Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
   3 * Author: Joerg Roedel <joerg.roedel@amd.com>
   4 *         Leo Duran <leo.duran@amd.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  18 */
  19
  20#include <linux/pci.h>
  21#include <linux/pci-ats.h>
  22#include <linux/bitmap.h>
  23#include <linux/slab.h>
  24#include <linux/debugfs.h>
  25#include <linux/scatterlist.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/iommu-helper.h>
  28#include <linux/iommu.h>
  29#include <linux/delay.h>
  30#include <linux/amd-iommu.h>
  31#include <asm/msidef.h>
  32#include <asm/proto.h>
  33#include <asm/iommu.h>
  34#include <asm/gart.h>
  35#include <asm/dma.h>
  36
  37#include "amd_iommu_proto.h"
  38#include "amd_iommu_types.h"
  39
  40#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  41
  42#define LOOP_TIMEOUT	100000
  43
  44static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  45
  46/* A list of preallocated protection domains */
  47static LIST_HEAD(iommu_pd_list);
  48static DEFINE_SPINLOCK(iommu_pd_list_lock);
  49
  50/* List of all available dev_data structures */
  51static LIST_HEAD(dev_data_list);
  52static DEFINE_SPINLOCK(dev_data_list_lock);
  53
  54/*
  55 * Domain for untranslated devices - only allocated
  56 * if iommu=pt passed on kernel cmd line.
  57 */
  58static struct protection_domain *pt_domain;
  59
  60static struct iommu_ops amd_iommu_ops;
  61
  62/*
  63 * general struct to manage commands send to an IOMMU
  64 */
  65struct iommu_cmd {
  66	u32 data[4];
  67};
  68
  69static void update_domain(struct protection_domain *domain);
  70
  71/****************************************************************************
  72 *
  73 * Helper functions
  74 *
  75 ****************************************************************************/
  76
  77static struct iommu_dev_data *alloc_dev_data(u16 devid)
  78{
  79	struct iommu_dev_data *dev_data;
  80	unsigned long flags;
  81
  82	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
  83	if (!dev_data)
  84		return NULL;
  85
  86	dev_data->devid = devid;
  87	atomic_set(&dev_data->bind, 0);
  88
  89	spin_lock_irqsave(&dev_data_list_lock, flags);
  90	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
  91	spin_unlock_irqrestore(&dev_data_list_lock, flags);
  92
  93	return dev_data;
  94}
  95
  96static void free_dev_data(struct iommu_dev_data *dev_data)
  97{
  98	unsigned long flags;
  99
 100	spin_lock_irqsave(&dev_data_list_lock, flags);
 101	list_del(&dev_data->dev_data_list);
 102	spin_unlock_irqrestore(&dev_data_list_lock, flags);
 103
 104	kfree(dev_data);
 105}
 106
 107static struct iommu_dev_data *search_dev_data(u16 devid)
 108{
 109	struct iommu_dev_data *dev_data;
 110	unsigned long flags;
 111
 112	spin_lock_irqsave(&dev_data_list_lock, flags);
 113	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
 114		if (dev_data->devid == devid)
 115			goto out_unlock;
 116	}
 117
 118	dev_data = NULL;
 119
 120out_unlock:
 121	spin_unlock_irqrestore(&dev_data_list_lock, flags);
 122
 123	return dev_data;
 124}
 125
 126static struct iommu_dev_data *find_dev_data(u16 devid)
 127{
 128	struct iommu_dev_data *dev_data;
 129
 130	dev_data = search_dev_data(devid);
 131
 132	if (dev_data == NULL)
 133		dev_data = alloc_dev_data(devid);
 134
 135	return dev_data;
 136}
 137
 138static inline u16 get_device_id(struct device *dev)
 139{
 140	struct pci_dev *pdev = to_pci_dev(dev);
 141
 142	return calc_devid(pdev->bus->number, pdev->devfn);
 143}
 144
 145static struct iommu_dev_data *get_dev_data(struct device *dev)
 146{
 147	return dev->archdata.iommu;
 148}
 149
 150/*
 151 * In this function the list of preallocated protection domains is traversed to
 152 * find the domain for a specific device
 153 */
 154static struct dma_ops_domain *find_protection_domain(u16 devid)
 155{
 156	struct dma_ops_domain *entry, *ret = NULL;
 157	unsigned long flags;
 158	u16 alias = amd_iommu_alias_table[devid];
 159
 160	if (list_empty(&iommu_pd_list))
 161		return NULL;
 162
 163	spin_lock_irqsave(&iommu_pd_list_lock, flags);
 164
 165	list_for_each_entry(entry, &iommu_pd_list, list) {
 166		if (entry->target_dev == devid ||
 167		    entry->target_dev == alias) {
 168			ret = entry;
 169			break;
 170		}
 171	}
 172
 173	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
 174
 175	return ret;
 176}
 177
 178/*
 179 * This function checks if the driver got a valid device from the caller to
 180 * avoid dereferencing invalid pointers.
 181 */
 182static bool check_device(struct device *dev)
 183{
 184	u16 devid;
 185
 186	if (!dev || !dev->dma_mask)
 187		return false;
 188
 189	/* No device or no PCI device */
 190	if (dev->bus != &pci_bus_type)
 191		return false;
 192
 193	devid = get_device_id(dev);
 194
 195	/* Out of our scope? */
 196	if (devid > amd_iommu_last_bdf)
 197		return false;
 198
 199	if (amd_iommu_rlookup_table[devid] == NULL)
 200		return false;
 201
 202	return true;
 203}
 204
 205static int iommu_init_device(struct device *dev)
 206{
 207	struct iommu_dev_data *dev_data;
 208	u16 alias;
 209
 210	if (dev->archdata.iommu)
 211		return 0;
 212
 213	dev_data = find_dev_data(get_device_id(dev));
 214	if (!dev_data)
 215		return -ENOMEM;
 216
 217	alias = amd_iommu_alias_table[dev_data->devid];
 218	if (alias != dev_data->devid) {
 219		struct iommu_dev_data *alias_data;
 220
 221		alias_data = find_dev_data(alias);
 222		if (alias_data == NULL) {
 223			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
 224					dev_name(dev));
 225			free_dev_data(dev_data);
 226			return -ENOTSUPP;
 227		}
 228		dev_data->alias_data = alias_data;
 229	}
 230
 231	dev->archdata.iommu = dev_data;
 232
 233	return 0;
 234}
 235
 236static void iommu_ignore_device(struct device *dev)
 237{
 238	u16 devid, alias;
 239
 240	devid = get_device_id(dev);
 241	alias = amd_iommu_alias_table[devid];
 242
 243	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
 244	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
 245
 246	amd_iommu_rlookup_table[devid] = NULL;
 247	amd_iommu_rlookup_table[alias] = NULL;
 248}
 249
 250static void iommu_uninit_device(struct device *dev)
 251{
 252	/*
 253	 * Nothing to do here - we keep dev_data around for unplugged devices
 254	 * and reuse it when the device is re-plugged - not doing so would
 255	 * introduce a ton of races.
 256	 */
 257}
 258
 259void __init amd_iommu_uninit_devices(void)
 260{
 261	struct iommu_dev_data *dev_data, *n;
 262	struct pci_dev *pdev = NULL;
 263
 264	for_each_pci_dev(pdev) {
 265
 266		if (!check_device(&pdev->dev))
 267			continue;
 268
 269		iommu_uninit_device(&pdev->dev);
 270	}
 271
 272	/* Free all of our dev_data structures */
 273	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
 274		free_dev_data(dev_data);
 275}
 276
 277int __init amd_iommu_init_devices(void)
 278{
 279	struct pci_dev *pdev = NULL;
 280	int ret = 0;
 281
 282	for_each_pci_dev(pdev) {
 283
 284		if (!check_device(&pdev->dev))
 285			continue;
 286
 287		ret = iommu_init_device(&pdev->dev);
 288		if (ret == -ENOTSUPP)
 289			iommu_ignore_device(&pdev->dev);
 290		else if (ret)
 291			goto out_free;
 292	}
 293
 294	return 0;
 295
 296out_free:
 297
 298	amd_iommu_uninit_devices();
 299
 300	return ret;
 301}
 302#ifdef CONFIG_AMD_IOMMU_STATS
 303
 304/*
 305 * Initialization code for statistics collection
 306 */
 307
 308DECLARE_STATS_COUNTER(compl_wait);
 309DECLARE_STATS_COUNTER(cnt_map_single);
 310DECLARE_STATS_COUNTER(cnt_unmap_single);
 311DECLARE_STATS_COUNTER(cnt_map_sg);
 312DECLARE_STATS_COUNTER(cnt_unmap_sg);
 313DECLARE_STATS_COUNTER(cnt_alloc_coherent);
 314DECLARE_STATS_COUNTER(cnt_free_coherent);
 315DECLARE_STATS_COUNTER(cross_page);
 316DECLARE_STATS_COUNTER(domain_flush_single);
 317DECLARE_STATS_COUNTER(domain_flush_all);
 318DECLARE_STATS_COUNTER(alloced_io_mem);
 319DECLARE_STATS_COUNTER(total_map_requests);
 320
 321static struct dentry *stats_dir;
 322static struct dentry *de_fflush;
 323
 324static void amd_iommu_stats_add(struct __iommu_counter *cnt)
 325{
 326	if (stats_dir == NULL)
 327		return;
 328
 329	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
 330				       &cnt->value);
 331}
 332
 333static void amd_iommu_stats_init(void)
 334{
 335	stats_dir = debugfs_create_dir("amd-iommu", NULL);
 336	if (stats_dir == NULL)
 337		return;
 338
 339	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
 340					 (u32 *)&amd_iommu_unmap_flush);
 341
 342	amd_iommu_stats_add(&compl_wait);
 343	amd_iommu_stats_add(&cnt_map_single);
 344	amd_iommu_stats_add(&cnt_unmap_single);
 345	amd_iommu_stats_add(&cnt_map_sg);
 346	amd_iommu_stats_add(&cnt_unmap_sg);
 347	amd_iommu_stats_add(&cnt_alloc_coherent);
 348	amd_iommu_stats_add(&cnt_free_coherent);
 349	amd_iommu_stats_add(&cross_page);
 350	amd_iommu_stats_add(&domain_flush_single);
 351	amd_iommu_stats_add(&domain_flush_all);
 352	amd_iommu_stats_add(&alloced_io_mem);
 353	amd_iommu_stats_add(&total_map_requests);
 354}
 355
 356#endif
 357
 358/****************************************************************************
 359 *
 360 * Interrupt handling functions
 361 *
 362 ****************************************************************************/
 363
 364static void dump_dte_entry(u16 devid)
 365{
 366	int i;
 367
 368	for (i = 0; i < 8; ++i)
 369		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
 370			amd_iommu_dev_table[devid].data[i]);
 371}
 372
 373static void dump_command(unsigned long phys_addr)
 374{
 375	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
 376	int i;
 377
 378	for (i = 0; i < 4; ++i)
 379		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
 380}
 381
 382static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
 383{
 384	u32 *event = __evt;
 385	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
 386	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
 387	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
 388	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
 389	u64 address = (u64)(((u64)event[3]) << 32) | event[2];
 390
 391	printk(KERN_ERR "AMD-Vi: Event logged [");
 392
 393	switch (type) {
 394	case EVENT_TYPE_ILL_DEV:
 395		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
 396		       "address=0x%016llx flags=0x%04x]\n",
 397		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 398		       address, flags);
 399		dump_dte_entry(devid);
 400		break;
 401	case EVENT_TYPE_IO_FAULT:
 402		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
 403		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 404		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 405		       domid, address, flags);
 406		break;
 407	case EVENT_TYPE_DEV_TAB_ERR:
 408		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 409		       "address=0x%016llx flags=0x%04x]\n",
 410		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 411		       address, flags);
 412		break;
 413	case EVENT_TYPE_PAGE_TAB_ERR:
 414		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 415		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 416		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 417		       domid, address, flags);
 418		break;
 419	case EVENT_TYPE_ILL_CMD:
 420		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
 421		dump_command(address);
 422		break;
 423	case EVENT_TYPE_CMD_HARD_ERR:
 424		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
 425		       "flags=0x%04x]\n", address, flags);
 426		break;
 427	case EVENT_TYPE_IOTLB_INV_TO:
 428		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
 429		       "address=0x%016llx]\n",
 430		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 431		       address);
 432		break;
 433	case EVENT_TYPE_INV_DEV_REQ:
 434		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
 435		       "address=0x%016llx flags=0x%04x]\n",
 436		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 437		       address, flags);
 438		break;
 439	default:
 440		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
 441	}
 442}
 443
 444static void iommu_poll_events(struct amd_iommu *iommu)
 445{
 446	u32 head, tail;
 447	unsigned long flags;
 448
 449	spin_lock_irqsave(&iommu->lock, flags);
 450
 451	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 452	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
 453
 454	while (head != tail) {
 455		iommu_print_event(iommu, iommu->evt_buf + head);
 456		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
 457	}
 458
 459	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 460
 461	spin_unlock_irqrestore(&iommu->lock, flags);
 462}
 463
 464irqreturn_t amd_iommu_int_thread(int irq, void *data)
 465{
 466	struct amd_iommu *iommu;
 467
 468	for_each_iommu(iommu)
 469		iommu_poll_events(iommu);
 470
 471	return IRQ_HANDLED;
 472}
 473
 474irqreturn_t amd_iommu_int_handler(int irq, void *data)
 475{
 476	return IRQ_WAKE_THREAD;
 477}
 478
 479/****************************************************************************
 480 *
 481 * IOMMU command queuing functions
 482 *
 483 ****************************************************************************/
 484
 485static int wait_on_sem(volatile u64 *sem)
 486{
 487	int i = 0;
 488
 489	while (*sem == 0 && i < LOOP_TIMEOUT) {
 490		udelay(1);
 491		i += 1;
 492	}
 493
 494	if (i == LOOP_TIMEOUT) {
 495		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
 496		return -EIO;
 497	}
 498
 499	return 0;
 500}
 501
 502static void copy_cmd_to_buffer(struct amd_iommu *iommu,
 503			       struct iommu_cmd *cmd,
 504			       u32 tail)
 505{
 506	u8 *target;
 507
 508	target = iommu->cmd_buf + tail;
 509	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
 510
 511	/* Copy command to buffer */
 512	memcpy(target, cmd, sizeof(*cmd));
 513
 514	/* Tell the IOMMU about it */
 515	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
 516}
 517
 518static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
 519{
 520	WARN_ON(address & 0x7ULL);
 521
 522	memset(cmd, 0, sizeof(*cmd));
 523	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
 524	cmd->data[1] = upper_32_bits(__pa(address));
 525	cmd->data[2] = 1;
 526	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
 527}
 528
 529static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
 530{
 531	memset(cmd, 0, sizeof(*cmd));
 532	cmd->data[0] = devid;
 533	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
 534}
 535
 536static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
 537				  size_t size, u16 domid, int pde)
 538{
 539	u64 pages;
 540	int s;
 541
 542	pages = iommu_num_pages(address, size, PAGE_SIZE);
 543	s     = 0;
 544
 545	if (pages > 1) {
 546		/*
 547		 * If we have to flush more than one page, flush all
 548		 * TLB entries for this domain
 549		 */
 550		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 551		s = 1;
 552	}
 553
 554	address &= PAGE_MASK;
 555
 556	memset(cmd, 0, sizeof(*cmd));
 557	cmd->data[1] |= domid;
 558	cmd->data[2]  = lower_32_bits(address);
 559	cmd->data[3]  = upper_32_bits(address);
 560	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 561	if (s) /* size bit - we flush more than one 4kb page */
 562		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 563	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
 564		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 565}
 566
 567static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
 568				  u64 address, size_t size)
 569{
 570	u64 pages;
 571	int s;
 572
 573	pages = iommu_num_pages(address, size, PAGE_SIZE);
 574	s     = 0;
 575
 576	if (pages > 1) {
 577		/*
 578		 * If we have to flush more than one page, flush all
 579		 * TLB entries for this domain
 580		 */
 581		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 582		s = 1;
 583	}
 584
 585	address &= PAGE_MASK;
 586
 587	memset(cmd, 0, sizeof(*cmd));
 588	cmd->data[0]  = devid;
 589	cmd->data[0] |= (qdep & 0xff) << 24;
 590	cmd->data[1]  = devid;
 591	cmd->data[2]  = lower_32_bits(address);
 592	cmd->data[3]  = upper_32_bits(address);
 593	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 594	if (s)
 595		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 596}
 597
 598static void build_inv_all(struct iommu_cmd *cmd)
 599{
 600	memset(cmd, 0, sizeof(*cmd));
 601	CMD_SET_TYPE(cmd, CMD_INV_ALL);
 602}
 603
 604/*
 605 * Writes the command to the IOMMUs command buffer and informs the
 606 * hardware about the new command.
 607 */
 608static int iommu_queue_command_sync(struct amd_iommu *iommu,
 609				    struct iommu_cmd *cmd,
 610				    bool sync)
 611{
 612	u32 left, tail, head, next_tail;
 613	unsigned long flags;
 614
 615	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
 616
 617again:
 618	spin_lock_irqsave(&iommu->lock, flags);
 619
 620	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
 621	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
 622	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
 623	left      = (head - next_tail) % iommu->cmd_buf_size;
 624
 625	if (left <= 2) {
 626		struct iommu_cmd sync_cmd;
 627		volatile u64 sem = 0;
 628		int ret;
 629
 630		build_completion_wait(&sync_cmd, (u64)&sem);
 631		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
 632
 633		spin_unlock_irqrestore(&iommu->lock, flags);
 634
 635		if ((ret = wait_on_sem(&sem)) != 0)
 636			return ret;
 637
 638		goto again;
 639	}
 640
 641	copy_cmd_to_buffer(iommu, cmd, tail);
 642
 643	/* We need to sync now to make sure all commands are processed */
 644	iommu->need_sync = sync;
 645
 646	spin_unlock_irqrestore(&iommu->lock, flags);
 647
 648	return 0;
 649}
 650
 651static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
 652{
 653	return iommu_queue_command_sync(iommu, cmd, true);
 654}
 655
 656/*
 657 * This function queues a completion wait command into the command
 658 * buffer of an IOMMU
 659 */
 660static int iommu_completion_wait(struct amd_iommu *iommu)
 661{
 662	struct iommu_cmd cmd;
 663	volatile u64 sem = 0;
 664	int ret;
 665
 666	if (!iommu->need_sync)
 667		return 0;
 668
 669	build_completion_wait(&cmd, (u64)&sem);
 670
 671	ret = iommu_queue_command_sync(iommu, &cmd, false);
 672	if (ret)
 673		return ret;
 674
 675	return wait_on_sem(&sem);
 676}
 677
 678static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
 679{
 680	struct iommu_cmd cmd;
 681
 682	build_inv_dte(&cmd, devid);
 683
 684	return iommu_queue_command(iommu, &cmd);
 685}
 686
 687static void iommu_flush_dte_all(struct amd_iommu *iommu)
 688{
 689	u32 devid;
 690
 691	for (devid = 0; devid <= 0xffff; ++devid)
 692		iommu_flush_dte(iommu, devid);
 693
 694	iommu_completion_wait(iommu);
 695}
 696
 697/*
 698 * This function uses heavy locking and may disable irqs for some time. But
 699 * this is no issue because it is only called during resume.
 700 */
 701static void iommu_flush_tlb_all(struct amd_iommu *iommu)
 702{
 703	u32 dom_id;
 704
 705	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
 706		struct iommu_cmd cmd;
 707		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
 708				      dom_id, 1);
 709		iommu_queue_command(iommu, &cmd);
 710	}
 711
 712	iommu_completion_wait(iommu);
 713}
 714
 715static void iommu_flush_all(struct amd_iommu *iommu)
 716{
 717	struct iommu_cmd cmd;
 718
 719	build_inv_all(&cmd);
 720
 721	iommu_queue_command(iommu, &cmd);
 722	iommu_completion_wait(iommu);
 723}
 724
 725void iommu_flush_all_caches(struct amd_iommu *iommu)
 726{
 727	if (iommu_feature(iommu, FEATURE_IA)) {
 728		iommu_flush_all(iommu);
 729	} else {
 730		iommu_flush_dte_all(iommu);
 731		iommu_flush_tlb_all(iommu);
 732	}
 733}
 734
 735/*
 736 * Command send function for flushing on-device TLB
 737 */
 738static int device_flush_iotlb(struct iommu_dev_data *dev_data,
 739			      u64 address, size_t size)
 740{
 741	struct amd_iommu *iommu;
 742	struct iommu_cmd cmd;
 743	int qdep;
 744
 745	qdep     = dev_data->ats.qdep;
 746	iommu    = amd_iommu_rlookup_table[dev_data->devid];
 747
 748	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
 749
 750	return iommu_queue_command(iommu, &cmd);
 751}
 752
 753/*
 754 * Command send function for invalidating a device table entry
 755 */
 756static int device_flush_dte(struct iommu_dev_data *dev_data)
 757{
 758	struct amd_iommu *iommu;
 759	int ret;
 760
 761	iommu = amd_iommu_rlookup_table[dev_data->devid];
 762
 763	ret = iommu_flush_dte(iommu, dev_data->devid);
 764	if (ret)
 765		return ret;
 766
 767	if (dev_data->ats.enabled)
 768		ret = device_flush_iotlb(dev_data, 0, ~0UL);
 769
 770	return ret;
 771}
 772
 773/*
 774 * TLB invalidation function which is called from the mapping functions.
 775 * It invalidates a single PTE if the range to flush is within a single
 776 * page. Otherwise it flushes the whole TLB of the IOMMU.
 777 */
 778static void __domain_flush_pages(struct protection_domain *domain,
 779				 u64 address, size_t size, int pde)
 780{
 781	struct iommu_dev_data *dev_data;
 782	struct iommu_cmd cmd;
 783	int ret = 0, i;
 784
 785	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
 786
 787	for (i = 0; i < amd_iommus_present; ++i) {
 788		if (!domain->dev_iommu[i])
 789			continue;
 790
 791		/*
 792		 * Devices of this domain are behind this IOMMU
 793		 * We need a TLB flush
 794		 */
 795		ret |= iommu_queue_command(amd_iommus[i], &cmd);
 796	}
 797
 798	list_for_each_entry(dev_data, &domain->dev_list, list) {
 799
 800		if (!dev_data->ats.enabled)
 801			continue;
 802
 803		ret |= device_flush_iotlb(dev_data, address, size);
 804	}
 805
 806	WARN_ON(ret);
 807}
 808
 809static void domain_flush_pages(struct protection_domain *domain,
 810			       u64 address, size_t size)
 811{
 812	__domain_flush_pages(domain, address, size, 0);
 813}
 814
 815/* Flush the whole IO/TLB for a given protection domain */
 816static void domain_flush_tlb(struct protection_domain *domain)
 817{
 818	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
 819}
 820
 821/* Flush the whole IO/TLB for a given protection domain - including PDE */
 822static void domain_flush_tlb_pde(struct protection_domain *domain)
 823{
 824	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
 825}
 826
 827static void domain_flush_complete(struct protection_domain *domain)
 828{
 829	int i;
 830
 831	for (i = 0; i < amd_iommus_present; ++i) {
 832		if (!domain->dev_iommu[i])
 833			continue;
 834
 835		/*
 836		 * Devices of this domain are behind this IOMMU
 837		 * We need to wait for completion of all commands.
 838		 */
 839		iommu_completion_wait(amd_iommus[i]);
 840	}
 841}
 842
 843
 844/*
 845 * This function flushes the DTEs for all devices in domain
 846 */
 847static void domain_flush_devices(struct protection_domain *domain)
 848{
 849	struct iommu_dev_data *dev_data;
 850
 851	list_for_each_entry(dev_data, &domain->dev_list, list)
 852		device_flush_dte(dev_data);
 853}
 854
 855/****************************************************************************
 856 *
 857 * The functions below are used the create the page table mappings for
 858 * unity mapped regions.
 859 *
 860 ****************************************************************************/
 861
 862/*
 863 * This function is used to add another level to an IO page table. Adding
 864 * another level increases the size of the address space by 9 bits to a size up
 865 * to 64 bits.
 866 */
 867static bool increase_address_space(struct protection_domain *domain,
 868				   gfp_t gfp)
 869{
 870	u64 *pte;
 871
 872	if (domain->mode == PAGE_MODE_6_LEVEL)
 873		/* address space already 64 bit large */
 874		return false;
 875
 876	pte = (void *)get_zeroed_page(gfp);
 877	if (!pte)
 878		return false;
 879
 880	*pte             = PM_LEVEL_PDE(domain->mode,
 881					virt_to_phys(domain->pt_root));
 882	domain->pt_root  = pte;
 883	domain->mode    += 1;
 884	domain->updated  = true;
 885
 886	return true;
 887}
 888
 889static u64 *alloc_pte(struct protection_domain *domain,
 890		      unsigned long address,
 891		      unsigned long page_size,
 892		      u64 **pte_page,
 893		      gfp_t gfp)
 894{
 895	int level, end_lvl;
 896	u64 *pte, *page;
 897
 898	BUG_ON(!is_power_of_2(page_size));
 899
 900	while (address > PM_LEVEL_SIZE(domain->mode))
 901		increase_address_space(domain, gfp);
 902
 903	level   = domain->mode - 1;
 904	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
 905	address = PAGE_SIZE_ALIGN(address, page_size);
 906	end_lvl = PAGE_SIZE_LEVEL(page_size);
 907
 908	while (level > end_lvl) {
 909		if (!IOMMU_PTE_PRESENT(*pte)) {
 910			page = (u64 *)get_zeroed_page(gfp);
 911			if (!page)
 912				return NULL;
 913			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
 914		}
 915
 916		/* No level skipping support yet */
 917		if (PM_PTE_LEVEL(*pte) != level)
 918			return NULL;
 919
 920		level -= 1;
 921
 922		pte = IOMMU_PTE_PAGE(*pte);
 923
 924		if (pte_page && level == end_lvl)
 925			*pte_page = pte;
 926
 927		pte = &pte[PM_LEVEL_INDEX(level, address)];
 928	}
 929
 930	return pte;
 931}
 932
 933/*
 934 * This function checks if there is a PTE for a given dma address. If
 935 * there is one, it returns the pointer to it.
 936 */
 937static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
 938{
 939	int level;
 940	u64 *pte;
 941
 942	if (address > PM_LEVEL_SIZE(domain->mode))
 943		return NULL;
 944
 945	level   =  domain->mode - 1;
 946	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
 947
 948	while (level > 0) {
 949
 950		/* Not Present */
 951		if (!IOMMU_PTE_PRESENT(*pte))
 952			return NULL;
 953
 954		/* Large PTE */
 955		if (PM_PTE_LEVEL(*pte) == 0x07) {
 956			unsigned long pte_mask, __pte;
 957
 958			/*
 959			 * If we have a series of large PTEs, make
 960			 * sure to return a pointer to the first one.
 961			 */
 962			pte_mask = PTE_PAGE_SIZE(*pte);
 963			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
 964			__pte    = ((unsigned long)pte) & pte_mask;
 965
 966			return (u64 *)__pte;
 967		}
 968
 969		/* No level skipping support yet */
 970		if (PM_PTE_LEVEL(*pte) != level)
 971			return NULL;
 972
 973		level -= 1;
 974
 975		/* Walk to the next level */
 976		pte = IOMMU_PTE_PAGE(*pte);
 977		pte = &pte[PM_LEVEL_INDEX(level, address)];
 978	}
 979
 980	return pte;
 981}
 982
 983/*
 984 * Generic mapping functions. It maps a physical address into a DMA
 985 * address space. It allocates the page table pages if necessary.
 986 * In the future it can be extended to a generic mapping function
 987 * supporting all features of AMD IOMMU page tables like level skipping
 988 * and full 64 bit address spaces.
 989 */
 990static int iommu_map_page(struct protection_domain *dom,
 991			  unsigned long bus_addr,
 992			  unsigned long phys_addr,
 993			  int prot,
 994			  unsigned long page_size)
 995{
 996	u64 __pte, *pte;
 997	int i, count;
 998
 999	if (!(prot & IOMMU_PROT_MASK))
1000		return -EINVAL;
1001
1002	bus_addr  = PAGE_ALIGN(bus_addr);
1003	phys_addr = PAGE_ALIGN(phys_addr);
1004	count     = PAGE_SIZE_PTE_COUNT(page_size);
1005	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1006
1007	for (i = 0; i < count; ++i)
1008		if (IOMMU_PTE_PRESENT(pte[i]))
1009			return -EBUSY;
1010
1011	if (page_size > PAGE_SIZE) {
1012		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
1013		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1014	} else
1015		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1016
1017	if (prot & IOMMU_PROT_IR)
1018		__pte |= IOMMU_PTE_IR;
1019	if (prot & IOMMU_PROT_IW)
1020		__pte |= IOMMU_PTE_IW;
1021
1022	for (i = 0; i < count; ++i)
1023		pte[i] = __pte;
1024
1025	update_domain(dom);
1026
1027	return 0;
1028}
1029
1030static unsigned long iommu_unmap_page(struct protection_domain *dom,
1031				      unsigned long bus_addr,
1032				      unsigned long page_size)
1033{
1034	unsigned long long unmap_size, unmapped;
1035	u64 *pte;
1036
1037	BUG_ON(!is_power_of_2(page_size));
1038
1039	unmapped = 0;
1040
1041	while (unmapped < page_size) {
1042
1043		pte = fetch_pte(dom, bus_addr);
1044
1045		if (!pte) {
1046			/*
1047			 * No PTE for this address
1048			 * move forward in 4kb steps
1049			 */
1050			unmap_size = PAGE_SIZE;
1051		} else if (PM_PTE_LEVEL(*pte) == 0) {
1052			/* 4kb PTE found for this address */
1053			unmap_size = PAGE_SIZE;
1054			*pte       = 0ULL;
1055		} else {
1056			int count, i;
1057
1058			/* Large PTE found which maps this address */
1059			unmap_size = PTE_PAGE_SIZE(*pte);
1060			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
1061			for (i = 0; i < count; i++)
1062				pte[i] = 0ULL;
1063		}
1064
1065		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1066		unmapped += unmap_size;
1067	}
1068
1069	BUG_ON(!is_power_of_2(unmapped));
1070
1071	return unmapped;
1072}
1073
1074/*
1075 * This function checks if a specific unity mapping entry is needed for
1076 * this specific IOMMU.
1077 */
1078static int iommu_for_unity_map(struct amd_iommu *iommu,
1079			       struct unity_map_entry *entry)
1080{
1081	u16 bdf, i;
1082
1083	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1084		bdf = amd_iommu_alias_table[i];
1085		if (amd_iommu_rlookup_table[bdf] == iommu)
1086			return 1;
1087	}
1088
1089	return 0;
1090}
1091
1092/*
1093 * This function actually applies the mapping to the page table of the
1094 * dma_ops domain.
1095 */
1096static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1097			     struct unity_map_entry *e)
1098{
1099	u64 addr;
1100	int ret;
1101
1102	for (addr = e->address_start; addr < e->address_end;
1103	     addr += PAGE_SIZE) {
1104		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1105				     PAGE_SIZE);
1106		if (ret)
1107			return ret;
1108		/*
1109		 * if unity mapping is in aperture range mark the page
1110		 * as allocated in the aperture
1111		 */
1112		if (addr < dma_dom->aperture_size)
1113			__set_bit(addr >> PAGE_SHIFT,
1114				  dma_dom->aperture[0]->bitmap);
1115	}
1116
1117	return 0;
1118}
1119
1120/*
1121 * Init the unity mappings for a specific IOMMU in the system
1122 *
1123 * Basically iterates over all unity mapping entries and applies them to
1124 * the default domain DMA of that IOMMU if necessary.
1125 */
1126static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1127{
1128	struct unity_map_entry *entry;
1129	int ret;
1130
1131	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1132		if (!iommu_for_unity_map(iommu, entry))
1133			continue;
1134		ret = dma_ops_unity_map(iommu->default_dom, entry);
1135		if (ret)
1136			return ret;
1137	}
1138
1139	return 0;
1140}
1141
1142/*
1143 * Inits the unity mappings required for a specific device
1144 */
1145static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1146					  u16 devid)
1147{
1148	struct unity_map_entry *e;
1149	int ret;
1150
1151	list_for_each_entry(e, &amd_iommu_unity_map, list) {
1152		if (!(devid >= e->devid_start && devid <= e->devid_end))
1153			continue;
1154		ret = dma_ops_unity_map(dma_dom, e);
1155		if (ret)
1156			return ret;
1157	}
1158
1159	return 0;
1160}
1161
1162/****************************************************************************
1163 *
1164 * The next functions belong to the address allocator for the dma_ops
1165 * interface functions. They work like the allocators in the other IOMMU
1166 * drivers. Its basically a bitmap which marks the allocated pages in
1167 * the aperture. Maybe it could be enhanced in the future to a more
1168 * efficient allocator.
1169 *
1170 ****************************************************************************/
1171
1172/*
1173 * The address allocator core functions.
1174 *
1175 * called with domain->lock held
1176 */
1177
1178/*
1179 * Used to reserve address ranges in the aperture (e.g. for exclusion
1180 * ranges.
1181 */
1182static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1183				      unsigned long start_page,
1184				      unsigned int pages)
1185{
1186	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1187
1188	if (start_page + pages > last_page)
1189		pages = last_page - start_page;
1190
1191	for (i = start_page; i < start_page + pages; ++i) {
1192		int index = i / APERTURE_RANGE_PAGES;
1193		int page  = i % APERTURE_RANGE_PAGES;
1194		__set_bit(page, dom->aperture[index]->bitmap);
1195	}
1196}
1197
1198/*
1199 * This function is used to add a new aperture range to an existing
1200 * aperture in case of dma_ops domain allocation or address allocation
1201 * failure.
1202 */
1203static int alloc_new_range(struct dma_ops_domain *dma_dom,
1204			   bool populate, gfp_t gfp)
1205{
1206	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1207	struct amd_iommu *iommu;
1208	unsigned long i, old_size;
1209
1210#ifdef CONFIG_IOMMU_STRESS
1211	populate = false;
1212#endif
1213
1214	if (index >= APERTURE_MAX_RANGES)
1215		return -ENOMEM;
1216
1217	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1218	if (!dma_dom->aperture[index])
1219		return -ENOMEM;
1220
1221	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1222	if (!dma_dom->aperture[index]->bitmap)
1223		goto out_free;
1224
1225	dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1226
1227	if (populate) {
1228		unsigned long address = dma_dom->aperture_size;
1229		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1230		u64 *pte, *pte_page;
1231
1232		for (i = 0; i < num_ptes; ++i) {
1233			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1234					&pte_page, gfp);
1235			if (!pte)
1236				goto out_free;
1237
1238			dma_dom->aperture[index]->pte_pages[i] = pte_page;
1239
1240			address += APERTURE_RANGE_SIZE / 64;
1241		}
1242	}
1243
1244	old_size                = dma_dom->aperture_size;
1245	dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1246
1247	/* Reserve address range used for MSI messages */
1248	if (old_size < MSI_ADDR_BASE_LO &&
1249	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1250		unsigned long spage;
1251		int pages;
1252
1253		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1254		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1255
1256		dma_ops_reserve_addresses(dma_dom, spage, pages);
1257	}
1258
1259	/* Initialize the exclusion range if necessary */
1260	for_each_iommu(iommu) {
1261		if (iommu->exclusion_start &&
1262		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
1263		    && iommu->exclusion_start < dma_dom->aperture_size) {
1264			unsigned long startpage;
1265			int pages = iommu_num_pages(iommu->exclusion_start,
1266						    iommu->exclusion_length,
1267						    PAGE_SIZE);
1268			startpage = iommu->exclusion_start >> PAGE_SHIFT;
1269			dma_ops_reserve_addresses(dma_dom, startpage, pages);
1270		}
1271	}
1272
1273	/*
1274	 * Check for areas already mapped as present in the new aperture
1275	 * range and mark those pages as reserved in the allocator. Such
1276	 * mappings may already exist as a result of requested unity
1277	 * mappings for devices.
1278	 */
1279	for (i = dma_dom->aperture[index]->offset;
1280	     i < dma_dom->aperture_size;
1281	     i += PAGE_SIZE) {
1282		u64 *pte = fetch_pte(&dma_dom->domain, i);
1283		if (!pte || !IOMMU_PTE_PRESENT(*pte))
1284			continue;
1285
1286		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
1287	}
1288
1289	update_domain(&dma_dom->domain);
1290
1291	return 0;
1292
1293out_free:
1294	update_domain(&dma_dom->domain);
1295
1296	free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1297
1298	kfree(dma_dom->aperture[index]);
1299	dma_dom->aperture[index] = NULL;
1300
1301	return -ENOMEM;
1302}
1303
1304static unsigned long dma_ops_area_alloc(struct device *dev,
1305					struct dma_ops_domain *dom,
1306					unsigned int pages,
1307					unsigned long align_mask,
1308					u64 dma_mask,
1309					unsigned long start)
1310{
1311	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1312	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1313	int i = start >> APERTURE_RANGE_SHIFT;
1314	unsigned long boundary_size;
1315	unsigned long address = -1;
1316	unsigned long limit;
1317
1318	next_bit >>= PAGE_SHIFT;
1319
1320	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1321			PAGE_SIZE) >> PAGE_SHIFT;
1322
1323	for (;i < max_index; ++i) {
1324		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1325
1326		if (dom->aperture[i]->offset >= dma_mask)
1327			break;
1328
1329		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1330					       dma_mask >> PAGE_SHIFT);
1331
1332		address = iommu_area_alloc(dom->aperture[i]->bitmap,
1333					   limit, next_bit, pages, 0,
1334					    boundary_size, align_mask);
1335		if (address != -1) {
1336			address = dom->aperture[i]->offset +
1337				  (address << PAGE_SHIFT);
1338			dom->next_address = address + (pages << PAGE_SHIFT);
1339			break;
1340		}
1341
1342		next_bit = 0;
1343	}
1344
1345	return address;
1346}
1347
1348static unsigned long dma_ops_alloc_addresses(struct device *dev,
1349					     struct dma_ops_domain *dom,
1350					     unsigned int pages,
1351					     unsigned long align_mask,
1352					     u64 dma_mask)
1353{
1354	unsigned long address;
1355
1356#ifdef CONFIG_IOMMU_STRESS
1357	dom->next_address = 0;
1358	dom->need_flush = true;
1359#endif
1360
1361	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1362				     dma_mask, dom->next_address);
1363
1364	if (address == -1) {
1365		dom->next_address = 0;
1366		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1367					     dma_mask, 0);
1368		dom->need_flush = true;
1369	}
1370
1371	if (unlikely(address == -1))
1372		address = DMA_ERROR_CODE;
1373
1374	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1375
1376	return address;
1377}
1378
1379/*
1380 * The address free function.
1381 *
1382 * called with domain->lock held
1383 */
1384static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1385				   unsigned long address,
1386				   unsigned int pages)
1387{
1388	unsigned i = address >> APERTURE_RANGE_SHIFT;
1389	struct aperture_range *range = dom->aperture[i];
1390
1391	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1392
1393#ifdef CONFIG_IOMMU_STRESS
1394	if (i < 4)
1395		return;
1396#endif
1397
1398	if (address >= dom->next_address)
1399		dom->need_flush = true;
1400
1401	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1402
1403	bitmap_clear(range->bitmap, address, pages);
1404
1405}
1406
1407/****************************************************************************
1408 *
1409 * The next functions belong to the domain allocation. A domain is
1410 * allocated for every IOMMU as the default domain. If device isolation
1411 * is enabled, every device get its own domain. The most important thing
1412 * about domains is the page table mapping the DMA address space they
1413 * contain.
1414 *
1415 ****************************************************************************/
1416
1417/*
1418 * This function adds a protection domain to the global protection domain list
1419 */
1420static void add_domain_to_list(struct protection_domain *domain)
1421{
1422	unsigned long flags;
1423
1424	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1425	list_add(&domain->list, &amd_iommu_pd_list);
1426	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1427}
1428
1429/*
1430 * This function removes a protection domain to the global
1431 * protection domain list
1432 */
1433static void del_domain_from_list(struct protection_domain *domain)
1434{
1435	unsigned long flags;
1436
1437	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1438	list_del(&domain->list);
1439	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1440}
1441
1442static u16 domain_id_alloc(void)
1443{
1444	unsigned long flags;
1445	int id;
1446
1447	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1448	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1449	BUG_ON(id == 0);
1450	if (id > 0 && id < MAX_DOMAIN_ID)
1451		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1452	else
1453		id = 0;
1454	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1455
1456	return id;
1457}
1458
1459static void domain_id_free(int id)
1460{
1461	unsigned long flags;
1462
1463	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1464	if (id > 0 && id < MAX_DOMAIN_ID)
1465		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1466	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1467}
1468
1469static void free_pagetable(struct protection_domain *domain)
1470{
1471	int i, j;
1472	u64 *p1, *p2, *p3;
1473
1474	p1 = domain->pt_root;
1475
1476	if (!p1)
1477		return;
1478
1479	for (i = 0; i < 512; ++i) {
1480		if (!IOMMU_PTE_PRESENT(p1[i]))
1481			continue;
1482
1483		p2 = IOMMU_PTE_PAGE(p1[i]);
1484		for (j = 0; j < 512; ++j) {
1485			if (!IOMMU_PTE_PRESENT(p2[j]))
1486				continue;
1487			p3 = IOMMU_PTE_PAGE(p2[j]);
1488			free_page((unsigned long)p3);
1489		}
1490
1491		free_page((unsigned long)p2);
1492	}
1493
1494	free_page((unsigned long)p1);
1495
1496	domain->pt_root = NULL;
1497}
1498
1499/*
1500 * Free a domain, only used if something went wrong in the
1501 * allocation path and we need to free an already allocated page table
1502 */
1503static void dma_ops_domain_free(struct dma_ops_domain *dom)
1504{
1505	int i;
1506
1507	if (!dom)
1508		return;
1509
1510	del_domain_from_list(&dom->domain);
1511
1512	free_pagetable(&dom->domain);
1513
1514	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1515		if (!dom->aperture[i])
1516			continue;
1517		free_page((unsigned long)dom->aperture[i]->bitmap);
1518		kfree(dom->aperture[i]);
1519	}
1520
1521	kfree(dom);
1522}
1523
1524/*
1525 * Allocates a new protection domain usable for the dma_ops functions.
1526 * It also initializes the page table and the address allocator data
1527 * structures required for the dma_ops interface
1528 */
1529static struct dma_ops_domain *dma_ops_domain_alloc(void)
1530{
1531	struct dma_ops_domain *dma_dom;
1532
1533	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1534	if (!dma_dom)
1535		return NULL;
1536
1537	spin_lock_init(&dma_dom->domain.lock);
1538
1539	dma_dom->domain.id = domain_id_alloc();
1540	if (dma_dom->domain.id == 0)
1541		goto free_dma_dom;
1542	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1543	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1544	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1545	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1546	dma_dom->domain.priv = dma_dom;
1547	if (!dma_dom->domain.pt_root)
1548		goto free_dma_dom;
1549
1550	dma_dom->need_flush = false;
1551	dma_dom->target_dev = 0xffff;
1552
1553	add_domain_to_list(&dma_dom->domain);
1554
1555	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1556		goto free_dma_dom;
1557
1558	/*
1559	 * mark the first page as allocated so we never return 0 as
1560	 * a valid dma-address. So we can use 0 as error value
1561	 */
1562	dma_dom->aperture[0]->bitmap[0] = 1;
1563	dma_dom->next_address = 0;
1564
1565
1566	return dma_dom;
1567
1568free_dma_dom:
1569	dma_ops_domain_free(dma_dom);
1570
1571	return NULL;
1572}
1573
1574/*
1575 * little helper function to check whether a given protection domain is a
1576 * dma_ops domain
1577 */
1578static bool dma_ops_domain(struct protection_domain *domain)
1579{
1580	return domain->flags & PD_DMA_OPS_MASK;
1581}
1582
1583static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1584{
1585	u64 pte_root = virt_to_phys(domain->pt_root);
1586	u32 flags = 0;
1587
1588	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1589		    << DEV_ENTRY_MODE_SHIFT;
1590	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1591
1592	if (ats)
1593		flags |= DTE_FLAG_IOTLB;
1594
1595	amd_iommu_dev_table[devid].data[3] |= flags;
1596	amd_iommu_dev_table[devid].data[2]  = domain->id;
1597	amd_iommu_dev_table[devid].data[1]  = upper_32_bits(pte_root);
1598	amd_iommu_dev_table[devid].data[0]  = lower_32_bits(pte_root);
1599}
1600
1601static void clear_dte_entry(u16 devid)
1602{
1603	/* remove entry from the device table seen by the hardware */
1604	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1605	amd_iommu_dev_table[devid].data[1] = 0;
1606	amd_iommu_dev_table[devid].data[2] = 0;
1607
1608	amd_iommu_apply_erratum_63(devid);
1609}
1610
1611static void do_attach(struct iommu_dev_data *dev_data,
1612		      struct protection_domain *domain)
1613{
1614	struct amd_iommu *iommu;
1615	bool ats;
1616
1617	iommu = amd_iommu_rlookup_table[dev_data->devid];
1618	ats   = dev_data->ats.enabled;
1619
1620	/* Update data structures */
1621	dev_data->domain = domain;
1622	list_add(&dev_data->list, &domain->dev_list);
1623	set_dte_entry(dev_data->devid, domain, ats);
1624
1625	/* Do reference counting */
1626	domain->dev_iommu[iommu->index] += 1;
1627	domain->dev_cnt                 += 1;
1628
1629	/* Flush the DTE entry */
1630	device_flush_dte(dev_data);
1631}
1632
1633static void do_detach(struct iommu_dev_data *dev_data)
1634{
1635	struct amd_iommu *iommu;
1636
1637	iommu = amd_iommu_rlookup_table[dev_data->devid];
1638
1639	/* decrease reference counters */
1640	dev_data->domain->dev_iommu[iommu->index] -= 1;
1641	dev_data->domain->dev_cnt                 -= 1;
1642
1643	/* Update data structures */
1644	dev_data->domain = NULL;
1645	list_del(&dev_data->list);
1646	clear_dte_entry(dev_data->devid);
1647
1648	/* Flush the DTE entry */
1649	device_flush_dte(dev_data);
1650}
1651
1652/*
1653 * If a device is not yet associated with a domain, this function does
1654 * assigns it visible for the hardware
1655 */
1656static int __attach_device(struct iommu_dev_data *dev_data,
1657			   struct protection_domain *domain)
1658{
1659	int ret;
1660
1661	/* lock domain */
1662	spin_lock(&domain->lock);
1663
1664	if (dev_data->alias_data != NULL) {
1665		struct iommu_dev_data *alias_data = dev_data->alias_data;
1666
1667		/* Some sanity checks */
1668		ret = -EBUSY;
1669		if (alias_data->domain != NULL &&
1670				alias_data->domain != domain)
1671			goto out_unlock;
1672
1673		if (dev_data->domain != NULL &&
1674				dev_data->domain != domain)
1675			goto out_unlock;
1676
1677		/* Do real assignment */
1678		if (alias_data->domain == NULL)
1679			do_attach(alias_data, domain);
1680
1681		atomic_inc(&alias_data->bind);
1682	}
1683
1684	if (dev_data->domain == NULL)
1685		do_attach(dev_data, domain);
1686
1687	atomic_inc(&dev_data->bind);
1688
1689	ret = 0;
1690
1691out_unlock:
1692
1693	/* ready */
1694	spin_unlock(&domain->lock);
1695
1696	return ret;
1697}
1698
1699/*
1700 * If a device is not yet associated with a domain, this function does
1701 * assigns it visible for the hardware
1702 */
1703static int attach_device(struct device *dev,
1704			 struct protection_domain *domain)
1705{
1706	struct pci_dev *pdev = to_pci_dev(dev);
1707	struct iommu_dev_data *dev_data;
1708	unsigned long flags;
1709	int ret;
1710
1711	dev_data = get_dev_data(dev);
1712
1713	if (amd_iommu_iotlb_sup && pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1714		dev_data->ats.enabled = true;
1715		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
1716	}
1717
1718	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1719	ret = __attach_device(dev_data, domain);
1720	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1721
1722	/*
1723	 * We might boot into a crash-kernel here. The crashed kernel
1724	 * left the caches in the IOMMU dirty. So we have to flush
1725	 * here to evict all dirty stuff.
1726	 */
1727	domain_flush_tlb_pde(domain);
1728
1729	return ret;
1730}
1731
1732/*
1733 * Removes a device from a protection domain (unlocked)
1734 */
1735static void __detach_device(struct iommu_dev_data *dev_data)
1736{
1737	struct protection_domain *domain;
1738	unsigned long flags;
1739
1740	BUG_ON(!dev_data->domain);
1741
1742	domain = dev_data->domain;
1743
1744	spin_lock_irqsave(&domain->lock, flags);
1745
1746	if (dev_data->alias_data != NULL) {
1747		struct iommu_dev_data *alias_data = dev_data->alias_data;
1748
1749		if (atomic_dec_and_test(&alias_data->bind))
1750			do_detach(alias_data);
1751	}
1752
1753	if (atomic_dec_and_test(&dev_data->bind))
1754		do_detach(dev_data);
1755
1756	spin_unlock_irqrestore(&domain->lock, flags);
1757
1758	/*
1759	 * If we run in passthrough mode the device must be assigned to the
1760	 * passthrough domain if it is detached from any other domain.
1761	 * Make sure we can deassign from the pt_domain itself.
1762	 */
1763	if (iommu_pass_through &&
1764	    (dev_data->domain == NULL && domain != pt_domain))
1765		__attach_device(dev_data, pt_domain);
1766}
1767
1768/*
1769 * Removes a device from a protection domain (with devtable_lock held)
1770 */
1771static void detach_device(struct device *dev)
1772{
1773	struct iommu_dev_data *dev_data;
1774	unsigned long flags;
1775
1776	dev_data = get_dev_data(dev);
1777
1778	/* lock device table */
1779	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1780	__detach_device(dev_data);
1781	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1782
1783	if (dev_data->ats.enabled) {
1784		pci_disable_ats(to_pci_dev(dev));
1785		dev_data->ats.enabled = false;
1786	}
1787}
1788
1789/*
1790 * Find out the protection domain structure for a given PCI device. This
1791 * will give us the pointer to the page table root for example.
1792 */
1793static struct protection_domain *domain_for_device(struct device *dev)
1794{
1795	struct iommu_dev_data *dev_data;
1796	struct protection_domain *dom = NULL;
1797	unsigned long flags;
1798
1799	dev_data   = get_dev_data(dev);
1800
1801	if (dev_data->domain)
1802		return dev_data->domain;
1803
1804	if (dev_data->alias_data != NULL) {
1805		struct iommu_dev_data *alias_data = dev_data->alias_data;
1806
1807		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1808		if (alias_data->domain != NULL) {
1809			__attach_device(dev_data, alias_data->domain);
1810			dom = alias_data->domain;
1811		}
1812		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1813	}
1814
1815	return dom;
1816}
1817
1818static int device_change_notifier(struct notifier_block *nb,
1819				  unsigned long action, void *data)
1820{
1821	struct device *dev = data;
1822	u16 devid;
1823	struct protection_domain *domain;
1824	struct dma_ops_domain *dma_domain;
1825	struct amd_iommu *iommu;
1826	unsigned long flags;
1827
1828	if (!check_device(dev))
1829		return 0;
1830
1831	devid  = get_device_id(dev);
1832	iommu  = amd_iommu_rlookup_table[devid];
1833
1834	switch (action) {
1835	case BUS_NOTIFY_UNBOUND_DRIVER:
1836
1837		domain = domain_for_device(dev);
1838
1839		if (!domain)
1840			goto out;
1841		if (iommu_pass_through)
1842			break;
1843		detach_device(dev);
1844		break;
1845	case BUS_NOTIFY_ADD_DEVICE:
1846
1847		iommu_init_device(dev);
1848
1849		domain = domain_for_device(dev);
1850
1851		/* allocate a protection domain if a device is added */
1852		dma_domain = find_protection_domain(devid);
1853		if (dma_domain)
1854			goto out;
1855		dma_domain = dma_ops_domain_alloc();
1856		if (!dma_domain)
1857			goto out;
1858		dma_domain->target_dev = devid;
1859
1860		spin_lock_irqsave(&iommu_pd_list_lock, flags);
1861		list_add_tail(&dma_domain->list, &iommu_pd_list);
1862		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1863
1864		break;
1865	case BUS_NOTIFY_DEL_DEVICE:
1866
1867		iommu_uninit_device(dev);
1868
1869	default:
1870		goto out;
1871	}
1872
1873	iommu_completion_wait(iommu);
1874
1875out:
1876	return 0;
1877}
1878
1879static struct notifier_block device_nb = {
1880	.notifier_call = device_change_notifier,
1881};
1882
1883void amd_iommu_init_notifier(void)
1884{
1885	bus_register_notifier(&pci_bus_type, &device_nb);
1886}
1887
1888/*****************************************************************************
1889 *
1890 * The next functions belong to the dma_ops mapping/unmapping code.
1891 *
1892 *****************************************************************************/
1893
1894/*
1895 * In the dma_ops path we only have the struct device. This function
1896 * finds the corresponding IOMMU, the protection domain and the
1897 * requestor id for a given device.
1898 * If the device is not yet associated with a domain this is also done
1899 * in this function.
1900 */
1901static struct protection_domain *get_domain(struct device *dev)
1902{
1903	struct protection_domain *domain;
1904	struct dma_ops_domain *dma_dom;
1905	u16 devid = get_device_id(dev);
1906
1907	if (!check_device(dev))
1908		return ERR_PTR(-EINVAL);
1909
1910	domain = domain_for_device(dev);
1911	if (domain != NULL && !dma_ops_domain(domain))
1912		return ERR_PTR(-EBUSY);
1913
1914	if (domain != NULL)
1915		return domain;
1916
1917	/* Device not bount yet - bind it */
1918	dma_dom = find_protection_domain(devid);
1919	if (!dma_dom)
1920		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1921	attach_device(dev, &dma_dom->domain);
1922	DUMP_printk("Using protection domain %d for device %s\n",
1923		    dma_dom->domain.id, dev_name(dev));
1924
1925	return &dma_dom->domain;
1926}
1927
1928static void update_device_table(struct protection_domain *domain)
1929{
1930	struct iommu_dev_data *dev_data;
1931
1932	list_for_each_entry(dev_data, &domain->dev_list, list)
1933		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
1934}
1935
1936static void update_domain(struct protection_domain *domain)
1937{
1938	if (!domain->updated)
1939		return;
1940
1941	update_device_table(domain);
1942
1943	domain_flush_devices(domain);
1944	domain_flush_tlb_pde(domain);
1945
1946	domain->updated = false;
1947}
1948
1949/*
1950 * This function fetches the PTE for a given address in the aperture
1951 */
1952static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1953			    unsigned long address)
1954{
1955	struct aperture_range *aperture;
1956	u64 *pte, *pte_page;
1957
1958	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1959	if (!aperture)
1960		return NULL;
1961
1962	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1963	if (!pte) {
1964		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1965				GFP_ATOMIC);
1966		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1967	} else
1968		pte += PM_LEVEL_INDEX(0, address);
1969
1970	update_domain(&dom->domain);
1971
1972	return pte;
1973}
1974
1975/*
1976 * This is the generic map function. It maps one 4kb page at paddr to
1977 * the given address in the DMA address space for the domain.
1978 */
1979static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1980				     unsigned long address,
1981				     phys_addr_t paddr,
1982				     int direction)
1983{
1984	u64 *pte, __pte;
1985
1986	WARN_ON(address > dom->aperture_size);
1987
1988	paddr &= PAGE_MASK;
1989
1990	pte  = dma_ops_get_pte(dom, address);
1991	if (!pte)
1992		return DMA_ERROR_CODE;
1993
1994	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1995
1996	if (direction == DMA_TO_DEVICE)
1997		__pte |= IOMMU_PTE_IR;
1998	else if (direction == DMA_FROM_DEVICE)
1999		__pte |= IOMMU_PTE_IW;
2000	else if (direction == DMA_BIDIRECTIONAL)
2001		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2002
2003	WARN_ON(*pte);
2004
2005	*pte = __pte;
2006
2007	return (dma_addr_t)address;
2008}
2009
2010/*
2011 * The generic unmapping function for on page in the DMA address space.
2012 */
2013static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2014				 unsigned long address)
2015{
2016	struct aperture_range *aperture;
2017	u64 *pte;
2018
2019	if (address >= dom->aperture_size)
2020		return;
2021
2022	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2023	if (!aperture)
2024		return;
2025
2026	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2027	if (!pte)
2028		return;
2029
2030	pte += PM_LEVEL_INDEX(0, address);
2031
2032	WARN_ON(!*pte);
2033
2034	*pte = 0ULL;
2035}
2036
2037/*
2038 * This function contains common code for mapping of a physically
2039 * contiguous memory region into DMA address space. It is used by all
2040 * mapping functions provided with this IOMMU driver.
2041 * Must be called with the domain lock held.
2042 */
2043static dma_addr_t __map_single(struct device *dev,
2044			       struct dma_ops_domain *dma_dom,
2045			       phys_addr_t paddr,
2046			       size_t size,
2047			       int dir,
2048			       bool align,
2049			       u64 dma_mask)
2050{
2051	dma_addr_t offset = paddr & ~PAGE_MASK;
2052	dma_addr_t address, start, ret;
2053	unsigned int pages;
2054	unsigned long align_mask = 0;
2055	int i;
2056
2057	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2058	paddr &= PAGE_MASK;
2059
2060	INC_STATS_COUNTER(total_map_requests);
2061
2062	if (pages > 1)
2063		INC_STATS_COUNTER(cross_page);
2064
2065	if (align)
2066		align_mask = (1UL << get_order(size)) - 1;
2067
2068retry:
2069	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2070					  dma_mask);
2071	if (unlikely(address == DMA_ERROR_CODE)) {
2072		/*
2073		 * setting next_address here will let the address
2074		 * allocator only scan the new allocated range in the
2075		 * first run. This is a small optimization.
2076		 */
2077		dma_dom->next_address = dma_dom->aperture_size;
2078
2079		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2080			goto out;
2081
2082		/*
2083		 * aperture was successfully enlarged by 128 MB, try
2084		 * allocation again
2085		 */
2086		goto retry;
2087	}
2088
2089	start = address;
2090	for (i = 0; i < pages; ++i) {
2091		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2092		if (ret == DMA_ERROR_CODE)
2093			goto out_unmap;
2094
2095		paddr += PAGE_SIZE;
2096		start += PAGE_SIZE;
2097	}
2098	address += offset;
2099
2100	ADD_STATS_COUNTER(alloced_io_mem, size);
2101
2102	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2103		domain_flush_tlb(&dma_dom->domain);
2104		dma_dom->need_flush = false;
2105	} else if (unlikely(amd_iommu_np_cache))
2106		domain_flush_pages(&dma_dom->domain, address, size);
2107
2108out:
2109	return address;
2110
2111out_unmap:
2112
2113	for (--i; i >= 0; --i) {
2114		start -= PAGE_SIZE;
2115		dma_ops_domain_unmap(dma_dom, start);
2116	}
2117
2118	dma_ops_free_addresses(dma_dom, address, pages);
2119
2120	return DMA_ERROR_CODE;
2121}
2122
2123/*
2124 * Does the reverse of the __map_single function. Must be called with
2125 * the domain lock held too
2126 */
2127static void __unmap_single(struct dma_ops_domain *dma_dom,
2128			   dma_addr_t dma_addr,
2129			   size_t size,
2130			   int dir)
2131{
2132	dma_addr_t flush_addr;
2133	dma_addr_t i, start;
2134	unsigned int pages;
2135
2136	if ((dma_addr == DMA_ERROR_CODE) ||
2137	    (dma_addr + size > dma_dom->aperture_size))
2138		return;
2139
2140	flush_addr = dma_addr;
2141	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2142	dma_addr &= PAGE_MASK;
2143	start = dma_addr;
2144
2145	for (i = 0; i < pages; ++i) {
2146		dma_ops_domain_unmap(dma_dom, start);
2147		start += PAGE_SIZE;
2148	}
2149
2150	SUB_STATS_COUNTER(alloced_io_mem, size);
2151
2152	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2153
2154	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2155		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2156		dma_dom->need_flush = false;
2157	}
2158}
2159
2160/*
2161 * The exported map_single function for dma_ops.
2162 */
2163static dma_addr_t map_page(struct device *dev, struct page *page,
2164			   unsigned long offset, size_t size,
2165			   enum dma_data_direction dir,
2166			   struct dma_attrs *attrs)
2167{
2168	unsigned long flags;
2169	struct protection_domain *domain;
2170	dma_addr_t addr;
2171	u64 dma_mask;
2172	phys_addr_t paddr = page_to_phys(page) + offset;
2173
2174	INC_STATS_COUNTER(cnt_map_single);
2175
2176	domain = get_domain(dev);
2177	if (PTR_ERR(domain) == -EINVAL)
2178		return (dma_addr_t)paddr;
2179	else if (IS_ERR(domain))
2180		return DMA_ERROR_CODE;
2181
2182	dma_mask = *dev->dma_mask;
2183
2184	spin_lock_irqsave(&domain->lock, flags);
2185
2186	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2187			    dma_mask);
2188	if (addr == DMA_ERROR_CODE)
2189		goto out;
2190
2191	domain_flush_complete(domain);
2192
2193out:
2194	spin_unlock_irqrestore(&domain->lock, flags);
2195
2196	return addr;
2197}
2198
2199/*
2200 * The exported unmap_single function for dma_ops.
2201 */
2202static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2203		       enum dma_data_direction dir, struct dma_attrs *attrs)
2204{
2205	unsigned long flags;
2206	struct protection_domain *domain;
2207
2208	INC_STATS_COUNTER(cnt_unmap_single);
2209
2210	domain = get_domain(dev);
2211	if (IS_ERR(domain))
2212		return;
2213
2214	spin_lock_irqsave(&domain->lock, flags);
2215
2216	__unmap_single(domain->priv, dma_addr, size, dir);
2217
2218	domain_flush_complete(domain);
2219
2220	spin_unlock_irqrestore(&domain->lock, flags);
2221}
2222
2223/*
2224 * This is a special map_sg function which is used if we should map a
2225 * device which is not handled by an AMD IOMMU in the system.
2226 */
2227static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2228			   int nelems, int dir)
2229{
2230	struct scatterlist *s;
2231	int i;
2232
2233	for_each_sg(sglist, s, nelems, i) {
2234		s->dma_address = (dma_addr_t)sg_phys(s);
2235		s->dma_length  = s->length;
2236	}
2237
2238	return nelems;
2239}
2240
2241/*
2242 * The exported map_sg function for dma_ops (handles scatter-gather
2243 * lists).
2244 */
2245static int map_sg(struct device *dev, struct scatterlist *sglist,
2246		  int nelems, enum dma_data_direction dir,
2247		  struct dma_attrs *attrs)
2248{
2249	unsigned long flags;
2250	struct protection_domain *domain;
2251	int i;
2252	struct scatterlist *s;
2253	phys_addr_t paddr;
2254	int mapped_elems = 0;
2255	u64 dma_mask;
2256
2257	INC_STATS_COUNTER(cnt_map_sg);
2258
2259	domain = get_domain(dev);
2260	if (PTR_ERR(domain) == -EINVAL)
2261		return map_sg_no_iommu(dev, sglist, nelems, dir);
2262	else if (IS_ERR(domain))
2263		return 0;
2264
2265	dma_mask = *dev->dma_mask;
2266
2267	spin_lock_irqsave(&domain->lock, flags);
2268
2269	for_each_sg(sglist, s, nelems, i) {
2270		paddr = sg_phys(s);
2271
2272		s->dma_address = __map_single(dev, domain->priv,
2273					      paddr, s->length, dir, false,
2274					      dma_mask);
2275
2276		if (s->dma_address) {
2277			s->dma_length = s->length;
2278			mapped_elems++;
2279		} else
2280			goto unmap;
2281	}
2282
2283	domain_flush_complete(domain);
2284
2285out:
2286	spin_unlock_irqrestore(&domain->lock, flags);
2287
2288	return mapped_elems;
2289unmap:
2290	for_each_sg(sglist, s, mapped_elems, i) {
2291		if (s->dma_address)
2292			__unmap_single(domain->priv, s->dma_address,
2293				       s->dma_length, dir);
2294		s->dma_address = s->dma_length = 0;
2295	}
2296
2297	mapped_elems = 0;
2298
2299	goto out;
2300}
2301
2302/*
2303 * The exported map_sg function for dma_ops (handles scatter-gather
2304 * lists).
2305 */
2306static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2307		     int nelems, enum dma_data_direction dir,
2308		     struct dma_attrs *attrs)
2309{
2310	unsigned long flags;
2311	struct protection_domain *domain;
2312	struct scatterlist *s;
2313	int i;
2314
2315	INC_STATS_COUNTER(cnt_unmap_sg);
2316
2317	domain = get_domain(dev);
2318	if (IS_ERR(domain))
2319		return;
2320
2321	spin_lock_irqsave(&domain->lock, flags);
2322
2323	for_each_sg(sglist, s, nelems, i) {
2324		__unmap_single(domain->priv, s->dma_address,
2325			       s->dma_length, dir);
2326		s->dma_address = s->dma_length = 0;
2327	}
2328
2329	domain_flush_complete(domain);
2330
2331	spin_unlock_irqrestore(&domain->lock, flags);
2332}
2333
2334/*
2335 * The exported alloc_coherent function for dma_ops.
2336 */
2337static void *alloc_coherent(struct device *dev, size_t size,
2338			    dma_addr_t *dma_addr, gfp_t flag)
2339{
2340	unsigned long flags;
2341	void *virt_addr;
2342	struct protection_domain *domain;
2343	phys_addr_t paddr;
2344	u64 dma_mask = dev->coherent_dma_mask;
2345
2346	INC_STATS_COUNTER(cnt_alloc_coherent);
2347
2348	domain = get_domain(dev);
2349	if (PTR_ERR(domain) == -EINVAL) {
2350		virt_addr = (void *)__get_free_pages(flag, get_order(size));
2351		*dma_addr = __pa(virt_addr);
2352		return virt_addr;
2353	} else if (IS_ERR(domain))
2354		return NULL;
2355
2356	dma_mask  = dev->coherent_dma_mask;
2357	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2358	flag     |= __GFP_ZERO;
2359
2360	virt_addr = (void *)__get_free_pages(flag, get_order(size));
2361	if (!virt_addr)
2362		return NULL;
2363
2364	paddr = virt_to_phys(virt_addr);
2365
2366	if (!dma_mask)
2367		dma_mask = *dev->dma_mask;
2368
2369	spin_lock_irqsave(&domain->lock, flags);
2370
2371	*dma_addr = __map_single(dev, domain->priv, paddr,
2372				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2373
2374	if (*dma_addr == DMA_ERROR_CODE) {
2375		spin_unlock_irqrestore(&domain->lock, flags);
2376		goto out_free;
2377	}
2378
2379	domain_flush_complete(domain);
2380
2381	spin_unlock_irqrestore(&domain->lock, flags);
2382
2383	return virt_addr;
2384
2385out_free:
2386
2387	free_pages((unsigned long)virt_addr, get_order(size));
2388
2389	return NULL;
2390}
2391
2392/*
2393 * The exported free_coherent function for dma_ops.
2394 */
2395static void free_coherent(struct device *dev, size_t size,
2396			  void *virt_addr, dma_addr_t dma_addr)
2397{
2398	unsigned long flags;
2399	struct protection_domain *domain;
2400
2401	INC_STATS_COUNTER(cnt_free_coherent);
2402
2403	domain = get_domain(dev);
2404	if (IS_ERR(domain))
2405		goto free_mem;
2406
2407	spin_lock_irqsave(&domain->lock, flags);
2408
2409	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2410
2411	domain_flush_complete(domain);
2412
2413	spin_unlock_irqrestore(&domain->lock, flags);
2414
2415free_mem:
2416	free_pages((unsigned long)virt_addr, get_order(size));
2417}
2418
2419/*
2420 * This function is called by the DMA layer to find out if we can handle a
2421 * particular device. It is part of the dma_ops.
2422 */
2423static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2424{
2425	return check_device(dev);
2426}
2427
2428/*
2429 * The function for pre-allocating protection domains.
2430 *
2431 * If the driver core informs the DMA layer if a driver grabs a device
2432 * we don't need to preallocate the protection domains anymore.
2433 * For now we have to.
2434 */
2435static void prealloc_protection_domains(void)
2436{
2437	struct pci_dev *dev = NULL;
2438	struct dma_ops_domain *dma_dom;
2439	u16 devid;
2440
2441	for_each_pci_dev(dev) {
2442
2443		/* Do we handle this device? */
2444		if (!check_device(&dev->dev))
2445			continue;
2446
2447		/* Is there already any domain for it? */
2448		if (domain_for_device(&dev->dev))
2449			continue;
2450
2451		devid = get_device_id(&dev->dev);
2452
2453		dma_dom = dma_ops_domain_alloc();
2454		if (!dma_dom)
2455			continue;
2456		init_unity_mappings_for_device(dma_dom, devid);
2457		dma_dom->target_dev = devid;
2458
2459		attach_device(&dev->dev, &dma_dom->domain);
2460
2461		list_add_tail(&dma_dom->list, &iommu_pd_list);
2462	}
2463}
2464
2465static struct dma_map_ops amd_iommu_dma_ops = {
2466	.alloc_coherent = alloc_coherent,
2467	.free_coherent = free_coherent,
2468	.map_page = map_page,
2469	.unmap_page = unmap_page,
2470	.map_sg = map_sg,
2471	.unmap_sg = unmap_sg,
2472	.dma_supported = amd_iommu_dma_supported,
2473};
2474
2475static unsigned device_dma_ops_init(void)
2476{
2477	struct pci_dev *pdev = NULL;
2478	unsigned unhandled = 0;
2479
2480	for_each_pci_dev(pdev) {
2481		if (!check_device(&pdev->dev)) {
2482			unhandled += 1;
2483			continue;
2484		}
2485
2486		pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2487	}
2488
2489	return unhandled;
2490}
2491
2492/*
2493 * The function which clues the AMD IOMMU driver into dma_ops.
2494 */
2495
2496void __init amd_iommu_init_api(void)
2497{
2498	register_iommu(&amd_iommu_ops);
2499}
2500
2501int __init amd_iommu_init_dma_ops(void)
2502{
2503	struct amd_iommu *iommu;
2504	int ret, unhandled;
2505
2506	/*
2507	 * first allocate a default protection domain for every IOMMU we
2508	 * found in the system. Devices not assigned to any other
2509	 * protection domain will be assigned to the default one.
2510	 */
2511	for_each_iommu(iommu) {
2512		iommu->default_dom = dma_ops_domain_alloc();
2513		if (iommu->default_dom == NULL)
2514			return -ENOMEM;
2515		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2516		ret = iommu_init_unity_mappings(iommu);
2517		if (ret)
2518			goto free_domains;
2519	}
2520
2521	/*
2522	 * Pre-allocate the protection domains for each device.
2523	 */
2524	prealloc_protection_domains();
2525
2526	iommu_detected = 1;
2527	swiotlb = 0;
2528
2529	/* Make the driver finally visible to the drivers */
2530	unhandled = device_dma_ops_init();
2531	if (unhandled && max_pfn > MAX_DMA32_PFN) {
2532		/* There are unhandled devices - initialize swiotlb for them */
2533		swiotlb = 1;
2534	}
2535
2536	amd_iommu_stats_init();
2537
2538	return 0;
2539
2540free_domains:
2541
2542	for_each_iommu(iommu) {
2543		if (iommu->default_dom)
2544			dma_ops_domain_free(iommu->default_dom);
2545	}
2546
2547	return ret;
2548}
2549
2550/*****************************************************************************
2551 *
2552 * The following functions belong to the exported interface of AMD IOMMU
2553 *
2554 * This interface allows access to lower level functions of the IOMMU
2555 * like protection domain handling and assignement of devices to domains
2556 * which is not possible with the dma_ops interface.
2557 *
2558 *****************************************************************************/
2559
2560static void cleanup_domain(struct protection_domain *domain)
2561{
2562	struct iommu_dev_data *dev_data, *next;
2563	unsigned long flags;
2564
2565	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2566
2567	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2568		__detach_device(dev_data);
2569		atomic_set(&dev_data->bind, 0);
2570	}
2571
2572	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2573}
2574
2575static void protection_domain_free(struct protection_domain *domain)
2576{
2577	if (!domain)
2578		return;
2579
2580	del_domain_from_list(domain);
2581
2582	if (domain->id)
2583		domain_id_free(domain->id);
2584
2585	kfree(domain);
2586}
2587
2588static struct protection_domain *protection_domain_alloc(void)
2589{
2590	struct protection_domain *domain;
2591
2592	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2593	if (!domain)
2594		return NULL;
2595
2596	spin_lock_init(&domain->lock);
2597	mutex_init(&domain->api_lock);
2598	domain->id = domain_id_alloc();
2599	if (!domain->id)
2600		goto out_err;
2601	INIT_LIST_HEAD(&domain->dev_list);
2602
2603	add_domain_to_list(domain);
2604
2605	return domain;
2606
2607out_err:
2608	kfree(domain);
2609
2610	return NULL;
2611}
2612
2613static int amd_iommu_domain_init(struct iommu_domain *dom)
2614{
2615	struct protection_domain *domain;
2616
2617	domain = protection_domain_alloc();
2618	if (!domain)
2619		goto out_free;
2620
2621	domain->mode    = PAGE_MODE_3_LEVEL;
2622	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2623	if (!domain->pt_root)
2624		goto out_free;
2625
2626	dom->priv = domain;
2627
2628	return 0;
2629
2630out_free:
2631	protection_domain_free(domain);
2632
2633	return -ENOMEM;
2634}
2635
2636static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2637{
2638	struct protection_domain *domain = dom->priv;
2639
2640	if (!domain)
2641		return;
2642
2643	if (domain->dev_cnt > 0)
2644		cleanup_domain(domain);
2645
2646	BUG_ON(domain->dev_cnt != 0);
2647
2648	free_pagetable(domain);
2649
2650	protection_domain_free(domain);
2651
2652	dom->priv = NULL;
2653}
2654
2655static void amd_iommu_detach_device(struct iommu_domain *dom,
2656				    struct device *dev)
2657{
2658	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2659	struct amd_iommu *iommu;
2660	u16 devid;
2661
2662	if (!check_device(dev))
2663		return;
2664
2665	devid = get_device_id(dev);
2666
2667	if (dev_data->domain != NULL)
2668		detach_device(dev);
2669
2670	iommu = amd_iommu_rlookup_table[devid];
2671	if (!iommu)
2672		return;
2673
2674	iommu_completion_wait(iommu);
2675}
2676
2677static int amd_iommu_attach_device(struct iommu_domain *dom,
2678				   struct device *dev)
2679{
2680	struct protection_domain *domain = dom->priv;
2681	struct iommu_dev_data *dev_data;
2682	struct amd_iommu *iommu;
2683	int ret;
2684
2685	if (!check_device(dev))
2686		return -EINVAL;
2687
2688	dev_data = dev->archdata.iommu;
2689
2690	iommu = amd_iommu_rlookup_table[dev_data->devid];
2691	if (!iommu)
2692		return -EINVAL;
2693
2694	if (dev_data->domain)
2695		detach_device(dev);
2696
2697	ret = attach_device(dev, domain);
2698
2699	iommu_completion_wait(iommu);
2700
2701	return ret;
2702}
2703
2704static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2705			 phys_addr_t paddr, int gfp_order, int iommu_prot)
2706{
2707	unsigned long page_size = 0x1000UL << gfp_order;
2708	struct protection_domain *domain = dom->priv;
2709	int prot = 0;
2710	int ret;
2711
2712	if (iommu_prot & IOMMU_READ)
2713		prot |= IOMMU_PROT_IR;
2714	if (iommu_prot & IOMMU_WRITE)
2715		prot |= IOMMU_PROT_IW;
2716
2717	mutex_lock(&domain->api_lock);
2718	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2719	mutex_unlock(&domain->api_lock);
2720
2721	return ret;
2722}
2723
2724static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2725			   int gfp_order)
2726{
2727	struct protection_domain *domain = dom->priv;
2728	unsigned long page_size, unmap_size;
2729
2730	page_size  = 0x1000UL << gfp_order;
2731
2732	mutex_lock(&domain->api_lock);
2733	unmap_size = iommu_unmap_page(domain, iova, page_size);
2734	mutex_unlock(&domain->api_lock);
2735
2736	domain_flush_tlb_pde(domain);
2737
2738	return get_order(unmap_size);
2739}
2740
2741static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2742					  unsigned long iova)
2743{
2744	struct protection_domain *domain = dom->priv;
2745	unsigned long offset_mask;
2746	phys_addr_t paddr;
2747	u64 *pte, __pte;
2748
2749	pte = fetch_pte(domain, iova);
2750
2751	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2752		return 0;
2753
2754	if (PM_PTE_LEVEL(*pte) == 0)
2755		offset_mask = PAGE_SIZE - 1;
2756	else
2757		offset_mask = PTE_PAGE_SIZE(*pte) - 1;
2758
2759	__pte = *pte & PM_ADDR_MASK;
2760	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2761
2762	return paddr;
2763}
2764
2765static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2766				    unsigned long cap)
2767{
2768	switch (cap) {
2769	case IOMMU_CAP_CACHE_COHERENCY:
2770		return 1;
2771	}
2772
2773	return 0;
2774}
2775
2776static struct iommu_ops amd_iommu_ops = {
2777	.domain_init = amd_iommu_domain_init,
2778	.domain_destroy = amd_iommu_domain_destroy,
2779	.attach_dev = amd_iommu_attach_device,
2780	.detach_dev = amd_iommu_detach_device,
2781	.map = amd_iommu_map,
2782	.unmap = amd_iommu_unmap,
2783	.iova_to_phys = amd_iommu_iova_to_phys,
2784	.domain_has_cap = amd_iommu_domain_has_cap,
2785};
2786
2787/*****************************************************************************
2788 *
2789 * The next functions do a basic initialization of IOMMU for pass through
2790 * mode
2791 *
2792 * In passthrough mode the IOMMU is initialized and enabled but not used for
2793 * DMA-API translation.
2794 *
2795 *****************************************************************************/
2796
2797int __init amd_iommu_init_passthrough(void)
2798{
2799	struct amd_iommu *iommu;
2800	struct pci_dev *dev = NULL;
2801	u16 devid;
2802
2803	/* allocate passthrough domain */
2804	pt_domain = protection_domain_alloc();
2805	if (!pt_domain)
2806		return -ENOMEM;
2807
2808	pt_domain->mode |= PAGE_MODE_NONE;
2809
2810	for_each_pci_dev(dev) {
2811		if (!check_device(&dev->dev))
2812			continue;
2813
2814		devid = get_device_id(&dev->dev);
2815
2816		iommu = amd_iommu_rlookup_table[devid];
2817		if (!iommu)
2818			continue;
2819
2820		attach_device(&dev->dev, pt_domain);
2821	}
2822
2823	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2824
2825	return 0;
2826}