Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
   3 * Author: Joerg Roedel <joerg.roedel@amd.com>
   4 *         Leo Duran <leo.duran@amd.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  18 */
  19
 
  20#include <linux/pci.h>
  21#include <linux/pci-ats.h>
  22#include <linux/bitmap.h>
  23#include <linux/slab.h>
  24#include <linux/debugfs.h>
  25#include <linux/scatterlist.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/iommu-helper.h>
  28#include <linux/iommu.h>
  29#include <linux/delay.h>
  30#include <linux/amd-iommu.h>
 
 
  31#include <asm/msidef.h>
  32#include <asm/proto.h>
  33#include <asm/iommu.h>
  34#include <asm/gart.h>
  35#include <asm/dma.h>
  36
  37#include "amd_iommu_proto.h"
  38#include "amd_iommu_types.h"
  39
  40#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  41
  42#define LOOP_TIMEOUT	100000
  43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  44static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  45
  46/* A list of preallocated protection domains */
  47static LIST_HEAD(iommu_pd_list);
  48static DEFINE_SPINLOCK(iommu_pd_list_lock);
  49
  50/* List of all available dev_data structures */
  51static LIST_HEAD(dev_data_list);
  52static DEFINE_SPINLOCK(dev_data_list_lock);
  53
  54/*
  55 * Domain for untranslated devices - only allocated
  56 * if iommu=pt passed on kernel cmd line.
  57 */
  58static struct protection_domain *pt_domain;
  59
  60static struct iommu_ops amd_iommu_ops;
  61
 
 
 
 
 
  62/*
  63 * general struct to manage commands send to an IOMMU
  64 */
  65struct iommu_cmd {
  66	u32 data[4];
  67};
  68
  69static void update_domain(struct protection_domain *domain);
 
  70
  71/****************************************************************************
  72 *
  73 * Helper functions
  74 *
  75 ****************************************************************************/
  76
  77static struct iommu_dev_data *alloc_dev_data(u16 devid)
  78{
  79	struct iommu_dev_data *dev_data;
  80	unsigned long flags;
  81
  82	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
  83	if (!dev_data)
  84		return NULL;
  85
  86	dev_data->devid = devid;
  87	atomic_set(&dev_data->bind, 0);
  88
  89	spin_lock_irqsave(&dev_data_list_lock, flags);
  90	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
  91	spin_unlock_irqrestore(&dev_data_list_lock, flags);
  92
  93	return dev_data;
  94}
  95
  96static void free_dev_data(struct iommu_dev_data *dev_data)
  97{
  98	unsigned long flags;
  99
 100	spin_lock_irqsave(&dev_data_list_lock, flags);
 101	list_del(&dev_data->dev_data_list);
 102	spin_unlock_irqrestore(&dev_data_list_lock, flags);
 103
 104	kfree(dev_data);
 105}
 106
 107static struct iommu_dev_data *search_dev_data(u16 devid)
 108{
 109	struct iommu_dev_data *dev_data;
 110	unsigned long flags;
 111
 112	spin_lock_irqsave(&dev_data_list_lock, flags);
 113	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
 114		if (dev_data->devid == devid)
 115			goto out_unlock;
 116	}
 117
 118	dev_data = NULL;
 119
 120out_unlock:
 121	spin_unlock_irqrestore(&dev_data_list_lock, flags);
 122
 123	return dev_data;
 124}
 125
 126static struct iommu_dev_data *find_dev_data(u16 devid)
 127{
 128	struct iommu_dev_data *dev_data;
 129
 130	dev_data = search_dev_data(devid);
 131
 132	if (dev_data == NULL)
 133		dev_data = alloc_dev_data(devid);
 134
 135	return dev_data;
 136}
 137
 138static inline u16 get_device_id(struct device *dev)
 139{
 140	struct pci_dev *pdev = to_pci_dev(dev);
 141
 142	return calc_devid(pdev->bus->number, pdev->devfn);
 143}
 144
 145static struct iommu_dev_data *get_dev_data(struct device *dev)
 146{
 147	return dev->archdata.iommu;
 148}
 149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150/*
 151 * In this function the list of preallocated protection domains is traversed to
 152 * find the domain for a specific device
 153 */
 154static struct dma_ops_domain *find_protection_domain(u16 devid)
 155{
 156	struct dma_ops_domain *entry, *ret = NULL;
 157	unsigned long flags;
 158	u16 alias = amd_iommu_alias_table[devid];
 159
 160	if (list_empty(&iommu_pd_list))
 161		return NULL;
 162
 163	spin_lock_irqsave(&iommu_pd_list_lock, flags);
 164
 165	list_for_each_entry(entry, &iommu_pd_list, list) {
 166		if (entry->target_dev == devid ||
 167		    entry->target_dev == alias) {
 168			ret = entry;
 169			break;
 170		}
 171	}
 172
 173	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
 174
 175	return ret;
 176}
 177
 178/*
 179 * This function checks if the driver got a valid device from the caller to
 180 * avoid dereferencing invalid pointers.
 181 */
 182static bool check_device(struct device *dev)
 183{
 184	u16 devid;
 185
 186	if (!dev || !dev->dma_mask)
 187		return false;
 188
 189	/* No device or no PCI device */
 190	if (dev->bus != &pci_bus_type)
 191		return false;
 192
 193	devid = get_device_id(dev);
 194
 195	/* Out of our scope? */
 196	if (devid > amd_iommu_last_bdf)
 197		return false;
 198
 199	if (amd_iommu_rlookup_table[devid] == NULL)
 200		return false;
 201
 202	return true;
 203}
 204
 205static int iommu_init_device(struct device *dev)
 206{
 
 207	struct iommu_dev_data *dev_data;
 208	u16 alias;
 209
 210	if (dev->archdata.iommu)
 211		return 0;
 212
 213	dev_data = find_dev_data(get_device_id(dev));
 214	if (!dev_data)
 215		return -ENOMEM;
 216
 217	alias = amd_iommu_alias_table[dev_data->devid];
 218	if (alias != dev_data->devid) {
 219		struct iommu_dev_data *alias_data;
 220
 221		alias_data = find_dev_data(alias);
 222		if (alias_data == NULL) {
 223			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
 224					dev_name(dev));
 225			free_dev_data(dev_data);
 226			return -ENOTSUPP;
 227		}
 228		dev_data->alias_data = alias_data;
 229	}
 230
 
 
 
 
 
 
 
 231	dev->archdata.iommu = dev_data;
 232
 233	return 0;
 234}
 235
 236static void iommu_ignore_device(struct device *dev)
 237{
 238	u16 devid, alias;
 239
 240	devid = get_device_id(dev);
 241	alias = amd_iommu_alias_table[devid];
 242
 243	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
 244	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
 245
 246	amd_iommu_rlookup_table[devid] = NULL;
 247	amd_iommu_rlookup_table[alias] = NULL;
 248}
 249
 250static void iommu_uninit_device(struct device *dev)
 251{
 252	/*
 253	 * Nothing to do here - we keep dev_data around for unplugged devices
 254	 * and reuse it when the device is re-plugged - not doing so would
 255	 * introduce a ton of races.
 256	 */
 257}
 258
 259void __init amd_iommu_uninit_devices(void)
 260{
 261	struct iommu_dev_data *dev_data, *n;
 262	struct pci_dev *pdev = NULL;
 263
 264	for_each_pci_dev(pdev) {
 265
 266		if (!check_device(&pdev->dev))
 267			continue;
 268
 269		iommu_uninit_device(&pdev->dev);
 270	}
 271
 272	/* Free all of our dev_data structures */
 273	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
 274		free_dev_data(dev_data);
 275}
 276
 277int __init amd_iommu_init_devices(void)
 278{
 279	struct pci_dev *pdev = NULL;
 280	int ret = 0;
 281
 282	for_each_pci_dev(pdev) {
 283
 284		if (!check_device(&pdev->dev))
 285			continue;
 286
 287		ret = iommu_init_device(&pdev->dev);
 288		if (ret == -ENOTSUPP)
 289			iommu_ignore_device(&pdev->dev);
 290		else if (ret)
 291			goto out_free;
 292	}
 293
 294	return 0;
 295
 296out_free:
 297
 298	amd_iommu_uninit_devices();
 299
 300	return ret;
 301}
 302#ifdef CONFIG_AMD_IOMMU_STATS
 303
 304/*
 305 * Initialization code for statistics collection
 306 */
 307
 308DECLARE_STATS_COUNTER(compl_wait);
 309DECLARE_STATS_COUNTER(cnt_map_single);
 310DECLARE_STATS_COUNTER(cnt_unmap_single);
 311DECLARE_STATS_COUNTER(cnt_map_sg);
 312DECLARE_STATS_COUNTER(cnt_unmap_sg);
 313DECLARE_STATS_COUNTER(cnt_alloc_coherent);
 314DECLARE_STATS_COUNTER(cnt_free_coherent);
 315DECLARE_STATS_COUNTER(cross_page);
 316DECLARE_STATS_COUNTER(domain_flush_single);
 317DECLARE_STATS_COUNTER(domain_flush_all);
 318DECLARE_STATS_COUNTER(alloced_io_mem);
 319DECLARE_STATS_COUNTER(total_map_requests);
 
 
 
 
 
 320
 321static struct dentry *stats_dir;
 322static struct dentry *de_fflush;
 323
 324static void amd_iommu_stats_add(struct __iommu_counter *cnt)
 325{
 326	if (stats_dir == NULL)
 327		return;
 328
 329	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
 330				       &cnt->value);
 331}
 332
 333static void amd_iommu_stats_init(void)
 334{
 335	stats_dir = debugfs_create_dir("amd-iommu", NULL);
 336	if (stats_dir == NULL)
 337		return;
 338
 339	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
 340					 (u32 *)&amd_iommu_unmap_flush);
 341
 342	amd_iommu_stats_add(&compl_wait);
 343	amd_iommu_stats_add(&cnt_map_single);
 344	amd_iommu_stats_add(&cnt_unmap_single);
 345	amd_iommu_stats_add(&cnt_map_sg);
 346	amd_iommu_stats_add(&cnt_unmap_sg);
 347	amd_iommu_stats_add(&cnt_alloc_coherent);
 348	amd_iommu_stats_add(&cnt_free_coherent);
 349	amd_iommu_stats_add(&cross_page);
 350	amd_iommu_stats_add(&domain_flush_single);
 351	amd_iommu_stats_add(&domain_flush_all);
 352	amd_iommu_stats_add(&alloced_io_mem);
 353	amd_iommu_stats_add(&total_map_requests);
 
 
 
 
 354}
 355
 356#endif
 357
 358/****************************************************************************
 359 *
 360 * Interrupt handling functions
 361 *
 362 ****************************************************************************/
 363
 364static void dump_dte_entry(u16 devid)
 365{
 366	int i;
 367
 368	for (i = 0; i < 8; ++i)
 369		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
 370			amd_iommu_dev_table[devid].data[i]);
 371}
 372
 373static void dump_command(unsigned long phys_addr)
 374{
 375	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
 376	int i;
 377
 378	for (i = 0; i < 4; ++i)
 379		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
 380}
 381
 382static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
 383{
 384	u32 *event = __evt;
 385	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
 386	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
 387	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
 388	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
 389	u64 address = (u64)(((u64)event[3]) << 32) | event[2];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390
 391	printk(KERN_ERR "AMD-Vi: Event logged [");
 392
 393	switch (type) {
 394	case EVENT_TYPE_ILL_DEV:
 395		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
 396		       "address=0x%016llx flags=0x%04x]\n",
 397		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 398		       address, flags);
 399		dump_dte_entry(devid);
 400		break;
 401	case EVENT_TYPE_IO_FAULT:
 402		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
 403		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 404		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 405		       domid, address, flags);
 406		break;
 407	case EVENT_TYPE_DEV_TAB_ERR:
 408		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 409		       "address=0x%016llx flags=0x%04x]\n",
 410		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 411		       address, flags);
 412		break;
 413	case EVENT_TYPE_PAGE_TAB_ERR:
 414		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 415		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 416		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 417		       domid, address, flags);
 418		break;
 419	case EVENT_TYPE_ILL_CMD:
 420		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
 421		dump_command(address);
 422		break;
 423	case EVENT_TYPE_CMD_HARD_ERR:
 424		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
 425		       "flags=0x%04x]\n", address, flags);
 426		break;
 427	case EVENT_TYPE_IOTLB_INV_TO:
 428		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
 429		       "address=0x%016llx]\n",
 430		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 431		       address);
 432		break;
 433	case EVENT_TYPE_INV_DEV_REQ:
 434		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
 435		       "address=0x%016llx flags=0x%04x]\n",
 436		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 437		       address, flags);
 438		break;
 439	default:
 440		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
 441	}
 
 
 442}
 443
 444static void iommu_poll_events(struct amd_iommu *iommu)
 445{
 446	u32 head, tail;
 447	unsigned long flags;
 448
 449	spin_lock_irqsave(&iommu->lock, flags);
 450
 451	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 452	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
 453
 454	while (head != tail) {
 455		iommu_print_event(iommu, iommu->evt_buf + head);
 456		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
 457	}
 458
 459	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 460
 461	spin_unlock_irqrestore(&iommu->lock, flags);
 462}
 463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 464irqreturn_t amd_iommu_int_thread(int irq, void *data)
 465{
 466	struct amd_iommu *iommu;
 467
 468	for_each_iommu(iommu)
 469		iommu_poll_events(iommu);
 
 
 470
 471	return IRQ_HANDLED;
 472}
 473
 474irqreturn_t amd_iommu_int_handler(int irq, void *data)
 475{
 476	return IRQ_WAKE_THREAD;
 477}
 478
 479/****************************************************************************
 480 *
 481 * IOMMU command queuing functions
 482 *
 483 ****************************************************************************/
 484
 485static int wait_on_sem(volatile u64 *sem)
 486{
 487	int i = 0;
 488
 489	while (*sem == 0 && i < LOOP_TIMEOUT) {
 490		udelay(1);
 491		i += 1;
 492	}
 493
 494	if (i == LOOP_TIMEOUT) {
 495		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
 496		return -EIO;
 497	}
 498
 499	return 0;
 500}
 501
 502static void copy_cmd_to_buffer(struct amd_iommu *iommu,
 503			       struct iommu_cmd *cmd,
 504			       u32 tail)
 505{
 506	u8 *target;
 507
 508	target = iommu->cmd_buf + tail;
 509	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
 510
 511	/* Copy command to buffer */
 512	memcpy(target, cmd, sizeof(*cmd));
 513
 514	/* Tell the IOMMU about it */
 515	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
 516}
 517
 518static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
 519{
 520	WARN_ON(address & 0x7ULL);
 521
 522	memset(cmd, 0, sizeof(*cmd));
 523	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
 524	cmd->data[1] = upper_32_bits(__pa(address));
 525	cmd->data[2] = 1;
 526	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
 527}
 528
 529static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
 530{
 531	memset(cmd, 0, sizeof(*cmd));
 532	cmd->data[0] = devid;
 533	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
 534}
 535
 536static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
 537				  size_t size, u16 domid, int pde)
 538{
 539	u64 pages;
 540	int s;
 541
 542	pages = iommu_num_pages(address, size, PAGE_SIZE);
 543	s     = 0;
 544
 545	if (pages > 1) {
 546		/*
 547		 * If we have to flush more than one page, flush all
 548		 * TLB entries for this domain
 549		 */
 550		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 551		s = 1;
 552	}
 553
 554	address &= PAGE_MASK;
 555
 556	memset(cmd, 0, sizeof(*cmd));
 557	cmd->data[1] |= domid;
 558	cmd->data[2]  = lower_32_bits(address);
 559	cmd->data[3]  = upper_32_bits(address);
 560	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 561	if (s) /* size bit - we flush more than one 4kb page */
 562		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 563	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
 564		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 565}
 566
 567static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
 568				  u64 address, size_t size)
 569{
 570	u64 pages;
 571	int s;
 572
 573	pages = iommu_num_pages(address, size, PAGE_SIZE);
 574	s     = 0;
 575
 576	if (pages > 1) {
 577		/*
 578		 * If we have to flush more than one page, flush all
 579		 * TLB entries for this domain
 580		 */
 581		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 582		s = 1;
 583	}
 584
 585	address &= PAGE_MASK;
 586
 587	memset(cmd, 0, sizeof(*cmd));
 588	cmd->data[0]  = devid;
 589	cmd->data[0] |= (qdep & 0xff) << 24;
 590	cmd->data[1]  = devid;
 591	cmd->data[2]  = lower_32_bits(address);
 592	cmd->data[3]  = upper_32_bits(address);
 593	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 594	if (s)
 595		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 596}
 597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598static void build_inv_all(struct iommu_cmd *cmd)
 599{
 600	memset(cmd, 0, sizeof(*cmd));
 601	CMD_SET_TYPE(cmd, CMD_INV_ALL);
 602}
 603
 604/*
 605 * Writes the command to the IOMMUs command buffer and informs the
 606 * hardware about the new command.
 607 */
 608static int iommu_queue_command_sync(struct amd_iommu *iommu,
 609				    struct iommu_cmd *cmd,
 610				    bool sync)
 611{
 612	u32 left, tail, head, next_tail;
 613	unsigned long flags;
 614
 615	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
 616
 617again:
 618	spin_lock_irqsave(&iommu->lock, flags);
 619
 620	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
 621	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
 622	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
 623	left      = (head - next_tail) % iommu->cmd_buf_size;
 624
 625	if (left <= 2) {
 626		struct iommu_cmd sync_cmd;
 627		volatile u64 sem = 0;
 628		int ret;
 629
 630		build_completion_wait(&sync_cmd, (u64)&sem);
 631		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
 632
 633		spin_unlock_irqrestore(&iommu->lock, flags);
 634
 635		if ((ret = wait_on_sem(&sem)) != 0)
 636			return ret;
 637
 638		goto again;
 639	}
 640
 641	copy_cmd_to_buffer(iommu, cmd, tail);
 642
 643	/* We need to sync now to make sure all commands are processed */
 644	iommu->need_sync = sync;
 645
 646	spin_unlock_irqrestore(&iommu->lock, flags);
 647
 648	return 0;
 649}
 650
 651static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
 652{
 653	return iommu_queue_command_sync(iommu, cmd, true);
 654}
 655
 656/*
 657 * This function queues a completion wait command into the command
 658 * buffer of an IOMMU
 659 */
 660static int iommu_completion_wait(struct amd_iommu *iommu)
 661{
 662	struct iommu_cmd cmd;
 663	volatile u64 sem = 0;
 664	int ret;
 665
 666	if (!iommu->need_sync)
 667		return 0;
 668
 669	build_completion_wait(&cmd, (u64)&sem);
 670
 671	ret = iommu_queue_command_sync(iommu, &cmd, false);
 672	if (ret)
 673		return ret;
 674
 675	return wait_on_sem(&sem);
 676}
 677
 678static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
 679{
 680	struct iommu_cmd cmd;
 681
 682	build_inv_dte(&cmd, devid);
 683
 684	return iommu_queue_command(iommu, &cmd);
 685}
 686
 687static void iommu_flush_dte_all(struct amd_iommu *iommu)
 688{
 689	u32 devid;
 690
 691	for (devid = 0; devid <= 0xffff; ++devid)
 692		iommu_flush_dte(iommu, devid);
 693
 694	iommu_completion_wait(iommu);
 695}
 696
 697/*
 698 * This function uses heavy locking and may disable irqs for some time. But
 699 * this is no issue because it is only called during resume.
 700 */
 701static void iommu_flush_tlb_all(struct amd_iommu *iommu)
 702{
 703	u32 dom_id;
 704
 705	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
 706		struct iommu_cmd cmd;
 707		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
 708				      dom_id, 1);
 709		iommu_queue_command(iommu, &cmd);
 710	}
 711
 712	iommu_completion_wait(iommu);
 713}
 714
 715static void iommu_flush_all(struct amd_iommu *iommu)
 716{
 717	struct iommu_cmd cmd;
 718
 719	build_inv_all(&cmd);
 720
 721	iommu_queue_command(iommu, &cmd);
 722	iommu_completion_wait(iommu);
 723}
 724
 725void iommu_flush_all_caches(struct amd_iommu *iommu)
 726{
 727	if (iommu_feature(iommu, FEATURE_IA)) {
 728		iommu_flush_all(iommu);
 729	} else {
 730		iommu_flush_dte_all(iommu);
 731		iommu_flush_tlb_all(iommu);
 732	}
 733}
 734
 735/*
 736 * Command send function for flushing on-device TLB
 737 */
 738static int device_flush_iotlb(struct iommu_dev_data *dev_data,
 739			      u64 address, size_t size)
 740{
 741	struct amd_iommu *iommu;
 742	struct iommu_cmd cmd;
 743	int qdep;
 744
 745	qdep     = dev_data->ats.qdep;
 746	iommu    = amd_iommu_rlookup_table[dev_data->devid];
 747
 748	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
 749
 750	return iommu_queue_command(iommu, &cmd);
 751}
 752
 753/*
 754 * Command send function for invalidating a device table entry
 755 */
 756static int device_flush_dte(struct iommu_dev_data *dev_data)
 757{
 758	struct amd_iommu *iommu;
 759	int ret;
 760
 761	iommu = amd_iommu_rlookup_table[dev_data->devid];
 762
 763	ret = iommu_flush_dte(iommu, dev_data->devid);
 764	if (ret)
 765		return ret;
 766
 767	if (dev_data->ats.enabled)
 768		ret = device_flush_iotlb(dev_data, 0, ~0UL);
 769
 770	return ret;
 771}
 772
 773/*
 774 * TLB invalidation function which is called from the mapping functions.
 775 * It invalidates a single PTE if the range to flush is within a single
 776 * page. Otherwise it flushes the whole TLB of the IOMMU.
 777 */
 778static void __domain_flush_pages(struct protection_domain *domain,
 779				 u64 address, size_t size, int pde)
 780{
 781	struct iommu_dev_data *dev_data;
 782	struct iommu_cmd cmd;
 783	int ret = 0, i;
 784
 785	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
 786
 787	for (i = 0; i < amd_iommus_present; ++i) {
 788		if (!domain->dev_iommu[i])
 789			continue;
 790
 791		/*
 792		 * Devices of this domain are behind this IOMMU
 793		 * We need a TLB flush
 794		 */
 795		ret |= iommu_queue_command(amd_iommus[i], &cmd);
 796	}
 797
 798	list_for_each_entry(dev_data, &domain->dev_list, list) {
 799
 800		if (!dev_data->ats.enabled)
 801			continue;
 802
 803		ret |= device_flush_iotlb(dev_data, address, size);
 804	}
 805
 806	WARN_ON(ret);
 807}
 808
 809static void domain_flush_pages(struct protection_domain *domain,
 810			       u64 address, size_t size)
 811{
 812	__domain_flush_pages(domain, address, size, 0);
 813}
 814
 815/* Flush the whole IO/TLB for a given protection domain */
 816static void domain_flush_tlb(struct protection_domain *domain)
 817{
 818	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
 819}
 820
 821/* Flush the whole IO/TLB for a given protection domain - including PDE */
 822static void domain_flush_tlb_pde(struct protection_domain *domain)
 823{
 824	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
 825}
 826
 827static void domain_flush_complete(struct protection_domain *domain)
 828{
 829	int i;
 830
 831	for (i = 0; i < amd_iommus_present; ++i) {
 832		if (!domain->dev_iommu[i])
 833			continue;
 834
 835		/*
 836		 * Devices of this domain are behind this IOMMU
 837		 * We need to wait for completion of all commands.
 838		 */
 839		iommu_completion_wait(amd_iommus[i]);
 840	}
 841}
 842
 843
 844/*
 845 * This function flushes the DTEs for all devices in domain
 846 */
 847static void domain_flush_devices(struct protection_domain *domain)
 848{
 849	struct iommu_dev_data *dev_data;
 850
 851	list_for_each_entry(dev_data, &domain->dev_list, list)
 852		device_flush_dte(dev_data);
 853}
 854
 855/****************************************************************************
 856 *
 857 * The functions below are used the create the page table mappings for
 858 * unity mapped regions.
 859 *
 860 ****************************************************************************/
 861
 862/*
 863 * This function is used to add another level to an IO page table. Adding
 864 * another level increases the size of the address space by 9 bits to a size up
 865 * to 64 bits.
 866 */
 867static bool increase_address_space(struct protection_domain *domain,
 868				   gfp_t gfp)
 869{
 870	u64 *pte;
 871
 872	if (domain->mode == PAGE_MODE_6_LEVEL)
 873		/* address space already 64 bit large */
 874		return false;
 875
 876	pte = (void *)get_zeroed_page(gfp);
 877	if (!pte)
 878		return false;
 879
 880	*pte             = PM_LEVEL_PDE(domain->mode,
 881					virt_to_phys(domain->pt_root));
 882	domain->pt_root  = pte;
 883	domain->mode    += 1;
 884	domain->updated  = true;
 885
 886	return true;
 887}
 888
 889static u64 *alloc_pte(struct protection_domain *domain,
 890		      unsigned long address,
 891		      unsigned long page_size,
 892		      u64 **pte_page,
 893		      gfp_t gfp)
 894{
 895	int level, end_lvl;
 896	u64 *pte, *page;
 897
 898	BUG_ON(!is_power_of_2(page_size));
 899
 900	while (address > PM_LEVEL_SIZE(domain->mode))
 901		increase_address_space(domain, gfp);
 902
 903	level   = domain->mode - 1;
 904	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
 905	address = PAGE_SIZE_ALIGN(address, page_size);
 906	end_lvl = PAGE_SIZE_LEVEL(page_size);
 907
 908	while (level > end_lvl) {
 909		if (!IOMMU_PTE_PRESENT(*pte)) {
 910			page = (u64 *)get_zeroed_page(gfp);
 911			if (!page)
 912				return NULL;
 913			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
 914		}
 915
 916		/* No level skipping support yet */
 917		if (PM_PTE_LEVEL(*pte) != level)
 918			return NULL;
 919
 920		level -= 1;
 921
 922		pte = IOMMU_PTE_PAGE(*pte);
 923
 924		if (pte_page && level == end_lvl)
 925			*pte_page = pte;
 926
 927		pte = &pte[PM_LEVEL_INDEX(level, address)];
 928	}
 929
 930	return pte;
 931}
 932
 933/*
 934 * This function checks if there is a PTE for a given dma address. If
 935 * there is one, it returns the pointer to it.
 936 */
 937static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
 938{
 939	int level;
 940	u64 *pte;
 941
 942	if (address > PM_LEVEL_SIZE(domain->mode))
 943		return NULL;
 944
 945	level   =  domain->mode - 1;
 946	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
 947
 948	while (level > 0) {
 949
 950		/* Not Present */
 951		if (!IOMMU_PTE_PRESENT(*pte))
 952			return NULL;
 953
 954		/* Large PTE */
 955		if (PM_PTE_LEVEL(*pte) == 0x07) {
 956			unsigned long pte_mask, __pte;
 957
 958			/*
 959			 * If we have a series of large PTEs, make
 960			 * sure to return a pointer to the first one.
 961			 */
 962			pte_mask = PTE_PAGE_SIZE(*pte);
 963			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
 964			__pte    = ((unsigned long)pte) & pte_mask;
 965
 966			return (u64 *)__pte;
 967		}
 968
 969		/* No level skipping support yet */
 970		if (PM_PTE_LEVEL(*pte) != level)
 971			return NULL;
 972
 973		level -= 1;
 974
 975		/* Walk to the next level */
 976		pte = IOMMU_PTE_PAGE(*pte);
 977		pte = &pte[PM_LEVEL_INDEX(level, address)];
 978	}
 979
 980	return pte;
 981}
 982
 983/*
 984 * Generic mapping functions. It maps a physical address into a DMA
 985 * address space. It allocates the page table pages if necessary.
 986 * In the future it can be extended to a generic mapping function
 987 * supporting all features of AMD IOMMU page tables like level skipping
 988 * and full 64 bit address spaces.
 989 */
 990static int iommu_map_page(struct protection_domain *dom,
 991			  unsigned long bus_addr,
 992			  unsigned long phys_addr,
 993			  int prot,
 994			  unsigned long page_size)
 995{
 996	u64 __pte, *pte;
 997	int i, count;
 998
 999	if (!(prot & IOMMU_PROT_MASK))
1000		return -EINVAL;
1001
1002	bus_addr  = PAGE_ALIGN(bus_addr);
1003	phys_addr = PAGE_ALIGN(phys_addr);
1004	count     = PAGE_SIZE_PTE_COUNT(page_size);
1005	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1006
1007	for (i = 0; i < count; ++i)
1008		if (IOMMU_PTE_PRESENT(pte[i]))
1009			return -EBUSY;
1010
1011	if (page_size > PAGE_SIZE) {
1012		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
1013		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1014	} else
1015		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1016
1017	if (prot & IOMMU_PROT_IR)
1018		__pte |= IOMMU_PTE_IR;
1019	if (prot & IOMMU_PROT_IW)
1020		__pte |= IOMMU_PTE_IW;
1021
1022	for (i = 0; i < count; ++i)
1023		pte[i] = __pte;
1024
1025	update_domain(dom);
1026
1027	return 0;
1028}
1029
1030static unsigned long iommu_unmap_page(struct protection_domain *dom,
1031				      unsigned long bus_addr,
1032				      unsigned long page_size)
1033{
1034	unsigned long long unmap_size, unmapped;
1035	u64 *pte;
1036
1037	BUG_ON(!is_power_of_2(page_size));
1038
1039	unmapped = 0;
1040
1041	while (unmapped < page_size) {
1042
1043		pte = fetch_pte(dom, bus_addr);
1044
1045		if (!pte) {
1046			/*
1047			 * No PTE for this address
1048			 * move forward in 4kb steps
1049			 */
1050			unmap_size = PAGE_SIZE;
1051		} else if (PM_PTE_LEVEL(*pte) == 0) {
1052			/* 4kb PTE found for this address */
1053			unmap_size = PAGE_SIZE;
1054			*pte       = 0ULL;
1055		} else {
1056			int count, i;
1057
1058			/* Large PTE found which maps this address */
1059			unmap_size = PTE_PAGE_SIZE(*pte);
1060			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
1061			for (i = 0; i < count; i++)
1062				pte[i] = 0ULL;
1063		}
1064
1065		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1066		unmapped += unmap_size;
1067	}
1068
1069	BUG_ON(!is_power_of_2(unmapped));
1070
1071	return unmapped;
1072}
1073
1074/*
1075 * This function checks if a specific unity mapping entry is needed for
1076 * this specific IOMMU.
1077 */
1078static int iommu_for_unity_map(struct amd_iommu *iommu,
1079			       struct unity_map_entry *entry)
1080{
1081	u16 bdf, i;
1082
1083	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1084		bdf = amd_iommu_alias_table[i];
1085		if (amd_iommu_rlookup_table[bdf] == iommu)
1086			return 1;
1087	}
1088
1089	return 0;
1090}
1091
1092/*
1093 * This function actually applies the mapping to the page table of the
1094 * dma_ops domain.
1095 */
1096static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1097			     struct unity_map_entry *e)
1098{
1099	u64 addr;
1100	int ret;
1101
1102	for (addr = e->address_start; addr < e->address_end;
1103	     addr += PAGE_SIZE) {
1104		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1105				     PAGE_SIZE);
1106		if (ret)
1107			return ret;
1108		/*
1109		 * if unity mapping is in aperture range mark the page
1110		 * as allocated in the aperture
1111		 */
1112		if (addr < dma_dom->aperture_size)
1113			__set_bit(addr >> PAGE_SHIFT,
1114				  dma_dom->aperture[0]->bitmap);
1115	}
1116
1117	return 0;
1118}
1119
1120/*
1121 * Init the unity mappings for a specific IOMMU in the system
1122 *
1123 * Basically iterates over all unity mapping entries and applies them to
1124 * the default domain DMA of that IOMMU if necessary.
1125 */
1126static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1127{
1128	struct unity_map_entry *entry;
1129	int ret;
1130
1131	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1132		if (!iommu_for_unity_map(iommu, entry))
1133			continue;
1134		ret = dma_ops_unity_map(iommu->default_dom, entry);
1135		if (ret)
1136			return ret;
1137	}
1138
1139	return 0;
1140}
1141
1142/*
1143 * Inits the unity mappings required for a specific device
1144 */
1145static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1146					  u16 devid)
1147{
1148	struct unity_map_entry *e;
1149	int ret;
1150
1151	list_for_each_entry(e, &amd_iommu_unity_map, list) {
1152		if (!(devid >= e->devid_start && devid <= e->devid_end))
1153			continue;
1154		ret = dma_ops_unity_map(dma_dom, e);
1155		if (ret)
1156			return ret;
1157	}
1158
1159	return 0;
1160}
1161
1162/****************************************************************************
1163 *
1164 * The next functions belong to the address allocator for the dma_ops
1165 * interface functions. They work like the allocators in the other IOMMU
1166 * drivers. Its basically a bitmap which marks the allocated pages in
1167 * the aperture. Maybe it could be enhanced in the future to a more
1168 * efficient allocator.
1169 *
1170 ****************************************************************************/
1171
1172/*
1173 * The address allocator core functions.
1174 *
1175 * called with domain->lock held
1176 */
1177
1178/*
1179 * Used to reserve address ranges in the aperture (e.g. for exclusion
1180 * ranges.
1181 */
1182static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1183				      unsigned long start_page,
1184				      unsigned int pages)
1185{
1186	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1187
1188	if (start_page + pages > last_page)
1189		pages = last_page - start_page;
1190
1191	for (i = start_page; i < start_page + pages; ++i) {
1192		int index = i / APERTURE_RANGE_PAGES;
1193		int page  = i % APERTURE_RANGE_PAGES;
1194		__set_bit(page, dom->aperture[index]->bitmap);
1195	}
1196}
1197
1198/*
1199 * This function is used to add a new aperture range to an existing
1200 * aperture in case of dma_ops domain allocation or address allocation
1201 * failure.
1202 */
1203static int alloc_new_range(struct dma_ops_domain *dma_dom,
1204			   bool populate, gfp_t gfp)
1205{
1206	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1207	struct amd_iommu *iommu;
1208	unsigned long i, old_size;
1209
1210#ifdef CONFIG_IOMMU_STRESS
1211	populate = false;
1212#endif
1213
1214	if (index >= APERTURE_MAX_RANGES)
1215		return -ENOMEM;
1216
1217	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1218	if (!dma_dom->aperture[index])
1219		return -ENOMEM;
1220
1221	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1222	if (!dma_dom->aperture[index]->bitmap)
1223		goto out_free;
1224
1225	dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1226
1227	if (populate) {
1228		unsigned long address = dma_dom->aperture_size;
1229		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1230		u64 *pte, *pte_page;
1231
1232		for (i = 0; i < num_ptes; ++i) {
1233			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1234					&pte_page, gfp);
1235			if (!pte)
1236				goto out_free;
1237
1238			dma_dom->aperture[index]->pte_pages[i] = pte_page;
1239
1240			address += APERTURE_RANGE_SIZE / 64;
1241		}
1242	}
1243
1244	old_size                = dma_dom->aperture_size;
1245	dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1246
1247	/* Reserve address range used for MSI messages */
1248	if (old_size < MSI_ADDR_BASE_LO &&
1249	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1250		unsigned long spage;
1251		int pages;
1252
1253		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1254		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1255
1256		dma_ops_reserve_addresses(dma_dom, spage, pages);
1257	}
1258
1259	/* Initialize the exclusion range if necessary */
1260	for_each_iommu(iommu) {
1261		if (iommu->exclusion_start &&
1262		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
1263		    && iommu->exclusion_start < dma_dom->aperture_size) {
1264			unsigned long startpage;
1265			int pages = iommu_num_pages(iommu->exclusion_start,
1266						    iommu->exclusion_length,
1267						    PAGE_SIZE);
1268			startpage = iommu->exclusion_start >> PAGE_SHIFT;
1269			dma_ops_reserve_addresses(dma_dom, startpage, pages);
1270		}
1271	}
1272
1273	/*
1274	 * Check for areas already mapped as present in the new aperture
1275	 * range and mark those pages as reserved in the allocator. Such
1276	 * mappings may already exist as a result of requested unity
1277	 * mappings for devices.
1278	 */
1279	for (i = dma_dom->aperture[index]->offset;
1280	     i < dma_dom->aperture_size;
1281	     i += PAGE_SIZE) {
1282		u64 *pte = fetch_pte(&dma_dom->domain, i);
1283		if (!pte || !IOMMU_PTE_PRESENT(*pte))
1284			continue;
1285
1286		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
1287	}
1288
1289	update_domain(&dma_dom->domain);
1290
1291	return 0;
1292
1293out_free:
1294	update_domain(&dma_dom->domain);
1295
1296	free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1297
1298	kfree(dma_dom->aperture[index]);
1299	dma_dom->aperture[index] = NULL;
1300
1301	return -ENOMEM;
1302}
1303
1304static unsigned long dma_ops_area_alloc(struct device *dev,
1305					struct dma_ops_domain *dom,
1306					unsigned int pages,
1307					unsigned long align_mask,
1308					u64 dma_mask,
1309					unsigned long start)
1310{
1311	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1312	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1313	int i = start >> APERTURE_RANGE_SHIFT;
1314	unsigned long boundary_size;
1315	unsigned long address = -1;
1316	unsigned long limit;
1317
1318	next_bit >>= PAGE_SHIFT;
1319
1320	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1321			PAGE_SIZE) >> PAGE_SHIFT;
1322
1323	for (;i < max_index; ++i) {
1324		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1325
1326		if (dom->aperture[i]->offset >= dma_mask)
1327			break;
1328
1329		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1330					       dma_mask >> PAGE_SHIFT);
1331
1332		address = iommu_area_alloc(dom->aperture[i]->bitmap,
1333					   limit, next_bit, pages, 0,
1334					    boundary_size, align_mask);
1335		if (address != -1) {
1336			address = dom->aperture[i]->offset +
1337				  (address << PAGE_SHIFT);
1338			dom->next_address = address + (pages << PAGE_SHIFT);
1339			break;
1340		}
1341
1342		next_bit = 0;
1343	}
1344
1345	return address;
1346}
1347
1348static unsigned long dma_ops_alloc_addresses(struct device *dev,
1349					     struct dma_ops_domain *dom,
1350					     unsigned int pages,
1351					     unsigned long align_mask,
1352					     u64 dma_mask)
1353{
1354	unsigned long address;
1355
1356#ifdef CONFIG_IOMMU_STRESS
1357	dom->next_address = 0;
1358	dom->need_flush = true;
1359#endif
1360
1361	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1362				     dma_mask, dom->next_address);
1363
1364	if (address == -1) {
1365		dom->next_address = 0;
1366		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1367					     dma_mask, 0);
1368		dom->need_flush = true;
1369	}
1370
1371	if (unlikely(address == -1))
1372		address = DMA_ERROR_CODE;
1373
1374	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1375
1376	return address;
1377}
1378
1379/*
1380 * The address free function.
1381 *
1382 * called with domain->lock held
1383 */
1384static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1385				   unsigned long address,
1386				   unsigned int pages)
1387{
1388	unsigned i = address >> APERTURE_RANGE_SHIFT;
1389	struct aperture_range *range = dom->aperture[i];
1390
1391	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1392
1393#ifdef CONFIG_IOMMU_STRESS
1394	if (i < 4)
1395		return;
1396#endif
1397
1398	if (address >= dom->next_address)
1399		dom->need_flush = true;
1400
1401	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1402
1403	bitmap_clear(range->bitmap, address, pages);
1404
1405}
1406
1407/****************************************************************************
1408 *
1409 * The next functions belong to the domain allocation. A domain is
1410 * allocated for every IOMMU as the default domain. If device isolation
1411 * is enabled, every device get its own domain. The most important thing
1412 * about domains is the page table mapping the DMA address space they
1413 * contain.
1414 *
1415 ****************************************************************************/
1416
1417/*
1418 * This function adds a protection domain to the global protection domain list
1419 */
1420static void add_domain_to_list(struct protection_domain *domain)
1421{
1422	unsigned long flags;
1423
1424	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1425	list_add(&domain->list, &amd_iommu_pd_list);
1426	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1427}
1428
1429/*
1430 * This function removes a protection domain to the global
1431 * protection domain list
1432 */
1433static void del_domain_from_list(struct protection_domain *domain)
1434{
1435	unsigned long flags;
1436
1437	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1438	list_del(&domain->list);
1439	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1440}
1441
1442static u16 domain_id_alloc(void)
1443{
1444	unsigned long flags;
1445	int id;
1446
1447	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1448	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1449	BUG_ON(id == 0);
1450	if (id > 0 && id < MAX_DOMAIN_ID)
1451		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1452	else
1453		id = 0;
1454	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1455
1456	return id;
1457}
1458
1459static void domain_id_free(int id)
1460{
1461	unsigned long flags;
1462
1463	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1464	if (id > 0 && id < MAX_DOMAIN_ID)
1465		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1466	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1467}
1468
1469static void free_pagetable(struct protection_domain *domain)
1470{
1471	int i, j;
1472	u64 *p1, *p2, *p3;
1473
1474	p1 = domain->pt_root;
1475
1476	if (!p1)
1477		return;
1478
1479	for (i = 0; i < 512; ++i) {
1480		if (!IOMMU_PTE_PRESENT(p1[i]))
1481			continue;
1482
1483		p2 = IOMMU_PTE_PAGE(p1[i]);
1484		for (j = 0; j < 512; ++j) {
1485			if (!IOMMU_PTE_PRESENT(p2[j]))
1486				continue;
1487			p3 = IOMMU_PTE_PAGE(p2[j]);
1488			free_page((unsigned long)p3);
1489		}
1490
1491		free_page((unsigned long)p2);
1492	}
1493
1494	free_page((unsigned long)p1);
1495
1496	domain->pt_root = NULL;
1497}
1498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1499/*
1500 * Free a domain, only used if something went wrong in the
1501 * allocation path and we need to free an already allocated page table
1502 */
1503static void dma_ops_domain_free(struct dma_ops_domain *dom)
1504{
1505	int i;
1506
1507	if (!dom)
1508		return;
1509
1510	del_domain_from_list(&dom->domain);
1511
1512	free_pagetable(&dom->domain);
1513
1514	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1515		if (!dom->aperture[i])
1516			continue;
1517		free_page((unsigned long)dom->aperture[i]->bitmap);
1518		kfree(dom->aperture[i]);
1519	}
1520
1521	kfree(dom);
1522}
1523
1524/*
1525 * Allocates a new protection domain usable for the dma_ops functions.
1526 * It also initializes the page table and the address allocator data
1527 * structures required for the dma_ops interface
1528 */
1529static struct dma_ops_domain *dma_ops_domain_alloc(void)
1530{
1531	struct dma_ops_domain *dma_dom;
1532
1533	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1534	if (!dma_dom)
1535		return NULL;
1536
1537	spin_lock_init(&dma_dom->domain.lock);
1538
1539	dma_dom->domain.id = domain_id_alloc();
1540	if (dma_dom->domain.id == 0)
1541		goto free_dma_dom;
1542	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1543	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1544	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1545	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1546	dma_dom->domain.priv = dma_dom;
1547	if (!dma_dom->domain.pt_root)
1548		goto free_dma_dom;
1549
1550	dma_dom->need_flush = false;
1551	dma_dom->target_dev = 0xffff;
1552
1553	add_domain_to_list(&dma_dom->domain);
1554
1555	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1556		goto free_dma_dom;
1557
1558	/*
1559	 * mark the first page as allocated so we never return 0 as
1560	 * a valid dma-address. So we can use 0 as error value
1561	 */
1562	dma_dom->aperture[0]->bitmap[0] = 1;
1563	dma_dom->next_address = 0;
1564
1565
1566	return dma_dom;
1567
1568free_dma_dom:
1569	dma_ops_domain_free(dma_dom);
1570
1571	return NULL;
1572}
1573
1574/*
1575 * little helper function to check whether a given protection domain is a
1576 * dma_ops domain
1577 */
1578static bool dma_ops_domain(struct protection_domain *domain)
1579{
1580	return domain->flags & PD_DMA_OPS_MASK;
1581}
1582
1583static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1584{
1585	u64 pte_root = virt_to_phys(domain->pt_root);
1586	u32 flags = 0;
 
 
 
1587
1588	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1589		    << DEV_ENTRY_MODE_SHIFT;
1590	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1591
 
 
1592	if (ats)
1593		flags |= DTE_FLAG_IOTLB;
1594
1595	amd_iommu_dev_table[devid].data[3] |= flags;
1596	amd_iommu_dev_table[devid].data[2]  = domain->id;
1597	amd_iommu_dev_table[devid].data[1]  = upper_32_bits(pte_root);
1598	amd_iommu_dev_table[devid].data[0]  = lower_32_bits(pte_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1599}
1600
1601static void clear_dte_entry(u16 devid)
1602{
1603	/* remove entry from the device table seen by the hardware */
1604	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1605	amd_iommu_dev_table[devid].data[1] = 0;
1606	amd_iommu_dev_table[devid].data[2] = 0;
1607
1608	amd_iommu_apply_erratum_63(devid);
1609}
1610
1611static void do_attach(struct iommu_dev_data *dev_data,
1612		      struct protection_domain *domain)
1613{
1614	struct amd_iommu *iommu;
1615	bool ats;
1616
1617	iommu = amd_iommu_rlookup_table[dev_data->devid];
1618	ats   = dev_data->ats.enabled;
1619
1620	/* Update data structures */
1621	dev_data->domain = domain;
1622	list_add(&dev_data->list, &domain->dev_list);
1623	set_dte_entry(dev_data->devid, domain, ats);
1624
1625	/* Do reference counting */
1626	domain->dev_iommu[iommu->index] += 1;
1627	domain->dev_cnt                 += 1;
1628
1629	/* Flush the DTE entry */
1630	device_flush_dte(dev_data);
1631}
1632
1633static void do_detach(struct iommu_dev_data *dev_data)
1634{
1635	struct amd_iommu *iommu;
1636
1637	iommu = amd_iommu_rlookup_table[dev_data->devid];
1638
1639	/* decrease reference counters */
1640	dev_data->domain->dev_iommu[iommu->index] -= 1;
1641	dev_data->domain->dev_cnt                 -= 1;
1642
1643	/* Update data structures */
1644	dev_data->domain = NULL;
1645	list_del(&dev_data->list);
1646	clear_dte_entry(dev_data->devid);
1647
1648	/* Flush the DTE entry */
1649	device_flush_dte(dev_data);
1650}
1651
1652/*
1653 * If a device is not yet associated with a domain, this function does
1654 * assigns it visible for the hardware
1655 */
1656static int __attach_device(struct iommu_dev_data *dev_data,
1657			   struct protection_domain *domain)
1658{
1659	int ret;
1660
1661	/* lock domain */
1662	spin_lock(&domain->lock);
1663
1664	if (dev_data->alias_data != NULL) {
1665		struct iommu_dev_data *alias_data = dev_data->alias_data;
1666
1667		/* Some sanity checks */
1668		ret = -EBUSY;
1669		if (alias_data->domain != NULL &&
1670				alias_data->domain != domain)
1671			goto out_unlock;
1672
1673		if (dev_data->domain != NULL &&
1674				dev_data->domain != domain)
1675			goto out_unlock;
1676
1677		/* Do real assignment */
1678		if (alias_data->domain == NULL)
1679			do_attach(alias_data, domain);
1680
1681		atomic_inc(&alias_data->bind);
1682	}
1683
1684	if (dev_data->domain == NULL)
1685		do_attach(dev_data, domain);
1686
1687	atomic_inc(&dev_data->bind);
1688
1689	ret = 0;
1690
1691out_unlock:
1692
1693	/* ready */
1694	spin_unlock(&domain->lock);
1695
1696	return ret;
1697}
1698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1699/*
1700 * If a device is not yet associated with a domain, this function does
1701 * assigns it visible for the hardware
1702 */
1703static int attach_device(struct device *dev,
1704			 struct protection_domain *domain)
1705{
1706	struct pci_dev *pdev = to_pci_dev(dev);
1707	struct iommu_dev_data *dev_data;
1708	unsigned long flags;
1709	int ret;
1710
1711	dev_data = get_dev_data(dev);
1712
1713	if (amd_iommu_iotlb_sup && pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
 
 
 
 
 
 
 
 
 
 
 
1714		dev_data->ats.enabled = true;
1715		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
1716	}
1717
1718	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1719	ret = __attach_device(dev_data, domain);
1720	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1721
1722	/*
1723	 * We might boot into a crash-kernel here. The crashed kernel
1724	 * left the caches in the IOMMU dirty. So we have to flush
1725	 * here to evict all dirty stuff.
1726	 */
1727	domain_flush_tlb_pde(domain);
1728
1729	return ret;
1730}
1731
1732/*
1733 * Removes a device from a protection domain (unlocked)
1734 */
1735static void __detach_device(struct iommu_dev_data *dev_data)
1736{
1737	struct protection_domain *domain;
1738	unsigned long flags;
1739
1740	BUG_ON(!dev_data->domain);
1741
1742	domain = dev_data->domain;
1743
1744	spin_lock_irqsave(&domain->lock, flags);
1745
1746	if (dev_data->alias_data != NULL) {
1747		struct iommu_dev_data *alias_data = dev_data->alias_data;
1748
1749		if (atomic_dec_and_test(&alias_data->bind))
1750			do_detach(alias_data);
1751	}
1752
1753	if (atomic_dec_and_test(&dev_data->bind))
1754		do_detach(dev_data);
1755
1756	spin_unlock_irqrestore(&domain->lock, flags);
1757
1758	/*
1759	 * If we run in passthrough mode the device must be assigned to the
1760	 * passthrough domain if it is detached from any other domain.
1761	 * Make sure we can deassign from the pt_domain itself.
1762	 */
1763	if (iommu_pass_through &&
1764	    (dev_data->domain == NULL && domain != pt_domain))
1765		__attach_device(dev_data, pt_domain);
1766}
1767
1768/*
1769 * Removes a device from a protection domain (with devtable_lock held)
1770 */
1771static void detach_device(struct device *dev)
1772{
 
1773	struct iommu_dev_data *dev_data;
1774	unsigned long flags;
1775
1776	dev_data = get_dev_data(dev);
 
1777
1778	/* lock device table */
1779	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1780	__detach_device(dev_data);
1781	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1782
1783	if (dev_data->ats.enabled) {
 
 
1784		pci_disable_ats(to_pci_dev(dev));
1785		dev_data->ats.enabled = false;
1786	}
1787}
1788
1789/*
1790 * Find out the protection domain structure for a given PCI device. This
1791 * will give us the pointer to the page table root for example.
1792 */
1793static struct protection_domain *domain_for_device(struct device *dev)
1794{
1795	struct iommu_dev_data *dev_data;
1796	struct protection_domain *dom = NULL;
1797	unsigned long flags;
1798
1799	dev_data   = get_dev_data(dev);
1800
1801	if (dev_data->domain)
1802		return dev_data->domain;
1803
1804	if (dev_data->alias_data != NULL) {
1805		struct iommu_dev_data *alias_data = dev_data->alias_data;
1806
1807		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1808		if (alias_data->domain != NULL) {
1809			__attach_device(dev_data, alias_data->domain);
1810			dom = alias_data->domain;
1811		}
1812		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1813	}
1814
1815	return dom;
1816}
1817
1818static int device_change_notifier(struct notifier_block *nb,
1819				  unsigned long action, void *data)
1820{
1821	struct device *dev = data;
1822	u16 devid;
1823	struct protection_domain *domain;
1824	struct dma_ops_domain *dma_domain;
 
 
 
1825	struct amd_iommu *iommu;
1826	unsigned long flags;
 
1827
1828	if (!check_device(dev))
1829		return 0;
1830
1831	devid  = get_device_id(dev);
1832	iommu  = amd_iommu_rlookup_table[devid];
 
1833
1834	switch (action) {
1835	case BUS_NOTIFY_UNBOUND_DRIVER:
1836
1837		domain = domain_for_device(dev);
1838
1839		if (!domain)
1840			goto out;
1841		if (iommu_pass_through)
1842			break;
1843		detach_device(dev);
1844		break;
1845	case BUS_NOTIFY_ADD_DEVICE:
1846
1847		iommu_init_device(dev);
1848
 
 
 
 
 
 
 
 
 
 
 
 
1849		domain = domain_for_device(dev);
1850
1851		/* allocate a protection domain if a device is added */
1852		dma_domain = find_protection_domain(devid);
1853		if (dma_domain)
1854			goto out;
1855		dma_domain = dma_ops_domain_alloc();
1856		if (!dma_domain)
1857			goto out;
1858		dma_domain->target_dev = devid;
1859
1860		spin_lock_irqsave(&iommu_pd_list_lock, flags);
1861		list_add_tail(&dma_domain->list, &iommu_pd_list);
1862		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1863
 
 
 
 
1864		break;
1865	case BUS_NOTIFY_DEL_DEVICE:
1866
1867		iommu_uninit_device(dev);
1868
1869	default:
1870		goto out;
1871	}
1872
1873	iommu_completion_wait(iommu);
1874
1875out:
1876	return 0;
1877}
1878
1879static struct notifier_block device_nb = {
1880	.notifier_call = device_change_notifier,
1881};
1882
1883void amd_iommu_init_notifier(void)
1884{
1885	bus_register_notifier(&pci_bus_type, &device_nb);
1886}
1887
1888/*****************************************************************************
1889 *
1890 * The next functions belong to the dma_ops mapping/unmapping code.
1891 *
1892 *****************************************************************************/
1893
1894/*
1895 * In the dma_ops path we only have the struct device. This function
1896 * finds the corresponding IOMMU, the protection domain and the
1897 * requestor id for a given device.
1898 * If the device is not yet associated with a domain this is also done
1899 * in this function.
1900 */
1901static struct protection_domain *get_domain(struct device *dev)
1902{
1903	struct protection_domain *domain;
1904	struct dma_ops_domain *dma_dom;
1905	u16 devid = get_device_id(dev);
1906
1907	if (!check_device(dev))
1908		return ERR_PTR(-EINVAL);
1909
1910	domain = domain_for_device(dev);
1911	if (domain != NULL && !dma_ops_domain(domain))
1912		return ERR_PTR(-EBUSY);
1913
1914	if (domain != NULL)
1915		return domain;
1916
1917	/* Device not bount yet - bind it */
1918	dma_dom = find_protection_domain(devid);
1919	if (!dma_dom)
1920		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1921	attach_device(dev, &dma_dom->domain);
1922	DUMP_printk("Using protection domain %d for device %s\n",
1923		    dma_dom->domain.id, dev_name(dev));
1924
1925	return &dma_dom->domain;
1926}
1927
1928static void update_device_table(struct protection_domain *domain)
1929{
1930	struct iommu_dev_data *dev_data;
1931
1932	list_for_each_entry(dev_data, &domain->dev_list, list)
1933		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
1934}
1935
1936static void update_domain(struct protection_domain *domain)
1937{
1938	if (!domain->updated)
1939		return;
1940
1941	update_device_table(domain);
1942
1943	domain_flush_devices(domain);
1944	domain_flush_tlb_pde(domain);
1945
1946	domain->updated = false;
1947}
1948
1949/*
1950 * This function fetches the PTE for a given address in the aperture
1951 */
1952static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1953			    unsigned long address)
1954{
1955	struct aperture_range *aperture;
1956	u64 *pte, *pte_page;
1957
1958	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1959	if (!aperture)
1960		return NULL;
1961
1962	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1963	if (!pte) {
1964		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1965				GFP_ATOMIC);
1966		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1967	} else
1968		pte += PM_LEVEL_INDEX(0, address);
1969
1970	update_domain(&dom->domain);
1971
1972	return pte;
1973}
1974
1975/*
1976 * This is the generic map function. It maps one 4kb page at paddr to
1977 * the given address in the DMA address space for the domain.
1978 */
1979static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1980				     unsigned long address,
1981				     phys_addr_t paddr,
1982				     int direction)
1983{
1984	u64 *pte, __pte;
1985
1986	WARN_ON(address > dom->aperture_size);
1987
1988	paddr &= PAGE_MASK;
1989
1990	pte  = dma_ops_get_pte(dom, address);
1991	if (!pte)
1992		return DMA_ERROR_CODE;
1993
1994	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1995
1996	if (direction == DMA_TO_DEVICE)
1997		__pte |= IOMMU_PTE_IR;
1998	else if (direction == DMA_FROM_DEVICE)
1999		__pte |= IOMMU_PTE_IW;
2000	else if (direction == DMA_BIDIRECTIONAL)
2001		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2002
2003	WARN_ON(*pte);
2004
2005	*pte = __pte;
2006
2007	return (dma_addr_t)address;
2008}
2009
2010/*
2011 * The generic unmapping function for on page in the DMA address space.
2012 */
2013static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2014				 unsigned long address)
2015{
2016	struct aperture_range *aperture;
2017	u64 *pte;
2018
2019	if (address >= dom->aperture_size)
2020		return;
2021
2022	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2023	if (!aperture)
2024		return;
2025
2026	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2027	if (!pte)
2028		return;
2029
2030	pte += PM_LEVEL_INDEX(0, address);
2031
2032	WARN_ON(!*pte);
2033
2034	*pte = 0ULL;
2035}
2036
2037/*
2038 * This function contains common code for mapping of a physically
2039 * contiguous memory region into DMA address space. It is used by all
2040 * mapping functions provided with this IOMMU driver.
2041 * Must be called with the domain lock held.
2042 */
2043static dma_addr_t __map_single(struct device *dev,
2044			       struct dma_ops_domain *dma_dom,
2045			       phys_addr_t paddr,
2046			       size_t size,
2047			       int dir,
2048			       bool align,
2049			       u64 dma_mask)
2050{
2051	dma_addr_t offset = paddr & ~PAGE_MASK;
2052	dma_addr_t address, start, ret;
2053	unsigned int pages;
2054	unsigned long align_mask = 0;
2055	int i;
2056
2057	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2058	paddr &= PAGE_MASK;
2059
2060	INC_STATS_COUNTER(total_map_requests);
2061
2062	if (pages > 1)
2063		INC_STATS_COUNTER(cross_page);
2064
2065	if (align)
2066		align_mask = (1UL << get_order(size)) - 1;
2067
2068retry:
2069	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2070					  dma_mask);
2071	if (unlikely(address == DMA_ERROR_CODE)) {
2072		/*
2073		 * setting next_address here will let the address
2074		 * allocator only scan the new allocated range in the
2075		 * first run. This is a small optimization.
2076		 */
2077		dma_dom->next_address = dma_dom->aperture_size;
2078
2079		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2080			goto out;
2081
2082		/*
2083		 * aperture was successfully enlarged by 128 MB, try
2084		 * allocation again
2085		 */
2086		goto retry;
2087	}
2088
2089	start = address;
2090	for (i = 0; i < pages; ++i) {
2091		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2092		if (ret == DMA_ERROR_CODE)
2093			goto out_unmap;
2094
2095		paddr += PAGE_SIZE;
2096		start += PAGE_SIZE;
2097	}
2098	address += offset;
2099
2100	ADD_STATS_COUNTER(alloced_io_mem, size);
2101
2102	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2103		domain_flush_tlb(&dma_dom->domain);
2104		dma_dom->need_flush = false;
2105	} else if (unlikely(amd_iommu_np_cache))
2106		domain_flush_pages(&dma_dom->domain, address, size);
2107
2108out:
2109	return address;
2110
2111out_unmap:
2112
2113	for (--i; i >= 0; --i) {
2114		start -= PAGE_SIZE;
2115		dma_ops_domain_unmap(dma_dom, start);
2116	}
2117
2118	dma_ops_free_addresses(dma_dom, address, pages);
2119
2120	return DMA_ERROR_CODE;
2121}
2122
2123/*
2124 * Does the reverse of the __map_single function. Must be called with
2125 * the domain lock held too
2126 */
2127static void __unmap_single(struct dma_ops_domain *dma_dom,
2128			   dma_addr_t dma_addr,
2129			   size_t size,
2130			   int dir)
2131{
2132	dma_addr_t flush_addr;
2133	dma_addr_t i, start;
2134	unsigned int pages;
2135
2136	if ((dma_addr == DMA_ERROR_CODE) ||
2137	    (dma_addr + size > dma_dom->aperture_size))
2138		return;
2139
2140	flush_addr = dma_addr;
2141	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2142	dma_addr &= PAGE_MASK;
2143	start = dma_addr;
2144
2145	for (i = 0; i < pages; ++i) {
2146		dma_ops_domain_unmap(dma_dom, start);
2147		start += PAGE_SIZE;
2148	}
2149
2150	SUB_STATS_COUNTER(alloced_io_mem, size);
2151
2152	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2153
2154	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2155		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2156		dma_dom->need_flush = false;
2157	}
2158}
2159
2160/*
2161 * The exported map_single function for dma_ops.
2162 */
2163static dma_addr_t map_page(struct device *dev, struct page *page,
2164			   unsigned long offset, size_t size,
2165			   enum dma_data_direction dir,
2166			   struct dma_attrs *attrs)
2167{
2168	unsigned long flags;
2169	struct protection_domain *domain;
2170	dma_addr_t addr;
2171	u64 dma_mask;
2172	phys_addr_t paddr = page_to_phys(page) + offset;
2173
2174	INC_STATS_COUNTER(cnt_map_single);
2175
2176	domain = get_domain(dev);
2177	if (PTR_ERR(domain) == -EINVAL)
2178		return (dma_addr_t)paddr;
2179	else if (IS_ERR(domain))
2180		return DMA_ERROR_CODE;
2181
2182	dma_mask = *dev->dma_mask;
2183
2184	spin_lock_irqsave(&domain->lock, flags);
2185
2186	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2187			    dma_mask);
2188	if (addr == DMA_ERROR_CODE)
2189		goto out;
2190
2191	domain_flush_complete(domain);
2192
2193out:
2194	spin_unlock_irqrestore(&domain->lock, flags);
2195
2196	return addr;
2197}
2198
2199/*
2200 * The exported unmap_single function for dma_ops.
2201 */
2202static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2203		       enum dma_data_direction dir, struct dma_attrs *attrs)
2204{
2205	unsigned long flags;
2206	struct protection_domain *domain;
2207
2208	INC_STATS_COUNTER(cnt_unmap_single);
2209
2210	domain = get_domain(dev);
2211	if (IS_ERR(domain))
2212		return;
2213
2214	spin_lock_irqsave(&domain->lock, flags);
2215
2216	__unmap_single(domain->priv, dma_addr, size, dir);
2217
2218	domain_flush_complete(domain);
2219
2220	spin_unlock_irqrestore(&domain->lock, flags);
2221}
2222
2223/*
2224 * This is a special map_sg function which is used if we should map a
2225 * device which is not handled by an AMD IOMMU in the system.
2226 */
2227static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2228			   int nelems, int dir)
2229{
2230	struct scatterlist *s;
2231	int i;
2232
2233	for_each_sg(sglist, s, nelems, i) {
2234		s->dma_address = (dma_addr_t)sg_phys(s);
2235		s->dma_length  = s->length;
2236	}
2237
2238	return nelems;
2239}
2240
2241/*
2242 * The exported map_sg function for dma_ops (handles scatter-gather
2243 * lists).
2244 */
2245static int map_sg(struct device *dev, struct scatterlist *sglist,
2246		  int nelems, enum dma_data_direction dir,
2247		  struct dma_attrs *attrs)
2248{
2249	unsigned long flags;
2250	struct protection_domain *domain;
2251	int i;
2252	struct scatterlist *s;
2253	phys_addr_t paddr;
2254	int mapped_elems = 0;
2255	u64 dma_mask;
2256
2257	INC_STATS_COUNTER(cnt_map_sg);
2258
2259	domain = get_domain(dev);
2260	if (PTR_ERR(domain) == -EINVAL)
2261		return map_sg_no_iommu(dev, sglist, nelems, dir);
2262	else if (IS_ERR(domain))
2263		return 0;
2264
2265	dma_mask = *dev->dma_mask;
2266
2267	spin_lock_irqsave(&domain->lock, flags);
2268
2269	for_each_sg(sglist, s, nelems, i) {
2270		paddr = sg_phys(s);
2271
2272		s->dma_address = __map_single(dev, domain->priv,
2273					      paddr, s->length, dir, false,
2274					      dma_mask);
2275
2276		if (s->dma_address) {
2277			s->dma_length = s->length;
2278			mapped_elems++;
2279		} else
2280			goto unmap;
2281	}
2282
2283	domain_flush_complete(domain);
2284
2285out:
2286	spin_unlock_irqrestore(&domain->lock, flags);
2287
2288	return mapped_elems;
2289unmap:
2290	for_each_sg(sglist, s, mapped_elems, i) {
2291		if (s->dma_address)
2292			__unmap_single(domain->priv, s->dma_address,
2293				       s->dma_length, dir);
2294		s->dma_address = s->dma_length = 0;
2295	}
2296
2297	mapped_elems = 0;
2298
2299	goto out;
2300}
2301
2302/*
2303 * The exported map_sg function for dma_ops (handles scatter-gather
2304 * lists).
2305 */
2306static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2307		     int nelems, enum dma_data_direction dir,
2308		     struct dma_attrs *attrs)
2309{
2310	unsigned long flags;
2311	struct protection_domain *domain;
2312	struct scatterlist *s;
2313	int i;
2314
2315	INC_STATS_COUNTER(cnt_unmap_sg);
2316
2317	domain = get_domain(dev);
2318	if (IS_ERR(domain))
2319		return;
2320
2321	spin_lock_irqsave(&domain->lock, flags);
2322
2323	for_each_sg(sglist, s, nelems, i) {
2324		__unmap_single(domain->priv, s->dma_address,
2325			       s->dma_length, dir);
2326		s->dma_address = s->dma_length = 0;
2327	}
2328
2329	domain_flush_complete(domain);
2330
2331	spin_unlock_irqrestore(&domain->lock, flags);
2332}
2333
2334/*
2335 * The exported alloc_coherent function for dma_ops.
2336 */
2337static void *alloc_coherent(struct device *dev, size_t size,
2338			    dma_addr_t *dma_addr, gfp_t flag)
 
2339{
2340	unsigned long flags;
2341	void *virt_addr;
2342	struct protection_domain *domain;
2343	phys_addr_t paddr;
2344	u64 dma_mask = dev->coherent_dma_mask;
2345
2346	INC_STATS_COUNTER(cnt_alloc_coherent);
2347
2348	domain = get_domain(dev);
2349	if (PTR_ERR(domain) == -EINVAL) {
2350		virt_addr = (void *)__get_free_pages(flag, get_order(size));
2351		*dma_addr = __pa(virt_addr);
2352		return virt_addr;
2353	} else if (IS_ERR(domain))
2354		return NULL;
2355
2356	dma_mask  = dev->coherent_dma_mask;
2357	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2358	flag     |= __GFP_ZERO;
2359
2360	virt_addr = (void *)__get_free_pages(flag, get_order(size));
2361	if (!virt_addr)
2362		return NULL;
2363
2364	paddr = virt_to_phys(virt_addr);
2365
2366	if (!dma_mask)
2367		dma_mask = *dev->dma_mask;
2368
2369	spin_lock_irqsave(&domain->lock, flags);
2370
2371	*dma_addr = __map_single(dev, domain->priv, paddr,
2372				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2373
2374	if (*dma_addr == DMA_ERROR_CODE) {
2375		spin_unlock_irqrestore(&domain->lock, flags);
2376		goto out_free;
2377	}
2378
2379	domain_flush_complete(domain);
2380
2381	spin_unlock_irqrestore(&domain->lock, flags);
2382
2383	return virt_addr;
2384
2385out_free:
2386
2387	free_pages((unsigned long)virt_addr, get_order(size));
2388
2389	return NULL;
2390}
2391
2392/*
2393 * The exported free_coherent function for dma_ops.
2394 */
2395static void free_coherent(struct device *dev, size_t size,
2396			  void *virt_addr, dma_addr_t dma_addr)
 
2397{
2398	unsigned long flags;
2399	struct protection_domain *domain;
2400
2401	INC_STATS_COUNTER(cnt_free_coherent);
2402
2403	domain = get_domain(dev);
2404	if (IS_ERR(domain))
2405		goto free_mem;
2406
2407	spin_lock_irqsave(&domain->lock, flags);
2408
2409	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2410
2411	domain_flush_complete(domain);
2412
2413	spin_unlock_irqrestore(&domain->lock, flags);
2414
2415free_mem:
2416	free_pages((unsigned long)virt_addr, get_order(size));
2417}
2418
2419/*
2420 * This function is called by the DMA layer to find out if we can handle a
2421 * particular device. It is part of the dma_ops.
2422 */
2423static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2424{
2425	return check_device(dev);
2426}
2427
2428/*
2429 * The function for pre-allocating protection domains.
2430 *
2431 * If the driver core informs the DMA layer if a driver grabs a device
2432 * we don't need to preallocate the protection domains anymore.
2433 * For now we have to.
2434 */
2435static void prealloc_protection_domains(void)
2436{
2437	struct pci_dev *dev = NULL;
2438	struct dma_ops_domain *dma_dom;
 
2439	u16 devid;
2440
2441	for_each_pci_dev(dev) {
2442
2443		/* Do we handle this device? */
2444		if (!check_device(&dev->dev))
2445			continue;
2446
 
 
 
 
 
 
 
 
 
 
2447		/* Is there already any domain for it? */
2448		if (domain_for_device(&dev->dev))
2449			continue;
2450
2451		devid = get_device_id(&dev->dev);
2452
2453		dma_dom = dma_ops_domain_alloc();
2454		if (!dma_dom)
2455			continue;
2456		init_unity_mappings_for_device(dma_dom, devid);
2457		dma_dom->target_dev = devid;
2458
2459		attach_device(&dev->dev, &dma_dom->domain);
2460
2461		list_add_tail(&dma_dom->list, &iommu_pd_list);
2462	}
2463}
2464
2465static struct dma_map_ops amd_iommu_dma_ops = {
2466	.alloc_coherent = alloc_coherent,
2467	.free_coherent = free_coherent,
2468	.map_page = map_page,
2469	.unmap_page = unmap_page,
2470	.map_sg = map_sg,
2471	.unmap_sg = unmap_sg,
2472	.dma_supported = amd_iommu_dma_supported,
2473};
2474
2475static unsigned device_dma_ops_init(void)
2476{
 
2477	struct pci_dev *pdev = NULL;
2478	unsigned unhandled = 0;
2479
2480	for_each_pci_dev(pdev) {
2481		if (!check_device(&pdev->dev)) {
 
 
 
2482			unhandled += 1;
2483			continue;
2484		}
2485
2486		pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
 
 
 
 
 
2487	}
2488
2489	return unhandled;
2490}
2491
2492/*
2493 * The function which clues the AMD IOMMU driver into dma_ops.
2494 */
2495
2496void __init amd_iommu_init_api(void)
2497{
2498	register_iommu(&amd_iommu_ops);
2499}
2500
2501int __init amd_iommu_init_dma_ops(void)
2502{
2503	struct amd_iommu *iommu;
2504	int ret, unhandled;
2505
2506	/*
2507	 * first allocate a default protection domain for every IOMMU we
2508	 * found in the system. Devices not assigned to any other
2509	 * protection domain will be assigned to the default one.
2510	 */
2511	for_each_iommu(iommu) {
2512		iommu->default_dom = dma_ops_domain_alloc();
2513		if (iommu->default_dom == NULL)
2514			return -ENOMEM;
2515		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2516		ret = iommu_init_unity_mappings(iommu);
2517		if (ret)
2518			goto free_domains;
2519	}
2520
2521	/*
2522	 * Pre-allocate the protection domains for each device.
2523	 */
2524	prealloc_protection_domains();
2525
2526	iommu_detected = 1;
2527	swiotlb = 0;
2528
2529	/* Make the driver finally visible to the drivers */
2530	unhandled = device_dma_ops_init();
2531	if (unhandled && max_pfn > MAX_DMA32_PFN) {
2532		/* There are unhandled devices - initialize swiotlb for them */
2533		swiotlb = 1;
2534	}
2535
2536	amd_iommu_stats_init();
2537
2538	return 0;
2539
2540free_domains:
2541
2542	for_each_iommu(iommu) {
2543		if (iommu->default_dom)
2544			dma_ops_domain_free(iommu->default_dom);
2545	}
2546
2547	return ret;
2548}
2549
2550/*****************************************************************************
2551 *
2552 * The following functions belong to the exported interface of AMD IOMMU
2553 *
2554 * This interface allows access to lower level functions of the IOMMU
2555 * like protection domain handling and assignement of devices to domains
2556 * which is not possible with the dma_ops interface.
2557 *
2558 *****************************************************************************/
2559
2560static void cleanup_domain(struct protection_domain *domain)
2561{
2562	struct iommu_dev_data *dev_data, *next;
2563	unsigned long flags;
2564
2565	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2566
2567	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2568		__detach_device(dev_data);
2569		atomic_set(&dev_data->bind, 0);
2570	}
2571
2572	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2573}
2574
2575static void protection_domain_free(struct protection_domain *domain)
2576{
2577	if (!domain)
2578		return;
2579
2580	del_domain_from_list(domain);
2581
2582	if (domain->id)
2583		domain_id_free(domain->id);
2584
2585	kfree(domain);
2586}
2587
2588static struct protection_domain *protection_domain_alloc(void)
2589{
2590	struct protection_domain *domain;
2591
2592	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2593	if (!domain)
2594		return NULL;
2595
2596	spin_lock_init(&domain->lock);
2597	mutex_init(&domain->api_lock);
2598	domain->id = domain_id_alloc();
2599	if (!domain->id)
2600		goto out_err;
2601	INIT_LIST_HEAD(&domain->dev_list);
2602
2603	add_domain_to_list(domain);
2604
2605	return domain;
2606
2607out_err:
2608	kfree(domain);
2609
2610	return NULL;
2611}
2612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2613static int amd_iommu_domain_init(struct iommu_domain *dom)
2614{
2615	struct protection_domain *domain;
2616
2617	domain = protection_domain_alloc();
2618	if (!domain)
2619		goto out_free;
2620
2621	domain->mode    = PAGE_MODE_3_LEVEL;
2622	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2623	if (!domain->pt_root)
2624		goto out_free;
2625
 
 
2626	dom->priv = domain;
2627
2628	return 0;
2629
2630out_free:
2631	protection_domain_free(domain);
2632
2633	return -ENOMEM;
2634}
2635
2636static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2637{
2638	struct protection_domain *domain = dom->priv;
2639
2640	if (!domain)
2641		return;
2642
2643	if (domain->dev_cnt > 0)
2644		cleanup_domain(domain);
2645
2646	BUG_ON(domain->dev_cnt != 0);
2647
2648	free_pagetable(domain);
 
 
 
 
2649
2650	protection_domain_free(domain);
2651
2652	dom->priv = NULL;
2653}
2654
2655static void amd_iommu_detach_device(struct iommu_domain *dom,
2656				    struct device *dev)
2657{
2658	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2659	struct amd_iommu *iommu;
2660	u16 devid;
2661
2662	if (!check_device(dev))
2663		return;
2664
2665	devid = get_device_id(dev);
2666
2667	if (dev_data->domain != NULL)
2668		detach_device(dev);
2669
2670	iommu = amd_iommu_rlookup_table[devid];
2671	if (!iommu)
2672		return;
2673
2674	iommu_completion_wait(iommu);
2675}
2676
2677static int amd_iommu_attach_device(struct iommu_domain *dom,
2678				   struct device *dev)
2679{
2680	struct protection_domain *domain = dom->priv;
2681	struct iommu_dev_data *dev_data;
2682	struct amd_iommu *iommu;
2683	int ret;
2684
2685	if (!check_device(dev))
2686		return -EINVAL;
2687
2688	dev_data = dev->archdata.iommu;
2689
2690	iommu = amd_iommu_rlookup_table[dev_data->devid];
2691	if (!iommu)
2692		return -EINVAL;
2693
2694	if (dev_data->domain)
2695		detach_device(dev);
2696
2697	ret = attach_device(dev, domain);
2698
2699	iommu_completion_wait(iommu);
2700
2701	return ret;
2702}
2703
2704static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2705			 phys_addr_t paddr, int gfp_order, int iommu_prot)
2706{
2707	unsigned long page_size = 0x1000UL << gfp_order;
2708	struct protection_domain *domain = dom->priv;
2709	int prot = 0;
2710	int ret;
2711
 
 
 
2712	if (iommu_prot & IOMMU_READ)
2713		prot |= IOMMU_PROT_IR;
2714	if (iommu_prot & IOMMU_WRITE)
2715		prot |= IOMMU_PROT_IW;
2716
2717	mutex_lock(&domain->api_lock);
2718	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2719	mutex_unlock(&domain->api_lock);
2720
2721	return ret;
2722}
2723
2724static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2725			   int gfp_order)
2726{
2727	struct protection_domain *domain = dom->priv;
2728	unsigned long page_size, unmap_size;
2729
2730	page_size  = 0x1000UL << gfp_order;
 
2731
2732	mutex_lock(&domain->api_lock);
2733	unmap_size = iommu_unmap_page(domain, iova, page_size);
2734	mutex_unlock(&domain->api_lock);
2735
2736	domain_flush_tlb_pde(domain);
2737
2738	return get_order(unmap_size);
2739}
2740
2741static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2742					  unsigned long iova)
2743{
2744	struct protection_domain *domain = dom->priv;
2745	unsigned long offset_mask;
2746	phys_addr_t paddr;
2747	u64 *pte, __pte;
2748
 
 
 
2749	pte = fetch_pte(domain, iova);
2750
2751	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2752		return 0;
2753
2754	if (PM_PTE_LEVEL(*pte) == 0)
2755		offset_mask = PAGE_SIZE - 1;
2756	else
2757		offset_mask = PTE_PAGE_SIZE(*pte) - 1;
2758
2759	__pte = *pte & PM_ADDR_MASK;
2760	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2761
2762	return paddr;
2763}
2764
2765static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2766				    unsigned long cap)
2767{
2768	switch (cap) {
2769	case IOMMU_CAP_CACHE_COHERENCY:
2770		return 1;
2771	}
2772
2773	return 0;
2774}
2775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2776static struct iommu_ops amd_iommu_ops = {
2777	.domain_init = amd_iommu_domain_init,
2778	.domain_destroy = amd_iommu_domain_destroy,
2779	.attach_dev = amd_iommu_attach_device,
2780	.detach_dev = amd_iommu_detach_device,
2781	.map = amd_iommu_map,
2782	.unmap = amd_iommu_unmap,
2783	.iova_to_phys = amd_iommu_iova_to_phys,
2784	.domain_has_cap = amd_iommu_domain_has_cap,
 
 
2785};
2786
2787/*****************************************************************************
2788 *
2789 * The next functions do a basic initialization of IOMMU for pass through
2790 * mode
2791 *
2792 * In passthrough mode the IOMMU is initialized and enabled but not used for
2793 * DMA-API translation.
2794 *
2795 *****************************************************************************/
2796
2797int __init amd_iommu_init_passthrough(void)
2798{
2799	struct amd_iommu *iommu;
2800	struct pci_dev *dev = NULL;
 
2801	u16 devid;
 
2802
2803	/* allocate passthrough domain */
2804	pt_domain = protection_domain_alloc();
2805	if (!pt_domain)
2806		return -ENOMEM;
2807
2808	pt_domain->mode |= PAGE_MODE_NONE;
2809
2810	for_each_pci_dev(dev) {
2811		if (!check_device(&dev->dev))
2812			continue;
2813
 
 
 
2814		devid = get_device_id(&dev->dev);
2815
2816		iommu = amd_iommu_rlookup_table[devid];
2817		if (!iommu)
2818			continue;
2819
2820		attach_device(&dev->dev, pt_domain);
2821	}
2822
 
 
2823	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2824
2825	return 0;
2826}
v3.5.6
   1/*
   2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
   3 * Author: Joerg Roedel <joerg.roedel@amd.com>
   4 *         Leo Duran <leo.duran@amd.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  18 */
  19
  20#include <linux/ratelimit.h>
  21#include <linux/pci.h>
  22#include <linux/pci-ats.h>
  23#include <linux/bitmap.h>
  24#include <linux/slab.h>
  25#include <linux/debugfs.h>
  26#include <linux/scatterlist.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/iommu-helper.h>
  29#include <linux/iommu.h>
  30#include <linux/delay.h>
  31#include <linux/amd-iommu.h>
  32#include <linux/notifier.h>
  33#include <linux/export.h>
  34#include <asm/msidef.h>
  35#include <asm/proto.h>
  36#include <asm/iommu.h>
  37#include <asm/gart.h>
  38#include <asm/dma.h>
  39
  40#include "amd_iommu_proto.h"
  41#include "amd_iommu_types.h"
  42
  43#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  44
  45#define LOOP_TIMEOUT	100000
  46
  47/*
  48 * This bitmap is used to advertise the page sizes our hardware support
  49 * to the IOMMU core, which will then use this information to split
  50 * physically contiguous memory regions it is mapping into page sizes
  51 * that we support.
  52 *
  53 * Traditionally the IOMMU core just handed us the mappings directly,
  54 * after making sure the size is an order of a 4KiB page and that the
  55 * mapping has natural alignment.
  56 *
  57 * To retain this behavior, we currently advertise that we support
  58 * all page sizes that are an order of 4KiB.
  59 *
  60 * If at some point we'd like to utilize the IOMMU core's new behavior,
  61 * we could change this to advertise the real page sizes we support.
  62 */
  63#define AMD_IOMMU_PGSIZES	(~0xFFFUL)
  64
  65static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  66
  67/* A list of preallocated protection domains */
  68static LIST_HEAD(iommu_pd_list);
  69static DEFINE_SPINLOCK(iommu_pd_list_lock);
  70
  71/* List of all available dev_data structures */
  72static LIST_HEAD(dev_data_list);
  73static DEFINE_SPINLOCK(dev_data_list_lock);
  74
  75/*
  76 * Domain for untranslated devices - only allocated
  77 * if iommu=pt passed on kernel cmd line.
  78 */
  79static struct protection_domain *pt_domain;
  80
  81static struct iommu_ops amd_iommu_ops;
  82
  83static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
  84int amd_iommu_max_glx_val = -1;
  85
  86static struct dma_map_ops amd_iommu_dma_ops;
  87
  88/*
  89 * general struct to manage commands send to an IOMMU
  90 */
  91struct iommu_cmd {
  92	u32 data[4];
  93};
  94
  95static void update_domain(struct protection_domain *domain);
  96static int __init alloc_passthrough_domain(void);
  97
  98/****************************************************************************
  99 *
 100 * Helper functions
 101 *
 102 ****************************************************************************/
 103
 104static struct iommu_dev_data *alloc_dev_data(u16 devid)
 105{
 106	struct iommu_dev_data *dev_data;
 107	unsigned long flags;
 108
 109	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
 110	if (!dev_data)
 111		return NULL;
 112
 113	dev_data->devid = devid;
 114	atomic_set(&dev_data->bind, 0);
 115
 116	spin_lock_irqsave(&dev_data_list_lock, flags);
 117	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
 118	spin_unlock_irqrestore(&dev_data_list_lock, flags);
 119
 120	return dev_data;
 121}
 122
 123static void free_dev_data(struct iommu_dev_data *dev_data)
 124{
 125	unsigned long flags;
 126
 127	spin_lock_irqsave(&dev_data_list_lock, flags);
 128	list_del(&dev_data->dev_data_list);
 129	spin_unlock_irqrestore(&dev_data_list_lock, flags);
 130
 131	kfree(dev_data);
 132}
 133
 134static struct iommu_dev_data *search_dev_data(u16 devid)
 135{
 136	struct iommu_dev_data *dev_data;
 137	unsigned long flags;
 138
 139	spin_lock_irqsave(&dev_data_list_lock, flags);
 140	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
 141		if (dev_data->devid == devid)
 142			goto out_unlock;
 143	}
 144
 145	dev_data = NULL;
 146
 147out_unlock:
 148	spin_unlock_irqrestore(&dev_data_list_lock, flags);
 149
 150	return dev_data;
 151}
 152
 153static struct iommu_dev_data *find_dev_data(u16 devid)
 154{
 155	struct iommu_dev_data *dev_data;
 156
 157	dev_data = search_dev_data(devid);
 158
 159	if (dev_data == NULL)
 160		dev_data = alloc_dev_data(devid);
 161
 162	return dev_data;
 163}
 164
 165static inline u16 get_device_id(struct device *dev)
 166{
 167	struct pci_dev *pdev = to_pci_dev(dev);
 168
 169	return calc_devid(pdev->bus->number, pdev->devfn);
 170}
 171
 172static struct iommu_dev_data *get_dev_data(struct device *dev)
 173{
 174	return dev->archdata.iommu;
 175}
 176
 177static bool pci_iommuv2_capable(struct pci_dev *pdev)
 178{
 179	static const int caps[] = {
 180		PCI_EXT_CAP_ID_ATS,
 181		PCI_EXT_CAP_ID_PRI,
 182		PCI_EXT_CAP_ID_PASID,
 183	};
 184	int i, pos;
 185
 186	for (i = 0; i < 3; ++i) {
 187		pos = pci_find_ext_capability(pdev, caps[i]);
 188		if (pos == 0)
 189			return false;
 190	}
 191
 192	return true;
 193}
 194
 195static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
 196{
 197	struct iommu_dev_data *dev_data;
 198
 199	dev_data = get_dev_data(&pdev->dev);
 200
 201	return dev_data->errata & (1 << erratum) ? true : false;
 202}
 203
 204/*
 205 * In this function the list of preallocated protection domains is traversed to
 206 * find the domain for a specific device
 207 */
 208static struct dma_ops_domain *find_protection_domain(u16 devid)
 209{
 210	struct dma_ops_domain *entry, *ret = NULL;
 211	unsigned long flags;
 212	u16 alias = amd_iommu_alias_table[devid];
 213
 214	if (list_empty(&iommu_pd_list))
 215		return NULL;
 216
 217	spin_lock_irqsave(&iommu_pd_list_lock, flags);
 218
 219	list_for_each_entry(entry, &iommu_pd_list, list) {
 220		if (entry->target_dev == devid ||
 221		    entry->target_dev == alias) {
 222			ret = entry;
 223			break;
 224		}
 225	}
 226
 227	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
 228
 229	return ret;
 230}
 231
 232/*
 233 * This function checks if the driver got a valid device from the caller to
 234 * avoid dereferencing invalid pointers.
 235 */
 236static bool check_device(struct device *dev)
 237{
 238	u16 devid;
 239
 240	if (!dev || !dev->dma_mask)
 241		return false;
 242
 243	/* No device or no PCI device */
 244	if (dev->bus != &pci_bus_type)
 245		return false;
 246
 247	devid = get_device_id(dev);
 248
 249	/* Out of our scope? */
 250	if (devid > amd_iommu_last_bdf)
 251		return false;
 252
 253	if (amd_iommu_rlookup_table[devid] == NULL)
 254		return false;
 255
 256	return true;
 257}
 258
 259static int iommu_init_device(struct device *dev)
 260{
 261	struct pci_dev *pdev = to_pci_dev(dev);
 262	struct iommu_dev_data *dev_data;
 263	u16 alias;
 264
 265	if (dev->archdata.iommu)
 266		return 0;
 267
 268	dev_data = find_dev_data(get_device_id(dev));
 269	if (!dev_data)
 270		return -ENOMEM;
 271
 272	alias = amd_iommu_alias_table[dev_data->devid];
 273	if (alias != dev_data->devid) {
 274		struct iommu_dev_data *alias_data;
 275
 276		alias_data = find_dev_data(alias);
 277		if (alias_data == NULL) {
 278			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
 279					dev_name(dev));
 280			free_dev_data(dev_data);
 281			return -ENOTSUPP;
 282		}
 283		dev_data->alias_data = alias_data;
 284	}
 285
 286	if (pci_iommuv2_capable(pdev)) {
 287		struct amd_iommu *iommu;
 288
 289		iommu              = amd_iommu_rlookup_table[dev_data->devid];
 290		dev_data->iommu_v2 = iommu->is_iommu_v2;
 291	}
 292
 293	dev->archdata.iommu = dev_data;
 294
 295	return 0;
 296}
 297
 298static void iommu_ignore_device(struct device *dev)
 299{
 300	u16 devid, alias;
 301
 302	devid = get_device_id(dev);
 303	alias = amd_iommu_alias_table[devid];
 304
 305	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
 306	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
 307
 308	amd_iommu_rlookup_table[devid] = NULL;
 309	amd_iommu_rlookup_table[alias] = NULL;
 310}
 311
 312static void iommu_uninit_device(struct device *dev)
 313{
 314	/*
 315	 * Nothing to do here - we keep dev_data around for unplugged devices
 316	 * and reuse it when the device is re-plugged - not doing so would
 317	 * introduce a ton of races.
 318	 */
 319}
 320
 321void __init amd_iommu_uninit_devices(void)
 322{
 323	struct iommu_dev_data *dev_data, *n;
 324	struct pci_dev *pdev = NULL;
 325
 326	for_each_pci_dev(pdev) {
 327
 328		if (!check_device(&pdev->dev))
 329			continue;
 330
 331		iommu_uninit_device(&pdev->dev);
 332	}
 333
 334	/* Free all of our dev_data structures */
 335	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
 336		free_dev_data(dev_data);
 337}
 338
 339int __init amd_iommu_init_devices(void)
 340{
 341	struct pci_dev *pdev = NULL;
 342	int ret = 0;
 343
 344	for_each_pci_dev(pdev) {
 345
 346		if (!check_device(&pdev->dev))
 347			continue;
 348
 349		ret = iommu_init_device(&pdev->dev);
 350		if (ret == -ENOTSUPP)
 351			iommu_ignore_device(&pdev->dev);
 352		else if (ret)
 353			goto out_free;
 354	}
 355
 356	return 0;
 357
 358out_free:
 359
 360	amd_iommu_uninit_devices();
 361
 362	return ret;
 363}
 364#ifdef CONFIG_AMD_IOMMU_STATS
 365
 366/*
 367 * Initialization code for statistics collection
 368 */
 369
 370DECLARE_STATS_COUNTER(compl_wait);
 371DECLARE_STATS_COUNTER(cnt_map_single);
 372DECLARE_STATS_COUNTER(cnt_unmap_single);
 373DECLARE_STATS_COUNTER(cnt_map_sg);
 374DECLARE_STATS_COUNTER(cnt_unmap_sg);
 375DECLARE_STATS_COUNTER(cnt_alloc_coherent);
 376DECLARE_STATS_COUNTER(cnt_free_coherent);
 377DECLARE_STATS_COUNTER(cross_page);
 378DECLARE_STATS_COUNTER(domain_flush_single);
 379DECLARE_STATS_COUNTER(domain_flush_all);
 380DECLARE_STATS_COUNTER(alloced_io_mem);
 381DECLARE_STATS_COUNTER(total_map_requests);
 382DECLARE_STATS_COUNTER(complete_ppr);
 383DECLARE_STATS_COUNTER(invalidate_iotlb);
 384DECLARE_STATS_COUNTER(invalidate_iotlb_all);
 385DECLARE_STATS_COUNTER(pri_requests);
 386
 387
 388static struct dentry *stats_dir;
 389static struct dentry *de_fflush;
 390
 391static void amd_iommu_stats_add(struct __iommu_counter *cnt)
 392{
 393	if (stats_dir == NULL)
 394		return;
 395
 396	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
 397				       &cnt->value);
 398}
 399
 400static void amd_iommu_stats_init(void)
 401{
 402	stats_dir = debugfs_create_dir("amd-iommu", NULL);
 403	if (stats_dir == NULL)
 404		return;
 405
 406	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
 407					 &amd_iommu_unmap_flush);
 408
 409	amd_iommu_stats_add(&compl_wait);
 410	amd_iommu_stats_add(&cnt_map_single);
 411	amd_iommu_stats_add(&cnt_unmap_single);
 412	amd_iommu_stats_add(&cnt_map_sg);
 413	amd_iommu_stats_add(&cnt_unmap_sg);
 414	amd_iommu_stats_add(&cnt_alloc_coherent);
 415	amd_iommu_stats_add(&cnt_free_coherent);
 416	amd_iommu_stats_add(&cross_page);
 417	amd_iommu_stats_add(&domain_flush_single);
 418	amd_iommu_stats_add(&domain_flush_all);
 419	amd_iommu_stats_add(&alloced_io_mem);
 420	amd_iommu_stats_add(&total_map_requests);
 421	amd_iommu_stats_add(&complete_ppr);
 422	amd_iommu_stats_add(&invalidate_iotlb);
 423	amd_iommu_stats_add(&invalidate_iotlb_all);
 424	amd_iommu_stats_add(&pri_requests);
 425}
 426
 427#endif
 428
 429/****************************************************************************
 430 *
 431 * Interrupt handling functions
 432 *
 433 ****************************************************************************/
 434
 435static void dump_dte_entry(u16 devid)
 436{
 437	int i;
 438
 439	for (i = 0; i < 4; ++i)
 440		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
 441			amd_iommu_dev_table[devid].data[i]);
 442}
 443
 444static void dump_command(unsigned long phys_addr)
 445{
 446	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
 447	int i;
 448
 449	for (i = 0; i < 4; ++i)
 450		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
 451}
 452
 453static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
 454{
 455	int type, devid, domid, flags;
 456	volatile u32 *event = __evt;
 457	int count = 0;
 458	u64 address;
 459
 460retry:
 461	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
 462	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
 463	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
 464	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
 465	address = (u64)(((u64)event[3]) << 32) | event[2];
 466
 467	if (type == 0) {
 468		/* Did we hit the erratum? */
 469		if (++count == LOOP_TIMEOUT) {
 470			pr_err("AMD-Vi: No event written to event log\n");
 471			return;
 472		}
 473		udelay(1);
 474		goto retry;
 475	}
 476
 477	printk(KERN_ERR "AMD-Vi: Event logged [");
 478
 479	switch (type) {
 480	case EVENT_TYPE_ILL_DEV:
 481		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
 482		       "address=0x%016llx flags=0x%04x]\n",
 483		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 484		       address, flags);
 485		dump_dte_entry(devid);
 486		break;
 487	case EVENT_TYPE_IO_FAULT:
 488		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
 489		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 490		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 491		       domid, address, flags);
 492		break;
 493	case EVENT_TYPE_DEV_TAB_ERR:
 494		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 495		       "address=0x%016llx flags=0x%04x]\n",
 496		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 497		       address, flags);
 498		break;
 499	case EVENT_TYPE_PAGE_TAB_ERR:
 500		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 501		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 502		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 503		       domid, address, flags);
 504		break;
 505	case EVENT_TYPE_ILL_CMD:
 506		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
 507		dump_command(address);
 508		break;
 509	case EVENT_TYPE_CMD_HARD_ERR:
 510		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
 511		       "flags=0x%04x]\n", address, flags);
 512		break;
 513	case EVENT_TYPE_IOTLB_INV_TO:
 514		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
 515		       "address=0x%016llx]\n",
 516		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 517		       address);
 518		break;
 519	case EVENT_TYPE_INV_DEV_REQ:
 520		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
 521		       "address=0x%016llx flags=0x%04x]\n",
 522		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 523		       address, flags);
 524		break;
 525	default:
 526		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
 527	}
 528
 529	memset(__evt, 0, 4 * sizeof(u32));
 530}
 531
 532static void iommu_poll_events(struct amd_iommu *iommu)
 533{
 534	u32 head, tail;
 535	unsigned long flags;
 536
 537	spin_lock_irqsave(&iommu->lock, flags);
 538
 539	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 540	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
 541
 542	while (head != tail) {
 543		iommu_print_event(iommu, iommu->evt_buf + head);
 544		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
 545	}
 546
 547	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 548
 549	spin_unlock_irqrestore(&iommu->lock, flags);
 550}
 551
 552static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
 553{
 554	struct amd_iommu_fault fault;
 555
 556	INC_STATS_COUNTER(pri_requests);
 557
 558	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
 559		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
 560		return;
 561	}
 562
 563	fault.address   = raw[1];
 564	fault.pasid     = PPR_PASID(raw[0]);
 565	fault.device_id = PPR_DEVID(raw[0]);
 566	fault.tag       = PPR_TAG(raw[0]);
 567	fault.flags     = PPR_FLAGS(raw[0]);
 568
 569	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
 570}
 571
 572static void iommu_poll_ppr_log(struct amd_iommu *iommu)
 573{
 574	unsigned long flags;
 575	u32 head, tail;
 576
 577	if (iommu->ppr_log == NULL)
 578		return;
 579
 580	/* enable ppr interrupts again */
 581	writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);
 582
 583	spin_lock_irqsave(&iommu->lock, flags);
 584
 585	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 586	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 587
 588	while (head != tail) {
 589		volatile u64 *raw;
 590		u64 entry[2];
 591		int i;
 592
 593		raw = (u64 *)(iommu->ppr_log + head);
 594
 595		/*
 596		 * Hardware bug: Interrupt may arrive before the entry is
 597		 * written to memory. If this happens we need to wait for the
 598		 * entry to arrive.
 599		 */
 600		for (i = 0; i < LOOP_TIMEOUT; ++i) {
 601			if (PPR_REQ_TYPE(raw[0]) != 0)
 602				break;
 603			udelay(1);
 604		}
 605
 606		/* Avoid memcpy function-call overhead */
 607		entry[0] = raw[0];
 608		entry[1] = raw[1];
 609
 610		/*
 611		 * To detect the hardware bug we need to clear the entry
 612		 * back to zero.
 613		 */
 614		raw[0] = raw[1] = 0UL;
 615
 616		/* Update head pointer of hardware ring-buffer */
 617		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
 618		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 619
 620		/*
 621		 * Release iommu->lock because ppr-handling might need to
 622		 * re-aquire it
 623		 */
 624		spin_unlock_irqrestore(&iommu->lock, flags);
 625
 626		/* Handle PPR entry */
 627		iommu_handle_ppr_entry(iommu, entry);
 628
 629		spin_lock_irqsave(&iommu->lock, flags);
 630
 631		/* Refresh ring-buffer information */
 632		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 633		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 634	}
 635
 636	spin_unlock_irqrestore(&iommu->lock, flags);
 637}
 638
 639irqreturn_t amd_iommu_int_thread(int irq, void *data)
 640{
 641	struct amd_iommu *iommu;
 642
 643	for_each_iommu(iommu) {
 644		iommu_poll_events(iommu);
 645		iommu_poll_ppr_log(iommu);
 646	}
 647
 648	return IRQ_HANDLED;
 649}
 650
 651irqreturn_t amd_iommu_int_handler(int irq, void *data)
 652{
 653	return IRQ_WAKE_THREAD;
 654}
 655
 656/****************************************************************************
 657 *
 658 * IOMMU command queuing functions
 659 *
 660 ****************************************************************************/
 661
 662static int wait_on_sem(volatile u64 *sem)
 663{
 664	int i = 0;
 665
 666	while (*sem == 0 && i < LOOP_TIMEOUT) {
 667		udelay(1);
 668		i += 1;
 669	}
 670
 671	if (i == LOOP_TIMEOUT) {
 672		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
 673		return -EIO;
 674	}
 675
 676	return 0;
 677}
 678
 679static void copy_cmd_to_buffer(struct amd_iommu *iommu,
 680			       struct iommu_cmd *cmd,
 681			       u32 tail)
 682{
 683	u8 *target;
 684
 685	target = iommu->cmd_buf + tail;
 686	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
 687
 688	/* Copy command to buffer */
 689	memcpy(target, cmd, sizeof(*cmd));
 690
 691	/* Tell the IOMMU about it */
 692	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
 693}
 694
 695static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
 696{
 697	WARN_ON(address & 0x7ULL);
 698
 699	memset(cmd, 0, sizeof(*cmd));
 700	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
 701	cmd->data[1] = upper_32_bits(__pa(address));
 702	cmd->data[2] = 1;
 703	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
 704}
 705
 706static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
 707{
 708	memset(cmd, 0, sizeof(*cmd));
 709	cmd->data[0] = devid;
 710	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
 711}
 712
 713static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
 714				  size_t size, u16 domid, int pde)
 715{
 716	u64 pages;
 717	int s;
 718
 719	pages = iommu_num_pages(address, size, PAGE_SIZE);
 720	s     = 0;
 721
 722	if (pages > 1) {
 723		/*
 724		 * If we have to flush more than one page, flush all
 725		 * TLB entries for this domain
 726		 */
 727		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 728		s = 1;
 729	}
 730
 731	address &= PAGE_MASK;
 732
 733	memset(cmd, 0, sizeof(*cmd));
 734	cmd->data[1] |= domid;
 735	cmd->data[2]  = lower_32_bits(address);
 736	cmd->data[3]  = upper_32_bits(address);
 737	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 738	if (s) /* size bit - we flush more than one 4kb page */
 739		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 740	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
 741		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 742}
 743
 744static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
 745				  u64 address, size_t size)
 746{
 747	u64 pages;
 748	int s;
 749
 750	pages = iommu_num_pages(address, size, PAGE_SIZE);
 751	s     = 0;
 752
 753	if (pages > 1) {
 754		/*
 755		 * If we have to flush more than one page, flush all
 756		 * TLB entries for this domain
 757		 */
 758		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 759		s = 1;
 760	}
 761
 762	address &= PAGE_MASK;
 763
 764	memset(cmd, 0, sizeof(*cmd));
 765	cmd->data[0]  = devid;
 766	cmd->data[0] |= (qdep & 0xff) << 24;
 767	cmd->data[1]  = devid;
 768	cmd->data[2]  = lower_32_bits(address);
 769	cmd->data[3]  = upper_32_bits(address);
 770	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 771	if (s)
 772		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 773}
 774
 775static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
 776				  u64 address, bool size)
 777{
 778	memset(cmd, 0, sizeof(*cmd));
 779
 780	address &= ~(0xfffULL);
 781
 782	cmd->data[0]  = pasid & PASID_MASK;
 783	cmd->data[1]  = domid;
 784	cmd->data[2]  = lower_32_bits(address);
 785	cmd->data[3]  = upper_32_bits(address);
 786	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 787	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 788	if (size)
 789		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 790	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 791}
 792
 793static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
 794				  int qdep, u64 address, bool size)
 795{
 796	memset(cmd, 0, sizeof(*cmd));
 797
 798	address &= ~(0xfffULL);
 799
 800	cmd->data[0]  = devid;
 801	cmd->data[0] |= (pasid & 0xff) << 16;
 802	cmd->data[0] |= (qdep  & 0xff) << 24;
 803	cmd->data[1]  = devid;
 804	cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
 805	cmd->data[2]  = lower_32_bits(address);
 806	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 807	cmd->data[3]  = upper_32_bits(address);
 808	if (size)
 809		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 810	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 811}
 812
 813static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
 814			       int status, int tag, bool gn)
 815{
 816	memset(cmd, 0, sizeof(*cmd));
 817
 818	cmd->data[0]  = devid;
 819	if (gn) {
 820		cmd->data[1]  = pasid & PASID_MASK;
 821		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
 822	}
 823	cmd->data[3]  = tag & 0x1ff;
 824	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
 825
 826	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
 827}
 828
 829static void build_inv_all(struct iommu_cmd *cmd)
 830{
 831	memset(cmd, 0, sizeof(*cmd));
 832	CMD_SET_TYPE(cmd, CMD_INV_ALL);
 833}
 834
 835/*
 836 * Writes the command to the IOMMUs command buffer and informs the
 837 * hardware about the new command.
 838 */
 839static int iommu_queue_command_sync(struct amd_iommu *iommu,
 840				    struct iommu_cmd *cmd,
 841				    bool sync)
 842{
 843	u32 left, tail, head, next_tail;
 844	unsigned long flags;
 845
 846	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
 847
 848again:
 849	spin_lock_irqsave(&iommu->lock, flags);
 850
 851	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
 852	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
 853	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
 854	left      = (head - next_tail) % iommu->cmd_buf_size;
 855
 856	if (left <= 2) {
 857		struct iommu_cmd sync_cmd;
 858		volatile u64 sem = 0;
 859		int ret;
 860
 861		build_completion_wait(&sync_cmd, (u64)&sem);
 862		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
 863
 864		spin_unlock_irqrestore(&iommu->lock, flags);
 865
 866		if ((ret = wait_on_sem(&sem)) != 0)
 867			return ret;
 868
 869		goto again;
 870	}
 871
 872	copy_cmd_to_buffer(iommu, cmd, tail);
 873
 874	/* We need to sync now to make sure all commands are processed */
 875	iommu->need_sync = sync;
 876
 877	spin_unlock_irqrestore(&iommu->lock, flags);
 878
 879	return 0;
 880}
 881
 882static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
 883{
 884	return iommu_queue_command_sync(iommu, cmd, true);
 885}
 886
 887/*
 888 * This function queues a completion wait command into the command
 889 * buffer of an IOMMU
 890 */
 891static int iommu_completion_wait(struct amd_iommu *iommu)
 892{
 893	struct iommu_cmd cmd;
 894	volatile u64 sem = 0;
 895	int ret;
 896
 897	if (!iommu->need_sync)
 898		return 0;
 899
 900	build_completion_wait(&cmd, (u64)&sem);
 901
 902	ret = iommu_queue_command_sync(iommu, &cmd, false);
 903	if (ret)
 904		return ret;
 905
 906	return wait_on_sem(&sem);
 907}
 908
 909static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
 910{
 911	struct iommu_cmd cmd;
 912
 913	build_inv_dte(&cmd, devid);
 914
 915	return iommu_queue_command(iommu, &cmd);
 916}
 917
 918static void iommu_flush_dte_all(struct amd_iommu *iommu)
 919{
 920	u32 devid;
 921
 922	for (devid = 0; devid <= 0xffff; ++devid)
 923		iommu_flush_dte(iommu, devid);
 924
 925	iommu_completion_wait(iommu);
 926}
 927
 928/*
 929 * This function uses heavy locking and may disable irqs for some time. But
 930 * this is no issue because it is only called during resume.
 931 */
 932static void iommu_flush_tlb_all(struct amd_iommu *iommu)
 933{
 934	u32 dom_id;
 935
 936	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
 937		struct iommu_cmd cmd;
 938		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
 939				      dom_id, 1);
 940		iommu_queue_command(iommu, &cmd);
 941	}
 942
 943	iommu_completion_wait(iommu);
 944}
 945
 946static void iommu_flush_all(struct amd_iommu *iommu)
 947{
 948	struct iommu_cmd cmd;
 949
 950	build_inv_all(&cmd);
 951
 952	iommu_queue_command(iommu, &cmd);
 953	iommu_completion_wait(iommu);
 954}
 955
 956void iommu_flush_all_caches(struct amd_iommu *iommu)
 957{
 958	if (iommu_feature(iommu, FEATURE_IA)) {
 959		iommu_flush_all(iommu);
 960	} else {
 961		iommu_flush_dte_all(iommu);
 962		iommu_flush_tlb_all(iommu);
 963	}
 964}
 965
 966/*
 967 * Command send function for flushing on-device TLB
 968 */
 969static int device_flush_iotlb(struct iommu_dev_data *dev_data,
 970			      u64 address, size_t size)
 971{
 972	struct amd_iommu *iommu;
 973	struct iommu_cmd cmd;
 974	int qdep;
 975
 976	qdep     = dev_data->ats.qdep;
 977	iommu    = amd_iommu_rlookup_table[dev_data->devid];
 978
 979	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
 980
 981	return iommu_queue_command(iommu, &cmd);
 982}
 983
 984/*
 985 * Command send function for invalidating a device table entry
 986 */
 987static int device_flush_dte(struct iommu_dev_data *dev_data)
 988{
 989	struct amd_iommu *iommu;
 990	int ret;
 991
 992	iommu = amd_iommu_rlookup_table[dev_data->devid];
 993
 994	ret = iommu_flush_dte(iommu, dev_data->devid);
 995	if (ret)
 996		return ret;
 997
 998	if (dev_data->ats.enabled)
 999		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1000
1001	return ret;
1002}
1003
1004/*
1005 * TLB invalidation function which is called from the mapping functions.
1006 * It invalidates a single PTE if the range to flush is within a single
1007 * page. Otherwise it flushes the whole TLB of the IOMMU.
1008 */
1009static void __domain_flush_pages(struct protection_domain *domain,
1010				 u64 address, size_t size, int pde)
1011{
1012	struct iommu_dev_data *dev_data;
1013	struct iommu_cmd cmd;
1014	int ret = 0, i;
1015
1016	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1017
1018	for (i = 0; i < amd_iommus_present; ++i) {
1019		if (!domain->dev_iommu[i])
1020			continue;
1021
1022		/*
1023		 * Devices of this domain are behind this IOMMU
1024		 * We need a TLB flush
1025		 */
1026		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1027	}
1028
1029	list_for_each_entry(dev_data, &domain->dev_list, list) {
1030
1031		if (!dev_data->ats.enabled)
1032			continue;
1033
1034		ret |= device_flush_iotlb(dev_data, address, size);
1035	}
1036
1037	WARN_ON(ret);
1038}
1039
1040static void domain_flush_pages(struct protection_domain *domain,
1041			       u64 address, size_t size)
1042{
1043	__domain_flush_pages(domain, address, size, 0);
1044}
1045
1046/* Flush the whole IO/TLB for a given protection domain */
1047static void domain_flush_tlb(struct protection_domain *domain)
1048{
1049	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1050}
1051
1052/* Flush the whole IO/TLB for a given protection domain - including PDE */
1053static void domain_flush_tlb_pde(struct protection_domain *domain)
1054{
1055	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1056}
1057
1058static void domain_flush_complete(struct protection_domain *domain)
1059{
1060	int i;
1061
1062	for (i = 0; i < amd_iommus_present; ++i) {
1063		if (!domain->dev_iommu[i])
1064			continue;
1065
1066		/*
1067		 * Devices of this domain are behind this IOMMU
1068		 * We need to wait for completion of all commands.
1069		 */
1070		iommu_completion_wait(amd_iommus[i]);
1071	}
1072}
1073
1074
1075/*
1076 * This function flushes the DTEs for all devices in domain
1077 */
1078static void domain_flush_devices(struct protection_domain *domain)
1079{
1080	struct iommu_dev_data *dev_data;
1081
1082	list_for_each_entry(dev_data, &domain->dev_list, list)
1083		device_flush_dte(dev_data);
1084}
1085
1086/****************************************************************************
1087 *
1088 * The functions below are used the create the page table mappings for
1089 * unity mapped regions.
1090 *
1091 ****************************************************************************/
1092
1093/*
1094 * This function is used to add another level to an IO page table. Adding
1095 * another level increases the size of the address space by 9 bits to a size up
1096 * to 64 bits.
1097 */
1098static bool increase_address_space(struct protection_domain *domain,
1099				   gfp_t gfp)
1100{
1101	u64 *pte;
1102
1103	if (domain->mode == PAGE_MODE_6_LEVEL)
1104		/* address space already 64 bit large */
1105		return false;
1106
1107	pte = (void *)get_zeroed_page(gfp);
1108	if (!pte)
1109		return false;
1110
1111	*pte             = PM_LEVEL_PDE(domain->mode,
1112					virt_to_phys(domain->pt_root));
1113	domain->pt_root  = pte;
1114	domain->mode    += 1;
1115	domain->updated  = true;
1116
1117	return true;
1118}
1119
1120static u64 *alloc_pte(struct protection_domain *domain,
1121		      unsigned long address,
1122		      unsigned long page_size,
1123		      u64 **pte_page,
1124		      gfp_t gfp)
1125{
1126	int level, end_lvl;
1127	u64 *pte, *page;
1128
1129	BUG_ON(!is_power_of_2(page_size));
1130
1131	while (address > PM_LEVEL_SIZE(domain->mode))
1132		increase_address_space(domain, gfp);
1133
1134	level   = domain->mode - 1;
1135	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1136	address = PAGE_SIZE_ALIGN(address, page_size);
1137	end_lvl = PAGE_SIZE_LEVEL(page_size);
1138
1139	while (level > end_lvl) {
1140		if (!IOMMU_PTE_PRESENT(*pte)) {
1141			page = (u64 *)get_zeroed_page(gfp);
1142			if (!page)
1143				return NULL;
1144			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1145		}
1146
1147		/* No level skipping support yet */
1148		if (PM_PTE_LEVEL(*pte) != level)
1149			return NULL;
1150
1151		level -= 1;
1152
1153		pte = IOMMU_PTE_PAGE(*pte);
1154
1155		if (pte_page && level == end_lvl)
1156			*pte_page = pte;
1157
1158		pte = &pte[PM_LEVEL_INDEX(level, address)];
1159	}
1160
1161	return pte;
1162}
1163
1164/*
1165 * This function checks if there is a PTE for a given dma address. If
1166 * there is one, it returns the pointer to it.
1167 */
1168static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1169{
1170	int level;
1171	u64 *pte;
1172
1173	if (address > PM_LEVEL_SIZE(domain->mode))
1174		return NULL;
1175
1176	level   =  domain->mode - 1;
1177	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1178
1179	while (level > 0) {
1180
1181		/* Not Present */
1182		if (!IOMMU_PTE_PRESENT(*pte))
1183			return NULL;
1184
1185		/* Large PTE */
1186		if (PM_PTE_LEVEL(*pte) == 0x07) {
1187			unsigned long pte_mask, __pte;
1188
1189			/*
1190			 * If we have a series of large PTEs, make
1191			 * sure to return a pointer to the first one.
1192			 */
1193			pte_mask = PTE_PAGE_SIZE(*pte);
1194			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1195			__pte    = ((unsigned long)pte) & pte_mask;
1196
1197			return (u64 *)__pte;
1198		}
1199
1200		/* No level skipping support yet */
1201		if (PM_PTE_LEVEL(*pte) != level)
1202			return NULL;
1203
1204		level -= 1;
1205
1206		/* Walk to the next level */
1207		pte = IOMMU_PTE_PAGE(*pte);
1208		pte = &pte[PM_LEVEL_INDEX(level, address)];
1209	}
1210
1211	return pte;
1212}
1213
1214/*
1215 * Generic mapping functions. It maps a physical address into a DMA
1216 * address space. It allocates the page table pages if necessary.
1217 * In the future it can be extended to a generic mapping function
1218 * supporting all features of AMD IOMMU page tables like level skipping
1219 * and full 64 bit address spaces.
1220 */
1221static int iommu_map_page(struct protection_domain *dom,
1222			  unsigned long bus_addr,
1223			  unsigned long phys_addr,
1224			  int prot,
1225			  unsigned long page_size)
1226{
1227	u64 __pte, *pte;
1228	int i, count;
1229
1230	if (!(prot & IOMMU_PROT_MASK))
1231		return -EINVAL;
1232
1233	bus_addr  = PAGE_ALIGN(bus_addr);
1234	phys_addr = PAGE_ALIGN(phys_addr);
1235	count     = PAGE_SIZE_PTE_COUNT(page_size);
1236	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1237
1238	for (i = 0; i < count; ++i)
1239		if (IOMMU_PTE_PRESENT(pte[i]))
1240			return -EBUSY;
1241
1242	if (page_size > PAGE_SIZE) {
1243		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
1244		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1245	} else
1246		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1247
1248	if (prot & IOMMU_PROT_IR)
1249		__pte |= IOMMU_PTE_IR;
1250	if (prot & IOMMU_PROT_IW)
1251		__pte |= IOMMU_PTE_IW;
1252
1253	for (i = 0; i < count; ++i)
1254		pte[i] = __pte;
1255
1256	update_domain(dom);
1257
1258	return 0;
1259}
1260
1261static unsigned long iommu_unmap_page(struct protection_domain *dom,
1262				      unsigned long bus_addr,
1263				      unsigned long page_size)
1264{
1265	unsigned long long unmap_size, unmapped;
1266	u64 *pte;
1267
1268	BUG_ON(!is_power_of_2(page_size));
1269
1270	unmapped = 0;
1271
1272	while (unmapped < page_size) {
1273
1274		pte = fetch_pte(dom, bus_addr);
1275
1276		if (!pte) {
1277			/*
1278			 * No PTE for this address
1279			 * move forward in 4kb steps
1280			 */
1281			unmap_size = PAGE_SIZE;
1282		} else if (PM_PTE_LEVEL(*pte) == 0) {
1283			/* 4kb PTE found for this address */
1284			unmap_size = PAGE_SIZE;
1285			*pte       = 0ULL;
1286		} else {
1287			int count, i;
1288
1289			/* Large PTE found which maps this address */
1290			unmap_size = PTE_PAGE_SIZE(*pte);
1291			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
1292			for (i = 0; i < count; i++)
1293				pte[i] = 0ULL;
1294		}
1295
1296		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1297		unmapped += unmap_size;
1298	}
1299
1300	BUG_ON(!is_power_of_2(unmapped));
1301
1302	return unmapped;
1303}
1304
1305/*
1306 * This function checks if a specific unity mapping entry is needed for
1307 * this specific IOMMU.
1308 */
1309static int iommu_for_unity_map(struct amd_iommu *iommu,
1310			       struct unity_map_entry *entry)
1311{
1312	u16 bdf, i;
1313
1314	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1315		bdf = amd_iommu_alias_table[i];
1316		if (amd_iommu_rlookup_table[bdf] == iommu)
1317			return 1;
1318	}
1319
1320	return 0;
1321}
1322
1323/*
1324 * This function actually applies the mapping to the page table of the
1325 * dma_ops domain.
1326 */
1327static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1328			     struct unity_map_entry *e)
1329{
1330	u64 addr;
1331	int ret;
1332
1333	for (addr = e->address_start; addr < e->address_end;
1334	     addr += PAGE_SIZE) {
1335		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1336				     PAGE_SIZE);
1337		if (ret)
1338			return ret;
1339		/*
1340		 * if unity mapping is in aperture range mark the page
1341		 * as allocated in the aperture
1342		 */
1343		if (addr < dma_dom->aperture_size)
1344			__set_bit(addr >> PAGE_SHIFT,
1345				  dma_dom->aperture[0]->bitmap);
1346	}
1347
1348	return 0;
1349}
1350
1351/*
1352 * Init the unity mappings for a specific IOMMU in the system
1353 *
1354 * Basically iterates over all unity mapping entries and applies them to
1355 * the default domain DMA of that IOMMU if necessary.
1356 */
1357static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1358{
1359	struct unity_map_entry *entry;
1360	int ret;
1361
1362	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1363		if (!iommu_for_unity_map(iommu, entry))
1364			continue;
1365		ret = dma_ops_unity_map(iommu->default_dom, entry);
1366		if (ret)
1367			return ret;
1368	}
1369
1370	return 0;
1371}
1372
1373/*
1374 * Inits the unity mappings required for a specific device
1375 */
1376static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1377					  u16 devid)
1378{
1379	struct unity_map_entry *e;
1380	int ret;
1381
1382	list_for_each_entry(e, &amd_iommu_unity_map, list) {
1383		if (!(devid >= e->devid_start && devid <= e->devid_end))
1384			continue;
1385		ret = dma_ops_unity_map(dma_dom, e);
1386		if (ret)
1387			return ret;
1388	}
1389
1390	return 0;
1391}
1392
1393/****************************************************************************
1394 *
1395 * The next functions belong to the address allocator for the dma_ops
1396 * interface functions. They work like the allocators in the other IOMMU
1397 * drivers. Its basically a bitmap which marks the allocated pages in
1398 * the aperture. Maybe it could be enhanced in the future to a more
1399 * efficient allocator.
1400 *
1401 ****************************************************************************/
1402
1403/*
1404 * The address allocator core functions.
1405 *
1406 * called with domain->lock held
1407 */
1408
1409/*
1410 * Used to reserve address ranges in the aperture (e.g. for exclusion
1411 * ranges.
1412 */
1413static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1414				      unsigned long start_page,
1415				      unsigned int pages)
1416{
1417	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1418
1419	if (start_page + pages > last_page)
1420		pages = last_page - start_page;
1421
1422	for (i = start_page; i < start_page + pages; ++i) {
1423		int index = i / APERTURE_RANGE_PAGES;
1424		int page  = i % APERTURE_RANGE_PAGES;
1425		__set_bit(page, dom->aperture[index]->bitmap);
1426	}
1427}
1428
1429/*
1430 * This function is used to add a new aperture range to an existing
1431 * aperture in case of dma_ops domain allocation or address allocation
1432 * failure.
1433 */
1434static int alloc_new_range(struct dma_ops_domain *dma_dom,
1435			   bool populate, gfp_t gfp)
1436{
1437	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1438	struct amd_iommu *iommu;
1439	unsigned long i, old_size;
1440
1441#ifdef CONFIG_IOMMU_STRESS
1442	populate = false;
1443#endif
1444
1445	if (index >= APERTURE_MAX_RANGES)
1446		return -ENOMEM;
1447
1448	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1449	if (!dma_dom->aperture[index])
1450		return -ENOMEM;
1451
1452	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1453	if (!dma_dom->aperture[index]->bitmap)
1454		goto out_free;
1455
1456	dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1457
1458	if (populate) {
1459		unsigned long address = dma_dom->aperture_size;
1460		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1461		u64 *pte, *pte_page;
1462
1463		for (i = 0; i < num_ptes; ++i) {
1464			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1465					&pte_page, gfp);
1466			if (!pte)
1467				goto out_free;
1468
1469			dma_dom->aperture[index]->pte_pages[i] = pte_page;
1470
1471			address += APERTURE_RANGE_SIZE / 64;
1472		}
1473	}
1474
1475	old_size                = dma_dom->aperture_size;
1476	dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1477
1478	/* Reserve address range used for MSI messages */
1479	if (old_size < MSI_ADDR_BASE_LO &&
1480	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1481		unsigned long spage;
1482		int pages;
1483
1484		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1485		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1486
1487		dma_ops_reserve_addresses(dma_dom, spage, pages);
1488	}
1489
1490	/* Initialize the exclusion range if necessary */
1491	for_each_iommu(iommu) {
1492		if (iommu->exclusion_start &&
1493		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
1494		    && iommu->exclusion_start < dma_dom->aperture_size) {
1495			unsigned long startpage;
1496			int pages = iommu_num_pages(iommu->exclusion_start,
1497						    iommu->exclusion_length,
1498						    PAGE_SIZE);
1499			startpage = iommu->exclusion_start >> PAGE_SHIFT;
1500			dma_ops_reserve_addresses(dma_dom, startpage, pages);
1501		}
1502	}
1503
1504	/*
1505	 * Check for areas already mapped as present in the new aperture
1506	 * range and mark those pages as reserved in the allocator. Such
1507	 * mappings may already exist as a result of requested unity
1508	 * mappings for devices.
1509	 */
1510	for (i = dma_dom->aperture[index]->offset;
1511	     i < dma_dom->aperture_size;
1512	     i += PAGE_SIZE) {
1513		u64 *pte = fetch_pte(&dma_dom->domain, i);
1514		if (!pte || !IOMMU_PTE_PRESENT(*pte))
1515			continue;
1516
1517		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1518	}
1519
1520	update_domain(&dma_dom->domain);
1521
1522	return 0;
1523
1524out_free:
1525	update_domain(&dma_dom->domain);
1526
1527	free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1528
1529	kfree(dma_dom->aperture[index]);
1530	dma_dom->aperture[index] = NULL;
1531
1532	return -ENOMEM;
1533}
1534
1535static unsigned long dma_ops_area_alloc(struct device *dev,
1536					struct dma_ops_domain *dom,
1537					unsigned int pages,
1538					unsigned long align_mask,
1539					u64 dma_mask,
1540					unsigned long start)
1541{
1542	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1543	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1544	int i = start >> APERTURE_RANGE_SHIFT;
1545	unsigned long boundary_size;
1546	unsigned long address = -1;
1547	unsigned long limit;
1548
1549	next_bit >>= PAGE_SHIFT;
1550
1551	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1552			PAGE_SIZE) >> PAGE_SHIFT;
1553
1554	for (;i < max_index; ++i) {
1555		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1556
1557		if (dom->aperture[i]->offset >= dma_mask)
1558			break;
1559
1560		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1561					       dma_mask >> PAGE_SHIFT);
1562
1563		address = iommu_area_alloc(dom->aperture[i]->bitmap,
1564					   limit, next_bit, pages, 0,
1565					    boundary_size, align_mask);
1566		if (address != -1) {
1567			address = dom->aperture[i]->offset +
1568				  (address << PAGE_SHIFT);
1569			dom->next_address = address + (pages << PAGE_SHIFT);
1570			break;
1571		}
1572
1573		next_bit = 0;
1574	}
1575
1576	return address;
1577}
1578
1579static unsigned long dma_ops_alloc_addresses(struct device *dev,
1580					     struct dma_ops_domain *dom,
1581					     unsigned int pages,
1582					     unsigned long align_mask,
1583					     u64 dma_mask)
1584{
1585	unsigned long address;
1586
1587#ifdef CONFIG_IOMMU_STRESS
1588	dom->next_address = 0;
1589	dom->need_flush = true;
1590#endif
1591
1592	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1593				     dma_mask, dom->next_address);
1594
1595	if (address == -1) {
1596		dom->next_address = 0;
1597		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1598					     dma_mask, 0);
1599		dom->need_flush = true;
1600	}
1601
1602	if (unlikely(address == -1))
1603		address = DMA_ERROR_CODE;
1604
1605	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1606
1607	return address;
1608}
1609
1610/*
1611 * The address free function.
1612 *
1613 * called with domain->lock held
1614 */
1615static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1616				   unsigned long address,
1617				   unsigned int pages)
1618{
1619	unsigned i = address >> APERTURE_RANGE_SHIFT;
1620	struct aperture_range *range = dom->aperture[i];
1621
1622	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1623
1624#ifdef CONFIG_IOMMU_STRESS
1625	if (i < 4)
1626		return;
1627#endif
1628
1629	if (address >= dom->next_address)
1630		dom->need_flush = true;
1631
1632	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1633
1634	bitmap_clear(range->bitmap, address, pages);
1635
1636}
1637
1638/****************************************************************************
1639 *
1640 * The next functions belong to the domain allocation. A domain is
1641 * allocated for every IOMMU as the default domain. If device isolation
1642 * is enabled, every device get its own domain. The most important thing
1643 * about domains is the page table mapping the DMA address space they
1644 * contain.
1645 *
1646 ****************************************************************************/
1647
1648/*
1649 * This function adds a protection domain to the global protection domain list
1650 */
1651static void add_domain_to_list(struct protection_domain *domain)
1652{
1653	unsigned long flags;
1654
1655	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1656	list_add(&domain->list, &amd_iommu_pd_list);
1657	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1658}
1659
1660/*
1661 * This function removes a protection domain to the global
1662 * protection domain list
1663 */
1664static void del_domain_from_list(struct protection_domain *domain)
1665{
1666	unsigned long flags;
1667
1668	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1669	list_del(&domain->list);
1670	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1671}
1672
1673static u16 domain_id_alloc(void)
1674{
1675	unsigned long flags;
1676	int id;
1677
1678	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1679	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1680	BUG_ON(id == 0);
1681	if (id > 0 && id < MAX_DOMAIN_ID)
1682		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1683	else
1684		id = 0;
1685	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1686
1687	return id;
1688}
1689
1690static void domain_id_free(int id)
1691{
1692	unsigned long flags;
1693
1694	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1695	if (id > 0 && id < MAX_DOMAIN_ID)
1696		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1697	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1698}
1699
1700static void free_pagetable(struct protection_domain *domain)
1701{
1702	int i, j;
1703	u64 *p1, *p2, *p3;
1704
1705	p1 = domain->pt_root;
1706
1707	if (!p1)
1708		return;
1709
1710	for (i = 0; i < 512; ++i) {
1711		if (!IOMMU_PTE_PRESENT(p1[i]))
1712			continue;
1713
1714		p2 = IOMMU_PTE_PAGE(p1[i]);
1715		for (j = 0; j < 512; ++j) {
1716			if (!IOMMU_PTE_PRESENT(p2[j]))
1717				continue;
1718			p3 = IOMMU_PTE_PAGE(p2[j]);
1719			free_page((unsigned long)p3);
1720		}
1721
1722		free_page((unsigned long)p2);
1723	}
1724
1725	free_page((unsigned long)p1);
1726
1727	domain->pt_root = NULL;
1728}
1729
1730static void free_gcr3_tbl_level1(u64 *tbl)
1731{
1732	u64 *ptr;
1733	int i;
1734
1735	for (i = 0; i < 512; ++i) {
1736		if (!(tbl[i] & GCR3_VALID))
1737			continue;
1738
1739		ptr = __va(tbl[i] & PAGE_MASK);
1740
1741		free_page((unsigned long)ptr);
1742	}
1743}
1744
1745static void free_gcr3_tbl_level2(u64 *tbl)
1746{
1747	u64 *ptr;
1748	int i;
1749
1750	for (i = 0; i < 512; ++i) {
1751		if (!(tbl[i] & GCR3_VALID))
1752			continue;
1753
1754		ptr = __va(tbl[i] & PAGE_MASK);
1755
1756		free_gcr3_tbl_level1(ptr);
1757	}
1758}
1759
1760static void free_gcr3_table(struct protection_domain *domain)
1761{
1762	if (domain->glx == 2)
1763		free_gcr3_tbl_level2(domain->gcr3_tbl);
1764	else if (domain->glx == 1)
1765		free_gcr3_tbl_level1(domain->gcr3_tbl);
1766	else if (domain->glx != 0)
1767		BUG();
1768
1769	free_page((unsigned long)domain->gcr3_tbl);
1770}
1771
1772/*
1773 * Free a domain, only used if something went wrong in the
1774 * allocation path and we need to free an already allocated page table
1775 */
1776static void dma_ops_domain_free(struct dma_ops_domain *dom)
1777{
1778	int i;
1779
1780	if (!dom)
1781		return;
1782
1783	del_domain_from_list(&dom->domain);
1784
1785	free_pagetable(&dom->domain);
1786
1787	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1788		if (!dom->aperture[i])
1789			continue;
1790		free_page((unsigned long)dom->aperture[i]->bitmap);
1791		kfree(dom->aperture[i]);
1792	}
1793
1794	kfree(dom);
1795}
1796
1797/*
1798 * Allocates a new protection domain usable for the dma_ops functions.
1799 * It also initializes the page table and the address allocator data
1800 * structures required for the dma_ops interface
1801 */
1802static struct dma_ops_domain *dma_ops_domain_alloc(void)
1803{
1804	struct dma_ops_domain *dma_dom;
1805
1806	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1807	if (!dma_dom)
1808		return NULL;
1809
1810	spin_lock_init(&dma_dom->domain.lock);
1811
1812	dma_dom->domain.id = domain_id_alloc();
1813	if (dma_dom->domain.id == 0)
1814		goto free_dma_dom;
1815	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1816	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1817	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1818	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1819	dma_dom->domain.priv = dma_dom;
1820	if (!dma_dom->domain.pt_root)
1821		goto free_dma_dom;
1822
1823	dma_dom->need_flush = false;
1824	dma_dom->target_dev = 0xffff;
1825
1826	add_domain_to_list(&dma_dom->domain);
1827
1828	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1829		goto free_dma_dom;
1830
1831	/*
1832	 * mark the first page as allocated so we never return 0 as
1833	 * a valid dma-address. So we can use 0 as error value
1834	 */
1835	dma_dom->aperture[0]->bitmap[0] = 1;
1836	dma_dom->next_address = 0;
1837
1838
1839	return dma_dom;
1840
1841free_dma_dom:
1842	dma_ops_domain_free(dma_dom);
1843
1844	return NULL;
1845}
1846
1847/*
1848 * little helper function to check whether a given protection domain is a
1849 * dma_ops domain
1850 */
1851static bool dma_ops_domain(struct protection_domain *domain)
1852{
1853	return domain->flags & PD_DMA_OPS_MASK;
1854}
1855
1856static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1857{
1858	u64 pte_root = 0;
1859	u64 flags = 0;
1860
1861	if (domain->mode != PAGE_MODE_NONE)
1862		pte_root = virt_to_phys(domain->pt_root);
1863
1864	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1865		    << DEV_ENTRY_MODE_SHIFT;
1866	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1867
1868	flags = amd_iommu_dev_table[devid].data[1];
1869
1870	if (ats)
1871		flags |= DTE_FLAG_IOTLB;
1872
1873	if (domain->flags & PD_IOMMUV2_MASK) {
1874		u64 gcr3 = __pa(domain->gcr3_tbl);
1875		u64 glx  = domain->glx;
1876		u64 tmp;
1877
1878		pte_root |= DTE_FLAG_GV;
1879		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1880
1881		/* First mask out possible old values for GCR3 table */
1882		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1883		flags    &= ~tmp;
1884
1885		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1886		flags    &= ~tmp;
1887
1888		/* Encode GCR3 table into DTE */
1889		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1890		pte_root |= tmp;
1891
1892		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1893		flags    |= tmp;
1894
1895		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1896		flags    |= tmp;
1897	}
1898
1899	flags &= ~(0xffffUL);
1900	flags |= domain->id;
1901
1902	amd_iommu_dev_table[devid].data[1]  = flags;
1903	amd_iommu_dev_table[devid].data[0]  = pte_root;
1904}
1905
1906static void clear_dte_entry(u16 devid)
1907{
1908	/* remove entry from the device table seen by the hardware */
1909	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1910	amd_iommu_dev_table[devid].data[1] = 0;
 
1911
1912	amd_iommu_apply_erratum_63(devid);
1913}
1914
1915static void do_attach(struct iommu_dev_data *dev_data,
1916		      struct protection_domain *domain)
1917{
1918	struct amd_iommu *iommu;
1919	bool ats;
1920
1921	iommu = amd_iommu_rlookup_table[dev_data->devid];
1922	ats   = dev_data->ats.enabled;
1923
1924	/* Update data structures */
1925	dev_data->domain = domain;
1926	list_add(&dev_data->list, &domain->dev_list);
1927	set_dte_entry(dev_data->devid, domain, ats);
1928
1929	/* Do reference counting */
1930	domain->dev_iommu[iommu->index] += 1;
1931	domain->dev_cnt                 += 1;
1932
1933	/* Flush the DTE entry */
1934	device_flush_dte(dev_data);
1935}
1936
1937static void do_detach(struct iommu_dev_data *dev_data)
1938{
1939	struct amd_iommu *iommu;
1940
1941	iommu = amd_iommu_rlookup_table[dev_data->devid];
1942
1943	/* decrease reference counters */
1944	dev_data->domain->dev_iommu[iommu->index] -= 1;
1945	dev_data->domain->dev_cnt                 -= 1;
1946
1947	/* Update data structures */
1948	dev_data->domain = NULL;
1949	list_del(&dev_data->list);
1950	clear_dte_entry(dev_data->devid);
1951
1952	/* Flush the DTE entry */
1953	device_flush_dte(dev_data);
1954}
1955
1956/*
1957 * If a device is not yet associated with a domain, this function does
1958 * assigns it visible for the hardware
1959 */
1960static int __attach_device(struct iommu_dev_data *dev_data,
1961			   struct protection_domain *domain)
1962{
1963	int ret;
1964
1965	/* lock domain */
1966	spin_lock(&domain->lock);
1967
1968	if (dev_data->alias_data != NULL) {
1969		struct iommu_dev_data *alias_data = dev_data->alias_data;
1970
1971		/* Some sanity checks */
1972		ret = -EBUSY;
1973		if (alias_data->domain != NULL &&
1974				alias_data->domain != domain)
1975			goto out_unlock;
1976
1977		if (dev_data->domain != NULL &&
1978				dev_data->domain != domain)
1979			goto out_unlock;
1980
1981		/* Do real assignment */
1982		if (alias_data->domain == NULL)
1983			do_attach(alias_data, domain);
1984
1985		atomic_inc(&alias_data->bind);
1986	}
1987
1988	if (dev_data->domain == NULL)
1989		do_attach(dev_data, domain);
1990
1991	atomic_inc(&dev_data->bind);
1992
1993	ret = 0;
1994
1995out_unlock:
1996
1997	/* ready */
1998	spin_unlock(&domain->lock);
1999
2000	return ret;
2001}
2002
2003
2004static void pdev_iommuv2_disable(struct pci_dev *pdev)
2005{
2006	pci_disable_ats(pdev);
2007	pci_disable_pri(pdev);
2008	pci_disable_pasid(pdev);
2009}
2010
2011/* FIXME: Change generic reset-function to do the same */
2012static int pri_reset_while_enabled(struct pci_dev *pdev)
2013{
2014	u16 control;
2015	int pos;
2016
2017	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2018	if (!pos)
2019		return -EINVAL;
2020
2021	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2022	control |= PCI_PRI_CTRL_RESET;
2023	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2024
2025	return 0;
2026}
2027
2028static int pdev_iommuv2_enable(struct pci_dev *pdev)
2029{
2030	bool reset_enable;
2031	int reqs, ret;
2032
2033	/* FIXME: Hardcode number of outstanding requests for now */
2034	reqs = 32;
2035	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2036		reqs = 1;
2037	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2038
2039	/* Only allow access to user-accessible pages */
2040	ret = pci_enable_pasid(pdev, 0);
2041	if (ret)
2042		goto out_err;
2043
2044	/* First reset the PRI state of the device */
2045	ret = pci_reset_pri(pdev);
2046	if (ret)
2047		goto out_err;
2048
2049	/* Enable PRI */
2050	ret = pci_enable_pri(pdev, reqs);
2051	if (ret)
2052		goto out_err;
2053
2054	if (reset_enable) {
2055		ret = pri_reset_while_enabled(pdev);
2056		if (ret)
2057			goto out_err;
2058	}
2059
2060	ret = pci_enable_ats(pdev, PAGE_SHIFT);
2061	if (ret)
2062		goto out_err;
2063
2064	return 0;
2065
2066out_err:
2067	pci_disable_pri(pdev);
2068	pci_disable_pasid(pdev);
2069
2070	return ret;
2071}
2072
2073/* FIXME: Move this to PCI code */
2074#define PCI_PRI_TLP_OFF		(1 << 15)
2075
2076bool pci_pri_tlp_required(struct pci_dev *pdev)
2077{
2078	u16 status;
2079	int pos;
2080
2081	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2082	if (!pos)
2083		return false;
2084
2085	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2086
2087	return (status & PCI_PRI_TLP_OFF) ? true : false;
2088}
2089
2090/*
2091 * If a device is not yet associated with a domain, this function does
2092 * assigns it visible for the hardware
2093 */
2094static int attach_device(struct device *dev,
2095			 struct protection_domain *domain)
2096{
2097	struct pci_dev *pdev = to_pci_dev(dev);
2098	struct iommu_dev_data *dev_data;
2099	unsigned long flags;
2100	int ret;
2101
2102	dev_data = get_dev_data(dev);
2103
2104	if (domain->flags & PD_IOMMUV2_MASK) {
2105		if (!dev_data->iommu_v2 || !dev_data->passthrough)
2106			return -EINVAL;
2107
2108		if (pdev_iommuv2_enable(pdev) != 0)
2109			return -EINVAL;
2110
2111		dev_data->ats.enabled = true;
2112		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2113		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2114	} else if (amd_iommu_iotlb_sup &&
2115		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2116		dev_data->ats.enabled = true;
2117		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2118	}
2119
2120	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2121	ret = __attach_device(dev_data, domain);
2122	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2123
2124	/*
2125	 * We might boot into a crash-kernel here. The crashed kernel
2126	 * left the caches in the IOMMU dirty. So we have to flush
2127	 * here to evict all dirty stuff.
2128	 */
2129	domain_flush_tlb_pde(domain);
2130
2131	return ret;
2132}
2133
2134/*
2135 * Removes a device from a protection domain (unlocked)
2136 */
2137static void __detach_device(struct iommu_dev_data *dev_data)
2138{
2139	struct protection_domain *domain;
2140	unsigned long flags;
2141
2142	BUG_ON(!dev_data->domain);
2143
2144	domain = dev_data->domain;
2145
2146	spin_lock_irqsave(&domain->lock, flags);
2147
2148	if (dev_data->alias_data != NULL) {
2149		struct iommu_dev_data *alias_data = dev_data->alias_data;
2150
2151		if (atomic_dec_and_test(&alias_data->bind))
2152			do_detach(alias_data);
2153	}
2154
2155	if (atomic_dec_and_test(&dev_data->bind))
2156		do_detach(dev_data);
2157
2158	spin_unlock_irqrestore(&domain->lock, flags);
2159
2160	/*
2161	 * If we run in passthrough mode the device must be assigned to the
2162	 * passthrough domain if it is detached from any other domain.
2163	 * Make sure we can deassign from the pt_domain itself.
2164	 */
2165	if (dev_data->passthrough &&
2166	    (dev_data->domain == NULL && domain != pt_domain))
2167		__attach_device(dev_data, pt_domain);
2168}
2169
2170/*
2171 * Removes a device from a protection domain (with devtable_lock held)
2172 */
2173static void detach_device(struct device *dev)
2174{
2175	struct protection_domain *domain;
2176	struct iommu_dev_data *dev_data;
2177	unsigned long flags;
2178
2179	dev_data = get_dev_data(dev);
2180	domain   = dev_data->domain;
2181
2182	/* lock device table */
2183	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2184	__detach_device(dev_data);
2185	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2186
2187	if (domain->flags & PD_IOMMUV2_MASK)
2188		pdev_iommuv2_disable(to_pci_dev(dev));
2189	else if (dev_data->ats.enabled)
2190		pci_disable_ats(to_pci_dev(dev));
2191
2192	dev_data->ats.enabled = false;
2193}
2194
2195/*
2196 * Find out the protection domain structure for a given PCI device. This
2197 * will give us the pointer to the page table root for example.
2198 */
2199static struct protection_domain *domain_for_device(struct device *dev)
2200{
2201	struct iommu_dev_data *dev_data;
2202	struct protection_domain *dom = NULL;
2203	unsigned long flags;
2204
2205	dev_data   = get_dev_data(dev);
2206
2207	if (dev_data->domain)
2208		return dev_data->domain;
2209
2210	if (dev_data->alias_data != NULL) {
2211		struct iommu_dev_data *alias_data = dev_data->alias_data;
2212
2213		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2214		if (alias_data->domain != NULL) {
2215			__attach_device(dev_data, alias_data->domain);
2216			dom = alias_data->domain;
2217		}
2218		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2219	}
2220
2221	return dom;
2222}
2223
2224static int device_change_notifier(struct notifier_block *nb,
2225				  unsigned long action, void *data)
2226{
 
 
 
2227	struct dma_ops_domain *dma_domain;
2228	struct protection_domain *domain;
2229	struct iommu_dev_data *dev_data;
2230	struct device *dev = data;
2231	struct amd_iommu *iommu;
2232	unsigned long flags;
2233	u16 devid;
2234
2235	if (!check_device(dev))
2236		return 0;
2237
2238	devid    = get_device_id(dev);
2239	iommu    = amd_iommu_rlookup_table[devid];
2240	dev_data = get_dev_data(dev);
2241
2242	switch (action) {
2243	case BUS_NOTIFY_UNBOUND_DRIVER:
2244
2245		domain = domain_for_device(dev);
2246
2247		if (!domain)
2248			goto out;
2249		if (dev_data->passthrough)
2250			break;
2251		detach_device(dev);
2252		break;
2253	case BUS_NOTIFY_ADD_DEVICE:
2254
2255		iommu_init_device(dev);
2256
2257		/*
2258		 * dev_data is still NULL and
2259		 * got initialized in iommu_init_device
2260		 */
2261		dev_data = get_dev_data(dev);
2262
2263		if (iommu_pass_through || dev_data->iommu_v2) {
2264			dev_data->passthrough = true;
2265			attach_device(dev, pt_domain);
2266			break;
2267		}
2268
2269		domain = domain_for_device(dev);
2270
2271		/* allocate a protection domain if a device is added */
2272		dma_domain = find_protection_domain(devid);
2273		if (dma_domain)
2274			goto out;
2275		dma_domain = dma_ops_domain_alloc();
2276		if (!dma_domain)
2277			goto out;
2278		dma_domain->target_dev = devid;
2279
2280		spin_lock_irqsave(&iommu_pd_list_lock, flags);
2281		list_add_tail(&dma_domain->list, &iommu_pd_list);
2282		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2283
2284		dev_data = get_dev_data(dev);
2285
2286		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2287
2288		break;
2289	case BUS_NOTIFY_DEL_DEVICE:
2290
2291		iommu_uninit_device(dev);
2292
2293	default:
2294		goto out;
2295	}
2296
2297	iommu_completion_wait(iommu);
2298
2299out:
2300	return 0;
2301}
2302
2303static struct notifier_block device_nb = {
2304	.notifier_call = device_change_notifier,
2305};
2306
2307void amd_iommu_init_notifier(void)
2308{
2309	bus_register_notifier(&pci_bus_type, &device_nb);
2310}
2311
2312/*****************************************************************************
2313 *
2314 * The next functions belong to the dma_ops mapping/unmapping code.
2315 *
2316 *****************************************************************************/
2317
2318/*
2319 * In the dma_ops path we only have the struct device. This function
2320 * finds the corresponding IOMMU, the protection domain and the
2321 * requestor id for a given device.
2322 * If the device is not yet associated with a domain this is also done
2323 * in this function.
2324 */
2325static struct protection_domain *get_domain(struct device *dev)
2326{
2327	struct protection_domain *domain;
2328	struct dma_ops_domain *dma_dom;
2329	u16 devid = get_device_id(dev);
2330
2331	if (!check_device(dev))
2332		return ERR_PTR(-EINVAL);
2333
2334	domain = domain_for_device(dev);
2335	if (domain != NULL && !dma_ops_domain(domain))
2336		return ERR_PTR(-EBUSY);
2337
2338	if (domain != NULL)
2339		return domain;
2340
2341	/* Device not bount yet - bind it */
2342	dma_dom = find_protection_domain(devid);
2343	if (!dma_dom)
2344		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2345	attach_device(dev, &dma_dom->domain);
2346	DUMP_printk("Using protection domain %d for device %s\n",
2347		    dma_dom->domain.id, dev_name(dev));
2348
2349	return &dma_dom->domain;
2350}
2351
2352static void update_device_table(struct protection_domain *domain)
2353{
2354	struct iommu_dev_data *dev_data;
2355
2356	list_for_each_entry(dev_data, &domain->dev_list, list)
2357		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2358}
2359
2360static void update_domain(struct protection_domain *domain)
2361{
2362	if (!domain->updated)
2363		return;
2364
2365	update_device_table(domain);
2366
2367	domain_flush_devices(domain);
2368	domain_flush_tlb_pde(domain);
2369
2370	domain->updated = false;
2371}
2372
2373/*
2374 * This function fetches the PTE for a given address in the aperture
2375 */
2376static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2377			    unsigned long address)
2378{
2379	struct aperture_range *aperture;
2380	u64 *pte, *pte_page;
2381
2382	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2383	if (!aperture)
2384		return NULL;
2385
2386	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2387	if (!pte) {
2388		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2389				GFP_ATOMIC);
2390		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2391	} else
2392		pte += PM_LEVEL_INDEX(0, address);
2393
2394	update_domain(&dom->domain);
2395
2396	return pte;
2397}
2398
2399/*
2400 * This is the generic map function. It maps one 4kb page at paddr to
2401 * the given address in the DMA address space for the domain.
2402 */
2403static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2404				     unsigned long address,
2405				     phys_addr_t paddr,
2406				     int direction)
2407{
2408	u64 *pte, __pte;
2409
2410	WARN_ON(address > dom->aperture_size);
2411
2412	paddr &= PAGE_MASK;
2413
2414	pte  = dma_ops_get_pte(dom, address);
2415	if (!pte)
2416		return DMA_ERROR_CODE;
2417
2418	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2419
2420	if (direction == DMA_TO_DEVICE)
2421		__pte |= IOMMU_PTE_IR;
2422	else if (direction == DMA_FROM_DEVICE)
2423		__pte |= IOMMU_PTE_IW;
2424	else if (direction == DMA_BIDIRECTIONAL)
2425		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2426
2427	WARN_ON(*pte);
2428
2429	*pte = __pte;
2430
2431	return (dma_addr_t)address;
2432}
2433
2434/*
2435 * The generic unmapping function for on page in the DMA address space.
2436 */
2437static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2438				 unsigned long address)
2439{
2440	struct aperture_range *aperture;
2441	u64 *pte;
2442
2443	if (address >= dom->aperture_size)
2444		return;
2445
2446	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2447	if (!aperture)
2448		return;
2449
2450	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2451	if (!pte)
2452		return;
2453
2454	pte += PM_LEVEL_INDEX(0, address);
2455
2456	WARN_ON(!*pte);
2457
2458	*pte = 0ULL;
2459}
2460
2461/*
2462 * This function contains common code for mapping of a physically
2463 * contiguous memory region into DMA address space. It is used by all
2464 * mapping functions provided with this IOMMU driver.
2465 * Must be called with the domain lock held.
2466 */
2467static dma_addr_t __map_single(struct device *dev,
2468			       struct dma_ops_domain *dma_dom,
2469			       phys_addr_t paddr,
2470			       size_t size,
2471			       int dir,
2472			       bool align,
2473			       u64 dma_mask)
2474{
2475	dma_addr_t offset = paddr & ~PAGE_MASK;
2476	dma_addr_t address, start, ret;
2477	unsigned int pages;
2478	unsigned long align_mask = 0;
2479	int i;
2480
2481	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2482	paddr &= PAGE_MASK;
2483
2484	INC_STATS_COUNTER(total_map_requests);
2485
2486	if (pages > 1)
2487		INC_STATS_COUNTER(cross_page);
2488
2489	if (align)
2490		align_mask = (1UL << get_order(size)) - 1;
2491
2492retry:
2493	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2494					  dma_mask);
2495	if (unlikely(address == DMA_ERROR_CODE)) {
2496		/*
2497		 * setting next_address here will let the address
2498		 * allocator only scan the new allocated range in the
2499		 * first run. This is a small optimization.
2500		 */
2501		dma_dom->next_address = dma_dom->aperture_size;
2502
2503		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2504			goto out;
2505
2506		/*
2507		 * aperture was successfully enlarged by 128 MB, try
2508		 * allocation again
2509		 */
2510		goto retry;
2511	}
2512
2513	start = address;
2514	for (i = 0; i < pages; ++i) {
2515		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2516		if (ret == DMA_ERROR_CODE)
2517			goto out_unmap;
2518
2519		paddr += PAGE_SIZE;
2520		start += PAGE_SIZE;
2521	}
2522	address += offset;
2523
2524	ADD_STATS_COUNTER(alloced_io_mem, size);
2525
2526	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2527		domain_flush_tlb(&dma_dom->domain);
2528		dma_dom->need_flush = false;
2529	} else if (unlikely(amd_iommu_np_cache))
2530		domain_flush_pages(&dma_dom->domain, address, size);
2531
2532out:
2533	return address;
2534
2535out_unmap:
2536
2537	for (--i; i >= 0; --i) {
2538		start -= PAGE_SIZE;
2539		dma_ops_domain_unmap(dma_dom, start);
2540	}
2541
2542	dma_ops_free_addresses(dma_dom, address, pages);
2543
2544	return DMA_ERROR_CODE;
2545}
2546
2547/*
2548 * Does the reverse of the __map_single function. Must be called with
2549 * the domain lock held too
2550 */
2551static void __unmap_single(struct dma_ops_domain *dma_dom,
2552			   dma_addr_t dma_addr,
2553			   size_t size,
2554			   int dir)
2555{
2556	dma_addr_t flush_addr;
2557	dma_addr_t i, start;
2558	unsigned int pages;
2559
2560	if ((dma_addr == DMA_ERROR_CODE) ||
2561	    (dma_addr + size > dma_dom->aperture_size))
2562		return;
2563
2564	flush_addr = dma_addr;
2565	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2566	dma_addr &= PAGE_MASK;
2567	start = dma_addr;
2568
2569	for (i = 0; i < pages; ++i) {
2570		dma_ops_domain_unmap(dma_dom, start);
2571		start += PAGE_SIZE;
2572	}
2573
2574	SUB_STATS_COUNTER(alloced_io_mem, size);
2575
2576	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2577
2578	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2579		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2580		dma_dom->need_flush = false;
2581	}
2582}
2583
2584/*
2585 * The exported map_single function for dma_ops.
2586 */
2587static dma_addr_t map_page(struct device *dev, struct page *page,
2588			   unsigned long offset, size_t size,
2589			   enum dma_data_direction dir,
2590			   struct dma_attrs *attrs)
2591{
2592	unsigned long flags;
2593	struct protection_domain *domain;
2594	dma_addr_t addr;
2595	u64 dma_mask;
2596	phys_addr_t paddr = page_to_phys(page) + offset;
2597
2598	INC_STATS_COUNTER(cnt_map_single);
2599
2600	domain = get_domain(dev);
2601	if (PTR_ERR(domain) == -EINVAL)
2602		return (dma_addr_t)paddr;
2603	else if (IS_ERR(domain))
2604		return DMA_ERROR_CODE;
2605
2606	dma_mask = *dev->dma_mask;
2607
2608	spin_lock_irqsave(&domain->lock, flags);
2609
2610	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2611			    dma_mask);
2612	if (addr == DMA_ERROR_CODE)
2613		goto out;
2614
2615	domain_flush_complete(domain);
2616
2617out:
2618	spin_unlock_irqrestore(&domain->lock, flags);
2619
2620	return addr;
2621}
2622
2623/*
2624 * The exported unmap_single function for dma_ops.
2625 */
2626static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2627		       enum dma_data_direction dir, struct dma_attrs *attrs)
2628{
2629	unsigned long flags;
2630	struct protection_domain *domain;
2631
2632	INC_STATS_COUNTER(cnt_unmap_single);
2633
2634	domain = get_domain(dev);
2635	if (IS_ERR(domain))
2636		return;
2637
2638	spin_lock_irqsave(&domain->lock, flags);
2639
2640	__unmap_single(domain->priv, dma_addr, size, dir);
2641
2642	domain_flush_complete(domain);
2643
2644	spin_unlock_irqrestore(&domain->lock, flags);
2645}
2646
2647/*
2648 * This is a special map_sg function which is used if we should map a
2649 * device which is not handled by an AMD IOMMU in the system.
2650 */
2651static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2652			   int nelems, int dir)
2653{
2654	struct scatterlist *s;
2655	int i;
2656
2657	for_each_sg(sglist, s, nelems, i) {
2658		s->dma_address = (dma_addr_t)sg_phys(s);
2659		s->dma_length  = s->length;
2660	}
2661
2662	return nelems;
2663}
2664
2665/*
2666 * The exported map_sg function for dma_ops (handles scatter-gather
2667 * lists).
2668 */
2669static int map_sg(struct device *dev, struct scatterlist *sglist,
2670		  int nelems, enum dma_data_direction dir,
2671		  struct dma_attrs *attrs)
2672{
2673	unsigned long flags;
2674	struct protection_domain *domain;
2675	int i;
2676	struct scatterlist *s;
2677	phys_addr_t paddr;
2678	int mapped_elems = 0;
2679	u64 dma_mask;
2680
2681	INC_STATS_COUNTER(cnt_map_sg);
2682
2683	domain = get_domain(dev);
2684	if (PTR_ERR(domain) == -EINVAL)
2685		return map_sg_no_iommu(dev, sglist, nelems, dir);
2686	else if (IS_ERR(domain))
2687		return 0;
2688
2689	dma_mask = *dev->dma_mask;
2690
2691	spin_lock_irqsave(&domain->lock, flags);
2692
2693	for_each_sg(sglist, s, nelems, i) {
2694		paddr = sg_phys(s);
2695
2696		s->dma_address = __map_single(dev, domain->priv,
2697					      paddr, s->length, dir, false,
2698					      dma_mask);
2699
2700		if (s->dma_address) {
2701			s->dma_length = s->length;
2702			mapped_elems++;
2703		} else
2704			goto unmap;
2705	}
2706
2707	domain_flush_complete(domain);
2708
2709out:
2710	spin_unlock_irqrestore(&domain->lock, flags);
2711
2712	return mapped_elems;
2713unmap:
2714	for_each_sg(sglist, s, mapped_elems, i) {
2715		if (s->dma_address)
2716			__unmap_single(domain->priv, s->dma_address,
2717				       s->dma_length, dir);
2718		s->dma_address = s->dma_length = 0;
2719	}
2720
2721	mapped_elems = 0;
2722
2723	goto out;
2724}
2725
2726/*
2727 * The exported map_sg function for dma_ops (handles scatter-gather
2728 * lists).
2729 */
2730static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2731		     int nelems, enum dma_data_direction dir,
2732		     struct dma_attrs *attrs)
2733{
2734	unsigned long flags;
2735	struct protection_domain *domain;
2736	struct scatterlist *s;
2737	int i;
2738
2739	INC_STATS_COUNTER(cnt_unmap_sg);
2740
2741	domain = get_domain(dev);
2742	if (IS_ERR(domain))
2743		return;
2744
2745	spin_lock_irqsave(&domain->lock, flags);
2746
2747	for_each_sg(sglist, s, nelems, i) {
2748		__unmap_single(domain->priv, s->dma_address,
2749			       s->dma_length, dir);
2750		s->dma_address = s->dma_length = 0;
2751	}
2752
2753	domain_flush_complete(domain);
2754
2755	spin_unlock_irqrestore(&domain->lock, flags);
2756}
2757
2758/*
2759 * The exported alloc_coherent function for dma_ops.
2760 */
2761static void *alloc_coherent(struct device *dev, size_t size,
2762			    dma_addr_t *dma_addr, gfp_t flag,
2763			    struct dma_attrs *attrs)
2764{
2765	unsigned long flags;
2766	void *virt_addr;
2767	struct protection_domain *domain;
2768	phys_addr_t paddr;
2769	u64 dma_mask = dev->coherent_dma_mask;
2770
2771	INC_STATS_COUNTER(cnt_alloc_coherent);
2772
2773	domain = get_domain(dev);
2774	if (PTR_ERR(domain) == -EINVAL) {
2775		virt_addr = (void *)__get_free_pages(flag, get_order(size));
2776		*dma_addr = __pa(virt_addr);
2777		return virt_addr;
2778	} else if (IS_ERR(domain))
2779		return NULL;
2780
2781	dma_mask  = dev->coherent_dma_mask;
2782	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2783	flag     |= __GFP_ZERO;
2784
2785	virt_addr = (void *)__get_free_pages(flag, get_order(size));
2786	if (!virt_addr)
2787		return NULL;
2788
2789	paddr = virt_to_phys(virt_addr);
2790
2791	if (!dma_mask)
2792		dma_mask = *dev->dma_mask;
2793
2794	spin_lock_irqsave(&domain->lock, flags);
2795
2796	*dma_addr = __map_single(dev, domain->priv, paddr,
2797				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2798
2799	if (*dma_addr == DMA_ERROR_CODE) {
2800		spin_unlock_irqrestore(&domain->lock, flags);
2801		goto out_free;
2802	}
2803
2804	domain_flush_complete(domain);
2805
2806	spin_unlock_irqrestore(&domain->lock, flags);
2807
2808	return virt_addr;
2809
2810out_free:
2811
2812	free_pages((unsigned long)virt_addr, get_order(size));
2813
2814	return NULL;
2815}
2816
2817/*
2818 * The exported free_coherent function for dma_ops.
2819 */
2820static void free_coherent(struct device *dev, size_t size,
2821			  void *virt_addr, dma_addr_t dma_addr,
2822			  struct dma_attrs *attrs)
2823{
2824	unsigned long flags;
2825	struct protection_domain *domain;
2826
2827	INC_STATS_COUNTER(cnt_free_coherent);
2828
2829	domain = get_domain(dev);
2830	if (IS_ERR(domain))
2831		goto free_mem;
2832
2833	spin_lock_irqsave(&domain->lock, flags);
2834
2835	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2836
2837	domain_flush_complete(domain);
2838
2839	spin_unlock_irqrestore(&domain->lock, flags);
2840
2841free_mem:
2842	free_pages((unsigned long)virt_addr, get_order(size));
2843}
2844
2845/*
2846 * This function is called by the DMA layer to find out if we can handle a
2847 * particular device. It is part of the dma_ops.
2848 */
2849static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2850{
2851	return check_device(dev);
2852}
2853
2854/*
2855 * The function for pre-allocating protection domains.
2856 *
2857 * If the driver core informs the DMA layer if a driver grabs a device
2858 * we don't need to preallocate the protection domains anymore.
2859 * For now we have to.
2860 */
2861static void __init prealloc_protection_domains(void)
2862{
2863	struct iommu_dev_data *dev_data;
2864	struct dma_ops_domain *dma_dom;
2865	struct pci_dev *dev = NULL;
2866	u16 devid;
2867
2868	for_each_pci_dev(dev) {
2869
2870		/* Do we handle this device? */
2871		if (!check_device(&dev->dev))
2872			continue;
2873
2874		dev_data = get_dev_data(&dev->dev);
2875		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
2876			/* Make sure passthrough domain is allocated */
2877			alloc_passthrough_domain();
2878			dev_data->passthrough = true;
2879			attach_device(&dev->dev, pt_domain);
2880			pr_info("AMD-Vi: Using passthough domain for device %s\n",
2881				dev_name(&dev->dev));
2882		}
2883
2884		/* Is there already any domain for it? */
2885		if (domain_for_device(&dev->dev))
2886			continue;
2887
2888		devid = get_device_id(&dev->dev);
2889
2890		dma_dom = dma_ops_domain_alloc();
2891		if (!dma_dom)
2892			continue;
2893		init_unity_mappings_for_device(dma_dom, devid);
2894		dma_dom->target_dev = devid;
2895
2896		attach_device(&dev->dev, &dma_dom->domain);
2897
2898		list_add_tail(&dma_dom->list, &iommu_pd_list);
2899	}
2900}
2901
2902static struct dma_map_ops amd_iommu_dma_ops = {
2903	.alloc = alloc_coherent,
2904	.free = free_coherent,
2905	.map_page = map_page,
2906	.unmap_page = unmap_page,
2907	.map_sg = map_sg,
2908	.unmap_sg = unmap_sg,
2909	.dma_supported = amd_iommu_dma_supported,
2910};
2911
2912static unsigned device_dma_ops_init(void)
2913{
2914	struct iommu_dev_data *dev_data;
2915	struct pci_dev *pdev = NULL;
2916	unsigned unhandled = 0;
2917
2918	for_each_pci_dev(pdev) {
2919		if (!check_device(&pdev->dev)) {
2920
2921			iommu_ignore_device(&pdev->dev);
2922
2923			unhandled += 1;
2924			continue;
2925		}
2926
2927		dev_data = get_dev_data(&pdev->dev);
2928
2929		if (!dev_data->passthrough)
2930			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2931		else
2932			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
2933	}
2934
2935	return unhandled;
2936}
2937
2938/*
2939 * The function which clues the AMD IOMMU driver into dma_ops.
2940 */
2941
2942void __init amd_iommu_init_api(void)
2943{
2944	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2945}
2946
2947int __init amd_iommu_init_dma_ops(void)
2948{
2949	struct amd_iommu *iommu;
2950	int ret, unhandled;
2951
2952	/*
2953	 * first allocate a default protection domain for every IOMMU we
2954	 * found in the system. Devices not assigned to any other
2955	 * protection domain will be assigned to the default one.
2956	 */
2957	for_each_iommu(iommu) {
2958		iommu->default_dom = dma_ops_domain_alloc();
2959		if (iommu->default_dom == NULL)
2960			return -ENOMEM;
2961		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2962		ret = iommu_init_unity_mappings(iommu);
2963		if (ret)
2964			goto free_domains;
2965	}
2966
2967	/*
2968	 * Pre-allocate the protection domains for each device.
2969	 */
2970	prealloc_protection_domains();
2971
2972	iommu_detected = 1;
2973	swiotlb = 0;
2974
2975	/* Make the driver finally visible to the drivers */
2976	unhandled = device_dma_ops_init();
2977	if (unhandled && max_pfn > MAX_DMA32_PFN) {
2978		/* There are unhandled devices - initialize swiotlb for them */
2979		swiotlb = 1;
2980	}
2981
2982	amd_iommu_stats_init();
2983
2984	return 0;
2985
2986free_domains:
2987
2988	for_each_iommu(iommu) {
2989		if (iommu->default_dom)
2990			dma_ops_domain_free(iommu->default_dom);
2991	}
2992
2993	return ret;
2994}
2995
2996/*****************************************************************************
2997 *
2998 * The following functions belong to the exported interface of AMD IOMMU
2999 *
3000 * This interface allows access to lower level functions of the IOMMU
3001 * like protection domain handling and assignement of devices to domains
3002 * which is not possible with the dma_ops interface.
3003 *
3004 *****************************************************************************/
3005
3006static void cleanup_domain(struct protection_domain *domain)
3007{
3008	struct iommu_dev_data *dev_data, *next;
3009	unsigned long flags;
3010
3011	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3012
3013	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3014		__detach_device(dev_data);
3015		atomic_set(&dev_data->bind, 0);
3016	}
3017
3018	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3019}
3020
3021static void protection_domain_free(struct protection_domain *domain)
3022{
3023	if (!domain)
3024		return;
3025
3026	del_domain_from_list(domain);
3027
3028	if (domain->id)
3029		domain_id_free(domain->id);
3030
3031	kfree(domain);
3032}
3033
3034static struct protection_domain *protection_domain_alloc(void)
3035{
3036	struct protection_domain *domain;
3037
3038	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3039	if (!domain)
3040		return NULL;
3041
3042	spin_lock_init(&domain->lock);
3043	mutex_init(&domain->api_lock);
3044	domain->id = domain_id_alloc();
3045	if (!domain->id)
3046		goto out_err;
3047	INIT_LIST_HEAD(&domain->dev_list);
3048
3049	add_domain_to_list(domain);
3050
3051	return domain;
3052
3053out_err:
3054	kfree(domain);
3055
3056	return NULL;
3057}
3058
3059static int __init alloc_passthrough_domain(void)
3060{
3061	if (pt_domain != NULL)
3062		return 0;
3063
3064	/* allocate passthrough domain */
3065	pt_domain = protection_domain_alloc();
3066	if (!pt_domain)
3067		return -ENOMEM;
3068
3069	pt_domain->mode = PAGE_MODE_NONE;
3070
3071	return 0;
3072}
3073static int amd_iommu_domain_init(struct iommu_domain *dom)
3074{
3075	struct protection_domain *domain;
3076
3077	domain = protection_domain_alloc();
3078	if (!domain)
3079		goto out_free;
3080
3081	domain->mode    = PAGE_MODE_3_LEVEL;
3082	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3083	if (!domain->pt_root)
3084		goto out_free;
3085
3086	domain->iommu_domain = dom;
3087
3088	dom->priv = domain;
3089
3090	return 0;
3091
3092out_free:
3093	protection_domain_free(domain);
3094
3095	return -ENOMEM;
3096}
3097
3098static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3099{
3100	struct protection_domain *domain = dom->priv;
3101
3102	if (!domain)
3103		return;
3104
3105	if (domain->dev_cnt > 0)
3106		cleanup_domain(domain);
3107
3108	BUG_ON(domain->dev_cnt != 0);
3109
3110	if (domain->mode != PAGE_MODE_NONE)
3111		free_pagetable(domain);
3112
3113	if (domain->flags & PD_IOMMUV2_MASK)
3114		free_gcr3_table(domain);
3115
3116	protection_domain_free(domain);
3117
3118	dom->priv = NULL;
3119}
3120
3121static void amd_iommu_detach_device(struct iommu_domain *dom,
3122				    struct device *dev)
3123{
3124	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3125	struct amd_iommu *iommu;
3126	u16 devid;
3127
3128	if (!check_device(dev))
3129		return;
3130
3131	devid = get_device_id(dev);
3132
3133	if (dev_data->domain != NULL)
3134		detach_device(dev);
3135
3136	iommu = amd_iommu_rlookup_table[devid];
3137	if (!iommu)
3138		return;
3139
3140	iommu_completion_wait(iommu);
3141}
3142
3143static int amd_iommu_attach_device(struct iommu_domain *dom,
3144				   struct device *dev)
3145{
3146	struct protection_domain *domain = dom->priv;
3147	struct iommu_dev_data *dev_data;
3148	struct amd_iommu *iommu;
3149	int ret;
3150
3151	if (!check_device(dev))
3152		return -EINVAL;
3153
3154	dev_data = dev->archdata.iommu;
3155
3156	iommu = amd_iommu_rlookup_table[dev_data->devid];
3157	if (!iommu)
3158		return -EINVAL;
3159
3160	if (dev_data->domain)
3161		detach_device(dev);
3162
3163	ret = attach_device(dev, domain);
3164
3165	iommu_completion_wait(iommu);
3166
3167	return ret;
3168}
3169
3170static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3171			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3172{
 
3173	struct protection_domain *domain = dom->priv;
3174	int prot = 0;
3175	int ret;
3176
3177	if (domain->mode == PAGE_MODE_NONE)
3178		return -EINVAL;
3179
3180	if (iommu_prot & IOMMU_READ)
3181		prot |= IOMMU_PROT_IR;
3182	if (iommu_prot & IOMMU_WRITE)
3183		prot |= IOMMU_PROT_IW;
3184
3185	mutex_lock(&domain->api_lock);
3186	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3187	mutex_unlock(&domain->api_lock);
3188
3189	return ret;
3190}
3191
3192static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3193			   size_t page_size)
3194{
3195	struct protection_domain *domain = dom->priv;
3196	size_t unmap_size;
3197
3198	if (domain->mode == PAGE_MODE_NONE)
3199		return -EINVAL;
3200
3201	mutex_lock(&domain->api_lock);
3202	unmap_size = iommu_unmap_page(domain, iova, page_size);
3203	mutex_unlock(&domain->api_lock);
3204
3205	domain_flush_tlb_pde(domain);
3206
3207	return unmap_size;
3208}
3209
3210static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3211					  unsigned long iova)
3212{
3213	struct protection_domain *domain = dom->priv;
3214	unsigned long offset_mask;
3215	phys_addr_t paddr;
3216	u64 *pte, __pte;
3217
3218	if (domain->mode == PAGE_MODE_NONE)
3219		return iova;
3220
3221	pte = fetch_pte(domain, iova);
3222
3223	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3224		return 0;
3225
3226	if (PM_PTE_LEVEL(*pte) == 0)
3227		offset_mask = PAGE_SIZE - 1;
3228	else
3229		offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3230
3231	__pte = *pte & PM_ADDR_MASK;
3232	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3233
3234	return paddr;
3235}
3236
3237static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3238				    unsigned long cap)
3239{
3240	switch (cap) {
3241	case IOMMU_CAP_CACHE_COHERENCY:
3242		return 1;
3243	}
3244
3245	return 0;
3246}
3247
3248static int amd_iommu_device_group(struct device *dev, unsigned int *groupid)
3249{
3250	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3251	struct pci_dev *pdev = to_pci_dev(dev);
3252	u16 devid;
3253
3254	if (!dev_data)
3255		return -ENODEV;
3256
3257	if (pdev->is_virtfn || !iommu_group_mf)
3258		devid = dev_data->devid;
3259	else
3260		devid = calc_devid(pdev->bus->number,
3261				   PCI_DEVFN(PCI_SLOT(pdev->devfn), 0));
3262
3263	*groupid = amd_iommu_alias_table[devid];
3264
3265	return 0;
3266}
3267
3268static struct iommu_ops amd_iommu_ops = {
3269	.domain_init = amd_iommu_domain_init,
3270	.domain_destroy = amd_iommu_domain_destroy,
3271	.attach_dev = amd_iommu_attach_device,
3272	.detach_dev = amd_iommu_detach_device,
3273	.map = amd_iommu_map,
3274	.unmap = amd_iommu_unmap,
3275	.iova_to_phys = amd_iommu_iova_to_phys,
3276	.domain_has_cap = amd_iommu_domain_has_cap,
3277	.device_group = amd_iommu_device_group,
3278	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3279};
3280
3281/*****************************************************************************
3282 *
3283 * The next functions do a basic initialization of IOMMU for pass through
3284 * mode
3285 *
3286 * In passthrough mode the IOMMU is initialized and enabled but not used for
3287 * DMA-API translation.
3288 *
3289 *****************************************************************************/
3290
3291int __init amd_iommu_init_passthrough(void)
3292{
3293	struct iommu_dev_data *dev_data;
3294	struct pci_dev *dev = NULL;
3295	struct amd_iommu *iommu;
3296	u16 devid;
3297	int ret;
3298
3299	ret = alloc_passthrough_domain();
3300	if (ret)
3301		return ret;
 
 
 
3302
3303	for_each_pci_dev(dev) {
3304		if (!check_device(&dev->dev))
3305			continue;
3306
3307		dev_data = get_dev_data(&dev->dev);
3308		dev_data->passthrough = true;
3309
3310		devid = get_device_id(&dev->dev);
3311
3312		iommu = amd_iommu_rlookup_table[devid];
3313		if (!iommu)
3314			continue;
3315
3316		attach_device(&dev->dev, pt_domain);
3317	}
3318
3319	amd_iommu_stats_init();
3320
3321	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3322
3323	return 0;
3324}
3325
3326/* IOMMUv2 specific functions */
3327int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3328{
3329	return atomic_notifier_chain_register(&ppr_notifier, nb);
3330}
3331EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3332
3333int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3334{
3335	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3336}
3337EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3338
3339void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3340{
3341	struct protection_domain *domain = dom->priv;
3342	unsigned long flags;
3343
3344	spin_lock_irqsave(&domain->lock, flags);
3345
3346	/* Update data structure */
3347	domain->mode    = PAGE_MODE_NONE;
3348	domain->updated = true;
3349
3350	/* Make changes visible to IOMMUs */
3351	update_domain(domain);
3352
3353	/* Page-table is not visible to IOMMU anymore, so free it */
3354	free_pagetable(domain);
3355
3356	spin_unlock_irqrestore(&domain->lock, flags);
3357}
3358EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3359
3360int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3361{
3362	struct protection_domain *domain = dom->priv;
3363	unsigned long flags;
3364	int levels, ret;
3365
3366	if (pasids <= 0 || pasids > (PASID_MASK + 1))
3367		return -EINVAL;
3368
3369	/* Number of GCR3 table levels required */
3370	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3371		levels += 1;
3372
3373	if (levels > amd_iommu_max_glx_val)
3374		return -EINVAL;
3375
3376	spin_lock_irqsave(&domain->lock, flags);
3377
3378	/*
3379	 * Save us all sanity checks whether devices already in the
3380	 * domain support IOMMUv2. Just force that the domain has no
3381	 * devices attached when it is switched into IOMMUv2 mode.
3382	 */
3383	ret = -EBUSY;
3384	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3385		goto out;
3386
3387	ret = -ENOMEM;
3388	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3389	if (domain->gcr3_tbl == NULL)
3390		goto out;
3391
3392	domain->glx      = levels;
3393	domain->flags   |= PD_IOMMUV2_MASK;
3394	domain->updated  = true;
3395
3396	update_domain(domain);
3397
3398	ret = 0;
3399
3400out:
3401	spin_unlock_irqrestore(&domain->lock, flags);
3402
3403	return ret;
3404}
3405EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3406
3407static int __flush_pasid(struct protection_domain *domain, int pasid,
3408			 u64 address, bool size)
3409{
3410	struct iommu_dev_data *dev_data;
3411	struct iommu_cmd cmd;
3412	int i, ret;
3413
3414	if (!(domain->flags & PD_IOMMUV2_MASK))
3415		return -EINVAL;
3416
3417	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3418
3419	/*
3420	 * IOMMU TLB needs to be flushed before Device TLB to
3421	 * prevent device TLB refill from IOMMU TLB
3422	 */
3423	for (i = 0; i < amd_iommus_present; ++i) {
3424		if (domain->dev_iommu[i] == 0)
3425			continue;
3426
3427		ret = iommu_queue_command(amd_iommus[i], &cmd);
3428		if (ret != 0)
3429			goto out;
3430	}
3431
3432	/* Wait until IOMMU TLB flushes are complete */
3433	domain_flush_complete(domain);
3434
3435	/* Now flush device TLBs */
3436	list_for_each_entry(dev_data, &domain->dev_list, list) {
3437		struct amd_iommu *iommu;
3438		int qdep;
3439
3440		BUG_ON(!dev_data->ats.enabled);
3441
3442		qdep  = dev_data->ats.qdep;
3443		iommu = amd_iommu_rlookup_table[dev_data->devid];
3444
3445		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3446				      qdep, address, size);
3447
3448		ret = iommu_queue_command(iommu, &cmd);
3449		if (ret != 0)
3450			goto out;
3451	}
3452
3453	/* Wait until all device TLBs are flushed */
3454	domain_flush_complete(domain);
3455
3456	ret = 0;
3457
3458out:
3459
3460	return ret;
3461}
3462
3463static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3464				  u64 address)
3465{
3466	INC_STATS_COUNTER(invalidate_iotlb);
3467
3468	return __flush_pasid(domain, pasid, address, false);
3469}
3470
3471int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3472			 u64 address)
3473{
3474	struct protection_domain *domain = dom->priv;
3475	unsigned long flags;
3476	int ret;
3477
3478	spin_lock_irqsave(&domain->lock, flags);
3479	ret = __amd_iommu_flush_page(domain, pasid, address);
3480	spin_unlock_irqrestore(&domain->lock, flags);
3481
3482	return ret;
3483}
3484EXPORT_SYMBOL(amd_iommu_flush_page);
3485
3486static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3487{
3488	INC_STATS_COUNTER(invalidate_iotlb_all);
3489
3490	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3491			     true);
3492}
3493
3494int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3495{
3496	struct protection_domain *domain = dom->priv;
3497	unsigned long flags;
3498	int ret;
3499
3500	spin_lock_irqsave(&domain->lock, flags);
3501	ret = __amd_iommu_flush_tlb(domain, pasid);
3502	spin_unlock_irqrestore(&domain->lock, flags);
3503
3504	return ret;
3505}
3506EXPORT_SYMBOL(amd_iommu_flush_tlb);
3507
3508static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3509{
3510	int index;
3511	u64 *pte;
3512
3513	while (true) {
3514
3515		index = (pasid >> (9 * level)) & 0x1ff;
3516		pte   = &root[index];
3517
3518		if (level == 0)
3519			break;
3520
3521		if (!(*pte & GCR3_VALID)) {
3522			if (!alloc)
3523				return NULL;
3524
3525			root = (void *)get_zeroed_page(GFP_ATOMIC);
3526			if (root == NULL)
3527				return NULL;
3528
3529			*pte = __pa(root) | GCR3_VALID;
3530		}
3531
3532		root = __va(*pte & PAGE_MASK);
3533
3534		level -= 1;
3535	}
3536
3537	return pte;
3538}
3539
3540static int __set_gcr3(struct protection_domain *domain, int pasid,
3541		      unsigned long cr3)
3542{
3543	u64 *pte;
3544
3545	if (domain->mode != PAGE_MODE_NONE)
3546		return -EINVAL;
3547
3548	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3549	if (pte == NULL)
3550		return -ENOMEM;
3551
3552	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3553
3554	return __amd_iommu_flush_tlb(domain, pasid);
3555}
3556
3557static int __clear_gcr3(struct protection_domain *domain, int pasid)
3558{
3559	u64 *pte;
3560
3561	if (domain->mode != PAGE_MODE_NONE)
3562		return -EINVAL;
3563
3564	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3565	if (pte == NULL)
3566		return 0;
3567
3568	*pte = 0;
3569
3570	return __amd_iommu_flush_tlb(domain, pasid);
3571}
3572
3573int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3574			      unsigned long cr3)
3575{
3576	struct protection_domain *domain = dom->priv;
3577	unsigned long flags;
3578	int ret;
3579
3580	spin_lock_irqsave(&domain->lock, flags);
3581	ret = __set_gcr3(domain, pasid, cr3);
3582	spin_unlock_irqrestore(&domain->lock, flags);
3583
3584	return ret;
3585}
3586EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3587
3588int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3589{
3590	struct protection_domain *domain = dom->priv;
3591	unsigned long flags;
3592	int ret;
3593
3594	spin_lock_irqsave(&domain->lock, flags);
3595	ret = __clear_gcr3(domain, pasid);
3596	spin_unlock_irqrestore(&domain->lock, flags);
3597
3598	return ret;
3599}
3600EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3601
3602int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3603			   int status, int tag)
3604{
3605	struct iommu_dev_data *dev_data;
3606	struct amd_iommu *iommu;
3607	struct iommu_cmd cmd;
3608
3609	INC_STATS_COUNTER(complete_ppr);
3610
3611	dev_data = get_dev_data(&pdev->dev);
3612	iommu    = amd_iommu_rlookup_table[dev_data->devid];
3613
3614	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3615			   tag, dev_data->pri_tlp);
3616
3617	return iommu_queue_command(iommu, &cmd);
3618}
3619EXPORT_SYMBOL(amd_iommu_complete_ppr);
3620
3621struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3622{
3623	struct protection_domain *domain;
3624
3625	domain = get_domain(&pdev->dev);
3626	if (IS_ERR(domain))
3627		return NULL;
3628
3629	/* Only return IOMMUv2 domains */
3630	if (!(domain->flags & PD_IOMMUV2_MASK))
3631		return NULL;
3632
3633	return domain->iommu_domain;
3634}
3635EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3636
3637void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3638{
3639	struct iommu_dev_data *dev_data;
3640
3641	if (!amd_iommu_v2_supported())
3642		return;
3643
3644	dev_data = get_dev_data(&pdev->dev);
3645	dev_data->errata |= (1 << erratum);
3646}
3647EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3648
3649int amd_iommu_device_info(struct pci_dev *pdev,
3650                          struct amd_iommu_device_info *info)
3651{
3652	int max_pasids;
3653	int pos;
3654
3655	if (pdev == NULL || info == NULL)
3656		return -EINVAL;
3657
3658	if (!amd_iommu_v2_supported())
3659		return -EINVAL;
3660
3661	memset(info, 0, sizeof(*info));
3662
3663	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3664	if (pos)
3665		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3666
3667	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3668	if (pos)
3669		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3670
3671	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3672	if (pos) {
3673		int features;
3674
3675		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3676		max_pasids = min(max_pasids, (1 << 20));
3677
3678		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3679		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3680
3681		features = pci_pasid_features(pdev);
3682		if (features & PCI_PASID_CAP_EXEC)
3683			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3684		if (features & PCI_PASID_CAP_PRIV)
3685			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3686	}
3687
3688	return 0;
3689}
3690EXPORT_SYMBOL(amd_iommu_device_info);