Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
   3 * Author: Joerg Roedel <joerg.roedel@amd.com>
   4 *         Leo Duran <leo.duran@amd.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  18 */
  19
 
 
 
 
  20#include <linux/pci.h>
 
 
 
  21#include <linux/pci-ats.h>
  22#include <linux/bitmap.h>
  23#include <linux/slab.h>
  24#include <linux/debugfs.h>
  25#include <linux/scatterlist.h>
  26#include <linux/dma-mapping.h>
 
  27#include <linux/iommu-helper.h>
  28#include <linux/iommu.h>
  29#include <linux/delay.h>
  30#include <linux/amd-iommu.h>
 
 
 
 
 
 
 
 
 
 
 
 
  31#include <asm/msidef.h>
  32#include <asm/proto.h>
  33#include <asm/iommu.h>
  34#include <asm/gart.h>
  35#include <asm/dma.h>
  36
  37#include "amd_iommu_proto.h"
  38#include "amd_iommu_types.h"
 
  39
  40#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  41
  42#define LOOP_TIMEOUT	100000
  43
  44static DEFINE_RWLOCK(amd_iommu_devtable_lock);
 
 
 
 
 
 
 
 
  45
  46/* A list of preallocated protection domains */
  47static LIST_HEAD(iommu_pd_list);
  48static DEFINE_SPINLOCK(iommu_pd_list_lock);
 
 
 
 
 
 
 
 
  49
  50/* List of all available dev_data structures */
  51static LIST_HEAD(dev_data_list);
  52static DEFINE_SPINLOCK(dev_data_list_lock);
 
 
 
  53
  54/*
  55 * Domain for untranslated devices - only allocated
  56 * if iommu=pt passed on kernel cmd line.
  57 */
  58static struct protection_domain *pt_domain;
  59
  60static struct iommu_ops amd_iommu_ops;
 
 
 
  61
  62/*
  63 * general struct to manage commands send to an IOMMU
  64 */
  65struct iommu_cmd {
  66	u32 data[4];
  67};
  68
 
 
  69static void update_domain(struct protection_domain *domain);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70
  71/****************************************************************************
  72 *
  73 * Helper functions
  74 *
  75 ****************************************************************************/
  76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  77static struct iommu_dev_data *alloc_dev_data(u16 devid)
  78{
  79	struct iommu_dev_data *dev_data;
  80	unsigned long flags;
  81
  82	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
  83	if (!dev_data)
  84		return NULL;
  85
 
  86	dev_data->devid = devid;
  87	atomic_set(&dev_data->bind, 0);
  88
  89	spin_lock_irqsave(&dev_data_list_lock, flags);
  90	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
  91	spin_unlock_irqrestore(&dev_data_list_lock, flags);
  92
 
  93	return dev_data;
  94}
  95
  96static void free_dev_data(struct iommu_dev_data *dev_data)
  97{
  98	unsigned long flags;
 
 
 
 
  99
 100	spin_lock_irqsave(&dev_data_list_lock, flags);
 101	list_del(&dev_data->dev_data_list);
 102	spin_unlock_irqrestore(&dev_data_list_lock, flags);
 
 
 103
 104	kfree(dev_data);
 105}
 106
 107static struct iommu_dev_data *search_dev_data(u16 devid)
 108{
 109	struct iommu_dev_data *dev_data;
 110	unsigned long flags;
 
 111
 112	spin_lock_irqsave(&dev_data_list_lock, flags);
 113	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
 114		if (dev_data->devid == devid)
 115			goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 116	}
 117
 118	dev_data = NULL;
 
 
 
 
 
 119
 120out_unlock:
 121	spin_unlock_irqrestore(&dev_data_list_lock, flags);
 
 
 
 
 
 
 
 
 122
 123	return dev_data;
 124}
 125
 126static struct iommu_dev_data *find_dev_data(u16 devid)
 127{
 128	struct iommu_dev_data *dev_data;
 
 129
 130	dev_data = search_dev_data(devid);
 131
 132	if (dev_data == NULL)
 133		dev_data = alloc_dev_data(devid);
 
 
 134
 135	return dev_data;
 136}
 137
 138static inline u16 get_device_id(struct device *dev)
 139{
 140	struct pci_dev *pdev = to_pci_dev(dev);
 141
 142	return calc_devid(pdev->bus->number, pdev->devfn);
 143}
 144
 145static struct iommu_dev_data *get_dev_data(struct device *dev)
 146{
 147	return dev->archdata.iommu;
 148}
 
 149
 150/*
 151 * In this function the list of preallocated protection domains is traversed to
 152 * find the domain for a specific device
 153 */
 154static struct dma_ops_domain *find_protection_domain(u16 devid)
 155{
 156	struct dma_ops_domain *entry, *ret = NULL;
 157	unsigned long flags;
 158	u16 alias = amd_iommu_alias_table[devid];
 159
 160	if (list_empty(&iommu_pd_list))
 161		return NULL;
 
 162
 163	spin_lock_irqsave(&iommu_pd_list_lock, flags);
 
 
 
 164
 165	list_for_each_entry(entry, &iommu_pd_list, list) {
 166		if (entry->target_dev == devid ||
 167		    entry->target_dev == alias) {
 168			ret = entry;
 169			break;
 170		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 171	}
 172
 173	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
 
 174
 175	return ret;
 
 
 
 
 
 
 176}
 177
 178/*
 179 * This function checks if the driver got a valid device from the caller to
 180 * avoid dereferencing invalid pointers.
 181 */
 182static bool check_device(struct device *dev)
 183{
 184	u16 devid;
 185
 186	if (!dev || !dev->dma_mask)
 187		return false;
 188
 189	/* No device or no PCI device */
 190	if (dev->bus != &pci_bus_type)
 191		return false;
 192
 193	devid = get_device_id(dev);
 
 
 194
 195	/* Out of our scope? */
 196	if (devid > amd_iommu_last_bdf)
 197		return false;
 198
 199	if (amd_iommu_rlookup_table[devid] == NULL)
 200		return false;
 201
 202	return true;
 203}
 204
 
 
 
 
 
 
 
 
 
 
 
 205static int iommu_init_device(struct device *dev)
 206{
 207	struct iommu_dev_data *dev_data;
 208	u16 alias;
 
 209
 210	if (dev->archdata.iommu)
 211		return 0;
 212
 213	dev_data = find_dev_data(get_device_id(dev));
 
 
 
 
 
 
 214	if (!dev_data)
 215		return -ENOMEM;
 216
 217	alias = amd_iommu_alias_table[dev_data->devid];
 218	if (alias != dev_data->devid) {
 219		struct iommu_dev_data *alias_data;
 220
 221		alias_data = find_dev_data(alias);
 222		if (alias_data == NULL) {
 223			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
 224					dev_name(dev));
 225			free_dev_data(dev_data);
 226			return -ENOTSUPP;
 227		}
 228		dev_data->alias_data = alias_data;
 
 
 229	}
 230
 231	dev->archdata.iommu = dev_data;
 232
 
 
 233	return 0;
 234}
 235
 236static void iommu_ignore_device(struct device *dev)
 237{
 238	u16 devid, alias;
 
 239
 240	devid = get_device_id(dev);
 241	alias = amd_iommu_alias_table[devid];
 
 
 
 242
 243	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
 244	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
 245
 246	amd_iommu_rlookup_table[devid] = NULL;
 247	amd_iommu_rlookup_table[alias] = NULL;
 248}
 249
 250static void iommu_uninit_device(struct device *dev)
 251{
 252	/*
 253	 * Nothing to do here - we keep dev_data around for unplugged devices
 254	 * and reuse it when the device is re-plugged - not doing so would
 255	 * introduce a ton of races.
 256	 */
 257}
 258
 259void __init amd_iommu_uninit_devices(void)
 260{
 261	struct iommu_dev_data *dev_data, *n;
 262	struct pci_dev *pdev = NULL;
 263
 264	for_each_pci_dev(pdev) {
 265
 266		if (!check_device(&pdev->dev))
 267			continue;
 268
 269		iommu_uninit_device(&pdev->dev);
 270	}
 271
 272	/* Free all of our dev_data structures */
 273	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
 274		free_dev_data(dev_data);
 275}
 276
 277int __init amd_iommu_init_devices(void)
 278{
 279	struct pci_dev *pdev = NULL;
 280	int ret = 0;
 281
 282	for_each_pci_dev(pdev) {
 283
 284		if (!check_device(&pdev->dev))
 285			continue;
 
 286
 287		ret = iommu_init_device(&pdev->dev);
 288		if (ret == -ENOTSUPP)
 289			iommu_ignore_device(&pdev->dev);
 290		else if (ret)
 291			goto out_free;
 292	}
 293
 294	return 0;
 295
 296out_free:
 297
 298	amd_iommu_uninit_devices();
 
 299
 300	return ret;
 
 
 
 301}
 302#ifdef CONFIG_AMD_IOMMU_STATS
 303
 304/*
 305 * Initialization code for statistics collection
 306 */
 307
 308DECLARE_STATS_COUNTER(compl_wait);
 309DECLARE_STATS_COUNTER(cnt_map_single);
 310DECLARE_STATS_COUNTER(cnt_unmap_single);
 311DECLARE_STATS_COUNTER(cnt_map_sg);
 312DECLARE_STATS_COUNTER(cnt_unmap_sg);
 313DECLARE_STATS_COUNTER(cnt_alloc_coherent);
 314DECLARE_STATS_COUNTER(cnt_free_coherent);
 315DECLARE_STATS_COUNTER(cross_page);
 316DECLARE_STATS_COUNTER(domain_flush_single);
 317DECLARE_STATS_COUNTER(domain_flush_all);
 318DECLARE_STATS_COUNTER(alloced_io_mem);
 319DECLARE_STATS_COUNTER(total_map_requests);
 320
 321static struct dentry *stats_dir;
 322static struct dentry *de_fflush;
 323
 324static void amd_iommu_stats_add(struct __iommu_counter *cnt)
 325{
 326	if (stats_dir == NULL)
 327		return;
 328
 329	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
 330				       &cnt->value);
 331}
 
 332
 333static void amd_iommu_stats_init(void)
 334{
 335	stats_dir = debugfs_create_dir("amd-iommu", NULL);
 336	if (stats_dir == NULL)
 337		return;
 338
 339	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
 340					 (u32 *)&amd_iommu_unmap_flush);
 341
 342	amd_iommu_stats_add(&compl_wait);
 343	amd_iommu_stats_add(&cnt_map_single);
 344	amd_iommu_stats_add(&cnt_unmap_single);
 345	amd_iommu_stats_add(&cnt_map_sg);
 346	amd_iommu_stats_add(&cnt_unmap_sg);
 347	amd_iommu_stats_add(&cnt_alloc_coherent);
 348	amd_iommu_stats_add(&cnt_free_coherent);
 349	amd_iommu_stats_add(&cross_page);
 350	amd_iommu_stats_add(&domain_flush_single);
 351	amd_iommu_stats_add(&domain_flush_all);
 352	amd_iommu_stats_add(&alloced_io_mem);
 353	amd_iommu_stats_add(&total_map_requests);
 354}
 355
 356#endif
 357
 358/****************************************************************************
 359 *
 360 * Interrupt handling functions
 361 *
 362 ****************************************************************************/
 363
 364static void dump_dte_entry(u16 devid)
 365{
 366	int i;
 367
 368	for (i = 0; i < 8; ++i)
 369		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
 370			amd_iommu_dev_table[devid].data[i]);
 371}
 372
 373static void dump_command(unsigned long phys_addr)
 374{
 375	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
 376	int i;
 377
 378	for (i = 0; i < 4; ++i)
 379		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 380}
 381
 382static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
 383{
 384	u32 *event = __evt;
 385	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
 386	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
 387	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
 388	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
 389	u64 address = (u64)(((u64)event[3]) << 32) | event[2];
 390
 391	printk(KERN_ERR "AMD-Vi: Event logged [");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 392
 393	switch (type) {
 394	case EVENT_TYPE_ILL_DEV:
 395		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
 396		       "address=0x%016llx flags=0x%04x]\n",
 397		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 398		       address, flags);
 399		dump_dte_entry(devid);
 400		break;
 401	case EVENT_TYPE_IO_FAULT:
 402		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
 403		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 404		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 405		       domid, address, flags);
 406		break;
 407	case EVENT_TYPE_DEV_TAB_ERR:
 408		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 409		       "address=0x%016llx flags=0x%04x]\n",
 410		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 411		       address, flags);
 412		break;
 413	case EVENT_TYPE_PAGE_TAB_ERR:
 414		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 415		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 416		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 417		       domid, address, flags);
 418		break;
 419	case EVENT_TYPE_ILL_CMD:
 420		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
 421		dump_command(address);
 422		break;
 423	case EVENT_TYPE_CMD_HARD_ERR:
 424		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
 425		       "flags=0x%04x]\n", address, flags);
 426		break;
 427	case EVENT_TYPE_IOTLB_INV_TO:
 428		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
 429		       "address=0x%016llx]\n",
 430		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 431		       address);
 432		break;
 433	case EVENT_TYPE_INV_DEV_REQ:
 434		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
 435		       "address=0x%016llx flags=0x%04x]\n",
 436		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 437		       address, flags);
 
 
 
 
 
 
 
 438		break;
 439	default:
 440		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
 
 441	}
 
 
 442}
 443
 444static void iommu_poll_events(struct amd_iommu *iommu)
 445{
 446	u32 head, tail;
 447	unsigned long flags;
 448
 449	spin_lock_irqsave(&iommu->lock, flags);
 450
 451	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 452	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
 453
 454	while (head != tail) {
 455		iommu_print_event(iommu, iommu->evt_buf + head);
 456		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
 457	}
 458
 459	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 
 
 
 
 
 460
 461	spin_unlock_irqrestore(&iommu->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 462}
 463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 464irqreturn_t amd_iommu_int_thread(int irq, void *data)
 465{
 466	struct amd_iommu *iommu;
 
 467
 468	for_each_iommu(iommu)
 469		iommu_poll_events(iommu);
 
 
 
 
 
 
 
 470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471	return IRQ_HANDLED;
 472}
 473
 474irqreturn_t amd_iommu_int_handler(int irq, void *data)
 475{
 476	return IRQ_WAKE_THREAD;
 477}
 478
 479/****************************************************************************
 480 *
 481 * IOMMU command queuing functions
 482 *
 483 ****************************************************************************/
 484
 485static int wait_on_sem(volatile u64 *sem)
 486{
 487	int i = 0;
 488
 489	while (*sem == 0 && i < LOOP_TIMEOUT) {
 490		udelay(1);
 491		i += 1;
 492	}
 493
 494	if (i == LOOP_TIMEOUT) {
 495		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
 496		return -EIO;
 497	}
 498
 499	return 0;
 500}
 501
 502static void copy_cmd_to_buffer(struct amd_iommu *iommu,
 503			       struct iommu_cmd *cmd,
 504			       u32 tail)
 505{
 506	u8 *target;
 507
 508	target = iommu->cmd_buf + tail;
 509	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
 
 
 510
 511	/* Copy command to buffer */
 512	memcpy(target, cmd, sizeof(*cmd));
 513
 514	/* Tell the IOMMU about it */
 515	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
 516}
 517
 518static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
 519{
 
 
 520	WARN_ON(address & 0x7ULL);
 521
 522	memset(cmd, 0, sizeof(*cmd));
 523	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
 524	cmd->data[1] = upper_32_bits(__pa(address));
 525	cmd->data[2] = 1;
 526	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
 527}
 528
 529static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
 530{
 531	memset(cmd, 0, sizeof(*cmd));
 532	cmd->data[0] = devid;
 533	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
 534}
 535
 536static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
 537				  size_t size, u16 domid, int pde)
 538{
 539	u64 pages;
 540	int s;
 541
 542	pages = iommu_num_pages(address, size, PAGE_SIZE);
 543	s     = 0;
 544
 545	if (pages > 1) {
 546		/*
 547		 * If we have to flush more than one page, flush all
 548		 * TLB entries for this domain
 549		 */
 550		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 551		s = 1;
 552	}
 553
 554	address &= PAGE_MASK;
 555
 556	memset(cmd, 0, sizeof(*cmd));
 557	cmd->data[1] |= domid;
 558	cmd->data[2]  = lower_32_bits(address);
 559	cmd->data[3]  = upper_32_bits(address);
 560	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 561	if (s) /* size bit - we flush more than one 4kb page */
 562		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 563	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
 564		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 565}
 566
 567static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
 568				  u64 address, size_t size)
 569{
 570	u64 pages;
 571	int s;
 572
 573	pages = iommu_num_pages(address, size, PAGE_SIZE);
 574	s     = 0;
 575
 576	if (pages > 1) {
 577		/*
 578		 * If we have to flush more than one page, flush all
 579		 * TLB entries for this domain
 580		 */
 581		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 582		s = 1;
 583	}
 584
 585	address &= PAGE_MASK;
 586
 587	memset(cmd, 0, sizeof(*cmd));
 588	cmd->data[0]  = devid;
 589	cmd->data[0] |= (qdep & 0xff) << 24;
 590	cmd->data[1]  = devid;
 591	cmd->data[2]  = lower_32_bits(address);
 592	cmd->data[3]  = upper_32_bits(address);
 593	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 594	if (s)
 595		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 596}
 597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598static void build_inv_all(struct iommu_cmd *cmd)
 599{
 600	memset(cmd, 0, sizeof(*cmd));
 601	CMD_SET_TYPE(cmd, CMD_INV_ALL);
 602}
 603
 
 
 
 
 
 
 
 604/*
 605 * Writes the command to the IOMMUs command buffer and informs the
 606 * hardware about the new command.
 607 */
 608static int iommu_queue_command_sync(struct amd_iommu *iommu,
 609				    struct iommu_cmd *cmd,
 610				    bool sync)
 611{
 612	u32 left, tail, head, next_tail;
 613	unsigned long flags;
 614
 615	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
 616
 
 617again:
 618	spin_lock_irqsave(&iommu->lock, flags);
 619
 620	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
 621	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
 622	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
 623	left      = (head - next_tail) % iommu->cmd_buf_size;
 
 
 
 624
 625	if (left <= 2) {
 626		struct iommu_cmd sync_cmd;
 627		volatile u64 sem = 0;
 628		int ret;
 629
 630		build_completion_wait(&sync_cmd, (u64)&sem);
 631		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
 632
 633		spin_unlock_irqrestore(&iommu->lock, flags);
 634
 635		if ((ret = wait_on_sem(&sem)) != 0)
 636			return ret;
 
 637
 638		goto again;
 639	}
 640
 641	copy_cmd_to_buffer(iommu, cmd, tail);
 642
 643	/* We need to sync now to make sure all commands are processed */
 644	iommu->need_sync = sync;
 645
 646	spin_unlock_irqrestore(&iommu->lock, flags);
 647
 648	return 0;
 649}
 650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 651static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
 652{
 653	return iommu_queue_command_sync(iommu, cmd, true);
 654}
 655
 656/*
 657 * This function queues a completion wait command into the command
 658 * buffer of an IOMMU
 659 */
 660static int iommu_completion_wait(struct amd_iommu *iommu)
 661{
 662	struct iommu_cmd cmd;
 663	volatile u64 sem = 0;
 664	int ret;
 665
 666	if (!iommu->need_sync)
 667		return 0;
 668
 669	build_completion_wait(&cmd, (u64)&sem);
 670
 671	ret = iommu_queue_command_sync(iommu, &cmd, false);
 
 
 
 
 
 
 672	if (ret)
 673		return ret;
 
 
 
 
 
 674
 675	return wait_on_sem(&sem);
 676}
 677
 678static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
 679{
 680	struct iommu_cmd cmd;
 681
 682	build_inv_dte(&cmd, devid);
 683
 684	return iommu_queue_command(iommu, &cmd);
 685}
 686
 687static void iommu_flush_dte_all(struct amd_iommu *iommu)
 688{
 689	u32 devid;
 690
 691	for (devid = 0; devid <= 0xffff; ++devid)
 692		iommu_flush_dte(iommu, devid);
 693
 694	iommu_completion_wait(iommu);
 695}
 696
 697/*
 698 * This function uses heavy locking and may disable irqs for some time. But
 699 * this is no issue because it is only called during resume.
 700 */
 701static void iommu_flush_tlb_all(struct amd_iommu *iommu)
 702{
 703	u32 dom_id;
 704
 705	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
 706		struct iommu_cmd cmd;
 707		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
 708				      dom_id, 1);
 709		iommu_queue_command(iommu, &cmd);
 710	}
 711
 712	iommu_completion_wait(iommu);
 713}
 714
 715static void iommu_flush_all(struct amd_iommu *iommu)
 
 
 
 
 
 
 
 
 
 
 
 716{
 717	struct iommu_cmd cmd;
 718
 719	build_inv_all(&cmd);
 720
 721	iommu_queue_command(iommu, &cmd);
 722	iommu_completion_wait(iommu);
 723}
 724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 725void iommu_flush_all_caches(struct amd_iommu *iommu)
 726{
 727	if (iommu_feature(iommu, FEATURE_IA)) {
 728		iommu_flush_all(iommu);
 729	} else {
 730		iommu_flush_dte_all(iommu);
 731		iommu_flush_tlb_all(iommu);
 
 732	}
 733}
 734
 735/*
 736 * Command send function for flushing on-device TLB
 737 */
 738static int device_flush_iotlb(struct iommu_dev_data *dev_data,
 739			      u64 address, size_t size)
 740{
 741	struct amd_iommu *iommu;
 742	struct iommu_cmd cmd;
 743	int qdep;
 744
 745	qdep     = dev_data->ats.qdep;
 746	iommu    = amd_iommu_rlookup_table[dev_data->devid];
 747
 748	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
 749
 750	return iommu_queue_command(iommu, &cmd);
 751}
 752
 753/*
 754 * Command send function for invalidating a device table entry
 755 */
 756static int device_flush_dte(struct iommu_dev_data *dev_data)
 757{
 758	struct amd_iommu *iommu;
 
 759	int ret;
 760
 761	iommu = amd_iommu_rlookup_table[dev_data->devid];
 
 762
 763	ret = iommu_flush_dte(iommu, dev_data->devid);
 
 
 764	if (ret)
 765		return ret;
 766
 767	if (dev_data->ats.enabled)
 768		ret = device_flush_iotlb(dev_data, 0, ~0UL);
 769
 770	return ret;
 771}
 772
 773/*
 774 * TLB invalidation function which is called from the mapping functions.
 775 * It invalidates a single PTE if the range to flush is within a single
 776 * page. Otherwise it flushes the whole TLB of the IOMMU.
 777 */
 778static void __domain_flush_pages(struct protection_domain *domain,
 779				 u64 address, size_t size, int pde)
 780{
 781	struct iommu_dev_data *dev_data;
 782	struct iommu_cmd cmd;
 783	int ret = 0, i;
 784
 785	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
 786
 787	for (i = 0; i < amd_iommus_present; ++i) {
 788		if (!domain->dev_iommu[i])
 789			continue;
 790
 791		/*
 792		 * Devices of this domain are behind this IOMMU
 793		 * We need a TLB flush
 794		 */
 795		ret |= iommu_queue_command(amd_iommus[i], &cmd);
 796	}
 797
 798	list_for_each_entry(dev_data, &domain->dev_list, list) {
 799
 800		if (!dev_data->ats.enabled)
 801			continue;
 802
 803		ret |= device_flush_iotlb(dev_data, address, size);
 804	}
 805
 806	WARN_ON(ret);
 807}
 808
 809static void domain_flush_pages(struct protection_domain *domain,
 810			       u64 address, size_t size)
 811{
 812	__domain_flush_pages(domain, address, size, 0);
 813}
 814
 815/* Flush the whole IO/TLB for a given protection domain */
 816static void domain_flush_tlb(struct protection_domain *domain)
 817{
 818	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
 819}
 820
 821/* Flush the whole IO/TLB for a given protection domain - including PDE */
 822static void domain_flush_tlb_pde(struct protection_domain *domain)
 823{
 824	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
 825}
 826
 827static void domain_flush_complete(struct protection_domain *domain)
 828{
 829	int i;
 830
 831	for (i = 0; i < amd_iommus_present; ++i) {
 832		if (!domain->dev_iommu[i])
 833			continue;
 834
 835		/*
 836		 * Devices of this domain are behind this IOMMU
 837		 * We need to wait for completion of all commands.
 838		 */
 839		iommu_completion_wait(amd_iommus[i]);
 840	}
 841}
 842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843
 844/*
 845 * This function flushes the DTEs for all devices in domain
 846 */
 847static void domain_flush_devices(struct protection_domain *domain)
 848{
 849	struct iommu_dev_data *dev_data;
 850
 851	list_for_each_entry(dev_data, &domain->dev_list, list)
 852		device_flush_dte(dev_data);
 853}
 854
 855/****************************************************************************
 856 *
 857 * The functions below are used the create the page table mappings for
 858 * unity mapped regions.
 859 *
 860 ****************************************************************************/
 861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862/*
 863 * This function is used to add another level to an IO page table. Adding
 864 * another level increases the size of the address space by 9 bits to a size up
 865 * to 64 bits.
 866 */
 867static bool increase_address_space(struct protection_domain *domain,
 
 868				   gfp_t gfp)
 869{
 
 
 870	u64 *pte;
 871
 872	if (domain->mode == PAGE_MODE_6_LEVEL)
 873		/* address space already 64 bit large */
 874		return false;
 
 
 875
 876	pte = (void *)get_zeroed_page(gfp);
 877	if (!pte)
 878		return false;
 879
 880	*pte             = PM_LEVEL_PDE(domain->mode,
 881					virt_to_phys(domain->pt_root));
 882	domain->pt_root  = pte;
 883	domain->mode    += 1;
 884	domain->updated  = true;
 885
 886	return true;
 
 
 
 
 
 887}
 888
 889static u64 *alloc_pte(struct protection_domain *domain,
 890		      unsigned long address,
 891		      unsigned long page_size,
 892		      u64 **pte_page,
 893		      gfp_t gfp)
 
 894{
 895	int level, end_lvl;
 896	u64 *pte, *page;
 897
 898	BUG_ON(!is_power_of_2(page_size));
 899
 900	while (address > PM_LEVEL_SIZE(domain->mode))
 901		increase_address_space(domain, gfp);
 902
 903	level   = domain->mode - 1;
 904	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
 905	address = PAGE_SIZE_ALIGN(address, page_size);
 906	end_lvl = PAGE_SIZE_LEVEL(page_size);
 907
 908	while (level > end_lvl) {
 909		if (!IOMMU_PTE_PRESENT(*pte)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 910			page = (u64 *)get_zeroed_page(gfp);
 
 911			if (!page)
 912				return NULL;
 913			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
 
 
 
 
 
 
 
 
 
 914		}
 915
 916		/* No level skipping support yet */
 917		if (PM_PTE_LEVEL(*pte) != level)
 918			return NULL;
 919
 920		level -= 1;
 921
 922		pte = IOMMU_PTE_PAGE(*pte);
 923
 924		if (pte_page && level == end_lvl)
 925			*pte_page = pte;
 926
 927		pte = &pte[PM_LEVEL_INDEX(level, address)];
 928	}
 929
 930	return pte;
 931}
 932
 933/*
 934 * This function checks if there is a PTE for a given dma address. If
 935 * there is one, it returns the pointer to it.
 936 */
 937static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
 
 
 938{
 939	int level;
 940	u64 *pte;
 941
 
 
 942	if (address > PM_LEVEL_SIZE(domain->mode))
 943		return NULL;
 944
 945	level   =  domain->mode - 1;
 946	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
 
 947
 948	while (level > 0) {
 949
 950		/* Not Present */
 951		if (!IOMMU_PTE_PRESENT(*pte))
 952			return NULL;
 953
 954		/* Large PTE */
 955		if (PM_PTE_LEVEL(*pte) == 0x07) {
 956			unsigned long pte_mask, __pte;
 957
 958			/*
 959			 * If we have a series of large PTEs, make
 960			 * sure to return a pointer to the first one.
 961			 */
 962			pte_mask = PTE_PAGE_SIZE(*pte);
 963			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
 964			__pte    = ((unsigned long)pte) & pte_mask;
 965
 966			return (u64 *)__pte;
 967		}
 968
 969		/* No level skipping support yet */
 970		if (PM_PTE_LEVEL(*pte) != level)
 971			return NULL;
 972
 973		level -= 1;
 974
 975		/* Walk to the next level */
 976		pte = IOMMU_PTE_PAGE(*pte);
 977		pte = &pte[PM_LEVEL_INDEX(level, address)];
 
 978	}
 979
 
 
 
 
 
 
 
 980	return pte;
 981}
 982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983/*
 984 * Generic mapping functions. It maps a physical address into a DMA
 985 * address space. It allocates the page table pages if necessary.
 986 * In the future it can be extended to a generic mapping function
 987 * supporting all features of AMD IOMMU page tables like level skipping
 988 * and full 64 bit address spaces.
 989 */
 990static int iommu_map_page(struct protection_domain *dom,
 991			  unsigned long bus_addr,
 992			  unsigned long phys_addr,
 
 993			  int prot,
 994			  unsigned long page_size)
 995{
 
 
 996	u64 __pte, *pte;
 997	int i, count;
 998
 
 
 
 
 999	if (!(prot & IOMMU_PROT_MASK))
1000		return -EINVAL;
 
 
 
1001
1002	bus_addr  = PAGE_ALIGN(bus_addr);
1003	phys_addr = PAGE_ALIGN(phys_addr);
1004	count     = PAGE_SIZE_PTE_COUNT(page_size);
1005	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1006
1007	for (i = 0; i < count; ++i)
1008		if (IOMMU_PTE_PRESENT(pte[i]))
1009			return -EBUSY;
 
 
1010
1011	if (page_size > PAGE_SIZE) {
1012		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
1013		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1014	} else
1015		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1016
1017	if (prot & IOMMU_PROT_IR)
1018		__pte |= IOMMU_PTE_IR;
1019	if (prot & IOMMU_PROT_IW)
1020		__pte |= IOMMU_PTE_IW;
1021
1022	for (i = 0; i < count; ++i)
1023		pte[i] = __pte;
1024
1025	update_domain(dom);
1026
1027	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1028}
1029
1030static unsigned long iommu_unmap_page(struct protection_domain *dom,
1031				      unsigned long bus_addr,
1032				      unsigned long page_size)
1033{
1034	unsigned long long unmap_size, unmapped;
 
1035	u64 *pte;
1036
1037	BUG_ON(!is_power_of_2(page_size));
1038
1039	unmapped = 0;
1040
1041	while (unmapped < page_size) {
1042
1043		pte = fetch_pte(dom, bus_addr);
1044
1045		if (!pte) {
1046			/*
1047			 * No PTE for this address
1048			 * move forward in 4kb steps
1049			 */
1050			unmap_size = PAGE_SIZE;
1051		} else if (PM_PTE_LEVEL(*pte) == 0) {
1052			/* 4kb PTE found for this address */
1053			unmap_size = PAGE_SIZE;
1054			*pte       = 0ULL;
1055		} else {
1056			int count, i;
1057
1058			/* Large PTE found which maps this address */
1059			unmap_size = PTE_PAGE_SIZE(*pte);
1060			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
1061			for (i = 0; i < count; i++)
1062				pte[i] = 0ULL;
1063		}
1064
1065		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1066		unmapped += unmap_size;
1067	}
1068
1069	BUG_ON(!is_power_of_2(unmapped));
1070
1071	return unmapped;
1072}
1073
1074/*
1075 * This function checks if a specific unity mapping entry is needed for
1076 * this specific IOMMU.
1077 */
1078static int iommu_for_unity_map(struct amd_iommu *iommu,
1079			       struct unity_map_entry *entry)
1080{
1081	u16 bdf, i;
1082
1083	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1084		bdf = amd_iommu_alias_table[i];
1085		if (amd_iommu_rlookup_table[bdf] == iommu)
1086			return 1;
1087	}
1088
1089	return 0;
1090}
1091
1092/*
1093 * This function actually applies the mapping to the page table of the
1094 * dma_ops domain.
1095 */
1096static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1097			     struct unity_map_entry *e)
1098{
1099	u64 addr;
1100	int ret;
1101
1102	for (addr = e->address_start; addr < e->address_end;
1103	     addr += PAGE_SIZE) {
1104		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1105				     PAGE_SIZE);
1106		if (ret)
1107			return ret;
1108		/*
1109		 * if unity mapping is in aperture range mark the page
1110		 * as allocated in the aperture
1111		 */
1112		if (addr < dma_dom->aperture_size)
1113			__set_bit(addr >> PAGE_SHIFT,
1114				  dma_dom->aperture[0]->bitmap);
1115	}
1116
1117	return 0;
1118}
1119
1120/*
1121 * Init the unity mappings for a specific IOMMU in the system
1122 *
1123 * Basically iterates over all unity mapping entries and applies them to
1124 * the default domain DMA of that IOMMU if necessary.
1125 */
1126static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1127{
1128	struct unity_map_entry *entry;
1129	int ret;
1130
1131	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1132		if (!iommu_for_unity_map(iommu, entry))
1133			continue;
1134		ret = dma_ops_unity_map(iommu->default_dom, entry);
1135		if (ret)
1136			return ret;
1137	}
1138
1139	return 0;
1140}
1141
1142/*
1143 * Inits the unity mappings required for a specific device
1144 */
1145static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1146					  u16 devid)
1147{
1148	struct unity_map_entry *e;
1149	int ret;
1150
1151	list_for_each_entry(e, &amd_iommu_unity_map, list) {
1152		if (!(devid >= e->devid_start && devid <= e->devid_end))
1153			continue;
1154		ret = dma_ops_unity_map(dma_dom, e);
1155		if (ret)
1156			return ret;
1157	}
1158
1159	return 0;
1160}
1161
1162/****************************************************************************
1163 *
1164 * The next functions belong to the address allocator for the dma_ops
1165 * interface functions. They work like the allocators in the other IOMMU
1166 * drivers. Its basically a bitmap which marks the allocated pages in
1167 * the aperture. Maybe it could be enhanced in the future to a more
1168 * efficient allocator.
1169 *
1170 ****************************************************************************/
1171
1172/*
1173 * The address allocator core functions.
1174 *
1175 * called with domain->lock held
1176 */
1177
1178/*
1179 * Used to reserve address ranges in the aperture (e.g. for exclusion
1180 * ranges.
1181 */
1182static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1183				      unsigned long start_page,
1184				      unsigned int pages)
1185{
1186	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1187
1188	if (start_page + pages > last_page)
1189		pages = last_page - start_page;
1190
1191	for (i = start_page; i < start_page + pages; ++i) {
1192		int index = i / APERTURE_RANGE_PAGES;
1193		int page  = i % APERTURE_RANGE_PAGES;
1194		__set_bit(page, dom->aperture[index]->bitmap);
1195	}
1196}
1197
1198/*
1199 * This function is used to add a new aperture range to an existing
1200 * aperture in case of dma_ops domain allocation or address allocation
1201 * failure.
1202 */
1203static int alloc_new_range(struct dma_ops_domain *dma_dom,
1204			   bool populate, gfp_t gfp)
1205{
1206	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1207	struct amd_iommu *iommu;
1208	unsigned long i, old_size;
1209
1210#ifdef CONFIG_IOMMU_STRESS
1211	populate = false;
1212#endif
1213
1214	if (index >= APERTURE_MAX_RANGES)
1215		return -ENOMEM;
1216
1217	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1218	if (!dma_dom->aperture[index])
1219		return -ENOMEM;
1220
1221	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1222	if (!dma_dom->aperture[index]->bitmap)
1223		goto out_free;
1224
1225	dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1226
1227	if (populate) {
1228		unsigned long address = dma_dom->aperture_size;
1229		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1230		u64 *pte, *pte_page;
1231
1232		for (i = 0; i < num_ptes; ++i) {
1233			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1234					&pte_page, gfp);
1235			if (!pte)
1236				goto out_free;
1237
1238			dma_dom->aperture[index]->pte_pages[i] = pte_page;
1239
1240			address += APERTURE_RANGE_SIZE / 64;
1241		}
1242	}
1243
1244	old_size                = dma_dom->aperture_size;
1245	dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1246
1247	/* Reserve address range used for MSI messages */
1248	if (old_size < MSI_ADDR_BASE_LO &&
1249	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1250		unsigned long spage;
1251		int pages;
1252
1253		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1254		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1255
1256		dma_ops_reserve_addresses(dma_dom, spage, pages);
1257	}
1258
1259	/* Initialize the exclusion range if necessary */
1260	for_each_iommu(iommu) {
1261		if (iommu->exclusion_start &&
1262		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
1263		    && iommu->exclusion_start < dma_dom->aperture_size) {
1264			unsigned long startpage;
1265			int pages = iommu_num_pages(iommu->exclusion_start,
1266						    iommu->exclusion_length,
1267						    PAGE_SIZE);
1268			startpage = iommu->exclusion_start >> PAGE_SHIFT;
1269			dma_ops_reserve_addresses(dma_dom, startpage, pages);
1270		}
1271	}
1272
1273	/*
1274	 * Check for areas already mapped as present in the new aperture
1275	 * range and mark those pages as reserved in the allocator. Such
1276	 * mappings may already exist as a result of requested unity
1277	 * mappings for devices.
1278	 */
1279	for (i = dma_dom->aperture[index]->offset;
1280	     i < dma_dom->aperture_size;
1281	     i += PAGE_SIZE) {
1282		u64 *pte = fetch_pte(&dma_dom->domain, i);
1283		if (!pte || !IOMMU_PTE_PRESENT(*pte))
1284			continue;
1285
1286		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
1287	}
1288
1289	update_domain(&dma_dom->domain);
1290
1291	return 0;
1292
1293out_free:
1294	update_domain(&dma_dom->domain);
1295
1296	free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1297
1298	kfree(dma_dom->aperture[index]);
1299	dma_dom->aperture[index] = NULL;
1300
1301	return -ENOMEM;
1302}
1303
1304static unsigned long dma_ops_area_alloc(struct device *dev,
1305					struct dma_ops_domain *dom,
1306					unsigned int pages,
1307					unsigned long align_mask,
1308					u64 dma_mask,
1309					unsigned long start)
1310{
1311	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1312	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1313	int i = start >> APERTURE_RANGE_SHIFT;
1314	unsigned long boundary_size;
1315	unsigned long address = -1;
1316	unsigned long limit;
1317
1318	next_bit >>= PAGE_SHIFT;
1319
1320	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1321			PAGE_SIZE) >> PAGE_SHIFT;
1322
1323	for (;i < max_index; ++i) {
1324		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1325
1326		if (dom->aperture[i]->offset >= dma_mask)
1327			break;
1328
1329		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1330					       dma_mask >> PAGE_SHIFT);
1331
1332		address = iommu_area_alloc(dom->aperture[i]->bitmap,
1333					   limit, next_bit, pages, 0,
1334					    boundary_size, align_mask);
1335		if (address != -1) {
1336			address = dom->aperture[i]->offset +
1337				  (address << PAGE_SHIFT);
1338			dom->next_address = address + (pages << PAGE_SHIFT);
1339			break;
1340		}
1341
1342		next_bit = 0;
1343	}
1344
1345	return address;
1346}
1347
1348static unsigned long dma_ops_alloc_addresses(struct device *dev,
1349					     struct dma_ops_domain *dom,
1350					     unsigned int pages,
1351					     unsigned long align_mask,
1352					     u64 dma_mask)
1353{
1354	unsigned long address;
1355
1356#ifdef CONFIG_IOMMU_STRESS
1357	dom->next_address = 0;
1358	dom->need_flush = true;
1359#endif
1360
1361	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1362				     dma_mask, dom->next_address);
1363
1364	if (address == -1) {
1365		dom->next_address = 0;
1366		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1367					     dma_mask, 0);
1368		dom->need_flush = true;
1369	}
1370
1371	if (unlikely(address == -1))
1372		address = DMA_ERROR_CODE;
 
1373
1374	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
 
 
1375
1376	return address;
1377}
1378
1379/*
1380 * The address free function.
1381 *
1382 * called with domain->lock held
1383 */
1384static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1385				   unsigned long address,
1386				   unsigned int pages)
1387{
1388	unsigned i = address >> APERTURE_RANGE_SHIFT;
1389	struct aperture_range *range = dom->aperture[i];
1390
1391	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1392
1393#ifdef CONFIG_IOMMU_STRESS
1394	if (i < 4)
1395		return;
1396#endif
1397
1398	if (address >= dom->next_address)
1399		dom->need_flush = true;
1400
1401	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1402
1403	bitmap_clear(range->bitmap, address, pages);
1404
 
1405}
1406
1407/****************************************************************************
1408 *
1409 * The next functions belong to the domain allocation. A domain is
1410 * allocated for every IOMMU as the default domain. If device isolation
1411 * is enabled, every device get its own domain. The most important thing
1412 * about domains is the page table mapping the DMA address space they
1413 * contain.
1414 *
1415 ****************************************************************************/
1416
1417/*
1418 * This function adds a protection domain to the global protection domain list
1419 */
1420static void add_domain_to_list(struct protection_domain *domain)
1421{
1422	unsigned long flags;
1423
1424	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1425	list_add(&domain->list, &amd_iommu_pd_list);
1426	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1427}
1428
1429/*
1430 * This function removes a protection domain to the global
1431 * protection domain list
1432 */
1433static void del_domain_from_list(struct protection_domain *domain)
1434{
1435	unsigned long flags;
1436
1437	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1438	list_del(&domain->list);
1439	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1440}
1441
1442static u16 domain_id_alloc(void)
1443{
1444	unsigned long flags;
1445	int id;
1446
1447	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1448	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1449	BUG_ON(id == 0);
1450	if (id > 0 && id < MAX_DOMAIN_ID)
1451		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1452	else
1453		id = 0;
1454	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1455
1456	return id;
1457}
1458
1459static void domain_id_free(int id)
1460{
1461	unsigned long flags;
1462
1463	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1464	if (id > 0 && id < MAX_DOMAIN_ID)
1465		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1466	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1467}
1468
1469static void free_pagetable(struct protection_domain *domain)
1470{
1471	int i, j;
1472	u64 *p1, *p2, *p3;
1473
1474	p1 = domain->pt_root;
 
 
1475
1476	if (!p1)
1477		return;
 
 
 
 
 
 
 
 
1478
1479	for (i = 0; i < 512; ++i) {
1480		if (!IOMMU_PTE_PRESENT(p1[i]))
1481			continue;
1482
1483		p2 = IOMMU_PTE_PAGE(p1[i]);
1484		for (j = 0; j < 512; ++j) {
1485			if (!IOMMU_PTE_PRESENT(p2[j]))
1486				continue;
1487			p3 = IOMMU_PTE_PAGE(p2[j]);
1488			free_page((unsigned long)p3);
1489		}
1490
1491		free_page((unsigned long)p2);
1492	}
 
1493
1494	free_page((unsigned long)p1);
 
 
 
 
 
 
 
1495
1496	domain->pt_root = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1497}
1498
1499/*
1500 * Free a domain, only used if something went wrong in the
1501 * allocation path and we need to free an already allocated page table
1502 */
1503static void dma_ops_domain_free(struct dma_ops_domain *dom)
1504{
1505	int i;
1506
1507	if (!dom)
1508		return;
1509
1510	del_domain_from_list(&dom->domain);
1511
1512	free_pagetable(&dom->domain);
1513
1514	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1515		if (!dom->aperture[i])
1516			continue;
1517		free_page((unsigned long)dom->aperture[i]->bitmap);
1518		kfree(dom->aperture[i]);
1519	}
1520
1521	kfree(dom);
1522}
1523
1524/*
1525 * Allocates a new protection domain usable for the dma_ops functions.
1526 * It also initializes the page table and the address allocator data
1527 * structures required for the dma_ops interface
1528 */
1529static struct dma_ops_domain *dma_ops_domain_alloc(void)
1530{
1531	struct dma_ops_domain *dma_dom;
1532
1533	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1534	if (!dma_dom)
1535		return NULL;
1536
1537	spin_lock_init(&dma_dom->domain.lock);
1538
1539	dma_dom->domain.id = domain_id_alloc();
1540	if (dma_dom->domain.id == 0)
1541		goto free_dma_dom;
1542	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1543	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1544	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1545	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1546	dma_dom->domain.priv = dma_dom;
1547	if (!dma_dom->domain.pt_root)
1548		goto free_dma_dom;
1549
1550	dma_dom->need_flush = false;
1551	dma_dom->target_dev = 0xffff;
1552
1553	add_domain_to_list(&dma_dom->domain);
1554
1555	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1556		goto free_dma_dom;
1557
1558	/*
1559	 * mark the first page as allocated so we never return 0 as
1560	 * a valid dma-address. So we can use 0 as error value
1561	 */
1562	dma_dom->aperture[0]->bitmap[0] = 1;
1563	dma_dom->next_address = 0;
1564
1565
1566	return dma_dom;
1567
1568free_dma_dom:
1569	dma_ops_domain_free(dma_dom);
1570
1571	return NULL;
1572}
1573
1574/*
1575 * little helper function to check whether a given protection domain is a
1576 * dma_ops domain
1577 */
1578static bool dma_ops_domain(struct protection_domain *domain)
1579{
1580	return domain->flags & PD_DMA_OPS_MASK;
1581}
1582
1583static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
 
1584{
1585	u64 pte_root = virt_to_phys(domain->pt_root);
1586	u32 flags = 0;
 
 
 
 
1587
1588	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1589		    << DEV_ENTRY_MODE_SHIFT;
1590	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
 
 
1591
1592	if (ats)
1593		flags |= DTE_FLAG_IOTLB;
1594
1595	amd_iommu_dev_table[devid].data[3] |= flags;
1596	amd_iommu_dev_table[devid].data[2]  = domain->id;
1597	amd_iommu_dev_table[devid].data[1]  = upper_32_bits(pte_root);
1598	amd_iommu_dev_table[devid].data[0]  = lower_32_bits(pte_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1599}
1600
1601static void clear_dte_entry(u16 devid)
1602{
1603	/* remove entry from the device table seen by the hardware */
1604	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1605	amd_iommu_dev_table[devid].data[1] = 0;
1606	amd_iommu_dev_table[devid].data[2] = 0;
1607
1608	amd_iommu_apply_erratum_63(devid);
1609}
1610
1611static void do_attach(struct iommu_dev_data *dev_data,
1612		      struct protection_domain *domain)
1613{
1614	struct amd_iommu *iommu;
 
1615	bool ats;
1616
1617	iommu = amd_iommu_rlookup_table[dev_data->devid];
 
1618	ats   = dev_data->ats.enabled;
1619
1620	/* Update data structures */
1621	dev_data->domain = domain;
1622	list_add(&dev_data->list, &domain->dev_list);
1623	set_dte_entry(dev_data->devid, domain, ats);
1624
1625	/* Do reference counting */
1626	domain->dev_iommu[iommu->index] += 1;
1627	domain->dev_cnt                 += 1;
1628
1629	/* Flush the DTE entry */
 
 
 
 
1630	device_flush_dte(dev_data);
1631}
1632
1633static void do_detach(struct iommu_dev_data *dev_data)
1634{
 
1635	struct amd_iommu *iommu;
 
1636
1637	iommu = amd_iommu_rlookup_table[dev_data->devid];
1638
1639	/* decrease reference counters */
1640	dev_data->domain->dev_iommu[iommu->index] -= 1;
1641	dev_data->domain->dev_cnt                 -= 1;
1642
1643	/* Update data structures */
1644	dev_data->domain = NULL;
1645	list_del(&dev_data->list);
1646	clear_dte_entry(dev_data->devid);
 
 
1647
1648	/* Flush the DTE entry */
1649	device_flush_dte(dev_data);
 
 
 
 
 
 
 
 
 
 
1650}
1651
1652/*
1653 * If a device is not yet associated with a domain, this function does
1654 * assigns it visible for the hardware
1655 */
1656static int __attach_device(struct iommu_dev_data *dev_data,
1657			   struct protection_domain *domain)
1658{
1659	int ret;
 
 
 
1660
1661	/* lock domain */
1662	spin_lock(&domain->lock);
 
 
 
1663
1664	if (dev_data->alias_data != NULL) {
1665		struct iommu_dev_data *alias_data = dev_data->alias_data;
 
1666
1667		/* Some sanity checks */
1668		ret = -EBUSY;
1669		if (alias_data->domain != NULL &&
1670				alias_data->domain != domain)
1671			goto out_unlock;
1672
1673		if (dev_data->domain != NULL &&
1674				dev_data->domain != domain)
1675			goto out_unlock;
1676
1677		/* Do real assignment */
1678		if (alias_data->domain == NULL)
1679			do_attach(alias_data, domain);
 
1680
1681		atomic_inc(&alias_data->bind);
1682	}
 
 
 
1683
1684	if (dev_data->domain == NULL)
1685		do_attach(dev_data, domain);
 
 
1686
1687	atomic_inc(&dev_data->bind);
 
 
 
1688
1689	ret = 0;
 
 
 
1690
1691out_unlock:
 
 
 
 
1692
1693	/* ready */
1694	spin_unlock(&domain->lock);
 
 
 
 
 
 
 
1695
1696	return ret;
1697}
1698
1699/*
1700 * If a device is not yet associated with a domain, this function does
1701 * assigns it visible for the hardware
1702 */
1703static int attach_device(struct device *dev,
1704			 struct protection_domain *domain)
1705{
1706	struct pci_dev *pdev = to_pci_dev(dev);
1707	struct iommu_dev_data *dev_data;
1708	unsigned long flags;
1709	int ret;
1710
 
 
1711	dev_data = get_dev_data(dev);
1712
1713	if (amd_iommu_iotlb_sup && pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1714		dev_data->ats.enabled = true;
1715		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
1716	}
1717
1718	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1719	ret = __attach_device(dev_data, domain);
1720	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
 
1721
1722	/*
1723	 * We might boot into a crash-kernel here. The crashed kernel
1724	 * left the caches in the IOMMU dirty. So we have to flush
1725	 * here to evict all dirty stuff.
1726	 */
1727	domain_flush_tlb_pde(domain);
1728
1729	return ret;
1730}
1731
1732/*
1733 * Removes a device from a protection domain (unlocked)
1734 */
1735static void __detach_device(struct iommu_dev_data *dev_data)
1736{
1737	struct protection_domain *domain;
1738	unsigned long flags;
1739
1740	BUG_ON(!dev_data->domain);
1741
1742	domain = dev_data->domain;
1743
1744	spin_lock_irqsave(&domain->lock, flags);
1745
1746	if (dev_data->alias_data != NULL) {
1747		struct iommu_dev_data *alias_data = dev_data->alias_data;
1748
1749		if (atomic_dec_and_test(&alias_data->bind))
1750			do_detach(alias_data);
1751	}
1752
1753	if (atomic_dec_and_test(&dev_data->bind))
1754		do_detach(dev_data);
1755
1756	spin_unlock_irqrestore(&domain->lock, flags);
1757
1758	/*
1759	 * If we run in passthrough mode the device must be assigned to the
1760	 * passthrough domain if it is detached from any other domain.
1761	 * Make sure we can deassign from the pt_domain itself.
1762	 */
1763	if (iommu_pass_through &&
1764	    (dev_data->domain == NULL && domain != pt_domain))
1765		__attach_device(dev_data, pt_domain);
1766}
1767
1768/*
1769 * Removes a device from a protection domain (with devtable_lock held)
1770 */
1771static void detach_device(struct device *dev)
1772{
 
1773	struct iommu_dev_data *dev_data;
1774	unsigned long flags;
1775
1776	dev_data = get_dev_data(dev);
 
1777
1778	/* lock device table */
1779	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1780	__detach_device(dev_data);
1781	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1782
1783	if (dev_data->ats.enabled) {
1784		pci_disable_ats(to_pci_dev(dev));
1785		dev_data->ats.enabled = false;
1786	}
1787}
1788
1789/*
1790 * Find out the protection domain structure for a given PCI device. This
1791 * will give us the pointer to the page table root for example.
1792 */
1793static struct protection_domain *domain_for_device(struct device *dev)
1794{
1795	struct iommu_dev_data *dev_data;
1796	struct protection_domain *dom = NULL;
1797	unsigned long flags;
1798
1799	dev_data   = get_dev_data(dev);
1800
1801	if (dev_data->domain)
1802		return dev_data->domain;
1803
1804	if (dev_data->alias_data != NULL) {
1805		struct iommu_dev_data *alias_data = dev_data->alias_data;
 
 
1806
1807		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1808		if (alias_data->domain != NULL) {
1809			__attach_device(dev_data, alias_data->domain);
1810			dom = alias_data->domain;
1811		}
1812		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1813	}
1814
1815	return dom;
 
 
 
1816}
1817
1818static int device_change_notifier(struct notifier_block *nb,
1819				  unsigned long action, void *data)
1820{
1821	struct device *dev = data;
1822	u16 devid;
1823	struct protection_domain *domain;
1824	struct dma_ops_domain *dma_domain;
1825	struct amd_iommu *iommu;
1826	unsigned long flags;
1827
1828	if (!check_device(dev))
1829		return 0;
1830
1831	devid  = get_device_id(dev);
1832	iommu  = amd_iommu_rlookup_table[devid];
1833
1834	switch (action) {
1835	case BUS_NOTIFY_UNBOUND_DRIVER:
1836
1837		domain = domain_for_device(dev);
1838
1839		if (!domain)
1840			goto out;
1841		if (iommu_pass_through)
1842			break;
1843		detach_device(dev);
1844		break;
1845	case BUS_NOTIFY_ADD_DEVICE:
1846
1847		iommu_init_device(dev);
1848
1849		domain = domain_for_device(dev);
 
 
 
1850
1851		/* allocate a protection domain if a device is added */
1852		dma_domain = find_protection_domain(devid);
1853		if (dma_domain)
1854			goto out;
1855		dma_domain = dma_ops_domain_alloc();
1856		if (!dma_domain)
1857			goto out;
1858		dma_domain->target_dev = devid;
1859
1860		spin_lock_irqsave(&iommu_pd_list_lock, flags);
1861		list_add_tail(&dma_domain->list, &iommu_pd_list);
1862		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1863
1864		break;
1865	case BUS_NOTIFY_DEL_DEVICE:
1866
1867		iommu_uninit_device(dev);
 
1868
1869	default:
1870		goto out;
1871	}
 
 
 
1872
 
1873	iommu_completion_wait(iommu);
1874
1875out:
1876	return 0;
1877}
1878
1879static struct notifier_block device_nb = {
1880	.notifier_call = device_change_notifier,
1881};
 
1882
1883void amd_iommu_init_notifier(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
1884{
1885	bus_register_notifier(&pci_bus_type, &device_nb);
 
 
 
1886}
1887
1888/*****************************************************************************
1889 *
1890 * The next functions belong to the dma_ops mapping/unmapping code.
1891 *
1892 *****************************************************************************/
1893
1894/*
1895 * In the dma_ops path we only have the struct device. This function
1896 * finds the corresponding IOMMU, the protection domain and the
1897 * requestor id for a given device.
1898 * If the device is not yet associated with a domain this is also done
1899 * in this function.
1900 */
1901static struct protection_domain *get_domain(struct device *dev)
1902{
1903	struct protection_domain *domain;
1904	struct dma_ops_domain *dma_dom;
1905	u16 devid = get_device_id(dev);
1906
1907	if (!check_device(dev))
1908		return ERR_PTR(-EINVAL);
1909
1910	domain = domain_for_device(dev);
1911	if (domain != NULL && !dma_ops_domain(domain))
 
 
 
 
 
 
1912		return ERR_PTR(-EBUSY);
1913
1914	if (domain != NULL)
1915		return domain;
1916
1917	/* Device not bount yet - bind it */
1918	dma_dom = find_protection_domain(devid);
1919	if (!dma_dom)
1920		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1921	attach_device(dev, &dma_dom->domain);
1922	DUMP_printk("Using protection domain %d for device %s\n",
1923		    dma_dom->domain.id, dev_name(dev));
1924
1925	return &dma_dom->domain;
1926}
1927
1928static void update_device_table(struct protection_domain *domain)
1929{
1930	struct iommu_dev_data *dev_data;
1931
1932	list_for_each_entry(dev_data, &domain->dev_list, list)
1933		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
 
 
 
 
 
 
 
 
 
1934}
1935
1936static void update_domain(struct protection_domain *domain)
1937{
1938	if (!domain->updated)
1939		return;
1940
1941	update_device_table(domain);
1942
1943	domain_flush_devices(domain);
1944	domain_flush_tlb_pde(domain);
1945
1946	domain->updated = false;
1947}
1948
1949/*
1950 * This function fetches the PTE for a given address in the aperture
1951 */
1952static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1953			    unsigned long address)
1954{
1955	struct aperture_range *aperture;
1956	u64 *pte, *pte_page;
1957
1958	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1959	if (!aperture)
1960		return NULL;
1961
1962	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1963	if (!pte) {
1964		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1965				GFP_ATOMIC);
1966		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1967	} else
1968		pte += PM_LEVEL_INDEX(0, address);
1969
1970	update_domain(&dom->domain);
1971
1972	return pte;
1973}
1974
1975/*
1976 * This is the generic map function. It maps one 4kb page at paddr to
1977 * the given address in the DMA address space for the domain.
1978 */
1979static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1980				     unsigned long address,
1981				     phys_addr_t paddr,
1982				     int direction)
1983{
1984	u64 *pte, __pte;
1985
1986	WARN_ON(address > dom->aperture_size);
1987
1988	paddr &= PAGE_MASK;
1989
1990	pte  = dma_ops_get_pte(dom, address);
1991	if (!pte)
1992		return DMA_ERROR_CODE;
1993
1994	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1995
1996	if (direction == DMA_TO_DEVICE)
1997		__pte |= IOMMU_PTE_IR;
1998	else if (direction == DMA_FROM_DEVICE)
1999		__pte |= IOMMU_PTE_IW;
2000	else if (direction == DMA_BIDIRECTIONAL)
2001		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2002
2003	WARN_ON(*pte);
2004
2005	*pte = __pte;
2006
2007	return (dma_addr_t)address;
2008}
2009
2010/*
2011 * The generic unmapping function for on page in the DMA address space.
2012 */
2013static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2014				 unsigned long address)
2015{
2016	struct aperture_range *aperture;
2017	u64 *pte;
2018
2019	if (address >= dom->aperture_size)
2020		return;
2021
2022	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2023	if (!aperture)
2024		return;
2025
2026	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2027	if (!pte)
2028		return;
2029
2030	pte += PM_LEVEL_INDEX(0, address);
2031
2032	WARN_ON(!*pte);
2033
2034	*pte = 0ULL;
2035}
2036
2037/*
2038 * This function contains common code for mapping of a physically
2039 * contiguous memory region into DMA address space. It is used by all
2040 * mapping functions provided with this IOMMU driver.
2041 * Must be called with the domain lock held.
2042 */
2043static dma_addr_t __map_single(struct device *dev,
2044			       struct dma_ops_domain *dma_dom,
2045			       phys_addr_t paddr,
2046			       size_t size,
2047			       int dir,
2048			       bool align,
2049			       u64 dma_mask)
2050{
2051	dma_addr_t offset = paddr & ~PAGE_MASK;
2052	dma_addr_t address, start, ret;
 
2053	unsigned int pages;
2054	unsigned long align_mask = 0;
2055	int i;
2056
2057	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2058	paddr &= PAGE_MASK;
2059
2060	INC_STATS_COUNTER(total_map_requests);
2061
2062	if (pages > 1)
2063		INC_STATS_COUNTER(cross_page);
2064
2065	if (align)
2066		align_mask = (1UL << get_order(size)) - 1;
2067
2068retry:
2069	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2070					  dma_mask);
2071	if (unlikely(address == DMA_ERROR_CODE)) {
2072		/*
2073		 * setting next_address here will let the address
2074		 * allocator only scan the new allocated range in the
2075		 * first run. This is a small optimization.
2076		 */
2077		dma_dom->next_address = dma_dom->aperture_size;
2078
2079		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2080			goto out;
2081
2082		/*
2083		 * aperture was successfully enlarged by 128 MB, try
2084		 * allocation again
2085		 */
2086		goto retry;
2087	}
2088
2089	start = address;
2090	for (i = 0; i < pages; ++i) {
2091		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2092		if (ret == DMA_ERROR_CODE)
 
2093			goto out_unmap;
2094
2095		paddr += PAGE_SIZE;
2096		start += PAGE_SIZE;
2097	}
2098	address += offset;
2099
2100	ADD_STATS_COUNTER(alloced_io_mem, size);
2101
2102	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2103		domain_flush_tlb(&dma_dom->domain);
2104		dma_dom->need_flush = false;
2105	} else if (unlikely(amd_iommu_np_cache))
2106		domain_flush_pages(&dma_dom->domain, address, size);
2107
2108out:
2109	return address;
2110
2111out_unmap:
2112
2113	for (--i; i >= 0; --i) {
2114		start -= PAGE_SIZE;
2115		dma_ops_domain_unmap(dma_dom, start);
2116	}
2117
2118	dma_ops_free_addresses(dma_dom, address, pages);
 
 
 
2119
2120	return DMA_ERROR_CODE;
 
 
2121}
2122
2123/*
2124 * Does the reverse of the __map_single function. Must be called with
2125 * the domain lock held too
2126 */
2127static void __unmap_single(struct dma_ops_domain *dma_dom,
2128			   dma_addr_t dma_addr,
2129			   size_t size,
2130			   int dir)
2131{
2132	dma_addr_t flush_addr;
2133	dma_addr_t i, start;
2134	unsigned int pages;
2135
2136	if ((dma_addr == DMA_ERROR_CODE) ||
2137	    (dma_addr + size > dma_dom->aperture_size))
2138		return;
2139
2140	flush_addr = dma_addr;
2141	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2142	dma_addr &= PAGE_MASK;
2143	start = dma_addr;
2144
2145	for (i = 0; i < pages; ++i) {
2146		dma_ops_domain_unmap(dma_dom, start);
2147		start += PAGE_SIZE;
2148	}
2149
2150	SUB_STATS_COUNTER(alloced_io_mem, size);
 
2151
2152	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2153
2154	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2155		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2156		dma_dom->need_flush = false;
 
 
 
2157	}
2158}
2159
2160/*
2161 * The exported map_single function for dma_ops.
2162 */
2163static dma_addr_t map_page(struct device *dev, struct page *page,
2164			   unsigned long offset, size_t size,
2165			   enum dma_data_direction dir,
2166			   struct dma_attrs *attrs)
2167{
2168	unsigned long flags;
2169	struct protection_domain *domain;
2170	dma_addr_t addr;
2171	u64 dma_mask;
2172	phys_addr_t paddr = page_to_phys(page) + offset;
2173
2174	INC_STATS_COUNTER(cnt_map_single);
2175
2176	domain = get_domain(dev);
2177	if (PTR_ERR(domain) == -EINVAL)
2178		return (dma_addr_t)paddr;
2179	else if (IS_ERR(domain))
2180		return DMA_ERROR_CODE;
2181
2182	dma_mask = *dev->dma_mask;
 
2183
2184	spin_lock_irqsave(&domain->lock, flags);
2185
2186	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2187			    dma_mask);
2188	if (addr == DMA_ERROR_CODE)
2189		goto out;
2190
2191	domain_flush_complete(domain);
2192
2193out:
2194	spin_unlock_irqrestore(&domain->lock, flags);
2195
2196	return addr;
2197}
2198
2199/*
2200 * The exported unmap_single function for dma_ops.
2201 */
2202static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2203		       enum dma_data_direction dir, struct dma_attrs *attrs)
2204{
2205	unsigned long flags;
2206	struct protection_domain *domain;
2207
2208	INC_STATS_COUNTER(cnt_unmap_single);
2209
2210	domain = get_domain(dev);
2211	if (IS_ERR(domain))
2212		return;
2213
2214	spin_lock_irqsave(&domain->lock, flags);
2215
2216	__unmap_single(domain->priv, dma_addr, size, dir);
2217
2218	domain_flush_complete(domain);
2219
2220	spin_unlock_irqrestore(&domain->lock, flags);
2221}
2222
2223/*
2224 * This is a special map_sg function which is used if we should map a
2225 * device which is not handled by an AMD IOMMU in the system.
2226 */
2227static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2228			   int nelems, int dir)
2229{
 
2230	struct scatterlist *s;
2231	int i;
 
 
 
 
2232
2233	for_each_sg(sglist, s, nelems, i) {
2234		s->dma_address = (dma_addr_t)sg_phys(s);
2235		s->dma_length  = s->length;
 
 
 
 
 
 
2236	}
2237
2238	return nelems;
2239}
2240
2241/*
2242 * The exported map_sg function for dma_ops (handles scatter-gather
2243 * lists).
2244 */
2245static int map_sg(struct device *dev, struct scatterlist *sglist,
2246		  int nelems, enum dma_data_direction dir,
2247		  struct dma_attrs *attrs)
2248{
2249	unsigned long flags;
2250	struct protection_domain *domain;
2251	int i;
2252	struct scatterlist *s;
2253	phys_addr_t paddr;
2254	int mapped_elems = 0;
2255	u64 dma_mask;
2256
2257	INC_STATS_COUNTER(cnt_map_sg);
2258
2259	domain = get_domain(dev);
2260	if (PTR_ERR(domain) == -EINVAL)
2261		return map_sg_no_iommu(dev, sglist, nelems, dir);
2262	else if (IS_ERR(domain))
2263		return 0;
2264
 
2265	dma_mask = *dev->dma_mask;
2266
2267	spin_lock_irqsave(&domain->lock, flags);
 
 
 
 
 
 
2268
 
2269	for_each_sg(sglist, s, nelems, i) {
2270		paddr = sg_phys(s);
2271
2272		s->dma_address = __map_single(dev, domain->priv,
2273					      paddr, s->length, dir, false,
2274					      dma_mask);
2275
2276		if (s->dma_address) {
2277			s->dma_length = s->length;
2278			mapped_elems++;
2279		} else
2280			goto unmap;
 
 
 
 
2281	}
2282
2283	domain_flush_complete(domain);
 
 
 
 
 
 
 
 
 
2284
2285out:
2286	spin_unlock_irqrestore(&domain->lock, flags);
 
 
 
 
 
 
 
 
 
2287
2288	return mapped_elems;
2289unmap:
2290	for_each_sg(sglist, s, mapped_elems, i) {
2291		if (s->dma_address)
2292			__unmap_single(domain->priv, s->dma_address,
2293				       s->dma_length, dir);
2294		s->dma_address = s->dma_length = 0;
 
 
2295	}
2296
2297	mapped_elems = 0;
 
2298
2299	goto out;
 
2300}
2301
2302/*
2303 * The exported map_sg function for dma_ops (handles scatter-gather
2304 * lists).
2305 */
2306static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2307		     int nelems, enum dma_data_direction dir,
2308		     struct dma_attrs *attrs)
2309{
2310	unsigned long flags;
2311	struct protection_domain *domain;
2312	struct scatterlist *s;
2313	int i;
2314
2315	INC_STATS_COUNTER(cnt_unmap_sg);
2316
2317	domain = get_domain(dev);
2318	if (IS_ERR(domain))
2319		return;
2320
2321	spin_lock_irqsave(&domain->lock, flags);
 
 
2322
2323	for_each_sg(sglist, s, nelems, i) {
2324		__unmap_single(domain->priv, s->dma_address,
2325			       s->dma_length, dir);
2326		s->dma_address = s->dma_length = 0;
2327	}
2328
2329	domain_flush_complete(domain);
2330
2331	spin_unlock_irqrestore(&domain->lock, flags);
2332}
2333
2334/*
2335 * The exported alloc_coherent function for dma_ops.
2336 */
2337static void *alloc_coherent(struct device *dev, size_t size,
2338			    dma_addr_t *dma_addr, gfp_t flag)
 
2339{
2340	unsigned long flags;
2341	void *virt_addr;
2342	struct protection_domain *domain;
2343	phys_addr_t paddr;
2344	u64 dma_mask = dev->coherent_dma_mask;
2345
2346	INC_STATS_COUNTER(cnt_alloc_coherent);
 
2347
2348	domain = get_domain(dev);
2349	if (PTR_ERR(domain) == -EINVAL) {
2350		virt_addr = (void *)__get_free_pages(flag, get_order(size));
2351		*dma_addr = __pa(virt_addr);
2352		return virt_addr;
2353	} else if (IS_ERR(domain))
2354		return NULL;
2355
 
 
2356	dma_mask  = dev->coherent_dma_mask;
2357	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2358	flag     |= __GFP_ZERO;
2359
2360	virt_addr = (void *)__get_free_pages(flag, get_order(size));
2361	if (!virt_addr)
2362		return NULL;
 
2363
2364	paddr = virt_to_phys(virt_addr);
 
 
 
 
2365
2366	if (!dma_mask)
2367		dma_mask = *dev->dma_mask;
2368
2369	spin_lock_irqsave(&domain->lock, flags);
2370
2371	*dma_addr = __map_single(dev, domain->priv, paddr,
2372				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2373
2374	if (*dma_addr == DMA_ERROR_CODE) {
2375		spin_unlock_irqrestore(&domain->lock, flags);
2376		goto out_free;
2377	}
2378
2379	domain_flush_complete(domain);
2380
2381	spin_unlock_irqrestore(&domain->lock, flags);
2382
2383	return virt_addr;
2384
2385out_free:
2386
2387	free_pages((unsigned long)virt_addr, get_order(size));
 
2388
2389	return NULL;
2390}
2391
2392/*
2393 * The exported free_coherent function for dma_ops.
2394 */
2395static void free_coherent(struct device *dev, size_t size,
2396			  void *virt_addr, dma_addr_t dma_addr)
 
2397{
2398	unsigned long flags;
2399	struct protection_domain *domain;
 
 
2400
2401	INC_STATS_COUNTER(cnt_free_coherent);
 
2402
2403	domain = get_domain(dev);
2404	if (IS_ERR(domain))
2405		goto free_mem;
2406
2407	spin_lock_irqsave(&domain->lock, flags);
2408
2409	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2410
2411	domain_flush_complete(domain);
2412
2413	spin_unlock_irqrestore(&domain->lock, flags);
2414
2415free_mem:
2416	free_pages((unsigned long)virt_addr, get_order(size));
 
2417}
2418
2419/*
2420 * This function is called by the DMA layer to find out if we can handle a
2421 * particular device. It is part of the dma_ops.
2422 */
2423static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2424{
 
 
2425	return check_device(dev);
2426}
2427
2428/*
2429 * The function for pre-allocating protection domains.
2430 *
2431 * If the driver core informs the DMA layer if a driver grabs a device
2432 * we don't need to preallocate the protection domains anymore.
2433 * For now we have to.
2434 */
2435static void prealloc_protection_domains(void)
 
 
 
 
 
2436{
2437	struct pci_dev *dev = NULL;
2438	struct dma_ops_domain *dma_dom;
2439	u16 devid;
2440
2441	for_each_pci_dev(dev) {
2442
2443		/* Do we handle this device? */
2444		if (!check_device(&dev->dev))
2445			continue;
2446
2447		/* Is there already any domain for it? */
2448		if (domain_for_device(&dev->dev))
2449			continue;
 
 
 
 
2450
2451		devid = get_device_id(&dev->dev);
 
 
 
 
 
 
2452
2453		dma_dom = dma_ops_domain_alloc();
2454		if (!dma_dom)
2455			continue;
2456		init_unity_mappings_for_device(dma_dom, devid);
2457		dma_dom->target_dev = devid;
 
2458
2459		attach_device(&dev->dev, &dma_dom->domain);
 
2460
2461		list_add_tail(&dma_dom->list, &iommu_pd_list);
 
 
 
 
 
 
 
 
 
 
2462	}
2463}
2464
2465static struct dma_map_ops amd_iommu_dma_ops = {
2466	.alloc_coherent = alloc_coherent,
2467	.free_coherent = free_coherent,
2468	.map_page = map_page,
2469	.unmap_page = unmap_page,
2470	.map_sg = map_sg,
2471	.unmap_sg = unmap_sg,
2472	.dma_supported = amd_iommu_dma_supported,
2473};
2474
2475static unsigned device_dma_ops_init(void)
2476{
2477	struct pci_dev *pdev = NULL;
2478	unsigned unhandled = 0;
2479
2480	for_each_pci_dev(pdev) {
2481		if (!check_device(&pdev->dev)) {
2482			unhandled += 1;
2483			continue;
2484		}
2485
2486		pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2487	}
2488
2489	return unhandled;
2490}
 
2491
2492/*
2493 * The function which clues the AMD IOMMU driver into dma_ops.
2494 */
 
 
 
 
 
 
 
 
2495
2496void __init amd_iommu_init_api(void)
2497{
2498	register_iommu(&amd_iommu_ops);
2499}
2500
2501int __init amd_iommu_init_dma_ops(void)
2502{
2503	struct amd_iommu *iommu;
2504	int ret, unhandled;
2505
2506	/*
2507	 * first allocate a default protection domain for every IOMMU we
2508	 * found in the system. Devices not assigned to any other
2509	 * protection domain will be assigned to the default one.
2510	 */
2511	for_each_iommu(iommu) {
2512		iommu->default_dom = dma_ops_domain_alloc();
2513		if (iommu->default_dom == NULL)
2514			return -ENOMEM;
2515		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2516		ret = iommu_init_unity_mappings(iommu);
2517		if (ret)
2518			goto free_domains;
2519	}
2520
2521	/*
2522	 * Pre-allocate the protection domains for each device.
2523	 */
2524	prealloc_protection_domains();
2525
2526	iommu_detected = 1;
2527	swiotlb = 0;
2528
2529	/* Make the driver finally visible to the drivers */
2530	unhandled = device_dma_ops_init();
2531	if (unhandled && max_pfn > MAX_DMA32_PFN) {
2532		/* There are unhandled devices - initialize swiotlb for them */
2533		swiotlb = 1;
2534	}
2535
2536	amd_iommu_stats_init();
 
 
 
2537
2538	return 0;
2539
2540free_domains:
2541
2542	for_each_iommu(iommu) {
2543		if (iommu->default_dom)
2544			dma_ops_domain_free(iommu->default_dom);
2545	}
2546
2547	return ret;
2548}
2549
2550/*****************************************************************************
2551 *
2552 * The following functions belong to the exported interface of AMD IOMMU
2553 *
2554 * This interface allows access to lower level functions of the IOMMU
2555 * like protection domain handling and assignement of devices to domains
2556 * which is not possible with the dma_ops interface.
2557 *
2558 *****************************************************************************/
2559
2560static void cleanup_domain(struct protection_domain *domain)
2561{
2562	struct iommu_dev_data *dev_data, *next;
2563	unsigned long flags;
2564
2565	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2566
2567	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2568		__detach_device(dev_data);
2569		atomic_set(&dev_data->bind, 0);
 
 
2570	}
2571
2572	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2573}
2574
2575static void protection_domain_free(struct protection_domain *domain)
2576{
2577	if (!domain)
2578		return;
2579
2580	del_domain_from_list(domain);
2581
2582	if (domain->id)
2583		domain_id_free(domain->id);
2584
2585	kfree(domain);
2586}
2587
 
 
 
 
 
 
 
 
 
 
 
 
2588static struct protection_domain *protection_domain_alloc(void)
2589{
2590	struct protection_domain *domain;
2591
2592	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2593	if (!domain)
2594		return NULL;
2595
2596	spin_lock_init(&domain->lock);
2597	mutex_init(&domain->api_lock);
2598	domain->id = domain_id_alloc();
2599	if (!domain->id)
2600		goto out_err;
2601	INIT_LIST_HEAD(&domain->dev_list);
2602
2603	add_domain_to_list(domain);
2604
2605	return domain;
2606
2607out_err:
2608	kfree(domain);
2609
2610	return NULL;
2611}
2612
2613static int amd_iommu_domain_init(struct iommu_domain *dom)
2614{
2615	struct protection_domain *domain;
 
2616
2617	domain = protection_domain_alloc();
2618	if (!domain)
2619		goto out_free;
 
 
2620
2621	domain->mode    = PAGE_MODE_3_LEVEL;
2622	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2623	if (!domain->pt_root)
2624		goto out_free;
 
 
2625
2626	dom->priv = domain;
 
 
2627
2628	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
2629
2630out_free:
2631	protection_domain_free(domain);
 
 
 
2632
2633	return -ENOMEM;
2634}
2635
2636static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2637{
2638	struct protection_domain *domain = dom->priv;
 
2639
2640	if (!domain)
2641		return;
2642
2643	if (domain->dev_cnt > 0)
2644		cleanup_domain(domain);
2645
2646	BUG_ON(domain->dev_cnt != 0);
2647
2648	free_pagetable(domain);
 
 
 
 
 
 
 
 
 
 
 
2649
2650	protection_domain_free(domain);
 
2651
2652	dom->priv = NULL;
 
 
2653}
2654
2655static void amd_iommu_detach_device(struct iommu_domain *dom,
2656				    struct device *dev)
2657{
2658	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2659	struct amd_iommu *iommu;
2660	u16 devid;
2661
2662	if (!check_device(dev))
2663		return;
2664
2665	devid = get_device_id(dev);
 
 
2666
2667	if (dev_data->domain != NULL)
2668		detach_device(dev);
2669
2670	iommu = amd_iommu_rlookup_table[devid];
2671	if (!iommu)
2672		return;
2673
 
 
 
 
 
 
2674	iommu_completion_wait(iommu);
2675}
2676
2677static int amd_iommu_attach_device(struct iommu_domain *dom,
2678				   struct device *dev)
2679{
2680	struct protection_domain *domain = dom->priv;
2681	struct iommu_dev_data *dev_data;
2682	struct amd_iommu *iommu;
2683	int ret;
2684
2685	if (!check_device(dev))
2686		return -EINVAL;
2687
2688	dev_data = dev->archdata.iommu;
2689
2690	iommu = amd_iommu_rlookup_table[dev_data->devid];
2691	if (!iommu)
2692		return -EINVAL;
2693
2694	if (dev_data->domain)
2695		detach_device(dev);
2696
2697	ret = attach_device(dev, domain);
2698
 
 
 
 
 
 
 
 
 
2699	iommu_completion_wait(iommu);
2700
2701	return ret;
2702}
2703
2704static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2705			 phys_addr_t paddr, int gfp_order, int iommu_prot)
2706{
2707	unsigned long page_size = 0x1000UL << gfp_order;
2708	struct protection_domain *domain = dom->priv;
2709	int prot = 0;
2710	int ret;
2711
 
 
 
2712	if (iommu_prot & IOMMU_READ)
2713		prot |= IOMMU_PROT_IR;
2714	if (iommu_prot & IOMMU_WRITE)
2715		prot |= IOMMU_PROT_IW;
2716
2717	mutex_lock(&domain->api_lock);
2718	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2719	mutex_unlock(&domain->api_lock);
2720
 
 
2721	return ret;
2722}
2723
2724static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2725			   int gfp_order)
 
2726{
2727	struct protection_domain *domain = dom->priv;
2728	unsigned long page_size, unmap_size;
2729
2730	page_size  = 0x1000UL << gfp_order;
 
2731
2732	mutex_lock(&domain->api_lock);
2733	unmap_size = iommu_unmap_page(domain, iova, page_size);
2734	mutex_unlock(&domain->api_lock);
2735
2736	domain_flush_tlb_pde(domain);
2737
2738	return get_order(unmap_size);
2739}
2740
2741static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2742					  unsigned long iova)
2743{
2744	struct protection_domain *domain = dom->priv;
2745	unsigned long offset_mask;
2746	phys_addr_t paddr;
2747	u64 *pte, __pte;
2748
2749	pte = fetch_pte(domain, iova);
 
 
 
2750
2751	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2752		return 0;
2753
2754	if (PM_PTE_LEVEL(*pte) == 0)
2755		offset_mask = PAGE_SIZE - 1;
2756	else
2757		offset_mask = PTE_PAGE_SIZE(*pte) - 1;
2758
2759	__pte = *pte & PM_ADDR_MASK;
2760	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2761
2762	return paddr;
2763}
2764
2765static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2766				    unsigned long cap)
2767{
2768	switch (cap) {
2769	case IOMMU_CAP_CACHE_COHERENCY:
2770		return 1;
 
 
 
 
 
 
2771	}
2772
2773	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2774}
2775
2776static struct iommu_ops amd_iommu_ops = {
2777	.domain_init = amd_iommu_domain_init,
2778	.domain_destroy = amd_iommu_domain_destroy,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2779	.attach_dev = amd_iommu_attach_device,
2780	.detach_dev = amd_iommu_detach_device,
2781	.map = amd_iommu_map,
2782	.unmap = amd_iommu_unmap,
2783	.iova_to_phys = amd_iommu_iova_to_phys,
2784	.domain_has_cap = amd_iommu_domain_has_cap,
 
 
 
 
 
 
 
 
 
2785};
2786
2787/*****************************************************************************
2788 *
2789 * The next functions do a basic initialization of IOMMU for pass through
2790 * mode
2791 *
2792 * In passthrough mode the IOMMU is initialized and enabled but not used for
2793 * DMA-API translation.
2794 *
2795 *****************************************************************************/
2796
2797int __init amd_iommu_init_passthrough(void)
 
2798{
2799	struct amd_iommu *iommu;
2800	struct pci_dev *dev = NULL;
2801	u16 devid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2802
2803	/* allocate passthrough domain */
2804	pt_domain = protection_domain_alloc();
2805	if (!pt_domain)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2806		return -ENOMEM;
2807
2808	pt_domain->mode |= PAGE_MODE_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2809
2810	for_each_pci_dev(dev) {
2811		if (!check_device(&dev->dev))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2812			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2813
2814		devid = get_device_id(&dev->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2815
 
 
 
 
 
 
 
 
 
 
2816		iommu = amd_iommu_rlookup_table[devid];
2817		if (!iommu)
2818			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2819
2820		attach_device(&dev->dev, pt_domain);
 
 
 
 
2821	}
2822
2823	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2824
 
 
 
 
 
 
2825	return 0;
2826}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
   4 * Author: Joerg Roedel <jroedel@suse.de>
   5 *         Leo Duran <leo.duran@amd.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#define pr_fmt(fmt)     "AMD-Vi: " fmt
   9#define dev_fmt(fmt)    pr_fmt(fmt)
  10
  11#include <linux/ratelimit.h>
  12#include <linux/pci.h>
  13#include <linux/acpi.h>
  14#include <linux/amba/bus.h>
  15#include <linux/platform_device.h>
  16#include <linux/pci-ats.h>
  17#include <linux/bitmap.h>
  18#include <linux/slab.h>
  19#include <linux/debugfs.h>
  20#include <linux/scatterlist.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/dma-direct.h>
  23#include <linux/iommu-helper.h>
  24#include <linux/iommu.h>
  25#include <linux/delay.h>
  26#include <linux/amd-iommu.h>
  27#include <linux/notifier.h>
  28#include <linux/export.h>
  29#include <linux/irq.h>
  30#include <linux/msi.h>
  31#include <linux/dma-contiguous.h>
  32#include <linux/irqdomain.h>
  33#include <linux/percpu.h>
  34#include <linux/iova.h>
  35#include <asm/irq_remapping.h>
  36#include <asm/io_apic.h>
  37#include <asm/apic.h>
  38#include <asm/hw_irq.h>
  39#include <asm/msidef.h>
  40#include <asm/proto.h>
  41#include <asm/iommu.h>
  42#include <asm/gart.h>
  43#include <asm/dma.h>
  44
  45#include "amd_iommu_proto.h"
  46#include "amd_iommu_types.h"
  47#include "irq_remapping.h"
  48
  49#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  50
  51#define LOOP_TIMEOUT	100000
  52
  53/* IO virtual address start page frame number */
  54#define IOVA_START_PFN		(1)
  55#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
  56
  57/* Reserved IOVA ranges */
  58#define MSI_RANGE_START		(0xfee00000)
  59#define MSI_RANGE_END		(0xfeefffff)
  60#define HT_RANGE_START		(0xfd00000000ULL)
  61#define HT_RANGE_END		(0xffffffffffULL)
  62
  63/*
  64 * This bitmap is used to advertise the page sizes our hardware support
  65 * to the IOMMU core, which will then use this information to split
  66 * physically contiguous memory regions it is mapping into page sizes
  67 * that we support.
  68 *
  69 * 512GB Pages are not supported due to a hardware bug
  70 */
  71#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
  72
  73static DEFINE_SPINLOCK(pd_bitmap_lock);
  74
  75/* List of all available dev_data structures */
  76static LLIST_HEAD(dev_data_list);
  77
  78LIST_HEAD(ioapic_map);
  79LIST_HEAD(hpet_map);
  80LIST_HEAD(acpihid_map);
  81
  82/*
  83 * Domain for untranslated devices - only allocated
  84 * if iommu=pt passed on kernel cmd line.
  85 */
  86const struct iommu_ops amd_iommu_ops;
  87
  88static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
  89int amd_iommu_max_glx_val = -1;
  90
  91static const struct dma_map_ops amd_iommu_dma_ops;
  92
  93/*
  94 * general struct to manage commands send to an IOMMU
  95 */
  96struct iommu_cmd {
  97	u32 data[4];
  98};
  99
 100struct kmem_cache *amd_iommu_irq_cache;
 101
 102static void update_domain(struct protection_domain *domain);
 103static int protection_domain_init(struct protection_domain *domain);
 104static void detach_device(struct device *dev);
 105static void iova_domain_flush_tlb(struct iova_domain *iovad);
 106
 107/*
 108 * Data container for a dma_ops specific protection domain
 109 */
 110struct dma_ops_domain {
 111	/* generic protection domain information */
 112	struct protection_domain domain;
 113
 114	/* IOVA RB-Tree */
 115	struct iova_domain iovad;
 116};
 117
 118static struct iova_domain reserved_iova_ranges;
 119static struct lock_class_key reserved_rbtree_key;
 120
 121/****************************************************************************
 122 *
 123 * Helper functions
 124 *
 125 ****************************************************************************/
 126
 127static inline int match_hid_uid(struct device *dev,
 128				struct acpihid_map_entry *entry)
 129{
 130	struct acpi_device *adev = ACPI_COMPANION(dev);
 131	const char *hid, *uid;
 132
 133	if (!adev)
 134		return -ENODEV;
 135
 136	hid = acpi_device_hid(adev);
 137	uid = acpi_device_uid(adev);
 138
 139	if (!hid || !(*hid))
 140		return -ENODEV;
 141
 142	if (!uid || !(*uid))
 143		return strcmp(hid, entry->hid);
 144
 145	if (!(*entry->uid))
 146		return strcmp(hid, entry->hid);
 147
 148	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
 149}
 150
 151static inline u16 get_pci_device_id(struct device *dev)
 152{
 153	struct pci_dev *pdev = to_pci_dev(dev);
 154
 155	return pci_dev_id(pdev);
 156}
 157
 158static inline int get_acpihid_device_id(struct device *dev,
 159					struct acpihid_map_entry **entry)
 160{
 161	struct acpihid_map_entry *p;
 162
 163	list_for_each_entry(p, &acpihid_map, list) {
 164		if (!match_hid_uid(dev, p)) {
 165			if (entry)
 166				*entry = p;
 167			return p->devid;
 168		}
 169	}
 170	return -EINVAL;
 171}
 172
 173static inline int get_device_id(struct device *dev)
 174{
 175	int devid;
 176
 177	if (dev_is_pci(dev))
 178		devid = get_pci_device_id(dev);
 179	else
 180		devid = get_acpihid_device_id(dev, NULL);
 181
 182	return devid;
 183}
 184
 185static struct protection_domain *to_pdomain(struct iommu_domain *dom)
 186{
 187	return container_of(dom, struct protection_domain, domain);
 188}
 189
 190static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
 191{
 192	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
 193	return container_of(domain, struct dma_ops_domain, domain);
 194}
 195
 196static struct iommu_dev_data *alloc_dev_data(u16 devid)
 197{
 198	struct iommu_dev_data *dev_data;
 
 199
 200	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
 201	if (!dev_data)
 202		return NULL;
 203
 204	spin_lock_init(&dev_data->lock);
 205	dev_data->devid = devid;
 206	ratelimit_default_init(&dev_data->rs);
 
 
 
 
 207
 208	llist_add(&dev_data->dev_data_list, &dev_data_list);
 209	return dev_data;
 210}
 211
 212static struct iommu_dev_data *search_dev_data(u16 devid)
 213{
 214	struct iommu_dev_data *dev_data;
 215	struct llist_node *node;
 216
 217	if (llist_empty(&dev_data_list))
 218		return NULL;
 219
 220	node = dev_data_list.first;
 221	llist_for_each_entry(dev_data, node, dev_data_list) {
 222		if (dev_data->devid == devid)
 223			return dev_data;
 224	}
 225
 226	return NULL;
 227}
 228
 229static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
 230{
 231	*(u16 *)data = alias;
 232	return 0;
 233}
 234
 235static u16 get_alias(struct device *dev)
 236{
 237	struct pci_dev *pdev = to_pci_dev(dev);
 238	u16 devid, ivrs_alias, pci_alias;
 239
 240	/* The callers make sure that get_device_id() does not fail here */
 241	devid = get_device_id(dev);
 242
 243	/* For ACPI HID devices, we simply return the devid as such */
 244	if (!dev_is_pci(dev))
 245		return devid;
 246
 247	ivrs_alias = amd_iommu_alias_table[devid];
 248
 249	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
 250
 251	if (ivrs_alias == pci_alias)
 252		return ivrs_alias;
 253
 254	/*
 255	 * DMA alias showdown
 256	 *
 257	 * The IVRS is fairly reliable in telling us about aliases, but it
 258	 * can't know about every screwy device.  If we don't have an IVRS
 259	 * reported alias, use the PCI reported alias.  In that case we may
 260	 * still need to initialize the rlookup and dev_table entries if the
 261	 * alias is to a non-existent device.
 262	 */
 263	if (ivrs_alias == devid) {
 264		if (!amd_iommu_rlookup_table[pci_alias]) {
 265			amd_iommu_rlookup_table[pci_alias] =
 266				amd_iommu_rlookup_table[devid];
 267			memcpy(amd_iommu_dev_table[pci_alias].data,
 268			       amd_iommu_dev_table[devid].data,
 269			       sizeof(amd_iommu_dev_table[pci_alias].data));
 270		}
 271
 272		return pci_alias;
 273	}
 274
 275	pci_info(pdev, "Using IVRS reported alias %02x:%02x.%d "
 276		"for device [%04x:%04x], kernel reported alias "
 277		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
 278		PCI_FUNC(ivrs_alias), pdev->vendor, pdev->device,
 279		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
 280		PCI_FUNC(pci_alias));
 281
 282	/*
 283	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
 284	 * bus, then the IVRS table may know about a quirk that we don't.
 285	 */
 286	if (pci_alias == devid &&
 287	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
 288		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
 289		pci_info(pdev, "Added PCI DMA alias %02x.%d\n",
 290			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias));
 291	}
 292
 293	return ivrs_alias;
 294}
 295
 296static struct iommu_dev_data *find_dev_data(u16 devid)
 297{
 298	struct iommu_dev_data *dev_data;
 299	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
 300
 301	dev_data = search_dev_data(devid);
 302
 303	if (dev_data == NULL) {
 304		dev_data = alloc_dev_data(devid);
 305		if (!dev_data)
 306			return NULL;
 307
 308		if (translation_pre_enabled(iommu))
 309			dev_data->defer_attach = true;
 310	}
 
 
 
 311
 312	return dev_data;
 313}
 314
 315struct iommu_dev_data *get_dev_data(struct device *dev)
 316{
 317	return dev->archdata.iommu;
 318}
 319EXPORT_SYMBOL(get_dev_data);
 320
 321/*
 322* Find or create an IOMMU group for a acpihid device.
 323*/
 324static struct iommu_group *acpihid_device_group(struct device *dev)
 
 325{
 326	struct acpihid_map_entry *p, *entry = NULL;
 327	int devid;
 
 328
 329	devid = get_acpihid_device_id(dev, &entry);
 330	if (devid < 0)
 331		return ERR_PTR(devid);
 332
 333	list_for_each_entry(p, &acpihid_map, list) {
 334		if ((devid == p->devid) && p->group)
 335			entry->group = p->group;
 336	}
 337
 338	if (!entry->group)
 339		entry->group = generic_device_group(dev);
 340	else
 341		iommu_group_ref_get(entry->group);
 342
 343	return entry->group;
 344}
 345
 346static bool pci_iommuv2_capable(struct pci_dev *pdev)
 347{
 348	static const int caps[] = {
 349		PCI_EXT_CAP_ID_ATS,
 350		PCI_EXT_CAP_ID_PRI,
 351		PCI_EXT_CAP_ID_PASID,
 352	};
 353	int i, pos;
 354
 355	if (pci_ats_disabled())
 356		return false;
 357
 358	for (i = 0; i < 3; ++i) {
 359		pos = pci_find_ext_capability(pdev, caps[i]);
 360		if (pos == 0)
 361			return false;
 362	}
 363
 364	return true;
 365}
 366
 367static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
 368{
 369	struct iommu_dev_data *dev_data;
 370
 371	dev_data = get_dev_data(&pdev->dev);
 372
 373	return dev_data->errata & (1 << erratum) ? true : false;
 374}
 375
 376/*
 377 * This function checks if the driver got a valid device from the caller to
 378 * avoid dereferencing invalid pointers.
 379 */
 380static bool check_device(struct device *dev)
 381{
 382	int devid;
 383
 384	if (!dev || !dev->dma_mask)
 385		return false;
 386
 
 
 
 
 387	devid = get_device_id(dev);
 388	if (devid < 0)
 389		return false;
 390
 391	/* Out of our scope? */
 392	if (devid > amd_iommu_last_bdf)
 393		return false;
 394
 395	if (amd_iommu_rlookup_table[devid] == NULL)
 396		return false;
 397
 398	return true;
 399}
 400
 401static void init_iommu_group(struct device *dev)
 402{
 403	struct iommu_group *group;
 404
 405	group = iommu_group_get_for_dev(dev);
 406	if (IS_ERR(group))
 407		return;
 408
 409	iommu_group_put(group);
 410}
 411
 412static int iommu_init_device(struct device *dev)
 413{
 414	struct iommu_dev_data *dev_data;
 415	struct amd_iommu *iommu;
 416	int devid;
 417
 418	if (dev->archdata.iommu)
 419		return 0;
 420
 421	devid = get_device_id(dev);
 422	if (devid < 0)
 423		return devid;
 424
 425	iommu = amd_iommu_rlookup_table[devid];
 426
 427	dev_data = find_dev_data(devid);
 428	if (!dev_data)
 429		return -ENOMEM;
 430
 431	dev_data->alias = get_alias(dev);
 432
 433	/*
 434	 * By default we use passthrough mode for IOMMUv2 capable device.
 435	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
 436	 * invalid address), we ignore the capability for the device so
 437	 * it'll be forced to go into translation mode.
 438	 */
 439	if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
 440	    dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
 441		struct amd_iommu *iommu;
 442
 443		iommu = amd_iommu_rlookup_table[dev_data->devid];
 444		dev_data->iommu_v2 = iommu->is_iommu_v2;
 445	}
 446
 447	dev->archdata.iommu = dev_data;
 448
 449	iommu_device_link(&iommu->iommu, dev);
 450
 451	return 0;
 452}
 453
 454static void iommu_ignore_device(struct device *dev)
 455{
 456	u16 alias;
 457	int devid;
 458
 459	devid = get_device_id(dev);
 460	if (devid < 0)
 461		return;
 462
 463	alias = get_alias(dev);
 464
 465	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
 466	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
 467
 468	amd_iommu_rlookup_table[devid] = NULL;
 469	amd_iommu_rlookup_table[alias] = NULL;
 470}
 471
 472static void iommu_uninit_device(struct device *dev)
 473{
 474	struct iommu_dev_data *dev_data;
 475	struct amd_iommu *iommu;
 476	int devid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 477
 478	devid = get_device_id(dev);
 479	if (devid < 0)
 480		return;
 
 481
 482	iommu = amd_iommu_rlookup_table[devid];
 483
 484	dev_data = search_dev_data(devid);
 485	if (!dev_data)
 486		return;
 487
 488	if (dev_data->domain)
 489		detach_device(dev);
 
 
 
 
 490
 491	iommu_device_unlink(&iommu->iommu, dev);
 492
 493	iommu_group_remove_device(dev);
 494
 495	/* Remove dma-ops */
 496	dev->dma_ops = NULL;
 497
 498	/*
 499	 * We keep dev_data around for unplugged devices and reuse it when the
 500	 * device is re-plugged - not doing so would introduce a ton of races.
 501	 */
 502}
 
 503
 504/*
 505 * Helper function to get the first pte of a large mapping
 506 */
 507static u64 *first_pte_l7(u64 *pte, unsigned long *page_size,
 508			 unsigned long *count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 509{
 510	unsigned long pte_mask, pg_size, cnt;
 511	u64 *fpte;
 512
 513	pg_size  = PTE_PAGE_SIZE(*pte);
 514	cnt      = PAGE_SIZE_PTE_COUNT(pg_size);
 515	pte_mask = ~((cnt << 3) - 1);
 516	fpte     = (u64 *)(((unsigned long)pte) & pte_mask);
 517
 518	if (page_size)
 519		*page_size = pg_size;
 
 
 
 520
 521	if (count)
 522		*count = cnt;
 523
 524	return fpte;
 
 
 
 
 
 
 
 
 
 
 
 525}
 526
 
 
 527/****************************************************************************
 528 *
 529 * Interrupt handling functions
 530 *
 531 ****************************************************************************/
 532
 533static void dump_dte_entry(u16 devid)
 534{
 535	int i;
 536
 537	for (i = 0; i < 4; ++i)
 538		pr_err("DTE[%d]: %016llx\n", i,
 539			amd_iommu_dev_table[devid].data[i]);
 540}
 541
 542static void dump_command(unsigned long phys_addr)
 543{
 544	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
 545	int i;
 546
 547	for (i = 0; i < 4; ++i)
 548		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
 549}
 550
 551static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
 552					u64 address, int flags)
 553{
 554	struct iommu_dev_data *dev_data = NULL;
 555	struct pci_dev *pdev;
 556
 557	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
 558					   devid & 0xff);
 559	if (pdev)
 560		dev_data = get_dev_data(&pdev->dev);
 561
 562	if (dev_data && __ratelimit(&dev_data->rs)) {
 563		pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
 564			domain_id, address, flags);
 565	} else if (printk_ratelimit()) {
 566		pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
 567			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 568			domain_id, address, flags);
 569	}
 570
 571	if (pdev)
 572		pci_dev_put(pdev);
 573}
 574
 575static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
 576{
 577	struct device *dev = iommu->iommu.dev;
 578	int type, devid, pasid, flags, tag;
 579	volatile u32 *event = __evt;
 580	int count = 0;
 581	u64 address;
 
 582
 583retry:
 584	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
 585	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
 586	pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
 587		  (event[1] & EVENT_DOMID_MASK_LO);
 588	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
 589	address = (u64)(((u64)event[3]) << 32) | event[2];
 590
 591	if (type == 0) {
 592		/* Did we hit the erratum? */
 593		if (++count == LOOP_TIMEOUT) {
 594			pr_err("No event written to event log\n");
 595			return;
 596		}
 597		udelay(1);
 598		goto retry;
 599	}
 600
 601	if (type == EVENT_TYPE_IO_FAULT) {
 602		amd_iommu_report_page_fault(devid, pasid, address, flags);
 603		return;
 604	}
 605
 606	switch (type) {
 607	case EVENT_TYPE_ILL_DEV:
 608		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
 609			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 610			pasid, address, flags);
 
 611		dump_dte_entry(devid);
 612		break;
 
 
 
 
 
 
 613	case EVENT_TYPE_DEV_TAB_ERR:
 614		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 615			"address=0x%llx flags=0x%04x]\n",
 616			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 617			address, flags);
 618		break;
 619	case EVENT_TYPE_PAGE_TAB_ERR:
 620		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
 621			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 622			pasid, address, flags);
 
 623		break;
 624	case EVENT_TYPE_ILL_CMD:
 625		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
 626		dump_command(address);
 627		break;
 628	case EVENT_TYPE_CMD_HARD_ERR:
 629		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
 630			address, flags);
 631		break;
 632	case EVENT_TYPE_IOTLB_INV_TO:
 633		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
 634			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 635			address);
 
 636		break;
 637	case EVENT_TYPE_INV_DEV_REQ:
 638		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
 639			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 640			pasid, address, flags);
 641		break;
 642	case EVENT_TYPE_INV_PPR_REQ:
 643		pasid = ((event[0] >> 16) & 0xFFFF)
 644			| ((event[1] << 6) & 0xF0000);
 645		tag = event[1] & 0x03FF;
 646		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
 647			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 648			pasid, address, flags, tag);
 649		break;
 650	default:
 651		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
 652			event[0], event[1], event[2], event[3]);
 653	}
 654
 655	memset(__evt, 0, 4 * sizeof(u32));
 656}
 657
 658static void iommu_poll_events(struct amd_iommu *iommu)
 659{
 660	u32 head, tail;
 
 
 
 661
 662	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 663	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
 664
 665	while (head != tail) {
 666		iommu_print_event(iommu, iommu->evt_buf + head);
 667		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
 668	}
 669
 670	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 671}
 672
 673static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
 674{
 675	struct amd_iommu_fault fault;
 676
 677	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
 678		pr_err_ratelimited("Unknown PPR request received\n");
 679		return;
 680	}
 681
 682	fault.address   = raw[1];
 683	fault.pasid     = PPR_PASID(raw[0]);
 684	fault.device_id = PPR_DEVID(raw[0]);
 685	fault.tag       = PPR_TAG(raw[0]);
 686	fault.flags     = PPR_FLAGS(raw[0]);
 687
 688	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
 689}
 690
 691static void iommu_poll_ppr_log(struct amd_iommu *iommu)
 692{
 693	u32 head, tail;
 694
 695	if (iommu->ppr_log == NULL)
 696		return;
 697
 698	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 699	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 700
 701	while (head != tail) {
 702		volatile u64 *raw;
 703		u64 entry[2];
 704		int i;
 705
 706		raw = (u64 *)(iommu->ppr_log + head);
 707
 708		/*
 709		 * Hardware bug: Interrupt may arrive before the entry is
 710		 * written to memory. If this happens we need to wait for the
 711		 * entry to arrive.
 712		 */
 713		for (i = 0; i < LOOP_TIMEOUT; ++i) {
 714			if (PPR_REQ_TYPE(raw[0]) != 0)
 715				break;
 716			udelay(1);
 717		}
 718
 719		/* Avoid memcpy function-call overhead */
 720		entry[0] = raw[0];
 721		entry[1] = raw[1];
 722
 723		/*
 724		 * To detect the hardware bug we need to clear the entry
 725		 * back to zero.
 726		 */
 727		raw[0] = raw[1] = 0UL;
 728
 729		/* Update head pointer of hardware ring-buffer */
 730		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
 731		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 732
 733		/* Handle PPR entry */
 734		iommu_handle_ppr_entry(iommu, entry);
 735
 736		/* Refresh ring-buffer information */
 737		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 738		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 739	}
 740}
 741
 742#ifdef CONFIG_IRQ_REMAP
 743static int (*iommu_ga_log_notifier)(u32);
 744
 745int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
 746{
 747	iommu_ga_log_notifier = notifier;
 748
 749	return 0;
 750}
 751EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
 752
 753static void iommu_poll_ga_log(struct amd_iommu *iommu)
 754{
 755	u32 head, tail, cnt = 0;
 756
 757	if (iommu->ga_log == NULL)
 758		return;
 759
 760	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
 761	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
 762
 763	while (head != tail) {
 764		volatile u64 *raw;
 765		u64 log_entry;
 766
 767		raw = (u64 *)(iommu->ga_log + head);
 768		cnt++;
 769
 770		/* Avoid memcpy function-call overhead */
 771		log_entry = *raw;
 772
 773		/* Update head pointer of hardware ring-buffer */
 774		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
 775		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
 776
 777		/* Handle GA entry */
 778		switch (GA_REQ_TYPE(log_entry)) {
 779		case GA_GUEST_NR:
 780			if (!iommu_ga_log_notifier)
 781				break;
 782
 783			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
 784				 __func__, GA_DEVID(log_entry),
 785				 GA_TAG(log_entry));
 786
 787			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
 788				pr_err("GA log notifier failed.\n");
 789			break;
 790		default:
 791			break;
 792		}
 793	}
 794}
 795#endif /* CONFIG_IRQ_REMAP */
 796
 797#define AMD_IOMMU_INT_MASK	\
 798	(MMIO_STATUS_EVT_INT_MASK | \
 799	 MMIO_STATUS_PPR_INT_MASK | \
 800	 MMIO_STATUS_GALOG_INT_MASK)
 801
 802irqreturn_t amd_iommu_int_thread(int irq, void *data)
 803{
 804	struct amd_iommu *iommu = (struct amd_iommu *) data;
 805	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
 806
 807	while (status & AMD_IOMMU_INT_MASK) {
 808		/* Enable EVT and PPR and GA interrupts again */
 809		writel(AMD_IOMMU_INT_MASK,
 810			iommu->mmio_base + MMIO_STATUS_OFFSET);
 811
 812		if (status & MMIO_STATUS_EVT_INT_MASK) {
 813			pr_devel("Processing IOMMU Event Log\n");
 814			iommu_poll_events(iommu);
 815		}
 816
 817		if (status & MMIO_STATUS_PPR_INT_MASK) {
 818			pr_devel("Processing IOMMU PPR Log\n");
 819			iommu_poll_ppr_log(iommu);
 820		}
 821
 822#ifdef CONFIG_IRQ_REMAP
 823		if (status & MMIO_STATUS_GALOG_INT_MASK) {
 824			pr_devel("Processing IOMMU GA Log\n");
 825			iommu_poll_ga_log(iommu);
 826		}
 827#endif
 828
 829		/*
 830		 * Hardware bug: ERBT1312
 831		 * When re-enabling interrupt (by writing 1
 832		 * to clear the bit), the hardware might also try to set
 833		 * the interrupt bit in the event status register.
 834		 * In this scenario, the bit will be set, and disable
 835		 * subsequent interrupts.
 836		 *
 837		 * Workaround: The IOMMU driver should read back the
 838		 * status register and check if the interrupt bits are cleared.
 839		 * If not, driver will need to go through the interrupt handler
 840		 * again and re-clear the bits
 841		 */
 842		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
 843	}
 844	return IRQ_HANDLED;
 845}
 846
 847irqreturn_t amd_iommu_int_handler(int irq, void *data)
 848{
 849	return IRQ_WAKE_THREAD;
 850}
 851
 852/****************************************************************************
 853 *
 854 * IOMMU command queuing functions
 855 *
 856 ****************************************************************************/
 857
 858static int wait_on_sem(volatile u64 *sem)
 859{
 860	int i = 0;
 861
 862	while (*sem == 0 && i < LOOP_TIMEOUT) {
 863		udelay(1);
 864		i += 1;
 865	}
 866
 867	if (i == LOOP_TIMEOUT) {
 868		pr_alert("Completion-Wait loop timed out\n");
 869		return -EIO;
 870	}
 871
 872	return 0;
 873}
 874
 875static void copy_cmd_to_buffer(struct amd_iommu *iommu,
 876			       struct iommu_cmd *cmd)
 
 877{
 878	u8 *target;
 879
 880	target = iommu->cmd_buf + iommu->cmd_buf_tail;
 881
 882	iommu->cmd_buf_tail += sizeof(*cmd);
 883	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
 884
 885	/* Copy command to buffer */
 886	memcpy(target, cmd, sizeof(*cmd));
 887
 888	/* Tell the IOMMU about it */
 889	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
 890}
 891
 892static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
 893{
 894	u64 paddr = iommu_virt_to_phys((void *)address);
 895
 896	WARN_ON(address & 0x7ULL);
 897
 898	memset(cmd, 0, sizeof(*cmd));
 899	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
 900	cmd->data[1] = upper_32_bits(paddr);
 901	cmd->data[2] = 1;
 902	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
 903}
 904
 905static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
 906{
 907	memset(cmd, 0, sizeof(*cmd));
 908	cmd->data[0] = devid;
 909	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
 910}
 911
 912static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
 913				  size_t size, u16 domid, int pde)
 914{
 915	u64 pages;
 916	bool s;
 917
 918	pages = iommu_num_pages(address, size, PAGE_SIZE);
 919	s     = false;
 920
 921	if (pages > 1) {
 922		/*
 923		 * If we have to flush more than one page, flush all
 924		 * TLB entries for this domain
 925		 */
 926		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 927		s = true;
 928	}
 929
 930	address &= PAGE_MASK;
 931
 932	memset(cmd, 0, sizeof(*cmd));
 933	cmd->data[1] |= domid;
 934	cmd->data[2]  = lower_32_bits(address);
 935	cmd->data[3]  = upper_32_bits(address);
 936	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 937	if (s) /* size bit - we flush more than one 4kb page */
 938		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 939	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
 940		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 941}
 942
 943static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
 944				  u64 address, size_t size)
 945{
 946	u64 pages;
 947	bool s;
 948
 949	pages = iommu_num_pages(address, size, PAGE_SIZE);
 950	s     = false;
 951
 952	if (pages > 1) {
 953		/*
 954		 * If we have to flush more than one page, flush all
 955		 * TLB entries for this domain
 956		 */
 957		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 958		s = true;
 959	}
 960
 961	address &= PAGE_MASK;
 962
 963	memset(cmd, 0, sizeof(*cmd));
 964	cmd->data[0]  = devid;
 965	cmd->data[0] |= (qdep & 0xff) << 24;
 966	cmd->data[1]  = devid;
 967	cmd->data[2]  = lower_32_bits(address);
 968	cmd->data[3]  = upper_32_bits(address);
 969	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 970	if (s)
 971		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 972}
 973
 974static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
 975				  u64 address, bool size)
 976{
 977	memset(cmd, 0, sizeof(*cmd));
 978
 979	address &= ~(0xfffULL);
 980
 981	cmd->data[0]  = pasid;
 982	cmd->data[1]  = domid;
 983	cmd->data[2]  = lower_32_bits(address);
 984	cmd->data[3]  = upper_32_bits(address);
 985	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 986	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 987	if (size)
 988		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 989	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 990}
 991
 992static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
 993				  int qdep, u64 address, bool size)
 994{
 995	memset(cmd, 0, sizeof(*cmd));
 996
 997	address &= ~(0xfffULL);
 998
 999	cmd->data[0]  = devid;
1000	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1001	cmd->data[0] |= (qdep  & 0xff) << 24;
1002	cmd->data[1]  = devid;
1003	cmd->data[1] |= (pasid & 0xff) << 16;
1004	cmd->data[2]  = lower_32_bits(address);
1005	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1006	cmd->data[3]  = upper_32_bits(address);
1007	if (size)
1008		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1009	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1010}
1011
1012static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
1013			       int status, int tag, bool gn)
1014{
1015	memset(cmd, 0, sizeof(*cmd));
1016
1017	cmd->data[0]  = devid;
1018	if (gn) {
1019		cmd->data[1]  = pasid;
1020		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1021	}
1022	cmd->data[3]  = tag & 0x1ff;
1023	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1024
1025	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1026}
1027
1028static void build_inv_all(struct iommu_cmd *cmd)
1029{
1030	memset(cmd, 0, sizeof(*cmd));
1031	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1032}
1033
1034static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1035{
1036	memset(cmd, 0, sizeof(*cmd));
1037	cmd->data[0] = devid;
1038	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1039}
1040
1041/*
1042 * Writes the command to the IOMMUs command buffer and informs the
1043 * hardware about the new command.
1044 */
1045static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1046				      struct iommu_cmd *cmd,
1047				      bool sync)
1048{
1049	unsigned int count = 0;
1050	u32 left, next_tail;
 
 
1051
1052	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1053again:
1054	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1055
1056	if (left <= 0x20) {
1057		/* Skip udelay() the first time around */
1058		if (count++) {
1059			if (count == LOOP_TIMEOUT) {
1060				pr_err("Command buffer timeout\n");
1061				return -EIO;
1062			}
1063
1064			udelay(1);
1065		}
 
 
 
 
 
 
 
1066
1067		/* Update head and recheck remaining space */
1068		iommu->cmd_buf_head = readl(iommu->mmio_base +
1069					    MMIO_CMD_HEAD_OFFSET);
1070
1071		goto again;
1072	}
1073
1074	copy_cmd_to_buffer(iommu, cmd);
1075
1076	/* Do we need to make sure all commands are processed? */
1077	iommu->need_sync = sync;
1078
 
 
1079	return 0;
1080}
1081
1082static int iommu_queue_command_sync(struct amd_iommu *iommu,
1083				    struct iommu_cmd *cmd,
1084				    bool sync)
1085{
1086	unsigned long flags;
1087	int ret;
1088
1089	raw_spin_lock_irqsave(&iommu->lock, flags);
1090	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1091	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1092
1093	return ret;
1094}
1095
1096static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1097{
1098	return iommu_queue_command_sync(iommu, cmd, true);
1099}
1100
1101/*
1102 * This function queues a completion wait command into the command
1103 * buffer of an IOMMU
1104 */
1105static int iommu_completion_wait(struct amd_iommu *iommu)
1106{
1107	struct iommu_cmd cmd;
1108	unsigned long flags;
1109	int ret;
1110
1111	if (!iommu->need_sync)
1112		return 0;
1113
 
1114
1115	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1116
1117	raw_spin_lock_irqsave(&iommu->lock, flags);
1118
1119	iommu->cmd_sem = 0;
1120
1121	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1122	if (ret)
1123		goto out_unlock;
1124
1125	ret = wait_on_sem(&iommu->cmd_sem);
1126
1127out_unlock:
1128	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1129
1130	return ret;
1131}
1132
1133static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1134{
1135	struct iommu_cmd cmd;
1136
1137	build_inv_dte(&cmd, devid);
1138
1139	return iommu_queue_command(iommu, &cmd);
1140}
1141
1142static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1143{
1144	u32 devid;
1145
1146	for (devid = 0; devid <= 0xffff; ++devid)
1147		iommu_flush_dte(iommu, devid);
1148
1149	iommu_completion_wait(iommu);
1150}
1151
1152/*
1153 * This function uses heavy locking and may disable irqs for some time. But
1154 * this is no issue because it is only called during resume.
1155 */
1156static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1157{
1158	u32 dom_id;
1159
1160	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1161		struct iommu_cmd cmd;
1162		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1163				      dom_id, 1);
1164		iommu_queue_command(iommu, &cmd);
1165	}
1166
1167	iommu_completion_wait(iommu);
1168}
1169
1170static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1171{
1172	struct iommu_cmd cmd;
1173
1174	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1175			      dom_id, 1);
1176	iommu_queue_command(iommu, &cmd);
1177
1178	iommu_completion_wait(iommu);
1179}
1180
1181static void amd_iommu_flush_all(struct amd_iommu *iommu)
1182{
1183	struct iommu_cmd cmd;
1184
1185	build_inv_all(&cmd);
1186
1187	iommu_queue_command(iommu, &cmd);
1188	iommu_completion_wait(iommu);
1189}
1190
1191static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1192{
1193	struct iommu_cmd cmd;
1194
1195	build_inv_irt(&cmd, devid);
1196
1197	iommu_queue_command(iommu, &cmd);
1198}
1199
1200static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1201{
1202	u32 devid;
1203
1204	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1205		iommu_flush_irt(iommu, devid);
1206
1207	iommu_completion_wait(iommu);
1208}
1209
1210void iommu_flush_all_caches(struct amd_iommu *iommu)
1211{
1212	if (iommu_feature(iommu, FEATURE_IA)) {
1213		amd_iommu_flush_all(iommu);
1214	} else {
1215		amd_iommu_flush_dte_all(iommu);
1216		amd_iommu_flush_irt_all(iommu);
1217		amd_iommu_flush_tlb_all(iommu);
1218	}
1219}
1220
1221/*
1222 * Command send function for flushing on-device TLB
1223 */
1224static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1225			      u64 address, size_t size)
1226{
1227	struct amd_iommu *iommu;
1228	struct iommu_cmd cmd;
1229	int qdep;
1230
1231	qdep     = dev_data->ats.qdep;
1232	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1233
1234	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1235
1236	return iommu_queue_command(iommu, &cmd);
1237}
1238
1239/*
1240 * Command send function for invalidating a device table entry
1241 */
1242static int device_flush_dte(struct iommu_dev_data *dev_data)
1243{
1244	struct amd_iommu *iommu;
1245	u16 alias;
1246	int ret;
1247
1248	iommu = amd_iommu_rlookup_table[dev_data->devid];
1249	alias = dev_data->alias;
1250
1251	ret = iommu_flush_dte(iommu, dev_data->devid);
1252	if (!ret && alias != dev_data->devid)
1253		ret = iommu_flush_dte(iommu, alias);
1254	if (ret)
1255		return ret;
1256
1257	if (dev_data->ats.enabled)
1258		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1259
1260	return ret;
1261}
1262
1263/*
1264 * TLB invalidation function which is called from the mapping functions.
1265 * It invalidates a single PTE if the range to flush is within a single
1266 * page. Otherwise it flushes the whole TLB of the IOMMU.
1267 */
1268static void __domain_flush_pages(struct protection_domain *domain,
1269				 u64 address, size_t size, int pde)
1270{
1271	struct iommu_dev_data *dev_data;
1272	struct iommu_cmd cmd;
1273	int ret = 0, i;
1274
1275	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1276
1277	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1278		if (!domain->dev_iommu[i])
1279			continue;
1280
1281		/*
1282		 * Devices of this domain are behind this IOMMU
1283		 * We need a TLB flush
1284		 */
1285		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1286	}
1287
1288	list_for_each_entry(dev_data, &domain->dev_list, list) {
1289
1290		if (!dev_data->ats.enabled)
1291			continue;
1292
1293		ret |= device_flush_iotlb(dev_data, address, size);
1294	}
1295
1296	WARN_ON(ret);
1297}
1298
1299static void domain_flush_pages(struct protection_domain *domain,
1300			       u64 address, size_t size)
1301{
1302	__domain_flush_pages(domain, address, size, 0);
1303}
1304
1305/* Flush the whole IO/TLB for a given protection domain */
1306static void domain_flush_tlb(struct protection_domain *domain)
1307{
1308	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1309}
1310
1311/* Flush the whole IO/TLB for a given protection domain - including PDE */
1312static void domain_flush_tlb_pde(struct protection_domain *domain)
1313{
1314	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1315}
1316
1317static void domain_flush_complete(struct protection_domain *domain)
1318{
1319	int i;
1320
1321	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1322		if (domain && !domain->dev_iommu[i])
1323			continue;
1324
1325		/*
1326		 * Devices of this domain are behind this IOMMU
1327		 * We need to wait for completion of all commands.
1328		 */
1329		iommu_completion_wait(amd_iommus[i]);
1330	}
1331}
1332
1333/* Flush the not present cache if it exists */
1334static void domain_flush_np_cache(struct protection_domain *domain,
1335		dma_addr_t iova, size_t size)
1336{
1337	if (unlikely(amd_iommu_np_cache)) {
1338		unsigned long flags;
1339
1340		spin_lock_irqsave(&domain->lock, flags);
1341		domain_flush_pages(domain, iova, size);
1342		domain_flush_complete(domain);
1343		spin_unlock_irqrestore(&domain->lock, flags);
1344	}
1345}
1346
1347
1348/*
1349 * This function flushes the DTEs for all devices in domain
1350 */
1351static void domain_flush_devices(struct protection_domain *domain)
1352{
1353	struct iommu_dev_data *dev_data;
1354
1355	list_for_each_entry(dev_data, &domain->dev_list, list)
1356		device_flush_dte(dev_data);
1357}
1358
1359/****************************************************************************
1360 *
1361 * The functions below are used the create the page table mappings for
1362 * unity mapped regions.
1363 *
1364 ****************************************************************************/
1365
1366static void free_page_list(struct page *freelist)
1367{
1368	while (freelist != NULL) {
1369		unsigned long p = (unsigned long)page_address(freelist);
1370		freelist = freelist->freelist;
1371		free_page(p);
1372	}
1373}
1374
1375static struct page *free_pt_page(unsigned long pt, struct page *freelist)
1376{
1377	struct page *p = virt_to_page((void *)pt);
1378
1379	p->freelist = freelist;
1380
1381	return p;
1382}
1383
1384#define DEFINE_FREE_PT_FN(LVL, FN)						\
1385static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist)	\
1386{										\
1387	unsigned long p;							\
1388	u64 *pt;								\
1389	int i;									\
1390										\
1391	pt = (u64 *)__pt;							\
1392										\
1393	for (i = 0; i < 512; ++i) {						\
1394		/* PTE present? */						\
1395		if (!IOMMU_PTE_PRESENT(pt[i]))					\
1396			continue;						\
1397										\
1398		/* Large PTE? */						\
1399		if (PM_PTE_LEVEL(pt[i]) == 0 ||					\
1400		    PM_PTE_LEVEL(pt[i]) == 7)					\
1401			continue;						\
1402										\
1403		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);			\
1404		freelist = FN(p, freelist);					\
1405	}									\
1406										\
1407	return free_pt_page((unsigned long)pt, freelist);			\
1408}
1409
1410DEFINE_FREE_PT_FN(l2, free_pt_page)
1411DEFINE_FREE_PT_FN(l3, free_pt_l2)
1412DEFINE_FREE_PT_FN(l4, free_pt_l3)
1413DEFINE_FREE_PT_FN(l5, free_pt_l4)
1414DEFINE_FREE_PT_FN(l6, free_pt_l5)
1415
1416static struct page *free_sub_pt(unsigned long root, int mode,
1417				struct page *freelist)
1418{
1419	switch (mode) {
1420	case PAGE_MODE_NONE:
1421	case PAGE_MODE_7_LEVEL:
1422		break;
1423	case PAGE_MODE_1_LEVEL:
1424		freelist = free_pt_page(root, freelist);
1425		break;
1426	case PAGE_MODE_2_LEVEL:
1427		freelist = free_pt_l2(root, freelist);
1428		break;
1429	case PAGE_MODE_3_LEVEL:
1430		freelist = free_pt_l3(root, freelist);
1431		break;
1432	case PAGE_MODE_4_LEVEL:
1433		freelist = free_pt_l4(root, freelist);
1434		break;
1435	case PAGE_MODE_5_LEVEL:
1436		freelist = free_pt_l5(root, freelist);
1437		break;
1438	case PAGE_MODE_6_LEVEL:
1439		freelist = free_pt_l6(root, freelist);
1440		break;
1441	default:
1442		BUG();
1443	}
1444
1445	return freelist;
1446}
1447
1448static void free_pagetable(struct protection_domain *domain)
1449{
1450	unsigned long root = (unsigned long)domain->pt_root;
1451	struct page *freelist = NULL;
1452
1453	BUG_ON(domain->mode < PAGE_MODE_NONE ||
1454	       domain->mode > PAGE_MODE_6_LEVEL);
1455
1456	freelist = free_sub_pt(root, domain->mode, freelist);
1457
1458	free_page_list(freelist);
1459}
1460
1461/*
1462 * This function is used to add another level to an IO page table. Adding
1463 * another level increases the size of the address space by 9 bits to a size up
1464 * to 64 bits.
1465 */
1466static bool increase_address_space(struct protection_domain *domain,
1467				   unsigned long address,
1468				   gfp_t gfp)
1469{
1470	unsigned long flags;
1471	bool ret = false;
1472	u64 *pte;
1473
1474	spin_lock_irqsave(&domain->lock, flags);
1475
1476	if (address <= PM_LEVEL_SIZE(domain->mode) ||
1477	    WARN_ON_ONCE(domain->mode == PAGE_MODE_6_LEVEL))
1478		goto out;
1479
1480	pte = (void *)get_zeroed_page(gfp);
1481	if (!pte)
1482		goto out;
1483
1484	*pte             = PM_LEVEL_PDE(domain->mode,
1485					iommu_virt_to_phys(domain->pt_root));
1486	domain->pt_root  = pte;
1487	domain->mode    += 1;
 
1488
1489	ret = true;
1490
1491out:
1492	spin_unlock_irqrestore(&domain->lock, flags);
1493
1494	return ret;
1495}
1496
1497static u64 *alloc_pte(struct protection_domain *domain,
1498		      unsigned long address,
1499		      unsigned long page_size,
1500		      u64 **pte_page,
1501		      gfp_t gfp,
1502		      bool *updated)
1503{
1504	int level, end_lvl;
1505	u64 *pte, *page;
1506
1507	BUG_ON(!is_power_of_2(page_size));
1508
1509	while (address > PM_LEVEL_SIZE(domain->mode))
1510		*updated = increase_address_space(domain, address, gfp) || *updated;
1511
1512	level   = domain->mode - 1;
1513	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1514	address = PAGE_SIZE_ALIGN(address, page_size);
1515	end_lvl = PAGE_SIZE_LEVEL(page_size);
1516
1517	while (level > end_lvl) {
1518		u64 __pte, __npte;
1519		int pte_level;
1520
1521		__pte     = *pte;
1522		pte_level = PM_PTE_LEVEL(__pte);
1523
1524		/*
1525		 * If we replace a series of large PTEs, we need
1526		 * to tear down all of them.
1527		 */
1528		if (IOMMU_PTE_PRESENT(__pte) &&
1529		    pte_level == PAGE_MODE_7_LEVEL) {
1530			unsigned long count, i;
1531			u64 *lpte;
1532
1533			lpte = first_pte_l7(pte, NULL, &count);
1534
1535			/*
1536			 * Unmap the replicated PTEs that still match the
1537			 * original large mapping
1538			 */
1539			for (i = 0; i < count; ++i)
1540				cmpxchg64(&lpte[i], __pte, 0ULL);
1541
1542			*updated = true;
1543			continue;
1544		}
1545
1546		if (!IOMMU_PTE_PRESENT(__pte) ||
1547		    pte_level == PAGE_MODE_NONE) {
1548			page = (u64 *)get_zeroed_page(gfp);
1549
1550			if (!page)
1551				return NULL;
1552
1553			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1554
1555			/* pte could have been changed somewhere. */
1556			if (cmpxchg64(pte, __pte, __npte) != __pte)
1557				free_page((unsigned long)page);
1558			else if (IOMMU_PTE_PRESENT(__pte))
1559				*updated = true;
1560
1561			continue;
1562		}
1563
1564		/* No level skipping support yet */
1565		if (pte_level != level)
1566			return NULL;
1567
1568		level -= 1;
1569
1570		pte = IOMMU_PTE_PAGE(__pte);
1571
1572		if (pte_page && level == end_lvl)
1573			*pte_page = pte;
1574
1575		pte = &pte[PM_LEVEL_INDEX(level, address)];
1576	}
1577
1578	return pte;
1579}
1580
1581/*
1582 * This function checks if there is a PTE for a given dma address. If
1583 * there is one, it returns the pointer to it.
1584 */
1585static u64 *fetch_pte(struct protection_domain *domain,
1586		      unsigned long address,
1587		      unsigned long *page_size)
1588{
1589	int level;
1590	u64 *pte;
1591
1592	*page_size = 0;
1593
1594	if (address > PM_LEVEL_SIZE(domain->mode))
1595		return NULL;
1596
1597	level	   =  domain->mode - 1;
1598	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1599	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1600
1601	while (level > 0) {
1602
1603		/* Not Present */
1604		if (!IOMMU_PTE_PRESENT(*pte))
1605			return NULL;
1606
1607		/* Large PTE */
1608		if (PM_PTE_LEVEL(*pte) == 7 ||
1609		    PM_PTE_LEVEL(*pte) == 0)
1610			break;
 
 
 
 
 
 
 
 
 
 
1611
1612		/* No level skipping support yet */
1613		if (PM_PTE_LEVEL(*pte) != level)
1614			return NULL;
1615
1616		level -= 1;
1617
1618		/* Walk to the next level */
1619		pte	   = IOMMU_PTE_PAGE(*pte);
1620		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
1621		*page_size = PTE_LEVEL_PAGE_SIZE(level);
1622	}
1623
1624	/*
1625	 * If we have a series of large PTEs, make
1626	 * sure to return a pointer to the first one.
1627	 */
1628	if (PM_PTE_LEVEL(*pte) == PAGE_MODE_7_LEVEL)
1629		pte = first_pte_l7(pte, page_size, NULL);
1630
1631	return pte;
1632}
1633
1634static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist)
1635{
1636	unsigned long pt;
1637	int mode;
1638
1639	while (cmpxchg64(pte, pteval, 0) != pteval) {
1640		pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
1641		pteval = *pte;
1642	}
1643
1644	if (!IOMMU_PTE_PRESENT(pteval))
1645		return freelist;
1646
1647	pt   = (unsigned long)IOMMU_PTE_PAGE(pteval);
1648	mode = IOMMU_PTE_MODE(pteval);
1649
1650	return free_sub_pt(pt, mode, freelist);
1651}
1652
1653/*
1654 * Generic mapping functions. It maps a physical address into a DMA
1655 * address space. It allocates the page table pages if necessary.
1656 * In the future it can be extended to a generic mapping function
1657 * supporting all features of AMD IOMMU page tables like level skipping
1658 * and full 64 bit address spaces.
1659 */
1660static int iommu_map_page(struct protection_domain *dom,
1661			  unsigned long bus_addr,
1662			  unsigned long phys_addr,
1663			  unsigned long page_size,
1664			  int prot,
1665			  gfp_t gfp)
1666{
1667	struct page *freelist = NULL;
1668	bool updated = false;
1669	u64 __pte, *pte;
1670	int ret, i, count;
1671
1672	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1673	BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1674
1675	ret = -EINVAL;
1676	if (!(prot & IOMMU_PROT_MASK))
1677		goto out;
1678
1679	count = PAGE_SIZE_PTE_COUNT(page_size);
1680	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp, &updated);
1681
1682	ret = -ENOMEM;
1683	if (!pte)
1684		goto out;
 
1685
1686	for (i = 0; i < count; ++i)
1687		freelist = free_clear_pte(&pte[i], pte[i], freelist);
1688
1689	if (freelist != NULL)
1690		updated = true;
1691
1692	if (count > 1) {
1693		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1694		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1695	} else
1696		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1697
1698	if (prot & IOMMU_PROT_IR)
1699		__pte |= IOMMU_PTE_IR;
1700	if (prot & IOMMU_PROT_IW)
1701		__pte |= IOMMU_PTE_IW;
1702
1703	for (i = 0; i < count; ++i)
1704		pte[i] = __pte;
1705
1706	ret = 0;
1707
1708out:
1709	if (updated) {
1710		unsigned long flags;
1711
1712		spin_lock_irqsave(&dom->lock, flags);
1713		update_domain(dom);
1714		spin_unlock_irqrestore(&dom->lock, flags);
1715	}
1716
1717	/* Everything flushed out, free pages now */
1718	free_page_list(freelist);
1719
1720	return ret;
1721}
1722
1723static unsigned long iommu_unmap_page(struct protection_domain *dom,
1724				      unsigned long bus_addr,
1725				      unsigned long page_size)
1726{
1727	unsigned long long unmapped;
1728	unsigned long unmap_size;
1729	u64 *pte;
1730
1731	BUG_ON(!is_power_of_2(page_size));
1732
1733	unmapped = 0;
1734
1735	while (unmapped < page_size) {
1736
1737		pte = fetch_pte(dom, bus_addr, &unmap_size);
1738
1739		if (pte) {
1740			int i, count;
 
 
 
 
 
 
 
 
 
 
1741
1742			count = PAGE_SIZE_PTE_COUNT(unmap_size);
 
 
1743			for (i = 0; i < count; i++)
1744				pte[i] = 0ULL;
1745		}
1746
1747		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1748		unmapped += unmap_size;
1749	}
1750
1751	BUG_ON(unmapped && !is_power_of_2(unmapped));
1752
1753	return unmapped;
1754}
1755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1756/****************************************************************************
1757 *
1758 * The next functions belong to the address allocator for the dma_ops
1759 * interface functions.
 
 
 
1760 *
1761 ****************************************************************************/
1762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1763
1764static unsigned long dma_ops_alloc_iova(struct device *dev,
1765					struct dma_ops_domain *dma_dom,
1766					unsigned int pages, u64 dma_mask)
 
 
 
 
 
1767{
1768	unsigned long pfn = 0;
 
 
 
 
 
 
 
 
1769
1770	pages = __roundup_pow_of_two(pages);
 
 
 
 
 
1771
1772	if (dma_mask > DMA_BIT_MASK(32))
1773		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1774				      IOVA_PFN(DMA_BIT_MASK(32)), false);
1775
1776	if (!pfn)
1777		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1778				      IOVA_PFN(dma_mask), true);
1779
1780	return (pfn << PAGE_SHIFT);
1781}
1782
1783static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
1784			      unsigned long address,
1785			      unsigned int pages)
 
 
 
 
 
1786{
1787	pages = __roundup_pow_of_two(pages);
1788	address >>= PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1789
1790	free_iova_fast(&dma_dom->iovad, address, pages);
1791}
1792
1793/****************************************************************************
1794 *
1795 * The next functions belong to the domain allocation. A domain is
1796 * allocated for every IOMMU as the default domain. If device isolation
1797 * is enabled, every device get its own domain. The most important thing
1798 * about domains is the page table mapping the DMA address space they
1799 * contain.
1800 *
1801 ****************************************************************************/
1802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1803static u16 domain_id_alloc(void)
1804{
 
1805	int id;
1806
1807	spin_lock(&pd_bitmap_lock);
1808	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1809	BUG_ON(id == 0);
1810	if (id > 0 && id < MAX_DOMAIN_ID)
1811		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1812	else
1813		id = 0;
1814	spin_unlock(&pd_bitmap_lock);
1815
1816	return id;
1817}
1818
1819static void domain_id_free(int id)
1820{
1821	spin_lock(&pd_bitmap_lock);
 
 
1822	if (id > 0 && id < MAX_DOMAIN_ID)
1823		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1824	spin_unlock(&pd_bitmap_lock);
1825}
1826
1827static void free_gcr3_tbl_level1(u64 *tbl)
1828{
1829	u64 *ptr;
1830	int i;
1831
1832	for (i = 0; i < 512; ++i) {
1833		if (!(tbl[i] & GCR3_VALID))
1834			continue;
1835
1836		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1837
1838		free_page((unsigned long)ptr);
1839	}
1840}
1841
1842static void free_gcr3_tbl_level2(u64 *tbl)
1843{
1844	u64 *ptr;
1845	int i;
1846
1847	for (i = 0; i < 512; ++i) {
1848		if (!(tbl[i] & GCR3_VALID))
1849			continue;
1850
1851		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
 
 
 
 
 
 
1852
1853		free_gcr3_tbl_level1(ptr);
1854	}
1855}
1856
1857static void free_gcr3_table(struct protection_domain *domain)
1858{
1859	if (domain->glx == 2)
1860		free_gcr3_tbl_level2(domain->gcr3_tbl);
1861	else if (domain->glx == 1)
1862		free_gcr3_tbl_level1(domain->gcr3_tbl);
1863	else
1864		BUG_ON(domain->glx != 0);
1865
1866	free_page((unsigned long)domain->gcr3_tbl);
1867}
1868
1869static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
1870{
1871	unsigned long flags;
1872
1873	spin_lock_irqsave(&dom->domain.lock, flags);
1874	domain_flush_tlb(&dom->domain);
1875	domain_flush_complete(&dom->domain);
1876	spin_unlock_irqrestore(&dom->domain.lock, flags);
1877}
1878
1879static void iova_domain_flush_tlb(struct iova_domain *iovad)
1880{
1881	struct dma_ops_domain *dom;
1882
1883	dom = container_of(iovad, struct dma_ops_domain, iovad);
1884
1885	dma_ops_domain_flush_tlb(dom);
1886}
1887
1888/*
1889 * Free a domain, only used if something went wrong in the
1890 * allocation path and we need to free an already allocated page table
1891 */
1892static void dma_ops_domain_free(struct dma_ops_domain *dom)
1893{
 
 
1894	if (!dom)
1895		return;
1896
1897	put_iova_domain(&dom->iovad);
1898
1899	free_pagetable(&dom->domain);
1900
1901	if (dom->domain.id)
1902		domain_id_free(dom->domain.id);
 
 
 
 
1903
1904	kfree(dom);
1905}
1906
1907/*
1908 * Allocates a new protection domain usable for the dma_ops functions.
1909 * It also initializes the page table and the address allocator data
1910 * structures required for the dma_ops interface
1911 */
1912static struct dma_ops_domain *dma_ops_domain_alloc(void)
1913{
1914	struct dma_ops_domain *dma_dom;
1915
1916	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1917	if (!dma_dom)
1918		return NULL;
1919
1920	if (protection_domain_init(&dma_dom->domain))
 
 
 
1921		goto free_dma_dom;
1922
1923	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1924	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1925	dma_dom->domain.flags = PD_DMA_OPS_MASK;
 
1926	if (!dma_dom->domain.pt_root)
1927		goto free_dma_dom;
1928
1929	init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
 
1930
1931	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
 
 
1932		goto free_dma_dom;
1933
1934	/* Initialize reserved ranges */
1935	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
 
 
 
 
 
1936
1937	return dma_dom;
1938
1939free_dma_dom:
1940	dma_ops_domain_free(dma_dom);
1941
1942	return NULL;
1943}
1944
1945/*
1946 * little helper function to check whether a given protection domain is a
1947 * dma_ops domain
1948 */
1949static bool dma_ops_domain(struct protection_domain *domain)
1950{
1951	return domain->flags & PD_DMA_OPS_MASK;
1952}
1953
1954static void set_dte_entry(u16 devid, struct protection_domain *domain,
1955			  bool ats, bool ppr)
1956{
1957	u64 pte_root = 0;
1958	u64 flags = 0;
1959	u32 old_domid;
1960
1961	if (domain->mode != PAGE_MODE_NONE)
1962		pte_root = iommu_virt_to_phys(domain->pt_root);
1963
1964	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1965		    << DEV_ENTRY_MODE_SHIFT;
1966	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1967
1968	flags = amd_iommu_dev_table[devid].data[1];
1969
1970	if (ats)
1971		flags |= DTE_FLAG_IOTLB;
1972
1973	if (ppr) {
1974		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1975
1976		if (iommu_feature(iommu, FEATURE_EPHSUP))
1977			pte_root |= 1ULL << DEV_ENTRY_PPR;
1978	}
1979
1980	if (domain->flags & PD_IOMMUV2_MASK) {
1981		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1982		u64 glx  = domain->glx;
1983		u64 tmp;
1984
1985		pte_root |= DTE_FLAG_GV;
1986		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1987
1988		/* First mask out possible old values for GCR3 table */
1989		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1990		flags    &= ~tmp;
1991
1992		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1993		flags    &= ~tmp;
1994
1995		/* Encode GCR3 table into DTE */
1996		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1997		pte_root |= tmp;
1998
1999		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2000		flags    |= tmp;
2001
2002		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2003		flags    |= tmp;
2004	}
2005
2006	flags &= ~DEV_DOMID_MASK;
2007	flags |= domain->id;
2008
2009	old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK;
2010	amd_iommu_dev_table[devid].data[1]  = flags;
2011	amd_iommu_dev_table[devid].data[0]  = pte_root;
2012
2013	/*
2014	 * A kdump kernel might be replacing a domain ID that was copied from
2015	 * the previous kernel--if so, it needs to flush the translation cache
2016	 * entries for the old domain ID that is being overwritten
2017	 */
2018	if (old_domid) {
2019		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
2020
2021		amd_iommu_flush_tlb_domid(iommu, old_domid);
2022	}
2023}
2024
2025static void clear_dte_entry(u16 devid)
2026{
2027	/* remove entry from the device table seen by the hardware */
2028	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
2029	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
 
2030
2031	amd_iommu_apply_erratum_63(devid);
2032}
2033
2034static void do_attach(struct iommu_dev_data *dev_data,
2035		      struct protection_domain *domain)
2036{
2037	struct amd_iommu *iommu;
2038	u16 alias;
2039	bool ats;
2040
2041	iommu = amd_iommu_rlookup_table[dev_data->devid];
2042	alias = dev_data->alias;
2043	ats   = dev_data->ats.enabled;
2044
2045	/* Update data structures */
2046	dev_data->domain = domain;
2047	list_add(&dev_data->list, &domain->dev_list);
 
2048
2049	/* Do reference counting */
2050	domain->dev_iommu[iommu->index] += 1;
2051	domain->dev_cnt                 += 1;
2052
2053	/* Update device table */
2054	set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
2055	if (alias != dev_data->devid)
2056		set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
2057
2058	device_flush_dte(dev_data);
2059}
2060
2061static void do_detach(struct iommu_dev_data *dev_data)
2062{
2063	struct protection_domain *domain = dev_data->domain;
2064	struct amd_iommu *iommu;
2065	u16 alias;
2066
2067	iommu = amd_iommu_rlookup_table[dev_data->devid];
2068	alias = dev_data->alias;
 
 
 
2069
2070	/* Update data structures */
2071	dev_data->domain = NULL;
2072	list_del(&dev_data->list);
2073	clear_dte_entry(dev_data->devid);
2074	if (alias != dev_data->devid)
2075		clear_dte_entry(alias);
2076
2077	/* Flush the DTE entry */
2078	device_flush_dte(dev_data);
2079
2080	/* Flush IOTLB */
2081	domain_flush_tlb_pde(domain);
2082
2083	/* Wait for the flushes to finish */
2084	domain_flush_complete(domain);
2085
2086	/* decrease reference counters - needs to happen after the flushes */
2087	domain->dev_iommu[iommu->index] -= 1;
2088	domain->dev_cnt                 -= 1;
2089}
2090
2091static void pdev_iommuv2_disable(struct pci_dev *pdev)
 
 
 
 
 
2092{
2093	pci_disable_ats(pdev);
2094	pci_disable_pri(pdev);
2095	pci_disable_pasid(pdev);
2096}
2097
2098/* FIXME: Change generic reset-function to do the same */
2099static int pri_reset_while_enabled(struct pci_dev *pdev)
2100{
2101	u16 control;
2102	int pos;
2103
2104	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2105	if (!pos)
2106		return -EINVAL;
2107
2108	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2109	control |= PCI_PRI_CTRL_RESET;
2110	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
 
 
2111
2112	return 0;
2113}
 
2114
2115static int pdev_iommuv2_enable(struct pci_dev *pdev)
2116{
2117	bool reset_enable;
2118	int reqs, ret;
2119
2120	/* FIXME: Hardcode number of outstanding requests for now */
2121	reqs = 32;
2122	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2123		reqs = 1;
2124	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2125
2126	/* Only allow access to user-accessible pages */
2127	ret = pci_enable_pasid(pdev, 0);
2128	if (ret)
2129		goto out_err;
2130
2131	/* First reset the PRI state of the device */
2132	ret = pci_reset_pri(pdev);
2133	if (ret)
2134		goto out_err;
2135
2136	/* Enable PRI */
2137	ret = pci_enable_pri(pdev, reqs);
2138	if (ret)
2139		goto out_err;
2140
2141	if (reset_enable) {
2142		ret = pri_reset_while_enabled(pdev);
2143		if (ret)
2144			goto out_err;
2145	}
2146
2147	ret = pci_enable_ats(pdev, PAGE_SHIFT);
2148	if (ret)
2149		goto out_err;
2150
2151	return 0;
2152
2153out_err:
2154	pci_disable_pri(pdev);
2155	pci_disable_pasid(pdev);
2156
2157	return ret;
2158}
2159
2160/*
2161 * If a device is not yet associated with a domain, this function makes the
2162 * device visible in the domain
2163 */
2164static int attach_device(struct device *dev,
2165			 struct protection_domain *domain)
2166{
2167	struct pci_dev *pdev;
2168	struct iommu_dev_data *dev_data;
2169	unsigned long flags;
2170	int ret;
2171
2172	spin_lock_irqsave(&domain->lock, flags);
2173
2174	dev_data = get_dev_data(dev);
2175
2176	spin_lock(&dev_data->lock);
2177
2178	ret = -EBUSY;
2179	if (dev_data->domain != NULL)
2180		goto out;
2181
2182	if (!dev_is_pci(dev))
2183		goto skip_ats_check;
2184
2185	pdev = to_pci_dev(dev);
2186	if (domain->flags & PD_IOMMUV2_MASK) {
2187		ret = -EINVAL;
2188		if (!dev_data->passthrough)
2189			goto out;
2190
2191		if (dev_data->iommu_v2) {
2192			if (pdev_iommuv2_enable(pdev) != 0)
2193				goto out;
2194
2195			dev_data->ats.enabled = true;
2196			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2197			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
2198		}
2199	} else if (amd_iommu_iotlb_sup &&
2200		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2201		dev_data->ats.enabled = true;
2202		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2203	}
2204
2205skip_ats_check:
2206	ret = 0;
2207
2208	do_attach(dev_data, domain);
2209
2210	/*
2211	 * We might boot into a crash-kernel here. The crashed kernel
2212	 * left the caches in the IOMMU dirty. So we have to flush
2213	 * here to evict all dirty stuff.
2214	 */
2215	domain_flush_tlb_pde(domain);
2216
2217	domain_flush_complete(domain);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2218
2219out:
2220	spin_unlock(&dev_data->lock);
2221
2222	spin_unlock_irqrestore(&domain->lock, flags);
2223
2224	return ret;
 
 
 
 
 
 
 
2225}
2226
2227/*
2228 * Removes a device from a protection domain (with devtable_lock held)
2229 */
2230static void detach_device(struct device *dev)
2231{
2232	struct protection_domain *domain;
2233	struct iommu_dev_data *dev_data;
2234	unsigned long flags;
2235
2236	dev_data = get_dev_data(dev);
2237	domain   = dev_data->domain;
2238
2239	spin_lock_irqsave(&domain->lock, flags);
 
 
 
2240
2241	spin_lock(&dev_data->lock);
 
 
 
 
2242
2243	/*
2244	 * First check if the device is still attached. It might already
2245	 * be detached from its domain because the generic
2246	 * iommu_detach_group code detached it and we try again here in
2247	 * our alias handling.
2248	 */
2249	if (WARN_ON(!dev_data->domain))
2250		goto out;
 
2251
2252	do_detach(dev_data);
2253
2254	if (!dev_is_pci(dev))
2255		goto out;
2256
2257	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2258		pdev_iommuv2_disable(to_pci_dev(dev));
2259	else if (dev_data->ats.enabled)
2260		pci_disable_ats(to_pci_dev(dev));
2261
2262	dev_data->ats.enabled = false;
 
 
 
 
 
 
2263
2264out:
2265	spin_unlock(&dev_data->lock);
2266
2267	spin_unlock_irqrestore(&domain->lock, flags);
2268}
2269
2270static int amd_iommu_add_device(struct device *dev)
 
2271{
2272	struct iommu_dev_data *dev_data;
2273	struct iommu_domain *domain;
 
 
2274	struct amd_iommu *iommu;
2275	int ret, devid;
2276
2277	if (!check_device(dev) || get_dev_data(dev))
2278		return 0;
2279
2280	devid = get_device_id(dev);
2281	if (devid < 0)
2282		return devid;
 
 
 
 
 
 
 
 
 
 
 
 
2283
2284	iommu = amd_iommu_rlookup_table[devid];
2285
2286	ret = iommu_init_device(dev);
2287	if (ret) {
2288		if (ret != -ENOTSUPP)
2289			dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2290
2291		iommu_ignore_device(dev);
2292		dev->dma_ops = NULL;
2293		goto out;
2294	}
2295	init_iommu_group(dev);
 
 
 
2296
2297	dev_data = get_dev_data(dev);
 
 
2298
2299	BUG_ON(!dev_data);
 
2300
2301	if (dev_data->iommu_v2)
2302		iommu_request_dm_for_dev(dev);
2303
2304	/* Domains are initialized for this device - have a look what we ended up with */
2305	domain = iommu_get_domain_for_dev(dev);
2306	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2307		dev_data->passthrough = true;
2308	else
2309		dev->dma_ops = &amd_iommu_dma_ops;
2310
2311out:
2312	iommu_completion_wait(iommu);
2313
 
2314	return 0;
2315}
2316
2317static void amd_iommu_remove_device(struct device *dev)
2318{
2319	struct amd_iommu *iommu;
2320	int devid;
2321
2322	if (!check_device(dev))
2323		return;
2324
2325	devid = get_device_id(dev);
2326	if (devid < 0)
2327		return;
2328
2329	iommu = amd_iommu_rlookup_table[devid];
2330
2331	iommu_uninit_device(dev);
2332	iommu_completion_wait(iommu);
2333}
2334
2335static struct iommu_group *amd_iommu_device_group(struct device *dev)
2336{
2337	if (dev_is_pci(dev))
2338		return pci_device_group(dev);
2339
2340	return acpihid_device_group(dev);
2341}
2342
2343/*****************************************************************************
2344 *
2345 * The next functions belong to the dma_ops mapping/unmapping code.
2346 *
2347 *****************************************************************************/
2348
2349/*
2350 * In the dma_ops path we only have the struct device. This function
2351 * finds the corresponding IOMMU, the protection domain and the
2352 * requestor id for a given device.
2353 * If the device is not yet associated with a domain this is also done
2354 * in this function.
2355 */
2356static struct protection_domain *get_domain(struct device *dev)
2357{
2358	struct protection_domain *domain;
2359	struct iommu_domain *io_domain;
 
2360
2361	if (!check_device(dev))
2362		return ERR_PTR(-EINVAL);
2363
2364	domain = get_dev_data(dev)->domain;
2365	if (domain == NULL && get_dev_data(dev)->defer_attach) {
2366		get_dev_data(dev)->defer_attach = false;
2367		io_domain = iommu_get_domain_for_dev(dev);
2368		domain = to_pdomain(io_domain);
2369		attach_device(dev, domain);
2370	}
2371	if (domain == NULL)
2372		return ERR_PTR(-EBUSY);
2373
2374	if (!dma_ops_domain(domain))
2375		return ERR_PTR(-EBUSY);
 
 
 
 
 
 
 
 
2376
2377	return domain;
2378}
2379
2380static void update_device_table(struct protection_domain *domain)
2381{
2382	struct iommu_dev_data *dev_data;
2383
2384	list_for_each_entry(dev_data, &domain->dev_list, list) {
2385		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
2386			      dev_data->iommu_v2);
2387
2388		if (dev_data->devid == dev_data->alias)
2389			continue;
2390
2391		/* There is an alias, update device table entry for it */
2392		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
2393			      dev_data->iommu_v2);
2394	}
2395}
2396
2397static void update_domain(struct protection_domain *domain)
2398{
 
 
 
2399	update_device_table(domain);
2400
2401	domain_flush_devices(domain);
2402	domain_flush_tlb_pde(domain);
 
 
2403}
2404
2405static int dir2prot(enum dma_data_direction direction)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2406{
 
 
 
 
 
 
 
 
 
 
 
 
2407	if (direction == DMA_TO_DEVICE)
2408		return IOMMU_PROT_IR;
2409	else if (direction == DMA_FROM_DEVICE)
2410		return IOMMU_PROT_IW;
2411	else if (direction == DMA_BIDIRECTIONAL)
2412		return IOMMU_PROT_IW | IOMMU_PROT_IR;
2413	else
2414		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2415}
2416
2417/*
2418 * This function contains common code for mapping of a physically
2419 * contiguous memory region into DMA address space. It is used by all
2420 * mapping functions provided with this IOMMU driver.
2421 * Must be called with the domain lock held.
2422 */
2423static dma_addr_t __map_single(struct device *dev,
2424			       struct dma_ops_domain *dma_dom,
2425			       phys_addr_t paddr,
2426			       size_t size,
2427			       enum dma_data_direction direction,
 
2428			       u64 dma_mask)
2429{
2430	dma_addr_t offset = paddr & ~PAGE_MASK;
2431	dma_addr_t address, start, ret;
2432	unsigned long flags;
2433	unsigned int pages;
2434	int prot = 0;
2435	int i;
2436
2437	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2438	paddr &= PAGE_MASK;
2439
2440	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2441	if (!address)
2442		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2443
2444	prot = dir2prot(direction);
 
 
 
 
 
2445
2446	start = address;
2447	for (i = 0; i < pages; ++i) {
2448		ret = iommu_map_page(&dma_dom->domain, start, paddr,
2449				     PAGE_SIZE, prot, GFP_ATOMIC);
2450		if (ret)
2451			goto out_unmap;
2452
2453		paddr += PAGE_SIZE;
2454		start += PAGE_SIZE;
2455	}
2456	address += offset;
2457
2458	domain_flush_np_cache(&dma_dom->domain, address, size);
 
 
 
 
 
 
2459
2460out:
2461	return address;
2462
2463out_unmap:
2464
2465	for (--i; i >= 0; --i) {
2466		start -= PAGE_SIZE;
2467		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2468	}
2469
2470	spin_lock_irqsave(&dma_dom->domain.lock, flags);
2471	domain_flush_tlb(&dma_dom->domain);
2472	domain_flush_complete(&dma_dom->domain);
2473	spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
2474
2475	dma_ops_free_iova(dma_dom, address, pages);
2476
2477	return DMA_MAPPING_ERROR;
2478}
2479
2480/*
2481 * Does the reverse of the __map_single function. Must be called with
2482 * the domain lock held too
2483 */
2484static void __unmap_single(struct dma_ops_domain *dma_dom,
2485			   dma_addr_t dma_addr,
2486			   size_t size,
2487			   int dir)
2488{
 
2489	dma_addr_t i, start;
2490	unsigned int pages;
2491
 
 
 
 
 
2492	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2493	dma_addr &= PAGE_MASK;
2494	start = dma_addr;
2495
2496	for (i = 0; i < pages; ++i) {
2497		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2498		start += PAGE_SIZE;
2499	}
2500
2501	if (amd_iommu_unmap_flush) {
2502		unsigned long flags;
2503
2504		spin_lock_irqsave(&dma_dom->domain.lock, flags);
2505		domain_flush_tlb(&dma_dom->domain);
2506		domain_flush_complete(&dma_dom->domain);
2507		spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
2508		dma_ops_free_iova(dma_dom, dma_addr, pages);
2509	} else {
2510		pages = __roundup_pow_of_two(pages);
2511		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
2512	}
2513}
2514
2515/*
2516 * The exported map_single function for dma_ops.
2517 */
2518static dma_addr_t map_page(struct device *dev, struct page *page,
2519			   unsigned long offset, size_t size,
2520			   enum dma_data_direction dir,
2521			   unsigned long attrs)
2522{
2523	phys_addr_t paddr = page_to_phys(page) + offset;
2524	struct protection_domain *domain;
2525	struct dma_ops_domain *dma_dom;
2526	u64 dma_mask;
 
 
 
2527
2528	domain = get_domain(dev);
2529	if (PTR_ERR(domain) == -EINVAL)
2530		return (dma_addr_t)paddr;
2531	else if (IS_ERR(domain))
2532		return DMA_MAPPING_ERROR;
2533
2534	dma_mask = *dev->dma_mask;
2535	dma_dom = to_dma_ops_domain(domain);
2536
2537	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
 
 
 
 
 
 
 
 
 
 
 
 
2538}
2539
2540/*
2541 * The exported unmap_single function for dma_ops.
2542 */
2543static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2544		       enum dma_data_direction dir, unsigned long attrs)
2545{
 
2546	struct protection_domain *domain;
2547	struct dma_ops_domain *dma_dom;
 
2548
2549	domain = get_domain(dev);
2550	if (IS_ERR(domain))
2551		return;
2552
2553	dma_dom = to_dma_ops_domain(domain);
 
 
 
 
2554
2555	__unmap_single(dma_dom, dma_addr, size, dir);
2556}
2557
2558static int sg_num_pages(struct device *dev,
2559			struct scatterlist *sglist,
2560			int nelems)
 
 
 
2561{
2562	unsigned long mask, boundary_size;
2563	struct scatterlist *s;
2564	int i, npages = 0;
2565
2566	mask          = dma_get_seg_boundary(dev);
2567	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
2568				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
2569
2570	for_each_sg(sglist, s, nelems, i) {
2571		int p, n;
2572
2573		s->dma_address = npages << PAGE_SHIFT;
2574		p = npages % boundary_size;
2575		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2576		if (p + n > boundary_size)
2577			npages += boundary_size - p;
2578		npages += n;
2579	}
2580
2581	return npages;
2582}
2583
2584/*
2585 * The exported map_sg function for dma_ops (handles scatter-gather
2586 * lists).
2587 */
2588static int map_sg(struct device *dev, struct scatterlist *sglist,
2589		  int nelems, enum dma_data_direction direction,
2590		  unsigned long attrs)
2591{
2592	int mapped_pages = 0, npages = 0, prot = 0, i;
2593	struct protection_domain *domain;
2594	struct dma_ops_domain *dma_dom;
2595	struct scatterlist *s;
2596	unsigned long address;
 
2597	u64 dma_mask;
2598	int ret;
 
2599
2600	domain = get_domain(dev);
2601	if (IS_ERR(domain))
 
 
2602		return 0;
2603
2604	dma_dom  = to_dma_ops_domain(domain);
2605	dma_mask = *dev->dma_mask;
2606
2607	npages = sg_num_pages(dev, sglist, nelems);
2608
2609	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2610	if (!address)
2611		goto out_err;
2612
2613	prot = dir2prot(direction);
2614
2615	/* Map all sg entries */
2616	for_each_sg(sglist, s, nelems, i) {
2617		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2618
2619		for (j = 0; j < pages; ++j) {
2620			unsigned long bus_addr, phys_addr;
2621
2622			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2623			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
2624			ret = iommu_map_page(domain, bus_addr, phys_addr,
2625					     PAGE_SIZE, prot,
2626					     GFP_ATOMIC | __GFP_NOWARN);
2627			if (ret)
2628				goto out_unmap;
2629
2630			mapped_pages += 1;
2631		}
2632	}
2633
2634	/* Everything is mapped - write the right values into s->dma_address */
2635	for_each_sg(sglist, s, nelems, i) {
2636		/*
2637		 * Add in the remaining piece of the scatter-gather offset that
2638		 * was masked out when we were determining the physical address
2639		 * via (sg_phys(s) & PAGE_MASK) earlier.
2640		 */
2641		s->dma_address += address + (s->offset & ~PAGE_MASK);
2642		s->dma_length   = s->length;
2643	}
2644
2645	if (s)
2646		domain_flush_np_cache(domain, s->dma_address, s->dma_length);
2647
2648	return nelems;
2649
2650out_unmap:
2651	dev_err(dev, "IOMMU mapping error in map_sg (io-pages: %d reason: %d)\n",
2652		npages, ret);
2653
2654	for_each_sg(sglist, s, nelems, i) {
2655		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2656
2657		for (j = 0; j < pages; ++j) {
2658			unsigned long bus_addr;
2659
2660			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2661			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
2662
2663			if (--mapped_pages == 0)
2664				goto out_free_iova;
2665		}
2666	}
2667
2668out_free_iova:
2669	free_iova_fast(&dma_dom->iovad, address >> PAGE_SHIFT, npages);
2670
2671out_err:
2672	return 0;
2673}
2674
2675/*
2676 * The exported map_sg function for dma_ops (handles scatter-gather
2677 * lists).
2678 */
2679static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2680		     int nelems, enum dma_data_direction dir,
2681		     unsigned long attrs)
2682{
 
2683	struct protection_domain *domain;
2684	struct dma_ops_domain *dma_dom;
2685	unsigned long startaddr;
2686	int npages;
 
2687
2688	domain = get_domain(dev);
2689	if (IS_ERR(domain))
2690		return;
2691
2692	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2693	dma_dom   = to_dma_ops_domain(domain);
2694	npages    = sg_num_pages(dev, sglist, nelems);
2695
2696	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
 
 
 
 
 
 
 
 
2697}
2698
2699/*
2700 * The exported alloc_coherent function for dma_ops.
2701 */
2702static void *alloc_coherent(struct device *dev, size_t size,
2703			    dma_addr_t *dma_addr, gfp_t flag,
2704			    unsigned long attrs)
2705{
 
 
 
 
2706	u64 dma_mask = dev->coherent_dma_mask;
2707	struct protection_domain *domain;
2708	struct dma_ops_domain *dma_dom;
2709	struct page *page;
2710
2711	domain = get_domain(dev);
2712	if (PTR_ERR(domain) == -EINVAL) {
2713		page = alloc_pages(flag, get_order(size));
2714		*dma_addr = page_to_phys(page);
2715		return page_address(page);
2716	} else if (IS_ERR(domain))
2717		return NULL;
2718
2719	dma_dom   = to_dma_ops_domain(domain);
2720	size	  = PAGE_ALIGN(size);
2721	dma_mask  = dev->coherent_dma_mask;
2722	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2723	flag     |= __GFP_ZERO;
2724
2725	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
2726	if (!page) {
2727		if (!gfpflags_allow_blocking(flag))
2728			return NULL;
2729
2730		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2731					get_order(size), flag & __GFP_NOWARN);
2732		if (!page)
2733			return NULL;
2734	}
2735
2736	if (!dma_mask)
2737		dma_mask = *dev->dma_mask;
2738
2739	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2740				 size, DMA_BIDIRECTIONAL, dma_mask);
 
 
2741
2742	if (*dma_addr == DMA_MAPPING_ERROR)
 
2743		goto out_free;
 
 
 
2744
2745	return page_address(page);
 
 
2746
2747out_free:
2748
2749	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2750		__free_pages(page, get_order(size));
2751
2752	return NULL;
2753}
2754
2755/*
2756 * The exported free_coherent function for dma_ops.
2757 */
2758static void free_coherent(struct device *dev, size_t size,
2759			  void *virt_addr, dma_addr_t dma_addr,
2760			  unsigned long attrs)
2761{
 
2762	struct protection_domain *domain;
2763	struct dma_ops_domain *dma_dom;
2764	struct page *page;
2765
2766	page = virt_to_page(virt_addr);
2767	size = PAGE_ALIGN(size);
2768
2769	domain = get_domain(dev);
2770	if (IS_ERR(domain))
2771		goto free_mem;
2772
2773	dma_dom = to_dma_ops_domain(domain);
 
 
 
 
2774
2775	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2776
2777free_mem:
2778	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2779		__free_pages(page, get_order(size));
2780}
2781
2782/*
2783 * This function is called by the DMA layer to find out if we can handle a
2784 * particular device. It is part of the dma_ops.
2785 */
2786static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2787{
2788	if (!dma_direct_supported(dev, mask))
2789		return 0;
2790	return check_device(dev);
2791}
2792
2793static const struct dma_map_ops amd_iommu_dma_ops = {
2794	.alloc		= alloc_coherent,
2795	.free		= free_coherent,
2796	.map_page	= map_page,
2797	.unmap_page	= unmap_page,
2798	.map_sg		= map_sg,
2799	.unmap_sg	= unmap_sg,
2800	.dma_supported	= amd_iommu_dma_supported,
2801	.mmap		= dma_common_mmap,
2802	.get_sgtable	= dma_common_get_sgtable,
2803};
2804
2805static int init_reserved_iova_ranges(void)
2806{
2807	struct pci_dev *pdev = NULL;
2808	struct iova *val;
 
2809
2810	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2811
2812	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2813			  &reserved_rbtree_key);
 
2814
2815	/* MSI memory range */
2816	val = reserve_iova(&reserved_iova_ranges,
2817			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2818	if (!val) {
2819		pr_err("Reserving MSI range failed\n");
2820		return -ENOMEM;
2821	}
2822
2823	/* HT memory range */
2824	val = reserve_iova(&reserved_iova_ranges,
2825			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
2826	if (!val) {
2827		pr_err("Reserving HT range failed\n");
2828		return -ENOMEM;
2829	}
2830
2831	/*
2832	 * Memory used for PCI resources
2833	 * FIXME: Check whether we can reserve the PCI-hole completly
2834	 */
2835	for_each_pci_dev(pdev) {
2836		int i;
2837
2838		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
2839			struct resource *r = &pdev->resource[i];
2840
2841			if (!(r->flags & IORESOURCE_MEM))
2842				continue;
2843
2844			val = reserve_iova(&reserved_iova_ranges,
2845					   IOVA_PFN(r->start),
2846					   IOVA_PFN(r->end));
2847			if (!val) {
2848				pci_err(pdev, "Reserve pci-resource range %pR failed\n", r);
2849				return -ENOMEM;
2850			}
2851		}
2852	}
 
2853
2854	return 0;
2855}
 
 
 
 
 
 
 
2856
2857int __init amd_iommu_init_api(void)
2858{
2859	int ret, err = 0;
 
2860
2861	ret = iova_cache_get();
2862	if (ret)
2863		return ret;
 
 
 
 
 
2864
2865	ret = init_reserved_iova_ranges();
2866	if (ret)
2867		return ret;
2868
2869	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2870	if (err)
2871		return err;
2872#ifdef CONFIG_ARM_AMBA
2873	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2874	if (err)
2875		return err;
2876#endif
2877	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2878	if (err)
2879		return err;
2880
2881	return 0;
 
 
2882}
2883
2884int __init amd_iommu_init_dma_ops(void)
2885{
2886	swiotlb        = (iommu_default_passthrough() || sme_me_mask) ? 1 : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2887	iommu_detected = 1;
 
 
 
 
 
 
 
 
2888
2889	if (amd_iommu_unmap_flush)
2890		pr_info("IO/TLB flush on unmap enabled\n");
2891	else
2892		pr_info("Lazy IO/TLB flushing enabled\n");
2893
2894	return 0;
2895
 
 
 
 
 
 
 
 
2896}
2897
2898/*****************************************************************************
2899 *
2900 * The following functions belong to the exported interface of AMD IOMMU
2901 *
2902 * This interface allows access to lower level functions of the IOMMU
2903 * like protection domain handling and assignement of devices to domains
2904 * which is not possible with the dma_ops interface.
2905 *
2906 *****************************************************************************/
2907
2908static void cleanup_domain(struct protection_domain *domain)
2909{
2910	struct iommu_dev_data *entry;
2911	unsigned long flags;
2912
2913	spin_lock_irqsave(&domain->lock, flags);
2914
2915	while (!list_empty(&domain->dev_list)) {
2916		entry = list_first_entry(&domain->dev_list,
2917					 struct iommu_dev_data, list);
2918		BUG_ON(!entry->domain);
2919		do_detach(entry);
2920	}
2921
2922	spin_unlock_irqrestore(&domain->lock, flags);
2923}
2924
2925static void protection_domain_free(struct protection_domain *domain)
2926{
2927	if (!domain)
2928		return;
2929
 
 
2930	if (domain->id)
2931		domain_id_free(domain->id);
2932
2933	kfree(domain);
2934}
2935
2936static int protection_domain_init(struct protection_domain *domain)
2937{
2938	spin_lock_init(&domain->lock);
2939	mutex_init(&domain->api_lock);
2940	domain->id = domain_id_alloc();
2941	if (!domain->id)
2942		return -ENOMEM;
2943	INIT_LIST_HEAD(&domain->dev_list);
2944
2945	return 0;
2946}
2947
2948static struct protection_domain *protection_domain_alloc(void)
2949{
2950	struct protection_domain *domain;
2951
2952	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2953	if (!domain)
2954		return NULL;
2955
2956	if (protection_domain_init(domain))
 
 
 
2957		goto out_err;
 
 
 
2958
2959	return domain;
2960
2961out_err:
2962	kfree(domain);
2963
2964	return NULL;
2965}
2966
2967static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2968{
2969	struct protection_domain *pdomain;
2970	struct dma_ops_domain *dma_domain;
2971
2972	switch (type) {
2973	case IOMMU_DOMAIN_UNMANAGED:
2974		pdomain = protection_domain_alloc();
2975		if (!pdomain)
2976			return NULL;
2977
2978		pdomain->mode    = PAGE_MODE_3_LEVEL;
2979		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2980		if (!pdomain->pt_root) {
2981			protection_domain_free(pdomain);
2982			return NULL;
2983		}
2984
2985		pdomain->domain.geometry.aperture_start = 0;
2986		pdomain->domain.geometry.aperture_end   = ~0ULL;
2987		pdomain->domain.geometry.force_aperture = true;
2988
2989		break;
2990	case IOMMU_DOMAIN_DMA:
2991		dma_domain = dma_ops_domain_alloc();
2992		if (!dma_domain) {
2993			pr_err("Failed to allocate\n");
2994			return NULL;
2995		}
2996		pdomain = &dma_domain->domain;
2997		break;
2998	case IOMMU_DOMAIN_IDENTITY:
2999		pdomain = protection_domain_alloc();
3000		if (!pdomain)
3001			return NULL;
3002
3003		pdomain->mode = PAGE_MODE_NONE;
3004		break;
3005	default:
3006		return NULL;
3007	}
3008
3009	return &pdomain->domain;
3010}
3011
3012static void amd_iommu_domain_free(struct iommu_domain *dom)
3013{
3014	struct protection_domain *domain;
3015	struct dma_ops_domain *dma_dom;
3016
3017	domain = to_pdomain(dom);
 
3018
3019	if (domain->dev_cnt > 0)
3020		cleanup_domain(domain);
3021
3022	BUG_ON(domain->dev_cnt != 0);
3023
3024	if (!dom)
3025		return;
3026
3027	switch (dom->type) {
3028	case IOMMU_DOMAIN_DMA:
3029		/* Now release the domain */
3030		dma_dom = to_dma_ops_domain(domain);
3031		dma_ops_domain_free(dma_dom);
3032		break;
3033	default:
3034		if (domain->mode != PAGE_MODE_NONE)
3035			free_pagetable(domain);
3036
3037		if (domain->flags & PD_IOMMUV2_MASK)
3038			free_gcr3_table(domain);
3039
3040		protection_domain_free(domain);
3041		break;
3042	}
3043}
3044
3045static void amd_iommu_detach_device(struct iommu_domain *dom,
3046				    struct device *dev)
3047{
3048	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3049	struct amd_iommu *iommu;
3050	int devid;
3051
3052	if (!check_device(dev))
3053		return;
3054
3055	devid = get_device_id(dev);
3056	if (devid < 0)
3057		return;
3058
3059	if (dev_data->domain != NULL)
3060		detach_device(dev);
3061
3062	iommu = amd_iommu_rlookup_table[devid];
3063	if (!iommu)
3064		return;
3065
3066#ifdef CONFIG_IRQ_REMAP
3067	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
3068	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
3069		dev_data->use_vapic = 0;
3070#endif
3071
3072	iommu_completion_wait(iommu);
3073}
3074
3075static int amd_iommu_attach_device(struct iommu_domain *dom,
3076				   struct device *dev)
3077{
3078	struct protection_domain *domain = to_pdomain(dom);
3079	struct iommu_dev_data *dev_data;
3080	struct amd_iommu *iommu;
3081	int ret;
3082
3083	if (!check_device(dev))
3084		return -EINVAL;
3085
3086	dev_data = dev->archdata.iommu;
3087
3088	iommu = amd_iommu_rlookup_table[dev_data->devid];
3089	if (!iommu)
3090		return -EINVAL;
3091
3092	if (dev_data->domain)
3093		detach_device(dev);
3094
3095	ret = attach_device(dev, domain);
3096
3097#ifdef CONFIG_IRQ_REMAP
3098	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3099		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
3100			dev_data->use_vapic = 1;
3101		else
3102			dev_data->use_vapic = 0;
3103	}
3104#endif
3105
3106	iommu_completion_wait(iommu);
3107
3108	return ret;
3109}
3110
3111static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3112			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3113{
3114	struct protection_domain *domain = to_pdomain(dom);
 
3115	int prot = 0;
3116	int ret;
3117
3118	if (domain->mode == PAGE_MODE_NONE)
3119		return -EINVAL;
3120
3121	if (iommu_prot & IOMMU_READ)
3122		prot |= IOMMU_PROT_IR;
3123	if (iommu_prot & IOMMU_WRITE)
3124		prot |= IOMMU_PROT_IW;
3125
3126	mutex_lock(&domain->api_lock);
3127	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3128	mutex_unlock(&domain->api_lock);
3129
3130	domain_flush_np_cache(domain, iova, page_size);
3131
3132	return ret;
3133}
3134
3135static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3136			      size_t page_size,
3137			      struct iommu_iotlb_gather *gather)
3138{
3139	struct protection_domain *domain = to_pdomain(dom);
3140	size_t unmap_size;
3141
3142	if (domain->mode == PAGE_MODE_NONE)
3143		return 0;
3144
3145	mutex_lock(&domain->api_lock);
3146	unmap_size = iommu_unmap_page(domain, iova, page_size);
3147	mutex_unlock(&domain->api_lock);
3148
3149	return unmap_size;
 
 
3150}
3151
3152static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3153					  dma_addr_t iova)
3154{
3155	struct protection_domain *domain = to_pdomain(dom);
3156	unsigned long offset_mask, pte_pgsize;
 
3157	u64 *pte, __pte;
3158
3159	if (domain->mode == PAGE_MODE_NONE)
3160		return iova;
3161
3162	pte = fetch_pte(domain, iova, &pte_pgsize);
3163
3164	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3165		return 0;
3166
3167	offset_mask = pte_pgsize - 1;
3168	__pte	    = __sme_clr(*pte & PM_ADDR_MASK);
 
 
 
 
 
3169
3170	return (__pte & ~offset_mask) | (iova & offset_mask);
3171}
3172
3173static bool amd_iommu_capable(enum iommu_cap cap)
 
3174{
3175	switch (cap) {
3176	case IOMMU_CAP_CACHE_COHERENCY:
3177		return true;
3178	case IOMMU_CAP_INTR_REMAP:
3179		return (irq_remapping_enabled == 1);
3180	case IOMMU_CAP_NOEXEC:
3181		return false;
3182	default:
3183		break;
3184	}
3185
3186	return false;
3187}
3188
3189static void amd_iommu_get_resv_regions(struct device *dev,
3190				       struct list_head *head)
3191{
3192	struct iommu_resv_region *region;
3193	struct unity_map_entry *entry;
3194	int devid;
3195
3196	devid = get_device_id(dev);
3197	if (devid < 0)
3198		return;
3199
3200	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3201		int type, prot = 0;
3202		size_t length;
3203
3204		if (devid < entry->devid_start || devid > entry->devid_end)
3205			continue;
3206
3207		type   = IOMMU_RESV_DIRECT;
3208		length = entry->address_end - entry->address_start;
3209		if (entry->prot & IOMMU_PROT_IR)
3210			prot |= IOMMU_READ;
3211		if (entry->prot & IOMMU_PROT_IW)
3212			prot |= IOMMU_WRITE;
3213		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
3214			/* Exclusion range */
3215			type = IOMMU_RESV_RESERVED;
3216
3217		region = iommu_alloc_resv_region(entry->address_start,
3218						 length, prot, type);
3219		if (!region) {
3220			dev_err(dev, "Out of memory allocating dm-regions\n");
3221			return;
3222		}
3223		list_add_tail(&region->list, head);
3224	}
3225
3226	region = iommu_alloc_resv_region(MSI_RANGE_START,
3227					 MSI_RANGE_END - MSI_RANGE_START + 1,
3228					 0, IOMMU_RESV_MSI);
3229	if (!region)
3230		return;
3231	list_add_tail(&region->list, head);
3232
3233	region = iommu_alloc_resv_region(HT_RANGE_START,
3234					 HT_RANGE_END - HT_RANGE_START + 1,
3235					 0, IOMMU_RESV_RESERVED);
3236	if (!region)
3237		return;
3238	list_add_tail(&region->list, head);
3239}
3240
3241static void amd_iommu_put_resv_regions(struct device *dev,
3242				     struct list_head *head)
3243{
3244	struct iommu_resv_region *entry, *next;
3245
3246	list_for_each_entry_safe(entry, next, head, list)
3247		kfree(entry);
3248}
3249
3250static void amd_iommu_apply_resv_region(struct device *dev,
3251				      struct iommu_domain *domain,
3252				      struct iommu_resv_region *region)
3253{
3254	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3255	unsigned long start, end;
3256
3257	start = IOVA_PFN(region->start);
3258	end   = IOVA_PFN(region->start + region->length - 1);
3259
3260	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3261}
3262
3263static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
3264					 struct device *dev)
3265{
3266	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3267	return dev_data->defer_attach;
3268}
3269
3270static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
3271{
3272	struct protection_domain *dom = to_pdomain(domain);
3273	unsigned long flags;
3274
3275	spin_lock_irqsave(&dom->lock, flags);
3276	domain_flush_tlb_pde(dom);
3277	domain_flush_complete(dom);
3278	spin_unlock_irqrestore(&dom->lock, flags);
3279}
3280
3281static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
3282				 struct iommu_iotlb_gather *gather)
3283{
3284	amd_iommu_flush_iotlb_all(domain);
3285}
3286
3287const struct iommu_ops amd_iommu_ops = {
3288	.capable = amd_iommu_capable,
3289	.domain_alloc = amd_iommu_domain_alloc,
3290	.domain_free  = amd_iommu_domain_free,
3291	.attach_dev = amd_iommu_attach_device,
3292	.detach_dev = amd_iommu_detach_device,
3293	.map = amd_iommu_map,
3294	.unmap = amd_iommu_unmap,
3295	.iova_to_phys = amd_iommu_iova_to_phys,
3296	.add_device = amd_iommu_add_device,
3297	.remove_device = amd_iommu_remove_device,
3298	.device_group = amd_iommu_device_group,
3299	.get_resv_regions = amd_iommu_get_resv_regions,
3300	.put_resv_regions = amd_iommu_put_resv_regions,
3301	.apply_resv_region = amd_iommu_apply_resv_region,
3302	.is_attach_deferred = amd_iommu_is_attach_deferred,
3303	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3304	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
3305	.iotlb_sync = amd_iommu_iotlb_sync,
3306};
3307
3308/*****************************************************************************
3309 *
3310 * The next functions do a basic initialization of IOMMU for pass through
3311 * mode
3312 *
3313 * In passthrough mode the IOMMU is initialized and enabled but not used for
3314 * DMA-API translation.
3315 *
3316 *****************************************************************************/
3317
3318/* IOMMUv2 specific functions */
3319int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3320{
3321	return atomic_notifier_chain_register(&ppr_notifier, nb);
3322}
3323EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3324
3325int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3326{
3327	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3328}
3329EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3330
3331void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3332{
3333	struct protection_domain *domain = to_pdomain(dom);
3334	unsigned long flags;
3335
3336	spin_lock_irqsave(&domain->lock, flags);
3337
3338	/* Update data structure */
3339	domain->mode    = PAGE_MODE_NONE;
3340
3341	/* Make changes visible to IOMMUs */
3342	update_domain(domain);
3343
3344	/* Page-table is not visible to IOMMU anymore, so free it */
3345	free_pagetable(domain);
3346
3347	spin_unlock_irqrestore(&domain->lock, flags);
3348}
3349EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3350
3351int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3352{
3353	struct protection_domain *domain = to_pdomain(dom);
3354	unsigned long flags;
3355	int levels, ret;
3356
3357	if (pasids <= 0 || pasids > (PASID_MASK + 1))
3358		return -EINVAL;
3359
3360	/* Number of GCR3 table levels required */
3361	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3362		levels += 1;
3363
3364	if (levels > amd_iommu_max_glx_val)
3365		return -EINVAL;
3366
3367	spin_lock_irqsave(&domain->lock, flags);
3368
3369	/*
3370	 * Save us all sanity checks whether devices already in the
3371	 * domain support IOMMUv2. Just force that the domain has no
3372	 * devices attached when it is switched into IOMMUv2 mode.
3373	 */
3374	ret = -EBUSY;
3375	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3376		goto out;
3377
3378	ret = -ENOMEM;
3379	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3380	if (domain->gcr3_tbl == NULL)
3381		goto out;
3382
3383	domain->glx      = levels;
3384	domain->flags   |= PD_IOMMUV2_MASK;
3385
3386	update_domain(domain);
3387
3388	ret = 0;
3389
3390out:
3391	spin_unlock_irqrestore(&domain->lock, flags);
3392
3393	return ret;
3394}
3395EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3396
3397static int __flush_pasid(struct protection_domain *domain, int pasid,
3398			 u64 address, bool size)
3399{
3400	struct iommu_dev_data *dev_data;
3401	struct iommu_cmd cmd;
3402	int i, ret;
3403
3404	if (!(domain->flags & PD_IOMMUV2_MASK))
3405		return -EINVAL;
3406
3407	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3408
3409	/*
3410	 * IOMMU TLB needs to be flushed before Device TLB to
3411	 * prevent device TLB refill from IOMMU TLB
3412	 */
3413	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3414		if (domain->dev_iommu[i] == 0)
3415			continue;
3416
3417		ret = iommu_queue_command(amd_iommus[i], &cmd);
3418		if (ret != 0)
3419			goto out;
3420	}
3421
3422	/* Wait until IOMMU TLB flushes are complete */
3423	domain_flush_complete(domain);
3424
3425	/* Now flush device TLBs */
3426	list_for_each_entry(dev_data, &domain->dev_list, list) {
3427		struct amd_iommu *iommu;
3428		int qdep;
3429
3430		/*
3431		   There might be non-IOMMUv2 capable devices in an IOMMUv2
3432		 * domain.
3433		 */
3434		if (!dev_data->ats.enabled)
3435			continue;
3436
3437		qdep  = dev_data->ats.qdep;
3438		iommu = amd_iommu_rlookup_table[dev_data->devid];
3439
3440		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3441				      qdep, address, size);
3442
3443		ret = iommu_queue_command(iommu, &cmd);
3444		if (ret != 0)
3445			goto out;
3446	}
3447
3448	/* Wait until all device TLBs are flushed */
3449	domain_flush_complete(domain);
3450
3451	ret = 0;
3452
3453out:
3454
3455	return ret;
3456}
3457
3458static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3459				  u64 address)
3460{
3461	return __flush_pasid(domain, pasid, address, false);
3462}
3463
3464int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3465			 u64 address)
3466{
3467	struct protection_domain *domain = to_pdomain(dom);
3468	unsigned long flags;
3469	int ret;
3470
3471	spin_lock_irqsave(&domain->lock, flags);
3472	ret = __amd_iommu_flush_page(domain, pasid, address);
3473	spin_unlock_irqrestore(&domain->lock, flags);
3474
3475	return ret;
3476}
3477EXPORT_SYMBOL(amd_iommu_flush_page);
3478
3479static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3480{
3481	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3482			     true);
3483}
3484
3485int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3486{
3487	struct protection_domain *domain = to_pdomain(dom);
3488	unsigned long flags;
3489	int ret;
3490
3491	spin_lock_irqsave(&domain->lock, flags);
3492	ret = __amd_iommu_flush_tlb(domain, pasid);
3493	spin_unlock_irqrestore(&domain->lock, flags);
3494
3495	return ret;
3496}
3497EXPORT_SYMBOL(amd_iommu_flush_tlb);
3498
3499static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3500{
3501	int index;
3502	u64 *pte;
3503
3504	while (true) {
3505
3506		index = (pasid >> (9 * level)) & 0x1ff;
3507		pte   = &root[index];
3508
3509		if (level == 0)
3510			break;
3511
3512		if (!(*pte & GCR3_VALID)) {
3513			if (!alloc)
3514				return NULL;
3515
3516			root = (void *)get_zeroed_page(GFP_ATOMIC);
3517			if (root == NULL)
3518				return NULL;
3519
3520			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3521		}
3522
3523		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3524
3525		level -= 1;
3526	}
3527
3528	return pte;
3529}
3530
3531static int __set_gcr3(struct protection_domain *domain, int pasid,
3532		      unsigned long cr3)
3533{
3534	u64 *pte;
3535
3536	if (domain->mode != PAGE_MODE_NONE)
3537		return -EINVAL;
3538
3539	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3540	if (pte == NULL)
3541		return -ENOMEM;
3542
3543	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3544
3545	return __amd_iommu_flush_tlb(domain, pasid);
3546}
3547
3548static int __clear_gcr3(struct protection_domain *domain, int pasid)
3549{
3550	u64 *pte;
3551
3552	if (domain->mode != PAGE_MODE_NONE)
3553		return -EINVAL;
3554
3555	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3556	if (pte == NULL)
3557		return 0;
3558
3559	*pte = 0;
3560
3561	return __amd_iommu_flush_tlb(domain, pasid);
3562}
3563
3564int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3565			      unsigned long cr3)
3566{
3567	struct protection_domain *domain = to_pdomain(dom);
3568	unsigned long flags;
3569	int ret;
3570
3571	spin_lock_irqsave(&domain->lock, flags);
3572	ret = __set_gcr3(domain, pasid, cr3);
3573	spin_unlock_irqrestore(&domain->lock, flags);
3574
3575	return ret;
3576}
3577EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3578
3579int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3580{
3581	struct protection_domain *domain = to_pdomain(dom);
3582	unsigned long flags;
3583	int ret;
3584
3585	spin_lock_irqsave(&domain->lock, flags);
3586	ret = __clear_gcr3(domain, pasid);
3587	spin_unlock_irqrestore(&domain->lock, flags);
3588
3589	return ret;
3590}
3591EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3592
3593int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3594			   int status, int tag)
3595{
3596	struct iommu_dev_data *dev_data;
3597	struct amd_iommu *iommu;
3598	struct iommu_cmd cmd;
3599
3600	dev_data = get_dev_data(&pdev->dev);
3601	iommu    = amd_iommu_rlookup_table[dev_data->devid];
3602
3603	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3604			   tag, dev_data->pri_tlp);
3605
3606	return iommu_queue_command(iommu, &cmd);
3607}
3608EXPORT_SYMBOL(amd_iommu_complete_ppr);
3609
3610struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3611{
3612	struct protection_domain *pdomain;
3613
3614	pdomain = get_domain(&pdev->dev);
3615	if (IS_ERR(pdomain))
3616		return NULL;
3617
3618	/* Only return IOMMUv2 domains */
3619	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3620		return NULL;
3621
3622	return &pdomain->domain;
3623}
3624EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3625
3626void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3627{
3628	struct iommu_dev_data *dev_data;
3629
3630	if (!amd_iommu_v2_supported())
3631		return;
3632
3633	dev_data = get_dev_data(&pdev->dev);
3634	dev_data->errata |= (1 << erratum);
3635}
3636EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3637
3638int amd_iommu_device_info(struct pci_dev *pdev,
3639                          struct amd_iommu_device_info *info)
3640{
3641	int max_pasids;
3642	int pos;
3643
3644	if (pdev == NULL || info == NULL)
3645		return -EINVAL;
3646
3647	if (!amd_iommu_v2_supported())
3648		return -EINVAL;
3649
3650	memset(info, 0, sizeof(*info));
3651
3652	if (!pci_ats_disabled()) {
3653		pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3654		if (pos)
3655			info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3656	}
3657
3658	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3659	if (pos)
3660		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3661
3662	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3663	if (pos) {
3664		int features;
3665
3666		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3667		max_pasids = min(max_pasids, (1 << 20));
3668
3669		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3670		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3671
3672		features = pci_pasid_features(pdev);
3673		if (features & PCI_PASID_CAP_EXEC)
3674			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3675		if (features & PCI_PASID_CAP_PRIV)
3676			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3677	}
3678
3679	return 0;
3680}
3681EXPORT_SYMBOL(amd_iommu_device_info);
3682
3683#ifdef CONFIG_IRQ_REMAP
3684
3685/*****************************************************************************
3686 *
3687 * Interrupt Remapping Implementation
3688 *
3689 *****************************************************************************/
3690
3691static struct irq_chip amd_ir_chip;
3692static DEFINE_SPINLOCK(iommu_table_lock);
3693
3694static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3695{
3696	u64 dte;
3697
3698	dte	= amd_iommu_dev_table[devid].data[2];
3699	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3700	dte	|= iommu_virt_to_phys(table->table);
3701	dte	|= DTE_IRQ_REMAP_INTCTL;
3702	dte	|= DTE_IRQ_TABLE_LEN;
3703	dte	|= DTE_IRQ_REMAP_ENABLE;
3704
3705	amd_iommu_dev_table[devid].data[2] = dte;
3706}
3707
3708static struct irq_remap_table *get_irq_table(u16 devid)
3709{
3710	struct irq_remap_table *table;
3711
3712	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3713		      "%s: no iommu for devid %x\n", __func__, devid))
3714		return NULL;
3715
3716	table = irq_lookup_table[devid];
3717	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3718		return NULL;
3719
3720	return table;
3721}
3722
3723static struct irq_remap_table *__alloc_irq_table(void)
3724{
3725	struct irq_remap_table *table;
3726
3727	table = kzalloc(sizeof(*table), GFP_KERNEL);
3728	if (!table)
3729		return NULL;
3730
3731	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3732	if (!table->table) {
3733		kfree(table);
3734		return NULL;
3735	}
3736	raw_spin_lock_init(&table->lock);
3737
3738	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3739		memset(table->table, 0,
3740		       MAX_IRQS_PER_TABLE * sizeof(u32));
3741	else
3742		memset(table->table, 0,
3743		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3744	return table;
3745}
3746
3747static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3748				  struct irq_remap_table *table)
3749{
3750	irq_lookup_table[devid] = table;
3751	set_dte_irq_entry(devid, table);
3752	iommu_flush_dte(iommu, devid);
3753}
3754
3755static struct irq_remap_table *alloc_irq_table(u16 devid)
3756{
3757	struct irq_remap_table *table = NULL;
3758	struct irq_remap_table *new_table = NULL;
3759	struct amd_iommu *iommu;
3760	unsigned long flags;
3761	u16 alias;
3762
3763	spin_lock_irqsave(&iommu_table_lock, flags);
3764
3765	iommu = amd_iommu_rlookup_table[devid];
3766	if (!iommu)
3767		goto out_unlock;
3768
3769	table = irq_lookup_table[devid];
3770	if (table)
3771		goto out_unlock;
3772
3773	alias = amd_iommu_alias_table[devid];
3774	table = irq_lookup_table[alias];
3775	if (table) {
3776		set_remap_table_entry(iommu, devid, table);
3777		goto out_wait;
3778	}
3779	spin_unlock_irqrestore(&iommu_table_lock, flags);
3780
3781	/* Nothing there yet, allocate new irq remapping table */
3782	new_table = __alloc_irq_table();
3783	if (!new_table)
3784		return NULL;
3785
3786	spin_lock_irqsave(&iommu_table_lock, flags);
3787
3788	table = irq_lookup_table[devid];
3789	if (table)
3790		goto out_unlock;
3791
3792	table = irq_lookup_table[alias];
3793	if (table) {
3794		set_remap_table_entry(iommu, devid, table);
3795		goto out_wait;
3796	}
3797
3798	table = new_table;
3799	new_table = NULL;
3800
3801	set_remap_table_entry(iommu, devid, table);
3802	if (devid != alias)
3803		set_remap_table_entry(iommu, alias, table);
3804
3805out_wait:
3806	iommu_completion_wait(iommu);
3807
3808out_unlock:
3809	spin_unlock_irqrestore(&iommu_table_lock, flags);
3810
3811	if (new_table) {
3812		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3813		kfree(new_table);
3814	}
3815	return table;
3816}
3817
3818static int alloc_irq_index(u16 devid, int count, bool align)
3819{
3820	struct irq_remap_table *table;
3821	int index, c, alignment = 1;
3822	unsigned long flags;
3823	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3824
3825	if (!iommu)
3826		return -ENODEV;
3827
3828	table = alloc_irq_table(devid);
3829	if (!table)
3830		return -ENODEV;
3831
3832	if (align)
3833		alignment = roundup_pow_of_two(count);
3834
3835	raw_spin_lock_irqsave(&table->lock, flags);
3836
3837	/* Scan table for free entries */
3838	for (index = ALIGN(table->min_index, alignment), c = 0;
3839	     index < MAX_IRQS_PER_TABLE;) {
3840		if (!iommu->irte_ops->is_allocated(table, index)) {
3841			c += 1;
3842		} else {
3843			c     = 0;
3844			index = ALIGN(index + 1, alignment);
3845			continue;
3846		}
3847
3848		if (c == count)	{
3849			for (; c != 0; --c)
3850				iommu->irte_ops->set_allocated(table, index - c + 1);
3851
3852			index -= count - 1;
3853			goto out;
3854		}
3855
3856		index++;
3857	}
3858
3859	index = -ENOSPC;
3860
3861out:
3862	raw_spin_unlock_irqrestore(&table->lock, flags);
3863
3864	return index;
3865}
3866
3867static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3868			  struct amd_ir_data *data)
3869{
3870	struct irq_remap_table *table;
3871	struct amd_iommu *iommu;
3872	unsigned long flags;
3873	struct irte_ga *entry;
3874
3875	iommu = amd_iommu_rlookup_table[devid];
3876	if (iommu == NULL)
3877		return -EINVAL;
3878
3879	table = get_irq_table(devid);
3880	if (!table)
3881		return -ENOMEM;
3882
3883	raw_spin_lock_irqsave(&table->lock, flags);
3884
3885	entry = (struct irte_ga *)table->table;
3886	entry = &entry[index];
3887	entry->lo.fields_remap.valid = 0;
3888	entry->hi.val = irte->hi.val;
3889	entry->lo.val = irte->lo.val;
3890	entry->lo.fields_remap.valid = 1;
3891	if (data)
3892		data->ref = entry;
3893
3894	raw_spin_unlock_irqrestore(&table->lock, flags);
3895
3896	iommu_flush_irt(iommu, devid);
3897	iommu_completion_wait(iommu);
3898
3899	return 0;
3900}
3901
3902static int modify_irte(u16 devid, int index, union irte *irte)
3903{
3904	struct irq_remap_table *table;
3905	struct amd_iommu *iommu;
3906	unsigned long flags;
3907
3908	iommu = amd_iommu_rlookup_table[devid];
3909	if (iommu == NULL)
3910		return -EINVAL;
3911
3912	table = get_irq_table(devid);
3913	if (!table)
3914		return -ENOMEM;
3915
3916	raw_spin_lock_irqsave(&table->lock, flags);
3917	table->table[index] = irte->val;
3918	raw_spin_unlock_irqrestore(&table->lock, flags);
3919
3920	iommu_flush_irt(iommu, devid);
3921	iommu_completion_wait(iommu);
3922
3923	return 0;
3924}
3925
3926static void free_irte(u16 devid, int index)
3927{
3928	struct irq_remap_table *table;
3929	struct amd_iommu *iommu;
3930	unsigned long flags;
3931
3932	iommu = amd_iommu_rlookup_table[devid];
3933	if (iommu == NULL)
3934		return;
3935
3936	table = get_irq_table(devid);
3937	if (!table)
3938		return;
3939
3940	raw_spin_lock_irqsave(&table->lock, flags);
3941	iommu->irte_ops->clear_allocated(table, index);
3942	raw_spin_unlock_irqrestore(&table->lock, flags);
3943
3944	iommu_flush_irt(iommu, devid);
3945	iommu_completion_wait(iommu);
3946}
3947
3948static void irte_prepare(void *entry,
3949			 u32 delivery_mode, u32 dest_mode,
3950			 u8 vector, u32 dest_apicid, int devid)
3951{
3952	union irte *irte = (union irte *) entry;
3953
3954	irte->val                = 0;
3955	irte->fields.vector      = vector;
3956	irte->fields.int_type    = delivery_mode;
3957	irte->fields.destination = dest_apicid;
3958	irte->fields.dm          = dest_mode;
3959	irte->fields.valid       = 1;
3960}
3961
3962static void irte_ga_prepare(void *entry,
3963			    u32 delivery_mode, u32 dest_mode,
3964			    u8 vector, u32 dest_apicid, int devid)
3965{
3966	struct irte_ga *irte = (struct irte_ga *) entry;
3967
3968	irte->lo.val                      = 0;
3969	irte->hi.val                      = 0;
3970	irte->lo.fields_remap.int_type    = delivery_mode;
3971	irte->lo.fields_remap.dm          = dest_mode;
3972	irte->hi.fields.vector            = vector;
3973	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3974	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3975	irte->lo.fields_remap.valid       = 1;
3976}
3977
3978static void irte_activate(void *entry, u16 devid, u16 index)
3979{
3980	union irte *irte = (union irte *) entry;
3981
3982	irte->fields.valid = 1;
3983	modify_irte(devid, index, irte);
3984}
3985
3986static void irte_ga_activate(void *entry, u16 devid, u16 index)
3987{
3988	struct irte_ga *irte = (struct irte_ga *) entry;
3989
3990	irte->lo.fields_remap.valid = 1;
3991	modify_irte_ga(devid, index, irte, NULL);
3992}
3993
3994static void irte_deactivate(void *entry, u16 devid, u16 index)
3995{
3996	union irte *irte = (union irte *) entry;
3997
3998	irte->fields.valid = 0;
3999	modify_irte(devid, index, irte);
4000}
4001
4002static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
4003{
4004	struct irte_ga *irte = (struct irte_ga *) entry;
4005
4006	irte->lo.fields_remap.valid = 0;
4007	modify_irte_ga(devid, index, irte, NULL);
4008}
4009
4010static void irte_set_affinity(void *entry, u16 devid, u16 index,
4011			      u8 vector, u32 dest_apicid)
4012{
4013	union irte *irte = (union irte *) entry;
4014
4015	irte->fields.vector = vector;
4016	irte->fields.destination = dest_apicid;
4017	modify_irte(devid, index, irte);
4018}
4019
4020static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
4021				 u8 vector, u32 dest_apicid)
4022{
4023	struct irte_ga *irte = (struct irte_ga *) entry;
4024
4025	if (!irte->lo.fields_remap.guest_mode) {
4026		irte->hi.fields.vector = vector;
4027		irte->lo.fields_remap.destination =
4028					APICID_TO_IRTE_DEST_LO(dest_apicid);
4029		irte->hi.fields.destination =
4030					APICID_TO_IRTE_DEST_HI(dest_apicid);
4031		modify_irte_ga(devid, index, irte, NULL);
4032	}
4033}
4034
4035#define IRTE_ALLOCATED (~1U)
4036static void irte_set_allocated(struct irq_remap_table *table, int index)
4037{
4038	table->table[index] = IRTE_ALLOCATED;
4039}
4040
4041static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
4042{
4043	struct irte_ga *ptr = (struct irte_ga *)table->table;
4044	struct irte_ga *irte = &ptr[index];
4045
4046	memset(&irte->lo.val, 0, sizeof(u64));
4047	memset(&irte->hi.val, 0, sizeof(u64));
4048	irte->hi.fields.vector = 0xff;
4049}
4050
4051static bool irte_is_allocated(struct irq_remap_table *table, int index)
4052{
4053	union irte *ptr = (union irte *)table->table;
4054	union irte *irte = &ptr[index];
4055
4056	return irte->val != 0;
4057}
4058
4059static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
4060{
4061	struct irte_ga *ptr = (struct irte_ga *)table->table;
4062	struct irte_ga *irte = &ptr[index];
4063
4064	return irte->hi.fields.vector != 0;
4065}
4066
4067static void irte_clear_allocated(struct irq_remap_table *table, int index)
4068{
4069	table->table[index] = 0;
4070}
4071
4072static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
4073{
4074	struct irte_ga *ptr = (struct irte_ga *)table->table;
4075	struct irte_ga *irte = &ptr[index];
4076
4077	memset(&irte->lo.val, 0, sizeof(u64));
4078	memset(&irte->hi.val, 0, sizeof(u64));
4079}
4080
4081static int get_devid(struct irq_alloc_info *info)
4082{
4083	int devid = -1;
4084
4085	switch (info->type) {
4086	case X86_IRQ_ALLOC_TYPE_IOAPIC:
4087		devid     = get_ioapic_devid(info->ioapic_id);
4088		break;
4089	case X86_IRQ_ALLOC_TYPE_HPET:
4090		devid     = get_hpet_devid(info->hpet_id);
4091		break;
4092	case X86_IRQ_ALLOC_TYPE_MSI:
4093	case X86_IRQ_ALLOC_TYPE_MSIX:
4094		devid = get_device_id(&info->msi_dev->dev);
4095		break;
4096	default:
4097		BUG_ON(1);
4098		break;
4099	}
4100
4101	return devid;
4102}
4103
4104static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
4105{
4106	struct amd_iommu *iommu;
4107	int devid;
4108
4109	if (!info)
4110		return NULL;
4111
4112	devid = get_devid(info);
4113	if (devid >= 0) {
4114		iommu = amd_iommu_rlookup_table[devid];
4115		if (iommu)
4116			return iommu->ir_domain;
4117	}
4118
4119	return NULL;
4120}
4121
4122static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4123{
4124	struct amd_iommu *iommu;
4125	int devid;
4126
4127	if (!info)
4128		return NULL;
4129
4130	switch (info->type) {
4131	case X86_IRQ_ALLOC_TYPE_MSI:
4132	case X86_IRQ_ALLOC_TYPE_MSIX:
4133		devid = get_device_id(&info->msi_dev->dev);
4134		if (devid < 0)
4135			return NULL;
4136
4137		iommu = amd_iommu_rlookup_table[devid];
4138		if (iommu)
4139			return iommu->msi_domain;
4140		break;
4141	default:
4142		break;
4143	}
4144
4145	return NULL;
4146}
4147
4148struct irq_remap_ops amd_iommu_irq_ops = {
4149	.prepare		= amd_iommu_prepare,
4150	.enable			= amd_iommu_enable,
4151	.disable		= amd_iommu_disable,
4152	.reenable		= amd_iommu_reenable,
4153	.enable_faulting	= amd_iommu_enable_faulting,
4154	.get_ir_irq_domain	= get_ir_irq_domain,
4155	.get_irq_domain		= get_irq_domain,
4156};
4157
4158static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4159				       struct irq_cfg *irq_cfg,
4160				       struct irq_alloc_info *info,
4161				       int devid, int index, int sub_handle)
4162{
4163	struct irq_2_irte *irte_info = &data->irq_2_irte;
4164	struct msi_msg *msg = &data->msi_entry;
4165	struct IO_APIC_route_entry *entry;
4166	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
4167
4168	if (!iommu)
4169		return;
4170
4171	data->irq_2_irte.devid = devid;
4172	data->irq_2_irte.index = index + sub_handle;
4173	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
4174				 apic->irq_dest_mode, irq_cfg->vector,
4175				 irq_cfg->dest_apicid, devid);
4176
4177	switch (info->type) {
4178	case X86_IRQ_ALLOC_TYPE_IOAPIC:
4179		/* Setup IOAPIC entry */
4180		entry = info->ioapic_entry;
4181		info->ioapic_entry = NULL;
4182		memset(entry, 0, sizeof(*entry));
4183		entry->vector        = index;
4184		entry->mask          = 0;
4185		entry->trigger       = info->ioapic_trigger;
4186		entry->polarity      = info->ioapic_polarity;
4187		/* Mask level triggered irqs. */
4188		if (info->ioapic_trigger)
4189			entry->mask = 1;
4190		break;
4191
4192	case X86_IRQ_ALLOC_TYPE_HPET:
4193	case X86_IRQ_ALLOC_TYPE_MSI:
4194	case X86_IRQ_ALLOC_TYPE_MSIX:
4195		msg->address_hi = MSI_ADDR_BASE_HI;
4196		msg->address_lo = MSI_ADDR_BASE_LO;
4197		msg->data = irte_info->index;
4198		break;
4199
4200	default:
4201		BUG_ON(1);
4202		break;
4203	}
4204}
4205
4206struct amd_irte_ops irte_32_ops = {
4207	.prepare = irte_prepare,
4208	.activate = irte_activate,
4209	.deactivate = irte_deactivate,
4210	.set_affinity = irte_set_affinity,
4211	.set_allocated = irte_set_allocated,
4212	.is_allocated = irte_is_allocated,
4213	.clear_allocated = irte_clear_allocated,
4214};
4215
4216struct amd_irte_ops irte_128_ops = {
4217	.prepare = irte_ga_prepare,
4218	.activate = irte_ga_activate,
4219	.deactivate = irte_ga_deactivate,
4220	.set_affinity = irte_ga_set_affinity,
4221	.set_allocated = irte_ga_set_allocated,
4222	.is_allocated = irte_ga_is_allocated,
4223	.clear_allocated = irte_ga_clear_allocated,
4224};
4225
4226static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4227			       unsigned int nr_irqs, void *arg)
4228{
4229	struct irq_alloc_info *info = arg;
4230	struct irq_data *irq_data;
4231	struct amd_ir_data *data = NULL;
4232	struct irq_cfg *cfg;
4233	int i, ret, devid;
4234	int index;
4235
4236	if (!info)
4237		return -EINVAL;
4238	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4239	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4240		return -EINVAL;
4241
4242	/*
4243	 * With IRQ remapping enabled, don't need contiguous CPU vectors
4244	 * to support multiple MSI interrupts.
4245	 */
4246	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4247		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4248
4249	devid = get_devid(info);
4250	if (devid < 0)
4251		return -EINVAL;
4252
4253	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4254	if (ret < 0)
4255		return ret;
4256
4257	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4258		struct irq_remap_table *table;
4259		struct amd_iommu *iommu;
4260
4261		table = alloc_irq_table(devid);
4262		if (table) {
4263			if (!table->min_index) {
4264				/*
4265				 * Keep the first 32 indexes free for IOAPIC
4266				 * interrupts.
4267				 */
4268				table->min_index = 32;
4269				iommu = amd_iommu_rlookup_table[devid];
4270				for (i = 0; i < 32; ++i)
4271					iommu->irte_ops->set_allocated(table, i);
4272			}
4273			WARN_ON(table->min_index != 32);
4274			index = info->ioapic_pin;
4275		} else {
4276			index = -ENOMEM;
4277		}
4278	} else {
4279		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
4280
4281		index = alloc_irq_index(devid, nr_irqs, align);
4282	}
4283	if (index < 0) {
4284		pr_warn("Failed to allocate IRTE\n");
4285		ret = index;
4286		goto out_free_parent;
4287	}
4288
4289	for (i = 0; i < nr_irqs; i++) {
4290		irq_data = irq_domain_get_irq_data(domain, virq + i);
4291		cfg = irqd_cfg(irq_data);
4292		if (!irq_data || !cfg) {
4293			ret = -EINVAL;
4294			goto out_free_data;
4295		}
4296
4297		ret = -ENOMEM;
4298		data = kzalloc(sizeof(*data), GFP_KERNEL);
4299		if (!data)
4300			goto out_free_data;
4301
4302		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
4303			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
4304		else
4305			data->entry = kzalloc(sizeof(struct irte_ga),
4306						     GFP_KERNEL);
4307		if (!data->entry) {
4308			kfree(data);
4309			goto out_free_data;
4310		}
4311
4312		irq_data->hwirq = (devid << 16) + i;
4313		irq_data->chip_data = data;
4314		irq_data->chip = &amd_ir_chip;
4315		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4316		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4317	}
4318
4319	return 0;
4320
4321out_free_data:
4322	for (i--; i >= 0; i--) {
4323		irq_data = irq_domain_get_irq_data(domain, virq + i);
4324		if (irq_data)
4325			kfree(irq_data->chip_data);
4326	}
4327	for (i = 0; i < nr_irqs; i++)
4328		free_irte(devid, index + i);
4329out_free_parent:
4330	irq_domain_free_irqs_common(domain, virq, nr_irqs);
4331	return ret;
4332}
4333
4334static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4335			       unsigned int nr_irqs)
4336{
4337	struct irq_2_irte *irte_info;
4338	struct irq_data *irq_data;
4339	struct amd_ir_data *data;
4340	int i;
4341
4342	for (i = 0; i < nr_irqs; i++) {
4343		irq_data = irq_domain_get_irq_data(domain, virq  + i);
4344		if (irq_data && irq_data->chip_data) {
4345			data = irq_data->chip_data;
4346			irte_info = &data->irq_2_irte;
4347			free_irte(irte_info->devid, irte_info->index);
4348			kfree(data->entry);
4349			kfree(data);
4350		}
4351	}
4352	irq_domain_free_irqs_common(domain, virq, nr_irqs);
4353}
4354
4355static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4356			       struct amd_ir_data *ir_data,
4357			       struct irq_2_irte *irte_info,
4358			       struct irq_cfg *cfg);
4359
4360static int irq_remapping_activate(struct irq_domain *domain,
4361				  struct irq_data *irq_data, bool reserve)
4362{
4363	struct amd_ir_data *data = irq_data->chip_data;
4364	struct irq_2_irte *irte_info = &data->irq_2_irte;
4365	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4366	struct irq_cfg *cfg = irqd_cfg(irq_data);
4367
4368	if (!iommu)
4369		return 0;
4370
4371	iommu->irte_ops->activate(data->entry, irte_info->devid,
4372				  irte_info->index);
4373	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4374	return 0;
4375}
4376
4377static void irq_remapping_deactivate(struct irq_domain *domain,
4378				     struct irq_data *irq_data)
4379{
4380	struct amd_ir_data *data = irq_data->chip_data;
4381	struct irq_2_irte *irte_info = &data->irq_2_irte;
4382	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4383
4384	if (iommu)
4385		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
4386					    irte_info->index);
4387}
4388
4389static const struct irq_domain_ops amd_ir_domain_ops = {
4390	.alloc = irq_remapping_alloc,
4391	.free = irq_remapping_free,
4392	.activate = irq_remapping_activate,
4393	.deactivate = irq_remapping_deactivate,
4394};
4395
4396int amd_iommu_activate_guest_mode(void *data)
4397{
4398	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4399	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4400
4401	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4402	    !entry || entry->lo.fields_vapic.guest_mode)
4403		return 0;
4404
4405	entry->lo.val = 0;
4406	entry->hi.val = 0;
4407
4408	entry->lo.fields_vapic.guest_mode  = 1;
4409	entry->lo.fields_vapic.ga_log_intr = 1;
4410	entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
4411	entry->hi.fields.vector            = ir_data->ga_vector;
4412	entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
4413
4414	return modify_irte_ga(ir_data->irq_2_irte.devid,
4415			      ir_data->irq_2_irte.index, entry, NULL);
4416}
4417EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
4418
4419int amd_iommu_deactivate_guest_mode(void *data)
4420{
4421	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4422	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4423	struct irq_cfg *cfg = ir_data->cfg;
4424
4425	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4426	    !entry || !entry->lo.fields_vapic.guest_mode)
4427		return 0;
4428
4429	entry->lo.val = 0;
4430	entry->hi.val = 0;
4431
4432	entry->lo.fields_remap.dm          = apic->irq_dest_mode;
4433	entry->lo.fields_remap.int_type    = apic->irq_delivery_mode;
4434	entry->hi.fields.vector            = cfg->vector;
4435	entry->lo.fields_remap.destination =
4436				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
4437	entry->hi.fields.destination =
4438				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4439
4440	return modify_irte_ga(ir_data->irq_2_irte.devid,
4441			      ir_data->irq_2_irte.index, entry, NULL);
4442}
4443EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
4444
4445static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
4446{
4447	int ret;
4448	struct amd_iommu *iommu;
4449	struct amd_iommu_pi_data *pi_data = vcpu_info;
4450	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
4451	struct amd_ir_data *ir_data = data->chip_data;
4452	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4453	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
4454
4455	/* Note:
4456	 * This device has never been set up for guest mode.
4457	 * we should not modify the IRTE
4458	 */
4459	if (!dev_data || !dev_data->use_vapic)
4460		return 0;
4461
4462	ir_data->cfg = irqd_cfg(data);
4463	pi_data->ir_data = ir_data;
4464
4465	/* Note:
4466	 * SVM tries to set up for VAPIC mode, but we are in
4467	 * legacy mode. So, we force legacy mode instead.
4468	 */
4469	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
4470		pr_debug("%s: Fall back to using intr legacy remap\n",
4471			 __func__);
4472		pi_data->is_guest_mode = false;
4473	}
4474
4475	iommu = amd_iommu_rlookup_table[irte_info->devid];
4476	if (iommu == NULL)
4477		return -EINVAL;
4478
4479	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4480	if (pi_data->is_guest_mode) {
4481		ir_data->ga_root_ptr = (pi_data->base >> 12);
4482		ir_data->ga_vector = vcpu_pi_info->vector;
4483		ir_data->ga_tag = pi_data->ga_tag;
4484		ret = amd_iommu_activate_guest_mode(ir_data);
4485		if (!ret)
4486			ir_data->cached_ga_tag = pi_data->ga_tag;
4487	} else {
4488		ret = amd_iommu_deactivate_guest_mode(ir_data);
4489
4490		/*
4491		 * This communicates the ga_tag back to the caller
4492		 * so that it can do all the necessary clean up.
4493		 */
4494		if (!ret)
4495			ir_data->cached_ga_tag = 0;
4496	}
4497
4498	return ret;
4499}
4500
4501
4502static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4503			       struct amd_ir_data *ir_data,
4504			       struct irq_2_irte *irte_info,
4505			       struct irq_cfg *cfg)
4506{
4507
4508	/*
4509	 * Atomically updates the IRTE with the new destination, vector
4510	 * and flushes the interrupt entry cache.
4511	 */
4512	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4513				      irte_info->index, cfg->vector,
4514				      cfg->dest_apicid);
4515}
4516
4517static int amd_ir_set_affinity(struct irq_data *data,
4518			       const struct cpumask *mask, bool force)
4519{
4520	struct amd_ir_data *ir_data = data->chip_data;
4521	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4522	struct irq_cfg *cfg = irqd_cfg(data);
4523	struct irq_data *parent = data->parent_data;
4524	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4525	int ret;
4526
4527	if (!iommu)
4528		return -ENODEV;
4529
4530	ret = parent->chip->irq_set_affinity(parent, mask, force);
4531	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4532		return ret;
4533
4534	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4535	/*
4536	 * After this point, all the interrupts will start arriving
4537	 * at the new destination. So, time to cleanup the previous
4538	 * vector allocation.
4539	 */
4540	send_cleanup_vector(cfg);
4541
4542	return IRQ_SET_MASK_OK_DONE;
4543}
4544
4545static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4546{
4547	struct amd_ir_data *ir_data = irq_data->chip_data;
4548
4549	*msg = ir_data->msi_entry;
4550}
4551
4552static struct irq_chip amd_ir_chip = {
4553	.name			= "AMD-IR",
4554	.irq_ack		= apic_ack_irq,
4555	.irq_set_affinity	= amd_ir_set_affinity,
4556	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
4557	.irq_compose_msi_msg	= ir_compose_msi_msg,
4558};
4559
4560int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4561{
4562	struct fwnode_handle *fn;
4563
4564	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4565	if (!fn)
4566		return -ENOMEM;
4567	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4568	irq_domain_free_fwnode(fn);
4569	if (!iommu->ir_domain)
4570		return -ENOMEM;
4571
4572	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4573	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4574							     "AMD-IR-MSI",
4575							     iommu->index);
4576	return 0;
4577}
4578
4579int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4580{
4581	unsigned long flags;
4582	struct amd_iommu *iommu;
4583	struct irq_remap_table *table;
4584	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4585	int devid = ir_data->irq_2_irte.devid;
4586	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4587	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4588
4589	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4590	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4591		return 0;
4592
4593	iommu = amd_iommu_rlookup_table[devid];
4594	if (!iommu)
4595		return -ENODEV;
4596
4597	table = get_irq_table(devid);
4598	if (!table)
4599		return -ENODEV;
4600
4601	raw_spin_lock_irqsave(&table->lock, flags);
4602
4603	if (ref->lo.fields_vapic.guest_mode) {
4604		if (cpu >= 0) {
4605			ref->lo.fields_vapic.destination =
4606						APICID_TO_IRTE_DEST_LO(cpu);
4607			ref->hi.fields.destination =
4608						APICID_TO_IRTE_DEST_HI(cpu);
4609		}
4610		ref->lo.fields_vapic.is_run = is_run;
4611		barrier();
4612	}
4613
4614	raw_spin_unlock_irqrestore(&table->lock, flags);
4615
4616	iommu_flush_irt(iommu, devid);
4617	iommu_completion_wait(iommu);
4618	return 0;
4619}
4620EXPORT_SYMBOL(amd_iommu_update_ga);
4621#endif