Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 100#include <asm/system.h>
 101
 102#include <linux/kbd_kern.h>
 103#include <linux/vt_kern.h>
 104#include <linux/selection.h>
 105
 106#include <linux/kmod.h>
 107#include <linux/nsproxy.h>
 108
 109#undef TTY_DEBUG_HANGUP
 110
 111#define TTY_PARANOIA_CHECK 1
 112#define CHECK_TTY_COUNT 1
 113
 114struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 115	.c_iflag = ICRNL | IXON,
 116	.c_oflag = OPOST | ONLCR,
 117	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 118	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 119		   ECHOCTL | ECHOKE | IEXTEN,
 120	.c_cc = INIT_C_CC,
 121	.c_ispeed = 38400,
 122	.c_ospeed = 38400
 123};
 124
 125EXPORT_SYMBOL(tty_std_termios);
 126
 127/* This list gets poked at by procfs and various bits of boot up code. This
 128   could do with some rationalisation such as pulling the tty proc function
 129   into this file */
 130
 131LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 132
 133/* Mutex to protect creating and releasing a tty. This is shared with
 134   vt.c for deeply disgusting hack reasons */
 135DEFINE_MUTEX(tty_mutex);
 136EXPORT_SYMBOL(tty_mutex);
 137
 138/* Spinlock to protect the tty->tty_files list */
 139DEFINE_SPINLOCK(tty_files_lock);
 140
 141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 143ssize_t redirected_tty_write(struct file *, const char __user *,
 144							size_t, loff_t *);
 145static unsigned int tty_poll(struct file *, poll_table *);
 146static int tty_open(struct inode *, struct file *);
 147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 148#ifdef CONFIG_COMPAT
 149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 150				unsigned long arg);
 151#else
 152#define tty_compat_ioctl NULL
 153#endif
 154static int __tty_fasync(int fd, struct file *filp, int on);
 155static int tty_fasync(int fd, struct file *filp, int on);
 156static void release_tty(struct tty_struct *tty, int idx);
 157static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 158static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 159
 160/**
 161 *	alloc_tty_struct	-	allocate a tty object
 162 *
 163 *	Return a new empty tty structure. The data fields have not
 164 *	been initialized in any way but has been zeroed
 165 *
 166 *	Locking: none
 167 */
 168
 169struct tty_struct *alloc_tty_struct(void)
 170{
 171	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 172}
 173
 174/**
 175 *	free_tty_struct		-	free a disused tty
 176 *	@tty: tty struct to free
 177 *
 178 *	Free the write buffers, tty queue and tty memory itself.
 179 *
 180 *	Locking: none. Must be called after tty is definitely unused
 181 */
 182
 183void free_tty_struct(struct tty_struct *tty)
 184{
 185	if (tty->dev)
 186		put_device(tty->dev);
 187	kfree(tty->write_buf);
 188	tty_buffer_free_all(tty);
 189	kfree(tty);
 190}
 191
 192static inline struct tty_struct *file_tty(struct file *file)
 193{
 194	return ((struct tty_file_private *)file->private_data)->tty;
 195}
 196
 197/* Associate a new file with the tty structure */
 198int tty_add_file(struct tty_struct *tty, struct file *file)
 199{
 200	struct tty_file_private *priv;
 201
 202	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 203	if (!priv)
 204		return -ENOMEM;
 205
 
 
 
 
 
 
 
 
 
 
 206	priv->tty = tty;
 207	priv->file = file;
 208	file->private_data = priv;
 209
 210	spin_lock(&tty_files_lock);
 211	list_add(&priv->list, &tty->tty_files);
 212	spin_unlock(&tty_files_lock);
 
 213
 214	return 0;
 
 
 
 
 
 
 
 
 
 
 
 215}
 216
 217/* Delete file from its tty */
 218void tty_del_file(struct file *file)
 219{
 220	struct tty_file_private *priv = file->private_data;
 221
 222	spin_lock(&tty_files_lock);
 223	list_del(&priv->list);
 224	spin_unlock(&tty_files_lock);
 225	file->private_data = NULL;
 226	kfree(priv);
 227}
 228
 229
 230#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 231
 232/**
 233 *	tty_name	-	return tty naming
 234 *	@tty: tty structure
 235 *	@buf: buffer for output
 236 *
 237 *	Convert a tty structure into a name. The name reflects the kernel
 238 *	naming policy and if udev is in use may not reflect user space
 239 *
 240 *	Locking: none
 241 */
 242
 243char *tty_name(struct tty_struct *tty, char *buf)
 244{
 245	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 246		strcpy(buf, "NULL tty");
 247	else
 248		strcpy(buf, tty->name);
 249	return buf;
 250}
 251
 252EXPORT_SYMBOL(tty_name);
 253
 254int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 255			      const char *routine)
 256{
 257#ifdef TTY_PARANOIA_CHECK
 258	if (!tty) {
 259		printk(KERN_WARNING
 260			"null TTY for (%d:%d) in %s\n",
 261			imajor(inode), iminor(inode), routine);
 262		return 1;
 263	}
 264	if (tty->magic != TTY_MAGIC) {
 265		printk(KERN_WARNING
 266			"bad magic number for tty struct (%d:%d) in %s\n",
 267			imajor(inode), iminor(inode), routine);
 268		return 1;
 269	}
 270#endif
 271	return 0;
 272}
 273
 274static int check_tty_count(struct tty_struct *tty, const char *routine)
 275{
 276#ifdef CHECK_TTY_COUNT
 277	struct list_head *p;
 278	int count = 0;
 279
 280	spin_lock(&tty_files_lock);
 281	list_for_each(p, &tty->tty_files) {
 282		count++;
 283	}
 284	spin_unlock(&tty_files_lock);
 285	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 286	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 287	    tty->link && tty->link->count)
 288		count++;
 289	if (tty->count != count) {
 290		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 291				    "!= #fd's(%d) in %s\n",
 292		       tty->name, tty->count, count, routine);
 293		return count;
 294	}
 295#endif
 296	return 0;
 297}
 298
 299/**
 300 *	get_tty_driver		-	find device of a tty
 301 *	@dev_t: device identifier
 302 *	@index: returns the index of the tty
 303 *
 304 *	This routine returns a tty driver structure, given a device number
 305 *	and also passes back the index number.
 306 *
 307 *	Locking: caller must hold tty_mutex
 308 */
 309
 310static struct tty_driver *get_tty_driver(dev_t device, int *index)
 311{
 312	struct tty_driver *p;
 313
 314	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 315		dev_t base = MKDEV(p->major, p->minor_start);
 316		if (device < base || device >= base + p->num)
 317			continue;
 318		*index = device - base;
 319		return tty_driver_kref_get(p);
 320	}
 321	return NULL;
 322}
 323
 324#ifdef CONFIG_CONSOLE_POLL
 325
 326/**
 327 *	tty_find_polling_driver	-	find device of a polled tty
 328 *	@name: name string to match
 329 *	@line: pointer to resulting tty line nr
 330 *
 331 *	This routine returns a tty driver structure, given a name
 332 *	and the condition that the tty driver is capable of polled
 333 *	operation.
 334 */
 335struct tty_driver *tty_find_polling_driver(char *name, int *line)
 336{
 337	struct tty_driver *p, *res = NULL;
 338	int tty_line = 0;
 339	int len;
 340	char *str, *stp;
 341
 342	for (str = name; *str; str++)
 343		if ((*str >= '0' && *str <= '9') || *str == ',')
 344			break;
 345	if (!*str)
 346		return NULL;
 347
 348	len = str - name;
 349	tty_line = simple_strtoul(str, &str, 10);
 350
 351	mutex_lock(&tty_mutex);
 352	/* Search through the tty devices to look for a match */
 353	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 354		if (strncmp(name, p->name, len) != 0)
 355			continue;
 356		stp = str;
 357		if (*stp == ',')
 358			stp++;
 359		if (*stp == '\0')
 360			stp = NULL;
 361
 362		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 363		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 364			res = tty_driver_kref_get(p);
 365			*line = tty_line;
 366			break;
 367		}
 368	}
 369	mutex_unlock(&tty_mutex);
 370
 371	return res;
 372}
 373EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 374#endif
 375
 376/**
 377 *	tty_check_change	-	check for POSIX terminal changes
 378 *	@tty: tty to check
 379 *
 380 *	If we try to write to, or set the state of, a terminal and we're
 381 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 382 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 383 *
 384 *	Locking: ctrl_lock
 385 */
 386
 387int tty_check_change(struct tty_struct *tty)
 388{
 389	unsigned long flags;
 390	int ret = 0;
 391
 392	if (current->signal->tty != tty)
 393		return 0;
 394
 395	spin_lock_irqsave(&tty->ctrl_lock, flags);
 396
 397	if (!tty->pgrp) {
 398		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 399		goto out_unlock;
 400	}
 401	if (task_pgrp(current) == tty->pgrp)
 402		goto out_unlock;
 403	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 404	if (is_ignored(SIGTTOU))
 405		goto out;
 406	if (is_current_pgrp_orphaned()) {
 407		ret = -EIO;
 408		goto out;
 409	}
 410	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 411	set_thread_flag(TIF_SIGPENDING);
 412	ret = -ERESTARTSYS;
 413out:
 414	return ret;
 415out_unlock:
 416	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 417	return ret;
 418}
 419
 420EXPORT_SYMBOL(tty_check_change);
 421
 422static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 423				size_t count, loff_t *ppos)
 424{
 425	return 0;
 426}
 427
 428static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 429				 size_t count, loff_t *ppos)
 430{
 431	return -EIO;
 432}
 433
 434/* No kernel lock held - none needed ;) */
 435static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 436{
 437	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 438}
 439
 440static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 441		unsigned long arg)
 442{
 443	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 444}
 445
 446static long hung_up_tty_compat_ioctl(struct file *file,
 447				     unsigned int cmd, unsigned long arg)
 448{
 449	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 450}
 451
 452static const struct file_operations tty_fops = {
 453	.llseek		= no_llseek,
 454	.read		= tty_read,
 455	.write		= tty_write,
 456	.poll		= tty_poll,
 457	.unlocked_ioctl	= tty_ioctl,
 458	.compat_ioctl	= tty_compat_ioctl,
 459	.open		= tty_open,
 460	.release	= tty_release,
 461	.fasync		= tty_fasync,
 462};
 463
 464static const struct file_operations console_fops = {
 465	.llseek		= no_llseek,
 466	.read		= tty_read,
 467	.write		= redirected_tty_write,
 468	.poll		= tty_poll,
 469	.unlocked_ioctl	= tty_ioctl,
 470	.compat_ioctl	= tty_compat_ioctl,
 471	.open		= tty_open,
 472	.release	= tty_release,
 473	.fasync		= tty_fasync,
 474};
 475
 476static const struct file_operations hung_up_tty_fops = {
 477	.llseek		= no_llseek,
 478	.read		= hung_up_tty_read,
 479	.write		= hung_up_tty_write,
 480	.poll		= hung_up_tty_poll,
 481	.unlocked_ioctl	= hung_up_tty_ioctl,
 482	.compat_ioctl	= hung_up_tty_compat_ioctl,
 483	.release	= tty_release,
 484};
 485
 486static DEFINE_SPINLOCK(redirect_lock);
 487static struct file *redirect;
 488
 489/**
 490 *	tty_wakeup	-	request more data
 491 *	@tty: terminal
 492 *
 493 *	Internal and external helper for wakeups of tty. This function
 494 *	informs the line discipline if present that the driver is ready
 495 *	to receive more output data.
 496 */
 497
 498void tty_wakeup(struct tty_struct *tty)
 499{
 500	struct tty_ldisc *ld;
 501
 502	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 503		ld = tty_ldisc_ref(tty);
 504		if (ld) {
 505			if (ld->ops->write_wakeup)
 506				ld->ops->write_wakeup(tty);
 507			tty_ldisc_deref(ld);
 508		}
 509	}
 510	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 511}
 512
 513EXPORT_SYMBOL_GPL(tty_wakeup);
 514
 515/**
 516 *	__tty_hangup		-	actual handler for hangup events
 517 *	@work: tty device
 518 *
 519 *	This can be called by the "eventd" kernel thread.  That is process
 520 *	synchronous but doesn't hold any locks, so we need to make sure we
 521 *	have the appropriate locks for what we're doing.
 522 *
 523 *	The hangup event clears any pending redirections onto the hung up
 524 *	device. It ensures future writes will error and it does the needed
 525 *	line discipline hangup and signal delivery. The tty object itself
 526 *	remains intact.
 527 *
 528 *	Locking:
 529 *		BTM
 530 *		  redirect lock for undoing redirection
 531 *		  file list lock for manipulating list of ttys
 532 *		  tty_ldisc_lock from called functions
 533 *		  termios_mutex resetting termios data
 534 *		  tasklist_lock to walk task list for hangup event
 535 *		    ->siglock to protect ->signal/->sighand
 536 */
 537void __tty_hangup(struct tty_struct *tty)
 538{
 539	struct file *cons_filp = NULL;
 540	struct file *filp, *f = NULL;
 541	struct task_struct *p;
 542	struct tty_file_private *priv;
 543	int    closecount = 0, n;
 544	unsigned long flags;
 545	int refs = 0;
 546
 547	if (!tty)
 548		return;
 549
 550
 551	spin_lock(&redirect_lock);
 552	if (redirect && file_tty(redirect) == tty) {
 553		f = redirect;
 554		redirect = NULL;
 555	}
 556	spin_unlock(&redirect_lock);
 557
 558	tty_lock();
 559
 560	/* some functions below drop BTM, so we need this bit */
 561	set_bit(TTY_HUPPING, &tty->flags);
 562
 563	/* inuse_filps is protected by the single tty lock,
 564	   this really needs to change if we want to flush the
 565	   workqueue with the lock held */
 566	check_tty_count(tty, "tty_hangup");
 567
 568	spin_lock(&tty_files_lock);
 569	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 570	list_for_each_entry(priv, &tty->tty_files, list) {
 571		filp = priv->file;
 572		if (filp->f_op->write == redirected_tty_write)
 573			cons_filp = filp;
 574		if (filp->f_op->write != tty_write)
 575			continue;
 576		closecount++;
 577		__tty_fasync(-1, filp, 0);	/* can't block */
 578		filp->f_op = &hung_up_tty_fops;
 579	}
 580	spin_unlock(&tty_files_lock);
 581
 582	/*
 583	 * it drops BTM and thus races with reopen
 584	 * we protect the race by TTY_HUPPING
 585	 */
 586	tty_ldisc_hangup(tty);
 587
 588	read_lock(&tasklist_lock);
 589	if (tty->session) {
 590		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 591			spin_lock_irq(&p->sighand->siglock);
 592			if (p->signal->tty == tty) {
 593				p->signal->tty = NULL;
 594				/* We defer the dereferences outside fo
 595				   the tasklist lock */
 596				refs++;
 597			}
 598			if (!p->signal->leader) {
 599				spin_unlock_irq(&p->sighand->siglock);
 600				continue;
 601			}
 602			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 603			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 604			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 605			spin_lock_irqsave(&tty->ctrl_lock, flags);
 606			if (tty->pgrp)
 607				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 608			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 609			spin_unlock_irq(&p->sighand->siglock);
 610		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 611	}
 612	read_unlock(&tasklist_lock);
 613
 614	spin_lock_irqsave(&tty->ctrl_lock, flags);
 615	clear_bit(TTY_THROTTLED, &tty->flags);
 616	clear_bit(TTY_PUSH, &tty->flags);
 617	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 618	put_pid(tty->session);
 619	put_pid(tty->pgrp);
 620	tty->session = NULL;
 621	tty->pgrp = NULL;
 622	tty->ctrl_status = 0;
 623	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 624
 625	/* Account for the p->signal references we killed */
 626	while (refs--)
 627		tty_kref_put(tty);
 628
 629	/*
 630	 * If one of the devices matches a console pointer, we
 631	 * cannot just call hangup() because that will cause
 632	 * tty->count and state->count to go out of sync.
 633	 * So we just call close() the right number of times.
 634	 */
 635	if (cons_filp) {
 636		if (tty->ops->close)
 637			for (n = 0; n < closecount; n++)
 638				tty->ops->close(tty, cons_filp);
 639	} else if (tty->ops->hangup)
 640		(tty->ops->hangup)(tty);
 641	/*
 642	 * We don't want to have driver/ldisc interactions beyond
 643	 * the ones we did here. The driver layer expects no
 644	 * calls after ->hangup() from the ldisc side. However we
 645	 * can't yet guarantee all that.
 646	 */
 647	set_bit(TTY_HUPPED, &tty->flags);
 648	clear_bit(TTY_HUPPING, &tty->flags);
 649	tty_ldisc_enable(tty);
 650
 651	tty_unlock();
 652
 653	if (f)
 654		fput(f);
 655}
 656
 657static void do_tty_hangup(struct work_struct *work)
 658{
 659	struct tty_struct *tty =
 660		container_of(work, struct tty_struct, hangup_work);
 661
 662	__tty_hangup(tty);
 663}
 664
 665/**
 666 *	tty_hangup		-	trigger a hangup event
 667 *	@tty: tty to hangup
 668 *
 669 *	A carrier loss (virtual or otherwise) has occurred on this like
 670 *	schedule a hangup sequence to run after this event.
 671 */
 672
 673void tty_hangup(struct tty_struct *tty)
 674{
 675#ifdef TTY_DEBUG_HANGUP
 676	char	buf[64];
 677	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 678#endif
 679	schedule_work(&tty->hangup_work);
 680}
 681
 682EXPORT_SYMBOL(tty_hangup);
 683
 684/**
 685 *	tty_vhangup		-	process vhangup
 686 *	@tty: tty to hangup
 687 *
 688 *	The user has asked via system call for the terminal to be hung up.
 689 *	We do this synchronously so that when the syscall returns the process
 690 *	is complete. That guarantee is necessary for security reasons.
 691 */
 692
 693void tty_vhangup(struct tty_struct *tty)
 694{
 695#ifdef TTY_DEBUG_HANGUP
 696	char	buf[64];
 697
 698	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 699#endif
 700	__tty_hangup(tty);
 701}
 702
 703EXPORT_SYMBOL(tty_vhangup);
 704
 705
 706/**
 707 *	tty_vhangup_self	-	process vhangup for own ctty
 708 *
 709 *	Perform a vhangup on the current controlling tty
 710 */
 711
 712void tty_vhangup_self(void)
 713{
 714	struct tty_struct *tty;
 715
 716	tty = get_current_tty();
 717	if (tty) {
 718		tty_vhangup(tty);
 719		tty_kref_put(tty);
 720	}
 721}
 722
 723/**
 724 *	tty_hung_up_p		-	was tty hung up
 725 *	@filp: file pointer of tty
 726 *
 727 *	Return true if the tty has been subject to a vhangup or a carrier
 728 *	loss
 729 */
 730
 731int tty_hung_up_p(struct file *filp)
 732{
 733	return (filp->f_op == &hung_up_tty_fops);
 734}
 735
 736EXPORT_SYMBOL(tty_hung_up_p);
 737
 738static void session_clear_tty(struct pid *session)
 739{
 740	struct task_struct *p;
 741	do_each_pid_task(session, PIDTYPE_SID, p) {
 742		proc_clear_tty(p);
 743	} while_each_pid_task(session, PIDTYPE_SID, p);
 744}
 745
 746/**
 747 *	disassociate_ctty	-	disconnect controlling tty
 748 *	@on_exit: true if exiting so need to "hang up" the session
 749 *
 750 *	This function is typically called only by the session leader, when
 751 *	it wants to disassociate itself from its controlling tty.
 752 *
 753 *	It performs the following functions:
 754 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 755 * 	(2)  Clears the tty from being controlling the session
 756 * 	(3)  Clears the controlling tty for all processes in the
 757 * 		session group.
 758 *
 759 *	The argument on_exit is set to 1 if called when a process is
 760 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 761 *
 762 *	Locking:
 763 *		BTM is taken for hysterical raisins, and held when
 764 *		  called from no_tty().
 765 *		  tty_mutex is taken to protect tty
 766 *		  ->siglock is taken to protect ->signal/->sighand
 767 *		  tasklist_lock is taken to walk process list for sessions
 768 *		    ->siglock is taken to protect ->signal/->sighand
 769 */
 770
 771void disassociate_ctty(int on_exit)
 772{
 773	struct tty_struct *tty;
 774	struct pid *tty_pgrp = NULL;
 775
 776	if (!current->signal->leader)
 777		return;
 778
 779	tty = get_current_tty();
 780	if (tty) {
 781		tty_pgrp = get_pid(tty->pgrp);
 782		if (on_exit) {
 783			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
 784				tty_vhangup(tty);
 785		}
 786		tty_kref_put(tty);
 
 
 
 
 
 
 787	} else if (on_exit) {
 788		struct pid *old_pgrp;
 789		spin_lock_irq(&current->sighand->siglock);
 790		old_pgrp = current->signal->tty_old_pgrp;
 791		current->signal->tty_old_pgrp = NULL;
 792		spin_unlock_irq(&current->sighand->siglock);
 793		if (old_pgrp) {
 794			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 795			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 796			put_pid(old_pgrp);
 797		}
 798		return;
 799	}
 800	if (tty_pgrp) {
 801		kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 802		if (!on_exit)
 803			kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 804		put_pid(tty_pgrp);
 805	}
 806
 807	spin_lock_irq(&current->sighand->siglock);
 808	put_pid(current->signal->tty_old_pgrp);
 809	current->signal->tty_old_pgrp = NULL;
 810	spin_unlock_irq(&current->sighand->siglock);
 811
 812	tty = get_current_tty();
 813	if (tty) {
 814		unsigned long flags;
 815		spin_lock_irqsave(&tty->ctrl_lock, flags);
 816		put_pid(tty->session);
 817		put_pid(tty->pgrp);
 818		tty->session = NULL;
 819		tty->pgrp = NULL;
 820		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 821		tty_kref_put(tty);
 822	} else {
 823#ifdef TTY_DEBUG_HANGUP
 824		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 825		       " = NULL", tty);
 826#endif
 827	}
 828
 829	/* Now clear signal->tty under the lock */
 830	read_lock(&tasklist_lock);
 831	session_clear_tty(task_session(current));
 832	read_unlock(&tasklist_lock);
 833}
 834
 835/**
 836 *
 837 *	no_tty	- Ensure the current process does not have a controlling tty
 838 */
 839void no_tty(void)
 840{
 
 
 
 841	struct task_struct *tsk = current;
 842	tty_lock();
 843	disassociate_ctty(0);
 844	tty_unlock();
 845	proc_clear_tty(tsk);
 846}
 847
 848
 849/**
 850 *	stop_tty	-	propagate flow control
 851 *	@tty: tty to stop
 852 *
 853 *	Perform flow control to the driver. For PTY/TTY pairs we
 854 *	must also propagate the TIOCKPKT status. May be called
 855 *	on an already stopped device and will not re-call the driver
 856 *	method.
 857 *
 858 *	This functionality is used by both the line disciplines for
 859 *	halting incoming flow and by the driver. It may therefore be
 860 *	called from any context, may be under the tty atomic_write_lock
 861 *	but not always.
 862 *
 863 *	Locking:
 864 *		Uses the tty control lock internally
 865 */
 866
 867void stop_tty(struct tty_struct *tty)
 868{
 869	unsigned long flags;
 870	spin_lock_irqsave(&tty->ctrl_lock, flags);
 871	if (tty->stopped) {
 872		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 873		return;
 874	}
 875	tty->stopped = 1;
 876	if (tty->link && tty->link->packet) {
 877		tty->ctrl_status &= ~TIOCPKT_START;
 878		tty->ctrl_status |= TIOCPKT_STOP;
 879		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 880	}
 881	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 882	if (tty->ops->stop)
 883		(tty->ops->stop)(tty);
 884}
 885
 886EXPORT_SYMBOL(stop_tty);
 887
 888/**
 889 *	start_tty	-	propagate flow control
 890 *	@tty: tty to start
 891 *
 892 *	Start a tty that has been stopped if at all possible. Perform
 893 *	any necessary wakeups and propagate the TIOCPKT status. If this
 894 *	is the tty was previous stopped and is being started then the
 895 *	driver start method is invoked and the line discipline woken.
 896 *
 897 *	Locking:
 898 *		ctrl_lock
 899 */
 900
 901void start_tty(struct tty_struct *tty)
 902{
 903	unsigned long flags;
 904	spin_lock_irqsave(&tty->ctrl_lock, flags);
 905	if (!tty->stopped || tty->flow_stopped) {
 906		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 907		return;
 908	}
 909	tty->stopped = 0;
 910	if (tty->link && tty->link->packet) {
 911		tty->ctrl_status &= ~TIOCPKT_STOP;
 912		tty->ctrl_status |= TIOCPKT_START;
 913		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 914	}
 915	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 916	if (tty->ops->start)
 917		(tty->ops->start)(tty);
 918	/* If we have a running line discipline it may need kicking */
 919	tty_wakeup(tty);
 920}
 921
 922EXPORT_SYMBOL(start_tty);
 923
 924/**
 925 *	tty_read	-	read method for tty device files
 926 *	@file: pointer to tty file
 927 *	@buf: user buffer
 928 *	@count: size of user buffer
 929 *	@ppos: unused
 930 *
 931 *	Perform the read system call function on this terminal device. Checks
 932 *	for hung up devices before calling the line discipline method.
 933 *
 934 *	Locking:
 935 *		Locks the line discipline internally while needed. Multiple
 936 *	read calls may be outstanding in parallel.
 937 */
 938
 939static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 940			loff_t *ppos)
 941{
 942	int i;
 943	struct inode *inode = file->f_path.dentry->d_inode;
 944	struct tty_struct *tty = file_tty(file);
 945	struct tty_ldisc *ld;
 946
 947	if (tty_paranoia_check(tty, inode, "tty_read"))
 948		return -EIO;
 949	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
 950		return -EIO;
 951
 952	/* We want to wait for the line discipline to sort out in this
 953	   situation */
 954	ld = tty_ldisc_ref_wait(tty);
 955	if (ld->ops->read)
 956		i = (ld->ops->read)(tty, file, buf, count);
 957	else
 958		i = -EIO;
 959	tty_ldisc_deref(ld);
 960	if (i > 0)
 961		inode->i_atime = current_fs_time(inode->i_sb);
 962	return i;
 963}
 964
 965void tty_write_unlock(struct tty_struct *tty)
 966	__releases(&tty->atomic_write_lock)
 967{
 968	mutex_unlock(&tty->atomic_write_lock);
 969	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 970}
 971
 972int tty_write_lock(struct tty_struct *tty, int ndelay)
 973	__acquires(&tty->atomic_write_lock)
 974{
 975	if (!mutex_trylock(&tty->atomic_write_lock)) {
 976		if (ndelay)
 977			return -EAGAIN;
 978		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 979			return -ERESTARTSYS;
 980	}
 981	return 0;
 982}
 983
 984/*
 985 * Split writes up in sane blocksizes to avoid
 986 * denial-of-service type attacks
 987 */
 988static inline ssize_t do_tty_write(
 989	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 990	struct tty_struct *tty,
 991	struct file *file,
 992	const char __user *buf,
 993	size_t count)
 994{
 995	ssize_t ret, written = 0;
 996	unsigned int chunk;
 997
 998	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 999	if (ret < 0)
1000		return ret;
1001
1002	/*
1003	 * We chunk up writes into a temporary buffer. This
1004	 * simplifies low-level drivers immensely, since they
1005	 * don't have locking issues and user mode accesses.
1006	 *
1007	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1008	 * big chunk-size..
1009	 *
1010	 * The default chunk-size is 2kB, because the NTTY
1011	 * layer has problems with bigger chunks. It will
1012	 * claim to be able to handle more characters than
1013	 * it actually does.
1014	 *
1015	 * FIXME: This can probably go away now except that 64K chunks
1016	 * are too likely to fail unless switched to vmalloc...
1017	 */
1018	chunk = 2048;
1019	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1020		chunk = 65536;
1021	if (count < chunk)
1022		chunk = count;
1023
1024	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1025	if (tty->write_cnt < chunk) {
1026		unsigned char *buf_chunk;
1027
1028		if (chunk < 1024)
1029			chunk = 1024;
1030
1031		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1032		if (!buf_chunk) {
1033			ret = -ENOMEM;
1034			goto out;
1035		}
1036		kfree(tty->write_buf);
1037		tty->write_cnt = chunk;
1038		tty->write_buf = buf_chunk;
1039	}
1040
1041	/* Do the write .. */
1042	for (;;) {
1043		size_t size = count;
1044		if (size > chunk)
1045			size = chunk;
1046		ret = -EFAULT;
1047		if (copy_from_user(tty->write_buf, buf, size))
1048			break;
1049		ret = write(tty, file, tty->write_buf, size);
1050		if (ret <= 0)
1051			break;
1052		written += ret;
1053		buf += ret;
1054		count -= ret;
1055		if (!count)
1056			break;
1057		ret = -ERESTARTSYS;
1058		if (signal_pending(current))
1059			break;
1060		cond_resched();
1061	}
1062	if (written) {
1063		struct inode *inode = file->f_path.dentry->d_inode;
1064		inode->i_mtime = current_fs_time(inode->i_sb);
1065		ret = written;
1066	}
1067out:
1068	tty_write_unlock(tty);
1069	return ret;
1070}
1071
1072/**
1073 * tty_write_message - write a message to a certain tty, not just the console.
1074 * @tty: the destination tty_struct
1075 * @msg: the message to write
1076 *
1077 * This is used for messages that need to be redirected to a specific tty.
1078 * We don't put it into the syslog queue right now maybe in the future if
1079 * really needed.
1080 *
1081 * We must still hold the BTM and test the CLOSING flag for the moment.
1082 */
1083
1084void tty_write_message(struct tty_struct *tty, char *msg)
1085{
1086	if (tty) {
1087		mutex_lock(&tty->atomic_write_lock);
1088		tty_lock();
1089		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1090			tty_unlock();
1091			tty->ops->write(tty, msg, strlen(msg));
1092		} else
1093			tty_unlock();
1094		tty_write_unlock(tty);
1095	}
1096	return;
1097}
1098
1099
1100/**
1101 *	tty_write		-	write method for tty device file
1102 *	@file: tty file pointer
1103 *	@buf: user data to write
1104 *	@count: bytes to write
1105 *	@ppos: unused
1106 *
1107 *	Write data to a tty device via the line discipline.
1108 *
1109 *	Locking:
1110 *		Locks the line discipline as required
1111 *		Writes to the tty driver are serialized by the atomic_write_lock
1112 *	and are then processed in chunks to the device. The line discipline
1113 *	write method will not be invoked in parallel for each device.
1114 */
1115
1116static ssize_t tty_write(struct file *file, const char __user *buf,
1117						size_t count, loff_t *ppos)
1118{
1119	struct inode *inode = file->f_path.dentry->d_inode;
1120	struct tty_struct *tty = file_tty(file);
1121 	struct tty_ldisc *ld;
1122	ssize_t ret;
1123
1124	if (tty_paranoia_check(tty, inode, "tty_write"))
1125		return -EIO;
1126	if (!tty || !tty->ops->write ||
1127		(test_bit(TTY_IO_ERROR, &tty->flags)))
1128			return -EIO;
1129	/* Short term debug to catch buggy drivers */
1130	if (tty->ops->write_room == NULL)
1131		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1132			tty->driver->name);
1133	ld = tty_ldisc_ref_wait(tty);
1134	if (!ld->ops->write)
1135		ret = -EIO;
1136	else
1137		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1138	tty_ldisc_deref(ld);
1139	return ret;
1140}
1141
1142ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1143						size_t count, loff_t *ppos)
1144{
1145	struct file *p = NULL;
1146
1147	spin_lock(&redirect_lock);
1148	if (redirect) {
1149		get_file(redirect);
1150		p = redirect;
1151	}
1152	spin_unlock(&redirect_lock);
1153
1154	if (p) {
1155		ssize_t res;
1156		res = vfs_write(p, buf, count, &p->f_pos);
1157		fput(p);
1158		return res;
1159	}
1160	return tty_write(file, buf, count, ppos);
1161}
1162
1163static char ptychar[] = "pqrstuvwxyzabcde";
1164
1165/**
1166 *	pty_line_name	-	generate name for a pty
1167 *	@driver: the tty driver in use
1168 *	@index: the minor number
1169 *	@p: output buffer of at least 6 bytes
1170 *
1171 *	Generate a name from a driver reference and write it to the output
1172 *	buffer.
1173 *
1174 *	Locking: None
1175 */
1176static void pty_line_name(struct tty_driver *driver, int index, char *p)
1177{
1178	int i = index + driver->name_base;
1179	/* ->name is initialized to "ttyp", but "tty" is expected */
1180	sprintf(p, "%s%c%x",
1181		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1182		ptychar[i >> 4 & 0xf], i & 0xf);
1183}
1184
1185/**
1186 *	tty_line_name	-	generate name for a tty
1187 *	@driver: the tty driver in use
1188 *	@index: the minor number
1189 *	@p: output buffer of at least 7 bytes
1190 *
1191 *	Generate a name from a driver reference and write it to the output
1192 *	buffer.
1193 *
1194 *	Locking: None
1195 */
1196static void tty_line_name(struct tty_driver *driver, int index, char *p)
1197{
1198	sprintf(p, "%s%d", driver->name, index + driver->name_base);
1199}
1200
1201/**
1202 *	tty_driver_lookup_tty() - find an existing tty, if any
1203 *	@driver: the driver for the tty
1204 *	@idx:	 the minor number
1205 *
1206 *	Return the tty, if found or ERR_PTR() otherwise.
1207 *
1208 *	Locking: tty_mutex must be held. If tty is found, the mutex must
1209 *	be held until the 'fast-open' is also done. Will change once we
1210 *	have refcounting in the driver and per driver locking
1211 */
1212static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1213		struct inode *inode, int idx)
1214{
1215	struct tty_struct *tty;
1216
1217	if (driver->ops->lookup)
1218		return driver->ops->lookup(driver, inode, idx);
1219
1220	tty = driver->ttys[idx];
1221	return tty;
1222}
1223
1224/**
1225 *	tty_init_termios	-  helper for termios setup
1226 *	@tty: the tty to set up
1227 *
1228 *	Initialise the termios structures for this tty. Thus runs under
1229 *	the tty_mutex currently so we can be relaxed about ordering.
1230 */
1231
1232int tty_init_termios(struct tty_struct *tty)
1233{
1234	struct ktermios *tp;
1235	int idx = tty->index;
1236
1237	tp = tty->driver->termios[idx];
1238	if (tp == NULL) {
1239		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1240		if (tp == NULL)
1241			return -ENOMEM;
1242		memcpy(tp, &tty->driver->init_termios,
1243						sizeof(struct ktermios));
1244		tty->driver->termios[idx] = tp;
1245	}
1246	tty->termios = tp;
1247	tty->termios_locked = tp + 1;
1248
1249	/* Compatibility until drivers always set this */
1250	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1251	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1252	return 0;
1253}
1254EXPORT_SYMBOL_GPL(tty_init_termios);
1255
 
 
 
 
 
 
 
 
 
 
 
 
 
1256/**
1257 *	tty_driver_install_tty() - install a tty entry in the driver
1258 *	@driver: the driver for the tty
1259 *	@tty: the tty
1260 *
1261 *	Install a tty object into the driver tables. The tty->index field
1262 *	will be set by the time this is called. This method is responsible
1263 *	for ensuring any need additional structures are allocated and
1264 *	configured.
1265 *
1266 *	Locking: tty_mutex for now
1267 */
1268static int tty_driver_install_tty(struct tty_driver *driver,
1269						struct tty_struct *tty)
1270{
1271	int idx = tty->index;
1272	int ret;
1273
1274	if (driver->ops->install) {
1275		ret = driver->ops->install(driver, tty);
1276		return ret;
1277	}
1278
1279	if (tty_init_termios(tty) == 0) {
1280		tty_driver_kref_get(driver);
1281		tty->count++;
1282		driver->ttys[idx] = tty;
1283		return 0;
1284	}
1285	return -ENOMEM;
1286}
1287
1288/**
1289 *	tty_driver_remove_tty() - remove a tty from the driver tables
1290 *	@driver: the driver for the tty
1291 *	@idx:	 the minor number
1292 *
1293 *	Remvoe a tty object from the driver tables. The tty->index field
1294 *	will be set by the time this is called.
1295 *
1296 *	Locking: tty_mutex for now
1297 */
1298void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1299{
1300	if (driver->ops->remove)
1301		driver->ops->remove(driver, tty);
1302	else
1303		driver->ttys[tty->index] = NULL;
1304}
1305
1306/*
1307 * 	tty_reopen()	- fast re-open of an open tty
1308 * 	@tty	- the tty to open
1309 *
1310 *	Return 0 on success, -errno on error.
1311 *
1312 *	Locking: tty_mutex must be held from the time the tty was found
1313 *		 till this open completes.
1314 */
1315static int tty_reopen(struct tty_struct *tty)
1316{
1317	struct tty_driver *driver = tty->driver;
1318
1319	if (test_bit(TTY_CLOSING, &tty->flags) ||
1320			test_bit(TTY_HUPPING, &tty->flags) ||
1321			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1322		return -EIO;
1323
1324	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1325	    driver->subtype == PTY_TYPE_MASTER) {
1326		/*
1327		 * special case for PTY masters: only one open permitted,
1328		 * and the slave side open count is incremented as well.
1329		 */
1330		if (tty->count)
1331			return -EIO;
1332
1333		tty->link->count++;
1334	}
1335	tty->count++;
1336	tty->driver = driver; /* N.B. why do this every time?? */
1337
1338	mutex_lock(&tty->ldisc_mutex);
1339	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1340	mutex_unlock(&tty->ldisc_mutex);
1341
1342	return 0;
1343}
1344
1345/**
1346 *	tty_init_dev		-	initialise a tty device
1347 *	@driver: tty driver we are opening a device on
1348 *	@idx: device index
1349 *	@ret_tty: returned tty structure
1350 *	@first_ok: ok to open a new device (used by ptmx)
1351 *
1352 *	Prepare a tty device. This may not be a "new" clean device but
1353 *	could also be an active device. The pty drivers require special
1354 *	handling because of this.
1355 *
1356 *	Locking:
1357 *		The function is called under the tty_mutex, which
1358 *	protects us from the tty struct or driver itself going away.
1359 *
1360 *	On exit the tty device has the line discipline attached and
1361 *	a reference count of 1. If a pair was created for pty/tty use
1362 *	and the other was a pty master then it too has a reference count of 1.
1363 *
1364 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1365 * failed open.  The new code protects the open with a mutex, so it's
1366 * really quite straightforward.  The mutex locking can probably be
1367 * relaxed for the (most common) case of reopening a tty.
1368 */
1369
1370struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1371								int first_ok)
1372{
1373	struct tty_struct *tty;
1374	int retval;
1375
1376	/* Check if pty master is being opened multiple times */
1377	if (driver->subtype == PTY_TYPE_MASTER &&
1378		(driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1379		return ERR_PTR(-EIO);
1380	}
1381
1382	/*
1383	 * First time open is complex, especially for PTY devices.
1384	 * This code guarantees that either everything succeeds and the
1385	 * TTY is ready for operation, or else the table slots are vacated
1386	 * and the allocated memory released.  (Except that the termios
1387	 * and locked termios may be retained.)
1388	 */
1389
1390	if (!try_module_get(driver->owner))
1391		return ERR_PTR(-ENODEV);
1392
1393	tty = alloc_tty_struct();
1394	if (!tty) {
1395		retval = -ENOMEM;
1396		goto err_module_put;
1397	}
1398	initialize_tty_struct(tty, driver, idx);
1399
1400	retval = tty_driver_install_tty(driver, tty);
1401	if (retval < 0)
1402		goto err_deinit_tty;
1403
1404	/*
1405	 * Structures all installed ... call the ldisc open routines.
1406	 * If we fail here just call release_tty to clean up.  No need
1407	 * to decrement the use counts, as release_tty doesn't care.
1408	 */
1409	retval = tty_ldisc_setup(tty, tty->link);
1410	if (retval)
1411		goto err_release_tty;
1412	return tty;
1413
1414err_deinit_tty:
1415	deinitialize_tty_struct(tty);
1416	free_tty_struct(tty);
1417err_module_put:
1418	module_put(driver->owner);
1419	return ERR_PTR(retval);
1420
1421	/* call the tty release_tty routine to clean out this slot */
1422err_release_tty:
1423	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1424				 "clearing slot %d\n", idx);
1425	release_tty(tty, idx);
1426	return ERR_PTR(retval);
1427}
1428
1429void tty_free_termios(struct tty_struct *tty)
1430{
1431	struct ktermios *tp;
1432	int idx = tty->index;
1433	/* Kill this flag and push into drivers for locking etc */
1434	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1435		/* FIXME: Locking on ->termios array */
1436		tp = tty->termios;
1437		tty->driver->termios[idx] = NULL;
1438		kfree(tp);
1439	}
1440}
1441EXPORT_SYMBOL(tty_free_termios);
1442
1443void tty_shutdown(struct tty_struct *tty)
1444{
1445	tty_driver_remove_tty(tty->driver, tty);
1446	tty_free_termios(tty);
1447}
1448EXPORT_SYMBOL(tty_shutdown);
1449
1450/**
1451 *	release_one_tty		-	release tty structure memory
1452 *	@kref: kref of tty we are obliterating
1453 *
1454 *	Releases memory associated with a tty structure, and clears out the
1455 *	driver table slots. This function is called when a device is no longer
1456 *	in use. It also gets called when setup of a device fails.
1457 *
1458 *	Locking:
1459 *		tty_mutex - sometimes only
1460 *		takes the file list lock internally when working on the list
1461 *	of ttys that the driver keeps.
1462 *
1463 *	This method gets called from a work queue so that the driver private
1464 *	cleanup ops can sleep (needed for USB at least)
1465 */
1466static void release_one_tty(struct work_struct *work)
1467{
1468	struct tty_struct *tty =
1469		container_of(work, struct tty_struct, hangup_work);
1470	struct tty_driver *driver = tty->driver;
1471
1472	if (tty->ops->cleanup)
1473		tty->ops->cleanup(tty);
1474
1475	tty->magic = 0;
1476	tty_driver_kref_put(driver);
1477	module_put(driver->owner);
1478
1479	spin_lock(&tty_files_lock);
1480	list_del_init(&tty->tty_files);
1481	spin_unlock(&tty_files_lock);
1482
1483	put_pid(tty->pgrp);
1484	put_pid(tty->session);
1485	free_tty_struct(tty);
1486}
1487
1488static void queue_release_one_tty(struct kref *kref)
1489{
1490	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1491
1492	if (tty->ops->shutdown)
1493		tty->ops->shutdown(tty);
1494	else
1495		tty_shutdown(tty);
1496
1497	/* The hangup queue is now free so we can reuse it rather than
1498	   waste a chunk of memory for each port */
1499	INIT_WORK(&tty->hangup_work, release_one_tty);
1500	schedule_work(&tty->hangup_work);
1501}
1502
1503/**
1504 *	tty_kref_put		-	release a tty kref
1505 *	@tty: tty device
1506 *
1507 *	Release a reference to a tty device and if need be let the kref
1508 *	layer destruct the object for us
1509 */
1510
1511void tty_kref_put(struct tty_struct *tty)
1512{
1513	if (tty)
1514		kref_put(&tty->kref, queue_release_one_tty);
1515}
1516EXPORT_SYMBOL(tty_kref_put);
1517
1518/**
1519 *	release_tty		-	release tty structure memory
1520 *
1521 *	Release both @tty and a possible linked partner (think pty pair),
1522 *	and decrement the refcount of the backing module.
1523 *
1524 *	Locking:
1525 *		tty_mutex - sometimes only
1526 *		takes the file list lock internally when working on the list
1527 *	of ttys that the driver keeps.
1528 *		FIXME: should we require tty_mutex is held here ??
1529 *
1530 */
1531static void release_tty(struct tty_struct *tty, int idx)
1532{
1533	/* This should always be true but check for the moment */
1534	WARN_ON(tty->index != idx);
1535
1536	if (tty->link)
1537		tty_kref_put(tty->link);
1538	tty_kref_put(tty);
1539}
1540
1541/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1542 *	tty_release		-	vfs callback for close
1543 *	@inode: inode of tty
1544 *	@filp: file pointer for handle to tty
1545 *
1546 *	Called the last time each file handle is closed that references
1547 *	this tty. There may however be several such references.
1548 *
1549 *	Locking:
1550 *		Takes bkl. See tty_release_dev
1551 *
1552 * Even releasing the tty structures is a tricky business.. We have
1553 * to be very careful that the structures are all released at the
1554 * same time, as interrupts might otherwise get the wrong pointers.
1555 *
1556 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1557 * lead to double frees or releasing memory still in use.
1558 */
1559
1560int tty_release(struct inode *inode, struct file *filp)
1561{
1562	struct tty_struct *tty = file_tty(filp);
1563	struct tty_struct *o_tty;
1564	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1565	int	devpts;
1566	int	idx;
1567	char	buf[64];
1568
1569	if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1570		return 0;
1571
1572	tty_lock();
1573	check_tty_count(tty, "tty_release_dev");
1574
1575	__tty_fasync(-1, filp, 0);
1576
1577	idx = tty->index;
1578	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1579		      tty->driver->subtype == PTY_TYPE_MASTER);
1580	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1581	o_tty = tty->link;
1582
1583#ifdef TTY_PARANOIA_CHECK
1584	if (idx < 0 || idx >= tty->driver->num) {
1585		printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1586				  "free (%s)\n", tty->name);
1587		tty_unlock();
1588		return 0;
1589	}
1590	if (!devpts) {
1591		if (tty != tty->driver->ttys[idx]) {
1592			tty_unlock();
1593			printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1594			       "for (%s)\n", idx, tty->name);
1595			return 0;
1596		}
1597		if (tty->termios != tty->driver->termios[idx]) {
1598			tty_unlock();
1599			printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1600			       "for (%s)\n",
1601			       idx, tty->name);
1602			return 0;
1603		}
1604	}
1605#endif
1606
1607#ifdef TTY_DEBUG_HANGUP
1608	printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1609	       tty_name(tty, buf), tty->count);
1610#endif
1611
1612#ifdef TTY_PARANOIA_CHECK
1613	if (tty->driver->other &&
1614	     !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1615		if (o_tty != tty->driver->other->ttys[idx]) {
1616			tty_unlock();
1617			printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1618					  "not o_tty for (%s)\n",
1619			       idx, tty->name);
1620			return 0 ;
1621		}
1622		if (o_tty->termios != tty->driver->other->termios[idx]) {
1623			tty_unlock();
1624			printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1625					  "not o_termios for (%s)\n",
1626			       idx, tty->name);
1627			return 0;
1628		}
1629		if (o_tty->link != tty) {
1630			tty_unlock();
1631			printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1632			return 0;
1633		}
1634	}
1635#endif
1636	if (tty->ops->close)
1637		tty->ops->close(tty, filp);
1638
1639	tty_unlock();
1640	/*
1641	 * Sanity check: if tty->count is going to zero, there shouldn't be
1642	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1643	 * wait queues and kick everyone out _before_ actually starting to
1644	 * close.  This ensures that we won't block while releasing the tty
1645	 * structure.
1646	 *
1647	 * The test for the o_tty closing is necessary, since the master and
1648	 * slave sides may close in any order.  If the slave side closes out
1649	 * first, its count will be one, since the master side holds an open.
1650	 * Thus this test wouldn't be triggered at the time the slave closes,
1651	 * so we do it now.
1652	 *
1653	 * Note that it's possible for the tty to be opened again while we're
1654	 * flushing out waiters.  By recalculating the closing flags before
1655	 * each iteration we avoid any problems.
1656	 */
1657	while (1) {
1658		/* Guard against races with tty->count changes elsewhere and
1659		   opens on /dev/tty */
1660
1661		mutex_lock(&tty_mutex);
1662		tty_lock();
1663		tty_closing = tty->count <= 1;
1664		o_tty_closing = o_tty &&
1665			(o_tty->count <= (pty_master ? 1 : 0));
1666		do_sleep = 0;
1667
1668		if (tty_closing) {
1669			if (waitqueue_active(&tty->read_wait)) {
1670				wake_up_poll(&tty->read_wait, POLLIN);
1671				do_sleep++;
1672			}
1673			if (waitqueue_active(&tty->write_wait)) {
1674				wake_up_poll(&tty->write_wait, POLLOUT);
1675				do_sleep++;
1676			}
1677		}
1678		if (o_tty_closing) {
1679			if (waitqueue_active(&o_tty->read_wait)) {
1680				wake_up_poll(&o_tty->read_wait, POLLIN);
1681				do_sleep++;
1682			}
1683			if (waitqueue_active(&o_tty->write_wait)) {
1684				wake_up_poll(&o_tty->write_wait, POLLOUT);
1685				do_sleep++;
1686			}
1687		}
1688		if (!do_sleep)
1689			break;
1690
1691		printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1692				    "active!\n", tty_name(tty, buf));
1693		tty_unlock();
1694		mutex_unlock(&tty_mutex);
1695		schedule();
1696	}
1697
1698	/*
1699	 * The closing flags are now consistent with the open counts on
1700	 * both sides, and we've completed the last operation that could
1701	 * block, so it's safe to proceed with closing.
1702	 */
1703	if (pty_master) {
1704		if (--o_tty->count < 0) {
1705			printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1706					    "(%d) for %s\n",
1707			       o_tty->count, tty_name(o_tty, buf));
1708			o_tty->count = 0;
1709		}
1710	}
1711	if (--tty->count < 0) {
1712		printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1713		       tty->count, tty_name(tty, buf));
1714		tty->count = 0;
1715	}
1716
1717	/*
1718	 * We've decremented tty->count, so we need to remove this file
1719	 * descriptor off the tty->tty_files list; this serves two
1720	 * purposes:
1721	 *  - check_tty_count sees the correct number of file descriptors
1722	 *    associated with this tty.
1723	 *  - do_tty_hangup no longer sees this file descriptor as
1724	 *    something that needs to be handled for hangups.
1725	 */
1726	tty_del_file(filp);
1727
1728	/*
1729	 * Perform some housekeeping before deciding whether to return.
1730	 *
1731	 * Set the TTY_CLOSING flag if this was the last open.  In the
1732	 * case of a pty we may have to wait around for the other side
1733	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1734	 */
1735	if (tty_closing)
1736		set_bit(TTY_CLOSING, &tty->flags);
1737	if (o_tty_closing)
1738		set_bit(TTY_CLOSING, &o_tty->flags);
1739
1740	/*
1741	 * If _either_ side is closing, make sure there aren't any
1742	 * processes that still think tty or o_tty is their controlling
1743	 * tty.
1744	 */
1745	if (tty_closing || o_tty_closing) {
1746		read_lock(&tasklist_lock);
1747		session_clear_tty(tty->session);
1748		if (o_tty)
1749			session_clear_tty(o_tty->session);
1750		read_unlock(&tasklist_lock);
1751	}
1752
1753	mutex_unlock(&tty_mutex);
1754
1755	/* check whether both sides are closing ... */
1756	if (!tty_closing || (o_tty && !o_tty_closing)) {
1757		tty_unlock();
1758		return 0;
1759	}
1760
1761#ifdef TTY_DEBUG_HANGUP
1762	printk(KERN_DEBUG "freeing tty structure...");
1763#endif
1764	/*
1765	 * Ask the line discipline code to release its structures
1766	 */
1767	tty_ldisc_release(tty, o_tty);
1768	/*
1769	 * The release_tty function takes care of the details of clearing
1770	 * the slots and preserving the termios structure.
1771	 */
1772	release_tty(tty, idx);
1773
1774	/* Make this pty number available for reallocation */
1775	if (devpts)
1776		devpts_kill_index(inode, idx);
1777	tty_unlock();
1778	return 0;
1779}
1780
1781/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1782 *	tty_open		-	open a tty device
1783 *	@inode: inode of device file
1784 *	@filp: file pointer to tty
1785 *
1786 *	tty_open and tty_release keep up the tty count that contains the
1787 *	number of opens done on a tty. We cannot use the inode-count, as
1788 *	different inodes might point to the same tty.
1789 *
1790 *	Open-counting is needed for pty masters, as well as for keeping
1791 *	track of serial lines: DTR is dropped when the last close happens.
1792 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1793 *
1794 *	The termios state of a pty is reset on first open so that
1795 *	settings don't persist across reuse.
1796 *
1797 *	Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1798 *		 tty->count should protect the rest.
1799 *		 ->siglock protects ->signal/->sighand
1800 */
1801
1802static int tty_open(struct inode *inode, struct file *filp)
1803{
1804	struct tty_struct *tty = NULL;
1805	int noctty, retval;
1806	struct tty_driver *driver;
1807	int index;
1808	dev_t device = inode->i_rdev;
1809	unsigned saved_flags = filp->f_flags;
1810
1811	nonseekable_open(inode, filp);
1812
1813retry_open:
 
 
 
 
1814	noctty = filp->f_flags & O_NOCTTY;
1815	index  = -1;
1816	retval = 0;
1817
1818	mutex_lock(&tty_mutex);
1819	tty_lock();
1820
1821	if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1822		tty = get_current_tty();
1823		if (!tty) {
1824			tty_unlock();
1825			mutex_unlock(&tty_mutex);
1826			return -ENXIO;
1827		}
1828		driver = tty_driver_kref_get(tty->driver);
1829		index = tty->index;
1830		filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1831		/* noctty = 1; */
1832		/* FIXME: Should we take a driver reference ? */
1833		tty_kref_put(tty);
1834		goto got_driver;
1835	}
1836#ifdef CONFIG_VT
1837	if (device == MKDEV(TTY_MAJOR, 0)) {
1838		extern struct tty_driver *console_driver;
1839		driver = tty_driver_kref_get(console_driver);
1840		index = fg_console;
1841		noctty = 1;
1842		goto got_driver;
1843	}
1844#endif
1845	if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1846		struct tty_driver *console_driver = console_device(&index);
1847		if (console_driver) {
1848			driver = tty_driver_kref_get(console_driver);
1849			if (driver) {
1850				/* Don't let /dev/console block */
1851				filp->f_flags |= O_NONBLOCK;
1852				noctty = 1;
1853				goto got_driver;
1854			}
1855		}
1856		tty_unlock();
1857		mutex_unlock(&tty_mutex);
1858		return -ENODEV;
1859	}
1860
1861	driver = get_tty_driver(device, &index);
1862	if (!driver) {
1863		tty_unlock();
1864		mutex_unlock(&tty_mutex);
1865		return -ENODEV;
1866	}
1867got_driver:
1868	if (!tty) {
1869		/* check whether we're reopening an existing tty */
1870		tty = tty_driver_lookup_tty(driver, inode, index);
1871
1872		if (IS_ERR(tty)) {
1873			tty_unlock();
1874			mutex_unlock(&tty_mutex);
1875			return PTR_ERR(tty);
1876		}
1877	}
1878
1879	if (tty) {
1880		retval = tty_reopen(tty);
1881		if (retval)
1882			tty = ERR_PTR(retval);
1883	} else
1884		tty = tty_init_dev(driver, index, 0);
1885
1886	mutex_unlock(&tty_mutex);
1887	tty_driver_kref_put(driver);
 
1888	if (IS_ERR(tty)) {
1889		tty_unlock();
1890		return PTR_ERR(tty);
 
1891	}
1892
1893	retval = tty_add_file(tty, filp);
1894	if (retval) {
1895		tty_unlock();
1896		tty_release(inode, filp);
1897		return retval;
1898	}
1899
1900	check_tty_count(tty, "tty_open");
1901	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1902	    tty->driver->subtype == PTY_TYPE_MASTER)
1903		noctty = 1;
1904#ifdef TTY_DEBUG_HANGUP
1905	printk(KERN_DEBUG "opening %s...", tty->name);
1906#endif
1907	if (tty->ops->open)
1908		retval = tty->ops->open(tty, filp);
1909	else
1910		retval = -ENODEV;
1911	filp->f_flags = saved_flags;
1912
1913	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1914						!capable(CAP_SYS_ADMIN))
1915		retval = -EBUSY;
1916
1917	if (retval) {
1918#ifdef TTY_DEBUG_HANGUP
1919		printk(KERN_DEBUG "error %d in opening %s...", retval,
1920		       tty->name);
1921#endif
1922		tty_unlock(); /* need to call tty_release without BTM */
1923		tty_release(inode, filp);
1924		if (retval != -ERESTARTSYS)
1925			return retval;
1926
1927		if (signal_pending(current))
1928			return retval;
1929
1930		schedule();
1931		/*
1932		 * Need to reset f_op in case a hangup happened.
1933		 */
1934		tty_lock();
1935		if (filp->f_op == &hung_up_tty_fops)
1936			filp->f_op = &tty_fops;
1937		tty_unlock();
1938		goto retry_open;
1939	}
1940	tty_unlock();
1941
1942
1943	mutex_lock(&tty_mutex);
1944	tty_lock();
1945	spin_lock_irq(&current->sighand->siglock);
1946	if (!noctty &&
1947	    current->signal->leader &&
1948	    !current->signal->tty &&
1949	    tty->session == NULL)
1950		__proc_set_tty(current, tty);
1951	spin_unlock_irq(&current->sighand->siglock);
1952	tty_unlock();
1953	mutex_unlock(&tty_mutex);
1954	return 0;
 
 
 
 
 
 
 
 
 
1955}
1956
1957
1958
1959/**
1960 *	tty_poll	-	check tty status
1961 *	@filp: file being polled
1962 *	@wait: poll wait structures to update
1963 *
1964 *	Call the line discipline polling method to obtain the poll
1965 *	status of the device.
1966 *
1967 *	Locking: locks called line discipline but ldisc poll method
1968 *	may be re-entered freely by other callers.
1969 */
1970
1971static unsigned int tty_poll(struct file *filp, poll_table *wait)
1972{
1973	struct tty_struct *tty = file_tty(filp);
1974	struct tty_ldisc *ld;
1975	int ret = 0;
1976
1977	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1978		return 0;
1979
1980	ld = tty_ldisc_ref_wait(tty);
1981	if (ld->ops->poll)
1982		ret = (ld->ops->poll)(tty, filp, wait);
1983	tty_ldisc_deref(ld);
1984	return ret;
1985}
1986
1987static int __tty_fasync(int fd, struct file *filp, int on)
1988{
1989	struct tty_struct *tty = file_tty(filp);
1990	unsigned long flags;
1991	int retval = 0;
1992
1993	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1994		goto out;
1995
1996	retval = fasync_helper(fd, filp, on, &tty->fasync);
1997	if (retval <= 0)
1998		goto out;
1999
2000	if (on) {
2001		enum pid_type type;
2002		struct pid *pid;
2003		if (!waitqueue_active(&tty->read_wait))
2004			tty->minimum_to_wake = 1;
2005		spin_lock_irqsave(&tty->ctrl_lock, flags);
2006		if (tty->pgrp) {
2007			pid = tty->pgrp;
2008			type = PIDTYPE_PGID;
2009		} else {
2010			pid = task_pid(current);
2011			type = PIDTYPE_PID;
2012		}
2013		get_pid(pid);
2014		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2015		retval = __f_setown(filp, pid, type, 0);
2016		put_pid(pid);
2017		if (retval)
2018			goto out;
2019	} else {
2020		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2021			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2022	}
2023	retval = 0;
2024out:
2025	return retval;
2026}
2027
2028static int tty_fasync(int fd, struct file *filp, int on)
2029{
2030	int retval;
2031	tty_lock();
2032	retval = __tty_fasync(fd, filp, on);
2033	tty_unlock();
2034	return retval;
2035}
2036
2037/**
2038 *	tiocsti			-	fake input character
2039 *	@tty: tty to fake input into
2040 *	@p: pointer to character
2041 *
2042 *	Fake input to a tty device. Does the necessary locking and
2043 *	input management.
2044 *
2045 *	FIXME: does not honour flow control ??
2046 *
2047 *	Locking:
2048 *		Called functions take tty_ldisc_lock
2049 *		current->signal->tty check is safe without locks
2050 *
2051 *	FIXME: may race normal receive processing
2052 */
2053
2054static int tiocsti(struct tty_struct *tty, char __user *p)
2055{
2056	char ch, mbz = 0;
2057	struct tty_ldisc *ld;
2058
2059	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2060		return -EPERM;
2061	if (get_user(ch, p))
2062		return -EFAULT;
2063	tty_audit_tiocsti(tty, ch);
2064	ld = tty_ldisc_ref_wait(tty);
2065	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2066	tty_ldisc_deref(ld);
2067	return 0;
2068}
2069
2070/**
2071 *	tiocgwinsz		-	implement window query ioctl
2072 *	@tty; tty
2073 *	@arg: user buffer for result
2074 *
2075 *	Copies the kernel idea of the window size into the user buffer.
2076 *
2077 *	Locking: tty->termios_mutex is taken to ensure the winsize data
2078 *		is consistent.
2079 */
2080
2081static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2082{
2083	int err;
2084
2085	mutex_lock(&tty->termios_mutex);
2086	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2087	mutex_unlock(&tty->termios_mutex);
2088
2089	return err ? -EFAULT: 0;
2090}
2091
2092/**
2093 *	tty_do_resize		-	resize event
2094 *	@tty: tty being resized
2095 *	@rows: rows (character)
2096 *	@cols: cols (character)
2097 *
2098 *	Update the termios variables and send the necessary signals to
2099 *	peform a terminal resize correctly
2100 */
2101
2102int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2103{
2104	struct pid *pgrp;
2105	unsigned long flags;
2106
2107	/* Lock the tty */
2108	mutex_lock(&tty->termios_mutex);
2109	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2110		goto done;
2111	/* Get the PID values and reference them so we can
2112	   avoid holding the tty ctrl lock while sending signals */
2113	spin_lock_irqsave(&tty->ctrl_lock, flags);
2114	pgrp = get_pid(tty->pgrp);
2115	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2116
2117	if (pgrp)
2118		kill_pgrp(pgrp, SIGWINCH, 1);
2119	put_pid(pgrp);
2120
2121	tty->winsize = *ws;
2122done:
2123	mutex_unlock(&tty->termios_mutex);
2124	return 0;
2125}
2126
2127/**
2128 *	tiocswinsz		-	implement window size set ioctl
2129 *	@tty; tty side of tty
2130 *	@arg: user buffer for result
2131 *
2132 *	Copies the user idea of the window size to the kernel. Traditionally
2133 *	this is just advisory information but for the Linux console it
2134 *	actually has driver level meaning and triggers a VC resize.
2135 *
2136 *	Locking:
2137 *		Driver dependent. The default do_resize method takes the
2138 *	tty termios mutex and ctrl_lock. The console takes its own lock
2139 *	then calls into the default method.
2140 */
2141
2142static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2143{
2144	struct winsize tmp_ws;
2145	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2146		return -EFAULT;
2147
2148	if (tty->ops->resize)
2149		return tty->ops->resize(tty, &tmp_ws);
2150	else
2151		return tty_do_resize(tty, &tmp_ws);
2152}
2153
2154/**
2155 *	tioccons	-	allow admin to move logical console
2156 *	@file: the file to become console
2157 *
2158 *	Allow the administrator to move the redirected console device
2159 *
2160 *	Locking: uses redirect_lock to guard the redirect information
2161 */
2162
2163static int tioccons(struct file *file)
2164{
2165	if (!capable(CAP_SYS_ADMIN))
2166		return -EPERM;
2167	if (file->f_op->write == redirected_tty_write) {
2168		struct file *f;
2169		spin_lock(&redirect_lock);
2170		f = redirect;
2171		redirect = NULL;
2172		spin_unlock(&redirect_lock);
2173		if (f)
2174			fput(f);
2175		return 0;
2176	}
2177	spin_lock(&redirect_lock);
2178	if (redirect) {
2179		spin_unlock(&redirect_lock);
2180		return -EBUSY;
2181	}
2182	get_file(file);
2183	redirect = file;
2184	spin_unlock(&redirect_lock);
2185	return 0;
2186}
2187
2188/**
2189 *	fionbio		-	non blocking ioctl
2190 *	@file: file to set blocking value
2191 *	@p: user parameter
2192 *
2193 *	Historical tty interfaces had a blocking control ioctl before
2194 *	the generic functionality existed. This piece of history is preserved
2195 *	in the expected tty API of posix OS's.
2196 *
2197 *	Locking: none, the open file handle ensures it won't go away.
2198 */
2199
2200static int fionbio(struct file *file, int __user *p)
2201{
2202	int nonblock;
2203
2204	if (get_user(nonblock, p))
2205		return -EFAULT;
2206
2207	spin_lock(&file->f_lock);
2208	if (nonblock)
2209		file->f_flags |= O_NONBLOCK;
2210	else
2211		file->f_flags &= ~O_NONBLOCK;
2212	spin_unlock(&file->f_lock);
2213	return 0;
2214}
2215
2216/**
2217 *	tiocsctty	-	set controlling tty
2218 *	@tty: tty structure
2219 *	@arg: user argument
2220 *
2221 *	This ioctl is used to manage job control. It permits a session
2222 *	leader to set this tty as the controlling tty for the session.
2223 *
2224 *	Locking:
2225 *		Takes tty_mutex() to protect tty instance
2226 *		Takes tasklist_lock internally to walk sessions
2227 *		Takes ->siglock() when updating signal->tty
2228 */
2229
2230static int tiocsctty(struct tty_struct *tty, int arg)
2231{
2232	int ret = 0;
2233	if (current->signal->leader && (task_session(current) == tty->session))
2234		return ret;
2235
2236	mutex_lock(&tty_mutex);
2237	/*
2238	 * The process must be a session leader and
2239	 * not have a controlling tty already.
2240	 */
2241	if (!current->signal->leader || current->signal->tty) {
2242		ret = -EPERM;
2243		goto unlock;
2244	}
2245
2246	if (tty->session) {
2247		/*
2248		 * This tty is already the controlling
2249		 * tty for another session group!
2250		 */
2251		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2252			/*
2253			 * Steal it away
2254			 */
2255			read_lock(&tasklist_lock);
2256			session_clear_tty(tty->session);
2257			read_unlock(&tasklist_lock);
2258		} else {
2259			ret = -EPERM;
2260			goto unlock;
2261		}
2262	}
2263	proc_set_tty(current, tty);
2264unlock:
2265	mutex_unlock(&tty_mutex);
2266	return ret;
2267}
2268
2269/**
2270 *	tty_get_pgrp	-	return a ref counted pgrp pid
2271 *	@tty: tty to read
2272 *
2273 *	Returns a refcounted instance of the pid struct for the process
2274 *	group controlling the tty.
2275 */
2276
2277struct pid *tty_get_pgrp(struct tty_struct *tty)
2278{
2279	unsigned long flags;
2280	struct pid *pgrp;
2281
2282	spin_lock_irqsave(&tty->ctrl_lock, flags);
2283	pgrp = get_pid(tty->pgrp);
2284	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2285
2286	return pgrp;
2287}
2288EXPORT_SYMBOL_GPL(tty_get_pgrp);
2289
2290/**
2291 *	tiocgpgrp		-	get process group
2292 *	@tty: tty passed by user
2293 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2294 *	@p: returned pid
2295 *
2296 *	Obtain the process group of the tty. If there is no process group
2297 *	return an error.
2298 *
2299 *	Locking: none. Reference to current->signal->tty is safe.
2300 */
2301
2302static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2303{
2304	struct pid *pid;
2305	int ret;
2306	/*
2307	 * (tty == real_tty) is a cheap way of
2308	 * testing if the tty is NOT a master pty.
2309	 */
2310	if (tty == real_tty && current->signal->tty != real_tty)
2311		return -ENOTTY;
2312	pid = tty_get_pgrp(real_tty);
2313	ret =  put_user(pid_vnr(pid), p);
2314	put_pid(pid);
2315	return ret;
2316}
2317
2318/**
2319 *	tiocspgrp		-	attempt to set process group
2320 *	@tty: tty passed by user
2321 *	@real_tty: tty side device matching tty passed by user
2322 *	@p: pid pointer
2323 *
2324 *	Set the process group of the tty to the session passed. Only
2325 *	permitted where the tty session is our session.
2326 *
2327 *	Locking: RCU, ctrl lock
2328 */
2329
2330static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2331{
2332	struct pid *pgrp;
2333	pid_t pgrp_nr;
2334	int retval = tty_check_change(real_tty);
2335	unsigned long flags;
2336
2337	if (retval == -EIO)
2338		return -ENOTTY;
2339	if (retval)
2340		return retval;
2341	if (!current->signal->tty ||
2342	    (current->signal->tty != real_tty) ||
2343	    (real_tty->session != task_session(current)))
2344		return -ENOTTY;
2345	if (get_user(pgrp_nr, p))
2346		return -EFAULT;
2347	if (pgrp_nr < 0)
2348		return -EINVAL;
2349	rcu_read_lock();
2350	pgrp = find_vpid(pgrp_nr);
2351	retval = -ESRCH;
2352	if (!pgrp)
2353		goto out_unlock;
2354	retval = -EPERM;
2355	if (session_of_pgrp(pgrp) != task_session(current))
2356		goto out_unlock;
2357	retval = 0;
2358	spin_lock_irqsave(&tty->ctrl_lock, flags);
2359	put_pid(real_tty->pgrp);
2360	real_tty->pgrp = get_pid(pgrp);
2361	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2362out_unlock:
2363	rcu_read_unlock();
2364	return retval;
2365}
2366
2367/**
2368 *	tiocgsid		-	get session id
2369 *	@tty: tty passed by user
2370 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2371 *	@p: pointer to returned session id
2372 *
2373 *	Obtain the session id of the tty. If there is no session
2374 *	return an error.
2375 *
2376 *	Locking: none. Reference to current->signal->tty is safe.
2377 */
2378
2379static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2380{
2381	/*
2382	 * (tty == real_tty) is a cheap way of
2383	 * testing if the tty is NOT a master pty.
2384	*/
2385	if (tty == real_tty && current->signal->tty != real_tty)
2386		return -ENOTTY;
2387	if (!real_tty->session)
2388		return -ENOTTY;
2389	return put_user(pid_vnr(real_tty->session), p);
2390}
2391
2392/**
2393 *	tiocsetd	-	set line discipline
2394 *	@tty: tty device
2395 *	@p: pointer to user data
2396 *
2397 *	Set the line discipline according to user request.
2398 *
2399 *	Locking: see tty_set_ldisc, this function is just a helper
2400 */
2401
2402static int tiocsetd(struct tty_struct *tty, int __user *p)
2403{
2404	int ldisc;
2405	int ret;
2406
2407	if (get_user(ldisc, p))
2408		return -EFAULT;
2409
2410	ret = tty_set_ldisc(tty, ldisc);
2411
2412	return ret;
2413}
2414
2415/**
2416 *	send_break	-	performed time break
2417 *	@tty: device to break on
2418 *	@duration: timeout in mS
2419 *
2420 *	Perform a timed break on hardware that lacks its own driver level
2421 *	timed break functionality.
2422 *
2423 *	Locking:
2424 *		atomic_write_lock serializes
2425 *
2426 */
2427
2428static int send_break(struct tty_struct *tty, unsigned int duration)
2429{
2430	int retval;
2431
2432	if (tty->ops->break_ctl == NULL)
2433		return 0;
2434
2435	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2436		retval = tty->ops->break_ctl(tty, duration);
2437	else {
2438		/* Do the work ourselves */
2439		if (tty_write_lock(tty, 0) < 0)
2440			return -EINTR;
2441		retval = tty->ops->break_ctl(tty, -1);
2442		if (retval)
2443			goto out;
2444		if (!signal_pending(current))
2445			msleep_interruptible(duration);
2446		retval = tty->ops->break_ctl(tty, 0);
2447out:
2448		tty_write_unlock(tty);
2449		if (signal_pending(current))
2450			retval = -EINTR;
2451	}
2452	return retval;
2453}
2454
2455/**
2456 *	tty_tiocmget		-	get modem status
2457 *	@tty: tty device
2458 *	@file: user file pointer
2459 *	@p: pointer to result
2460 *
2461 *	Obtain the modem status bits from the tty driver if the feature
2462 *	is supported. Return -EINVAL if it is not available.
2463 *
2464 *	Locking: none (up to the driver)
2465 */
2466
2467static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2468{
2469	int retval = -EINVAL;
2470
2471	if (tty->ops->tiocmget) {
2472		retval = tty->ops->tiocmget(tty);
2473
2474		if (retval >= 0)
2475			retval = put_user(retval, p);
2476	}
2477	return retval;
2478}
2479
2480/**
2481 *	tty_tiocmset		-	set modem status
2482 *	@tty: tty device
2483 *	@cmd: command - clear bits, set bits or set all
2484 *	@p: pointer to desired bits
2485 *
2486 *	Set the modem status bits from the tty driver if the feature
2487 *	is supported. Return -EINVAL if it is not available.
2488 *
2489 *	Locking: none (up to the driver)
2490 */
2491
2492static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2493	     unsigned __user *p)
2494{
2495	int retval;
2496	unsigned int set, clear, val;
2497
2498	if (tty->ops->tiocmset == NULL)
2499		return -EINVAL;
2500
2501	retval = get_user(val, p);
2502	if (retval)
2503		return retval;
2504	set = clear = 0;
2505	switch (cmd) {
2506	case TIOCMBIS:
2507		set = val;
2508		break;
2509	case TIOCMBIC:
2510		clear = val;
2511		break;
2512	case TIOCMSET:
2513		set = val;
2514		clear = ~val;
2515		break;
2516	}
2517	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2518	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2519	return tty->ops->tiocmset(tty, set, clear);
2520}
2521
2522static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2523{
2524	int retval = -EINVAL;
2525	struct serial_icounter_struct icount;
2526	memset(&icount, 0, sizeof(icount));
2527	if (tty->ops->get_icount)
2528		retval = tty->ops->get_icount(tty, &icount);
2529	if (retval != 0)
2530		return retval;
2531	if (copy_to_user(arg, &icount, sizeof(icount)))
2532		return -EFAULT;
2533	return 0;
2534}
2535
2536struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2537{
2538	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2539	    tty->driver->subtype == PTY_TYPE_MASTER)
2540		tty = tty->link;
2541	return tty;
2542}
2543EXPORT_SYMBOL(tty_pair_get_tty);
2544
2545struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2546{
2547	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2548	    tty->driver->subtype == PTY_TYPE_MASTER)
2549	    return tty;
2550	return tty->link;
2551}
2552EXPORT_SYMBOL(tty_pair_get_pty);
2553
2554/*
2555 * Split this up, as gcc can choke on it otherwise..
2556 */
2557long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2558{
2559	struct tty_struct *tty = file_tty(file);
2560	struct tty_struct *real_tty;
2561	void __user *p = (void __user *)arg;
2562	int retval;
2563	struct tty_ldisc *ld;
2564	struct inode *inode = file->f_dentry->d_inode;
2565
2566	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2567		return -EINVAL;
2568
2569	real_tty = tty_pair_get_tty(tty);
2570
2571	/*
2572	 * Factor out some common prep work
2573	 */
2574	switch (cmd) {
2575	case TIOCSETD:
2576	case TIOCSBRK:
2577	case TIOCCBRK:
2578	case TCSBRK:
2579	case TCSBRKP:
2580		retval = tty_check_change(tty);
2581		if (retval)
2582			return retval;
2583		if (cmd != TIOCCBRK) {
2584			tty_wait_until_sent(tty, 0);
2585			if (signal_pending(current))
2586				return -EINTR;
2587		}
2588		break;
2589	}
2590
2591	/*
2592	 *	Now do the stuff.
2593	 */
2594	switch (cmd) {
2595	case TIOCSTI:
2596		return tiocsti(tty, p);
2597	case TIOCGWINSZ:
2598		return tiocgwinsz(real_tty, p);
2599	case TIOCSWINSZ:
2600		return tiocswinsz(real_tty, p);
2601	case TIOCCONS:
2602		return real_tty != tty ? -EINVAL : tioccons(file);
2603	case FIONBIO:
2604		return fionbio(file, p);
2605	case TIOCEXCL:
2606		set_bit(TTY_EXCLUSIVE, &tty->flags);
2607		return 0;
2608	case TIOCNXCL:
2609		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2610		return 0;
2611	case TIOCNOTTY:
2612		if (current->signal->tty != tty)
2613			return -ENOTTY;
2614		no_tty();
2615		return 0;
2616	case TIOCSCTTY:
2617		return tiocsctty(tty, arg);
2618	case TIOCGPGRP:
2619		return tiocgpgrp(tty, real_tty, p);
2620	case TIOCSPGRP:
2621		return tiocspgrp(tty, real_tty, p);
2622	case TIOCGSID:
2623		return tiocgsid(tty, real_tty, p);
2624	case TIOCGETD:
2625		return put_user(tty->ldisc->ops->num, (int __user *)p);
2626	case TIOCSETD:
2627		return tiocsetd(tty, p);
2628	case TIOCVHANGUP:
2629		if (!capable(CAP_SYS_ADMIN))
2630			return -EPERM;
2631		tty_vhangup(tty);
2632		return 0;
2633	case TIOCGDEV:
2634	{
2635		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2636		return put_user(ret, (unsigned int __user *)p);
2637	}
2638	/*
2639	 * Break handling
2640	 */
2641	case TIOCSBRK:	/* Turn break on, unconditionally */
2642		if (tty->ops->break_ctl)
2643			return tty->ops->break_ctl(tty, -1);
2644		return 0;
2645	case TIOCCBRK:	/* Turn break off, unconditionally */
2646		if (tty->ops->break_ctl)
2647			return tty->ops->break_ctl(tty, 0);
2648		return 0;
2649	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2650		/* non-zero arg means wait for all output data
2651		 * to be sent (performed above) but don't send break.
2652		 * This is used by the tcdrain() termios function.
2653		 */
2654		if (!arg)
2655			return send_break(tty, 250);
2656		return 0;
2657	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2658		return send_break(tty, arg ? arg*100 : 250);
2659
2660	case TIOCMGET:
2661		return tty_tiocmget(tty, p);
2662	case TIOCMSET:
2663	case TIOCMBIC:
2664	case TIOCMBIS:
2665		return tty_tiocmset(tty, cmd, p);
2666	case TIOCGICOUNT:
2667		retval = tty_tiocgicount(tty, p);
2668		/* For the moment allow fall through to the old method */
2669        	if (retval != -EINVAL)
2670			return retval;
2671		break;
2672	case TCFLSH:
2673		switch (arg) {
2674		case TCIFLUSH:
2675		case TCIOFLUSH:
2676		/* flush tty buffer and allow ldisc to process ioctl */
2677			tty_buffer_flush(tty);
2678			break;
2679		}
2680		break;
2681	}
2682	if (tty->ops->ioctl) {
2683		retval = (tty->ops->ioctl)(tty, cmd, arg);
2684		if (retval != -ENOIOCTLCMD)
2685			return retval;
2686	}
2687	ld = tty_ldisc_ref_wait(tty);
2688	retval = -EINVAL;
2689	if (ld->ops->ioctl) {
2690		retval = ld->ops->ioctl(tty, file, cmd, arg);
2691		if (retval == -ENOIOCTLCMD)
2692			retval = -EINVAL;
2693	}
2694	tty_ldisc_deref(ld);
2695	return retval;
2696}
2697
2698#ifdef CONFIG_COMPAT
2699static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2700				unsigned long arg)
2701{
2702	struct inode *inode = file->f_dentry->d_inode;
2703	struct tty_struct *tty = file_tty(file);
2704	struct tty_ldisc *ld;
2705	int retval = -ENOIOCTLCMD;
2706
2707	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2708		return -EINVAL;
2709
2710	if (tty->ops->compat_ioctl) {
2711		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2712		if (retval != -ENOIOCTLCMD)
2713			return retval;
2714	}
2715
2716	ld = tty_ldisc_ref_wait(tty);
2717	if (ld->ops->compat_ioctl)
2718		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
 
 
2719	tty_ldisc_deref(ld);
2720
2721	return retval;
2722}
2723#endif
2724
2725/*
2726 * This implements the "Secure Attention Key" ---  the idea is to
2727 * prevent trojan horses by killing all processes associated with this
2728 * tty when the user hits the "Secure Attention Key".  Required for
2729 * super-paranoid applications --- see the Orange Book for more details.
2730 *
2731 * This code could be nicer; ideally it should send a HUP, wait a few
2732 * seconds, then send a INT, and then a KILL signal.  But you then
2733 * have to coordinate with the init process, since all processes associated
2734 * with the current tty must be dead before the new getty is allowed
2735 * to spawn.
2736 *
2737 * Now, if it would be correct ;-/ The current code has a nasty hole -
2738 * it doesn't catch files in flight. We may send the descriptor to ourselves
2739 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2740 *
2741 * Nasty bug: do_SAK is being called in interrupt context.  This can
2742 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2743 */
2744void __do_SAK(struct tty_struct *tty)
2745{
2746#ifdef TTY_SOFT_SAK
2747	tty_hangup(tty);
2748#else
2749	struct task_struct *g, *p;
2750	struct pid *session;
2751	int		i;
2752	struct file	*filp;
2753	struct fdtable *fdt;
2754
2755	if (!tty)
2756		return;
2757	session = tty->session;
2758
2759	tty_ldisc_flush(tty);
2760
2761	tty_driver_flush_buffer(tty);
2762
2763	read_lock(&tasklist_lock);
2764	/* Kill the entire session */
2765	do_each_pid_task(session, PIDTYPE_SID, p) {
2766		printk(KERN_NOTICE "SAK: killed process %d"
2767			" (%s): task_session(p)==tty->session\n",
2768			task_pid_nr(p), p->comm);
2769		send_sig(SIGKILL, p, 1);
2770	} while_each_pid_task(session, PIDTYPE_SID, p);
2771	/* Now kill any processes that happen to have the
2772	 * tty open.
2773	 */
2774	do_each_thread(g, p) {
2775		if (p->signal->tty == tty) {
2776			printk(KERN_NOTICE "SAK: killed process %d"
2777			    " (%s): task_session(p)==tty->session\n",
2778			    task_pid_nr(p), p->comm);
2779			send_sig(SIGKILL, p, 1);
2780			continue;
2781		}
2782		task_lock(p);
2783		if (p->files) {
2784			/*
2785			 * We don't take a ref to the file, so we must
2786			 * hold ->file_lock instead.
2787			 */
2788			spin_lock(&p->files->file_lock);
2789			fdt = files_fdtable(p->files);
2790			for (i = 0; i < fdt->max_fds; i++) {
2791				filp = fcheck_files(p->files, i);
2792				if (!filp)
2793					continue;
2794				if (filp->f_op->read == tty_read &&
2795				    file_tty(filp) == tty) {
2796					printk(KERN_NOTICE "SAK: killed process %d"
2797					    " (%s): fd#%d opened to the tty\n",
2798					    task_pid_nr(p), p->comm, i);
2799					force_sig(SIGKILL, p);
2800					break;
2801				}
2802			}
2803			spin_unlock(&p->files->file_lock);
2804		}
2805		task_unlock(p);
2806	} while_each_thread(g, p);
2807	read_unlock(&tasklist_lock);
2808#endif
2809}
2810
2811static void do_SAK_work(struct work_struct *work)
2812{
2813	struct tty_struct *tty =
2814		container_of(work, struct tty_struct, SAK_work);
2815	__do_SAK(tty);
2816}
2817
2818/*
2819 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2820 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2821 * the values which we write to it will be identical to the values which it
2822 * already has. --akpm
2823 */
2824void do_SAK(struct tty_struct *tty)
2825{
2826	if (!tty)
2827		return;
2828	schedule_work(&tty->SAK_work);
2829}
2830
2831EXPORT_SYMBOL(do_SAK);
2832
2833static int dev_match_devt(struct device *dev, void *data)
2834{
2835	dev_t *devt = data;
2836	return dev->devt == *devt;
2837}
2838
2839/* Must put_device() after it's unused! */
2840static struct device *tty_get_device(struct tty_struct *tty)
2841{
2842	dev_t devt = tty_devnum(tty);
2843	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2844}
2845
2846
2847/**
2848 *	initialize_tty_struct
2849 *	@tty: tty to initialize
2850 *
2851 *	This subroutine initializes a tty structure that has been newly
2852 *	allocated.
2853 *
2854 *	Locking: none - tty in question must not be exposed at this point
2855 */
2856
2857void initialize_tty_struct(struct tty_struct *tty,
2858		struct tty_driver *driver, int idx)
2859{
2860	memset(tty, 0, sizeof(struct tty_struct));
2861	kref_init(&tty->kref);
2862	tty->magic = TTY_MAGIC;
2863	tty_ldisc_init(tty);
2864	tty->session = NULL;
2865	tty->pgrp = NULL;
2866	tty->overrun_time = jiffies;
2867	tty->buf.head = tty->buf.tail = NULL;
2868	tty_buffer_init(tty);
2869	mutex_init(&tty->termios_mutex);
2870	mutex_init(&tty->ldisc_mutex);
2871	init_waitqueue_head(&tty->write_wait);
2872	init_waitqueue_head(&tty->read_wait);
2873	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2874	mutex_init(&tty->atomic_read_lock);
2875	mutex_init(&tty->atomic_write_lock);
2876	mutex_init(&tty->output_lock);
2877	mutex_init(&tty->echo_lock);
2878	spin_lock_init(&tty->read_lock);
2879	spin_lock_init(&tty->ctrl_lock);
2880	INIT_LIST_HEAD(&tty->tty_files);
2881	INIT_WORK(&tty->SAK_work, do_SAK_work);
2882
2883	tty->driver = driver;
2884	tty->ops = driver->ops;
2885	tty->index = idx;
2886	tty_line_name(driver, idx, tty->name);
2887	tty->dev = tty_get_device(tty);
2888}
2889
2890/**
2891 *	deinitialize_tty_struct
2892 *	@tty: tty to deinitialize
2893 *
2894 *	This subroutine deinitializes a tty structure that has been newly
2895 *	allocated but tty_release cannot be called on that yet.
2896 *
2897 *	Locking: none - tty in question must not be exposed at this point
2898 */
2899void deinitialize_tty_struct(struct tty_struct *tty)
2900{
2901	tty_ldisc_deinit(tty);
2902}
2903
2904/**
2905 *	tty_put_char	-	write one character to a tty
2906 *	@tty: tty
2907 *	@ch: character
2908 *
2909 *	Write one byte to the tty using the provided put_char method
2910 *	if present. Returns the number of characters successfully output.
2911 *
2912 *	Note: the specific put_char operation in the driver layer may go
2913 *	away soon. Don't call it directly, use this method
2914 */
2915
2916int tty_put_char(struct tty_struct *tty, unsigned char ch)
2917{
2918	if (tty->ops->put_char)
2919		return tty->ops->put_char(tty, ch);
2920	return tty->ops->write(tty, &ch, 1);
2921}
2922EXPORT_SYMBOL_GPL(tty_put_char);
2923
2924struct class *tty_class;
2925
2926/**
2927 *	tty_register_device - register a tty device
2928 *	@driver: the tty driver that describes the tty device
2929 *	@index: the index in the tty driver for this tty device
2930 *	@device: a struct device that is associated with this tty device.
2931 *		This field is optional, if there is no known struct device
2932 *		for this tty device it can be set to NULL safely.
2933 *
2934 *	Returns a pointer to the struct device for this tty device
2935 *	(or ERR_PTR(-EFOO) on error).
2936 *
2937 *	This call is required to be made to register an individual tty device
2938 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2939 *	that bit is not set, this function should not be called by a tty
2940 *	driver.
2941 *
2942 *	Locking: ??
2943 */
2944
2945struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2946				   struct device *device)
2947{
2948	char name[64];
2949	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2950
2951	if (index >= driver->num) {
2952		printk(KERN_ERR "Attempt to register invalid tty line number "
2953		       " (%d).\n", index);
2954		return ERR_PTR(-EINVAL);
2955	}
2956
2957	if (driver->type == TTY_DRIVER_TYPE_PTY)
2958		pty_line_name(driver, index, name);
2959	else
2960		tty_line_name(driver, index, name);
2961
2962	return device_create(tty_class, device, dev, NULL, name);
2963}
2964EXPORT_SYMBOL(tty_register_device);
2965
2966/**
2967 * 	tty_unregister_device - unregister a tty device
2968 * 	@driver: the tty driver that describes the tty device
2969 * 	@index: the index in the tty driver for this tty device
2970 *
2971 * 	If a tty device is registered with a call to tty_register_device() then
2972 *	this function must be called when the tty device is gone.
2973 *
2974 *	Locking: ??
2975 */
2976
2977void tty_unregister_device(struct tty_driver *driver, unsigned index)
2978{
2979	device_destroy(tty_class,
2980		MKDEV(driver->major, driver->minor_start) + index);
2981}
2982EXPORT_SYMBOL(tty_unregister_device);
2983
2984struct tty_driver *alloc_tty_driver(int lines)
2985{
2986	struct tty_driver *driver;
2987
2988	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2989	if (driver) {
2990		kref_init(&driver->kref);
2991		driver->magic = TTY_DRIVER_MAGIC;
2992		driver->num = lines;
 
2993		/* later we'll move allocation of tables here */
2994	}
2995	return driver;
2996}
2997EXPORT_SYMBOL(alloc_tty_driver);
2998
2999static void destruct_tty_driver(struct kref *kref)
3000{
3001	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3002	int i;
3003	struct ktermios *tp;
3004	void *p;
3005
3006	if (driver->flags & TTY_DRIVER_INSTALLED) {
3007		/*
3008		 * Free the termios and termios_locked structures because
3009		 * we don't want to get memory leaks when modular tty
3010		 * drivers are removed from the kernel.
3011		 */
3012		for (i = 0; i < driver->num; i++) {
3013			tp = driver->termios[i];
3014			if (tp) {
3015				driver->termios[i] = NULL;
3016				kfree(tp);
3017			}
3018			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3019				tty_unregister_device(driver, i);
3020		}
3021		p = driver->ttys;
3022		proc_tty_unregister_driver(driver);
3023		driver->ttys = NULL;
3024		driver->termios = NULL;
3025		kfree(p);
3026		cdev_del(&driver->cdev);
3027	}
3028	kfree(driver);
3029}
3030
3031void tty_driver_kref_put(struct tty_driver *driver)
3032{
3033	kref_put(&driver->kref, destruct_tty_driver);
3034}
3035EXPORT_SYMBOL(tty_driver_kref_put);
3036
3037void tty_set_operations(struct tty_driver *driver,
3038			const struct tty_operations *op)
3039{
3040	driver->ops = op;
3041};
3042EXPORT_SYMBOL(tty_set_operations);
3043
3044void put_tty_driver(struct tty_driver *d)
3045{
3046	tty_driver_kref_put(d);
3047}
3048EXPORT_SYMBOL(put_tty_driver);
3049
3050/*
3051 * Called by a tty driver to register itself.
3052 */
3053int tty_register_driver(struct tty_driver *driver)
3054{
3055	int error;
3056	int i;
3057	dev_t dev;
3058	void **p = NULL;
3059	struct device *d;
3060
3061	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3062		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3063		if (!p)
3064			return -ENOMEM;
3065	}
3066
3067	if (!driver->major) {
3068		error = alloc_chrdev_region(&dev, driver->minor_start,
3069						driver->num, driver->name);
3070		if (!error) {
3071			driver->major = MAJOR(dev);
3072			driver->minor_start = MINOR(dev);
3073		}
3074	} else {
3075		dev = MKDEV(driver->major, driver->minor_start);
3076		error = register_chrdev_region(dev, driver->num, driver->name);
3077	}
3078	if (error < 0) {
3079		kfree(p);
3080		return error;
3081	}
3082
3083	if (p) {
3084		driver->ttys = (struct tty_struct **)p;
3085		driver->termios = (struct ktermios **)(p + driver->num);
3086	} else {
3087		driver->ttys = NULL;
3088		driver->termios = NULL;
3089	}
3090
3091	cdev_init(&driver->cdev, &tty_fops);
3092	driver->cdev.owner = driver->owner;
3093	error = cdev_add(&driver->cdev, dev, driver->num);
3094	if (error) {
3095		unregister_chrdev_region(dev, driver->num);
3096		driver->ttys = NULL;
3097		driver->termios = NULL;
3098		kfree(p);
3099		return error;
3100	}
3101
3102	mutex_lock(&tty_mutex);
3103	list_add(&driver->tty_drivers, &tty_drivers);
3104	mutex_unlock(&tty_mutex);
3105
3106	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3107		for (i = 0; i < driver->num; i++) {
3108			d = tty_register_device(driver, i, NULL);
3109			if (IS_ERR(d)) {
3110				error = PTR_ERR(d);
3111				goto err;
3112			}
3113		}
3114	}
3115	proc_tty_register_driver(driver);
3116	driver->flags |= TTY_DRIVER_INSTALLED;
3117	return 0;
3118
3119err:
3120	for (i--; i >= 0; i--)
3121		tty_unregister_device(driver, i);
3122
3123	mutex_lock(&tty_mutex);
3124	list_del(&driver->tty_drivers);
3125	mutex_unlock(&tty_mutex);
3126
3127	unregister_chrdev_region(dev, driver->num);
3128	driver->ttys = NULL;
3129	driver->termios = NULL;
3130	kfree(p);
3131	return error;
3132}
3133
3134EXPORT_SYMBOL(tty_register_driver);
3135
3136/*
3137 * Called by a tty driver to unregister itself.
3138 */
3139int tty_unregister_driver(struct tty_driver *driver)
3140{
3141#if 0
3142	/* FIXME */
3143	if (driver->refcount)
3144		return -EBUSY;
3145#endif
3146	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3147				driver->num);
3148	mutex_lock(&tty_mutex);
3149	list_del(&driver->tty_drivers);
3150	mutex_unlock(&tty_mutex);
3151	return 0;
3152}
3153
3154EXPORT_SYMBOL(tty_unregister_driver);
3155
3156dev_t tty_devnum(struct tty_struct *tty)
3157{
3158	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3159}
3160EXPORT_SYMBOL(tty_devnum);
3161
3162void proc_clear_tty(struct task_struct *p)
3163{
3164	unsigned long flags;
3165	struct tty_struct *tty;
3166	spin_lock_irqsave(&p->sighand->siglock, flags);
3167	tty = p->signal->tty;
3168	p->signal->tty = NULL;
3169	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3170	tty_kref_put(tty);
3171}
3172
3173/* Called under the sighand lock */
3174
3175static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3176{
3177	if (tty) {
3178		unsigned long flags;
3179		/* We should not have a session or pgrp to put here but.... */
3180		spin_lock_irqsave(&tty->ctrl_lock, flags);
3181		put_pid(tty->session);
3182		put_pid(tty->pgrp);
3183		tty->pgrp = get_pid(task_pgrp(tsk));
3184		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3185		tty->session = get_pid(task_session(tsk));
3186		if (tsk->signal->tty) {
3187			printk(KERN_DEBUG "tty not NULL!!\n");
3188			tty_kref_put(tsk->signal->tty);
3189		}
3190	}
3191	put_pid(tsk->signal->tty_old_pgrp);
3192	tsk->signal->tty = tty_kref_get(tty);
3193	tsk->signal->tty_old_pgrp = NULL;
3194}
3195
3196static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3197{
3198	spin_lock_irq(&tsk->sighand->siglock);
3199	__proc_set_tty(tsk, tty);
3200	spin_unlock_irq(&tsk->sighand->siglock);
3201}
3202
3203struct tty_struct *get_current_tty(void)
3204{
3205	struct tty_struct *tty;
3206	unsigned long flags;
3207
3208	spin_lock_irqsave(&current->sighand->siglock, flags);
3209	tty = tty_kref_get(current->signal->tty);
3210	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3211	return tty;
3212}
3213EXPORT_SYMBOL_GPL(get_current_tty);
3214
3215void tty_default_fops(struct file_operations *fops)
3216{
3217	*fops = tty_fops;
3218}
3219
3220/*
3221 * Initialize the console device. This is called *early*, so
3222 * we can't necessarily depend on lots of kernel help here.
3223 * Just do some early initializations, and do the complex setup
3224 * later.
3225 */
3226void __init console_init(void)
3227{
3228	initcall_t *call;
3229
3230	/* Setup the default TTY line discipline. */
3231	tty_ldisc_begin();
3232
3233	/*
3234	 * set up the console device so that later boot sequences can
3235	 * inform about problems etc..
3236	 */
3237	call = __con_initcall_start;
3238	while (call < __con_initcall_end) {
3239		(*call)();
3240		call++;
3241	}
3242}
3243
3244static char *tty_devnode(struct device *dev, mode_t *mode)
3245{
3246	if (!mode)
3247		return NULL;
3248	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3249	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3250		*mode = 0666;
3251	return NULL;
3252}
3253
3254static int __init tty_class_init(void)
3255{
3256	tty_class = class_create(THIS_MODULE, "tty");
3257	if (IS_ERR(tty_class))
3258		return PTR_ERR(tty_class);
3259	tty_class->devnode = tty_devnode;
3260	return 0;
3261}
3262
3263postcore_initcall(tty_class_init);
3264
3265/* 3/2004 jmc: why do these devices exist? */
3266static struct cdev tty_cdev, console_cdev;
3267
3268static ssize_t show_cons_active(struct device *dev,
3269				struct device_attribute *attr, char *buf)
3270{
3271	struct console *cs[16];
3272	int i = 0;
3273	struct console *c;
3274	ssize_t count = 0;
3275
3276	console_lock();
3277	for_each_console(c) {
3278		if (!c->device)
3279			continue;
3280		if (!c->write)
3281			continue;
3282		if ((c->flags & CON_ENABLED) == 0)
3283			continue;
3284		cs[i++] = c;
3285		if (i >= ARRAY_SIZE(cs))
3286			break;
3287	}
3288	while (i--)
3289		count += sprintf(buf + count, "%s%d%c",
3290				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3291	console_unlock();
3292
3293	return count;
3294}
3295static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3296
3297static struct device *consdev;
3298
3299void console_sysfs_notify(void)
3300{
3301	if (consdev)
3302		sysfs_notify(&consdev->kobj, NULL, "active");
3303}
3304
3305/*
3306 * Ok, now we can initialize the rest of the tty devices and can count
3307 * on memory allocations, interrupts etc..
3308 */
3309int __init tty_init(void)
3310{
3311	cdev_init(&tty_cdev, &tty_fops);
3312	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3313	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3314		panic("Couldn't register /dev/tty driver\n");
3315	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3316
3317	cdev_init(&console_cdev, &console_fops);
3318	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3319	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3320		panic("Couldn't register /dev/console driver\n");
3321	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3322			      "console");
3323	if (IS_ERR(consdev))
3324		consdev = NULL;
3325	else
3326		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3327
3328#ifdef CONFIG_VT
3329	vty_init(&console_fops);
3330#endif
3331	return 0;
3332}
3333
v3.5.6
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 107
 108#undef TTY_DEBUG_HANGUP
 109
 110#define TTY_PARANOIA_CHECK 1
 111#define CHECK_TTY_COUNT 1
 112
 113struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 114	.c_iflag = ICRNL | IXON,
 115	.c_oflag = OPOST | ONLCR,
 116	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 117	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 118		   ECHOCTL | ECHOKE | IEXTEN,
 119	.c_cc = INIT_C_CC,
 120	.c_ispeed = 38400,
 121	.c_ospeed = 38400
 122};
 123
 124EXPORT_SYMBOL(tty_std_termios);
 125
 126/* This list gets poked at by procfs and various bits of boot up code. This
 127   could do with some rationalisation such as pulling the tty proc function
 128   into this file */
 129
 130LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 131
 132/* Mutex to protect creating and releasing a tty. This is shared with
 133   vt.c for deeply disgusting hack reasons */
 134DEFINE_MUTEX(tty_mutex);
 135EXPORT_SYMBOL(tty_mutex);
 136
 137/* Spinlock to protect the tty->tty_files list */
 138DEFINE_SPINLOCK(tty_files_lock);
 139
 140static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 141static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 142ssize_t redirected_tty_write(struct file *, const char __user *,
 143							size_t, loff_t *);
 144static unsigned int tty_poll(struct file *, poll_table *);
 145static int tty_open(struct inode *, struct file *);
 146long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 147#ifdef CONFIG_COMPAT
 148static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 149				unsigned long arg);
 150#else
 151#define tty_compat_ioctl NULL
 152#endif
 153static int __tty_fasync(int fd, struct file *filp, int on);
 154static int tty_fasync(int fd, struct file *filp, int on);
 155static void release_tty(struct tty_struct *tty, int idx);
 156static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 157static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 158
 159/**
 160 *	alloc_tty_struct	-	allocate a tty object
 161 *
 162 *	Return a new empty tty structure. The data fields have not
 163 *	been initialized in any way but has been zeroed
 164 *
 165 *	Locking: none
 166 */
 167
 168struct tty_struct *alloc_tty_struct(void)
 169{
 170	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 171}
 172
 173/**
 174 *	free_tty_struct		-	free a disused tty
 175 *	@tty: tty struct to free
 176 *
 177 *	Free the write buffers, tty queue and tty memory itself.
 178 *
 179 *	Locking: none. Must be called after tty is definitely unused
 180 */
 181
 182void free_tty_struct(struct tty_struct *tty)
 183{
 184	if (tty->dev)
 185		put_device(tty->dev);
 186	kfree(tty->write_buf);
 187	tty_buffer_free_all(tty);
 188	kfree(tty);
 189}
 190
 191static inline struct tty_struct *file_tty(struct file *file)
 192{
 193	return ((struct tty_file_private *)file->private_data)->tty;
 194}
 195
 196int tty_alloc_file(struct file *file)
 
 197{
 198	struct tty_file_private *priv;
 199
 200	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 201	if (!priv)
 202		return -ENOMEM;
 203
 204	file->private_data = priv;
 205
 206	return 0;
 207}
 208
 209/* Associate a new file with the tty structure */
 210void tty_add_file(struct tty_struct *tty, struct file *file)
 211{
 212	struct tty_file_private *priv = file->private_data;
 213
 214	priv->tty = tty;
 215	priv->file = file;
 
 216
 217	spin_lock(&tty_files_lock);
 218	list_add(&priv->list, &tty->tty_files);
 219	spin_unlock(&tty_files_lock);
 220}
 221
 222/**
 223 * tty_free_file - free file->private_data
 224 *
 225 * This shall be used only for fail path handling when tty_add_file was not
 226 * called yet.
 227 */
 228void tty_free_file(struct file *file)
 229{
 230	struct tty_file_private *priv = file->private_data;
 231
 232	file->private_data = NULL;
 233	kfree(priv);
 234}
 235
 236/* Delete file from its tty */
 237void tty_del_file(struct file *file)
 238{
 239	struct tty_file_private *priv = file->private_data;
 240
 241	spin_lock(&tty_files_lock);
 242	list_del(&priv->list);
 243	spin_unlock(&tty_files_lock);
 244	tty_free_file(file);
 
 245}
 246
 247
 248#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 249
 250/**
 251 *	tty_name	-	return tty naming
 252 *	@tty: tty structure
 253 *	@buf: buffer for output
 254 *
 255 *	Convert a tty structure into a name. The name reflects the kernel
 256 *	naming policy and if udev is in use may not reflect user space
 257 *
 258 *	Locking: none
 259 */
 260
 261char *tty_name(struct tty_struct *tty, char *buf)
 262{
 263	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 264		strcpy(buf, "NULL tty");
 265	else
 266		strcpy(buf, tty->name);
 267	return buf;
 268}
 269
 270EXPORT_SYMBOL(tty_name);
 271
 272int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 273			      const char *routine)
 274{
 275#ifdef TTY_PARANOIA_CHECK
 276	if (!tty) {
 277		printk(KERN_WARNING
 278			"null TTY for (%d:%d) in %s\n",
 279			imajor(inode), iminor(inode), routine);
 280		return 1;
 281	}
 282	if (tty->magic != TTY_MAGIC) {
 283		printk(KERN_WARNING
 284			"bad magic number for tty struct (%d:%d) in %s\n",
 285			imajor(inode), iminor(inode), routine);
 286		return 1;
 287	}
 288#endif
 289	return 0;
 290}
 291
 292static int check_tty_count(struct tty_struct *tty, const char *routine)
 293{
 294#ifdef CHECK_TTY_COUNT
 295	struct list_head *p;
 296	int count = 0;
 297
 298	spin_lock(&tty_files_lock);
 299	list_for_each(p, &tty->tty_files) {
 300		count++;
 301	}
 302	spin_unlock(&tty_files_lock);
 303	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 304	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 305	    tty->link && tty->link->count)
 306		count++;
 307	if (tty->count != count) {
 308		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 309				    "!= #fd's(%d) in %s\n",
 310		       tty->name, tty->count, count, routine);
 311		return count;
 312	}
 313#endif
 314	return 0;
 315}
 316
 317/**
 318 *	get_tty_driver		-	find device of a tty
 319 *	@dev_t: device identifier
 320 *	@index: returns the index of the tty
 321 *
 322 *	This routine returns a tty driver structure, given a device number
 323 *	and also passes back the index number.
 324 *
 325 *	Locking: caller must hold tty_mutex
 326 */
 327
 328static struct tty_driver *get_tty_driver(dev_t device, int *index)
 329{
 330	struct tty_driver *p;
 331
 332	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 333		dev_t base = MKDEV(p->major, p->minor_start);
 334		if (device < base || device >= base + p->num)
 335			continue;
 336		*index = device - base;
 337		return tty_driver_kref_get(p);
 338	}
 339	return NULL;
 340}
 341
 342#ifdef CONFIG_CONSOLE_POLL
 343
 344/**
 345 *	tty_find_polling_driver	-	find device of a polled tty
 346 *	@name: name string to match
 347 *	@line: pointer to resulting tty line nr
 348 *
 349 *	This routine returns a tty driver structure, given a name
 350 *	and the condition that the tty driver is capable of polled
 351 *	operation.
 352 */
 353struct tty_driver *tty_find_polling_driver(char *name, int *line)
 354{
 355	struct tty_driver *p, *res = NULL;
 356	int tty_line = 0;
 357	int len;
 358	char *str, *stp;
 359
 360	for (str = name; *str; str++)
 361		if ((*str >= '0' && *str <= '9') || *str == ',')
 362			break;
 363	if (!*str)
 364		return NULL;
 365
 366	len = str - name;
 367	tty_line = simple_strtoul(str, &str, 10);
 368
 369	mutex_lock(&tty_mutex);
 370	/* Search through the tty devices to look for a match */
 371	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 372		if (strncmp(name, p->name, len) != 0)
 373			continue;
 374		stp = str;
 375		if (*stp == ',')
 376			stp++;
 377		if (*stp == '\0')
 378			stp = NULL;
 379
 380		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 381		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 382			res = tty_driver_kref_get(p);
 383			*line = tty_line;
 384			break;
 385		}
 386	}
 387	mutex_unlock(&tty_mutex);
 388
 389	return res;
 390}
 391EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 392#endif
 393
 394/**
 395 *	tty_check_change	-	check for POSIX terminal changes
 396 *	@tty: tty to check
 397 *
 398 *	If we try to write to, or set the state of, a terminal and we're
 399 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 400 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 401 *
 402 *	Locking: ctrl_lock
 403 */
 404
 405int tty_check_change(struct tty_struct *tty)
 406{
 407	unsigned long flags;
 408	int ret = 0;
 409
 410	if (current->signal->tty != tty)
 411		return 0;
 412
 413	spin_lock_irqsave(&tty->ctrl_lock, flags);
 414
 415	if (!tty->pgrp) {
 416		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 417		goto out_unlock;
 418	}
 419	if (task_pgrp(current) == tty->pgrp)
 420		goto out_unlock;
 421	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 422	if (is_ignored(SIGTTOU))
 423		goto out;
 424	if (is_current_pgrp_orphaned()) {
 425		ret = -EIO;
 426		goto out;
 427	}
 428	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 429	set_thread_flag(TIF_SIGPENDING);
 430	ret = -ERESTARTSYS;
 431out:
 432	return ret;
 433out_unlock:
 434	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 435	return ret;
 436}
 437
 438EXPORT_SYMBOL(tty_check_change);
 439
 440static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 441				size_t count, loff_t *ppos)
 442{
 443	return 0;
 444}
 445
 446static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 447				 size_t count, loff_t *ppos)
 448{
 449	return -EIO;
 450}
 451
 452/* No kernel lock held - none needed ;) */
 453static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 454{
 455	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 456}
 457
 458static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 459		unsigned long arg)
 460{
 461	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 462}
 463
 464static long hung_up_tty_compat_ioctl(struct file *file,
 465				     unsigned int cmd, unsigned long arg)
 466{
 467	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 468}
 469
 470static const struct file_operations tty_fops = {
 471	.llseek		= no_llseek,
 472	.read		= tty_read,
 473	.write		= tty_write,
 474	.poll		= tty_poll,
 475	.unlocked_ioctl	= tty_ioctl,
 476	.compat_ioctl	= tty_compat_ioctl,
 477	.open		= tty_open,
 478	.release	= tty_release,
 479	.fasync		= tty_fasync,
 480};
 481
 482static const struct file_operations console_fops = {
 483	.llseek		= no_llseek,
 484	.read		= tty_read,
 485	.write		= redirected_tty_write,
 486	.poll		= tty_poll,
 487	.unlocked_ioctl	= tty_ioctl,
 488	.compat_ioctl	= tty_compat_ioctl,
 489	.open		= tty_open,
 490	.release	= tty_release,
 491	.fasync		= tty_fasync,
 492};
 493
 494static const struct file_operations hung_up_tty_fops = {
 495	.llseek		= no_llseek,
 496	.read		= hung_up_tty_read,
 497	.write		= hung_up_tty_write,
 498	.poll		= hung_up_tty_poll,
 499	.unlocked_ioctl	= hung_up_tty_ioctl,
 500	.compat_ioctl	= hung_up_tty_compat_ioctl,
 501	.release	= tty_release,
 502};
 503
 504static DEFINE_SPINLOCK(redirect_lock);
 505static struct file *redirect;
 506
 507/**
 508 *	tty_wakeup	-	request more data
 509 *	@tty: terminal
 510 *
 511 *	Internal and external helper for wakeups of tty. This function
 512 *	informs the line discipline if present that the driver is ready
 513 *	to receive more output data.
 514 */
 515
 516void tty_wakeup(struct tty_struct *tty)
 517{
 518	struct tty_ldisc *ld;
 519
 520	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 521		ld = tty_ldisc_ref(tty);
 522		if (ld) {
 523			if (ld->ops->write_wakeup)
 524				ld->ops->write_wakeup(tty);
 525			tty_ldisc_deref(ld);
 526		}
 527	}
 528	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 529}
 530
 531EXPORT_SYMBOL_GPL(tty_wakeup);
 532
 533/**
 534 *	__tty_hangup		-	actual handler for hangup events
 535 *	@work: tty device
 536 *
 537 *	This can be called by the "eventd" kernel thread.  That is process
 538 *	synchronous but doesn't hold any locks, so we need to make sure we
 539 *	have the appropriate locks for what we're doing.
 540 *
 541 *	The hangup event clears any pending redirections onto the hung up
 542 *	device. It ensures future writes will error and it does the needed
 543 *	line discipline hangup and signal delivery. The tty object itself
 544 *	remains intact.
 545 *
 546 *	Locking:
 547 *		BTM
 548 *		  redirect lock for undoing redirection
 549 *		  file list lock for manipulating list of ttys
 550 *		  tty_ldisc_lock from called functions
 551 *		  termios_mutex resetting termios data
 552 *		  tasklist_lock to walk task list for hangup event
 553 *		    ->siglock to protect ->signal/->sighand
 554 */
 555void __tty_hangup(struct tty_struct *tty)
 556{
 557	struct file *cons_filp = NULL;
 558	struct file *filp, *f = NULL;
 559	struct task_struct *p;
 560	struct tty_file_private *priv;
 561	int    closecount = 0, n;
 562	unsigned long flags;
 563	int refs = 0;
 564
 565	if (!tty)
 566		return;
 567
 568
 569	spin_lock(&redirect_lock);
 570	if (redirect && file_tty(redirect) == tty) {
 571		f = redirect;
 572		redirect = NULL;
 573	}
 574	spin_unlock(&redirect_lock);
 575
 576	tty_lock();
 577
 578	/* some functions below drop BTM, so we need this bit */
 579	set_bit(TTY_HUPPING, &tty->flags);
 580
 581	/* inuse_filps is protected by the single tty lock,
 582	   this really needs to change if we want to flush the
 583	   workqueue with the lock held */
 584	check_tty_count(tty, "tty_hangup");
 585
 586	spin_lock(&tty_files_lock);
 587	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 588	list_for_each_entry(priv, &tty->tty_files, list) {
 589		filp = priv->file;
 590		if (filp->f_op->write == redirected_tty_write)
 591			cons_filp = filp;
 592		if (filp->f_op->write != tty_write)
 593			continue;
 594		closecount++;
 595		__tty_fasync(-1, filp, 0);	/* can't block */
 596		filp->f_op = &hung_up_tty_fops;
 597	}
 598	spin_unlock(&tty_files_lock);
 599
 600	/*
 601	 * it drops BTM and thus races with reopen
 602	 * we protect the race by TTY_HUPPING
 603	 */
 604	tty_ldisc_hangup(tty);
 605
 606	read_lock(&tasklist_lock);
 607	if (tty->session) {
 608		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 609			spin_lock_irq(&p->sighand->siglock);
 610			if (p->signal->tty == tty) {
 611				p->signal->tty = NULL;
 612				/* We defer the dereferences outside fo
 613				   the tasklist lock */
 614				refs++;
 615			}
 616			if (!p->signal->leader) {
 617				spin_unlock_irq(&p->sighand->siglock);
 618				continue;
 619			}
 620			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 621			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 622			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 623			spin_lock_irqsave(&tty->ctrl_lock, flags);
 624			if (tty->pgrp)
 625				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 626			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 627			spin_unlock_irq(&p->sighand->siglock);
 628		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 629	}
 630	read_unlock(&tasklist_lock);
 631
 632	spin_lock_irqsave(&tty->ctrl_lock, flags);
 633	clear_bit(TTY_THROTTLED, &tty->flags);
 634	clear_bit(TTY_PUSH, &tty->flags);
 635	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 636	put_pid(tty->session);
 637	put_pid(tty->pgrp);
 638	tty->session = NULL;
 639	tty->pgrp = NULL;
 640	tty->ctrl_status = 0;
 641	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 642
 643	/* Account for the p->signal references we killed */
 644	while (refs--)
 645		tty_kref_put(tty);
 646
 647	/*
 648	 * If one of the devices matches a console pointer, we
 649	 * cannot just call hangup() because that will cause
 650	 * tty->count and state->count to go out of sync.
 651	 * So we just call close() the right number of times.
 652	 */
 653	if (cons_filp) {
 654		if (tty->ops->close)
 655			for (n = 0; n < closecount; n++)
 656				tty->ops->close(tty, cons_filp);
 657	} else if (tty->ops->hangup)
 658		(tty->ops->hangup)(tty);
 659	/*
 660	 * We don't want to have driver/ldisc interactions beyond
 661	 * the ones we did here. The driver layer expects no
 662	 * calls after ->hangup() from the ldisc side. However we
 663	 * can't yet guarantee all that.
 664	 */
 665	set_bit(TTY_HUPPED, &tty->flags);
 666	clear_bit(TTY_HUPPING, &tty->flags);
 667	tty_ldisc_enable(tty);
 668
 669	tty_unlock();
 670
 671	if (f)
 672		fput(f);
 673}
 674
 675static void do_tty_hangup(struct work_struct *work)
 676{
 677	struct tty_struct *tty =
 678		container_of(work, struct tty_struct, hangup_work);
 679
 680	__tty_hangup(tty);
 681}
 682
 683/**
 684 *	tty_hangup		-	trigger a hangup event
 685 *	@tty: tty to hangup
 686 *
 687 *	A carrier loss (virtual or otherwise) has occurred on this like
 688 *	schedule a hangup sequence to run after this event.
 689 */
 690
 691void tty_hangup(struct tty_struct *tty)
 692{
 693#ifdef TTY_DEBUG_HANGUP
 694	char	buf[64];
 695	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 696#endif
 697	schedule_work(&tty->hangup_work);
 698}
 699
 700EXPORT_SYMBOL(tty_hangup);
 701
 702/**
 703 *	tty_vhangup		-	process vhangup
 704 *	@tty: tty to hangup
 705 *
 706 *	The user has asked via system call for the terminal to be hung up.
 707 *	We do this synchronously so that when the syscall returns the process
 708 *	is complete. That guarantee is necessary for security reasons.
 709 */
 710
 711void tty_vhangup(struct tty_struct *tty)
 712{
 713#ifdef TTY_DEBUG_HANGUP
 714	char	buf[64];
 715
 716	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 717#endif
 718	__tty_hangup(tty);
 719}
 720
 721EXPORT_SYMBOL(tty_vhangup);
 722
 723
 724/**
 725 *	tty_vhangup_self	-	process vhangup for own ctty
 726 *
 727 *	Perform a vhangup on the current controlling tty
 728 */
 729
 730void tty_vhangup_self(void)
 731{
 732	struct tty_struct *tty;
 733
 734	tty = get_current_tty();
 735	if (tty) {
 736		tty_vhangup(tty);
 737		tty_kref_put(tty);
 738	}
 739}
 740
 741/**
 742 *	tty_hung_up_p		-	was tty hung up
 743 *	@filp: file pointer of tty
 744 *
 745 *	Return true if the tty has been subject to a vhangup or a carrier
 746 *	loss
 747 */
 748
 749int tty_hung_up_p(struct file *filp)
 750{
 751	return (filp->f_op == &hung_up_tty_fops);
 752}
 753
 754EXPORT_SYMBOL(tty_hung_up_p);
 755
 756static void session_clear_tty(struct pid *session)
 757{
 758	struct task_struct *p;
 759	do_each_pid_task(session, PIDTYPE_SID, p) {
 760		proc_clear_tty(p);
 761	} while_each_pid_task(session, PIDTYPE_SID, p);
 762}
 763
 764/**
 765 *	disassociate_ctty	-	disconnect controlling tty
 766 *	@on_exit: true if exiting so need to "hang up" the session
 767 *
 768 *	This function is typically called only by the session leader, when
 769 *	it wants to disassociate itself from its controlling tty.
 770 *
 771 *	It performs the following functions:
 772 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 773 * 	(2)  Clears the tty from being controlling the session
 774 * 	(3)  Clears the controlling tty for all processes in the
 775 * 		session group.
 776 *
 777 *	The argument on_exit is set to 1 if called when a process is
 778 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 779 *
 780 *	Locking:
 781 *		BTM is taken for hysterical raisins, and held when
 782 *		  called from no_tty().
 783 *		  tty_mutex is taken to protect tty
 784 *		  ->siglock is taken to protect ->signal/->sighand
 785 *		  tasklist_lock is taken to walk process list for sessions
 786 *		    ->siglock is taken to protect ->signal/->sighand
 787 */
 788
 789void disassociate_ctty(int on_exit)
 790{
 791	struct tty_struct *tty;
 
 792
 793	if (!current->signal->leader)
 794		return;
 795
 796	tty = get_current_tty();
 797	if (tty) {
 798		struct pid *tty_pgrp = get_pid(tty->pgrp);
 799		if (on_exit) {
 800			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
 801				tty_vhangup(tty);
 802		}
 803		tty_kref_put(tty);
 804		if (tty_pgrp) {
 805			kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 806			if (!on_exit)
 807				kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 808			put_pid(tty_pgrp);
 809		}
 810	} else if (on_exit) {
 811		struct pid *old_pgrp;
 812		spin_lock_irq(&current->sighand->siglock);
 813		old_pgrp = current->signal->tty_old_pgrp;
 814		current->signal->tty_old_pgrp = NULL;
 815		spin_unlock_irq(&current->sighand->siglock);
 816		if (old_pgrp) {
 817			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 818			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 819			put_pid(old_pgrp);
 820		}
 821		return;
 822	}
 
 
 
 
 
 
 823
 824	spin_lock_irq(&current->sighand->siglock);
 825	put_pid(current->signal->tty_old_pgrp);
 826	current->signal->tty_old_pgrp = NULL;
 827	spin_unlock_irq(&current->sighand->siglock);
 828
 829	tty = get_current_tty();
 830	if (tty) {
 831		unsigned long flags;
 832		spin_lock_irqsave(&tty->ctrl_lock, flags);
 833		put_pid(tty->session);
 834		put_pid(tty->pgrp);
 835		tty->session = NULL;
 836		tty->pgrp = NULL;
 837		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 838		tty_kref_put(tty);
 839	} else {
 840#ifdef TTY_DEBUG_HANGUP
 841		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 842		       " = NULL", tty);
 843#endif
 844	}
 845
 846	/* Now clear signal->tty under the lock */
 847	read_lock(&tasklist_lock);
 848	session_clear_tty(task_session(current));
 849	read_unlock(&tasklist_lock);
 850}
 851
 852/**
 853 *
 854 *	no_tty	- Ensure the current process does not have a controlling tty
 855 */
 856void no_tty(void)
 857{
 858	/* FIXME: Review locking here. The tty_lock never covered any race
 859	   between a new association and proc_clear_tty but possible we need
 860	   to protect against this anyway */
 861	struct task_struct *tsk = current;
 
 862	disassociate_ctty(0);
 
 863	proc_clear_tty(tsk);
 864}
 865
 866
 867/**
 868 *	stop_tty	-	propagate flow control
 869 *	@tty: tty to stop
 870 *
 871 *	Perform flow control to the driver. For PTY/TTY pairs we
 872 *	must also propagate the TIOCKPKT status. May be called
 873 *	on an already stopped device and will not re-call the driver
 874 *	method.
 875 *
 876 *	This functionality is used by both the line disciplines for
 877 *	halting incoming flow and by the driver. It may therefore be
 878 *	called from any context, may be under the tty atomic_write_lock
 879 *	but not always.
 880 *
 881 *	Locking:
 882 *		Uses the tty control lock internally
 883 */
 884
 885void stop_tty(struct tty_struct *tty)
 886{
 887	unsigned long flags;
 888	spin_lock_irqsave(&tty->ctrl_lock, flags);
 889	if (tty->stopped) {
 890		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 891		return;
 892	}
 893	tty->stopped = 1;
 894	if (tty->link && tty->link->packet) {
 895		tty->ctrl_status &= ~TIOCPKT_START;
 896		tty->ctrl_status |= TIOCPKT_STOP;
 897		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 898	}
 899	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 900	if (tty->ops->stop)
 901		(tty->ops->stop)(tty);
 902}
 903
 904EXPORT_SYMBOL(stop_tty);
 905
 906/**
 907 *	start_tty	-	propagate flow control
 908 *	@tty: tty to start
 909 *
 910 *	Start a tty that has been stopped if at all possible. Perform
 911 *	any necessary wakeups and propagate the TIOCPKT status. If this
 912 *	is the tty was previous stopped and is being started then the
 913 *	driver start method is invoked and the line discipline woken.
 914 *
 915 *	Locking:
 916 *		ctrl_lock
 917 */
 918
 919void start_tty(struct tty_struct *tty)
 920{
 921	unsigned long flags;
 922	spin_lock_irqsave(&tty->ctrl_lock, flags);
 923	if (!tty->stopped || tty->flow_stopped) {
 924		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 925		return;
 926	}
 927	tty->stopped = 0;
 928	if (tty->link && tty->link->packet) {
 929		tty->ctrl_status &= ~TIOCPKT_STOP;
 930		tty->ctrl_status |= TIOCPKT_START;
 931		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 932	}
 933	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 934	if (tty->ops->start)
 935		(tty->ops->start)(tty);
 936	/* If we have a running line discipline it may need kicking */
 937	tty_wakeup(tty);
 938}
 939
 940EXPORT_SYMBOL(start_tty);
 941
 942/**
 943 *	tty_read	-	read method for tty device files
 944 *	@file: pointer to tty file
 945 *	@buf: user buffer
 946 *	@count: size of user buffer
 947 *	@ppos: unused
 948 *
 949 *	Perform the read system call function on this terminal device. Checks
 950 *	for hung up devices before calling the line discipline method.
 951 *
 952 *	Locking:
 953 *		Locks the line discipline internally while needed. Multiple
 954 *	read calls may be outstanding in parallel.
 955 */
 956
 957static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 958			loff_t *ppos)
 959{
 960	int i;
 961	struct inode *inode = file->f_path.dentry->d_inode;
 962	struct tty_struct *tty = file_tty(file);
 963	struct tty_ldisc *ld;
 964
 965	if (tty_paranoia_check(tty, inode, "tty_read"))
 966		return -EIO;
 967	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
 968		return -EIO;
 969
 970	/* We want to wait for the line discipline to sort out in this
 971	   situation */
 972	ld = tty_ldisc_ref_wait(tty);
 973	if (ld->ops->read)
 974		i = (ld->ops->read)(tty, file, buf, count);
 975	else
 976		i = -EIO;
 977	tty_ldisc_deref(ld);
 978	if (i > 0)
 979		inode->i_atime = current_fs_time(inode->i_sb);
 980	return i;
 981}
 982
 983void tty_write_unlock(struct tty_struct *tty)
 984	__releases(&tty->atomic_write_lock)
 985{
 986	mutex_unlock(&tty->atomic_write_lock);
 987	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 988}
 989
 990int tty_write_lock(struct tty_struct *tty, int ndelay)
 991	__acquires(&tty->atomic_write_lock)
 992{
 993	if (!mutex_trylock(&tty->atomic_write_lock)) {
 994		if (ndelay)
 995			return -EAGAIN;
 996		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 997			return -ERESTARTSYS;
 998	}
 999	return 0;
1000}
1001
1002/*
1003 * Split writes up in sane blocksizes to avoid
1004 * denial-of-service type attacks
1005 */
1006static inline ssize_t do_tty_write(
1007	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008	struct tty_struct *tty,
1009	struct file *file,
1010	const char __user *buf,
1011	size_t count)
1012{
1013	ssize_t ret, written = 0;
1014	unsigned int chunk;
1015
1016	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017	if (ret < 0)
1018		return ret;
1019
1020	/*
1021	 * We chunk up writes into a temporary buffer. This
1022	 * simplifies low-level drivers immensely, since they
1023	 * don't have locking issues and user mode accesses.
1024	 *
1025	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026	 * big chunk-size..
1027	 *
1028	 * The default chunk-size is 2kB, because the NTTY
1029	 * layer has problems with bigger chunks. It will
1030	 * claim to be able to handle more characters than
1031	 * it actually does.
1032	 *
1033	 * FIXME: This can probably go away now except that 64K chunks
1034	 * are too likely to fail unless switched to vmalloc...
1035	 */
1036	chunk = 2048;
1037	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038		chunk = 65536;
1039	if (count < chunk)
1040		chunk = count;
1041
1042	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043	if (tty->write_cnt < chunk) {
1044		unsigned char *buf_chunk;
1045
1046		if (chunk < 1024)
1047			chunk = 1024;
1048
1049		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050		if (!buf_chunk) {
1051			ret = -ENOMEM;
1052			goto out;
1053		}
1054		kfree(tty->write_buf);
1055		tty->write_cnt = chunk;
1056		tty->write_buf = buf_chunk;
1057	}
1058
1059	/* Do the write .. */
1060	for (;;) {
1061		size_t size = count;
1062		if (size > chunk)
1063			size = chunk;
1064		ret = -EFAULT;
1065		if (copy_from_user(tty->write_buf, buf, size))
1066			break;
1067		ret = write(tty, file, tty->write_buf, size);
1068		if (ret <= 0)
1069			break;
1070		written += ret;
1071		buf += ret;
1072		count -= ret;
1073		if (!count)
1074			break;
1075		ret = -ERESTARTSYS;
1076		if (signal_pending(current))
1077			break;
1078		cond_resched();
1079	}
1080	if (written) {
1081		struct inode *inode = file->f_path.dentry->d_inode;
1082		inode->i_mtime = current_fs_time(inode->i_sb);
1083		ret = written;
1084	}
1085out:
1086	tty_write_unlock(tty);
1087	return ret;
1088}
1089
1090/**
1091 * tty_write_message - write a message to a certain tty, not just the console.
1092 * @tty: the destination tty_struct
1093 * @msg: the message to write
1094 *
1095 * This is used for messages that need to be redirected to a specific tty.
1096 * We don't put it into the syslog queue right now maybe in the future if
1097 * really needed.
1098 *
1099 * We must still hold the BTM and test the CLOSING flag for the moment.
1100 */
1101
1102void tty_write_message(struct tty_struct *tty, char *msg)
1103{
1104	if (tty) {
1105		mutex_lock(&tty->atomic_write_lock);
1106		tty_lock();
1107		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1108			tty_unlock();
1109			tty->ops->write(tty, msg, strlen(msg));
1110		} else
1111			tty_unlock();
1112		tty_write_unlock(tty);
1113	}
1114	return;
1115}
1116
1117
1118/**
1119 *	tty_write		-	write method for tty device file
1120 *	@file: tty file pointer
1121 *	@buf: user data to write
1122 *	@count: bytes to write
1123 *	@ppos: unused
1124 *
1125 *	Write data to a tty device via the line discipline.
1126 *
1127 *	Locking:
1128 *		Locks the line discipline as required
1129 *		Writes to the tty driver are serialized by the atomic_write_lock
1130 *	and are then processed in chunks to the device. The line discipline
1131 *	write method will not be invoked in parallel for each device.
1132 */
1133
1134static ssize_t tty_write(struct file *file, const char __user *buf,
1135						size_t count, loff_t *ppos)
1136{
1137	struct inode *inode = file->f_path.dentry->d_inode;
1138	struct tty_struct *tty = file_tty(file);
1139 	struct tty_ldisc *ld;
1140	ssize_t ret;
1141
1142	if (tty_paranoia_check(tty, inode, "tty_write"))
1143		return -EIO;
1144	if (!tty || !tty->ops->write ||
1145		(test_bit(TTY_IO_ERROR, &tty->flags)))
1146			return -EIO;
1147	/* Short term debug to catch buggy drivers */
1148	if (tty->ops->write_room == NULL)
1149		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1150			tty->driver->name);
1151	ld = tty_ldisc_ref_wait(tty);
1152	if (!ld->ops->write)
1153		ret = -EIO;
1154	else
1155		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1156	tty_ldisc_deref(ld);
1157	return ret;
1158}
1159
1160ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1161						size_t count, loff_t *ppos)
1162{
1163	struct file *p = NULL;
1164
1165	spin_lock(&redirect_lock);
1166	if (redirect) {
1167		get_file(redirect);
1168		p = redirect;
1169	}
1170	spin_unlock(&redirect_lock);
1171
1172	if (p) {
1173		ssize_t res;
1174		res = vfs_write(p, buf, count, &p->f_pos);
1175		fput(p);
1176		return res;
1177	}
1178	return tty_write(file, buf, count, ppos);
1179}
1180
1181static char ptychar[] = "pqrstuvwxyzabcde";
1182
1183/**
1184 *	pty_line_name	-	generate name for a pty
1185 *	@driver: the tty driver in use
1186 *	@index: the minor number
1187 *	@p: output buffer of at least 6 bytes
1188 *
1189 *	Generate a name from a driver reference and write it to the output
1190 *	buffer.
1191 *
1192 *	Locking: None
1193 */
1194static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195{
1196	int i = index + driver->name_base;
1197	/* ->name is initialized to "ttyp", but "tty" is expected */
1198	sprintf(p, "%s%c%x",
1199		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200		ptychar[i >> 4 & 0xf], i & 0xf);
1201}
1202
1203/**
1204 *	tty_line_name	-	generate name for a tty
1205 *	@driver: the tty driver in use
1206 *	@index: the minor number
1207 *	@p: output buffer of at least 7 bytes
1208 *
1209 *	Generate a name from a driver reference and write it to the output
1210 *	buffer.
1211 *
1212 *	Locking: None
1213 */
1214static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215{
1216	sprintf(p, "%s%d", driver->name, index + driver->name_base);
1217}
1218
1219/**
1220 *	tty_driver_lookup_tty() - find an existing tty, if any
1221 *	@driver: the driver for the tty
1222 *	@idx:	 the minor number
1223 *
1224 *	Return the tty, if found or ERR_PTR() otherwise.
1225 *
1226 *	Locking: tty_mutex must be held. If tty is found, the mutex must
1227 *	be held until the 'fast-open' is also done. Will change once we
1228 *	have refcounting in the driver and per driver locking
1229 */
1230static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1231		struct inode *inode, int idx)
1232{
 
 
1233	if (driver->ops->lookup)
1234		return driver->ops->lookup(driver, inode, idx);
1235
1236	return driver->ttys[idx];
 
1237}
1238
1239/**
1240 *	tty_init_termios	-  helper for termios setup
1241 *	@tty: the tty to set up
1242 *
1243 *	Initialise the termios structures for this tty. Thus runs under
1244 *	the tty_mutex currently so we can be relaxed about ordering.
1245 */
1246
1247int tty_init_termios(struct tty_struct *tty)
1248{
1249	struct ktermios *tp;
1250	int idx = tty->index;
1251
1252	tp = tty->driver->termios[idx];
1253	if (tp == NULL) {
1254		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1255		if (tp == NULL)
1256			return -ENOMEM;
1257		memcpy(tp, &tty->driver->init_termios,
1258						sizeof(struct ktermios));
1259		tty->driver->termios[idx] = tp;
1260	}
1261	tty->termios = tp;
1262	tty->termios_locked = tp + 1;
1263
1264	/* Compatibility until drivers always set this */
1265	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1266	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1267	return 0;
1268}
1269EXPORT_SYMBOL_GPL(tty_init_termios);
1270
1271int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1272{
1273	int ret = tty_init_termios(tty);
1274	if (ret)
1275		return ret;
1276
1277	tty_driver_kref_get(driver);
1278	tty->count++;
1279	driver->ttys[tty->index] = tty;
1280	return 0;
1281}
1282EXPORT_SYMBOL_GPL(tty_standard_install);
1283
1284/**
1285 *	tty_driver_install_tty() - install a tty entry in the driver
1286 *	@driver: the driver for the tty
1287 *	@tty: the tty
1288 *
1289 *	Install a tty object into the driver tables. The tty->index field
1290 *	will be set by the time this is called. This method is responsible
1291 *	for ensuring any need additional structures are allocated and
1292 *	configured.
1293 *
1294 *	Locking: tty_mutex for now
1295 */
1296static int tty_driver_install_tty(struct tty_driver *driver,
1297						struct tty_struct *tty)
1298{
1299	return driver->ops->install ? driver->ops->install(driver, tty) :
1300		tty_standard_install(driver, tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
1301}
1302
1303/**
1304 *	tty_driver_remove_tty() - remove a tty from the driver tables
1305 *	@driver: the driver for the tty
1306 *	@idx:	 the minor number
1307 *
1308 *	Remvoe a tty object from the driver tables. The tty->index field
1309 *	will be set by the time this is called.
1310 *
1311 *	Locking: tty_mutex for now
1312 */
1313void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1314{
1315	if (driver->ops->remove)
1316		driver->ops->remove(driver, tty);
1317	else
1318		driver->ttys[tty->index] = NULL;
1319}
1320
1321/*
1322 * 	tty_reopen()	- fast re-open of an open tty
1323 * 	@tty	- the tty to open
1324 *
1325 *	Return 0 on success, -errno on error.
1326 *
1327 *	Locking: tty_mutex must be held from the time the tty was found
1328 *		 till this open completes.
1329 */
1330static int tty_reopen(struct tty_struct *tty)
1331{
1332	struct tty_driver *driver = tty->driver;
1333
1334	if (test_bit(TTY_CLOSING, &tty->flags) ||
1335			test_bit(TTY_HUPPING, &tty->flags) ||
1336			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1337		return -EIO;
1338
1339	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1340	    driver->subtype == PTY_TYPE_MASTER) {
1341		/*
1342		 * special case for PTY masters: only one open permitted,
1343		 * and the slave side open count is incremented as well.
1344		 */
1345		if (tty->count)
1346			return -EIO;
1347
1348		tty->link->count++;
1349	}
1350	tty->count++;
 
1351
1352	mutex_lock(&tty->ldisc_mutex);
1353	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1354	mutex_unlock(&tty->ldisc_mutex);
1355
1356	return 0;
1357}
1358
1359/**
1360 *	tty_init_dev		-	initialise a tty device
1361 *	@driver: tty driver we are opening a device on
1362 *	@idx: device index
1363 *	@ret_tty: returned tty structure
 
1364 *
1365 *	Prepare a tty device. This may not be a "new" clean device but
1366 *	could also be an active device. The pty drivers require special
1367 *	handling because of this.
1368 *
1369 *	Locking:
1370 *		The function is called under the tty_mutex, which
1371 *	protects us from the tty struct or driver itself going away.
1372 *
1373 *	On exit the tty device has the line discipline attached and
1374 *	a reference count of 1. If a pair was created for pty/tty use
1375 *	and the other was a pty master then it too has a reference count of 1.
1376 *
1377 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1378 * failed open.  The new code protects the open with a mutex, so it's
1379 * really quite straightforward.  The mutex locking can probably be
1380 * relaxed for the (most common) case of reopening a tty.
1381 */
1382
1383struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
 
1384{
1385	struct tty_struct *tty;
1386	int retval;
1387
 
 
 
 
 
 
1388	/*
1389	 * First time open is complex, especially for PTY devices.
1390	 * This code guarantees that either everything succeeds and the
1391	 * TTY is ready for operation, or else the table slots are vacated
1392	 * and the allocated memory released.  (Except that the termios
1393	 * and locked termios may be retained.)
1394	 */
1395
1396	if (!try_module_get(driver->owner))
1397		return ERR_PTR(-ENODEV);
1398
1399	tty = alloc_tty_struct();
1400	if (!tty) {
1401		retval = -ENOMEM;
1402		goto err_module_put;
1403	}
1404	initialize_tty_struct(tty, driver, idx);
1405
1406	retval = tty_driver_install_tty(driver, tty);
1407	if (retval < 0)
1408		goto err_deinit_tty;
1409
1410	/*
1411	 * Structures all installed ... call the ldisc open routines.
1412	 * If we fail here just call release_tty to clean up.  No need
1413	 * to decrement the use counts, as release_tty doesn't care.
1414	 */
1415	retval = tty_ldisc_setup(tty, tty->link);
1416	if (retval)
1417		goto err_release_tty;
1418	return tty;
1419
1420err_deinit_tty:
1421	deinitialize_tty_struct(tty);
1422	free_tty_struct(tty);
1423err_module_put:
1424	module_put(driver->owner);
1425	return ERR_PTR(retval);
1426
1427	/* call the tty release_tty routine to clean out this slot */
1428err_release_tty:
1429	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1430				 "clearing slot %d\n", idx);
1431	release_tty(tty, idx);
1432	return ERR_PTR(retval);
1433}
1434
1435void tty_free_termios(struct tty_struct *tty)
1436{
1437	struct ktermios *tp;
1438	int idx = tty->index;
1439	/* Kill this flag and push into drivers for locking etc */
1440	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1441		/* FIXME: Locking on ->termios array */
1442		tp = tty->termios;
1443		tty->driver->termios[idx] = NULL;
1444		kfree(tp);
1445	}
1446}
1447EXPORT_SYMBOL(tty_free_termios);
1448
1449void tty_shutdown(struct tty_struct *tty)
1450{
1451	tty_driver_remove_tty(tty->driver, tty);
1452	tty_free_termios(tty);
1453}
1454EXPORT_SYMBOL(tty_shutdown);
1455
1456/**
1457 *	release_one_tty		-	release tty structure memory
1458 *	@kref: kref of tty we are obliterating
1459 *
1460 *	Releases memory associated with a tty structure, and clears out the
1461 *	driver table slots. This function is called when a device is no longer
1462 *	in use. It also gets called when setup of a device fails.
1463 *
1464 *	Locking:
1465 *		tty_mutex - sometimes only
1466 *		takes the file list lock internally when working on the list
1467 *	of ttys that the driver keeps.
1468 *
1469 *	This method gets called from a work queue so that the driver private
1470 *	cleanup ops can sleep (needed for USB at least)
1471 */
1472static void release_one_tty(struct work_struct *work)
1473{
1474	struct tty_struct *tty =
1475		container_of(work, struct tty_struct, hangup_work);
1476	struct tty_driver *driver = tty->driver;
1477
1478	if (tty->ops->cleanup)
1479		tty->ops->cleanup(tty);
1480
1481	tty->magic = 0;
1482	tty_driver_kref_put(driver);
1483	module_put(driver->owner);
1484
1485	spin_lock(&tty_files_lock);
1486	list_del_init(&tty->tty_files);
1487	spin_unlock(&tty_files_lock);
1488
1489	put_pid(tty->pgrp);
1490	put_pid(tty->session);
1491	free_tty_struct(tty);
1492}
1493
1494static void queue_release_one_tty(struct kref *kref)
1495{
1496	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1497
1498	if (tty->ops->shutdown)
1499		tty->ops->shutdown(tty);
1500	else
1501		tty_shutdown(tty);
1502
1503	/* The hangup queue is now free so we can reuse it rather than
1504	   waste a chunk of memory for each port */
1505	INIT_WORK(&tty->hangup_work, release_one_tty);
1506	schedule_work(&tty->hangup_work);
1507}
1508
1509/**
1510 *	tty_kref_put		-	release a tty kref
1511 *	@tty: tty device
1512 *
1513 *	Release a reference to a tty device and if need be let the kref
1514 *	layer destruct the object for us
1515 */
1516
1517void tty_kref_put(struct tty_struct *tty)
1518{
1519	if (tty)
1520		kref_put(&tty->kref, queue_release_one_tty);
1521}
1522EXPORT_SYMBOL(tty_kref_put);
1523
1524/**
1525 *	release_tty		-	release tty structure memory
1526 *
1527 *	Release both @tty and a possible linked partner (think pty pair),
1528 *	and decrement the refcount of the backing module.
1529 *
1530 *	Locking:
1531 *		tty_mutex - sometimes only
1532 *		takes the file list lock internally when working on the list
1533 *	of ttys that the driver keeps.
1534 *		FIXME: should we require tty_mutex is held here ??
1535 *
1536 */
1537static void release_tty(struct tty_struct *tty, int idx)
1538{
1539	/* This should always be true but check for the moment */
1540	WARN_ON(tty->index != idx);
1541
1542	if (tty->link)
1543		tty_kref_put(tty->link);
1544	tty_kref_put(tty);
1545}
1546
1547/**
1548 *	tty_release_checks - check a tty before real release
1549 *	@tty: tty to check
1550 *	@o_tty: link of @tty (if any)
1551 *	@idx: index of the tty
1552 *
1553 *	Performs some paranoid checking before true release of the @tty.
1554 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1555 */
1556static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1557		int idx)
1558{
1559#ifdef TTY_PARANOIA_CHECK
1560	if (idx < 0 || idx >= tty->driver->num) {
1561		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1562				__func__, tty->name);
1563		return -1;
1564	}
1565
1566	/* not much to check for devpts */
1567	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1568		return 0;
1569
1570	if (tty != tty->driver->ttys[idx]) {
1571		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1572				__func__, idx, tty->name);
1573		return -1;
1574	}
1575	if (tty->termios != tty->driver->termios[idx]) {
1576		printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1577				__func__, idx, tty->name);
1578		return -1;
1579	}
1580	if (tty->driver->other) {
1581		if (o_tty != tty->driver->other->ttys[idx]) {
1582			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1583					__func__, idx, tty->name);
1584			return -1;
1585		}
1586		if (o_tty->termios != tty->driver->other->termios[idx]) {
1587			printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1588					__func__, idx, tty->name);
1589			return -1;
1590		}
1591		if (o_tty->link != tty) {
1592			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1593			return -1;
1594		}
1595	}
1596#endif
1597	return 0;
1598}
1599
1600/**
1601 *	tty_release		-	vfs callback for close
1602 *	@inode: inode of tty
1603 *	@filp: file pointer for handle to tty
1604 *
1605 *	Called the last time each file handle is closed that references
1606 *	this tty. There may however be several such references.
1607 *
1608 *	Locking:
1609 *		Takes bkl. See tty_release_dev
1610 *
1611 * Even releasing the tty structures is a tricky business.. We have
1612 * to be very careful that the structures are all released at the
1613 * same time, as interrupts might otherwise get the wrong pointers.
1614 *
1615 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1616 * lead to double frees or releasing memory still in use.
1617 */
1618
1619int tty_release(struct inode *inode, struct file *filp)
1620{
1621	struct tty_struct *tty = file_tty(filp);
1622	struct tty_struct *o_tty;
1623	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1624	int	devpts;
1625	int	idx;
1626	char	buf[64];
1627
1628	if (tty_paranoia_check(tty, inode, __func__))
1629		return 0;
1630
1631	tty_lock();
1632	check_tty_count(tty, __func__);
1633
1634	__tty_fasync(-1, filp, 0);
1635
1636	idx = tty->index;
1637	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1638		      tty->driver->subtype == PTY_TYPE_MASTER);
1639	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1640	o_tty = tty->link;
1641
1642	if (tty_release_checks(tty, o_tty, idx)) {
 
 
 
1643		tty_unlock();
1644		return 0;
1645	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1646
1647#ifdef TTY_DEBUG_HANGUP
1648	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1649			tty_name(tty, buf), tty->count);
1650#endif
1651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1652	if (tty->ops->close)
1653		tty->ops->close(tty, filp);
1654
1655	tty_unlock();
1656	/*
1657	 * Sanity check: if tty->count is going to zero, there shouldn't be
1658	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1659	 * wait queues and kick everyone out _before_ actually starting to
1660	 * close.  This ensures that we won't block while releasing the tty
1661	 * structure.
1662	 *
1663	 * The test for the o_tty closing is necessary, since the master and
1664	 * slave sides may close in any order.  If the slave side closes out
1665	 * first, its count will be one, since the master side holds an open.
1666	 * Thus this test wouldn't be triggered at the time the slave closes,
1667	 * so we do it now.
1668	 *
1669	 * Note that it's possible for the tty to be opened again while we're
1670	 * flushing out waiters.  By recalculating the closing flags before
1671	 * each iteration we avoid any problems.
1672	 */
1673	while (1) {
1674		/* Guard against races with tty->count changes elsewhere and
1675		   opens on /dev/tty */
1676
1677		mutex_lock(&tty_mutex);
1678		tty_lock();
1679		tty_closing = tty->count <= 1;
1680		o_tty_closing = o_tty &&
1681			(o_tty->count <= (pty_master ? 1 : 0));
1682		do_sleep = 0;
1683
1684		if (tty_closing) {
1685			if (waitqueue_active(&tty->read_wait)) {
1686				wake_up_poll(&tty->read_wait, POLLIN);
1687				do_sleep++;
1688			}
1689			if (waitqueue_active(&tty->write_wait)) {
1690				wake_up_poll(&tty->write_wait, POLLOUT);
1691				do_sleep++;
1692			}
1693		}
1694		if (o_tty_closing) {
1695			if (waitqueue_active(&o_tty->read_wait)) {
1696				wake_up_poll(&o_tty->read_wait, POLLIN);
1697				do_sleep++;
1698			}
1699			if (waitqueue_active(&o_tty->write_wait)) {
1700				wake_up_poll(&o_tty->write_wait, POLLOUT);
1701				do_sleep++;
1702			}
1703		}
1704		if (!do_sleep)
1705			break;
1706
1707		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1708				__func__, tty_name(tty, buf));
1709		tty_unlock();
1710		mutex_unlock(&tty_mutex);
1711		schedule();
1712	}
1713
1714	/*
1715	 * The closing flags are now consistent with the open counts on
1716	 * both sides, and we've completed the last operation that could
1717	 * block, so it's safe to proceed with closing.
1718	 */
1719	if (pty_master) {
1720		if (--o_tty->count < 0) {
1721			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1722				__func__, o_tty->count, tty_name(o_tty, buf));
 
1723			o_tty->count = 0;
1724		}
1725	}
1726	if (--tty->count < 0) {
1727		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1728				__func__, tty->count, tty_name(tty, buf));
1729		tty->count = 0;
1730	}
1731
1732	/*
1733	 * We've decremented tty->count, so we need to remove this file
1734	 * descriptor off the tty->tty_files list; this serves two
1735	 * purposes:
1736	 *  - check_tty_count sees the correct number of file descriptors
1737	 *    associated with this tty.
1738	 *  - do_tty_hangup no longer sees this file descriptor as
1739	 *    something that needs to be handled for hangups.
1740	 */
1741	tty_del_file(filp);
1742
1743	/*
1744	 * Perform some housekeeping before deciding whether to return.
1745	 *
1746	 * Set the TTY_CLOSING flag if this was the last open.  In the
1747	 * case of a pty we may have to wait around for the other side
1748	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1749	 */
1750	if (tty_closing)
1751		set_bit(TTY_CLOSING, &tty->flags);
1752	if (o_tty_closing)
1753		set_bit(TTY_CLOSING, &o_tty->flags);
1754
1755	/*
1756	 * If _either_ side is closing, make sure there aren't any
1757	 * processes that still think tty or o_tty is their controlling
1758	 * tty.
1759	 */
1760	if (tty_closing || o_tty_closing) {
1761		read_lock(&tasklist_lock);
1762		session_clear_tty(tty->session);
1763		if (o_tty)
1764			session_clear_tty(o_tty->session);
1765		read_unlock(&tasklist_lock);
1766	}
1767
1768	mutex_unlock(&tty_mutex);
1769
1770	/* check whether both sides are closing ... */
1771	if (!tty_closing || (o_tty && !o_tty_closing)) {
1772		tty_unlock();
1773		return 0;
1774	}
1775
1776#ifdef TTY_DEBUG_HANGUP
1777	printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1778#endif
1779	/*
1780	 * Ask the line discipline code to release its structures
1781	 */
1782	tty_ldisc_release(tty, o_tty);
1783	/*
1784	 * The release_tty function takes care of the details of clearing
1785	 * the slots and preserving the termios structure.
1786	 */
1787	release_tty(tty, idx);
1788
1789	/* Make this pty number available for reallocation */
1790	if (devpts)
1791		devpts_kill_index(inode, idx);
1792	tty_unlock();
1793	return 0;
1794}
1795
1796/**
1797 *	tty_open_current_tty - get tty of current task for open
1798 *	@device: device number
1799 *	@filp: file pointer to tty
1800 *	@return: tty of the current task iff @device is /dev/tty
1801 *
1802 *	We cannot return driver and index like for the other nodes because
1803 *	devpts will not work then. It expects inodes to be from devpts FS.
1804 *
1805 *	We need to move to returning a refcounted object from all the lookup
1806 *	paths including this one.
1807 */
1808static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1809{
1810	struct tty_struct *tty;
1811
1812	if (device != MKDEV(TTYAUX_MAJOR, 0))
1813		return NULL;
1814
1815	tty = get_current_tty();
1816	if (!tty)
1817		return ERR_PTR(-ENXIO);
1818
1819	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1820	/* noctty = 1; */
1821	tty_kref_put(tty);
1822	/* FIXME: we put a reference and return a TTY! */
1823	/* This is only safe because the caller holds tty_mutex */
1824	return tty;
1825}
1826
1827/**
1828 *	tty_lookup_driver - lookup a tty driver for a given device file
1829 *	@device: device number
1830 *	@filp: file pointer to tty
1831 *	@noctty: set if the device should not become a controlling tty
1832 *	@index: index for the device in the @return driver
1833 *	@return: driver for this inode (with increased refcount)
1834 *
1835 * 	If @return is not erroneous, the caller is responsible to decrement the
1836 * 	refcount by tty_driver_kref_put.
1837 *
1838 *	Locking: tty_mutex protects get_tty_driver
1839 */
1840static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1841		int *noctty, int *index)
1842{
1843	struct tty_driver *driver;
1844
1845	switch (device) {
1846#ifdef CONFIG_VT
1847	case MKDEV(TTY_MAJOR, 0): {
1848		extern struct tty_driver *console_driver;
1849		driver = tty_driver_kref_get(console_driver);
1850		*index = fg_console;
1851		*noctty = 1;
1852		break;
1853	}
1854#endif
1855	case MKDEV(TTYAUX_MAJOR, 1): {
1856		struct tty_driver *console_driver = console_device(index);
1857		if (console_driver) {
1858			driver = tty_driver_kref_get(console_driver);
1859			if (driver) {
1860				/* Don't let /dev/console block */
1861				filp->f_flags |= O_NONBLOCK;
1862				*noctty = 1;
1863				break;
1864			}
1865		}
1866		return ERR_PTR(-ENODEV);
1867	}
1868	default:
1869		driver = get_tty_driver(device, index);
1870		if (!driver)
1871			return ERR_PTR(-ENODEV);
1872		break;
1873	}
1874	return driver;
1875}
1876
1877/**
1878 *	tty_open		-	open a tty device
1879 *	@inode: inode of device file
1880 *	@filp: file pointer to tty
1881 *
1882 *	tty_open and tty_release keep up the tty count that contains the
1883 *	number of opens done on a tty. We cannot use the inode-count, as
1884 *	different inodes might point to the same tty.
1885 *
1886 *	Open-counting is needed for pty masters, as well as for keeping
1887 *	track of serial lines: DTR is dropped when the last close happens.
1888 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1889 *
1890 *	The termios state of a pty is reset on first open so that
1891 *	settings don't persist across reuse.
1892 *
1893 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1894 *		 tty->count should protect the rest.
1895 *		 ->siglock protects ->signal/->sighand
1896 */
1897
1898static int tty_open(struct inode *inode, struct file *filp)
1899{
1900	struct tty_struct *tty;
1901	int noctty, retval;
1902	struct tty_driver *driver = NULL;
1903	int index;
1904	dev_t device = inode->i_rdev;
1905	unsigned saved_flags = filp->f_flags;
1906
1907	nonseekable_open(inode, filp);
1908
1909retry_open:
1910	retval = tty_alloc_file(filp);
1911	if (retval)
1912		return -ENOMEM;
1913
1914	noctty = filp->f_flags & O_NOCTTY;
1915	index  = -1;
1916	retval = 0;
1917
1918	mutex_lock(&tty_mutex);
1919	tty_lock();
1920
1921	tty = tty_open_current_tty(device, filp);
1922	if (IS_ERR(tty)) {
1923		retval = PTR_ERR(tty);
1924		goto err_unlock;
1925	} else if (!tty) {
1926		driver = tty_lookup_driver(device, filp, &noctty, &index);
1927		if (IS_ERR(driver)) {
1928			retval = PTR_ERR(driver);
1929			goto err_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1930		}
 
 
 
 
1931
 
 
 
 
 
 
 
 
1932		/* check whether we're reopening an existing tty */
1933		tty = tty_driver_lookup_tty(driver, inode, index);
 
1934		if (IS_ERR(tty)) {
1935			retval = PTR_ERR(tty);
1936			goto err_unlock;
 
1937		}
1938	}
1939
1940	if (tty) {
1941		retval = tty_reopen(tty);
1942		if (retval)
1943			tty = ERR_PTR(retval);
1944	} else
1945		tty = tty_init_dev(driver, index);
1946
1947	mutex_unlock(&tty_mutex);
1948	if (driver)
1949		tty_driver_kref_put(driver);
1950	if (IS_ERR(tty)) {
1951		tty_unlock();
1952		retval = PTR_ERR(tty);
1953		goto err_file;
1954	}
1955
1956	tty_add_file(tty, filp);
 
 
 
 
 
1957
1958	check_tty_count(tty, __func__);
1959	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1960	    tty->driver->subtype == PTY_TYPE_MASTER)
1961		noctty = 1;
1962#ifdef TTY_DEBUG_HANGUP
1963	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1964#endif
1965	if (tty->ops->open)
1966		retval = tty->ops->open(tty, filp);
1967	else
1968		retval = -ENODEV;
1969	filp->f_flags = saved_flags;
1970
1971	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1972						!capable(CAP_SYS_ADMIN))
1973		retval = -EBUSY;
1974
1975	if (retval) {
1976#ifdef TTY_DEBUG_HANGUP
1977		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1978				retval, tty->name);
1979#endif
1980		tty_unlock(); /* need to call tty_release without BTM */
1981		tty_release(inode, filp);
1982		if (retval != -ERESTARTSYS)
1983			return retval;
1984
1985		if (signal_pending(current))
1986			return retval;
1987
1988		schedule();
1989		/*
1990		 * Need to reset f_op in case a hangup happened.
1991		 */
1992		tty_lock();
1993		if (filp->f_op == &hung_up_tty_fops)
1994			filp->f_op = &tty_fops;
1995		tty_unlock();
1996		goto retry_open;
1997	}
1998	tty_unlock();
1999
2000
2001	mutex_lock(&tty_mutex);
2002	tty_lock();
2003	spin_lock_irq(&current->sighand->siglock);
2004	if (!noctty &&
2005	    current->signal->leader &&
2006	    !current->signal->tty &&
2007	    tty->session == NULL)
2008		__proc_set_tty(current, tty);
2009	spin_unlock_irq(&current->sighand->siglock);
2010	tty_unlock();
2011	mutex_unlock(&tty_mutex);
2012	return 0;
2013err_unlock:
2014	tty_unlock();
2015	mutex_unlock(&tty_mutex);
2016	/* after locks to avoid deadlock */
2017	if (!IS_ERR_OR_NULL(driver))
2018		tty_driver_kref_put(driver);
2019err_file:
2020	tty_free_file(filp);
2021	return retval;
2022}
2023
2024
2025
2026/**
2027 *	tty_poll	-	check tty status
2028 *	@filp: file being polled
2029 *	@wait: poll wait structures to update
2030 *
2031 *	Call the line discipline polling method to obtain the poll
2032 *	status of the device.
2033 *
2034 *	Locking: locks called line discipline but ldisc poll method
2035 *	may be re-entered freely by other callers.
2036 */
2037
2038static unsigned int tty_poll(struct file *filp, poll_table *wait)
2039{
2040	struct tty_struct *tty = file_tty(filp);
2041	struct tty_ldisc *ld;
2042	int ret = 0;
2043
2044	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2045		return 0;
2046
2047	ld = tty_ldisc_ref_wait(tty);
2048	if (ld->ops->poll)
2049		ret = (ld->ops->poll)(tty, filp, wait);
2050	tty_ldisc_deref(ld);
2051	return ret;
2052}
2053
2054static int __tty_fasync(int fd, struct file *filp, int on)
2055{
2056	struct tty_struct *tty = file_tty(filp);
2057	unsigned long flags;
2058	int retval = 0;
2059
2060	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2061		goto out;
2062
2063	retval = fasync_helper(fd, filp, on, &tty->fasync);
2064	if (retval <= 0)
2065		goto out;
2066
2067	if (on) {
2068		enum pid_type type;
2069		struct pid *pid;
2070		if (!waitqueue_active(&tty->read_wait))
2071			tty->minimum_to_wake = 1;
2072		spin_lock_irqsave(&tty->ctrl_lock, flags);
2073		if (tty->pgrp) {
2074			pid = tty->pgrp;
2075			type = PIDTYPE_PGID;
2076		} else {
2077			pid = task_pid(current);
2078			type = PIDTYPE_PID;
2079		}
2080		get_pid(pid);
2081		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2082		retval = __f_setown(filp, pid, type, 0);
2083		put_pid(pid);
2084		if (retval)
2085			goto out;
2086	} else {
2087		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2088			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2089	}
2090	retval = 0;
2091out:
2092	return retval;
2093}
2094
2095static int tty_fasync(int fd, struct file *filp, int on)
2096{
2097	int retval;
2098	tty_lock();
2099	retval = __tty_fasync(fd, filp, on);
2100	tty_unlock();
2101	return retval;
2102}
2103
2104/**
2105 *	tiocsti			-	fake input character
2106 *	@tty: tty to fake input into
2107 *	@p: pointer to character
2108 *
2109 *	Fake input to a tty device. Does the necessary locking and
2110 *	input management.
2111 *
2112 *	FIXME: does not honour flow control ??
2113 *
2114 *	Locking:
2115 *		Called functions take tty_ldisc_lock
2116 *		current->signal->tty check is safe without locks
2117 *
2118 *	FIXME: may race normal receive processing
2119 */
2120
2121static int tiocsti(struct tty_struct *tty, char __user *p)
2122{
2123	char ch, mbz = 0;
2124	struct tty_ldisc *ld;
2125
2126	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2127		return -EPERM;
2128	if (get_user(ch, p))
2129		return -EFAULT;
2130	tty_audit_tiocsti(tty, ch);
2131	ld = tty_ldisc_ref_wait(tty);
2132	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2133	tty_ldisc_deref(ld);
2134	return 0;
2135}
2136
2137/**
2138 *	tiocgwinsz		-	implement window query ioctl
2139 *	@tty; tty
2140 *	@arg: user buffer for result
2141 *
2142 *	Copies the kernel idea of the window size into the user buffer.
2143 *
2144 *	Locking: tty->termios_mutex is taken to ensure the winsize data
2145 *		is consistent.
2146 */
2147
2148static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2149{
2150	int err;
2151
2152	mutex_lock(&tty->termios_mutex);
2153	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2154	mutex_unlock(&tty->termios_mutex);
2155
2156	return err ? -EFAULT: 0;
2157}
2158
2159/**
2160 *	tty_do_resize		-	resize event
2161 *	@tty: tty being resized
2162 *	@rows: rows (character)
2163 *	@cols: cols (character)
2164 *
2165 *	Update the termios variables and send the necessary signals to
2166 *	peform a terminal resize correctly
2167 */
2168
2169int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2170{
2171	struct pid *pgrp;
2172	unsigned long flags;
2173
2174	/* Lock the tty */
2175	mutex_lock(&tty->termios_mutex);
2176	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2177		goto done;
2178	/* Get the PID values and reference them so we can
2179	   avoid holding the tty ctrl lock while sending signals */
2180	spin_lock_irqsave(&tty->ctrl_lock, flags);
2181	pgrp = get_pid(tty->pgrp);
2182	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2183
2184	if (pgrp)
2185		kill_pgrp(pgrp, SIGWINCH, 1);
2186	put_pid(pgrp);
2187
2188	tty->winsize = *ws;
2189done:
2190	mutex_unlock(&tty->termios_mutex);
2191	return 0;
2192}
2193
2194/**
2195 *	tiocswinsz		-	implement window size set ioctl
2196 *	@tty; tty side of tty
2197 *	@arg: user buffer for result
2198 *
2199 *	Copies the user idea of the window size to the kernel. Traditionally
2200 *	this is just advisory information but for the Linux console it
2201 *	actually has driver level meaning and triggers a VC resize.
2202 *
2203 *	Locking:
2204 *		Driver dependent. The default do_resize method takes the
2205 *	tty termios mutex and ctrl_lock. The console takes its own lock
2206 *	then calls into the default method.
2207 */
2208
2209static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2210{
2211	struct winsize tmp_ws;
2212	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2213		return -EFAULT;
2214
2215	if (tty->ops->resize)
2216		return tty->ops->resize(tty, &tmp_ws);
2217	else
2218		return tty_do_resize(tty, &tmp_ws);
2219}
2220
2221/**
2222 *	tioccons	-	allow admin to move logical console
2223 *	@file: the file to become console
2224 *
2225 *	Allow the administrator to move the redirected console device
2226 *
2227 *	Locking: uses redirect_lock to guard the redirect information
2228 */
2229
2230static int tioccons(struct file *file)
2231{
2232	if (!capable(CAP_SYS_ADMIN))
2233		return -EPERM;
2234	if (file->f_op->write == redirected_tty_write) {
2235		struct file *f;
2236		spin_lock(&redirect_lock);
2237		f = redirect;
2238		redirect = NULL;
2239		spin_unlock(&redirect_lock);
2240		if (f)
2241			fput(f);
2242		return 0;
2243	}
2244	spin_lock(&redirect_lock);
2245	if (redirect) {
2246		spin_unlock(&redirect_lock);
2247		return -EBUSY;
2248	}
2249	get_file(file);
2250	redirect = file;
2251	spin_unlock(&redirect_lock);
2252	return 0;
2253}
2254
2255/**
2256 *	fionbio		-	non blocking ioctl
2257 *	@file: file to set blocking value
2258 *	@p: user parameter
2259 *
2260 *	Historical tty interfaces had a blocking control ioctl before
2261 *	the generic functionality existed. This piece of history is preserved
2262 *	in the expected tty API of posix OS's.
2263 *
2264 *	Locking: none, the open file handle ensures it won't go away.
2265 */
2266
2267static int fionbio(struct file *file, int __user *p)
2268{
2269	int nonblock;
2270
2271	if (get_user(nonblock, p))
2272		return -EFAULT;
2273
2274	spin_lock(&file->f_lock);
2275	if (nonblock)
2276		file->f_flags |= O_NONBLOCK;
2277	else
2278		file->f_flags &= ~O_NONBLOCK;
2279	spin_unlock(&file->f_lock);
2280	return 0;
2281}
2282
2283/**
2284 *	tiocsctty	-	set controlling tty
2285 *	@tty: tty structure
2286 *	@arg: user argument
2287 *
2288 *	This ioctl is used to manage job control. It permits a session
2289 *	leader to set this tty as the controlling tty for the session.
2290 *
2291 *	Locking:
2292 *		Takes tty_mutex() to protect tty instance
2293 *		Takes tasklist_lock internally to walk sessions
2294 *		Takes ->siglock() when updating signal->tty
2295 */
2296
2297static int tiocsctty(struct tty_struct *tty, int arg)
2298{
2299	int ret = 0;
2300	if (current->signal->leader && (task_session(current) == tty->session))
2301		return ret;
2302
2303	mutex_lock(&tty_mutex);
2304	/*
2305	 * The process must be a session leader and
2306	 * not have a controlling tty already.
2307	 */
2308	if (!current->signal->leader || current->signal->tty) {
2309		ret = -EPERM;
2310		goto unlock;
2311	}
2312
2313	if (tty->session) {
2314		/*
2315		 * This tty is already the controlling
2316		 * tty for another session group!
2317		 */
2318		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2319			/*
2320			 * Steal it away
2321			 */
2322			read_lock(&tasklist_lock);
2323			session_clear_tty(tty->session);
2324			read_unlock(&tasklist_lock);
2325		} else {
2326			ret = -EPERM;
2327			goto unlock;
2328		}
2329	}
2330	proc_set_tty(current, tty);
2331unlock:
2332	mutex_unlock(&tty_mutex);
2333	return ret;
2334}
2335
2336/**
2337 *	tty_get_pgrp	-	return a ref counted pgrp pid
2338 *	@tty: tty to read
2339 *
2340 *	Returns a refcounted instance of the pid struct for the process
2341 *	group controlling the tty.
2342 */
2343
2344struct pid *tty_get_pgrp(struct tty_struct *tty)
2345{
2346	unsigned long flags;
2347	struct pid *pgrp;
2348
2349	spin_lock_irqsave(&tty->ctrl_lock, flags);
2350	pgrp = get_pid(tty->pgrp);
2351	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2352
2353	return pgrp;
2354}
2355EXPORT_SYMBOL_GPL(tty_get_pgrp);
2356
2357/**
2358 *	tiocgpgrp		-	get process group
2359 *	@tty: tty passed by user
2360 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2361 *	@p: returned pid
2362 *
2363 *	Obtain the process group of the tty. If there is no process group
2364 *	return an error.
2365 *
2366 *	Locking: none. Reference to current->signal->tty is safe.
2367 */
2368
2369static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2370{
2371	struct pid *pid;
2372	int ret;
2373	/*
2374	 * (tty == real_tty) is a cheap way of
2375	 * testing if the tty is NOT a master pty.
2376	 */
2377	if (tty == real_tty && current->signal->tty != real_tty)
2378		return -ENOTTY;
2379	pid = tty_get_pgrp(real_tty);
2380	ret =  put_user(pid_vnr(pid), p);
2381	put_pid(pid);
2382	return ret;
2383}
2384
2385/**
2386 *	tiocspgrp		-	attempt to set process group
2387 *	@tty: tty passed by user
2388 *	@real_tty: tty side device matching tty passed by user
2389 *	@p: pid pointer
2390 *
2391 *	Set the process group of the tty to the session passed. Only
2392 *	permitted where the tty session is our session.
2393 *
2394 *	Locking: RCU, ctrl lock
2395 */
2396
2397static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2398{
2399	struct pid *pgrp;
2400	pid_t pgrp_nr;
2401	int retval = tty_check_change(real_tty);
2402	unsigned long flags;
2403
2404	if (retval == -EIO)
2405		return -ENOTTY;
2406	if (retval)
2407		return retval;
2408	if (!current->signal->tty ||
2409	    (current->signal->tty != real_tty) ||
2410	    (real_tty->session != task_session(current)))
2411		return -ENOTTY;
2412	if (get_user(pgrp_nr, p))
2413		return -EFAULT;
2414	if (pgrp_nr < 0)
2415		return -EINVAL;
2416	rcu_read_lock();
2417	pgrp = find_vpid(pgrp_nr);
2418	retval = -ESRCH;
2419	if (!pgrp)
2420		goto out_unlock;
2421	retval = -EPERM;
2422	if (session_of_pgrp(pgrp) != task_session(current))
2423		goto out_unlock;
2424	retval = 0;
2425	spin_lock_irqsave(&tty->ctrl_lock, flags);
2426	put_pid(real_tty->pgrp);
2427	real_tty->pgrp = get_pid(pgrp);
2428	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2429out_unlock:
2430	rcu_read_unlock();
2431	return retval;
2432}
2433
2434/**
2435 *	tiocgsid		-	get session id
2436 *	@tty: tty passed by user
2437 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2438 *	@p: pointer to returned session id
2439 *
2440 *	Obtain the session id of the tty. If there is no session
2441 *	return an error.
2442 *
2443 *	Locking: none. Reference to current->signal->tty is safe.
2444 */
2445
2446static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2447{
2448	/*
2449	 * (tty == real_tty) is a cheap way of
2450	 * testing if the tty is NOT a master pty.
2451	*/
2452	if (tty == real_tty && current->signal->tty != real_tty)
2453		return -ENOTTY;
2454	if (!real_tty->session)
2455		return -ENOTTY;
2456	return put_user(pid_vnr(real_tty->session), p);
2457}
2458
2459/**
2460 *	tiocsetd	-	set line discipline
2461 *	@tty: tty device
2462 *	@p: pointer to user data
2463 *
2464 *	Set the line discipline according to user request.
2465 *
2466 *	Locking: see tty_set_ldisc, this function is just a helper
2467 */
2468
2469static int tiocsetd(struct tty_struct *tty, int __user *p)
2470{
2471	int ldisc;
2472	int ret;
2473
2474	if (get_user(ldisc, p))
2475		return -EFAULT;
2476
2477	ret = tty_set_ldisc(tty, ldisc);
2478
2479	return ret;
2480}
2481
2482/**
2483 *	send_break	-	performed time break
2484 *	@tty: device to break on
2485 *	@duration: timeout in mS
2486 *
2487 *	Perform a timed break on hardware that lacks its own driver level
2488 *	timed break functionality.
2489 *
2490 *	Locking:
2491 *		atomic_write_lock serializes
2492 *
2493 */
2494
2495static int send_break(struct tty_struct *tty, unsigned int duration)
2496{
2497	int retval;
2498
2499	if (tty->ops->break_ctl == NULL)
2500		return 0;
2501
2502	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2503		retval = tty->ops->break_ctl(tty, duration);
2504	else {
2505		/* Do the work ourselves */
2506		if (tty_write_lock(tty, 0) < 0)
2507			return -EINTR;
2508		retval = tty->ops->break_ctl(tty, -1);
2509		if (retval)
2510			goto out;
2511		if (!signal_pending(current))
2512			msleep_interruptible(duration);
2513		retval = tty->ops->break_ctl(tty, 0);
2514out:
2515		tty_write_unlock(tty);
2516		if (signal_pending(current))
2517			retval = -EINTR;
2518	}
2519	return retval;
2520}
2521
2522/**
2523 *	tty_tiocmget		-	get modem status
2524 *	@tty: tty device
2525 *	@file: user file pointer
2526 *	@p: pointer to result
2527 *
2528 *	Obtain the modem status bits from the tty driver if the feature
2529 *	is supported. Return -EINVAL if it is not available.
2530 *
2531 *	Locking: none (up to the driver)
2532 */
2533
2534static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2535{
2536	int retval = -EINVAL;
2537
2538	if (tty->ops->tiocmget) {
2539		retval = tty->ops->tiocmget(tty);
2540
2541		if (retval >= 0)
2542			retval = put_user(retval, p);
2543	}
2544	return retval;
2545}
2546
2547/**
2548 *	tty_tiocmset		-	set modem status
2549 *	@tty: tty device
2550 *	@cmd: command - clear bits, set bits or set all
2551 *	@p: pointer to desired bits
2552 *
2553 *	Set the modem status bits from the tty driver if the feature
2554 *	is supported. Return -EINVAL if it is not available.
2555 *
2556 *	Locking: none (up to the driver)
2557 */
2558
2559static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2560	     unsigned __user *p)
2561{
2562	int retval;
2563	unsigned int set, clear, val;
2564
2565	if (tty->ops->tiocmset == NULL)
2566		return -EINVAL;
2567
2568	retval = get_user(val, p);
2569	if (retval)
2570		return retval;
2571	set = clear = 0;
2572	switch (cmd) {
2573	case TIOCMBIS:
2574		set = val;
2575		break;
2576	case TIOCMBIC:
2577		clear = val;
2578		break;
2579	case TIOCMSET:
2580		set = val;
2581		clear = ~val;
2582		break;
2583	}
2584	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2585	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2586	return tty->ops->tiocmset(tty, set, clear);
2587}
2588
2589static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2590{
2591	int retval = -EINVAL;
2592	struct serial_icounter_struct icount;
2593	memset(&icount, 0, sizeof(icount));
2594	if (tty->ops->get_icount)
2595		retval = tty->ops->get_icount(tty, &icount);
2596	if (retval != 0)
2597		return retval;
2598	if (copy_to_user(arg, &icount, sizeof(icount)))
2599		return -EFAULT;
2600	return 0;
2601}
2602
2603struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2604{
2605	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2606	    tty->driver->subtype == PTY_TYPE_MASTER)
2607		tty = tty->link;
2608	return tty;
2609}
2610EXPORT_SYMBOL(tty_pair_get_tty);
2611
2612struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2613{
2614	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2615	    tty->driver->subtype == PTY_TYPE_MASTER)
2616	    return tty;
2617	return tty->link;
2618}
2619EXPORT_SYMBOL(tty_pair_get_pty);
2620
2621/*
2622 * Split this up, as gcc can choke on it otherwise..
2623 */
2624long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2625{
2626	struct tty_struct *tty = file_tty(file);
2627	struct tty_struct *real_tty;
2628	void __user *p = (void __user *)arg;
2629	int retval;
2630	struct tty_ldisc *ld;
2631	struct inode *inode = file->f_dentry->d_inode;
2632
2633	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2634		return -EINVAL;
2635
2636	real_tty = tty_pair_get_tty(tty);
2637
2638	/*
2639	 * Factor out some common prep work
2640	 */
2641	switch (cmd) {
2642	case TIOCSETD:
2643	case TIOCSBRK:
2644	case TIOCCBRK:
2645	case TCSBRK:
2646	case TCSBRKP:
2647		retval = tty_check_change(tty);
2648		if (retval)
2649			return retval;
2650		if (cmd != TIOCCBRK) {
2651			tty_wait_until_sent(tty, 0);
2652			if (signal_pending(current))
2653				return -EINTR;
2654		}
2655		break;
2656	}
2657
2658	/*
2659	 *	Now do the stuff.
2660	 */
2661	switch (cmd) {
2662	case TIOCSTI:
2663		return tiocsti(tty, p);
2664	case TIOCGWINSZ:
2665		return tiocgwinsz(real_tty, p);
2666	case TIOCSWINSZ:
2667		return tiocswinsz(real_tty, p);
2668	case TIOCCONS:
2669		return real_tty != tty ? -EINVAL : tioccons(file);
2670	case FIONBIO:
2671		return fionbio(file, p);
2672	case TIOCEXCL:
2673		set_bit(TTY_EXCLUSIVE, &tty->flags);
2674		return 0;
2675	case TIOCNXCL:
2676		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2677		return 0;
2678	case TIOCNOTTY:
2679		if (current->signal->tty != tty)
2680			return -ENOTTY;
2681		no_tty();
2682		return 0;
2683	case TIOCSCTTY:
2684		return tiocsctty(tty, arg);
2685	case TIOCGPGRP:
2686		return tiocgpgrp(tty, real_tty, p);
2687	case TIOCSPGRP:
2688		return tiocspgrp(tty, real_tty, p);
2689	case TIOCGSID:
2690		return tiocgsid(tty, real_tty, p);
2691	case TIOCGETD:
2692		return put_user(tty->ldisc->ops->num, (int __user *)p);
2693	case TIOCSETD:
2694		return tiocsetd(tty, p);
2695	case TIOCVHANGUP:
2696		if (!capable(CAP_SYS_ADMIN))
2697			return -EPERM;
2698		tty_vhangup(tty);
2699		return 0;
2700	case TIOCGDEV:
2701	{
2702		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2703		return put_user(ret, (unsigned int __user *)p);
2704	}
2705	/*
2706	 * Break handling
2707	 */
2708	case TIOCSBRK:	/* Turn break on, unconditionally */
2709		if (tty->ops->break_ctl)
2710			return tty->ops->break_ctl(tty, -1);
2711		return 0;
2712	case TIOCCBRK:	/* Turn break off, unconditionally */
2713		if (tty->ops->break_ctl)
2714			return tty->ops->break_ctl(tty, 0);
2715		return 0;
2716	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2717		/* non-zero arg means wait for all output data
2718		 * to be sent (performed above) but don't send break.
2719		 * This is used by the tcdrain() termios function.
2720		 */
2721		if (!arg)
2722			return send_break(tty, 250);
2723		return 0;
2724	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2725		return send_break(tty, arg ? arg*100 : 250);
2726
2727	case TIOCMGET:
2728		return tty_tiocmget(tty, p);
2729	case TIOCMSET:
2730	case TIOCMBIC:
2731	case TIOCMBIS:
2732		return tty_tiocmset(tty, cmd, p);
2733	case TIOCGICOUNT:
2734		retval = tty_tiocgicount(tty, p);
2735		/* For the moment allow fall through to the old method */
2736        	if (retval != -EINVAL)
2737			return retval;
2738		break;
2739	case TCFLSH:
2740		switch (arg) {
2741		case TCIFLUSH:
2742		case TCIOFLUSH:
2743		/* flush tty buffer and allow ldisc to process ioctl */
2744			tty_buffer_flush(tty);
2745			break;
2746		}
2747		break;
2748	}
2749	if (tty->ops->ioctl) {
2750		retval = (tty->ops->ioctl)(tty, cmd, arg);
2751		if (retval != -ENOIOCTLCMD)
2752			return retval;
2753	}
2754	ld = tty_ldisc_ref_wait(tty);
2755	retval = -EINVAL;
2756	if (ld->ops->ioctl) {
2757		retval = ld->ops->ioctl(tty, file, cmd, arg);
2758		if (retval == -ENOIOCTLCMD)
2759			retval = -EINVAL;
2760	}
2761	tty_ldisc_deref(ld);
2762	return retval;
2763}
2764
2765#ifdef CONFIG_COMPAT
2766static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2767				unsigned long arg)
2768{
2769	struct inode *inode = file->f_dentry->d_inode;
2770	struct tty_struct *tty = file_tty(file);
2771	struct tty_ldisc *ld;
2772	int retval = -ENOIOCTLCMD;
2773
2774	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2775		return -EINVAL;
2776
2777	if (tty->ops->compat_ioctl) {
2778		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2779		if (retval != -ENOIOCTLCMD)
2780			return retval;
2781	}
2782
2783	ld = tty_ldisc_ref_wait(tty);
2784	if (ld->ops->compat_ioctl)
2785		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2786	else
2787		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2788	tty_ldisc_deref(ld);
2789
2790	return retval;
2791}
2792#endif
2793
2794/*
2795 * This implements the "Secure Attention Key" ---  the idea is to
2796 * prevent trojan horses by killing all processes associated with this
2797 * tty when the user hits the "Secure Attention Key".  Required for
2798 * super-paranoid applications --- see the Orange Book for more details.
2799 *
2800 * This code could be nicer; ideally it should send a HUP, wait a few
2801 * seconds, then send a INT, and then a KILL signal.  But you then
2802 * have to coordinate with the init process, since all processes associated
2803 * with the current tty must be dead before the new getty is allowed
2804 * to spawn.
2805 *
2806 * Now, if it would be correct ;-/ The current code has a nasty hole -
2807 * it doesn't catch files in flight. We may send the descriptor to ourselves
2808 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2809 *
2810 * Nasty bug: do_SAK is being called in interrupt context.  This can
2811 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2812 */
2813void __do_SAK(struct tty_struct *tty)
2814{
2815#ifdef TTY_SOFT_SAK
2816	tty_hangup(tty);
2817#else
2818	struct task_struct *g, *p;
2819	struct pid *session;
2820	int		i;
2821	struct file	*filp;
2822	struct fdtable *fdt;
2823
2824	if (!tty)
2825		return;
2826	session = tty->session;
2827
2828	tty_ldisc_flush(tty);
2829
2830	tty_driver_flush_buffer(tty);
2831
2832	read_lock(&tasklist_lock);
2833	/* Kill the entire session */
2834	do_each_pid_task(session, PIDTYPE_SID, p) {
2835		printk(KERN_NOTICE "SAK: killed process %d"
2836			" (%s): task_session(p)==tty->session\n",
2837			task_pid_nr(p), p->comm);
2838		send_sig(SIGKILL, p, 1);
2839	} while_each_pid_task(session, PIDTYPE_SID, p);
2840	/* Now kill any processes that happen to have the
2841	 * tty open.
2842	 */
2843	do_each_thread(g, p) {
2844		if (p->signal->tty == tty) {
2845			printk(KERN_NOTICE "SAK: killed process %d"
2846			    " (%s): task_session(p)==tty->session\n",
2847			    task_pid_nr(p), p->comm);
2848			send_sig(SIGKILL, p, 1);
2849			continue;
2850		}
2851		task_lock(p);
2852		if (p->files) {
2853			/*
2854			 * We don't take a ref to the file, so we must
2855			 * hold ->file_lock instead.
2856			 */
2857			spin_lock(&p->files->file_lock);
2858			fdt = files_fdtable(p->files);
2859			for (i = 0; i < fdt->max_fds; i++) {
2860				filp = fcheck_files(p->files, i);
2861				if (!filp)
2862					continue;
2863				if (filp->f_op->read == tty_read &&
2864				    file_tty(filp) == tty) {
2865					printk(KERN_NOTICE "SAK: killed process %d"
2866					    " (%s): fd#%d opened to the tty\n",
2867					    task_pid_nr(p), p->comm, i);
2868					force_sig(SIGKILL, p);
2869					break;
2870				}
2871			}
2872			spin_unlock(&p->files->file_lock);
2873		}
2874		task_unlock(p);
2875	} while_each_thread(g, p);
2876	read_unlock(&tasklist_lock);
2877#endif
2878}
2879
2880static void do_SAK_work(struct work_struct *work)
2881{
2882	struct tty_struct *tty =
2883		container_of(work, struct tty_struct, SAK_work);
2884	__do_SAK(tty);
2885}
2886
2887/*
2888 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2889 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2890 * the values which we write to it will be identical to the values which it
2891 * already has. --akpm
2892 */
2893void do_SAK(struct tty_struct *tty)
2894{
2895	if (!tty)
2896		return;
2897	schedule_work(&tty->SAK_work);
2898}
2899
2900EXPORT_SYMBOL(do_SAK);
2901
2902static int dev_match_devt(struct device *dev, void *data)
2903{
2904	dev_t *devt = data;
2905	return dev->devt == *devt;
2906}
2907
2908/* Must put_device() after it's unused! */
2909static struct device *tty_get_device(struct tty_struct *tty)
2910{
2911	dev_t devt = tty_devnum(tty);
2912	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2913}
2914
2915
2916/**
2917 *	initialize_tty_struct
2918 *	@tty: tty to initialize
2919 *
2920 *	This subroutine initializes a tty structure that has been newly
2921 *	allocated.
2922 *
2923 *	Locking: none - tty in question must not be exposed at this point
2924 */
2925
2926void initialize_tty_struct(struct tty_struct *tty,
2927		struct tty_driver *driver, int idx)
2928{
2929	memset(tty, 0, sizeof(struct tty_struct));
2930	kref_init(&tty->kref);
2931	tty->magic = TTY_MAGIC;
2932	tty_ldisc_init(tty);
2933	tty->session = NULL;
2934	tty->pgrp = NULL;
2935	tty->overrun_time = jiffies;
 
2936	tty_buffer_init(tty);
2937	mutex_init(&tty->termios_mutex);
2938	mutex_init(&tty->ldisc_mutex);
2939	init_waitqueue_head(&tty->write_wait);
2940	init_waitqueue_head(&tty->read_wait);
2941	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2942	mutex_init(&tty->atomic_read_lock);
2943	mutex_init(&tty->atomic_write_lock);
2944	mutex_init(&tty->output_lock);
2945	mutex_init(&tty->echo_lock);
2946	spin_lock_init(&tty->read_lock);
2947	spin_lock_init(&tty->ctrl_lock);
2948	INIT_LIST_HEAD(&tty->tty_files);
2949	INIT_WORK(&tty->SAK_work, do_SAK_work);
2950
2951	tty->driver = driver;
2952	tty->ops = driver->ops;
2953	tty->index = idx;
2954	tty_line_name(driver, idx, tty->name);
2955	tty->dev = tty_get_device(tty);
2956}
2957
2958/**
2959 *	deinitialize_tty_struct
2960 *	@tty: tty to deinitialize
2961 *
2962 *	This subroutine deinitializes a tty structure that has been newly
2963 *	allocated but tty_release cannot be called on that yet.
2964 *
2965 *	Locking: none - tty in question must not be exposed at this point
2966 */
2967void deinitialize_tty_struct(struct tty_struct *tty)
2968{
2969	tty_ldisc_deinit(tty);
2970}
2971
2972/**
2973 *	tty_put_char	-	write one character to a tty
2974 *	@tty: tty
2975 *	@ch: character
2976 *
2977 *	Write one byte to the tty using the provided put_char method
2978 *	if present. Returns the number of characters successfully output.
2979 *
2980 *	Note: the specific put_char operation in the driver layer may go
2981 *	away soon. Don't call it directly, use this method
2982 */
2983
2984int tty_put_char(struct tty_struct *tty, unsigned char ch)
2985{
2986	if (tty->ops->put_char)
2987		return tty->ops->put_char(tty, ch);
2988	return tty->ops->write(tty, &ch, 1);
2989}
2990EXPORT_SYMBOL_GPL(tty_put_char);
2991
2992struct class *tty_class;
2993
2994/**
2995 *	tty_register_device - register a tty device
2996 *	@driver: the tty driver that describes the tty device
2997 *	@index: the index in the tty driver for this tty device
2998 *	@device: a struct device that is associated with this tty device.
2999 *		This field is optional, if there is no known struct device
3000 *		for this tty device it can be set to NULL safely.
3001 *
3002 *	Returns a pointer to the struct device for this tty device
3003 *	(or ERR_PTR(-EFOO) on error).
3004 *
3005 *	This call is required to be made to register an individual tty device
3006 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3007 *	that bit is not set, this function should not be called by a tty
3008 *	driver.
3009 *
3010 *	Locking: ??
3011 */
3012
3013struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3014				   struct device *device)
3015{
3016	char name[64];
3017	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3018
3019	if (index >= driver->num) {
3020		printk(KERN_ERR "Attempt to register invalid tty line number "
3021		       " (%d).\n", index);
3022		return ERR_PTR(-EINVAL);
3023	}
3024
3025	if (driver->type == TTY_DRIVER_TYPE_PTY)
3026		pty_line_name(driver, index, name);
3027	else
3028		tty_line_name(driver, index, name);
3029
3030	return device_create(tty_class, device, dev, NULL, name);
3031}
3032EXPORT_SYMBOL(tty_register_device);
3033
3034/**
3035 * 	tty_unregister_device - unregister a tty device
3036 * 	@driver: the tty driver that describes the tty device
3037 * 	@index: the index in the tty driver for this tty device
3038 *
3039 * 	If a tty device is registered with a call to tty_register_device() then
3040 *	this function must be called when the tty device is gone.
3041 *
3042 *	Locking: ??
3043 */
3044
3045void tty_unregister_device(struct tty_driver *driver, unsigned index)
3046{
3047	device_destroy(tty_class,
3048		MKDEV(driver->major, driver->minor_start) + index);
3049}
3050EXPORT_SYMBOL(tty_unregister_device);
3051
3052struct tty_driver *__alloc_tty_driver(int lines, struct module *owner)
3053{
3054	struct tty_driver *driver;
3055
3056	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3057	if (driver) {
3058		kref_init(&driver->kref);
3059		driver->magic = TTY_DRIVER_MAGIC;
3060		driver->num = lines;
3061		driver->owner = owner;
3062		/* later we'll move allocation of tables here */
3063	}
3064	return driver;
3065}
3066EXPORT_SYMBOL(__alloc_tty_driver);
3067
3068static void destruct_tty_driver(struct kref *kref)
3069{
3070	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3071	int i;
3072	struct ktermios *tp;
3073	void *p;
3074
3075	if (driver->flags & TTY_DRIVER_INSTALLED) {
3076		/*
3077		 * Free the termios and termios_locked structures because
3078		 * we don't want to get memory leaks when modular tty
3079		 * drivers are removed from the kernel.
3080		 */
3081		for (i = 0; i < driver->num; i++) {
3082			tp = driver->termios[i];
3083			if (tp) {
3084				driver->termios[i] = NULL;
3085				kfree(tp);
3086			}
3087			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3088				tty_unregister_device(driver, i);
3089		}
3090		p = driver->ttys;
3091		proc_tty_unregister_driver(driver);
3092		driver->ttys = NULL;
3093		driver->termios = NULL;
3094		kfree(p);
3095		cdev_del(&driver->cdev);
3096	}
3097	kfree(driver);
3098}
3099
3100void tty_driver_kref_put(struct tty_driver *driver)
3101{
3102	kref_put(&driver->kref, destruct_tty_driver);
3103}
3104EXPORT_SYMBOL(tty_driver_kref_put);
3105
3106void tty_set_operations(struct tty_driver *driver,
3107			const struct tty_operations *op)
3108{
3109	driver->ops = op;
3110};
3111EXPORT_SYMBOL(tty_set_operations);
3112
3113void put_tty_driver(struct tty_driver *d)
3114{
3115	tty_driver_kref_put(d);
3116}
3117EXPORT_SYMBOL(put_tty_driver);
3118
3119/*
3120 * Called by a tty driver to register itself.
3121 */
3122int tty_register_driver(struct tty_driver *driver)
3123{
3124	int error;
3125	int i;
3126	dev_t dev;
3127	void **p = NULL;
3128	struct device *d;
3129
3130	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3131		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3132		if (!p)
3133			return -ENOMEM;
3134	}
3135
3136	if (!driver->major) {
3137		error = alloc_chrdev_region(&dev, driver->minor_start,
3138						driver->num, driver->name);
3139		if (!error) {
3140			driver->major = MAJOR(dev);
3141			driver->minor_start = MINOR(dev);
3142		}
3143	} else {
3144		dev = MKDEV(driver->major, driver->minor_start);
3145		error = register_chrdev_region(dev, driver->num, driver->name);
3146	}
3147	if (error < 0) {
3148		kfree(p);
3149		return error;
3150	}
3151
3152	if (p) {
3153		driver->ttys = (struct tty_struct **)p;
3154		driver->termios = (struct ktermios **)(p + driver->num);
3155	} else {
3156		driver->ttys = NULL;
3157		driver->termios = NULL;
3158	}
3159
3160	cdev_init(&driver->cdev, &tty_fops);
3161	driver->cdev.owner = driver->owner;
3162	error = cdev_add(&driver->cdev, dev, driver->num);
3163	if (error) {
3164		unregister_chrdev_region(dev, driver->num);
3165		driver->ttys = NULL;
3166		driver->termios = NULL;
3167		kfree(p);
3168		return error;
3169	}
3170
3171	mutex_lock(&tty_mutex);
3172	list_add(&driver->tty_drivers, &tty_drivers);
3173	mutex_unlock(&tty_mutex);
3174
3175	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3176		for (i = 0; i < driver->num; i++) {
3177			d = tty_register_device(driver, i, NULL);
3178			if (IS_ERR(d)) {
3179				error = PTR_ERR(d);
3180				goto err;
3181			}
3182		}
3183	}
3184	proc_tty_register_driver(driver);
3185	driver->flags |= TTY_DRIVER_INSTALLED;
3186	return 0;
3187
3188err:
3189	for (i--; i >= 0; i--)
3190		tty_unregister_device(driver, i);
3191
3192	mutex_lock(&tty_mutex);
3193	list_del(&driver->tty_drivers);
3194	mutex_unlock(&tty_mutex);
3195
3196	unregister_chrdev_region(dev, driver->num);
3197	driver->ttys = NULL;
3198	driver->termios = NULL;
3199	kfree(p);
3200	return error;
3201}
3202
3203EXPORT_SYMBOL(tty_register_driver);
3204
3205/*
3206 * Called by a tty driver to unregister itself.
3207 */
3208int tty_unregister_driver(struct tty_driver *driver)
3209{
3210#if 0
3211	/* FIXME */
3212	if (driver->refcount)
3213		return -EBUSY;
3214#endif
3215	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3216				driver->num);
3217	mutex_lock(&tty_mutex);
3218	list_del(&driver->tty_drivers);
3219	mutex_unlock(&tty_mutex);
3220	return 0;
3221}
3222
3223EXPORT_SYMBOL(tty_unregister_driver);
3224
3225dev_t tty_devnum(struct tty_struct *tty)
3226{
3227	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3228}
3229EXPORT_SYMBOL(tty_devnum);
3230
3231void proc_clear_tty(struct task_struct *p)
3232{
3233	unsigned long flags;
3234	struct tty_struct *tty;
3235	spin_lock_irqsave(&p->sighand->siglock, flags);
3236	tty = p->signal->tty;
3237	p->signal->tty = NULL;
3238	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3239	tty_kref_put(tty);
3240}
3241
3242/* Called under the sighand lock */
3243
3244static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3245{
3246	if (tty) {
3247		unsigned long flags;
3248		/* We should not have a session or pgrp to put here but.... */
3249		spin_lock_irqsave(&tty->ctrl_lock, flags);
3250		put_pid(tty->session);
3251		put_pid(tty->pgrp);
3252		tty->pgrp = get_pid(task_pgrp(tsk));
3253		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3254		tty->session = get_pid(task_session(tsk));
3255		if (tsk->signal->tty) {
3256			printk(KERN_DEBUG "tty not NULL!!\n");
3257			tty_kref_put(tsk->signal->tty);
3258		}
3259	}
3260	put_pid(tsk->signal->tty_old_pgrp);
3261	tsk->signal->tty = tty_kref_get(tty);
3262	tsk->signal->tty_old_pgrp = NULL;
3263}
3264
3265static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3266{
3267	spin_lock_irq(&tsk->sighand->siglock);
3268	__proc_set_tty(tsk, tty);
3269	spin_unlock_irq(&tsk->sighand->siglock);
3270}
3271
3272struct tty_struct *get_current_tty(void)
3273{
3274	struct tty_struct *tty;
3275	unsigned long flags;
3276
3277	spin_lock_irqsave(&current->sighand->siglock, flags);
3278	tty = tty_kref_get(current->signal->tty);
3279	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3280	return tty;
3281}
3282EXPORT_SYMBOL_GPL(get_current_tty);
3283
3284void tty_default_fops(struct file_operations *fops)
3285{
3286	*fops = tty_fops;
3287}
3288
3289/*
3290 * Initialize the console device. This is called *early*, so
3291 * we can't necessarily depend on lots of kernel help here.
3292 * Just do some early initializations, and do the complex setup
3293 * later.
3294 */
3295void __init console_init(void)
3296{
3297	initcall_t *call;
3298
3299	/* Setup the default TTY line discipline. */
3300	tty_ldisc_begin();
3301
3302	/*
3303	 * set up the console device so that later boot sequences can
3304	 * inform about problems etc..
3305	 */
3306	call = __con_initcall_start;
3307	while (call < __con_initcall_end) {
3308		(*call)();
3309		call++;
3310	}
3311}
3312
3313static char *tty_devnode(struct device *dev, umode_t *mode)
3314{
3315	if (!mode)
3316		return NULL;
3317	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3318	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3319		*mode = 0666;
3320	return NULL;
3321}
3322
3323static int __init tty_class_init(void)
3324{
3325	tty_class = class_create(THIS_MODULE, "tty");
3326	if (IS_ERR(tty_class))
3327		return PTR_ERR(tty_class);
3328	tty_class->devnode = tty_devnode;
3329	return 0;
3330}
3331
3332postcore_initcall(tty_class_init);
3333
3334/* 3/2004 jmc: why do these devices exist? */
3335static struct cdev tty_cdev, console_cdev;
3336
3337static ssize_t show_cons_active(struct device *dev,
3338				struct device_attribute *attr, char *buf)
3339{
3340	struct console *cs[16];
3341	int i = 0;
3342	struct console *c;
3343	ssize_t count = 0;
3344
3345	console_lock();
3346	for_each_console(c) {
3347		if (!c->device)
3348			continue;
3349		if (!c->write)
3350			continue;
3351		if ((c->flags & CON_ENABLED) == 0)
3352			continue;
3353		cs[i++] = c;
3354		if (i >= ARRAY_SIZE(cs))
3355			break;
3356	}
3357	while (i--)
3358		count += sprintf(buf + count, "%s%d%c",
3359				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3360	console_unlock();
3361
3362	return count;
3363}
3364static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3365
3366static struct device *consdev;
3367
3368void console_sysfs_notify(void)
3369{
3370	if (consdev)
3371		sysfs_notify(&consdev->kobj, NULL, "active");
3372}
3373
3374/*
3375 * Ok, now we can initialize the rest of the tty devices and can count
3376 * on memory allocations, interrupts etc..
3377 */
3378int __init tty_init(void)
3379{
3380	cdev_init(&tty_cdev, &tty_fops);
3381	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3382	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3383		panic("Couldn't register /dev/tty driver\n");
3384	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3385
3386	cdev_init(&console_cdev, &console_fops);
3387	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3388	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3389		panic("Couldn't register /dev/console driver\n");
3390	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3391			      "console");
3392	if (IS_ERR(consdev))
3393		consdev = NULL;
3394	else
3395		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3396
3397#ifdef CONFIG_VT
3398	vty_init(&console_fops);
3399#endif
3400	return 0;
3401}
3402