Loading...
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "hw.h"
18
19static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
20{
21 if (fbin == AR5416_BCHAN_UNUSED)
22 return fbin;
23
24 return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
25}
26
27void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
28{
29 REG_WRITE(ah, reg, val);
30
31 if (ah->config.analog_shiftreg)
32 udelay(100);
33}
34
35void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
36 u32 shift, u32 val)
37{
38 u32 regVal;
39
40 regVal = REG_READ(ah, reg) & ~mask;
41 regVal |= (val << shift) & mask;
42
43 REG_WRITE(ah, reg, regVal);
44
45 if (ah->config.analog_shiftreg)
46 udelay(100);
47}
48
49int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
50 int16_t targetLeft, int16_t targetRight)
51{
52 int16_t rv;
53
54 if (srcRight == srcLeft) {
55 rv = targetLeft;
56 } else {
57 rv = (int16_t) (((target - srcLeft) * targetRight +
58 (srcRight - target) * targetLeft) /
59 (srcRight - srcLeft));
60 }
61 return rv;
62}
63
64bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
65 u16 *indexL, u16 *indexR)
66{
67 u16 i;
68
69 if (target <= pList[0]) {
70 *indexL = *indexR = 0;
71 return true;
72 }
73 if (target >= pList[listSize - 1]) {
74 *indexL = *indexR = (u16) (listSize - 1);
75 return true;
76 }
77
78 for (i = 0; i < listSize - 1; i++) {
79 if (pList[i] == target) {
80 *indexL = *indexR = i;
81 return true;
82 }
83 if (target < pList[i + 1]) {
84 *indexL = i;
85 *indexR = (u16) (i + 1);
86 return false;
87 }
88 }
89 return false;
90}
91
92void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
93 int eep_start_loc, int size)
94{
95 int i = 0, j, addr;
96 u32 addrdata[8];
97 u32 data[8];
98
99 for (addr = 0; addr < size; addr++) {
100 addrdata[i] = AR5416_EEPROM_OFFSET +
101 ((addr + eep_start_loc) << AR5416_EEPROM_S);
102 i++;
103 if (i == 8) {
104 REG_READ_MULTI(ah, addrdata, data, i);
105
106 for (j = 0; j < i; j++) {
107 *eep_data = data[j];
108 eep_data++;
109 }
110 i = 0;
111 }
112 }
113
114 if (i != 0) {
115 REG_READ_MULTI(ah, addrdata, data, i);
116
117 for (j = 0; j < i; j++) {
118 *eep_data = data[j];
119 eep_data++;
120 }
121 }
122}
123
124bool ath9k_hw_nvram_read(struct ath_common *common, u32 off, u16 *data)
125{
126 return common->bus_ops->eeprom_read(common, off, data);
127}
128
129void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
130 u8 *pVpdList, u16 numIntercepts,
131 u8 *pRetVpdList)
132{
133 u16 i, k;
134 u8 currPwr = pwrMin;
135 u16 idxL = 0, idxR = 0;
136
137 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
138 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
139 numIntercepts, &(idxL),
140 &(idxR));
141 if (idxR < 1)
142 idxR = 1;
143 if (idxL == numIntercepts - 1)
144 idxL = (u16) (numIntercepts - 2);
145 if (pPwrList[idxL] == pPwrList[idxR])
146 k = pVpdList[idxL];
147 else
148 k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
149 (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
150 (pPwrList[idxR] - pPwrList[idxL]));
151 pRetVpdList[i] = (u8) k;
152 currPwr += 2;
153 }
154}
155
156void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
157 struct ath9k_channel *chan,
158 struct cal_target_power_leg *powInfo,
159 u16 numChannels,
160 struct cal_target_power_leg *pNewPower,
161 u16 numRates, bool isExtTarget)
162{
163 struct chan_centers centers;
164 u16 clo, chi;
165 int i;
166 int matchIndex = -1, lowIndex = -1;
167 u16 freq;
168
169 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
170 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
171
172 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
173 IS_CHAN_2GHZ(chan))) {
174 matchIndex = 0;
175 } else {
176 for (i = 0; (i < numChannels) &&
177 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
178 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
179 IS_CHAN_2GHZ(chan))) {
180 matchIndex = i;
181 break;
182 } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
183 IS_CHAN_2GHZ(chan)) && i > 0 &&
184 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
185 IS_CHAN_2GHZ(chan))) {
186 lowIndex = i - 1;
187 break;
188 }
189 }
190 if ((matchIndex == -1) && (lowIndex == -1))
191 matchIndex = i - 1;
192 }
193
194 if (matchIndex != -1) {
195 *pNewPower = powInfo[matchIndex];
196 } else {
197 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
198 IS_CHAN_2GHZ(chan));
199 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
200 IS_CHAN_2GHZ(chan));
201
202 for (i = 0; i < numRates; i++) {
203 pNewPower->tPow2x[i] =
204 (u8)ath9k_hw_interpolate(freq, clo, chi,
205 powInfo[lowIndex].tPow2x[i],
206 powInfo[lowIndex + 1].tPow2x[i]);
207 }
208 }
209}
210
211void ath9k_hw_get_target_powers(struct ath_hw *ah,
212 struct ath9k_channel *chan,
213 struct cal_target_power_ht *powInfo,
214 u16 numChannels,
215 struct cal_target_power_ht *pNewPower,
216 u16 numRates, bool isHt40Target)
217{
218 struct chan_centers centers;
219 u16 clo, chi;
220 int i;
221 int matchIndex = -1, lowIndex = -1;
222 u16 freq;
223
224 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
225 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
226
227 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
228 matchIndex = 0;
229 } else {
230 for (i = 0; (i < numChannels) &&
231 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
232 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
233 IS_CHAN_2GHZ(chan))) {
234 matchIndex = i;
235 break;
236 } else
237 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
238 IS_CHAN_2GHZ(chan)) && i > 0 &&
239 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
240 IS_CHAN_2GHZ(chan))) {
241 lowIndex = i - 1;
242 break;
243 }
244 }
245 if ((matchIndex == -1) && (lowIndex == -1))
246 matchIndex = i - 1;
247 }
248
249 if (matchIndex != -1) {
250 *pNewPower = powInfo[matchIndex];
251 } else {
252 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
253 IS_CHAN_2GHZ(chan));
254 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
255 IS_CHAN_2GHZ(chan));
256
257 for (i = 0; i < numRates; i++) {
258 pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
259 clo, chi,
260 powInfo[lowIndex].tPow2x[i],
261 powInfo[lowIndex + 1].tPow2x[i]);
262 }
263 }
264}
265
266u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
267 bool is2GHz, int num_band_edges)
268{
269 u16 twiceMaxEdgePower = MAX_RATE_POWER;
270 int i;
271
272 for (i = 0; (i < num_band_edges) &&
273 (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
274 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
275 twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
276 break;
277 } else if ((i > 0) &&
278 (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
279 is2GHz))) {
280 if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
281 is2GHz) < freq &&
282 CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
283 twiceMaxEdgePower =
284 CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
285 }
286 break;
287 }
288 }
289
290 return twiceMaxEdgePower;
291}
292
293void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
294{
295 struct ath_common *common = ath9k_hw_common(ah);
296 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
297
298 switch (ar5416_get_ntxchains(ah->txchainmask)) {
299 case 1:
300 break;
301 case 2:
302 regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
303 break;
304 case 3:
305 regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
306 break;
307 default:
308 ath_dbg(common, ATH_DBG_EEPROM,
309 "Invalid chainmask configuration\n");
310 break;
311 }
312}
313
314void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
315 struct ath9k_channel *chan,
316 void *pRawDataSet,
317 u8 *bChans, u16 availPiers,
318 u16 tPdGainOverlap,
319 u16 *pPdGainBoundaries, u8 *pPDADCValues,
320 u16 numXpdGains)
321{
322 int i, j, k;
323 int16_t ss;
324 u16 idxL = 0, idxR = 0, numPiers;
325 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
326 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
327 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
328 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
329 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
330 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
331
332 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
333 u8 minPwrT4[AR5416_NUM_PD_GAINS];
334 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
335 int16_t vpdStep;
336 int16_t tmpVal;
337 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
338 bool match;
339 int16_t minDelta = 0;
340 struct chan_centers centers;
341 int pdgain_boundary_default;
342 struct cal_data_per_freq *data_def = pRawDataSet;
343 struct cal_data_per_freq_4k *data_4k = pRawDataSet;
344 struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
345 bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
346 int intercepts;
347
348 if (AR_SREV_9287(ah))
349 intercepts = AR9287_PD_GAIN_ICEPTS;
350 else
351 intercepts = AR5416_PD_GAIN_ICEPTS;
352
353 memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
354 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
355
356 for (numPiers = 0; numPiers < availPiers; numPiers++) {
357 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
358 break;
359 }
360
361 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
362 IS_CHAN_2GHZ(chan)),
363 bChans, numPiers, &idxL, &idxR);
364
365 if (match) {
366 if (AR_SREV_9287(ah)) {
367 /* FIXME: array overrun? */
368 for (i = 0; i < numXpdGains; i++) {
369 minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
370 maxPwrT4[i] = data_9287[idxL].pwrPdg[i][4];
371 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
372 data_9287[idxL].pwrPdg[i],
373 data_9287[idxL].vpdPdg[i],
374 intercepts,
375 vpdTableI[i]);
376 }
377 } else if (eeprom_4k) {
378 for (i = 0; i < numXpdGains; i++) {
379 minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
380 maxPwrT4[i] = data_4k[idxL].pwrPdg[i][4];
381 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
382 data_4k[idxL].pwrPdg[i],
383 data_4k[idxL].vpdPdg[i],
384 intercepts,
385 vpdTableI[i]);
386 }
387 } else {
388 for (i = 0; i < numXpdGains; i++) {
389 minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
390 maxPwrT4[i] = data_def[idxL].pwrPdg[i][4];
391 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
392 data_def[idxL].pwrPdg[i],
393 data_def[idxL].vpdPdg[i],
394 intercepts,
395 vpdTableI[i]);
396 }
397 }
398 } else {
399 for (i = 0; i < numXpdGains; i++) {
400 if (AR_SREV_9287(ah)) {
401 pVpdL = data_9287[idxL].vpdPdg[i];
402 pPwrL = data_9287[idxL].pwrPdg[i];
403 pVpdR = data_9287[idxR].vpdPdg[i];
404 pPwrR = data_9287[idxR].pwrPdg[i];
405 } else if (eeprom_4k) {
406 pVpdL = data_4k[idxL].vpdPdg[i];
407 pPwrL = data_4k[idxL].pwrPdg[i];
408 pVpdR = data_4k[idxR].vpdPdg[i];
409 pPwrR = data_4k[idxR].pwrPdg[i];
410 } else {
411 pVpdL = data_def[idxL].vpdPdg[i];
412 pPwrL = data_def[idxL].pwrPdg[i];
413 pVpdR = data_def[idxR].vpdPdg[i];
414 pPwrR = data_def[idxR].pwrPdg[i];
415 }
416
417 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
418
419 maxPwrT4[i] =
420 min(pPwrL[intercepts - 1],
421 pPwrR[intercepts - 1]);
422
423
424 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
425 pPwrL, pVpdL,
426 intercepts,
427 vpdTableL[i]);
428 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
429 pPwrR, pVpdR,
430 intercepts,
431 vpdTableR[i]);
432
433 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
434 vpdTableI[i][j] =
435 (u8)(ath9k_hw_interpolate((u16)
436 FREQ2FBIN(centers.
437 synth_center,
438 IS_CHAN_2GHZ
439 (chan)),
440 bChans[idxL], bChans[idxR],
441 vpdTableL[i][j], vpdTableR[i][j]));
442 }
443 }
444 }
445
446 k = 0;
447
448 for (i = 0; i < numXpdGains; i++) {
449 if (i == (numXpdGains - 1))
450 pPdGainBoundaries[i] =
451 (u16)(maxPwrT4[i] / 2);
452 else
453 pPdGainBoundaries[i] =
454 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
455
456 pPdGainBoundaries[i] =
457 min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
458
459 if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
460 minDelta = pPdGainBoundaries[0] - 23;
461 pPdGainBoundaries[0] = 23;
462 } else {
463 minDelta = 0;
464 }
465
466 if (i == 0) {
467 if (AR_SREV_9280_20_OR_LATER(ah))
468 ss = (int16_t)(0 - (minPwrT4[i] / 2));
469 else
470 ss = 0;
471 } else {
472 ss = (int16_t)((pPdGainBoundaries[i - 1] -
473 (minPwrT4[i] / 2)) -
474 tPdGainOverlap + 1 + minDelta);
475 }
476 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
477 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
478
479 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
480 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
481 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
482 ss++;
483 }
484
485 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
486 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
487 (minPwrT4[i] / 2));
488 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
489 tgtIndex : sizeCurrVpdTable;
490
491 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
492 pPDADCValues[k++] = vpdTableI[i][ss++];
493 }
494
495 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
496 vpdTableI[i][sizeCurrVpdTable - 2]);
497 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
498
499 if (tgtIndex >= maxIndex) {
500 while ((ss <= tgtIndex) &&
501 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
502 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
503 (ss - maxIndex + 1) * vpdStep));
504 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
505 255 : tmpVal);
506 ss++;
507 }
508 }
509 }
510
511 if (eeprom_4k)
512 pdgain_boundary_default = 58;
513 else
514 pdgain_boundary_default = pPdGainBoundaries[i - 1];
515
516 while (i < AR5416_PD_GAINS_IN_MASK) {
517 pPdGainBoundaries[i] = pdgain_boundary_default;
518 i++;
519 }
520
521 while (k < AR5416_NUM_PDADC_VALUES) {
522 pPDADCValues[k] = pPDADCValues[k - 1];
523 k++;
524 }
525}
526
527int ath9k_hw_eeprom_init(struct ath_hw *ah)
528{
529 int status;
530
531 if (AR_SREV_9300_20_OR_LATER(ah))
532 ah->eep_ops = &eep_ar9300_ops;
533 else if (AR_SREV_9287(ah)) {
534 ah->eep_ops = &eep_ar9287_ops;
535 } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
536 ah->eep_ops = &eep_4k_ops;
537 } else {
538 ah->eep_ops = &eep_def_ops;
539 }
540
541 if (!ah->eep_ops->fill_eeprom(ah))
542 return -EIO;
543
544 status = ah->eep_ops->check_eeprom(ah);
545
546 return status;
547}
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "hw.h"
18
19void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
20{
21 REG_WRITE(ah, reg, val);
22
23 if (ah->config.analog_shiftreg)
24 udelay(100);
25}
26
27void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
28 u32 shift, u32 val)
29{
30 u32 regVal;
31
32 regVal = REG_READ(ah, reg) & ~mask;
33 regVal |= (val << shift) & mask;
34
35 REG_WRITE(ah, reg, regVal);
36
37 if (ah->config.analog_shiftreg)
38 udelay(100);
39}
40
41int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
42 int16_t targetLeft, int16_t targetRight)
43{
44 int16_t rv;
45
46 if (srcRight == srcLeft) {
47 rv = targetLeft;
48 } else {
49 rv = (int16_t) (((target - srcLeft) * targetRight +
50 (srcRight - target) * targetLeft) /
51 (srcRight - srcLeft));
52 }
53 return rv;
54}
55
56bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
57 u16 *indexL, u16 *indexR)
58{
59 u16 i;
60
61 if (target <= pList[0]) {
62 *indexL = *indexR = 0;
63 return true;
64 }
65 if (target >= pList[listSize - 1]) {
66 *indexL = *indexR = (u16) (listSize - 1);
67 return true;
68 }
69
70 for (i = 0; i < listSize - 1; i++) {
71 if (pList[i] == target) {
72 *indexL = *indexR = i;
73 return true;
74 }
75 if (target < pList[i + 1]) {
76 *indexL = i;
77 *indexR = (u16) (i + 1);
78 return false;
79 }
80 }
81 return false;
82}
83
84void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
85 int eep_start_loc, int size)
86{
87 int i = 0, j, addr;
88 u32 addrdata[8];
89 u32 data[8];
90
91 for (addr = 0; addr < size; addr++) {
92 addrdata[i] = AR5416_EEPROM_OFFSET +
93 ((addr + eep_start_loc) << AR5416_EEPROM_S);
94 i++;
95 if (i == 8) {
96 REG_READ_MULTI(ah, addrdata, data, i);
97
98 for (j = 0; j < i; j++) {
99 *eep_data = data[j];
100 eep_data++;
101 }
102 i = 0;
103 }
104 }
105
106 if (i != 0) {
107 REG_READ_MULTI(ah, addrdata, data, i);
108
109 for (j = 0; j < i; j++) {
110 *eep_data = data[j];
111 eep_data++;
112 }
113 }
114}
115
116bool ath9k_hw_nvram_read(struct ath_common *common, u32 off, u16 *data)
117{
118 return common->bus_ops->eeprom_read(common, off, data);
119}
120
121void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
122 u8 *pVpdList, u16 numIntercepts,
123 u8 *pRetVpdList)
124{
125 u16 i, k;
126 u8 currPwr = pwrMin;
127 u16 idxL = 0, idxR = 0;
128
129 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
130 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
131 numIntercepts, &(idxL),
132 &(idxR));
133 if (idxR < 1)
134 idxR = 1;
135 if (idxL == numIntercepts - 1)
136 idxL = (u16) (numIntercepts - 2);
137 if (pPwrList[idxL] == pPwrList[idxR])
138 k = pVpdList[idxL];
139 else
140 k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
141 (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
142 (pPwrList[idxR] - pPwrList[idxL]));
143 pRetVpdList[i] = (u8) k;
144 currPwr += 2;
145 }
146}
147
148void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
149 struct ath9k_channel *chan,
150 struct cal_target_power_leg *powInfo,
151 u16 numChannels,
152 struct cal_target_power_leg *pNewPower,
153 u16 numRates, bool isExtTarget)
154{
155 struct chan_centers centers;
156 u16 clo, chi;
157 int i;
158 int matchIndex = -1, lowIndex = -1;
159 u16 freq;
160
161 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
162 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
163
164 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
165 IS_CHAN_2GHZ(chan))) {
166 matchIndex = 0;
167 } else {
168 for (i = 0; (i < numChannels) &&
169 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
170 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
171 IS_CHAN_2GHZ(chan))) {
172 matchIndex = i;
173 break;
174 } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
175 IS_CHAN_2GHZ(chan)) && i > 0 &&
176 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
177 IS_CHAN_2GHZ(chan))) {
178 lowIndex = i - 1;
179 break;
180 }
181 }
182 if ((matchIndex == -1) && (lowIndex == -1))
183 matchIndex = i - 1;
184 }
185
186 if (matchIndex != -1) {
187 *pNewPower = powInfo[matchIndex];
188 } else {
189 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
190 IS_CHAN_2GHZ(chan));
191 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
192 IS_CHAN_2GHZ(chan));
193
194 for (i = 0; i < numRates; i++) {
195 pNewPower->tPow2x[i] =
196 (u8)ath9k_hw_interpolate(freq, clo, chi,
197 powInfo[lowIndex].tPow2x[i],
198 powInfo[lowIndex + 1].tPow2x[i]);
199 }
200 }
201}
202
203void ath9k_hw_get_target_powers(struct ath_hw *ah,
204 struct ath9k_channel *chan,
205 struct cal_target_power_ht *powInfo,
206 u16 numChannels,
207 struct cal_target_power_ht *pNewPower,
208 u16 numRates, bool isHt40Target)
209{
210 struct chan_centers centers;
211 u16 clo, chi;
212 int i;
213 int matchIndex = -1, lowIndex = -1;
214 u16 freq;
215
216 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
217 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
218
219 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
220 matchIndex = 0;
221 } else {
222 for (i = 0; (i < numChannels) &&
223 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
224 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
225 IS_CHAN_2GHZ(chan))) {
226 matchIndex = i;
227 break;
228 } else
229 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
230 IS_CHAN_2GHZ(chan)) && i > 0 &&
231 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
232 IS_CHAN_2GHZ(chan))) {
233 lowIndex = i - 1;
234 break;
235 }
236 }
237 if ((matchIndex == -1) && (lowIndex == -1))
238 matchIndex = i - 1;
239 }
240
241 if (matchIndex != -1) {
242 *pNewPower = powInfo[matchIndex];
243 } else {
244 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
245 IS_CHAN_2GHZ(chan));
246 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
247 IS_CHAN_2GHZ(chan));
248
249 for (i = 0; i < numRates; i++) {
250 pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
251 clo, chi,
252 powInfo[lowIndex].tPow2x[i],
253 powInfo[lowIndex + 1].tPow2x[i]);
254 }
255 }
256}
257
258u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
259 bool is2GHz, int num_band_edges)
260{
261 u16 twiceMaxEdgePower = MAX_RATE_POWER;
262 int i;
263
264 for (i = 0; (i < num_band_edges) &&
265 (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
266 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
267 twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
268 break;
269 } else if ((i > 0) &&
270 (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
271 is2GHz))) {
272 if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
273 is2GHz) < freq &&
274 CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
275 twiceMaxEdgePower =
276 CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
277 }
278 break;
279 }
280 }
281
282 return twiceMaxEdgePower;
283}
284
285u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
286 u8 antenna_reduction)
287{
288 u16 reduction = antenna_reduction;
289
290 /*
291 * Reduce scaled Power by number of chains active
292 * to get the per chain tx power level.
293 */
294 switch (ar5416_get_ntxchains(ah->txchainmask)) {
295 case 1:
296 break;
297 case 2:
298 reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
299 break;
300 case 3:
301 reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
302 break;
303 }
304
305 if (power_limit > reduction)
306 power_limit -= reduction;
307 else
308 power_limit = 0;
309
310 return power_limit;
311}
312
313void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
314{
315 struct ath_common *common = ath9k_hw_common(ah);
316 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
317
318 switch (ar5416_get_ntxchains(ah->txchainmask)) {
319 case 1:
320 break;
321 case 2:
322 regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
323 break;
324 case 3:
325 regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
326 break;
327 default:
328 ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
329 break;
330 }
331}
332
333void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
334 struct ath9k_channel *chan,
335 void *pRawDataSet,
336 u8 *bChans, u16 availPiers,
337 u16 tPdGainOverlap,
338 u16 *pPdGainBoundaries, u8 *pPDADCValues,
339 u16 numXpdGains)
340{
341 int i, j, k;
342 int16_t ss;
343 u16 idxL = 0, idxR = 0, numPiers;
344 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
345 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
346 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
347 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
348 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
349 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
350
351 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
352 u8 minPwrT4[AR5416_NUM_PD_GAINS];
353 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
354 int16_t vpdStep;
355 int16_t tmpVal;
356 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
357 bool match;
358 int16_t minDelta = 0;
359 struct chan_centers centers;
360 int pdgain_boundary_default;
361 struct cal_data_per_freq *data_def = pRawDataSet;
362 struct cal_data_per_freq_4k *data_4k = pRawDataSet;
363 struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
364 bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
365 int intercepts;
366
367 if (AR_SREV_9287(ah))
368 intercepts = AR9287_PD_GAIN_ICEPTS;
369 else
370 intercepts = AR5416_PD_GAIN_ICEPTS;
371
372 memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
373 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
374
375 for (numPiers = 0; numPiers < availPiers; numPiers++) {
376 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
377 break;
378 }
379
380 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
381 IS_CHAN_2GHZ(chan)),
382 bChans, numPiers, &idxL, &idxR);
383
384 if (match) {
385 if (AR_SREV_9287(ah)) {
386 /* FIXME: array overrun? */
387 for (i = 0; i < numXpdGains; i++) {
388 minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
389 maxPwrT4[i] = data_9287[idxL].pwrPdg[i][4];
390 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
391 data_9287[idxL].pwrPdg[i],
392 data_9287[idxL].vpdPdg[i],
393 intercepts,
394 vpdTableI[i]);
395 }
396 } else if (eeprom_4k) {
397 for (i = 0; i < numXpdGains; i++) {
398 minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
399 maxPwrT4[i] = data_4k[idxL].pwrPdg[i][4];
400 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
401 data_4k[idxL].pwrPdg[i],
402 data_4k[idxL].vpdPdg[i],
403 intercepts,
404 vpdTableI[i]);
405 }
406 } else {
407 for (i = 0; i < numXpdGains; i++) {
408 minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
409 maxPwrT4[i] = data_def[idxL].pwrPdg[i][4];
410 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
411 data_def[idxL].pwrPdg[i],
412 data_def[idxL].vpdPdg[i],
413 intercepts,
414 vpdTableI[i]);
415 }
416 }
417 } else {
418 for (i = 0; i < numXpdGains; i++) {
419 if (AR_SREV_9287(ah)) {
420 pVpdL = data_9287[idxL].vpdPdg[i];
421 pPwrL = data_9287[idxL].pwrPdg[i];
422 pVpdR = data_9287[idxR].vpdPdg[i];
423 pPwrR = data_9287[idxR].pwrPdg[i];
424 } else if (eeprom_4k) {
425 pVpdL = data_4k[idxL].vpdPdg[i];
426 pPwrL = data_4k[idxL].pwrPdg[i];
427 pVpdR = data_4k[idxR].vpdPdg[i];
428 pPwrR = data_4k[idxR].pwrPdg[i];
429 } else {
430 pVpdL = data_def[idxL].vpdPdg[i];
431 pPwrL = data_def[idxL].pwrPdg[i];
432 pVpdR = data_def[idxR].vpdPdg[i];
433 pPwrR = data_def[idxR].pwrPdg[i];
434 }
435
436 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
437
438 maxPwrT4[i] =
439 min(pPwrL[intercepts - 1],
440 pPwrR[intercepts - 1]);
441
442
443 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
444 pPwrL, pVpdL,
445 intercepts,
446 vpdTableL[i]);
447 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
448 pPwrR, pVpdR,
449 intercepts,
450 vpdTableR[i]);
451
452 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
453 vpdTableI[i][j] =
454 (u8)(ath9k_hw_interpolate((u16)
455 FREQ2FBIN(centers.
456 synth_center,
457 IS_CHAN_2GHZ
458 (chan)),
459 bChans[idxL], bChans[idxR],
460 vpdTableL[i][j], vpdTableR[i][j]));
461 }
462 }
463 }
464
465 k = 0;
466
467 for (i = 0; i < numXpdGains; i++) {
468 if (i == (numXpdGains - 1))
469 pPdGainBoundaries[i] =
470 (u16)(maxPwrT4[i] / 2);
471 else
472 pPdGainBoundaries[i] =
473 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
474
475 pPdGainBoundaries[i] =
476 min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
477
478 minDelta = 0;
479
480 if (i == 0) {
481 if (AR_SREV_9280_20_OR_LATER(ah))
482 ss = (int16_t)(0 - (minPwrT4[i] / 2));
483 else
484 ss = 0;
485 } else {
486 ss = (int16_t)((pPdGainBoundaries[i - 1] -
487 (minPwrT4[i] / 2)) -
488 tPdGainOverlap + 1 + minDelta);
489 }
490 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
491 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
492
493 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
494 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
495 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
496 ss++;
497 }
498
499 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
500 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
501 (minPwrT4[i] / 2));
502 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
503 tgtIndex : sizeCurrVpdTable;
504
505 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
506 pPDADCValues[k++] = vpdTableI[i][ss++];
507 }
508
509 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
510 vpdTableI[i][sizeCurrVpdTable - 2]);
511 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
512
513 if (tgtIndex >= maxIndex) {
514 while ((ss <= tgtIndex) &&
515 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
516 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
517 (ss - maxIndex + 1) * vpdStep));
518 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
519 255 : tmpVal);
520 ss++;
521 }
522 }
523 }
524
525 if (eeprom_4k)
526 pdgain_boundary_default = 58;
527 else
528 pdgain_boundary_default = pPdGainBoundaries[i - 1];
529
530 while (i < AR5416_PD_GAINS_IN_MASK) {
531 pPdGainBoundaries[i] = pdgain_boundary_default;
532 i++;
533 }
534
535 while (k < AR5416_NUM_PDADC_VALUES) {
536 pPDADCValues[k] = pPDADCValues[k - 1];
537 k++;
538 }
539}
540
541int ath9k_hw_eeprom_init(struct ath_hw *ah)
542{
543 int status;
544
545 if (AR_SREV_9300_20_OR_LATER(ah))
546 ah->eep_ops = &eep_ar9300_ops;
547 else if (AR_SREV_9287(ah)) {
548 ah->eep_ops = &eep_ar9287_ops;
549 } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
550 ah->eep_ops = &eep_4k_ops;
551 } else {
552 ah->eep_ops = &eep_def_ops;
553 }
554
555 if (!ah->eep_ops->fill_eeprom(ah))
556 return -EIO;
557
558 status = ah->eep_ops->check_eeprom(ah);
559
560 return status;
561}