Loading...
1/*
2 * Copyright © 2008,2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
26 *
27 */
28
29#include "drmP.h"
30#include "drm.h"
31#include "i915_drm.h"
32#include "i915_drv.h"
33#include "i915_trace.h"
34#include "intel_drv.h"
35
36struct change_domains {
37 uint32_t invalidate_domains;
38 uint32_t flush_domains;
39 uint32_t flush_rings;
40 uint32_t flips;
41};
42
43/*
44 * Set the next domain for the specified object. This
45 * may not actually perform the necessary flushing/invaliding though,
46 * as that may want to be batched with other set_domain operations
47 *
48 * This is (we hope) the only really tricky part of gem. The goal
49 * is fairly simple -- track which caches hold bits of the object
50 * and make sure they remain coherent. A few concrete examples may
51 * help to explain how it works. For shorthand, we use the notation
52 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
53 * a pair of read and write domain masks.
54 *
55 * Case 1: the batch buffer
56 *
57 * 1. Allocated
58 * 2. Written by CPU
59 * 3. Mapped to GTT
60 * 4. Read by GPU
61 * 5. Unmapped from GTT
62 * 6. Freed
63 *
64 * Let's take these a step at a time
65 *
66 * 1. Allocated
67 * Pages allocated from the kernel may still have
68 * cache contents, so we set them to (CPU, CPU) always.
69 * 2. Written by CPU (using pwrite)
70 * The pwrite function calls set_domain (CPU, CPU) and
71 * this function does nothing (as nothing changes)
72 * 3. Mapped by GTT
73 * This function asserts that the object is not
74 * currently in any GPU-based read or write domains
75 * 4. Read by GPU
76 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
77 * As write_domain is zero, this function adds in the
78 * current read domains (CPU+COMMAND, 0).
79 * flush_domains is set to CPU.
80 * invalidate_domains is set to COMMAND
81 * clflush is run to get data out of the CPU caches
82 * then i915_dev_set_domain calls i915_gem_flush to
83 * emit an MI_FLUSH and drm_agp_chipset_flush
84 * 5. Unmapped from GTT
85 * i915_gem_object_unbind calls set_domain (CPU, CPU)
86 * flush_domains and invalidate_domains end up both zero
87 * so no flushing/invalidating happens
88 * 6. Freed
89 * yay, done
90 *
91 * Case 2: The shared render buffer
92 *
93 * 1. Allocated
94 * 2. Mapped to GTT
95 * 3. Read/written by GPU
96 * 4. set_domain to (CPU,CPU)
97 * 5. Read/written by CPU
98 * 6. Read/written by GPU
99 *
100 * 1. Allocated
101 * Same as last example, (CPU, CPU)
102 * 2. Mapped to GTT
103 * Nothing changes (assertions find that it is not in the GPU)
104 * 3. Read/written by GPU
105 * execbuffer calls set_domain (RENDER, RENDER)
106 * flush_domains gets CPU
107 * invalidate_domains gets GPU
108 * clflush (obj)
109 * MI_FLUSH and drm_agp_chipset_flush
110 * 4. set_domain (CPU, CPU)
111 * flush_domains gets GPU
112 * invalidate_domains gets CPU
113 * wait_rendering (obj) to make sure all drawing is complete.
114 * This will include an MI_FLUSH to get the data from GPU
115 * to memory
116 * clflush (obj) to invalidate the CPU cache
117 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
118 * 5. Read/written by CPU
119 * cache lines are loaded and dirtied
120 * 6. Read written by GPU
121 * Same as last GPU access
122 *
123 * Case 3: The constant buffer
124 *
125 * 1. Allocated
126 * 2. Written by CPU
127 * 3. Read by GPU
128 * 4. Updated (written) by CPU again
129 * 5. Read by GPU
130 *
131 * 1. Allocated
132 * (CPU, CPU)
133 * 2. Written by CPU
134 * (CPU, CPU)
135 * 3. Read by GPU
136 * (CPU+RENDER, 0)
137 * flush_domains = CPU
138 * invalidate_domains = RENDER
139 * clflush (obj)
140 * MI_FLUSH
141 * drm_agp_chipset_flush
142 * 4. Updated (written) by CPU again
143 * (CPU, CPU)
144 * flush_domains = 0 (no previous write domain)
145 * invalidate_domains = 0 (no new read domains)
146 * 5. Read by GPU
147 * (CPU+RENDER, 0)
148 * flush_domains = CPU
149 * invalidate_domains = RENDER
150 * clflush (obj)
151 * MI_FLUSH
152 * drm_agp_chipset_flush
153 */
154static void
155i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
156 struct intel_ring_buffer *ring,
157 struct change_domains *cd)
158{
159 uint32_t invalidate_domains = 0, flush_domains = 0;
160
161 /*
162 * If the object isn't moving to a new write domain,
163 * let the object stay in multiple read domains
164 */
165 if (obj->base.pending_write_domain == 0)
166 obj->base.pending_read_domains |= obj->base.read_domains;
167
168 /*
169 * Flush the current write domain if
170 * the new read domains don't match. Invalidate
171 * any read domains which differ from the old
172 * write domain
173 */
174 if (obj->base.write_domain &&
175 (((obj->base.write_domain != obj->base.pending_read_domains ||
176 obj->ring != ring)) ||
177 (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
178 flush_domains |= obj->base.write_domain;
179 invalidate_domains |=
180 obj->base.pending_read_domains & ~obj->base.write_domain;
181 }
182 /*
183 * Invalidate any read caches which may have
184 * stale data. That is, any new read domains.
185 */
186 invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
187 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
188 i915_gem_clflush_object(obj);
189
190 if (obj->base.pending_write_domain)
191 cd->flips |= atomic_read(&obj->pending_flip);
192
193 /* The actual obj->write_domain will be updated with
194 * pending_write_domain after we emit the accumulated flush for all
195 * of our domain changes in execbuffers (which clears objects'
196 * write_domains). So if we have a current write domain that we
197 * aren't changing, set pending_write_domain to that.
198 */
199 if (flush_domains == 0 && obj->base.pending_write_domain == 0)
200 obj->base.pending_write_domain = obj->base.write_domain;
201
202 cd->invalidate_domains |= invalidate_domains;
203 cd->flush_domains |= flush_domains;
204 if (flush_domains & I915_GEM_GPU_DOMAINS)
205 cd->flush_rings |= obj->ring->id;
206 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
207 cd->flush_rings |= ring->id;
208}
209
210struct eb_objects {
211 int and;
212 struct hlist_head buckets[0];
213};
214
215static struct eb_objects *
216eb_create(int size)
217{
218 struct eb_objects *eb;
219 int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
220 while (count > size)
221 count >>= 1;
222 eb = kzalloc(count*sizeof(struct hlist_head) +
223 sizeof(struct eb_objects),
224 GFP_KERNEL);
225 if (eb == NULL)
226 return eb;
227
228 eb->and = count - 1;
229 return eb;
230}
231
232static void
233eb_reset(struct eb_objects *eb)
234{
235 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
236}
237
238static void
239eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
240{
241 hlist_add_head(&obj->exec_node,
242 &eb->buckets[obj->exec_handle & eb->and]);
243}
244
245static struct drm_i915_gem_object *
246eb_get_object(struct eb_objects *eb, unsigned long handle)
247{
248 struct hlist_head *head;
249 struct hlist_node *node;
250 struct drm_i915_gem_object *obj;
251
252 head = &eb->buckets[handle & eb->and];
253 hlist_for_each(node, head) {
254 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
255 if (obj->exec_handle == handle)
256 return obj;
257 }
258
259 return NULL;
260}
261
262static void
263eb_destroy(struct eb_objects *eb)
264{
265 kfree(eb);
266}
267
268static int
269i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
270 struct eb_objects *eb,
271 struct drm_i915_gem_relocation_entry *reloc)
272{
273 struct drm_device *dev = obj->base.dev;
274 struct drm_gem_object *target_obj;
275 uint32_t target_offset;
276 int ret = -EINVAL;
277
278 /* we've already hold a reference to all valid objects */
279 target_obj = &eb_get_object(eb, reloc->target_handle)->base;
280 if (unlikely(target_obj == NULL))
281 return -ENOENT;
282
283 target_offset = to_intel_bo(target_obj)->gtt_offset;
284
285 /* The target buffer should have appeared before us in the
286 * exec_object list, so it should have a GTT space bound by now.
287 */
288 if (unlikely(target_offset == 0)) {
289 DRM_ERROR("No GTT space found for object %d\n",
290 reloc->target_handle);
291 return ret;
292 }
293
294 /* Validate that the target is in a valid r/w GPU domain */
295 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
296 DRM_ERROR("reloc with multiple write domains: "
297 "obj %p target %d offset %d "
298 "read %08x write %08x",
299 obj, reloc->target_handle,
300 (int) reloc->offset,
301 reloc->read_domains,
302 reloc->write_domain);
303 return ret;
304 }
305 if (unlikely((reloc->write_domain | reloc->read_domains) & I915_GEM_DOMAIN_CPU)) {
306 DRM_ERROR("reloc with read/write CPU domains: "
307 "obj %p target %d offset %d "
308 "read %08x write %08x",
309 obj, reloc->target_handle,
310 (int) reloc->offset,
311 reloc->read_domains,
312 reloc->write_domain);
313 return ret;
314 }
315 if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
316 reloc->write_domain != target_obj->pending_write_domain)) {
317 DRM_ERROR("Write domain conflict: "
318 "obj %p target %d offset %d "
319 "new %08x old %08x\n",
320 obj, reloc->target_handle,
321 (int) reloc->offset,
322 reloc->write_domain,
323 target_obj->pending_write_domain);
324 return ret;
325 }
326
327 target_obj->pending_read_domains |= reloc->read_domains;
328 target_obj->pending_write_domain |= reloc->write_domain;
329
330 /* If the relocation already has the right value in it, no
331 * more work needs to be done.
332 */
333 if (target_offset == reloc->presumed_offset)
334 return 0;
335
336 /* Check that the relocation address is valid... */
337 if (unlikely(reloc->offset > obj->base.size - 4)) {
338 DRM_ERROR("Relocation beyond object bounds: "
339 "obj %p target %d offset %d size %d.\n",
340 obj, reloc->target_handle,
341 (int) reloc->offset,
342 (int) obj->base.size);
343 return ret;
344 }
345 if (unlikely(reloc->offset & 3)) {
346 DRM_ERROR("Relocation not 4-byte aligned: "
347 "obj %p target %d offset %d.\n",
348 obj, reloc->target_handle,
349 (int) reloc->offset);
350 return ret;
351 }
352
353 reloc->delta += target_offset;
354 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
355 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
356 char *vaddr;
357
358 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
359 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
360 kunmap_atomic(vaddr);
361 } else {
362 struct drm_i915_private *dev_priv = dev->dev_private;
363 uint32_t __iomem *reloc_entry;
364 void __iomem *reloc_page;
365
366 /* We can't wait for rendering with pagefaults disabled */
367 if (obj->active && in_atomic())
368 return -EFAULT;
369
370 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
371 if (ret)
372 return ret;
373
374 /* Map the page containing the relocation we're going to perform. */
375 reloc->offset += obj->gtt_offset;
376 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
377 reloc->offset & PAGE_MASK);
378 reloc_entry = (uint32_t __iomem *)
379 (reloc_page + (reloc->offset & ~PAGE_MASK));
380 iowrite32(reloc->delta, reloc_entry);
381 io_mapping_unmap_atomic(reloc_page);
382 }
383
384 /* and update the user's relocation entry */
385 reloc->presumed_offset = target_offset;
386
387 return 0;
388}
389
390static int
391i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
392 struct eb_objects *eb)
393{
394 struct drm_i915_gem_relocation_entry __user *user_relocs;
395 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
396 int i, ret;
397
398 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
399 for (i = 0; i < entry->relocation_count; i++) {
400 struct drm_i915_gem_relocation_entry reloc;
401
402 if (__copy_from_user_inatomic(&reloc,
403 user_relocs+i,
404 sizeof(reloc)))
405 return -EFAULT;
406
407 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
408 if (ret)
409 return ret;
410
411 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
412 &reloc.presumed_offset,
413 sizeof(reloc.presumed_offset)))
414 return -EFAULT;
415 }
416
417 return 0;
418}
419
420static int
421i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
422 struct eb_objects *eb,
423 struct drm_i915_gem_relocation_entry *relocs)
424{
425 const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
426 int i, ret;
427
428 for (i = 0; i < entry->relocation_count; i++) {
429 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
430 if (ret)
431 return ret;
432 }
433
434 return 0;
435}
436
437static int
438i915_gem_execbuffer_relocate(struct drm_device *dev,
439 struct eb_objects *eb,
440 struct list_head *objects)
441{
442 struct drm_i915_gem_object *obj;
443 int ret = 0;
444
445 /* This is the fast path and we cannot handle a pagefault whilst
446 * holding the struct mutex lest the user pass in the relocations
447 * contained within a mmaped bo. For in such a case we, the page
448 * fault handler would call i915_gem_fault() and we would try to
449 * acquire the struct mutex again. Obviously this is bad and so
450 * lockdep complains vehemently.
451 */
452 pagefault_disable();
453 list_for_each_entry(obj, objects, exec_list) {
454 ret = i915_gem_execbuffer_relocate_object(obj, eb);
455 if (ret)
456 break;
457 }
458 pagefault_enable();
459
460 return ret;
461}
462
463static int
464i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
465 struct drm_file *file,
466 struct list_head *objects)
467{
468 struct drm_i915_gem_object *obj;
469 int ret, retry;
470 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
471 struct list_head ordered_objects;
472
473 INIT_LIST_HEAD(&ordered_objects);
474 while (!list_empty(objects)) {
475 struct drm_i915_gem_exec_object2 *entry;
476 bool need_fence, need_mappable;
477
478 obj = list_first_entry(objects,
479 struct drm_i915_gem_object,
480 exec_list);
481 entry = obj->exec_entry;
482
483 need_fence =
484 has_fenced_gpu_access &&
485 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
486 obj->tiling_mode != I915_TILING_NONE;
487 need_mappable =
488 entry->relocation_count ? true : need_fence;
489
490 if (need_mappable)
491 list_move(&obj->exec_list, &ordered_objects);
492 else
493 list_move_tail(&obj->exec_list, &ordered_objects);
494
495 obj->base.pending_read_domains = 0;
496 obj->base.pending_write_domain = 0;
497 }
498 list_splice(&ordered_objects, objects);
499
500 /* Attempt to pin all of the buffers into the GTT.
501 * This is done in 3 phases:
502 *
503 * 1a. Unbind all objects that do not match the GTT constraints for
504 * the execbuffer (fenceable, mappable, alignment etc).
505 * 1b. Increment pin count for already bound objects.
506 * 2. Bind new objects.
507 * 3. Decrement pin count.
508 *
509 * This avoid unnecessary unbinding of later objects in order to makr
510 * room for the earlier objects *unless* we need to defragment.
511 */
512 retry = 0;
513 do {
514 ret = 0;
515
516 /* Unbind any ill-fitting objects or pin. */
517 list_for_each_entry(obj, objects, exec_list) {
518 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
519 bool need_fence, need_mappable;
520 if (!obj->gtt_space)
521 continue;
522
523 need_fence =
524 has_fenced_gpu_access &&
525 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
526 obj->tiling_mode != I915_TILING_NONE;
527 need_mappable =
528 entry->relocation_count ? true : need_fence;
529
530 if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
531 (need_mappable && !obj->map_and_fenceable))
532 ret = i915_gem_object_unbind(obj);
533 else
534 ret = i915_gem_object_pin(obj,
535 entry->alignment,
536 need_mappable);
537 if (ret)
538 goto err;
539
540 entry++;
541 }
542
543 /* Bind fresh objects */
544 list_for_each_entry(obj, objects, exec_list) {
545 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
546 bool need_fence;
547
548 need_fence =
549 has_fenced_gpu_access &&
550 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
551 obj->tiling_mode != I915_TILING_NONE;
552
553 if (!obj->gtt_space) {
554 bool need_mappable =
555 entry->relocation_count ? true : need_fence;
556
557 ret = i915_gem_object_pin(obj,
558 entry->alignment,
559 need_mappable);
560 if (ret)
561 break;
562 }
563
564 if (has_fenced_gpu_access) {
565 if (need_fence) {
566 ret = i915_gem_object_get_fence(obj, ring);
567 if (ret)
568 break;
569 } else if (entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
570 obj->tiling_mode == I915_TILING_NONE) {
571 /* XXX pipelined! */
572 ret = i915_gem_object_put_fence(obj);
573 if (ret)
574 break;
575 }
576 obj->pending_fenced_gpu_access = need_fence;
577 }
578
579 entry->offset = obj->gtt_offset;
580 }
581
582 /* Decrement pin count for bound objects */
583 list_for_each_entry(obj, objects, exec_list) {
584 if (obj->gtt_space)
585 i915_gem_object_unpin(obj);
586 }
587
588 if (ret != -ENOSPC || retry > 1)
589 return ret;
590
591 /* First attempt, just clear anything that is purgeable.
592 * Second attempt, clear the entire GTT.
593 */
594 ret = i915_gem_evict_everything(ring->dev, retry == 0);
595 if (ret)
596 return ret;
597
598 retry++;
599 } while (1);
600
601err:
602 obj = list_entry(obj->exec_list.prev,
603 struct drm_i915_gem_object,
604 exec_list);
605 while (objects != &obj->exec_list) {
606 if (obj->gtt_space)
607 i915_gem_object_unpin(obj);
608
609 obj = list_entry(obj->exec_list.prev,
610 struct drm_i915_gem_object,
611 exec_list);
612 }
613
614 return ret;
615}
616
617static int
618i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
619 struct drm_file *file,
620 struct intel_ring_buffer *ring,
621 struct list_head *objects,
622 struct eb_objects *eb,
623 struct drm_i915_gem_exec_object2 *exec,
624 int count)
625{
626 struct drm_i915_gem_relocation_entry *reloc;
627 struct drm_i915_gem_object *obj;
628 int *reloc_offset;
629 int i, total, ret;
630
631 /* We may process another execbuffer during the unlock... */
632 while (!list_empty(objects)) {
633 obj = list_first_entry(objects,
634 struct drm_i915_gem_object,
635 exec_list);
636 list_del_init(&obj->exec_list);
637 drm_gem_object_unreference(&obj->base);
638 }
639
640 mutex_unlock(&dev->struct_mutex);
641
642 total = 0;
643 for (i = 0; i < count; i++)
644 total += exec[i].relocation_count;
645
646 reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
647 reloc = drm_malloc_ab(total, sizeof(*reloc));
648 if (reloc == NULL || reloc_offset == NULL) {
649 drm_free_large(reloc);
650 drm_free_large(reloc_offset);
651 mutex_lock(&dev->struct_mutex);
652 return -ENOMEM;
653 }
654
655 total = 0;
656 for (i = 0; i < count; i++) {
657 struct drm_i915_gem_relocation_entry __user *user_relocs;
658
659 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
660
661 if (copy_from_user(reloc+total, user_relocs,
662 exec[i].relocation_count * sizeof(*reloc))) {
663 ret = -EFAULT;
664 mutex_lock(&dev->struct_mutex);
665 goto err;
666 }
667
668 reloc_offset[i] = total;
669 total += exec[i].relocation_count;
670 }
671
672 ret = i915_mutex_lock_interruptible(dev);
673 if (ret) {
674 mutex_lock(&dev->struct_mutex);
675 goto err;
676 }
677
678 /* reacquire the objects */
679 eb_reset(eb);
680 for (i = 0; i < count; i++) {
681 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
682 exec[i].handle));
683 if (&obj->base == NULL) {
684 DRM_ERROR("Invalid object handle %d at index %d\n",
685 exec[i].handle, i);
686 ret = -ENOENT;
687 goto err;
688 }
689
690 list_add_tail(&obj->exec_list, objects);
691 obj->exec_handle = exec[i].handle;
692 obj->exec_entry = &exec[i];
693 eb_add_object(eb, obj);
694 }
695
696 ret = i915_gem_execbuffer_reserve(ring, file, objects);
697 if (ret)
698 goto err;
699
700 list_for_each_entry(obj, objects, exec_list) {
701 int offset = obj->exec_entry - exec;
702 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
703 reloc + reloc_offset[offset]);
704 if (ret)
705 goto err;
706 }
707
708 /* Leave the user relocations as are, this is the painfully slow path,
709 * and we want to avoid the complication of dropping the lock whilst
710 * having buffers reserved in the aperture and so causing spurious
711 * ENOSPC for random operations.
712 */
713
714err:
715 drm_free_large(reloc);
716 drm_free_large(reloc_offset);
717 return ret;
718}
719
720static int
721i915_gem_execbuffer_flush(struct drm_device *dev,
722 uint32_t invalidate_domains,
723 uint32_t flush_domains,
724 uint32_t flush_rings)
725{
726 drm_i915_private_t *dev_priv = dev->dev_private;
727 int i, ret;
728
729 if (flush_domains & I915_GEM_DOMAIN_CPU)
730 intel_gtt_chipset_flush();
731
732 if (flush_domains & I915_GEM_DOMAIN_GTT)
733 wmb();
734
735 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
736 for (i = 0; i < I915_NUM_RINGS; i++)
737 if (flush_rings & (1 << i)) {
738 ret = i915_gem_flush_ring(&dev_priv->ring[i],
739 invalidate_domains,
740 flush_domains);
741 if (ret)
742 return ret;
743 }
744 }
745
746 return 0;
747}
748
749static int
750i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
751 struct intel_ring_buffer *to)
752{
753 struct intel_ring_buffer *from = obj->ring;
754 u32 seqno;
755 int ret, idx;
756
757 if (from == NULL || to == from)
758 return 0;
759
760 /* XXX gpu semaphores are implicated in various hard hangs on SNB */
761 if (INTEL_INFO(obj->base.dev)->gen < 6 || !i915_semaphores)
762 return i915_gem_object_wait_rendering(obj);
763
764 idx = intel_ring_sync_index(from, to);
765
766 seqno = obj->last_rendering_seqno;
767 if (seqno <= from->sync_seqno[idx])
768 return 0;
769
770 if (seqno == from->outstanding_lazy_request) {
771 struct drm_i915_gem_request *request;
772
773 request = kzalloc(sizeof(*request), GFP_KERNEL);
774 if (request == NULL)
775 return -ENOMEM;
776
777 ret = i915_add_request(from, NULL, request);
778 if (ret) {
779 kfree(request);
780 return ret;
781 }
782
783 seqno = request->seqno;
784 }
785
786 from->sync_seqno[idx] = seqno;
787 return intel_ring_sync(to, from, seqno - 1);
788}
789
790static int
791i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
792{
793 u32 plane, flip_mask;
794 int ret;
795
796 /* Check for any pending flips. As we only maintain a flip queue depth
797 * of 1, we can simply insert a WAIT for the next display flip prior
798 * to executing the batch and avoid stalling the CPU.
799 */
800
801 for (plane = 0; flips >> plane; plane++) {
802 if (((flips >> plane) & 1) == 0)
803 continue;
804
805 if (plane)
806 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
807 else
808 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
809
810 ret = intel_ring_begin(ring, 2);
811 if (ret)
812 return ret;
813
814 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
815 intel_ring_emit(ring, MI_NOOP);
816 intel_ring_advance(ring);
817 }
818
819 return 0;
820}
821
822
823static int
824i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
825 struct list_head *objects)
826{
827 struct drm_i915_gem_object *obj;
828 struct change_domains cd;
829 int ret;
830
831 memset(&cd, 0, sizeof(cd));
832 list_for_each_entry(obj, objects, exec_list)
833 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
834
835 if (cd.invalidate_domains | cd.flush_domains) {
836 ret = i915_gem_execbuffer_flush(ring->dev,
837 cd.invalidate_domains,
838 cd.flush_domains,
839 cd.flush_rings);
840 if (ret)
841 return ret;
842 }
843
844 if (cd.flips) {
845 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
846 if (ret)
847 return ret;
848 }
849
850 list_for_each_entry(obj, objects, exec_list) {
851 ret = i915_gem_execbuffer_sync_rings(obj, ring);
852 if (ret)
853 return ret;
854 }
855
856 return 0;
857}
858
859static bool
860i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
861{
862 return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
863}
864
865static int
866validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
867 int count)
868{
869 int i;
870
871 for (i = 0; i < count; i++) {
872 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
873 int length; /* limited by fault_in_pages_readable() */
874
875 /* First check for malicious input causing overflow */
876 if (exec[i].relocation_count >
877 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
878 return -EINVAL;
879
880 length = exec[i].relocation_count *
881 sizeof(struct drm_i915_gem_relocation_entry);
882 if (!access_ok(VERIFY_READ, ptr, length))
883 return -EFAULT;
884
885 /* we may also need to update the presumed offsets */
886 if (!access_ok(VERIFY_WRITE, ptr, length))
887 return -EFAULT;
888
889 if (fault_in_pages_readable(ptr, length))
890 return -EFAULT;
891 }
892
893 return 0;
894}
895
896static void
897i915_gem_execbuffer_move_to_active(struct list_head *objects,
898 struct intel_ring_buffer *ring,
899 u32 seqno)
900{
901 struct drm_i915_gem_object *obj;
902
903 list_for_each_entry(obj, objects, exec_list) {
904 u32 old_read = obj->base.read_domains;
905 u32 old_write = obj->base.write_domain;
906
907
908 obj->base.read_domains = obj->base.pending_read_domains;
909 obj->base.write_domain = obj->base.pending_write_domain;
910 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
911
912 i915_gem_object_move_to_active(obj, ring, seqno);
913 if (obj->base.write_domain) {
914 obj->dirty = 1;
915 obj->pending_gpu_write = true;
916 list_move_tail(&obj->gpu_write_list,
917 &ring->gpu_write_list);
918 intel_mark_busy(ring->dev, obj);
919 }
920
921 trace_i915_gem_object_change_domain(obj, old_read, old_write);
922 }
923}
924
925static void
926i915_gem_execbuffer_retire_commands(struct drm_device *dev,
927 struct drm_file *file,
928 struct intel_ring_buffer *ring)
929{
930 struct drm_i915_gem_request *request;
931 u32 invalidate;
932
933 /*
934 * Ensure that the commands in the batch buffer are
935 * finished before the interrupt fires.
936 *
937 * The sampler always gets flushed on i965 (sigh).
938 */
939 invalidate = I915_GEM_DOMAIN_COMMAND;
940 if (INTEL_INFO(dev)->gen >= 4)
941 invalidate |= I915_GEM_DOMAIN_SAMPLER;
942 if (ring->flush(ring, invalidate, 0)) {
943 i915_gem_next_request_seqno(ring);
944 return;
945 }
946
947 /* Add a breadcrumb for the completion of the batch buffer */
948 request = kzalloc(sizeof(*request), GFP_KERNEL);
949 if (request == NULL || i915_add_request(ring, file, request)) {
950 i915_gem_next_request_seqno(ring);
951 kfree(request);
952 }
953}
954
955static int
956i915_gem_do_execbuffer(struct drm_device *dev, void *data,
957 struct drm_file *file,
958 struct drm_i915_gem_execbuffer2 *args,
959 struct drm_i915_gem_exec_object2 *exec)
960{
961 drm_i915_private_t *dev_priv = dev->dev_private;
962 struct list_head objects;
963 struct eb_objects *eb;
964 struct drm_i915_gem_object *batch_obj;
965 struct drm_clip_rect *cliprects = NULL;
966 struct intel_ring_buffer *ring;
967 u32 exec_start, exec_len;
968 u32 seqno;
969 int ret, mode, i;
970
971 if (!i915_gem_check_execbuffer(args)) {
972 DRM_ERROR("execbuf with invalid offset/length\n");
973 return -EINVAL;
974 }
975
976 ret = validate_exec_list(exec, args->buffer_count);
977 if (ret)
978 return ret;
979
980 switch (args->flags & I915_EXEC_RING_MASK) {
981 case I915_EXEC_DEFAULT:
982 case I915_EXEC_RENDER:
983 ring = &dev_priv->ring[RCS];
984 break;
985 case I915_EXEC_BSD:
986 if (!HAS_BSD(dev)) {
987 DRM_ERROR("execbuf with invalid ring (BSD)\n");
988 return -EINVAL;
989 }
990 ring = &dev_priv->ring[VCS];
991 break;
992 case I915_EXEC_BLT:
993 if (!HAS_BLT(dev)) {
994 DRM_ERROR("execbuf with invalid ring (BLT)\n");
995 return -EINVAL;
996 }
997 ring = &dev_priv->ring[BCS];
998 break;
999 default:
1000 DRM_ERROR("execbuf with unknown ring: %d\n",
1001 (int)(args->flags & I915_EXEC_RING_MASK));
1002 return -EINVAL;
1003 }
1004
1005 mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1006 switch (mode) {
1007 case I915_EXEC_CONSTANTS_REL_GENERAL:
1008 case I915_EXEC_CONSTANTS_ABSOLUTE:
1009 case I915_EXEC_CONSTANTS_REL_SURFACE:
1010 if (ring == &dev_priv->ring[RCS] &&
1011 mode != dev_priv->relative_constants_mode) {
1012 if (INTEL_INFO(dev)->gen < 4)
1013 return -EINVAL;
1014
1015 if (INTEL_INFO(dev)->gen > 5 &&
1016 mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1017 return -EINVAL;
1018
1019 ret = intel_ring_begin(ring, 4);
1020 if (ret)
1021 return ret;
1022
1023 intel_ring_emit(ring, MI_NOOP);
1024 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1025 intel_ring_emit(ring, INSTPM);
1026 intel_ring_emit(ring,
1027 I915_EXEC_CONSTANTS_MASK << 16 | mode);
1028 intel_ring_advance(ring);
1029
1030 dev_priv->relative_constants_mode = mode;
1031 }
1032 break;
1033 default:
1034 DRM_ERROR("execbuf with unknown constants: %d\n", mode);
1035 return -EINVAL;
1036 }
1037
1038 if (args->buffer_count < 1) {
1039 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1040 return -EINVAL;
1041 }
1042
1043 if (args->num_cliprects != 0) {
1044 if (ring != &dev_priv->ring[RCS]) {
1045 DRM_ERROR("clip rectangles are only valid with the render ring\n");
1046 return -EINVAL;
1047 }
1048
1049 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1050 GFP_KERNEL);
1051 if (cliprects == NULL) {
1052 ret = -ENOMEM;
1053 goto pre_mutex_err;
1054 }
1055
1056 if (copy_from_user(cliprects,
1057 (struct drm_clip_rect __user *)(uintptr_t)
1058 args->cliprects_ptr,
1059 sizeof(*cliprects)*args->num_cliprects)) {
1060 ret = -EFAULT;
1061 goto pre_mutex_err;
1062 }
1063 }
1064
1065 ret = i915_mutex_lock_interruptible(dev);
1066 if (ret)
1067 goto pre_mutex_err;
1068
1069 if (dev_priv->mm.suspended) {
1070 mutex_unlock(&dev->struct_mutex);
1071 ret = -EBUSY;
1072 goto pre_mutex_err;
1073 }
1074
1075 eb = eb_create(args->buffer_count);
1076 if (eb == NULL) {
1077 mutex_unlock(&dev->struct_mutex);
1078 ret = -ENOMEM;
1079 goto pre_mutex_err;
1080 }
1081
1082 /* Look up object handles */
1083 INIT_LIST_HEAD(&objects);
1084 for (i = 0; i < args->buffer_count; i++) {
1085 struct drm_i915_gem_object *obj;
1086
1087 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1088 exec[i].handle));
1089 if (&obj->base == NULL) {
1090 DRM_ERROR("Invalid object handle %d at index %d\n",
1091 exec[i].handle, i);
1092 /* prevent error path from reading uninitialized data */
1093 ret = -ENOENT;
1094 goto err;
1095 }
1096
1097 if (!list_empty(&obj->exec_list)) {
1098 DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
1099 obj, exec[i].handle, i);
1100 ret = -EINVAL;
1101 goto err;
1102 }
1103
1104 list_add_tail(&obj->exec_list, &objects);
1105 obj->exec_handle = exec[i].handle;
1106 obj->exec_entry = &exec[i];
1107 eb_add_object(eb, obj);
1108 }
1109
1110 /* take note of the batch buffer before we might reorder the lists */
1111 batch_obj = list_entry(objects.prev,
1112 struct drm_i915_gem_object,
1113 exec_list);
1114
1115 /* Move the objects en-masse into the GTT, evicting if necessary. */
1116 ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1117 if (ret)
1118 goto err;
1119
1120 /* The objects are in their final locations, apply the relocations. */
1121 ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1122 if (ret) {
1123 if (ret == -EFAULT) {
1124 ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1125 &objects, eb,
1126 exec,
1127 args->buffer_count);
1128 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1129 }
1130 if (ret)
1131 goto err;
1132 }
1133
1134 /* Set the pending read domains for the batch buffer to COMMAND */
1135 if (batch_obj->base.pending_write_domain) {
1136 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
1137 ret = -EINVAL;
1138 goto err;
1139 }
1140 batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1141
1142 ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1143 if (ret)
1144 goto err;
1145
1146 seqno = i915_gem_next_request_seqno(ring);
1147 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1148 if (seqno < ring->sync_seqno[i]) {
1149 /* The GPU can not handle its semaphore value wrapping,
1150 * so every billion or so execbuffers, we need to stall
1151 * the GPU in order to reset the counters.
1152 */
1153 ret = i915_gpu_idle(dev);
1154 if (ret)
1155 goto err;
1156
1157 BUG_ON(ring->sync_seqno[i]);
1158 }
1159 }
1160
1161 trace_i915_gem_ring_dispatch(ring, seqno);
1162
1163 exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1164 exec_len = args->batch_len;
1165 if (cliprects) {
1166 for (i = 0; i < args->num_cliprects; i++) {
1167 ret = i915_emit_box(dev, &cliprects[i],
1168 args->DR1, args->DR4);
1169 if (ret)
1170 goto err;
1171
1172 ret = ring->dispatch_execbuffer(ring,
1173 exec_start, exec_len);
1174 if (ret)
1175 goto err;
1176 }
1177 } else {
1178 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1179 if (ret)
1180 goto err;
1181 }
1182
1183 i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1184 i915_gem_execbuffer_retire_commands(dev, file, ring);
1185
1186err:
1187 eb_destroy(eb);
1188 while (!list_empty(&objects)) {
1189 struct drm_i915_gem_object *obj;
1190
1191 obj = list_first_entry(&objects,
1192 struct drm_i915_gem_object,
1193 exec_list);
1194 list_del_init(&obj->exec_list);
1195 drm_gem_object_unreference(&obj->base);
1196 }
1197
1198 mutex_unlock(&dev->struct_mutex);
1199
1200pre_mutex_err:
1201 kfree(cliprects);
1202 return ret;
1203}
1204
1205/*
1206 * Legacy execbuffer just creates an exec2 list from the original exec object
1207 * list array and passes it to the real function.
1208 */
1209int
1210i915_gem_execbuffer(struct drm_device *dev, void *data,
1211 struct drm_file *file)
1212{
1213 struct drm_i915_gem_execbuffer *args = data;
1214 struct drm_i915_gem_execbuffer2 exec2;
1215 struct drm_i915_gem_exec_object *exec_list = NULL;
1216 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1217 int ret, i;
1218
1219 if (args->buffer_count < 1) {
1220 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1221 return -EINVAL;
1222 }
1223
1224 /* Copy in the exec list from userland */
1225 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1226 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1227 if (exec_list == NULL || exec2_list == NULL) {
1228 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1229 args->buffer_count);
1230 drm_free_large(exec_list);
1231 drm_free_large(exec2_list);
1232 return -ENOMEM;
1233 }
1234 ret = copy_from_user(exec_list,
1235 (struct drm_i915_relocation_entry __user *)
1236 (uintptr_t) args->buffers_ptr,
1237 sizeof(*exec_list) * args->buffer_count);
1238 if (ret != 0) {
1239 DRM_ERROR("copy %d exec entries failed %d\n",
1240 args->buffer_count, ret);
1241 drm_free_large(exec_list);
1242 drm_free_large(exec2_list);
1243 return -EFAULT;
1244 }
1245
1246 for (i = 0; i < args->buffer_count; i++) {
1247 exec2_list[i].handle = exec_list[i].handle;
1248 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1249 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1250 exec2_list[i].alignment = exec_list[i].alignment;
1251 exec2_list[i].offset = exec_list[i].offset;
1252 if (INTEL_INFO(dev)->gen < 4)
1253 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1254 else
1255 exec2_list[i].flags = 0;
1256 }
1257
1258 exec2.buffers_ptr = args->buffers_ptr;
1259 exec2.buffer_count = args->buffer_count;
1260 exec2.batch_start_offset = args->batch_start_offset;
1261 exec2.batch_len = args->batch_len;
1262 exec2.DR1 = args->DR1;
1263 exec2.DR4 = args->DR4;
1264 exec2.num_cliprects = args->num_cliprects;
1265 exec2.cliprects_ptr = args->cliprects_ptr;
1266 exec2.flags = I915_EXEC_RENDER;
1267
1268 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1269 if (!ret) {
1270 /* Copy the new buffer offsets back to the user's exec list. */
1271 for (i = 0; i < args->buffer_count; i++)
1272 exec_list[i].offset = exec2_list[i].offset;
1273 /* ... and back out to userspace */
1274 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1275 (uintptr_t) args->buffers_ptr,
1276 exec_list,
1277 sizeof(*exec_list) * args->buffer_count);
1278 if (ret) {
1279 ret = -EFAULT;
1280 DRM_ERROR("failed to copy %d exec entries "
1281 "back to user (%d)\n",
1282 args->buffer_count, ret);
1283 }
1284 }
1285
1286 drm_free_large(exec_list);
1287 drm_free_large(exec2_list);
1288 return ret;
1289}
1290
1291int
1292i915_gem_execbuffer2(struct drm_device *dev, void *data,
1293 struct drm_file *file)
1294{
1295 struct drm_i915_gem_execbuffer2 *args = data;
1296 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1297 int ret;
1298
1299 if (args->buffer_count < 1) {
1300 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
1301 return -EINVAL;
1302 }
1303
1304 exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
1305 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
1306 if (exec2_list == NULL)
1307 exec2_list = drm_malloc_ab(sizeof(*exec2_list),
1308 args->buffer_count);
1309 if (exec2_list == NULL) {
1310 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1311 args->buffer_count);
1312 return -ENOMEM;
1313 }
1314 ret = copy_from_user(exec2_list,
1315 (struct drm_i915_relocation_entry __user *)
1316 (uintptr_t) args->buffers_ptr,
1317 sizeof(*exec2_list) * args->buffer_count);
1318 if (ret != 0) {
1319 DRM_ERROR("copy %d exec entries failed %d\n",
1320 args->buffer_count, ret);
1321 drm_free_large(exec2_list);
1322 return -EFAULT;
1323 }
1324
1325 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1326 if (!ret) {
1327 /* Copy the new buffer offsets back to the user's exec list. */
1328 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1329 (uintptr_t) args->buffers_ptr,
1330 exec2_list,
1331 sizeof(*exec2_list) * args->buffer_count);
1332 if (ret) {
1333 ret = -EFAULT;
1334 DRM_ERROR("failed to copy %d exec entries "
1335 "back to user (%d)\n",
1336 args->buffer_count, ret);
1337 }
1338 }
1339
1340 drm_free_large(exec2_list);
1341 return ret;
1342}
1/*
2 * Copyright © 2008,2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
26 *
27 */
28
29#include "drmP.h"
30#include "drm.h"
31#include "i915_drm.h"
32#include "i915_drv.h"
33#include "i915_trace.h"
34#include "intel_drv.h"
35#include <linux/dma_remapping.h>
36
37struct change_domains {
38 uint32_t invalidate_domains;
39 uint32_t flush_domains;
40 uint32_t flush_rings;
41 uint32_t flips;
42};
43
44/*
45 * Set the next domain for the specified object. This
46 * may not actually perform the necessary flushing/invaliding though,
47 * as that may want to be batched with other set_domain operations
48 *
49 * This is (we hope) the only really tricky part of gem. The goal
50 * is fairly simple -- track which caches hold bits of the object
51 * and make sure they remain coherent. A few concrete examples may
52 * help to explain how it works. For shorthand, we use the notation
53 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
54 * a pair of read and write domain masks.
55 *
56 * Case 1: the batch buffer
57 *
58 * 1. Allocated
59 * 2. Written by CPU
60 * 3. Mapped to GTT
61 * 4. Read by GPU
62 * 5. Unmapped from GTT
63 * 6. Freed
64 *
65 * Let's take these a step at a time
66 *
67 * 1. Allocated
68 * Pages allocated from the kernel may still have
69 * cache contents, so we set them to (CPU, CPU) always.
70 * 2. Written by CPU (using pwrite)
71 * The pwrite function calls set_domain (CPU, CPU) and
72 * this function does nothing (as nothing changes)
73 * 3. Mapped by GTT
74 * This function asserts that the object is not
75 * currently in any GPU-based read or write domains
76 * 4. Read by GPU
77 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
78 * As write_domain is zero, this function adds in the
79 * current read domains (CPU+COMMAND, 0).
80 * flush_domains is set to CPU.
81 * invalidate_domains is set to COMMAND
82 * clflush is run to get data out of the CPU caches
83 * then i915_dev_set_domain calls i915_gem_flush to
84 * emit an MI_FLUSH and drm_agp_chipset_flush
85 * 5. Unmapped from GTT
86 * i915_gem_object_unbind calls set_domain (CPU, CPU)
87 * flush_domains and invalidate_domains end up both zero
88 * so no flushing/invalidating happens
89 * 6. Freed
90 * yay, done
91 *
92 * Case 2: The shared render buffer
93 *
94 * 1. Allocated
95 * 2. Mapped to GTT
96 * 3. Read/written by GPU
97 * 4. set_domain to (CPU,CPU)
98 * 5. Read/written by CPU
99 * 6. Read/written by GPU
100 *
101 * 1. Allocated
102 * Same as last example, (CPU, CPU)
103 * 2. Mapped to GTT
104 * Nothing changes (assertions find that it is not in the GPU)
105 * 3. Read/written by GPU
106 * execbuffer calls set_domain (RENDER, RENDER)
107 * flush_domains gets CPU
108 * invalidate_domains gets GPU
109 * clflush (obj)
110 * MI_FLUSH and drm_agp_chipset_flush
111 * 4. set_domain (CPU, CPU)
112 * flush_domains gets GPU
113 * invalidate_domains gets CPU
114 * wait_rendering (obj) to make sure all drawing is complete.
115 * This will include an MI_FLUSH to get the data from GPU
116 * to memory
117 * clflush (obj) to invalidate the CPU cache
118 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
119 * 5. Read/written by CPU
120 * cache lines are loaded and dirtied
121 * 6. Read written by GPU
122 * Same as last GPU access
123 *
124 * Case 3: The constant buffer
125 *
126 * 1. Allocated
127 * 2. Written by CPU
128 * 3. Read by GPU
129 * 4. Updated (written) by CPU again
130 * 5. Read by GPU
131 *
132 * 1. Allocated
133 * (CPU, CPU)
134 * 2. Written by CPU
135 * (CPU, CPU)
136 * 3. Read by GPU
137 * (CPU+RENDER, 0)
138 * flush_domains = CPU
139 * invalidate_domains = RENDER
140 * clflush (obj)
141 * MI_FLUSH
142 * drm_agp_chipset_flush
143 * 4. Updated (written) by CPU again
144 * (CPU, CPU)
145 * flush_domains = 0 (no previous write domain)
146 * invalidate_domains = 0 (no new read domains)
147 * 5. Read by GPU
148 * (CPU+RENDER, 0)
149 * flush_domains = CPU
150 * invalidate_domains = RENDER
151 * clflush (obj)
152 * MI_FLUSH
153 * drm_agp_chipset_flush
154 */
155static void
156i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
157 struct intel_ring_buffer *ring,
158 struct change_domains *cd)
159{
160 uint32_t invalidate_domains = 0, flush_domains = 0;
161
162 /*
163 * If the object isn't moving to a new write domain,
164 * let the object stay in multiple read domains
165 */
166 if (obj->base.pending_write_domain == 0)
167 obj->base.pending_read_domains |= obj->base.read_domains;
168
169 /*
170 * Flush the current write domain if
171 * the new read domains don't match. Invalidate
172 * any read domains which differ from the old
173 * write domain
174 */
175 if (obj->base.write_domain &&
176 (((obj->base.write_domain != obj->base.pending_read_domains ||
177 obj->ring != ring)) ||
178 (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
179 flush_domains |= obj->base.write_domain;
180 invalidate_domains |=
181 obj->base.pending_read_domains & ~obj->base.write_domain;
182 }
183 /*
184 * Invalidate any read caches which may have
185 * stale data. That is, any new read domains.
186 */
187 invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
188 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
189 i915_gem_clflush_object(obj);
190
191 if (obj->base.pending_write_domain)
192 cd->flips |= atomic_read(&obj->pending_flip);
193
194 /* The actual obj->write_domain will be updated with
195 * pending_write_domain after we emit the accumulated flush for all
196 * of our domain changes in execbuffers (which clears objects'
197 * write_domains). So if we have a current write domain that we
198 * aren't changing, set pending_write_domain to that.
199 */
200 if (flush_domains == 0 && obj->base.pending_write_domain == 0)
201 obj->base.pending_write_domain = obj->base.write_domain;
202
203 cd->invalidate_domains |= invalidate_domains;
204 cd->flush_domains |= flush_domains;
205 if (flush_domains & I915_GEM_GPU_DOMAINS)
206 cd->flush_rings |= intel_ring_flag(obj->ring);
207 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
208 cd->flush_rings |= intel_ring_flag(ring);
209}
210
211struct eb_objects {
212 int and;
213 struct hlist_head buckets[0];
214};
215
216static struct eb_objects *
217eb_create(int size)
218{
219 struct eb_objects *eb;
220 int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
221 while (count > size)
222 count >>= 1;
223 eb = kzalloc(count*sizeof(struct hlist_head) +
224 sizeof(struct eb_objects),
225 GFP_KERNEL);
226 if (eb == NULL)
227 return eb;
228
229 eb->and = count - 1;
230 return eb;
231}
232
233static void
234eb_reset(struct eb_objects *eb)
235{
236 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
237}
238
239static void
240eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
241{
242 hlist_add_head(&obj->exec_node,
243 &eb->buckets[obj->exec_handle & eb->and]);
244}
245
246static struct drm_i915_gem_object *
247eb_get_object(struct eb_objects *eb, unsigned long handle)
248{
249 struct hlist_head *head;
250 struct hlist_node *node;
251 struct drm_i915_gem_object *obj;
252
253 head = &eb->buckets[handle & eb->and];
254 hlist_for_each(node, head) {
255 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
256 if (obj->exec_handle == handle)
257 return obj;
258 }
259
260 return NULL;
261}
262
263static void
264eb_destroy(struct eb_objects *eb)
265{
266 kfree(eb);
267}
268
269static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
270{
271 return (obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
272 obj->cache_level != I915_CACHE_NONE);
273}
274
275static int
276i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
277 struct eb_objects *eb,
278 struct drm_i915_gem_relocation_entry *reloc)
279{
280 struct drm_device *dev = obj->base.dev;
281 struct drm_gem_object *target_obj;
282 struct drm_i915_gem_object *target_i915_obj;
283 uint32_t target_offset;
284 int ret = -EINVAL;
285
286 /* we've already hold a reference to all valid objects */
287 target_obj = &eb_get_object(eb, reloc->target_handle)->base;
288 if (unlikely(target_obj == NULL))
289 return -ENOENT;
290
291 target_i915_obj = to_intel_bo(target_obj);
292 target_offset = target_i915_obj->gtt_offset;
293
294 /* The target buffer should have appeared before us in the
295 * exec_object list, so it should have a GTT space bound by now.
296 */
297 if (unlikely(target_offset == 0)) {
298 DRM_DEBUG("No GTT space found for object %d\n",
299 reloc->target_handle);
300 return ret;
301 }
302
303 /* Validate that the target is in a valid r/w GPU domain */
304 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
305 DRM_DEBUG("reloc with multiple write domains: "
306 "obj %p target %d offset %d "
307 "read %08x write %08x",
308 obj, reloc->target_handle,
309 (int) reloc->offset,
310 reloc->read_domains,
311 reloc->write_domain);
312 return ret;
313 }
314 if (unlikely((reloc->write_domain | reloc->read_domains)
315 & ~I915_GEM_GPU_DOMAINS)) {
316 DRM_DEBUG("reloc with read/write non-GPU domains: "
317 "obj %p target %d offset %d "
318 "read %08x write %08x",
319 obj, reloc->target_handle,
320 (int) reloc->offset,
321 reloc->read_domains,
322 reloc->write_domain);
323 return ret;
324 }
325 if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
326 reloc->write_domain != target_obj->pending_write_domain)) {
327 DRM_DEBUG("Write domain conflict: "
328 "obj %p target %d offset %d "
329 "new %08x old %08x\n",
330 obj, reloc->target_handle,
331 (int) reloc->offset,
332 reloc->write_domain,
333 target_obj->pending_write_domain);
334 return ret;
335 }
336
337 target_obj->pending_read_domains |= reloc->read_domains;
338 target_obj->pending_write_domain |= reloc->write_domain;
339
340 /* If the relocation already has the right value in it, no
341 * more work needs to be done.
342 */
343 if (target_offset == reloc->presumed_offset)
344 return 0;
345
346 /* Check that the relocation address is valid... */
347 if (unlikely(reloc->offset > obj->base.size - 4)) {
348 DRM_DEBUG("Relocation beyond object bounds: "
349 "obj %p target %d offset %d size %d.\n",
350 obj, reloc->target_handle,
351 (int) reloc->offset,
352 (int) obj->base.size);
353 return ret;
354 }
355 if (unlikely(reloc->offset & 3)) {
356 DRM_DEBUG("Relocation not 4-byte aligned: "
357 "obj %p target %d offset %d.\n",
358 obj, reloc->target_handle,
359 (int) reloc->offset);
360 return ret;
361 }
362
363 /* We can't wait for rendering with pagefaults disabled */
364 if (obj->active && in_atomic())
365 return -EFAULT;
366
367 reloc->delta += target_offset;
368 if (use_cpu_reloc(obj)) {
369 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
370 char *vaddr;
371
372 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
373 if (ret)
374 return ret;
375
376 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
377 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
378 kunmap_atomic(vaddr);
379 } else {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 uint32_t __iomem *reloc_entry;
382 void __iomem *reloc_page;
383
384 ret = i915_gem_object_set_to_gtt_domain(obj, true);
385 if (ret)
386 return ret;
387
388 ret = i915_gem_object_put_fence(obj);
389 if (ret)
390 return ret;
391
392 /* Map the page containing the relocation we're going to perform. */
393 reloc->offset += obj->gtt_offset;
394 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
395 reloc->offset & PAGE_MASK);
396 reloc_entry = (uint32_t __iomem *)
397 (reloc_page + (reloc->offset & ~PAGE_MASK));
398 iowrite32(reloc->delta, reloc_entry);
399 io_mapping_unmap_atomic(reloc_page);
400 }
401
402 /* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
403 * pipe_control writes because the gpu doesn't properly redirect them
404 * through the ppgtt for non_secure batchbuffers. */
405 if (unlikely(IS_GEN6(dev) &&
406 reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
407 !target_i915_obj->has_global_gtt_mapping)) {
408 i915_gem_gtt_bind_object(target_i915_obj,
409 target_i915_obj->cache_level);
410 }
411
412 /* and update the user's relocation entry */
413 reloc->presumed_offset = target_offset;
414
415 return 0;
416}
417
418static int
419i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
420 struct eb_objects *eb)
421{
422#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
423 struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
424 struct drm_i915_gem_relocation_entry __user *user_relocs;
425 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
426 int remain, ret;
427
428 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
429
430 remain = entry->relocation_count;
431 while (remain) {
432 struct drm_i915_gem_relocation_entry *r = stack_reloc;
433 int count = remain;
434 if (count > ARRAY_SIZE(stack_reloc))
435 count = ARRAY_SIZE(stack_reloc);
436 remain -= count;
437
438 if (__copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0])))
439 return -EFAULT;
440
441 do {
442 u64 offset = r->presumed_offset;
443
444 ret = i915_gem_execbuffer_relocate_entry(obj, eb, r);
445 if (ret)
446 return ret;
447
448 if (r->presumed_offset != offset &&
449 __copy_to_user_inatomic(&user_relocs->presumed_offset,
450 &r->presumed_offset,
451 sizeof(r->presumed_offset))) {
452 return -EFAULT;
453 }
454
455 user_relocs++;
456 r++;
457 } while (--count);
458 }
459
460 return 0;
461#undef N_RELOC
462}
463
464static int
465i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
466 struct eb_objects *eb,
467 struct drm_i915_gem_relocation_entry *relocs)
468{
469 const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
470 int i, ret;
471
472 for (i = 0; i < entry->relocation_count; i++) {
473 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
474 if (ret)
475 return ret;
476 }
477
478 return 0;
479}
480
481static int
482i915_gem_execbuffer_relocate(struct drm_device *dev,
483 struct eb_objects *eb,
484 struct list_head *objects)
485{
486 struct drm_i915_gem_object *obj;
487 int ret = 0;
488
489 /* This is the fast path and we cannot handle a pagefault whilst
490 * holding the struct mutex lest the user pass in the relocations
491 * contained within a mmaped bo. For in such a case we, the page
492 * fault handler would call i915_gem_fault() and we would try to
493 * acquire the struct mutex again. Obviously this is bad and so
494 * lockdep complains vehemently.
495 */
496 pagefault_disable();
497 list_for_each_entry(obj, objects, exec_list) {
498 ret = i915_gem_execbuffer_relocate_object(obj, eb);
499 if (ret)
500 break;
501 }
502 pagefault_enable();
503
504 return ret;
505}
506
507#define __EXEC_OBJECT_HAS_FENCE (1<<31)
508
509static int
510need_reloc_mappable(struct drm_i915_gem_object *obj)
511{
512 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
513 return entry->relocation_count && !use_cpu_reloc(obj);
514}
515
516static int
517pin_and_fence_object(struct drm_i915_gem_object *obj,
518 struct intel_ring_buffer *ring)
519{
520 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
521 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
522 bool need_fence, need_mappable;
523 int ret;
524
525 need_fence =
526 has_fenced_gpu_access &&
527 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
528 obj->tiling_mode != I915_TILING_NONE;
529 need_mappable = need_fence || need_reloc_mappable(obj);
530
531 ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
532 if (ret)
533 return ret;
534
535 if (has_fenced_gpu_access) {
536 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
537 ret = i915_gem_object_get_fence(obj);
538 if (ret)
539 goto err_unpin;
540
541 if (i915_gem_object_pin_fence(obj))
542 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
543
544 obj->pending_fenced_gpu_access = true;
545 }
546 }
547
548 entry->offset = obj->gtt_offset;
549 return 0;
550
551err_unpin:
552 i915_gem_object_unpin(obj);
553 return ret;
554}
555
556static int
557i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
558 struct drm_file *file,
559 struct list_head *objects)
560{
561 drm_i915_private_t *dev_priv = ring->dev->dev_private;
562 struct drm_i915_gem_object *obj;
563 int ret, retry;
564 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
565 struct list_head ordered_objects;
566
567 INIT_LIST_HEAD(&ordered_objects);
568 while (!list_empty(objects)) {
569 struct drm_i915_gem_exec_object2 *entry;
570 bool need_fence, need_mappable;
571
572 obj = list_first_entry(objects,
573 struct drm_i915_gem_object,
574 exec_list);
575 entry = obj->exec_entry;
576
577 need_fence =
578 has_fenced_gpu_access &&
579 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
580 obj->tiling_mode != I915_TILING_NONE;
581 need_mappable = need_fence || need_reloc_mappable(obj);
582
583 if (need_mappable)
584 list_move(&obj->exec_list, &ordered_objects);
585 else
586 list_move_tail(&obj->exec_list, &ordered_objects);
587
588 obj->base.pending_read_domains = 0;
589 obj->base.pending_write_domain = 0;
590 }
591 list_splice(&ordered_objects, objects);
592
593 /* Attempt to pin all of the buffers into the GTT.
594 * This is done in 3 phases:
595 *
596 * 1a. Unbind all objects that do not match the GTT constraints for
597 * the execbuffer (fenceable, mappable, alignment etc).
598 * 1b. Increment pin count for already bound objects.
599 * 2. Bind new objects.
600 * 3. Decrement pin count.
601 *
602 * This avoid unnecessary unbinding of later objects in order to makr
603 * room for the earlier objects *unless* we need to defragment.
604 */
605 retry = 0;
606 do {
607 ret = 0;
608
609 /* Unbind any ill-fitting objects or pin. */
610 list_for_each_entry(obj, objects, exec_list) {
611 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
612 bool need_fence, need_mappable;
613
614 if (!obj->gtt_space)
615 continue;
616
617 need_fence =
618 has_fenced_gpu_access &&
619 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
620 obj->tiling_mode != I915_TILING_NONE;
621 need_mappable = need_fence || need_reloc_mappable(obj);
622
623 if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
624 (need_mappable && !obj->map_and_fenceable))
625 ret = i915_gem_object_unbind(obj);
626 else
627 ret = pin_and_fence_object(obj, ring);
628 if (ret)
629 goto err;
630 }
631
632 /* Bind fresh objects */
633 list_for_each_entry(obj, objects, exec_list) {
634 if (obj->gtt_space)
635 continue;
636
637 ret = pin_and_fence_object(obj, ring);
638 if (ret) {
639 int ret_ignore;
640
641 /* This can potentially raise a harmless
642 * -EINVAL if we failed to bind in the above
643 * call. It cannot raise -EINTR since we know
644 * that the bo is freshly bound and so will
645 * not need to be flushed or waited upon.
646 */
647 ret_ignore = i915_gem_object_unbind(obj);
648 (void)ret_ignore;
649 WARN_ON(obj->gtt_space);
650 break;
651 }
652 }
653
654 /* Decrement pin count for bound objects */
655 list_for_each_entry(obj, objects, exec_list) {
656 struct drm_i915_gem_exec_object2 *entry;
657
658 if (!obj->gtt_space)
659 continue;
660
661 entry = obj->exec_entry;
662 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
663 i915_gem_object_unpin_fence(obj);
664 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
665 }
666
667 i915_gem_object_unpin(obj);
668
669 /* ... and ensure ppgtt mapping exist if needed. */
670 if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) {
671 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
672 obj, obj->cache_level);
673
674 obj->has_aliasing_ppgtt_mapping = 1;
675 }
676 }
677
678 if (ret != -ENOSPC || retry > 1)
679 return ret;
680
681 /* First attempt, just clear anything that is purgeable.
682 * Second attempt, clear the entire GTT.
683 */
684 ret = i915_gem_evict_everything(ring->dev, retry == 0);
685 if (ret)
686 return ret;
687
688 retry++;
689 } while (1);
690
691err:
692 list_for_each_entry_continue_reverse(obj, objects, exec_list) {
693 struct drm_i915_gem_exec_object2 *entry;
694
695 if (!obj->gtt_space)
696 continue;
697
698 entry = obj->exec_entry;
699 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
700 i915_gem_object_unpin_fence(obj);
701 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
702 }
703
704 i915_gem_object_unpin(obj);
705 }
706
707 return ret;
708}
709
710static int
711i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
712 struct drm_file *file,
713 struct intel_ring_buffer *ring,
714 struct list_head *objects,
715 struct eb_objects *eb,
716 struct drm_i915_gem_exec_object2 *exec,
717 int count)
718{
719 struct drm_i915_gem_relocation_entry *reloc;
720 struct drm_i915_gem_object *obj;
721 int *reloc_offset;
722 int i, total, ret;
723
724 /* We may process another execbuffer during the unlock... */
725 while (!list_empty(objects)) {
726 obj = list_first_entry(objects,
727 struct drm_i915_gem_object,
728 exec_list);
729 list_del_init(&obj->exec_list);
730 drm_gem_object_unreference(&obj->base);
731 }
732
733 mutex_unlock(&dev->struct_mutex);
734
735 total = 0;
736 for (i = 0; i < count; i++)
737 total += exec[i].relocation_count;
738
739 reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
740 reloc = drm_malloc_ab(total, sizeof(*reloc));
741 if (reloc == NULL || reloc_offset == NULL) {
742 drm_free_large(reloc);
743 drm_free_large(reloc_offset);
744 mutex_lock(&dev->struct_mutex);
745 return -ENOMEM;
746 }
747
748 total = 0;
749 for (i = 0; i < count; i++) {
750 struct drm_i915_gem_relocation_entry __user *user_relocs;
751
752 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
753
754 if (copy_from_user(reloc+total, user_relocs,
755 exec[i].relocation_count * sizeof(*reloc))) {
756 ret = -EFAULT;
757 mutex_lock(&dev->struct_mutex);
758 goto err;
759 }
760
761 reloc_offset[i] = total;
762 total += exec[i].relocation_count;
763 }
764
765 ret = i915_mutex_lock_interruptible(dev);
766 if (ret) {
767 mutex_lock(&dev->struct_mutex);
768 goto err;
769 }
770
771 /* reacquire the objects */
772 eb_reset(eb);
773 for (i = 0; i < count; i++) {
774 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
775 exec[i].handle));
776 if (&obj->base == NULL) {
777 DRM_DEBUG("Invalid object handle %d at index %d\n",
778 exec[i].handle, i);
779 ret = -ENOENT;
780 goto err;
781 }
782
783 list_add_tail(&obj->exec_list, objects);
784 obj->exec_handle = exec[i].handle;
785 obj->exec_entry = &exec[i];
786 eb_add_object(eb, obj);
787 }
788
789 ret = i915_gem_execbuffer_reserve(ring, file, objects);
790 if (ret)
791 goto err;
792
793 list_for_each_entry(obj, objects, exec_list) {
794 int offset = obj->exec_entry - exec;
795 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
796 reloc + reloc_offset[offset]);
797 if (ret)
798 goto err;
799 }
800
801 /* Leave the user relocations as are, this is the painfully slow path,
802 * and we want to avoid the complication of dropping the lock whilst
803 * having buffers reserved in the aperture and so causing spurious
804 * ENOSPC for random operations.
805 */
806
807err:
808 drm_free_large(reloc);
809 drm_free_large(reloc_offset);
810 return ret;
811}
812
813static int
814i915_gem_execbuffer_flush(struct drm_device *dev,
815 uint32_t invalidate_domains,
816 uint32_t flush_domains,
817 uint32_t flush_rings)
818{
819 drm_i915_private_t *dev_priv = dev->dev_private;
820 int i, ret;
821
822 if (flush_domains & I915_GEM_DOMAIN_CPU)
823 intel_gtt_chipset_flush();
824
825 if (flush_domains & I915_GEM_DOMAIN_GTT)
826 wmb();
827
828 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
829 for (i = 0; i < I915_NUM_RINGS; i++)
830 if (flush_rings & (1 << i)) {
831 ret = i915_gem_flush_ring(&dev_priv->ring[i],
832 invalidate_domains,
833 flush_domains);
834 if (ret)
835 return ret;
836 }
837 }
838
839 return 0;
840}
841
842static int
843i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
844{
845 u32 plane, flip_mask;
846 int ret;
847
848 /* Check for any pending flips. As we only maintain a flip queue depth
849 * of 1, we can simply insert a WAIT for the next display flip prior
850 * to executing the batch and avoid stalling the CPU.
851 */
852
853 for (plane = 0; flips >> plane; plane++) {
854 if (((flips >> plane) & 1) == 0)
855 continue;
856
857 if (plane)
858 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
859 else
860 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
861
862 ret = intel_ring_begin(ring, 2);
863 if (ret)
864 return ret;
865
866 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
867 intel_ring_emit(ring, MI_NOOP);
868 intel_ring_advance(ring);
869 }
870
871 return 0;
872}
873
874
875static int
876i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
877 struct list_head *objects)
878{
879 struct drm_i915_gem_object *obj;
880 struct change_domains cd;
881 int ret;
882
883 memset(&cd, 0, sizeof(cd));
884 list_for_each_entry(obj, objects, exec_list)
885 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
886
887 if (cd.invalidate_domains | cd.flush_domains) {
888 ret = i915_gem_execbuffer_flush(ring->dev,
889 cd.invalidate_domains,
890 cd.flush_domains,
891 cd.flush_rings);
892 if (ret)
893 return ret;
894 }
895
896 if (cd.flips) {
897 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
898 if (ret)
899 return ret;
900 }
901
902 list_for_each_entry(obj, objects, exec_list) {
903 ret = i915_gem_object_sync(obj, ring);
904 if (ret)
905 return ret;
906 }
907
908 return 0;
909}
910
911static bool
912i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
913{
914 return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
915}
916
917static int
918validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
919 int count)
920{
921 int i;
922
923 for (i = 0; i < count; i++) {
924 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
925 int length; /* limited by fault_in_pages_readable() */
926
927 /* First check for malicious input causing overflow */
928 if (exec[i].relocation_count >
929 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
930 return -EINVAL;
931
932 length = exec[i].relocation_count *
933 sizeof(struct drm_i915_gem_relocation_entry);
934 if (!access_ok(VERIFY_READ, ptr, length))
935 return -EFAULT;
936
937 /* we may also need to update the presumed offsets */
938 if (!access_ok(VERIFY_WRITE, ptr, length))
939 return -EFAULT;
940
941 if (fault_in_multipages_readable(ptr, length))
942 return -EFAULT;
943 }
944
945 return 0;
946}
947
948static void
949i915_gem_execbuffer_move_to_active(struct list_head *objects,
950 struct intel_ring_buffer *ring,
951 u32 seqno)
952{
953 struct drm_i915_gem_object *obj;
954
955 list_for_each_entry(obj, objects, exec_list) {
956 u32 old_read = obj->base.read_domains;
957 u32 old_write = obj->base.write_domain;
958
959
960 obj->base.read_domains = obj->base.pending_read_domains;
961 obj->base.write_domain = obj->base.pending_write_domain;
962 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
963
964 i915_gem_object_move_to_active(obj, ring, seqno);
965 if (obj->base.write_domain) {
966 obj->dirty = 1;
967 obj->pending_gpu_write = true;
968 list_move_tail(&obj->gpu_write_list,
969 &ring->gpu_write_list);
970 if (obj->pin_count) /* check for potential scanout */
971 intel_mark_busy(ring->dev, obj);
972 }
973
974 trace_i915_gem_object_change_domain(obj, old_read, old_write);
975 }
976
977 intel_mark_busy(ring->dev, NULL);
978}
979
980static void
981i915_gem_execbuffer_retire_commands(struct drm_device *dev,
982 struct drm_file *file,
983 struct intel_ring_buffer *ring)
984{
985 struct drm_i915_gem_request *request;
986 u32 invalidate;
987
988 /*
989 * Ensure that the commands in the batch buffer are
990 * finished before the interrupt fires.
991 *
992 * The sampler always gets flushed on i965 (sigh).
993 */
994 invalidate = I915_GEM_DOMAIN_COMMAND;
995 if (INTEL_INFO(dev)->gen >= 4)
996 invalidate |= I915_GEM_DOMAIN_SAMPLER;
997 if (ring->flush(ring, invalidate, 0)) {
998 i915_gem_next_request_seqno(ring);
999 return;
1000 }
1001
1002 /* Add a breadcrumb for the completion of the batch buffer */
1003 request = kzalloc(sizeof(*request), GFP_KERNEL);
1004 if (request == NULL || i915_add_request(ring, file, request)) {
1005 i915_gem_next_request_seqno(ring);
1006 kfree(request);
1007 }
1008}
1009
1010static int
1011i915_reset_gen7_sol_offsets(struct drm_device *dev,
1012 struct intel_ring_buffer *ring)
1013{
1014 drm_i915_private_t *dev_priv = dev->dev_private;
1015 int ret, i;
1016
1017 if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
1018 return 0;
1019
1020 ret = intel_ring_begin(ring, 4 * 3);
1021 if (ret)
1022 return ret;
1023
1024 for (i = 0; i < 4; i++) {
1025 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1026 intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
1027 intel_ring_emit(ring, 0);
1028 }
1029
1030 intel_ring_advance(ring);
1031
1032 return 0;
1033}
1034
1035static int
1036i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1037 struct drm_file *file,
1038 struct drm_i915_gem_execbuffer2 *args,
1039 struct drm_i915_gem_exec_object2 *exec)
1040{
1041 drm_i915_private_t *dev_priv = dev->dev_private;
1042 struct list_head objects;
1043 struct eb_objects *eb;
1044 struct drm_i915_gem_object *batch_obj;
1045 struct drm_clip_rect *cliprects = NULL;
1046 struct intel_ring_buffer *ring;
1047 u32 exec_start, exec_len;
1048 u32 seqno;
1049 u32 mask;
1050 int ret, mode, i;
1051
1052 if (!i915_gem_check_execbuffer(args)) {
1053 DRM_DEBUG("execbuf with invalid offset/length\n");
1054 return -EINVAL;
1055 }
1056
1057 ret = validate_exec_list(exec, args->buffer_count);
1058 if (ret)
1059 return ret;
1060
1061 switch (args->flags & I915_EXEC_RING_MASK) {
1062 case I915_EXEC_DEFAULT:
1063 case I915_EXEC_RENDER:
1064 ring = &dev_priv->ring[RCS];
1065 break;
1066 case I915_EXEC_BSD:
1067 ring = &dev_priv->ring[VCS];
1068 break;
1069 case I915_EXEC_BLT:
1070 ring = &dev_priv->ring[BCS];
1071 break;
1072 default:
1073 DRM_DEBUG("execbuf with unknown ring: %d\n",
1074 (int)(args->flags & I915_EXEC_RING_MASK));
1075 return -EINVAL;
1076 }
1077 if (!intel_ring_initialized(ring)) {
1078 DRM_DEBUG("execbuf with invalid ring: %d\n",
1079 (int)(args->flags & I915_EXEC_RING_MASK));
1080 return -EINVAL;
1081 }
1082
1083 mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1084 mask = I915_EXEC_CONSTANTS_MASK;
1085 switch (mode) {
1086 case I915_EXEC_CONSTANTS_REL_GENERAL:
1087 case I915_EXEC_CONSTANTS_ABSOLUTE:
1088 case I915_EXEC_CONSTANTS_REL_SURFACE:
1089 if (ring == &dev_priv->ring[RCS] &&
1090 mode != dev_priv->relative_constants_mode) {
1091 if (INTEL_INFO(dev)->gen < 4)
1092 return -EINVAL;
1093
1094 if (INTEL_INFO(dev)->gen > 5 &&
1095 mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1096 return -EINVAL;
1097
1098 /* The HW changed the meaning on this bit on gen6 */
1099 if (INTEL_INFO(dev)->gen >= 6)
1100 mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1101 }
1102 break;
1103 default:
1104 DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
1105 return -EINVAL;
1106 }
1107
1108 if (args->buffer_count < 1) {
1109 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1110 return -EINVAL;
1111 }
1112
1113 if (args->num_cliprects != 0) {
1114 if (ring != &dev_priv->ring[RCS]) {
1115 DRM_DEBUG("clip rectangles are only valid with the render ring\n");
1116 return -EINVAL;
1117 }
1118
1119 if (INTEL_INFO(dev)->gen >= 5) {
1120 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
1121 return -EINVAL;
1122 }
1123
1124 if (args->num_cliprects > UINT_MAX / sizeof(*cliprects)) {
1125 DRM_DEBUG("execbuf with %u cliprects\n",
1126 args->num_cliprects);
1127 return -EINVAL;
1128 }
1129
1130 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1131 GFP_KERNEL);
1132 if (cliprects == NULL) {
1133 ret = -ENOMEM;
1134 goto pre_mutex_err;
1135 }
1136
1137 if (copy_from_user(cliprects,
1138 (struct drm_clip_rect __user *)(uintptr_t)
1139 args->cliprects_ptr,
1140 sizeof(*cliprects)*args->num_cliprects)) {
1141 ret = -EFAULT;
1142 goto pre_mutex_err;
1143 }
1144 }
1145
1146 ret = i915_mutex_lock_interruptible(dev);
1147 if (ret)
1148 goto pre_mutex_err;
1149
1150 if (dev_priv->mm.suspended) {
1151 mutex_unlock(&dev->struct_mutex);
1152 ret = -EBUSY;
1153 goto pre_mutex_err;
1154 }
1155
1156 eb = eb_create(args->buffer_count);
1157 if (eb == NULL) {
1158 mutex_unlock(&dev->struct_mutex);
1159 ret = -ENOMEM;
1160 goto pre_mutex_err;
1161 }
1162
1163 /* Look up object handles */
1164 INIT_LIST_HEAD(&objects);
1165 for (i = 0; i < args->buffer_count; i++) {
1166 struct drm_i915_gem_object *obj;
1167
1168 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1169 exec[i].handle));
1170 if (&obj->base == NULL) {
1171 DRM_DEBUG("Invalid object handle %d at index %d\n",
1172 exec[i].handle, i);
1173 /* prevent error path from reading uninitialized data */
1174 ret = -ENOENT;
1175 goto err;
1176 }
1177
1178 if (!list_empty(&obj->exec_list)) {
1179 DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
1180 obj, exec[i].handle, i);
1181 ret = -EINVAL;
1182 goto err;
1183 }
1184
1185 list_add_tail(&obj->exec_list, &objects);
1186 obj->exec_handle = exec[i].handle;
1187 obj->exec_entry = &exec[i];
1188 eb_add_object(eb, obj);
1189 }
1190
1191 /* take note of the batch buffer before we might reorder the lists */
1192 batch_obj = list_entry(objects.prev,
1193 struct drm_i915_gem_object,
1194 exec_list);
1195
1196 /* Move the objects en-masse into the GTT, evicting if necessary. */
1197 ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1198 if (ret)
1199 goto err;
1200
1201 /* The objects are in their final locations, apply the relocations. */
1202 ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1203 if (ret) {
1204 if (ret == -EFAULT) {
1205 ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1206 &objects, eb,
1207 exec,
1208 args->buffer_count);
1209 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1210 }
1211 if (ret)
1212 goto err;
1213 }
1214
1215 /* Set the pending read domains for the batch buffer to COMMAND */
1216 if (batch_obj->base.pending_write_domain) {
1217 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1218 ret = -EINVAL;
1219 goto err;
1220 }
1221 batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1222
1223 ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1224 if (ret)
1225 goto err;
1226
1227 seqno = i915_gem_next_request_seqno(ring);
1228 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1229 if (seqno < ring->sync_seqno[i]) {
1230 /* The GPU can not handle its semaphore value wrapping,
1231 * so every billion or so execbuffers, we need to stall
1232 * the GPU in order to reset the counters.
1233 */
1234 ret = i915_gpu_idle(dev);
1235 if (ret)
1236 goto err;
1237 i915_gem_retire_requests(dev);
1238
1239 BUG_ON(ring->sync_seqno[i]);
1240 }
1241 }
1242
1243 if (ring == &dev_priv->ring[RCS] &&
1244 mode != dev_priv->relative_constants_mode) {
1245 ret = intel_ring_begin(ring, 4);
1246 if (ret)
1247 goto err;
1248
1249 intel_ring_emit(ring, MI_NOOP);
1250 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1251 intel_ring_emit(ring, INSTPM);
1252 intel_ring_emit(ring, mask << 16 | mode);
1253 intel_ring_advance(ring);
1254
1255 dev_priv->relative_constants_mode = mode;
1256 }
1257
1258 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1259 ret = i915_reset_gen7_sol_offsets(dev, ring);
1260 if (ret)
1261 goto err;
1262 }
1263
1264 trace_i915_gem_ring_dispatch(ring, seqno);
1265
1266 exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1267 exec_len = args->batch_len;
1268 if (cliprects) {
1269 for (i = 0; i < args->num_cliprects; i++) {
1270 ret = i915_emit_box(dev, &cliprects[i],
1271 args->DR1, args->DR4);
1272 if (ret)
1273 goto err;
1274
1275 ret = ring->dispatch_execbuffer(ring,
1276 exec_start, exec_len);
1277 if (ret)
1278 goto err;
1279 }
1280 } else {
1281 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1282 if (ret)
1283 goto err;
1284 }
1285
1286 i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1287 i915_gem_execbuffer_retire_commands(dev, file, ring);
1288
1289err:
1290 eb_destroy(eb);
1291 while (!list_empty(&objects)) {
1292 struct drm_i915_gem_object *obj;
1293
1294 obj = list_first_entry(&objects,
1295 struct drm_i915_gem_object,
1296 exec_list);
1297 list_del_init(&obj->exec_list);
1298 drm_gem_object_unreference(&obj->base);
1299 }
1300
1301 mutex_unlock(&dev->struct_mutex);
1302
1303pre_mutex_err:
1304 kfree(cliprects);
1305 return ret;
1306}
1307
1308/*
1309 * Legacy execbuffer just creates an exec2 list from the original exec object
1310 * list array and passes it to the real function.
1311 */
1312int
1313i915_gem_execbuffer(struct drm_device *dev, void *data,
1314 struct drm_file *file)
1315{
1316 struct drm_i915_gem_execbuffer *args = data;
1317 struct drm_i915_gem_execbuffer2 exec2;
1318 struct drm_i915_gem_exec_object *exec_list = NULL;
1319 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1320 int ret, i;
1321
1322 if (args->buffer_count < 1) {
1323 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1324 return -EINVAL;
1325 }
1326
1327 /* Copy in the exec list from userland */
1328 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1329 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1330 if (exec_list == NULL || exec2_list == NULL) {
1331 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1332 args->buffer_count);
1333 drm_free_large(exec_list);
1334 drm_free_large(exec2_list);
1335 return -ENOMEM;
1336 }
1337 ret = copy_from_user(exec_list,
1338 (struct drm_i915_relocation_entry __user *)
1339 (uintptr_t) args->buffers_ptr,
1340 sizeof(*exec_list) * args->buffer_count);
1341 if (ret != 0) {
1342 DRM_DEBUG("copy %d exec entries failed %d\n",
1343 args->buffer_count, ret);
1344 drm_free_large(exec_list);
1345 drm_free_large(exec2_list);
1346 return -EFAULT;
1347 }
1348
1349 for (i = 0; i < args->buffer_count; i++) {
1350 exec2_list[i].handle = exec_list[i].handle;
1351 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1352 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1353 exec2_list[i].alignment = exec_list[i].alignment;
1354 exec2_list[i].offset = exec_list[i].offset;
1355 if (INTEL_INFO(dev)->gen < 4)
1356 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1357 else
1358 exec2_list[i].flags = 0;
1359 }
1360
1361 exec2.buffers_ptr = args->buffers_ptr;
1362 exec2.buffer_count = args->buffer_count;
1363 exec2.batch_start_offset = args->batch_start_offset;
1364 exec2.batch_len = args->batch_len;
1365 exec2.DR1 = args->DR1;
1366 exec2.DR4 = args->DR4;
1367 exec2.num_cliprects = args->num_cliprects;
1368 exec2.cliprects_ptr = args->cliprects_ptr;
1369 exec2.flags = I915_EXEC_RENDER;
1370
1371 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1372 if (!ret) {
1373 /* Copy the new buffer offsets back to the user's exec list. */
1374 for (i = 0; i < args->buffer_count; i++)
1375 exec_list[i].offset = exec2_list[i].offset;
1376 /* ... and back out to userspace */
1377 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1378 (uintptr_t) args->buffers_ptr,
1379 exec_list,
1380 sizeof(*exec_list) * args->buffer_count);
1381 if (ret) {
1382 ret = -EFAULT;
1383 DRM_DEBUG("failed to copy %d exec entries "
1384 "back to user (%d)\n",
1385 args->buffer_count, ret);
1386 }
1387 }
1388
1389 drm_free_large(exec_list);
1390 drm_free_large(exec2_list);
1391 return ret;
1392}
1393
1394int
1395i915_gem_execbuffer2(struct drm_device *dev, void *data,
1396 struct drm_file *file)
1397{
1398 struct drm_i915_gem_execbuffer2 *args = data;
1399 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1400 int ret;
1401
1402 if (args->buffer_count < 1 ||
1403 args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1404 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1405 return -EINVAL;
1406 }
1407
1408 exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
1409 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
1410 if (exec2_list == NULL)
1411 exec2_list = drm_malloc_ab(sizeof(*exec2_list),
1412 args->buffer_count);
1413 if (exec2_list == NULL) {
1414 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1415 args->buffer_count);
1416 return -ENOMEM;
1417 }
1418 ret = copy_from_user(exec2_list,
1419 (struct drm_i915_relocation_entry __user *)
1420 (uintptr_t) args->buffers_ptr,
1421 sizeof(*exec2_list) * args->buffer_count);
1422 if (ret != 0) {
1423 DRM_DEBUG("copy %d exec entries failed %d\n",
1424 args->buffer_count, ret);
1425 drm_free_large(exec2_list);
1426 return -EFAULT;
1427 }
1428
1429 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1430 if (!ret) {
1431 /* Copy the new buffer offsets back to the user's exec list. */
1432 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1433 (uintptr_t) args->buffers_ptr,
1434 exec2_list,
1435 sizeof(*exec2_list) * args->buffer_count);
1436 if (ret) {
1437 ret = -EFAULT;
1438 DRM_DEBUG("failed to copy %d exec entries "
1439 "back to user (%d)\n",
1440 args->buffer_count, ret);
1441 }
1442 }
1443
1444 drm_free_large(exec2_list);
1445 return ret;
1446}