struct kbdiacruc),
1678								GFP_KERNEL);
1679			if (buf == NULL)
1680				return -ENOMEM;
1681
1682			if (copy_from_user(buf, a->kbdiacruc,
1683					ct * sizeof(struct kbdiacruc))) {
1684				kfree(buf);
1685				return -EFAULT;
1686			}
1687		} 
1688		spin_lock_irqsave(&kbd_event_lock, flags);
1689		if (ct)
1690			memcpy(accent_table, buf,
1691					ct * sizeof(struct kbdiacruc));
1692		accent_table_size = ct;
1693		spin_unlock_irqrestore(&kbd_event_lock, flags);
1694		kfree(buf);
1695		return 0;
1696	}
1697	}
1698	return ret;
1699}
1700
1701/**
1702 *	vt_do_kdskbmode		-	set keyboard mode ioctl
1703 *	@console: the console to use
1704 *	@arg: the requested mode
1705 *
1706 *	Update the keyboard mode bits while holding the correct locks.
1707 *	Return 0 for success or an error code.
1708 */
1709int vt_do_kdskbmode(int console, unsigned int arg)
1710{
1711	struct kbd_struct * kbd = kbd_table + console;
1712	int ret = 0;
1713	unsigned long flags;
1714
1715	spin_lock_irqsave(&kbd_event_lock, flags);
1716	switch(arg) {
1717	case K_RAW:
1718		kbd->kbdmode = VC_RAW;
1719		break;
1720	case K_MEDIUMRAW:
1721		kbd->kbdmode = VC_MEDIUMRAW;
1722		break;
1723	case K_XLATE:
1724		kbd->kbdmode = VC_XLATE;
1725		do_compute_shiftstate();
1726		break;
1727	case K_UNICODE:
1728		kbd->kbdmode = VC_UNICODE;
1729		do_compute_shiftstate();
1730		break;
1731	case K_OFF:
1732		kbd->kbdmode = VC_OFF;
1733		break;
1734	default:
1735		ret = -EINVAL;
1736	}
1737	spin_unlock_irqrestore(&kbd_event_lock, flags);
1738	return ret;
1739}
1740
1741/**
1742 *	vt_do_kdskbmeta		-	set keyboard meta state
1743 *	@console: the console to use
1744 *	@arg: the requested meta state
1745 *
1746 *	Update the keyboard meta bits while holding the correct locks.
1747 *	Return 0 for success or an error code.
1748 */
1749int vt_do_kdskbmeta(int console, unsigned int arg)
1750{
1751	struct kbd_struct * kbd = kbd_table + console;
1752	int ret = 0;
1753	unsigned long flags;
1754
1755	spin_lock_irqsave(&kbd_event_lock, flags);
1756	switch(arg) {
1757	case K_METABIT:
1758		clr_vc_kbd_mode(kbd, VC_META);
1759		break;
1760	case K_ESCPREFIX:
1761		set_vc_kbd_mode(kbd, VC_META);
1762		break;
1763	default:
1764		ret = -EINVAL;
1765	}
1766	spin_unlock_irqrestore(&kbd_event_lock, flags);
1767	return ret;
1768}
1769
1770int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1771								int perm)
1772{
1773	struct kbkeycode tmp;
1774	int kc = 0;
1775
1776	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1777		return -EFAULT;
1778	switch (cmd) {
1779	case KDGETKEYCODE:
1780		kc = getkeycode(tmp.scancode);
1781		if (kc >= 0)
1782			kc = put_user(kc, &user_kbkc->keycode);
1783		break;
1784	case KDSETKEYCODE:
1785		if (!perm)
1786			return -EPERM;
1787		kc = setkeycode(tmp.scancode, tmp.keycode);
1788		break;
1789	}
1790	return kc;
1791}
1792
1793#define i (tmp.kb_index)
1794#define s (tmp.kb_table)
1795#define v (tmp.kb_value)
1796
1797int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1798						int console)
1799{
1800	struct kbd_struct * kbd = kbd_table + console;
1801	struct kbentry tmp;
1802	ushort *key_map, *new_map, val, ov;
1803	unsigned long flags;
1804
1805	if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1806		return -EFAULT;
1807
1808	if (!capable(CAP_SYS_TTY_CONFIG))
1809		perm = 0;
1810
1811	switch (cmd) {
1812	case KDGKBENT:
1813		/* Ensure another thread doesn't free it under us */
1814		spin_lock_irqsave(&kbd_event_lock, flags);
1815		key_map = key_maps[s];
1816		if (key_map) {
1817		    val = U(key_map[i]);
1818		    if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1819			val = K_HOLE;
1820		} else
1821		    val = (i ? K_HOLE : K_NOSUCHMAP);
1822		spin_unlock_irqrestore(&kbd_event_lock, flags);
1823		return put_user(val, &user_kbe->kb_value);
1824	case KDSKBENT:
1825		if (!perm)
1826			return -EPERM;
1827		if (!i && v == K_NOSUCHMAP) {
1828			spin_lock_irqsave(&kbd_event_lock, flags);
1829			/* deallocate map */
1830			key_map = key_maps[s];
1831			if (s && key_map) {
1832			    key_maps[s] = NULL;
1833			    if (key_map[0] == U(K_ALLOCATED)) {
1834					kfree(key_map);
1835					keymap_count--;
1836			    }
1837			}
1838			spin_unlock_irqrestore(&kbd_event_lock, flags);
1839			break;
1840		}
1841
1842		if (KTYP(v) < NR_TYPES) {
1843		    if (KVAL(v) > max_vals[KTYP(v)])
1844				return -EINVAL;
1845		} else
1846		    if (kbd->kbdmode != VC_UNICODE)
1847				return -EINVAL;
1848
1849		/* ++Geert: non-PC keyboards may generate keycode zero */
1850#if !defined(__mc68000__) && !defined(__powerpc__)
1851		/* assignment to entry 0 only tests validity of args */
1852		if (!i)
1853			break;
1854#endif
1855
1856		new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1857		if (!new_map)
1858			return -ENOMEM;
1859		spin_lock_irqsave(&kbd_event_lock, flags);
1860		key_map = key_maps[s];
1861		if (key_map == NULL) {
1862			int j;
1863
1864			if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1865			    !capable(CAP_SYS_RESOURCE)) {
1866				spin_unlock_irqrestore(&kbd_event_lock, flags);
1867				kfree(new_map);
1868				return -EPERM;
1869			}
1870			key_maps[s] = new_map;
1871			key_map = new_map;
1872			key_map[0] = U(K_ALLOCATED);
1873			for (j = 1; j < NR_KEYS; j++)
1874				key_map[j] = U(K_HOLE);
1875			keymap_count++;
1876		} else
1877			kfree(new_map);
1878
1879		ov = U(key_map[i]);
1880		if (v == ov)
1881			goto out;
1882		/*
1883		 * Attention Key.
1884		 */
1885		if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1886			spin_unlock_irqrestore(&kbd_event_lock, flags);
1887			return -EPERM;
1888		}
1889		key_map[i] = U(v);
1890		if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1891			do_compute_shiftstate();
1892out:
1893		spin_unlock_irqrestore(&kbd_event_lock, flags);
1894		break;
1895	}
1896	return 0;
1897}
1898#undef i
1899#undef s
1900#undef v
1901
1902/* FIXME: This one needs untangling and locking */
1903int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1904{
1905	struct kbsentry *kbs;
1906	char *p;
1907	u_char *q;
1908	u_char __user *up;
1909	int sz;
1910	int delta;
1911	char *first_free, *fj, *fnw;
1912	int i, j, k;
1913	int ret;
1914
1915	if (!capable(CAP_SYS_TTY_CONFIG))
1916		perm = 0;
1917
1918	kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1919	if (!kbs) {
1920		ret = -ENOMEM;
1921		goto reterr;
1922	}
1923
1924	/* we mostly copy too much here (512bytes), but who cares ;) */
1925	if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1926		ret = -EFAULT;
1927		goto reterr;
1928	}
1929	kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1930	i = kbs->kb_func;
1931
1932	switch (cmd) {
1933	case KDGKBSENT:
1934		sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1935						  a struct member */
1936		up = user_kdgkb->kb_string;
1937		p = func_table[i];
1938		if(p)
1939			for ( ; *p && sz; p++, sz--)
1940				if (put_user(*p, up++)) {
1941					ret = -EFAULT;
1942					goto reterr;
1943				}
1944		if (put_user('\0', up)) {
1945			ret = -EFAULT;
1946			goto reterr;
1947		}
1948		kfree(kbs);
1949		return ((p && *p) ? -EOVERFLOW : 0);
1950	case KDSKBSENT:
1951		if (!perm) {
1952			ret = -EPERM;
1953			goto reterr;
1954		}
1955
1956		q = func_table[i];
1957		first_free = funcbufptr + (funcbufsize - funcbufleft);
1958		for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
1959			;
1960		if (j < MAX_NR_FUNC)
1961			fj = func_table[j];
1962		else
1963			fj = first_free;
1964
1965		delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
1966		if (delta <= funcbufleft) { 	/* it fits in current buf */
1967		    if (j < MAX_NR_FUNC) {
1968			memmove(fj + delta, fj, first_free - fj);
1969			for (k = j; k < MAX_NR_FUNC; k++)
1970			    if (func_table[k])
1971				func_table[k] += delta;
1972		    }
1973		    if (!q)
1974		      func_table[i] = fj;
1975		    funcbufleft -= delta;
1976		} else {			/* allocate a larger buffer */
1977		    sz = 256;
1978		    while (sz < funcbufsize - funcbufleft + delta)
1979		      sz <<= 1;
1980		    fnw = kmalloc(sz, GFP_KERNEL);
1981		    if(!fnw) {
1982		      ret = -ENOMEM;
1983		      goto reterr;
1984		    }
1985
1986		    if (!q)
1987		      func_table[i] = fj;
1988		    if (fj > funcbufptr)
1989			memmove(fnw, funcbufptr, fj - funcbufptr);
1990		    for (k = 0; k < j; k++)
1991		      if (func_table[k])
1992			func_table[k] = fnw + (func_table[k] - funcbufptr);
1993
1994		    if (first_free > fj) {
1995			memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
1996			for (k = j; k < MAX_NR_FUNC; k++)
1997			  if (func_table[k])
1998			    func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
1999		    }
2000		    if (funcbufptr != func_buf)
2001		      kfree(funcbufptr);
2002		    funcbufptr = fnw;
2003		    funcbufleft = funcbufleft - delta + sz - funcbufsize;
2004		    funcbufsize = sz;
2005		}
2006		strcpy(func_table[i], kbs->kb_string);
2007		break;
2008	}
2009	ret = 0;
2010reterr:
2011	kfree(kbs);
2012	return ret;
2013}
2014
2015int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2016{
2017	struct kbd_struct * kbd = kbd_table + console;
2018        unsigned long flags;
2019	unsigned char ucval;
2020
2021        switch(cmd) {
2022	/* the ioctls below read/set the flags usually shown in the leds */
2023	/* don't use them - they will go away without warning */
2024	case KDGKBLED:
2025                spin_lock_irqsave(&kbd_event_lock, flags);
2026		ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4);
2027                spin_unlock_irqrestore(&kbd_event_lock, flags);
2028		return put_user(ucval, (char __user *)arg);
2029
2030	case KDSKBLED:
2031		if (!perm)
2032			return -EPERM;
2033		if (arg & ~0x77)
2034			return -EINVAL;
2035                spin_lock_irqsave(&kbd_event_lock, flags);
2036		kbd->ledflagstate = (arg & 7);
2037		kbd->default_ledflagstate = ((arg >> 4) & 7);
2038		set_leds();
2039                spin_unlock_irqrestore(&kbd_event_lock, flags);
2040		return 0;
2041
2042	/* the ioctls below only set the lights, not the functions */
2043	/* for those, see KDGKBLED and KDSKBLED above */
2044	case KDGETLED:
2045		ucval = getledstate();
2046		return put_user(ucval, (char __user *)arg);
2047
2048	case KDSETLED:
2049		if (!perm)
2050			return -EPERM;
2051		setledstate(kbd, arg);
2052		return 0;
2053        }
2054        return -ENOIOCTLCMD;
2055}
2056
2057int vt_do_kdgkbmode(int console)
2058{
2059	struct kbd_struct * kbd = kbd_table + console;
2060	/* This is a spot read so needs no locking */
2061	switch (kbd->kbdmode) {
2062	case VC_RAW:
2063		return K_RAW;
2064	case VC_MEDIUMRAW:
2065		return K_MEDIUMRAW;
2066	case VC_UNICODE:
2067		return K_UNICODE;
2068	case VC_OFF:
2069		return K_OFF;
2070	default:
2071		return K_XLATE;
2072	}
2073}
2074
2075/**
2076 *	vt_do_kdgkbmeta		-	report meta status
2077 *	@console: console to report
2078 *
2079 *	Report the meta flag status of this console
2080 */
2081int vt_do_kdgkbmeta(int console)
2082{
2083	struct kbd_struct * kbd = kbd_table + console;
2084        /* Again a spot read so no locking */
2085	return vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT;
2086}
2087
2088/**
2089 *	vt_reset_unicode	-	reset the unicode status
2090 *	@console: console being reset
2091 *
2092 *	Restore the unicode console state to its default
2093 */
2094void vt_reset_unicode(int console)
2095{
2096	unsigned long flags;
2097
2098	spin_lock_irqsave(&kbd_event_lock, flags);
2099	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2100	spin_unlock_irqrestore(&kbd_event_lock, flags);
2101}
2102
2103/**
2104 *	vt_get_shiftstate	-	shift bit state
2105 *
2106 *	Report the shift bits from the keyboard state. We have to export
2107 *	this to support some oddities in the vt layer.
2108 */
2109int vt_get_shift_state(void)
2110{
2111        /* Don't lock as this is a transient report */
2112        return shift_state;
2113}
2114
2115/**
2116 *	vt_reset_keyboard	-	reset keyboard state
2117 *	@console: console to reset
2118 *
2119 *	Reset the keyboard bits for a console as part of a general console
2120 *	reset event
2121 */
2122void vt_reset_keyboard(int console)
2123{
2124	struct kbd_struct * kbd = kbd_table + console;
2125	unsigned long flags;
2126
2127	spin_lock_irqsave(&kbd_event_lock, flags);
2128	set_vc_kbd_mode(kbd, VC_REPEAT);
2129	clr_vc_kbd_mode(kbd, VC_CKMODE);
2130	clr_vc_kbd_mode(kbd, VC_APPLIC);
2131	clr_vc_kbd_mode(kbd, VC_CRLF);
2132	kbd->lockstate = 0;
2133	kbd->slockstate = 0;
2134	kbd->ledmode = LED_SHOW_FLAGS;
2135	kbd->ledflagstate = kbd->default_ledflagstate;
2136	/* do not do set_leds here because this causes an endless tasklet loop
2137	   when the keyboard hasn't been initialized yet */
2138	spin_unlock_irqrestore(&kbd_event_lock, flags);
2139}
2140
2141/**
2142 *	vt_get_kbd_mode_bit	-	read keyboard status bits
2143 *	@console: console to read from
2144 *	@bit: mode bit to read
2145 *
2146 *	Report back a vt mode bit. We do this without locking so the
2147 *	caller must be sure that there are no synchronization needs
2148 */
2149
2150int vt_get_kbd_mode_bit(int console, int bit)
2151{
2152	struct kbd_struct * kbd = kbd_table + console;
2153	return vc_kbd_mode(kbd, bit);
2154}
2155
2156/**
2157 *	vt_set_kbd_mode_bit	-	read keyboard status bits
2158 *	@console: console to read from
2159 *	@bit: mode bit to read
2160 *
2161 *	Set a vt mode bit. We do this without locking so the
2162 *	caller must be sure that there are no synchronization needs
2163 */
2164
2165void vt_set_kbd_mode_bit(int console, int bit)
2166{
2167	struct kbd_struct * kbd = kbd_table + console;
2168	unsigned long flags;
2169
2170	spin_lock_irqsave(&kbd_event_lock, flags);
2171	set_vc_kbd_mode(kbd, bit);
2172	spin_unlock_irqrestore(&kbd_event_lock, flags);
2173}
2174
2175/**
2176 *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2177 *	@console: console to read from
2178 *	@bit: mode bit to read
2179 *
2180 *	Report back a vt mode bit. We do this without locking so the
2181 *	caller must be sure that there are no synchronization needs
2182 */
2183
2184void vt_clr_kbd_mode_bit(int console, int bit)
2185{
2186	struct kbd_struct * kbd = kbd_table + console;
2187	unsigned long flags;
2188
2189	spin_lock_irqsave(&kbd_event_lock, flags);
2190	clr_vc_kbd_mode(kbd, bit);
2191	spin_unlock_irqrestore(&kbd_event_lock, flags);
2192}