Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright © 2008,2010 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *    Chris Wilson <chris@chris-wilson.co.uk>
  26 *
  27 */
  28
  29#include "drmP.h"
  30#include "drm.h"
  31#include "i915_drm.h"
 
 
 
 
  32#include "i915_drv.h"
  33#include "i915_trace.h"
  34#include "intel_drv.h"
 
 
 
  35
  36struct change_domains {
  37	uint32_t invalidate_domains;
  38	uint32_t flush_domains;
  39	uint32_t flush_rings;
  40	uint32_t flips;
 
 
 
 
 
 
 
 
 
 
 
 
  41};
  42
  43/*
  44 * Set the next domain for the specified object. This
  45 * may not actually perform the necessary flushing/invaliding though,
  46 * as that may want to be batched with other set_domain operations
  47 *
  48 * This is (we hope) the only really tricky part of gem. The goal
  49 * is fairly simple -- track which caches hold bits of the object
  50 * and make sure they remain coherent. A few concrete examples may
  51 * help to explain how it works. For shorthand, we use the notation
  52 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  53 * a pair of read and write domain masks.
  54 *
  55 * Case 1: the batch buffer
  56 *
  57 *	1. Allocated
  58 *	2. Written by CPU
  59 *	3. Mapped to GTT
  60 *	4. Read by GPU
  61 *	5. Unmapped from GTT
  62 *	6. Freed
  63 *
  64 *	Let's take these a step at a time
  65 *
  66 *	1. Allocated
  67 *		Pages allocated from the kernel may still have
  68 *		cache contents, so we set them to (CPU, CPU) always.
  69 *	2. Written by CPU (using pwrite)
  70 *		The pwrite function calls set_domain (CPU, CPU) and
  71 *		this function does nothing (as nothing changes)
  72 *	3. Mapped by GTT
  73 *		This function asserts that the object is not
  74 *		currently in any GPU-based read or write domains
  75 *	4. Read by GPU
  76 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
  77 *		As write_domain is zero, this function adds in the
  78 *		current read domains (CPU+COMMAND, 0).
  79 *		flush_domains is set to CPU.
  80 *		invalidate_domains is set to COMMAND
  81 *		clflush is run to get data out of the CPU caches
  82 *		then i915_dev_set_domain calls i915_gem_flush to
  83 *		emit an MI_FLUSH and drm_agp_chipset_flush
  84 *	5. Unmapped from GTT
  85 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
  86 *		flush_domains and invalidate_domains end up both zero
  87 *		so no flushing/invalidating happens
  88 *	6. Freed
  89 *		yay, done
  90 *
  91 * Case 2: The shared render buffer
  92 *
  93 *	1. Allocated
  94 *	2. Mapped to GTT
  95 *	3. Read/written by GPU
  96 *	4. set_domain to (CPU,CPU)
  97 *	5. Read/written by CPU
  98 *	6. Read/written by GPU
  99 *
 100 *	1. Allocated
 101 *		Same as last example, (CPU, CPU)
 102 *	2. Mapped to GTT
 103 *		Nothing changes (assertions find that it is not in the GPU)
 104 *	3. Read/written by GPU
 105 *		execbuffer calls set_domain (RENDER, RENDER)
 106 *		flush_domains gets CPU
 107 *		invalidate_domains gets GPU
 108 *		clflush (obj)
 109 *		MI_FLUSH and drm_agp_chipset_flush
 110 *	4. set_domain (CPU, CPU)
 111 *		flush_domains gets GPU
 112 *		invalidate_domains gets CPU
 113 *		wait_rendering (obj) to make sure all drawing is complete.
 114 *		This will include an MI_FLUSH to get the data from GPU
 115 *		to memory
 116 *		clflush (obj) to invalidate the CPU cache
 117 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 118 *	5. Read/written by CPU
 119 *		cache lines are loaded and dirtied
 120 *	6. Read written by GPU
 121 *		Same as last GPU access
 122 *
 123 * Case 3: The constant buffer
 124 *
 125 *	1. Allocated
 126 *	2. Written by CPU
 127 *	3. Read by GPU
 128 *	4. Updated (written) by CPU again
 129 *	5. Read by GPU
 130 *
 131 *	1. Allocated
 132 *		(CPU, CPU)
 133 *	2. Written by CPU
 134 *		(CPU, CPU)
 135 *	3. Read by GPU
 136 *		(CPU+RENDER, 0)
 137 *		flush_domains = CPU
 138 *		invalidate_domains = RENDER
 139 *		clflush (obj)
 140 *		MI_FLUSH
 141 *		drm_agp_chipset_flush
 142 *	4. Updated (written) by CPU again
 143 *		(CPU, CPU)
 144 *		flush_domains = 0 (no previous write domain)
 145 *		invalidate_domains = 0 (no new read domains)
 146 *	5. Read by GPU
 147 *		(CPU+RENDER, 0)
 148 *		flush_domains = CPU
 149 *		invalidate_domains = RENDER
 150 *		clflush (obj)
 151 *		MI_FLUSH
 152 *		drm_agp_chipset_flush
 153 */
 154static void
 155i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
 156				  struct intel_ring_buffer *ring,
 157				  struct change_domains *cd)
 158{
 159	uint32_t invalidate_domains = 0, flush_domains = 0;
 
 
 160
 161	/*
 162	 * If the object isn't moving to a new write domain,
 163	 * let the object stay in multiple read domains
 164	 */
 165	if (obj->base.pending_write_domain == 0)
 166		obj->base.pending_read_domains |= obj->base.read_domains;
 167
 168	/*
 169	 * Flush the current write domain if
 170	 * the new read domains don't match. Invalidate
 171	 * any read domains which differ from the old
 172	 * write domain
 
 
 
 173	 */
 174	if (obj->base.write_domain &&
 175	    (((obj->base.write_domain != obj->base.pending_read_domains ||
 176	       obj->ring != ring)) ||
 177	     (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
 178		flush_domains |= obj->base.write_domain;
 179		invalidate_domains |=
 180			obj->base.pending_read_domains & ~obj->base.write_domain;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181	}
 182	/*
 183	 * Invalidate any read caches which may have
 184	 * stale data. That is, any new read domains.
 185	 */
 186	invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
 187	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
 188		i915_gem_clflush_object(obj);
 189
 190	if (obj->base.pending_write_domain)
 191		cd->flips |= atomic_read(&obj->pending_flip);
 192
 193	/* The actual obj->write_domain will be updated with
 194	 * pending_write_domain after we emit the accumulated flush for all
 195	 * of our domain changes in execbuffers (which clears objects'
 196	 * write_domains).  So if we have a current write domain that we
 197	 * aren't changing, set pending_write_domain to that.
 198	 */
 199	if (flush_domains == 0 && obj->base.pending_write_domain == 0)
 200		obj->base.pending_write_domain = obj->base.write_domain;
 201
 202	cd->invalidate_domains |= invalidate_domains;
 203	cd->flush_domains |= flush_domains;
 204	if (flush_domains & I915_GEM_GPU_DOMAINS)
 205		cd->flush_rings |= obj->ring->id;
 206	if (invalidate_domains & I915_GEM_GPU_DOMAINS)
 207		cd->flush_rings |= ring->id;
 208}
 209
 210struct eb_objects {
 211	int and;
 212	struct hlist_head buckets[0];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213};
 214
 215static struct eb_objects *
 216eb_create(int size)
 217{
 218	struct eb_objects *eb;
 219	int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
 220	while (count > size)
 221		count >>= 1;
 222	eb = kzalloc(count*sizeof(struct hlist_head) +
 223		     sizeof(struct eb_objects),
 224		     GFP_KERNEL);
 225	if (eb == NULL)
 226		return eb;
 227
 228	eb->and = count - 1;
 229	return eb;
 
 230}
 231
 232static void
 233eb_reset(struct eb_objects *eb)
 234{
 235	memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
 236}
 237
 238static void
 239eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
 
 240{
 241	hlist_add_head(&obj->exec_node,
 242		       &eb->buckets[obj->exec_handle & eb->and]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243}
 244
 245static struct drm_i915_gem_object *
 246eb_get_object(struct eb_objects *eb, unsigned long handle)
 
 247{
 248	struct hlist_head *head;
 249	struct hlist_node *node;
 250	struct drm_i915_gem_object *obj;
 
 
 
 
 
 
 
 
 
 
 
 251
 252	head = &eb->buckets[handle & eb->and];
 253	hlist_for_each(node, head) {
 254		obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
 255		if (obj->exec_handle == handle)
 256			return obj;
 257	}
 258
 259	return NULL;
 
 
 
 
 260}
 261
 262static void
 263eb_destroy(struct eb_objects *eb)
 
 264{
 265	kfree(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266}
 267
 268static int
 269i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
 270				   struct eb_objects *eb,
 271				   struct drm_i915_gem_relocation_entry *reloc)
 
 272{
 273	struct drm_device *dev = obj->base.dev;
 274	struct drm_gem_object *target_obj;
 275	uint32_t target_offset;
 276	int ret = -EINVAL;
 
 
 277
 278	/* we've already hold a reference to all valid objects */
 279	target_obj = &eb_get_object(eb, reloc->target_handle)->base;
 280	if (unlikely(target_obj == NULL))
 281		return -ENOENT;
 
 
 282
 283	target_offset = to_intel_bo(target_obj)->gtt_offset;
 284
 285	/* The target buffer should have appeared before us in the
 286	 * exec_object list, so it should have a GTT space bound by now.
 287	 */
 288	if (unlikely(target_offset == 0)) {
 289		DRM_ERROR("No GTT space found for object %d\n",
 290			  reloc->target_handle);
 291		return ret;
 
 
 292	}
 293
 294	/* Validate that the target is in a valid r/w GPU domain */
 295	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
 296		DRM_ERROR("reloc with multiple write domains: "
 297			  "obj %p target %d offset %d "
 298			  "read %08x write %08x",
 299			  obj, reloc->target_handle,
 300			  (int) reloc->offset,
 301			  reloc->read_domains,
 302			  reloc->write_domain);
 303		return ret;
 304	}
 305	if (unlikely((reloc->write_domain | reloc->read_domains) & I915_GEM_DOMAIN_CPU)) {
 306		DRM_ERROR("reloc with read/write CPU domains: "
 
 307			  "obj %p target %d offset %d "
 308			  "read %08x write %08x",
 309			  obj, reloc->target_handle,
 310			  (int) reloc->offset,
 311			  reloc->read_domains,
 312			  reloc->write_domain);
 313		return ret;
 314	}
 315	if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
 316		     reloc->write_domain != target_obj->pending_write_domain)) {
 317		DRM_ERROR("Write domain conflict: "
 318			  "obj %p target %d offset %d "
 319			  "new %08x old %08x\n",
 320			  obj, reloc->target_handle,
 321			  (int) reloc->offset,
 322			  reloc->write_domain,
 323			  target_obj->pending_write_domain);
 324		return ret;
 325	}
 326
 327	target_obj->pending_read_domains |= reloc->read_domains;
 328	target_obj->pending_write_domain |= reloc->write_domain;
 329
 330	/* If the relocation already has the right value in it, no
 331	 * more work needs to be done.
 332	 */
 333	if (target_offset == reloc->presumed_offset)
 334		return 0;
 335
 336	/* Check that the relocation address is valid... */
 337	if (unlikely(reloc->offset > obj->base.size - 4)) {
 338		DRM_ERROR("Relocation beyond object bounds: "
 
 339			  "obj %p target %d offset %d size %d.\n",
 340			  obj, reloc->target_handle,
 341			  (int) reloc->offset,
 342			  (int) obj->base.size);
 343		return ret;
 344	}
 345	if (unlikely(reloc->offset & 3)) {
 346		DRM_ERROR("Relocation not 4-byte aligned: "
 347			  "obj %p target %d offset %d.\n",
 348			  obj, reloc->target_handle,
 349			  (int) reloc->offset);
 350		return ret;
 351	}
 352
 353	reloc->delta += target_offset;
 354	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
 355		uint32_t page_offset = reloc->offset & ~PAGE_MASK;
 356		char *vaddr;
 357
 358		vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
 359		*(uint32_t *)(vaddr + page_offset) = reloc->delta;
 360		kunmap_atomic(vaddr);
 361	} else {
 362		struct drm_i915_private *dev_priv = dev->dev_private;
 363		uint32_t __iomem *reloc_entry;
 364		void __iomem *reloc_page;
 365
 366		/* We can't wait for rendering with pagefaults disabled */
 367		if (obj->active && in_atomic())
 368			return -EFAULT;
 369
 370		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
 371		if (ret)
 372			return ret;
 373
 374		/* Map the page containing the relocation we're going to perform.  */
 375		reloc->offset += obj->gtt_offset;
 376		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
 377						      reloc->offset & PAGE_MASK);
 378		reloc_entry = (uint32_t __iomem *)
 379			(reloc_page + (reloc->offset & ~PAGE_MASK));
 380		iowrite32(reloc->delta, reloc_entry);
 381		io_mapping_unmap_atomic(reloc_page);
 382	}
 383
 384	/* and update the user's relocation entry */
 385	reloc->presumed_offset = target_offset;
 386
 387	return 0;
 388}
 389
 390static int
 391i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
 392				    struct eb_objects *eb)
 393{
 
 
 394	struct drm_i915_gem_relocation_entry __user *user_relocs;
 395	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
 396	int i, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397
 398	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
 399	for (i = 0; i < entry->relocation_count; i++) {
 400		struct drm_i915_gem_relocation_entry reloc;
 401
 402		if (__copy_from_user_inatomic(&reloc,
 403					      user_relocs+i,
 404					      sizeof(reloc)))
 405			return -EFAULT;
 406
 407		ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
 408		if (ret)
 409			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 410
 411		if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
 412					    &reloc.presumed_offset,
 413					    sizeof(reloc.presumed_offset)))
 414			return -EFAULT;
 415	}
 416
 417	return 0;
 
 
 
 418}
 419
 420static int
 421i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
 422					 struct eb_objects *eb,
 423					 struct drm_i915_gem_relocation_entry *relocs)
 424{
 425	const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
 426	int i, ret;
 
 427
 
 428	for (i = 0; i < entry->relocation_count; i++) {
 429		ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
 430		if (ret)
 431			return ret;
 432	}
 
 433
 434	return 0;
 435}
 436
 437static int
 438i915_gem_execbuffer_relocate(struct drm_device *dev,
 439			     struct eb_objects *eb,
 440			     struct list_head *objects)
 441{
 442	struct drm_i915_gem_object *obj;
 443	int ret = 0;
 444
 445	/* This is the fast path and we cannot handle a pagefault whilst
 446	 * holding the struct mutex lest the user pass in the relocations
 447	 * contained within a mmaped bo. For in such a case we, the page
 448	 * fault handler would call i915_gem_fault() and we would try to
 449	 * acquire the struct mutex again. Obviously this is bad and so
 450	 * lockdep complains vehemently.
 451	 */
 452	pagefault_disable();
 453	list_for_each_entry(obj, objects, exec_list) {
 454		ret = i915_gem_execbuffer_relocate_object(obj, eb);
 455		if (ret)
 456			break;
 457	}
 458	pagefault_enable();
 459
 460	return ret;
 461}
 462
 
 
 
 
 
 
 463static int
 464i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
 465			    struct drm_file *file,
 466			    struct list_head *objects)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467{
 468	struct drm_i915_gem_object *obj;
 469	int ret, retry;
 470	bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
 471	struct list_head ordered_objects;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 472
 473	INIT_LIST_HEAD(&ordered_objects);
 474	while (!list_empty(objects)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475		struct drm_i915_gem_exec_object2 *entry;
 476		bool need_fence, need_mappable;
 477
 478		obj = list_first_entry(objects,
 479				       struct drm_i915_gem_object,
 480				       exec_list);
 481		entry = obj->exec_entry;
 
 
 482
 
 
 483		need_fence =
 484			has_fenced_gpu_access &&
 485			entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
 486			obj->tiling_mode != I915_TILING_NONE;
 487		need_mappable =
 488			entry->relocation_count ? true : need_fence;
 489
 490		if (need_mappable)
 491			list_move(&obj->exec_list, &ordered_objects);
 492		else
 493			list_move_tail(&obj->exec_list, &ordered_objects);
 
 
 
 494
 495		obj->base.pending_read_domains = 0;
 496		obj->base.pending_write_domain = 0;
 497	}
 498	list_splice(&ordered_objects, objects);
 
 499
 500	/* Attempt to pin all of the buffers into the GTT.
 501	 * This is done in 3 phases:
 502	 *
 503	 * 1a. Unbind all objects that do not match the GTT constraints for
 504	 *     the execbuffer (fenceable, mappable, alignment etc).
 505	 * 1b. Increment pin count for already bound objects.
 506	 * 2.  Bind new objects.
 507	 * 3.  Decrement pin count.
 508	 *
 509	 * This avoid unnecessary unbinding of later objects in order to makr
 510	 * room for the earlier objects *unless* we need to defragment.
 511	 */
 512	retry = 0;
 513	do {
 514		ret = 0;
 515
 516		/* Unbind any ill-fitting objects or pin. */
 517		list_for_each_entry(obj, objects, exec_list) {
 518			struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
 519			bool need_fence, need_mappable;
 520			if (!obj->gtt_space)
 521				continue;
 522
 523			need_fence =
 524				has_fenced_gpu_access &&
 525				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
 526				obj->tiling_mode != I915_TILING_NONE;
 527			need_mappable =
 528				entry->relocation_count ? true : need_fence;
 529
 530			if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
 531			    (need_mappable && !obj->map_and_fenceable))
 532				ret = i915_gem_object_unbind(obj);
 533			else
 534				ret = i915_gem_object_pin(obj,
 535							  entry->alignment,
 536							  need_mappable);
 537			if (ret)
 538				goto err;
 539
 540			entry++;
 541		}
 542
 543		/* Bind fresh objects */
 544		list_for_each_entry(obj, objects, exec_list) {
 545			struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
 546			bool need_fence;
 547
 548			need_fence =
 549				has_fenced_gpu_access &&
 550				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
 551				obj->tiling_mode != I915_TILING_NONE;
 552
 553			if (!obj->gtt_space) {
 554				bool need_mappable =
 555					entry->relocation_count ? true : need_fence;
 556
 557				ret = i915_gem_object_pin(obj,
 558							  entry->alignment,
 559							  need_mappable);
 560				if (ret)
 561					break;
 562			}
 563
 564			if (has_fenced_gpu_access) {
 565				if (need_fence) {
 566					ret = i915_gem_object_get_fence(obj, ring);
 567					if (ret)
 568						break;
 569				} else if (entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
 570					   obj->tiling_mode == I915_TILING_NONE) {
 571					/* XXX pipelined! */
 572					ret = i915_gem_object_put_fence(obj);
 573					if (ret)
 574						break;
 575				}
 576				obj->pending_fenced_gpu_access = need_fence;
 577			}
 578
 579			entry->offset = obj->gtt_offset;
 580		}
 581
 582		/* Decrement pin count for bound objects */
 583		list_for_each_entry(obj, objects, exec_list) {
 584			if (obj->gtt_space)
 585				i915_gem_object_unpin(obj);
 586		}
 587
 588		if (ret != -ENOSPC || retry > 1)
 
 589			return ret;
 590
 591		/* First attempt, just clear anything that is purgeable.
 592		 * Second attempt, clear the entire GTT.
 593		 */
 594		ret = i915_gem_evict_everything(ring->dev, retry == 0);
 
 595		if (ret)
 596			return ret;
 597
 598		retry++;
 599	} while (1);
 600
 601err:
 602	obj = list_entry(obj->exec_list.prev,
 603			 struct drm_i915_gem_object,
 604			 exec_list);
 605	while (objects != &obj->exec_list) {
 606		if (obj->gtt_space)
 607			i915_gem_object_unpin(obj);
 608
 609		obj = list_entry(obj->exec_list.prev,
 610				 struct drm_i915_gem_object,
 611				 exec_list);
 612	}
 613
 614	return ret;
 615}
 616
 617static int
 618i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
 
 619				  struct drm_file *file,
 620				  struct intel_ring_buffer *ring,
 621				  struct list_head *objects,
 622				  struct eb_objects *eb,
 623				  struct drm_i915_gem_exec_object2 *exec,
 624				  int count)
 625{
 626	struct drm_i915_gem_relocation_entry *reloc;
 627	struct drm_i915_gem_object *obj;
 
 
 628	int *reloc_offset;
 629	int i, total, ret;
 
 
 
 630
 631	/* We may process another execbuffer during the unlock... */
 632	while (!list_empty(objects)) {
 633		obj = list_first_entry(objects,
 634				       struct drm_i915_gem_object,
 635				       exec_list);
 636		list_del_init(&obj->exec_list);
 637		drm_gem_object_unreference(&obj->base);
 638	}
 639
 640	mutex_unlock(&dev->struct_mutex);
 641
 642	total = 0;
 643	for (i = 0; i < count; i++)
 644		total += exec[i].relocation_count;
 645
 646	reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
 647	reloc = drm_malloc_ab(total, sizeof(*reloc));
 648	if (reloc == NULL || reloc_offset == NULL) {
 649		drm_free_large(reloc);
 650		drm_free_large(reloc_offset);
 651		mutex_lock(&dev->struct_mutex);
 652		return -ENOMEM;
 653	}
 654
 655	total = 0;
 656	for (i = 0; i < count; i++) {
 657		struct drm_i915_gem_relocation_entry __user *user_relocs;
 
 
 658
 659		user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
 660
 661		if (copy_from_user(reloc+total, user_relocs,
 662				   exec[i].relocation_count * sizeof(*reloc))) {
 663			ret = -EFAULT;
 664			mutex_lock(&dev->struct_mutex);
 665			goto err;
 666		}
 667
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 668		reloc_offset[i] = total;
 669		total += exec[i].relocation_count;
 670	}
 671
 672	ret = i915_mutex_lock_interruptible(dev);
 673	if (ret) {
 674		mutex_lock(&dev->struct_mutex);
 675		goto err;
 676	}
 677
 678	/* reacquire the objects */
 679	eb_reset(eb);
 680	for (i = 0; i < count; i++) {
 681		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
 682							exec[i].handle));
 683		if (&obj->base == NULL) {
 684			DRM_ERROR("Invalid object handle %d at index %d\n",
 685				   exec[i].handle, i);
 686			ret = -ENOENT;
 687			goto err;
 688		}
 689
 690		list_add_tail(&obj->exec_list, objects);
 691		obj->exec_handle = exec[i].handle;
 692		obj->exec_entry = &exec[i];
 693		eb_add_object(eb, obj);
 694	}
 695
 696	ret = i915_gem_execbuffer_reserve(ring, file, objects);
 
 
 697	if (ret)
 698		goto err;
 699
 700	list_for_each_entry(obj, objects, exec_list) {
 701		int offset = obj->exec_entry - exec;
 702		ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
 703							       reloc + reloc_offset[offset]);
 704		if (ret)
 705			goto err;
 706	}
 707
 708	/* Leave the user relocations as are, this is the painfully slow path,
 709	 * and we want to avoid the complication of dropping the lock whilst
 710	 * having buffers reserved in the aperture and so causing spurious
 711	 * ENOSPC for random operations.
 712	 */
 713
 714err:
 715	drm_free_large(reloc);
 716	drm_free_large(reloc_offset);
 717	return ret;
 718}
 719
 720static int
 721i915_gem_execbuffer_flush(struct drm_device *dev,
 722			  uint32_t invalidate_domains,
 723			  uint32_t flush_domains,
 724			  uint32_t flush_rings)
 725{
 726	drm_i915_private_t *dev_priv = dev->dev_private;
 727	int i, ret;
 728
 729	if (flush_domains & I915_GEM_DOMAIN_CPU)
 730		intel_gtt_chipset_flush();
 731
 732	if (flush_domains & I915_GEM_DOMAIN_GTT)
 733		wmb();
 
 
 734
 735	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
 736		for (i = 0; i < I915_NUM_RINGS; i++)
 737			if (flush_rings & (1 << i)) {
 738				ret = i915_gem_flush_ring(&dev_priv->ring[i],
 739							  invalidate_domains,
 740							  flush_domains);
 741				if (ret)
 742					return ret;
 743			}
 744	}
 745
 746	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747}
 748
 749static int
 750i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
 751			       struct intel_ring_buffer *to)
 
 752{
 753	struct intel_ring_buffer *from = obj->ring;
 754	u32 seqno;
 755	int ret, idx;
 
 756
 757	if (from == NULL || to == from)
 758		return 0;
 759
 760	/* XXX gpu semaphores are implicated in various hard hangs on SNB */
 761	if (INTEL_INFO(obj->base.dev)->gen < 6 || !i915_semaphores)
 762		return i915_gem_object_wait_rendering(obj);
 763
 764	idx = intel_ring_sync_index(from, to);
 
 
 765
 766	seqno = obj->last_rendering_seqno;
 767	if (seqno <= from->sync_seqno[idx])
 768		return 0;
 769
 770	if (seqno == from->outstanding_lazy_request) {
 771		struct drm_i915_gem_request *request;
 
 
 
 
 
 
 772
 773		request = kzalloc(sizeof(*request), GFP_KERNEL);
 774		if (request == NULL)
 775			return -ENOMEM;
 776
 777		ret = i915_add_request(from, NULL, request);
 778		if (ret) {
 779			kfree(request);
 780			return ret;
 
 
 
 
 
 
 
 781		}
 782
 783		seqno = request->seqno;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784	}
 785
 786	from->sync_seqno[idx] = seqno;
 787	return intel_ring_sync(to, from, seqno - 1);
 788}
 789
 790static int
 791i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
 
 792{
 793	u32 plane, flip_mask;
 794	int ret;
 795
 796	/* Check for any pending flips. As we only maintain a flip queue depth
 797	 * of 1, we can simply insert a WAIT for the next display flip prior
 798	 * to executing the batch and avoid stalling the CPU.
 799	 */
 800
 801	for (plane = 0; flips >> plane; plane++) {
 802		if (((flips >> plane) & 1) == 0)
 803			continue;
 
 
 804
 805		if (plane)
 806			flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
 807		else
 808			flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
 809
 810		ret = intel_ring_begin(ring, 2);
 811		if (ret)
 812			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 813
 814		intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
 815		intel_ring_emit(ring, MI_NOOP);
 816		intel_ring_advance(ring);
 
 
 
 
 
 817	}
 818
 819	return 0;
 
 820}
 821
 
 
 
 
 
 822
 823static int
 824i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
 825				struct list_head *objects)
 
 
 
 
 
 
 
 
 
 
 
 
 826{
 827	struct drm_i915_gem_object *obj;
 828	struct change_domains cd;
 829	int ret;
 830
 831	memset(&cd, 0, sizeof(cd));
 832	list_for_each_entry(obj, objects, exec_list)
 833		i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
 834
 835	if (cd.invalidate_domains | cd.flush_domains) {
 836		ret = i915_gem_execbuffer_flush(ring->dev,
 837						cd.invalidate_domains,
 838						cd.flush_domains,
 839						cd.flush_rings);
 840		if (ret)
 841			return ret;
 
 
 
 
 842	}
 
 843
 844	if (cd.flips) {
 845		ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
 846		if (ret)
 847			return ret;
 
 
 
 
 
 848	}
 849
 850	list_for_each_entry(obj, objects, exec_list) {
 851		ret = i915_gem_execbuffer_sync_rings(obj, ring);
 852		if (ret)
 853			return ret;
 
 
 
 
 854	}
 855
 
 
 856	return 0;
 857}
 858
 859static bool
 860i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
 
 
 
 
 
 
 861{
 862	return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 863}
 864
 865static int
 866validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
 867		   int count)
 
 868{
 869	int i;
 870
 871	for (i = 0; i < count; i++) {
 872		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
 873		int length; /* limited by fault_in_pages_readable() */
 874
 875		/* First check for malicious input causing overflow */
 876		if (exec[i].relocation_count >
 877		    INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
 878			return -EINVAL;
 879
 880		length = exec[i].relocation_count *
 881			sizeof(struct drm_i915_gem_relocation_entry);
 882		if (!access_ok(VERIFY_READ, ptr, length))
 883			return -EFAULT;
 884
 885		/* we may also need to update the presumed offsets */
 886		if (!access_ok(VERIFY_WRITE, ptr, length))
 887			return -EFAULT;
 
 888
 889		if (fault_in_pages_readable(ptr, length))
 890			return -EFAULT;
 
 
 891	}
 892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 893	return 0;
 894}
 895
 896static void
 897i915_gem_execbuffer_move_to_active(struct list_head *objects,
 898				   struct intel_ring_buffer *ring,
 899				   u32 seqno)
 
 
 
 900{
 901	struct drm_i915_gem_object *obj;
 902
 903	list_for_each_entry(obj, objects, exec_list) {
 904		  u32 old_read = obj->base.read_domains;
 905		  u32 old_write = obj->base.write_domain;
 
 906
 
 
 907
 908		obj->base.read_domains = obj->base.pending_read_domains;
 909		obj->base.write_domain = obj->base.pending_write_domain;
 910		obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
 911
 912		i915_gem_object_move_to_active(obj, ring, seqno);
 913		if (obj->base.write_domain) {
 914			obj->dirty = 1;
 915			obj->pending_gpu_write = true;
 916			list_move_tail(&obj->gpu_write_list,
 917				       &ring->gpu_write_list);
 918			intel_mark_busy(ring->dev, obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919		}
 920
 921		trace_i915_gem_object_change_domain(obj, old_read, old_write);
 
 
 922	}
 923}
 924
 925static void
 926i915_gem_execbuffer_retire_commands(struct drm_device *dev,
 927				    struct drm_file *file,
 928				    struct intel_ring_buffer *ring)
 929{
 930	struct drm_i915_gem_request *request;
 931	u32 invalidate;
 932
 933	/*
 934	 * Ensure that the commands in the batch buffer are
 935	 * finished before the interrupt fires.
 936	 *
 937	 * The sampler always gets flushed on i965 (sigh).
 938	 */
 939	invalidate = I915_GEM_DOMAIN_COMMAND;
 940	if (INTEL_INFO(dev)->gen >= 4)
 941		invalidate |= I915_GEM_DOMAIN_SAMPLER;
 942	if (ring->flush(ring, invalidate, 0)) {
 943		i915_gem_next_request_seqno(ring);
 944		return;
 945	}
 946
 947	/* Add a breadcrumb for the completion of the batch buffer */
 948	request = kzalloc(sizeof(*request), GFP_KERNEL);
 949	if (request == NULL || i915_add_request(ring, file, request)) {
 950		i915_gem_next_request_seqno(ring);
 951		kfree(request);
 952	}
 953}
 954
 955static int
 956i915_gem_do_execbuffer(struct drm_device *dev, void *data,
 957		       struct drm_file *file,
 958		       struct drm_i915_gem_execbuffer2 *args,
 959		       struct drm_i915_gem_exec_object2 *exec)
 960{
 961	drm_i915_private_t *dev_priv = dev->dev_private;
 962	struct list_head objects;
 963	struct eb_objects *eb;
 964	struct drm_i915_gem_object *batch_obj;
 965	struct drm_clip_rect *cliprects = NULL;
 966	struct intel_ring_buffer *ring;
 967	u32 exec_start, exec_len;
 968	u32 seqno;
 969	int ret, mode, i;
 
 
 
 
 970
 971	if (!i915_gem_check_execbuffer(args)) {
 972		DRM_ERROR("execbuf with invalid offset/length\n");
 973		return -EINVAL;
 974	}
 975
 976	ret = validate_exec_list(exec, args->buffer_count);
 977	if (ret)
 978		return ret;
 979
 980	switch (args->flags & I915_EXEC_RING_MASK) {
 981	case I915_EXEC_DEFAULT:
 982	case I915_EXEC_RENDER:
 983		ring = &dev_priv->ring[RCS];
 984		break;
 985	case I915_EXEC_BSD:
 986		if (!HAS_BSD(dev)) {
 987			DRM_ERROR("execbuf with invalid ring (BSD)\n");
 988			return -EINVAL;
 989		}
 990		ring = &dev_priv->ring[VCS];
 991		break;
 992	case I915_EXEC_BLT:
 993		if (!HAS_BLT(dev)) {
 994			DRM_ERROR("execbuf with invalid ring (BLT)\n");
 995			return -EINVAL;
 996		}
 997		ring = &dev_priv->ring[BCS];
 998		break;
 999	default:
1000		DRM_ERROR("execbuf with unknown ring: %d\n",
1001			  (int)(args->flags & I915_EXEC_RING_MASK));
1002		return -EINVAL;
1003	}
1004
1005	mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1006	switch (mode) {
1007	case I915_EXEC_CONSTANTS_REL_GENERAL:
1008	case I915_EXEC_CONSTANTS_ABSOLUTE:
1009	case I915_EXEC_CONSTANTS_REL_SURFACE:
1010		if (ring == &dev_priv->ring[RCS] &&
1011		    mode != dev_priv->relative_constants_mode) {
1012			if (INTEL_INFO(dev)->gen < 4)
1013				return -EINVAL;
1014
1015			if (INTEL_INFO(dev)->gen > 5 &&
1016			    mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1017				return -EINVAL;
1018
1019			ret = intel_ring_begin(ring, 4);
1020			if (ret)
1021				return ret;
 
1022
1023			intel_ring_emit(ring, MI_NOOP);
1024			intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1025			intel_ring_emit(ring, INSTPM);
1026			intel_ring_emit(ring,
1027					I915_EXEC_CONSTANTS_MASK << 16 | mode);
1028			intel_ring_advance(ring);
1029
1030			dev_priv->relative_constants_mode = mode;
1031		}
1032		break;
1033	default:
1034		DRM_ERROR("execbuf with unknown constants: %d\n", mode);
1035		return -EINVAL;
1036	}
1037
1038	if (args->buffer_count < 1) {
1039		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1040		return -EINVAL;
1041	}
1042
1043	if (args->num_cliprects != 0) {
1044		if (ring != &dev_priv->ring[RCS]) {
1045			DRM_ERROR("clip rectangles are only valid with the render ring\n");
1046			return -EINVAL;
1047		}
1048
1049		cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1050				    GFP_KERNEL);
1051		if (cliprects == NULL) {
1052			ret = -ENOMEM;
1053			goto pre_mutex_err;
1054		}
1055
1056		if (copy_from_user(cliprects,
1057				     (struct drm_clip_rect __user *)(uintptr_t)
1058				     args->cliprects_ptr,
1059				     sizeof(*cliprects)*args->num_cliprects)) {
1060			ret = -EFAULT;
1061			goto pre_mutex_err;
1062		}
1063	}
1064
 
 
 
 
 
 
 
 
1065	ret = i915_mutex_lock_interruptible(dev);
1066	if (ret)
1067		goto pre_mutex_err;
1068
1069	if (dev_priv->mm.suspended) {
 
1070		mutex_unlock(&dev->struct_mutex);
1071		ret = -EBUSY;
1072		goto pre_mutex_err;
1073	}
1074
1075	eb = eb_create(args->buffer_count);
 
 
 
 
 
 
 
 
 
1076	if (eb == NULL) {
 
1077		mutex_unlock(&dev->struct_mutex);
1078		ret = -ENOMEM;
1079		goto pre_mutex_err;
1080	}
1081
1082	/* Look up object handles */
1083	INIT_LIST_HEAD(&objects);
1084	for (i = 0; i < args->buffer_count; i++) {
1085		struct drm_i915_gem_object *obj;
1086
1087		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1088							exec[i].handle));
1089		if (&obj->base == NULL) {
1090			DRM_ERROR("Invalid object handle %d at index %d\n",
1091				   exec[i].handle, i);
1092			/* prevent error path from reading uninitialized data */
1093			ret = -ENOENT;
1094			goto err;
1095		}
1096
1097		if (!list_empty(&obj->exec_list)) {
1098			DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
1099				   obj, exec[i].handle, i);
1100			ret = -EINVAL;
1101			goto err;
1102		}
1103
1104		list_add_tail(&obj->exec_list, &objects);
1105		obj->exec_handle = exec[i].handle;
1106		obj->exec_entry = &exec[i];
1107		eb_add_object(eb, obj);
1108	}
1109
1110	/* take note of the batch buffer before we might reorder the lists */
1111	batch_obj = list_entry(objects.prev,
1112			       struct drm_i915_gem_object,
1113			       exec_list);
1114
1115	/* Move the objects en-masse into the GTT, evicting if necessary. */
1116	ret = i915_gem_execbuffer_reserve(ring, file, &objects);
 
 
1117	if (ret)
1118		goto err;
1119
1120	/* The objects are in their final locations, apply the relocations. */
1121	ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
 
1122	if (ret) {
1123		if (ret == -EFAULT) {
1124			ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1125								&objects, eb,
1126								exec,
1127								args->buffer_count);
1128			BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1129		}
1130		if (ret)
1131			goto err;
1132	}
1133
1134	/* Set the pending read domains for the batch buffer to COMMAND */
1135	if (batch_obj->base.pending_write_domain) {
1136		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
1137		ret = -EINVAL;
1138		goto err;
1139	}
1140	batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1141
1142	ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1143	if (ret)
1144		goto err;
 
1145
1146	seqno = i915_gem_next_request_seqno(ring);
1147	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1148		if (seqno < ring->sync_seqno[i]) {
1149			/* The GPU can not handle its semaphore value wrapping,
1150			 * so every billion or so execbuffers, we need to stall
1151			 * the GPU in order to reset the counters.
1152			 */
1153			ret = i915_gpu_idle(dev);
1154			if (ret)
1155				goto err;
 
 
 
 
1156
1157			BUG_ON(ring->sync_seqno[i]);
 
 
 
 
 
 
 
 
 
 
 
 
1158		}
1159	}
1160
1161	trace_i915_gem_ring_dispatch(ring, seqno);
1162
1163	exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1164	exec_len = args->batch_len;
1165	if (cliprects) {
1166		for (i = 0; i < args->num_cliprects; i++) {
1167			ret = i915_emit_box(dev, &cliprects[i],
1168					    args->DR1, args->DR4);
1169			if (ret)
1170				goto err;
1171
1172			ret = ring->dispatch_execbuffer(ring,
1173							exec_start, exec_len);
1174			if (ret)
1175				goto err;
1176		}
1177	} else {
1178		ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1179		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
1180			goto err;
 
 
 
1181	}
1182
1183	i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1184	i915_gem_execbuffer_retire_commands(dev, file, ring);
 
 
 
 
1185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186err:
 
 
1187	eb_destroy(eb);
1188	while (!list_empty(&objects)) {
1189		struct drm_i915_gem_object *obj;
1190
1191		obj = list_first_entry(&objects,
1192				       struct drm_i915_gem_object,
1193				       exec_list);
1194		list_del_init(&obj->exec_list);
1195		drm_gem_object_unreference(&obj->base);
1196	}
1197
1198	mutex_unlock(&dev->struct_mutex);
1199
1200pre_mutex_err:
1201	kfree(cliprects);
 
 
1202	return ret;
1203}
1204
1205/*
1206 * Legacy execbuffer just creates an exec2 list from the original exec object
1207 * list array and passes it to the real function.
1208 */
1209int
1210i915_gem_execbuffer(struct drm_device *dev, void *data,
1211		    struct drm_file *file)
1212{
1213	struct drm_i915_gem_execbuffer *args = data;
1214	struct drm_i915_gem_execbuffer2 exec2;
1215	struct drm_i915_gem_exec_object *exec_list = NULL;
1216	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1217	int ret, i;
1218
1219	if (args->buffer_count < 1) {
1220		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1221		return -EINVAL;
1222	}
1223
1224	/* Copy in the exec list from userland */
1225	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1226	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1227	if (exec_list == NULL || exec2_list == NULL) {
1228		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1229			  args->buffer_count);
1230		drm_free_large(exec_list);
1231		drm_free_large(exec2_list);
1232		return -ENOMEM;
1233	}
1234	ret = copy_from_user(exec_list,
1235			     (struct drm_i915_relocation_entry __user *)
1236			     (uintptr_t) args->buffers_ptr,
1237			     sizeof(*exec_list) * args->buffer_count);
1238	if (ret != 0) {
1239		DRM_ERROR("copy %d exec entries failed %d\n",
1240			  args->buffer_count, ret);
1241		drm_free_large(exec_list);
1242		drm_free_large(exec2_list);
1243		return -EFAULT;
1244	}
1245
1246	for (i = 0; i < args->buffer_count; i++) {
1247		exec2_list[i].handle = exec_list[i].handle;
1248		exec2_list[i].relocation_count = exec_list[i].relocation_count;
1249		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1250		exec2_list[i].alignment = exec_list[i].alignment;
1251		exec2_list[i].offset = exec_list[i].offset;
1252		if (INTEL_INFO(dev)->gen < 4)
1253			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1254		else
1255			exec2_list[i].flags = 0;
1256	}
1257
1258	exec2.buffers_ptr = args->buffers_ptr;
1259	exec2.buffer_count = args->buffer_count;
1260	exec2.batch_start_offset = args->batch_start_offset;
1261	exec2.batch_len = args->batch_len;
1262	exec2.DR1 = args->DR1;
1263	exec2.DR4 = args->DR4;
1264	exec2.num_cliprects = args->num_cliprects;
1265	exec2.cliprects_ptr = args->cliprects_ptr;
1266	exec2.flags = I915_EXEC_RENDER;
 
1267
1268	ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1269	if (!ret) {
 
 
 
1270		/* Copy the new buffer offsets back to the user's exec list. */
1271		for (i = 0; i < args->buffer_count; i++)
1272			exec_list[i].offset = exec2_list[i].offset;
1273		/* ... and back out to userspace */
1274		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1275				   (uintptr_t) args->buffers_ptr,
1276				   exec_list,
1277				   sizeof(*exec_list) * args->buffer_count);
1278		if (ret) {
1279			ret = -EFAULT;
1280			DRM_ERROR("failed to copy %d exec entries "
1281				  "back to user (%d)\n",
1282				  args->buffer_count, ret);
 
1283		}
1284	}
1285
1286	drm_free_large(exec_list);
1287	drm_free_large(exec2_list);
1288	return ret;
1289}
1290
1291int
1292i915_gem_execbuffer2(struct drm_device *dev, void *data,
1293		     struct drm_file *file)
1294{
1295	struct drm_i915_gem_execbuffer2 *args = data;
1296	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1297	int ret;
1298
1299	if (args->buffer_count < 1) {
1300		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
 
 
 
 
 
 
1301		return -EINVAL;
1302	}
1303
1304	exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
1305			     GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
1306	if (exec2_list == NULL)
1307		exec2_list = drm_malloc_ab(sizeof(*exec2_list),
1308					   args->buffer_count);
1309	if (exec2_list == NULL) {
1310		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1311			  args->buffer_count);
1312		return -ENOMEM;
1313	}
1314	ret = copy_from_user(exec2_list,
1315			     (struct drm_i915_relocation_entry __user *)
1316			     (uintptr_t) args->buffers_ptr,
1317			     sizeof(*exec2_list) * args->buffer_count);
1318	if (ret != 0) {
1319		DRM_ERROR("copy %d exec entries failed %d\n",
1320			  args->buffer_count, ret);
1321		drm_free_large(exec2_list);
1322		return -EFAULT;
1323	}
1324
1325	ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1326	if (!ret) {
1327		/* Copy the new buffer offsets back to the user's exec list. */
1328		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1329				   (uintptr_t) args->buffers_ptr,
1330				   exec2_list,
1331				   sizeof(*exec2_list) * args->buffer_count);
1332		if (ret) {
1333			ret = -EFAULT;
1334			DRM_ERROR("failed to copy %d exec entries "
1335				  "back to user (%d)\n",
1336				  args->buffer_count, ret);
 
 
 
 
 
 
 
 
1337		}
1338	}
1339
1340	drm_free_large(exec2_list);
1341	return ret;
1342}
v4.10.11
   1/*
   2 * Copyright © 2008,2010 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *    Chris Wilson <chris@chris-wilson.co.uk>
  26 *
  27 */
  28
  29#include <linux/dma_remapping.h>
  30#include <linux/reservation.h>
  31#include <linux/uaccess.h>
  32
  33#include <drm/drmP.h>
  34#include <drm/i915_drm.h>
  35
  36#include "i915_drv.h"
  37#include "i915_trace.h"
  38#include "intel_drv.h"
  39#include "intel_frontbuffer.h"
  40
  41#define DBG_USE_CPU_RELOC 0 /* -1 force GTT relocs; 1 force CPU relocs */
  42
  43#define  __EXEC_OBJECT_HAS_PIN		(1<<31)
  44#define  __EXEC_OBJECT_HAS_FENCE	(1<<30)
  45#define  __EXEC_OBJECT_NEEDS_MAP	(1<<29)
  46#define  __EXEC_OBJECT_NEEDS_BIAS	(1<<28)
  47#define  __EXEC_OBJECT_INTERNAL_FLAGS (0xf<<28) /* all of the above */
  48
  49#define BATCH_OFFSET_BIAS (256*1024)
  50
  51struct i915_execbuffer_params {
  52	struct drm_device               *dev;
  53	struct drm_file                 *file;
  54	struct i915_vma			*batch;
  55	u32				dispatch_flags;
  56	u32				args_batch_start_offset;
  57	struct intel_engine_cs          *engine;
  58	struct i915_gem_context         *ctx;
  59	struct drm_i915_gem_request     *request;
  60};
  61
  62struct eb_vmas {
  63	struct drm_i915_private *i915;
  64	struct list_head vmas;
  65	int and;
  66	union {
  67		struct i915_vma *lut[0];
  68		struct hlist_head buckets[0];
  69	};
  70};
  71
  72static struct eb_vmas *
  73eb_create(struct drm_i915_private *i915,
  74	  struct drm_i915_gem_execbuffer2 *args)
  75{
  76	struct eb_vmas *eb = NULL;
  77
  78	if (args->flags & I915_EXEC_HANDLE_LUT) {
  79		unsigned size = args->buffer_count;
  80		size *= sizeof(struct i915_vma *);
  81		size += sizeof(struct eb_vmas);
  82		eb = kmalloc(size, GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
  83	}
  84
  85	if (eb == NULL) {
  86		unsigned size = args->buffer_count;
  87		unsigned count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
  88		BUILD_BUG_ON_NOT_POWER_OF_2(PAGE_SIZE / sizeof(struct hlist_head));
  89		while (count > 2*size)
  90			count >>= 1;
  91		eb = kzalloc(count*sizeof(struct hlist_head) +
  92			     sizeof(struct eb_vmas),
  93			     GFP_TEMPORARY);
  94		if (eb == NULL)
  95			return eb;
  96
  97		eb->and = count - 1;
  98	} else
  99		eb->and = -args->buffer_count;
 100
 101	eb->i915 = i915;
 102	INIT_LIST_HEAD(&eb->vmas);
 103	return eb;
 104}
 105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106static void
 107eb_reset(struct eb_vmas *eb)
 
 
 108{
 109	if (eb->and >= 0)
 110		memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
 111}
 112
 113static struct i915_vma *
 114eb_get_batch(struct eb_vmas *eb)
 115{
 116	struct i915_vma *vma = list_entry(eb->vmas.prev, typeof(*vma), exec_list);
 
 
 117
 118	/*
 119	 * SNA is doing fancy tricks with compressing batch buffers, which leads
 120	 * to negative relocation deltas. Usually that works out ok since the
 121	 * relocate address is still positive, except when the batch is placed
 122	 * very low in the GTT. Ensure this doesn't happen.
 123	 *
 124	 * Note that actual hangs have only been observed on gen7, but for
 125	 * paranoia do it everywhere.
 126	 */
 127	if ((vma->exec_entry->flags & EXEC_OBJECT_PINNED) == 0)
 128		vma->exec_entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
 129
 130	return vma;
 131}
 132
 133static int
 134eb_lookup_vmas(struct eb_vmas *eb,
 135	       struct drm_i915_gem_exec_object2 *exec,
 136	       const struct drm_i915_gem_execbuffer2 *args,
 137	       struct i915_address_space *vm,
 138	       struct drm_file *file)
 139{
 140	struct drm_i915_gem_object *obj;
 141	struct list_head objects;
 142	int i, ret;
 143
 144	INIT_LIST_HEAD(&objects);
 145	spin_lock(&file->table_lock);
 146	/* Grab a reference to the object and release the lock so we can lookup
 147	 * or create the VMA without using GFP_ATOMIC */
 148	for (i = 0; i < args->buffer_count; i++) {
 149		obj = to_intel_bo(idr_find(&file->object_idr, exec[i].handle));
 150		if (obj == NULL) {
 151			spin_unlock(&file->table_lock);
 152			DRM_DEBUG("Invalid object handle %d at index %d\n",
 153				   exec[i].handle, i);
 154			ret = -ENOENT;
 155			goto err;
 156		}
 157
 158		if (!list_empty(&obj->obj_exec_link)) {
 159			spin_unlock(&file->table_lock);
 160			DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
 161				   obj, exec[i].handle, i);
 162			ret = -EINVAL;
 163			goto err;
 164		}
 165
 166		i915_gem_object_get(obj);
 167		list_add_tail(&obj->obj_exec_link, &objects);
 168	}
 169	spin_unlock(&file->table_lock);
 170
 171	i = 0;
 172	while (!list_empty(&objects)) {
 173		struct i915_vma *vma;
 174
 175		obj = list_first_entry(&objects,
 176				       struct drm_i915_gem_object,
 177				       obj_exec_link);
 178
 179		/*
 180		 * NOTE: We can leak any vmas created here when something fails
 181		 * later on. But that's no issue since vma_unbind can deal with
 182		 * vmas which are not actually bound. And since only
 183		 * lookup_or_create exists as an interface to get at the vma
 184		 * from the (obj, vm) we don't run the risk of creating
 185		 * duplicated vmas for the same vm.
 186		 */
 187		vma = i915_gem_obj_lookup_or_create_vma(obj, vm, NULL);
 188		if (unlikely(IS_ERR(vma))) {
 189			DRM_DEBUG("Failed to lookup VMA\n");
 190			ret = PTR_ERR(vma);
 191			goto err;
 192		}
 193
 194		/* Transfer ownership from the objects list to the vmas list. */
 195		list_add_tail(&vma->exec_list, &eb->vmas);
 196		list_del_init(&obj->obj_exec_link);
 197
 198		vma->exec_entry = &exec[i];
 199		if (eb->and < 0) {
 200			eb->lut[i] = vma;
 201		} else {
 202			uint32_t handle = args->flags & I915_EXEC_HANDLE_LUT ? i : exec[i].handle;
 203			vma->exec_handle = handle;
 204			hlist_add_head(&vma->exec_node,
 205				       &eb->buckets[handle & eb->and]);
 206		}
 207		++i;
 208	}
 209
 210	return 0;
 211
 212
 213err:
 214	while (!list_empty(&objects)) {
 215		obj = list_first_entry(&objects,
 216				       struct drm_i915_gem_object,
 217				       obj_exec_link);
 218		list_del_init(&obj->obj_exec_link);
 219		i915_gem_object_put(obj);
 220	}
 221	/*
 222	 * Objects already transfered to the vmas list will be unreferenced by
 223	 * eb_destroy.
 224	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225
 226	return ret;
 
 
 
 
 
 227}
 228
 229static struct i915_vma *eb_get_vma(struct eb_vmas *eb, unsigned long handle)
 230{
 231	if (eb->and < 0) {
 232		if (handle >= -eb->and)
 233			return NULL;
 234		return eb->lut[handle];
 235	} else {
 236		struct hlist_head *head;
 237		struct i915_vma *vma;
 238
 239		head = &eb->buckets[handle & eb->and];
 240		hlist_for_each_entry(vma, head, exec_node) {
 241			if (vma->exec_handle == handle)
 242				return vma;
 243		}
 244		return NULL;
 245	}
 246}
 247
 248static void
 249i915_gem_execbuffer_unreserve_vma(struct i915_vma *vma)
 250{
 251	struct drm_i915_gem_exec_object2 *entry;
 252
 253	if (!drm_mm_node_allocated(&vma->node))
 254		return;
 255
 256	entry = vma->exec_entry;
 257
 258	if (entry->flags & __EXEC_OBJECT_HAS_FENCE)
 259		i915_vma_unpin_fence(vma);
 260
 261	if (entry->flags & __EXEC_OBJECT_HAS_PIN)
 262		__i915_vma_unpin(vma);
 263
 264	entry->flags &= ~(__EXEC_OBJECT_HAS_FENCE | __EXEC_OBJECT_HAS_PIN);
 265}
 266
 267static void eb_destroy(struct eb_vmas *eb)
 268{
 269	while (!list_empty(&eb->vmas)) {
 270		struct i915_vma *vma;
 271
 272		vma = list_first_entry(&eb->vmas,
 273				       struct i915_vma,
 274				       exec_list);
 275		list_del_init(&vma->exec_list);
 276		i915_gem_execbuffer_unreserve_vma(vma);
 277		i915_vma_put(vma);
 278	}
 279	kfree(eb);
 280}
 281
 282static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
 283{
 284	if (!i915_gem_object_has_struct_page(obj))
 285		return false;
 286
 287	if (DBG_USE_CPU_RELOC)
 288		return DBG_USE_CPU_RELOC > 0;
 289
 290	return (HAS_LLC(to_i915(obj->base.dev)) ||
 291		obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
 292		obj->cache_level != I915_CACHE_NONE);
 293}
 294
 295/* Used to convert any address to canonical form.
 296 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 297 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 298 * addresses to be in a canonical form:
 299 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 300 * canonical form [63:48] == [47]."
 301 */
 302#define GEN8_HIGH_ADDRESS_BIT 47
 303static inline uint64_t gen8_canonical_addr(uint64_t address)
 304{
 305	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
 306}
 307
 308static inline uint64_t gen8_noncanonical_addr(uint64_t address)
 309{
 310	return address & ((1ULL << (GEN8_HIGH_ADDRESS_BIT + 1)) - 1);
 311}
 312
 313static inline uint64_t
 314relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
 315		  uint64_t target_offset)
 316{
 317	return gen8_canonical_addr((int)reloc->delta + target_offset);
 318}
 319
 320struct reloc_cache {
 321	struct drm_i915_private *i915;
 322	struct drm_mm_node node;
 323	unsigned long vaddr;
 324	unsigned int page;
 325	bool use_64bit_reloc;
 326};
 327
 328static void reloc_cache_init(struct reloc_cache *cache,
 329			     struct drm_i915_private *i915)
 330{
 331	cache->page = -1;
 332	cache->vaddr = 0;
 333	cache->i915 = i915;
 334	/* Must be a variable in the struct to allow GCC to unroll. */
 335	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
 336	cache->node.allocated = false;
 337}
 
 
 338
 339static inline void *unmask_page(unsigned long p)
 340{
 341	return (void *)(uintptr_t)(p & PAGE_MASK);
 342}
 343
 344static inline unsigned int unmask_flags(unsigned long p)
 
 345{
 346	return p & ~PAGE_MASK;
 347}
 348
 349#define KMAP 0x4 /* after CLFLUSH_FLAGS */
 350
 351static void reloc_cache_fini(struct reloc_cache *cache)
 352{
 353	void *vaddr;
 354
 355	if (!cache->vaddr)
 356		return;
 357
 358	vaddr = unmask_page(cache->vaddr);
 359	if (cache->vaddr & KMAP) {
 360		if (cache->vaddr & CLFLUSH_AFTER)
 361			mb();
 362
 363		kunmap_atomic(vaddr);
 364		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
 365	} else {
 366		wmb();
 367		io_mapping_unmap_atomic((void __iomem *)vaddr);
 368		if (cache->node.allocated) {
 369			struct i915_ggtt *ggtt = &cache->i915->ggtt;
 370
 371			ggtt->base.clear_range(&ggtt->base,
 372					       cache->node.start,
 373					       cache->node.size);
 374			drm_mm_remove_node(&cache->node);
 375		} else {
 376			i915_vma_unpin((struct i915_vma *)cache->node.mm);
 377		}
 378	}
 379}
 380
 381static void *reloc_kmap(struct drm_i915_gem_object *obj,
 382			struct reloc_cache *cache,
 383			int page)
 384{
 385	void *vaddr;
 386
 387	if (cache->vaddr) {
 388		kunmap_atomic(unmask_page(cache->vaddr));
 389	} else {
 390		unsigned int flushes;
 391		int ret;
 392
 393		ret = i915_gem_obj_prepare_shmem_write(obj, &flushes);
 394		if (ret)
 395			return ERR_PTR(ret);
 396
 397		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
 398		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
 399
 400		cache->vaddr = flushes | KMAP;
 401		cache->node.mm = (void *)obj;
 402		if (flushes)
 403			mb();
 
 404	}
 405
 406	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
 407	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
 408	cache->page = page;
 409
 410	return vaddr;
 411}
 412
 413static void *reloc_iomap(struct drm_i915_gem_object *obj,
 414			 struct reloc_cache *cache,
 415			 int page)
 416{
 417	struct i915_ggtt *ggtt = &cache->i915->ggtt;
 418	unsigned long offset;
 419	void *vaddr;
 420
 421	if (cache->vaddr) {
 422		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
 423	} else {
 424		struct i915_vma *vma;
 425		int ret;
 426
 427		if (use_cpu_reloc(obj))
 428			return NULL;
 429
 430		ret = i915_gem_object_set_to_gtt_domain(obj, true);
 431		if (ret)
 432			return ERR_PTR(ret);
 433
 434		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
 435					       PIN_MAPPABLE | PIN_NONBLOCK);
 436		if (IS_ERR(vma)) {
 437			memset(&cache->node, 0, sizeof(cache->node));
 438			ret = drm_mm_insert_node_in_range_generic
 439				(&ggtt->base.mm, &cache->node,
 440				 4096, 0, 0,
 441				 0, ggtt->mappable_end,
 442				 DRM_MM_SEARCH_DEFAULT,
 443				 DRM_MM_CREATE_DEFAULT);
 444			if (ret) /* no inactive aperture space, use cpu reloc */
 445				return NULL;
 446		} else {
 447			ret = i915_vma_put_fence(vma);
 448			if (ret) {
 449				i915_vma_unpin(vma);
 450				return ERR_PTR(ret);
 451			}
 452
 453			cache->node.start = vma->node.start;
 454			cache->node.mm = (void *)vma;
 455		}
 456	}
 457
 458	offset = cache->node.start;
 459	if (cache->node.allocated) {
 460		wmb();
 461		ggtt->base.insert_page(&ggtt->base,
 462				       i915_gem_object_get_dma_address(obj, page),
 463				       offset, I915_CACHE_NONE, 0);
 464	} else {
 465		offset += page << PAGE_SHIFT;
 466	}
 467
 468	vaddr = (void __force *) io_mapping_map_atomic_wc(&cache->i915->ggtt.mappable, offset);
 469	cache->page = page;
 470	cache->vaddr = (unsigned long)vaddr;
 471
 472	return vaddr;
 473}
 474
 475static void *reloc_vaddr(struct drm_i915_gem_object *obj,
 476			 struct reloc_cache *cache,
 477			 int page)
 478{
 479	void *vaddr;
 480
 481	if (cache->page == page) {
 482		vaddr = unmask_page(cache->vaddr);
 483	} else {
 484		vaddr = NULL;
 485		if ((cache->vaddr & KMAP) == 0)
 486			vaddr = reloc_iomap(obj, cache, page);
 487		if (!vaddr)
 488			vaddr = reloc_kmap(obj, cache, page);
 489	}
 490
 491	return vaddr;
 492}
 493
 494static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
 495{
 496	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
 497		if (flushes & CLFLUSH_BEFORE) {
 498			clflushopt(addr);
 499			mb();
 500		}
 501
 502		*addr = value;
 503
 504		/* Writes to the same cacheline are serialised by the CPU
 505		 * (including clflush). On the write path, we only require
 506		 * that it hits memory in an orderly fashion and place
 507		 * mb barriers at the start and end of the relocation phase
 508		 * to ensure ordering of clflush wrt to the system.
 509		 */
 510		if (flushes & CLFLUSH_AFTER)
 511			clflushopt(addr);
 512	} else
 513		*addr = value;
 514}
 515
 516static int
 517relocate_entry(struct drm_i915_gem_object *obj,
 518	       const struct drm_i915_gem_relocation_entry *reloc,
 519	       struct reloc_cache *cache,
 520	       u64 target_offset)
 521{
 522	u64 offset = reloc->offset;
 523	bool wide = cache->use_64bit_reloc;
 524	void *vaddr;
 525
 526	target_offset = relocation_target(reloc, target_offset);
 527repeat:
 528	vaddr = reloc_vaddr(obj, cache, offset >> PAGE_SHIFT);
 529	if (IS_ERR(vaddr))
 530		return PTR_ERR(vaddr);
 531
 532	clflush_write32(vaddr + offset_in_page(offset),
 533			lower_32_bits(target_offset),
 534			cache->vaddr);
 535
 536	if (wide) {
 537		offset += sizeof(u32);
 538		target_offset >>= 32;
 539		wide = false;
 540		goto repeat;
 541	}
 542
 543	return 0;
 544}
 545
 546static int
 547i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
 548				   struct eb_vmas *eb,
 549				   struct drm_i915_gem_relocation_entry *reloc,
 550				   struct reloc_cache *cache)
 551{
 552	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
 553	struct drm_gem_object *target_obj;
 554	struct drm_i915_gem_object *target_i915_obj;
 555	struct i915_vma *target_vma;
 556	uint64_t target_offset;
 557	int ret;
 558
 559	/* we've already hold a reference to all valid objects */
 560	target_vma = eb_get_vma(eb, reloc->target_handle);
 561	if (unlikely(target_vma == NULL))
 562		return -ENOENT;
 563	target_i915_obj = target_vma->obj;
 564	target_obj = &target_vma->obj->base;
 565
 566	target_offset = gen8_canonical_addr(target_vma->node.start);
 567
 568	/* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
 569	 * pipe_control writes because the gpu doesn't properly redirect them
 570	 * through the ppgtt for non_secure batchbuffers. */
 571	if (unlikely(IS_GEN6(dev_priv) &&
 572	    reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION)) {
 573		ret = i915_vma_bind(target_vma, target_i915_obj->cache_level,
 574				    PIN_GLOBAL);
 575		if (WARN_ONCE(ret, "Unexpected failure to bind target VMA!"))
 576			return ret;
 577	}
 578
 579	/* Validate that the target is in a valid r/w GPU domain */
 580	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
 581		DRM_DEBUG("reloc with multiple write domains: "
 582			  "obj %p target %d offset %d "
 583			  "read %08x write %08x",
 584			  obj, reloc->target_handle,
 585			  (int) reloc->offset,
 586			  reloc->read_domains,
 587			  reloc->write_domain);
 588		return -EINVAL;
 589	}
 590	if (unlikely((reloc->write_domain | reloc->read_domains)
 591		     & ~I915_GEM_GPU_DOMAINS)) {
 592		DRM_DEBUG("reloc with read/write non-GPU domains: "
 593			  "obj %p target %d offset %d "
 594			  "read %08x write %08x",
 595			  obj, reloc->target_handle,
 596			  (int) reloc->offset,
 597			  reloc->read_domains,
 598			  reloc->write_domain);
 599		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 600	}
 601
 602	target_obj->pending_read_domains |= reloc->read_domains;
 603	target_obj->pending_write_domain |= reloc->write_domain;
 604
 605	/* If the relocation already has the right value in it, no
 606	 * more work needs to be done.
 607	 */
 608	if (target_offset == reloc->presumed_offset)
 609		return 0;
 610
 611	/* Check that the relocation address is valid... */
 612	if (unlikely(reloc->offset >
 613		     obj->base.size - (cache->use_64bit_reloc ? 8 : 4))) {
 614		DRM_DEBUG("Relocation beyond object bounds: "
 615			  "obj %p target %d offset %d size %d.\n",
 616			  obj, reloc->target_handle,
 617			  (int) reloc->offset,
 618			  (int) obj->base.size);
 619		return -EINVAL;
 620	}
 621	if (unlikely(reloc->offset & 3)) {
 622		DRM_DEBUG("Relocation not 4-byte aligned: "
 623			  "obj %p target %d offset %d.\n",
 624			  obj, reloc->target_handle,
 625			  (int) reloc->offset);
 626		return -EINVAL;
 627	}
 628
 629	ret = relocate_entry(obj, reloc, cache, target_offset);
 630	if (ret)
 631		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632
 633	/* and update the user's relocation entry */
 634	reloc->presumed_offset = target_offset;
 
 635	return 0;
 636}
 637
 638static int
 639i915_gem_execbuffer_relocate_vma(struct i915_vma *vma,
 640				 struct eb_vmas *eb)
 641{
 642#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
 643	struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
 644	struct drm_i915_gem_relocation_entry __user *user_relocs;
 645	struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
 646	struct reloc_cache cache;
 647	int remain, ret = 0;
 648
 649	user_relocs = u64_to_user_ptr(entry->relocs_ptr);
 650	reloc_cache_init(&cache, eb->i915);
 651
 652	remain = entry->relocation_count;
 653	while (remain) {
 654		struct drm_i915_gem_relocation_entry *r = stack_reloc;
 655		unsigned long unwritten;
 656		unsigned int count;
 657
 658		count = min_t(unsigned int, remain, ARRAY_SIZE(stack_reloc));
 659		remain -= count;
 660
 661		/* This is the fast path and we cannot handle a pagefault
 662		 * whilst holding the struct mutex lest the user pass in the
 663		 * relocations contained within a mmaped bo. For in such a case
 664		 * we, the page fault handler would call i915_gem_fault() and
 665		 * we would try to acquire the struct mutex again. Obviously
 666		 * this is bad and so lockdep complains vehemently.
 667		 */
 668		pagefault_disable();
 669		unwritten = __copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0]));
 670		pagefault_enable();
 671		if (unlikely(unwritten)) {
 672			ret = -EFAULT;
 673			goto out;
 674		}
 675
 676		do {
 677			u64 offset = r->presumed_offset;
 
 678
 679			ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, r, &cache);
 680			if (ret)
 681				goto out;
 
 682
 683			if (r->presumed_offset != offset) {
 684				pagefault_disable();
 685				unwritten = __put_user(r->presumed_offset,
 686						       &user_relocs->presumed_offset);
 687				pagefault_enable();
 688				if (unlikely(unwritten)) {
 689					/* Note that reporting an error now
 690					 * leaves everything in an inconsistent
 691					 * state as we have *already* changed
 692					 * the relocation value inside the
 693					 * object. As we have not changed the
 694					 * reloc.presumed_offset or will not
 695					 * change the execobject.offset, on the
 696					 * call we may not rewrite the value
 697					 * inside the object, leaving it
 698					 * dangling and causing a GPU hang.
 699					 */
 700					ret = -EFAULT;
 701					goto out;
 702				}
 703			}
 704
 705			user_relocs++;
 706			r++;
 707		} while (--count);
 
 708	}
 709
 710out:
 711	reloc_cache_fini(&cache);
 712	return ret;
 713#undef N_RELOC
 714}
 715
 716static int
 717i915_gem_execbuffer_relocate_vma_slow(struct i915_vma *vma,
 718				      struct eb_vmas *eb,
 719				      struct drm_i915_gem_relocation_entry *relocs)
 720{
 721	const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
 722	struct reloc_cache cache;
 723	int i, ret = 0;
 724
 725	reloc_cache_init(&cache, eb->i915);
 726	for (i = 0; i < entry->relocation_count; i++) {
 727		ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, &relocs[i], &cache);
 728		if (ret)
 729			break;
 730	}
 731	reloc_cache_fini(&cache);
 732
 733	return ret;
 734}
 735
 736static int
 737i915_gem_execbuffer_relocate(struct eb_vmas *eb)
 
 
 738{
 739	struct i915_vma *vma;
 740	int ret = 0;
 741
 742	list_for_each_entry(vma, &eb->vmas, exec_list) {
 743		ret = i915_gem_execbuffer_relocate_vma(vma, eb);
 
 
 
 
 
 
 
 
 744		if (ret)
 745			break;
 746	}
 
 747
 748	return ret;
 749}
 750
 751static bool only_mappable_for_reloc(unsigned int flags)
 752{
 753	return (flags & (EXEC_OBJECT_NEEDS_FENCE | __EXEC_OBJECT_NEEDS_MAP)) ==
 754		__EXEC_OBJECT_NEEDS_MAP;
 755}
 756
 757static int
 758i915_gem_execbuffer_reserve_vma(struct i915_vma *vma,
 759				struct intel_engine_cs *engine,
 760				bool *need_reloc)
 761{
 762	struct drm_i915_gem_object *obj = vma->obj;
 763	struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
 764	uint64_t flags;
 765	int ret;
 766
 767	flags = PIN_USER;
 768	if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
 769		flags |= PIN_GLOBAL;
 770
 771	if (!drm_mm_node_allocated(&vma->node)) {
 772		/* Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
 773		 * limit address to the first 4GBs for unflagged objects.
 774		 */
 775		if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0)
 776			flags |= PIN_ZONE_4G;
 777		if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
 778			flags |= PIN_GLOBAL | PIN_MAPPABLE;
 779		if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS)
 780			flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
 781		if (entry->flags & EXEC_OBJECT_PINNED)
 782			flags |= entry->offset | PIN_OFFSET_FIXED;
 783		if ((flags & PIN_MAPPABLE) == 0)
 784			flags |= PIN_HIGH;
 785	}
 786
 787	ret = i915_vma_pin(vma,
 788			   entry->pad_to_size,
 789			   entry->alignment,
 790			   flags);
 791	if ((ret == -ENOSPC || ret == -E2BIG) &&
 792	    only_mappable_for_reloc(entry->flags))
 793		ret = i915_vma_pin(vma,
 794				   entry->pad_to_size,
 795				   entry->alignment,
 796				   flags & ~PIN_MAPPABLE);
 797	if (ret)
 798		return ret;
 799
 800	entry->flags |= __EXEC_OBJECT_HAS_PIN;
 801
 802	if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
 803		ret = i915_vma_get_fence(vma);
 804		if (ret)
 805			return ret;
 806
 807		if (i915_vma_pin_fence(vma))
 808			entry->flags |= __EXEC_OBJECT_HAS_FENCE;
 809	}
 810
 811	if (entry->offset != vma->node.start) {
 812		entry->offset = vma->node.start;
 813		*need_reloc = true;
 814	}
 815
 816	if (entry->flags & EXEC_OBJECT_WRITE) {
 817		obj->base.pending_read_domains = I915_GEM_DOMAIN_RENDER;
 818		obj->base.pending_write_domain = I915_GEM_DOMAIN_RENDER;
 819	}
 820
 821	return 0;
 822}
 823
 824static bool
 825need_reloc_mappable(struct i915_vma *vma)
 826{
 827	struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
 828
 829	if (entry->relocation_count == 0)
 830		return false;
 831
 832	if (!i915_vma_is_ggtt(vma))
 833		return false;
 834
 835	/* See also use_cpu_reloc() */
 836	if (HAS_LLC(to_i915(vma->obj->base.dev)))
 837		return false;
 838
 839	if (vma->obj->base.write_domain == I915_GEM_DOMAIN_CPU)
 840		return false;
 841
 842	return true;
 843}
 844
 845static bool
 846eb_vma_misplaced(struct i915_vma *vma)
 847{
 848	struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
 849
 850	WARN_ON(entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
 851		!i915_vma_is_ggtt(vma));
 852
 853	if (entry->alignment &&
 854	    vma->node.start & (entry->alignment - 1))
 855		return true;
 856
 857	if (vma->node.size < entry->pad_to_size)
 858		return true;
 859
 860	if (entry->flags & EXEC_OBJECT_PINNED &&
 861	    vma->node.start != entry->offset)
 862		return true;
 863
 864	if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
 865	    vma->node.start < BATCH_OFFSET_BIAS)
 866		return true;
 867
 868	/* avoid costly ping-pong once a batch bo ended up non-mappable */
 869	if (entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
 870	    !i915_vma_is_map_and_fenceable(vma))
 871		return !only_mappable_for_reloc(entry->flags);
 872
 873	if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0 &&
 874	    (vma->node.start + vma->node.size - 1) >> 32)
 875		return true;
 876
 877	return false;
 878}
 879
 880static int
 881i915_gem_execbuffer_reserve(struct intel_engine_cs *engine,
 882			    struct list_head *vmas,
 883			    struct i915_gem_context *ctx,
 884			    bool *need_relocs)
 885{
 886	struct drm_i915_gem_object *obj;
 887	struct i915_vma *vma;
 888	struct i915_address_space *vm;
 889	struct list_head ordered_vmas;
 890	struct list_head pinned_vmas;
 891	bool has_fenced_gpu_access = INTEL_GEN(engine->i915) < 4;
 892	int retry;
 893
 894	vm = list_first_entry(vmas, struct i915_vma, exec_list)->vm;
 895
 896	INIT_LIST_HEAD(&ordered_vmas);
 897	INIT_LIST_HEAD(&pinned_vmas);
 898	while (!list_empty(vmas)) {
 899		struct drm_i915_gem_exec_object2 *entry;
 900		bool need_fence, need_mappable;
 901
 902		vma = list_first_entry(vmas, struct i915_vma, exec_list);
 903		obj = vma->obj;
 904		entry = vma->exec_entry;
 905
 906		if (ctx->flags & CONTEXT_NO_ZEROMAP)
 907			entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
 908
 909		if (!has_fenced_gpu_access)
 910			entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
 911		need_fence =
 
 912			entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
 913			i915_gem_object_is_tiled(obj);
 914		need_mappable = need_fence || need_reloc_mappable(vma);
 
 915
 916		if (entry->flags & EXEC_OBJECT_PINNED)
 917			list_move_tail(&vma->exec_list, &pinned_vmas);
 918		else if (need_mappable) {
 919			entry->flags |= __EXEC_OBJECT_NEEDS_MAP;
 920			list_move(&vma->exec_list, &ordered_vmas);
 921		} else
 922			list_move_tail(&vma->exec_list, &ordered_vmas);
 923
 924		obj->base.pending_read_domains = I915_GEM_GPU_DOMAINS & ~I915_GEM_DOMAIN_COMMAND;
 925		obj->base.pending_write_domain = 0;
 926	}
 927	list_splice(&ordered_vmas, vmas);
 928	list_splice(&pinned_vmas, vmas);
 929
 930	/* Attempt to pin all of the buffers into the GTT.
 931	 * This is done in 3 phases:
 932	 *
 933	 * 1a. Unbind all objects that do not match the GTT constraints for
 934	 *     the execbuffer (fenceable, mappable, alignment etc).
 935	 * 1b. Increment pin count for already bound objects.
 936	 * 2.  Bind new objects.
 937	 * 3.  Decrement pin count.
 938	 *
 939	 * This avoid unnecessary unbinding of later objects in order to make
 940	 * room for the earlier objects *unless* we need to defragment.
 941	 */
 942	retry = 0;
 943	do {
 944		int ret = 0;
 945
 946		/* Unbind any ill-fitting objects or pin. */
 947		list_for_each_entry(vma, vmas, exec_list) {
 948			if (!drm_mm_node_allocated(&vma->node))
 
 
 949				continue;
 950
 951			if (eb_vma_misplaced(vma))
 952				ret = i915_vma_unbind(vma);
 
 
 
 
 
 
 
 
 953			else
 954				ret = i915_gem_execbuffer_reserve_vma(vma,
 955								      engine,
 956								      need_relocs);
 957			if (ret)
 958				goto err;
 
 
 959		}
 960
 961		/* Bind fresh objects */
 962		list_for_each_entry(vma, vmas, exec_list) {
 963			if (drm_mm_node_allocated(&vma->node))
 964				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 965
 966			ret = i915_gem_execbuffer_reserve_vma(vma, engine,
 967							      need_relocs);
 968			if (ret)
 969				goto err;
 970		}
 971
 972err:
 973		if (ret != -ENOSPC || retry++)
 974			return ret;
 975
 976		/* Decrement pin count for bound objects */
 977		list_for_each_entry(vma, vmas, exec_list)
 978			i915_gem_execbuffer_unreserve_vma(vma);
 979
 980		ret = i915_gem_evict_vm(vm, true);
 981		if (ret)
 982			return ret;
 
 
 983	} while (1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984}
 985
 986static int
 987i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
 988				  struct drm_i915_gem_execbuffer2 *args,
 989				  struct drm_file *file,
 990				  struct intel_engine_cs *engine,
 991				  struct eb_vmas *eb,
 
 992				  struct drm_i915_gem_exec_object2 *exec,
 993				  struct i915_gem_context *ctx)
 994{
 995	struct drm_i915_gem_relocation_entry *reloc;
 996	struct i915_address_space *vm;
 997	struct i915_vma *vma;
 998	bool need_relocs;
 999	int *reloc_offset;
1000	int i, total, ret;
1001	unsigned count = args->buffer_count;
1002
1003	vm = list_first_entry(&eb->vmas, struct i915_vma, exec_list)->vm;
1004
1005	/* We may process another execbuffer during the unlock... */
1006	while (!list_empty(&eb->vmas)) {
1007		vma = list_first_entry(&eb->vmas, struct i915_vma, exec_list);
1008		list_del_init(&vma->exec_list);
1009		i915_gem_execbuffer_unreserve_vma(vma);
1010		i915_vma_put(vma);
 
1011	}
1012
1013	mutex_unlock(&dev->struct_mutex);
1014
1015	total = 0;
1016	for (i = 0; i < count; i++)
1017		total += exec[i].relocation_count;
1018
1019	reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
1020	reloc = drm_malloc_ab(total, sizeof(*reloc));
1021	if (reloc == NULL || reloc_offset == NULL) {
1022		drm_free_large(reloc);
1023		drm_free_large(reloc_offset);
1024		mutex_lock(&dev->struct_mutex);
1025		return -ENOMEM;
1026	}
1027
1028	total = 0;
1029	for (i = 0; i < count; i++) {
1030		struct drm_i915_gem_relocation_entry __user *user_relocs;
1031		u64 invalid_offset = (u64)-1;
1032		int j;
1033
1034		user_relocs = u64_to_user_ptr(exec[i].relocs_ptr);
1035
1036		if (copy_from_user(reloc+total, user_relocs,
1037				   exec[i].relocation_count * sizeof(*reloc))) {
1038			ret = -EFAULT;
1039			mutex_lock(&dev->struct_mutex);
1040			goto err;
1041		}
1042
1043		/* As we do not update the known relocation offsets after
1044		 * relocating (due to the complexities in lock handling),
1045		 * we need to mark them as invalid now so that we force the
1046		 * relocation processing next time. Just in case the target
1047		 * object is evicted and then rebound into its old
1048		 * presumed_offset before the next execbuffer - if that
1049		 * happened we would make the mistake of assuming that the
1050		 * relocations were valid.
1051		 */
1052		for (j = 0; j < exec[i].relocation_count; j++) {
1053			if (__copy_to_user(&user_relocs[j].presumed_offset,
1054					   &invalid_offset,
1055					   sizeof(invalid_offset))) {
1056				ret = -EFAULT;
1057				mutex_lock(&dev->struct_mutex);
1058				goto err;
1059			}
1060		}
1061
1062		reloc_offset[i] = total;
1063		total += exec[i].relocation_count;
1064	}
1065
1066	ret = i915_mutex_lock_interruptible(dev);
1067	if (ret) {
1068		mutex_lock(&dev->struct_mutex);
1069		goto err;
1070	}
1071
1072	/* reacquire the objects */
1073	eb_reset(eb);
1074	ret = eb_lookup_vmas(eb, exec, args, vm, file);
1075	if (ret)
1076		goto err;
 
 
 
 
 
 
 
 
 
 
 
 
1077
1078	need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1079	ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1080					  &need_relocs);
1081	if (ret)
1082		goto err;
1083
1084	list_for_each_entry(vma, &eb->vmas, exec_list) {
1085		int offset = vma->exec_entry - exec;
1086		ret = i915_gem_execbuffer_relocate_vma_slow(vma, eb,
1087							    reloc + reloc_offset[offset]);
1088		if (ret)
1089			goto err;
1090	}
1091
1092	/* Leave the user relocations as are, this is the painfully slow path,
1093	 * and we want to avoid the complication of dropping the lock whilst
1094	 * having buffers reserved in the aperture and so causing spurious
1095	 * ENOSPC for random operations.
1096	 */
1097
1098err:
1099	drm_free_large(reloc);
1100	drm_free_large(reloc_offset);
1101	return ret;
1102}
1103
1104static int
1105i915_gem_execbuffer_move_to_gpu(struct drm_i915_gem_request *req,
1106				struct list_head *vmas)
 
 
1107{
1108	struct i915_vma *vma;
1109	int ret;
1110
1111	list_for_each_entry(vma, vmas, exec_list) {
1112		struct drm_i915_gem_object *obj = vma->obj;
1113
1114		ret = i915_gem_request_await_object
1115			(req, obj, obj->base.pending_write_domain);
1116		if (ret)
1117			return ret;
1118
1119		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
1120			i915_gem_clflush_object(obj, false);
 
 
 
 
 
 
 
1121	}
1122
1123	/* Unconditionally flush any chipset caches (for streaming writes). */
1124	i915_gem_chipset_flush(req->engine->i915);
1125
1126	/* Unconditionally invalidate GPU caches and TLBs. */
1127	return req->engine->emit_flush(req, EMIT_INVALIDATE);
1128}
1129
1130static bool
1131i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1132{
1133	if (exec->flags & __I915_EXEC_UNKNOWN_FLAGS)
1134		return false;
1135
1136	/* Kernel clipping was a DRI1 misfeature */
1137	if (exec->num_cliprects || exec->cliprects_ptr)
1138		return false;
1139
1140	if (exec->DR4 == 0xffffffff) {
1141		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1142		exec->DR4 = 0;
1143	}
1144	if (exec->DR1 || exec->DR4)
1145		return false;
1146
1147	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1148		return false;
1149
1150	return true;
1151}
1152
1153static int
1154validate_exec_list(struct drm_device *dev,
1155		   struct drm_i915_gem_exec_object2 *exec,
1156		   int count)
1157{
1158	unsigned relocs_total = 0;
1159	unsigned relocs_max = UINT_MAX / sizeof(struct drm_i915_gem_relocation_entry);
1160	unsigned invalid_flags;
1161	int i;
1162
1163	/* INTERNAL flags must not overlap with external ones */
1164	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & ~__EXEC_OBJECT_UNKNOWN_FLAGS);
1165
1166	invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
1167	if (USES_FULL_PPGTT(dev))
1168		invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
1169
1170	for (i = 0; i < count; i++) {
1171		char __user *ptr = u64_to_user_ptr(exec[i].relocs_ptr);
1172		int length; /* limited by fault_in_pages_readable() */
1173
1174		if (exec[i].flags & invalid_flags)
1175			return -EINVAL;
 
1176
1177		/* Offset can be used as input (EXEC_OBJECT_PINNED), reject
1178		 * any non-page-aligned or non-canonical addresses.
1179		 */
1180		if (exec[i].flags & EXEC_OBJECT_PINNED) {
1181			if (exec[i].offset !=
1182			    gen8_canonical_addr(exec[i].offset & PAGE_MASK))
1183				return -EINVAL;
1184		}
1185
1186		/* From drm_mm perspective address space is continuous,
1187		 * so from this point we're always using non-canonical
1188		 * form internally.
1189		 */
1190		exec[i].offset = gen8_noncanonical_addr(exec[i].offset);
1191
1192		if (exec[i].alignment && !is_power_of_2(exec[i].alignment))
1193			return -EINVAL;
1194
1195		/* pad_to_size was once a reserved field, so sanitize it */
1196		if (exec[i].flags & EXEC_OBJECT_PAD_TO_SIZE) {
1197			if (offset_in_page(exec[i].pad_to_size))
1198				return -EINVAL;
1199		} else {
1200			exec[i].pad_to_size = 0;
1201		}
1202
1203		/* First check for malicious input causing overflow in
1204		 * the worst case where we need to allocate the entire
1205		 * relocation tree as a single array.
1206		 */
1207		if (exec[i].relocation_count > relocs_max - relocs_total)
1208			return -EINVAL;
1209		relocs_total += exec[i].relocation_count;
1210
1211		length = exec[i].relocation_count *
1212			sizeof(struct drm_i915_gem_relocation_entry);
1213		/*
1214		 * We must check that the entire relocation array is safe
1215		 * to read, but since we may need to update the presumed
1216		 * offsets during execution, check for full write access.
1217		 */
1218		if (!access_ok(VERIFY_WRITE, ptr, length))
1219			return -EFAULT;
1220
1221		if (likely(!i915.prefault_disable)) {
1222			if (fault_in_pages_readable(ptr, length))
1223				return -EFAULT;
1224		}
1225	}
1226
1227	return 0;
 
1228}
1229
1230static struct i915_gem_context *
1231i915_gem_validate_context(struct drm_device *dev, struct drm_file *file,
1232			  struct intel_engine_cs *engine, const u32 ctx_id)
1233{
1234	struct i915_gem_context *ctx;
1235	struct i915_ctx_hang_stats *hs;
1236
1237	ctx = i915_gem_context_lookup(file->driver_priv, ctx_id);
1238	if (IS_ERR(ctx))
1239		return ctx;
 
1240
1241	hs = &ctx->hang_stats;
1242	if (hs->banned) {
1243		DRM_DEBUG("Context %u tried to submit while banned\n", ctx_id);
1244		return ERR_PTR(-EIO);
1245	}
1246
1247	return ctx;
1248}
 
 
1249
1250static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
1251{
1252	return !(obj->cache_level == I915_CACHE_NONE ||
1253		 obj->cache_level == I915_CACHE_WT);
1254}
1255
1256void i915_vma_move_to_active(struct i915_vma *vma,
1257			     struct drm_i915_gem_request *req,
1258			     unsigned int flags)
1259{
1260	struct drm_i915_gem_object *obj = vma->obj;
1261	const unsigned int idx = req->engine->id;
1262
1263	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
1264
1265	/* Add a reference if we're newly entering the active list.
1266	 * The order in which we add operations to the retirement queue is
1267	 * vital here: mark_active adds to the start of the callback list,
1268	 * such that subsequent callbacks are called first. Therefore we
1269	 * add the active reference first and queue for it to be dropped
1270	 * *last*.
1271	 */
1272	if (!i915_vma_is_active(vma))
1273		obj->active_count++;
1274	i915_vma_set_active(vma, idx);
1275	i915_gem_active_set(&vma->last_read[idx], req);
1276	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1277
1278	if (flags & EXEC_OBJECT_WRITE) {
1279		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
1280			i915_gem_active_set(&obj->frontbuffer_write, req);
1281
1282		/* update for the implicit flush after a batch */
1283		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1284		if (!obj->cache_dirty && gpu_write_needs_clflush(obj))
1285			obj->cache_dirty = true;
1286	}
1287
1288	if (flags & EXEC_OBJECT_NEEDS_FENCE)
1289		i915_gem_active_set(&vma->last_fence, req);
1290}
1291
1292static void eb_export_fence(struct drm_i915_gem_object *obj,
1293			    struct drm_i915_gem_request *req,
1294			    unsigned int flags)
1295{
1296	struct reservation_object *resv = obj->resv;
1297
1298	/* Ignore errors from failing to allocate the new fence, we can't
1299	 * handle an error right now. Worst case should be missed
1300	 * synchronisation leading to rendering corruption.
1301	 */
1302	ww_mutex_lock(&resv->lock, NULL);
1303	if (flags & EXEC_OBJECT_WRITE)
1304		reservation_object_add_excl_fence(resv, &req->fence);
1305	else if (reservation_object_reserve_shared(resv) == 0)
1306		reservation_object_add_shared_fence(resv, &req->fence);
1307	ww_mutex_unlock(&resv->lock);
1308}
1309
1310static void
1311i915_gem_execbuffer_move_to_active(struct list_head *vmas,
1312				   struct drm_i915_gem_request *req)
1313{
1314	struct i915_vma *vma;
 
 
1315
1316	list_for_each_entry(vma, vmas, exec_list) {
1317		struct drm_i915_gem_object *obj = vma->obj;
1318		u32 old_read = obj->base.read_domains;
1319		u32 old_write = obj->base.write_domain;
1320
1321		obj->base.write_domain = obj->base.pending_write_domain;
1322		if (obj->base.write_domain)
1323			vma->exec_entry->flags |= EXEC_OBJECT_WRITE;
1324		else
1325			obj->base.pending_read_domains |= obj->base.read_domains;
1326		obj->base.read_domains = obj->base.pending_read_domains;
1327
1328		i915_vma_move_to_active(vma, req, vma->exec_entry->flags);
1329		eb_export_fence(obj, req, vma->exec_entry->flags);
1330		trace_i915_gem_object_change_domain(obj, old_read, old_write);
1331	}
1332}
1333
1334static int
1335i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1336{
1337	struct intel_ring *ring = req->ring;
1338	int ret, i;
1339
1340	if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1341		DRM_DEBUG("sol reset is gen7/rcs only\n");
1342		return -EINVAL;
1343	}
1344
1345	ret = intel_ring_begin(req, 4 * 3);
1346	if (ret)
1347		return ret;
1348
1349	for (i = 0; i < 4; i++) {
1350		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1351		intel_ring_emit_reg(ring, GEN7_SO_WRITE_OFFSET(i));
1352		intel_ring_emit(ring, 0);
1353	}
1354
1355	intel_ring_advance(ring);
1356
1357	return 0;
1358}
1359
1360static struct i915_vma *
1361i915_gem_execbuffer_parse(struct intel_engine_cs *engine,
1362			  struct drm_i915_gem_exec_object2 *shadow_exec_entry,
1363			  struct drm_i915_gem_object *batch_obj,
1364			  struct eb_vmas *eb,
1365			  u32 batch_start_offset,
1366			  u32 batch_len,
1367			  bool is_master)
1368{
1369	struct drm_i915_gem_object *shadow_batch_obj;
1370	struct i915_vma *vma;
1371	int ret;
1372
1373	shadow_batch_obj = i915_gem_batch_pool_get(&engine->batch_pool,
1374						   PAGE_ALIGN(batch_len));
1375	if (IS_ERR(shadow_batch_obj))
1376		return ERR_CAST(shadow_batch_obj);
1377
1378	ret = intel_engine_cmd_parser(engine,
1379				      batch_obj,
1380				      shadow_batch_obj,
1381				      batch_start_offset,
1382				      batch_len,
1383				      is_master);
1384	if (ret) {
1385		if (ret == -EACCES) /* unhandled chained batch */
1386			vma = NULL;
1387		else
1388			vma = ERR_PTR(ret);
1389		goto out;
1390	}
1391
1392	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1393	if (IS_ERR(vma))
1394		goto out;
1395
1396	memset(shadow_exec_entry, 0, sizeof(*shadow_exec_entry));
1397
1398	vma->exec_entry = shadow_exec_entry;
1399	vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN;
1400	i915_gem_object_get(shadow_batch_obj);
1401	list_add_tail(&vma->exec_list, &eb->vmas);
1402
1403out:
1404	i915_gem_object_unpin_pages(shadow_batch_obj);
1405	return vma;
1406}
1407
1408static int
1409execbuf_submit(struct i915_execbuffer_params *params,
1410	       struct drm_i915_gem_execbuffer2 *args,
1411	       struct list_head *vmas)
1412{
1413	u64 exec_start, exec_len;
1414	int ret;
 
 
 
1415
1416	ret = i915_gem_execbuffer_move_to_gpu(params->request, vmas);
1417	if (ret)
1418		return ret;
 
1419
1420	ret = i915_switch_context(params->request);
1421	if (ret)
1422		return ret;
 
1423
1424	if (args->flags & I915_EXEC_CONSTANTS_MASK) {
1425		DRM_DEBUG("I915_EXEC_CONSTANTS_* unsupported\n");
1426		return -EINVAL;
1427	}
1428
1429	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1430		ret = i915_reset_gen7_sol_offsets(params->request);
1431		if (ret)
1432			return ret;
1433	}
1434
1435	exec_len   = args->batch_len;
1436	exec_start = params->batch->node.start +
1437		     params->args_batch_start_offset;
1438
1439	if (exec_len == 0)
1440		exec_len = params->batch->size - params->args_batch_start_offset;
1441
1442	ret = params->engine->emit_bb_start(params->request,
1443					    exec_start, exec_len,
1444					    params->dispatch_flags);
1445	if (ret)
1446		return ret;
1447
1448	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1449
1450	i915_gem_execbuffer_move_to_active(vmas, params->request);
1451
1452	return 0;
1453}
1454
1455/**
1456 * Find one BSD ring to dispatch the corresponding BSD command.
1457 * The engine index is returned.
1458 */
1459static unsigned int
1460gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1461			 struct drm_file *file)
1462{
1463	struct drm_i915_file_private *file_priv = file->driver_priv;
1464
1465	/* Check whether the file_priv has already selected one ring. */
1466	if ((int)file_priv->bsd_engine < 0)
1467		file_priv->bsd_engine = atomic_fetch_xor(1,
1468			 &dev_priv->mm.bsd_engine_dispatch_index);
1469
1470	return file_priv->bsd_engine;
1471}
1472
1473#define I915_USER_RINGS (4)
 
 
1474
1475static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1476	[I915_EXEC_DEFAULT]	= RCS,
1477	[I915_EXEC_RENDER]	= RCS,
1478	[I915_EXEC_BLT]		= BCS,
1479	[I915_EXEC_BSD]		= VCS,
1480	[I915_EXEC_VEBOX]	= VECS
1481};
1482
1483static struct intel_engine_cs *
1484eb_select_engine(struct drm_i915_private *dev_priv,
1485		 struct drm_file *file,
1486		 struct drm_i915_gem_execbuffer2 *args)
1487{
1488	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
1489	struct intel_engine_cs *engine;
1490
1491	if (user_ring_id > I915_USER_RINGS) {
1492		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
1493		return NULL;
1494	}
1495
1496	if ((user_ring_id != I915_EXEC_BSD) &&
1497	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
1498		DRM_DEBUG("execbuf with non bsd ring but with invalid "
1499			  "bsd dispatch flags: %d\n", (int)(args->flags));
1500		return NULL;
1501	}
1502
1503	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
1504		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
1505
1506		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
1507			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
1508		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
1509			   bsd_idx <= I915_EXEC_BSD_RING2) {
1510			bsd_idx >>= I915_EXEC_BSD_SHIFT;
1511			bsd_idx--;
1512		} else {
1513			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
1514				  bsd_idx);
1515			return NULL;
1516		}
1517
1518		engine = dev_priv->engine[_VCS(bsd_idx)];
1519	} else {
1520		engine = dev_priv->engine[user_ring_map[user_ring_id]];
1521	}
 
1522
1523	if (!engine) {
1524		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
1525		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1526	}
1527
1528	return engine;
 
 
 
 
 
1529}
1530
1531static int
1532i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1533		       struct drm_file *file,
1534		       struct drm_i915_gem_execbuffer2 *args,
1535		       struct drm_i915_gem_exec_object2 *exec)
1536{
1537	struct drm_i915_private *dev_priv = to_i915(dev);
1538	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1539	struct eb_vmas *eb;
1540	struct drm_i915_gem_exec_object2 shadow_exec_entry;
1541	struct intel_engine_cs *engine;
1542	struct i915_gem_context *ctx;
1543	struct i915_address_space *vm;
1544	struct i915_execbuffer_params params_master; /* XXX: will be removed later */
1545	struct i915_execbuffer_params *params = &params_master;
1546	const u32 ctx_id = i915_execbuffer2_get_context_id(*args);
1547	u32 dispatch_flags;
1548	int ret;
1549	bool need_relocs;
1550
1551	if (!i915_gem_check_execbuffer(args))
 
1552		return -EINVAL;
 
1553
1554	ret = validate_exec_list(dev, exec, args->buffer_count);
1555	if (ret)
1556		return ret;
1557
1558	dispatch_flags = 0;
1559	if (args->flags & I915_EXEC_SECURE) {
1560		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
1561		    return -EPERM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1562
1563		dispatch_flags |= I915_DISPATCH_SECURE;
1564	}
1565	if (args->flags & I915_EXEC_IS_PINNED)
1566		dispatch_flags |= I915_DISPATCH_PINNED;
1567
1568	engine = eb_select_engine(dev_priv, file, args);
1569	if (!engine)
 
 
 
 
 
 
 
 
 
 
1570		return -EINVAL;
 
1571
1572	if (args->buffer_count < 1) {
1573		DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1574		return -EINVAL;
1575	}
1576
1577	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
1578		if (!HAS_RESOURCE_STREAMER(dev_priv)) {
1579			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
1580			return -EINVAL;
1581		}
1582		if (engine->id != RCS) {
1583			DRM_DEBUG("RS is not available on %s\n",
1584				 engine->name);
1585			return -EINVAL;
 
 
1586		}
1587
1588		dispatch_flags |= I915_DISPATCH_RS;
 
 
 
 
 
 
1589	}
1590
1591	/* Take a local wakeref for preparing to dispatch the execbuf as
1592	 * we expect to access the hardware fairly frequently in the
1593	 * process. Upon first dispatch, we acquire another prolonged
1594	 * wakeref that we hold until the GPU has been idle for at least
1595	 * 100ms.
1596	 */
1597	intel_runtime_pm_get(dev_priv);
1598
1599	ret = i915_mutex_lock_interruptible(dev);
1600	if (ret)
1601		goto pre_mutex_err;
1602
1603	ctx = i915_gem_validate_context(dev, file, engine, ctx_id);
1604	if (IS_ERR(ctx)) {
1605		mutex_unlock(&dev->struct_mutex);
1606		ret = PTR_ERR(ctx);
1607		goto pre_mutex_err;
1608	}
1609
1610	i915_gem_context_get(ctx);
1611
1612	if (ctx->ppgtt)
1613		vm = &ctx->ppgtt->base;
1614	else
1615		vm = &ggtt->base;
1616
1617	memset(&params_master, 0x00, sizeof(params_master));
1618
1619	eb = eb_create(dev_priv, args);
1620	if (eb == NULL) {
1621		i915_gem_context_put(ctx);
1622		mutex_unlock(&dev->struct_mutex);
1623		ret = -ENOMEM;
1624		goto pre_mutex_err;
1625	}
1626
1627	/* Look up object handles */
1628	ret = eb_lookup_vmas(eb, exec, args, vm, file);
1629	if (ret)
1630		goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1631
1632	/* take note of the batch buffer before we might reorder the lists */
1633	params->batch = eb_get_batch(eb);
 
 
1634
1635	/* Move the objects en-masse into the GTT, evicting if necessary. */
1636	need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1637	ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1638					  &need_relocs);
1639	if (ret)
1640		goto err;
1641
1642	/* The objects are in their final locations, apply the relocations. */
1643	if (need_relocs)
1644		ret = i915_gem_execbuffer_relocate(eb);
1645	if (ret) {
1646		if (ret == -EFAULT) {
1647			ret = i915_gem_execbuffer_relocate_slow(dev, args, file,
1648								engine,
1649								eb, exec, ctx);
 
1650			BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1651		}
1652		if (ret)
1653			goto err;
1654	}
1655
1656	/* Set the pending read domains for the batch buffer to COMMAND */
1657	if (params->batch->obj->base.pending_write_domain) {
1658		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1659		ret = -EINVAL;
1660		goto err;
1661	}
1662	if (args->batch_start_offset > params->batch->size ||
1663	    args->batch_len > params->batch->size - args->batch_start_offset) {
1664		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
1665		ret = -EINVAL;
1666		goto err;
1667	}
1668
1669	params->args_batch_start_offset = args->batch_start_offset;
1670	if (intel_engine_needs_cmd_parser(engine) && args->batch_len) {
1671		struct i915_vma *vma;
1672
1673		vma = i915_gem_execbuffer_parse(engine, &shadow_exec_entry,
1674						params->batch->obj,
1675						eb,
1676						args->batch_start_offset,
1677						args->batch_len,
1678						drm_is_current_master(file));
1679		if (IS_ERR(vma)) {
1680			ret = PTR_ERR(vma);
1681			goto err;
1682		}
1683
1684		if (vma) {
1685			/*
1686			 * Batch parsed and accepted:
1687			 *
1688			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
1689			 * bit from MI_BATCH_BUFFER_START commands issued in
1690			 * the dispatch_execbuffer implementations. We
1691			 * specifically don't want that set on batches the
1692			 * command parser has accepted.
1693			 */
1694			dispatch_flags |= I915_DISPATCH_SECURE;
1695			params->args_batch_start_offset = 0;
1696			params->batch = vma;
1697		}
1698	}
1699
1700	params->batch->obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
 
 
 
 
 
 
 
 
 
1701
1702	/* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
1703	 * batch" bit. Hence we need to pin secure batches into the global gtt.
1704	 * hsw should have this fixed, but bdw mucks it up again. */
1705	if (dispatch_flags & I915_DISPATCH_SECURE) {
1706		struct drm_i915_gem_object *obj = params->batch->obj;
1707		struct i915_vma *vma;
1708
1709		/*
1710		 * So on first glance it looks freaky that we pin the batch here
1711		 * outside of the reservation loop. But:
1712		 * - The batch is already pinned into the relevant ppgtt, so we
1713		 *   already have the backing storage fully allocated.
1714		 * - No other BO uses the global gtt (well contexts, but meh),
1715		 *   so we don't really have issues with multiple objects not
1716		 *   fitting due to fragmentation.
1717		 * So this is actually safe.
1718		 */
1719		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
1720		if (IS_ERR(vma)) {
1721			ret = PTR_ERR(vma);
1722			goto err;
1723		}
1724
1725		params->batch = vma;
1726	}
1727
1728	/* Allocate a request for this batch buffer nice and early. */
1729	params->request = i915_gem_request_alloc(engine, ctx);
1730	if (IS_ERR(params->request)) {
1731		ret = PTR_ERR(params->request);
1732		goto err_batch_unpin;
1733	}
1734
1735	/* Whilst this request exists, batch_obj will be on the
1736	 * active_list, and so will hold the active reference. Only when this
1737	 * request is retired will the the batch_obj be moved onto the
1738	 * inactive_list and lose its active reference. Hence we do not need
1739	 * to explicitly hold another reference here.
1740	 */
1741	params->request->batch = params->batch;
1742
1743	ret = i915_gem_request_add_to_client(params->request, file);
1744	if (ret)
1745		goto err_request;
1746
1747	/*
1748	 * Save assorted stuff away to pass through to *_submission().
1749	 * NB: This data should be 'persistent' and not local as it will
1750	 * kept around beyond the duration of the IOCTL once the GPU
1751	 * scheduler arrives.
1752	 */
1753	params->dev                     = dev;
1754	params->file                    = file;
1755	params->engine                    = engine;
1756	params->dispatch_flags          = dispatch_flags;
1757	params->ctx                     = ctx;
1758
1759	ret = execbuf_submit(params, args, &eb->vmas);
1760err_request:
1761	__i915_add_request(params->request, ret == 0);
1762
1763err_batch_unpin:
1764	/*
1765	 * FIXME: We crucially rely upon the active tracking for the (ppgtt)
1766	 * batch vma for correctness. For less ugly and less fragility this
1767	 * needs to be adjusted to also track the ggtt batch vma properly as
1768	 * active.
1769	 */
1770	if (dispatch_flags & I915_DISPATCH_SECURE)
1771		i915_vma_unpin(params->batch);
1772err:
1773	/* the request owns the ref now */
1774	i915_gem_context_put(ctx);
1775	eb_destroy(eb);
 
 
 
 
 
 
 
 
 
1776
1777	mutex_unlock(&dev->struct_mutex);
1778
1779pre_mutex_err:
1780	/* intel_gpu_busy should also get a ref, so it will free when the device
1781	 * is really idle. */
1782	intel_runtime_pm_put(dev_priv);
1783	return ret;
1784}
1785
1786/*
1787 * Legacy execbuffer just creates an exec2 list from the original exec object
1788 * list array and passes it to the real function.
1789 */
1790int
1791i915_gem_execbuffer(struct drm_device *dev, void *data,
1792		    struct drm_file *file)
1793{
1794	struct drm_i915_gem_execbuffer *args = data;
1795	struct drm_i915_gem_execbuffer2 exec2;
1796	struct drm_i915_gem_exec_object *exec_list = NULL;
1797	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1798	int ret, i;
1799
1800	if (args->buffer_count < 1) {
1801		DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1802		return -EINVAL;
1803	}
1804
1805	/* Copy in the exec list from userland */
1806	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1807	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1808	if (exec_list == NULL || exec2_list == NULL) {
1809		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1810			  args->buffer_count);
1811		drm_free_large(exec_list);
1812		drm_free_large(exec2_list);
1813		return -ENOMEM;
1814	}
1815	ret = copy_from_user(exec_list,
1816			     u64_to_user_ptr(args->buffers_ptr),
 
1817			     sizeof(*exec_list) * args->buffer_count);
1818	if (ret != 0) {
1819		DRM_DEBUG("copy %d exec entries failed %d\n",
1820			  args->buffer_count, ret);
1821		drm_free_large(exec_list);
1822		drm_free_large(exec2_list);
1823		return -EFAULT;
1824	}
1825
1826	for (i = 0; i < args->buffer_count; i++) {
1827		exec2_list[i].handle = exec_list[i].handle;
1828		exec2_list[i].relocation_count = exec_list[i].relocation_count;
1829		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1830		exec2_list[i].alignment = exec_list[i].alignment;
1831		exec2_list[i].offset = exec_list[i].offset;
1832		if (INTEL_GEN(to_i915(dev)) < 4)
1833			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1834		else
1835			exec2_list[i].flags = 0;
1836	}
1837
1838	exec2.buffers_ptr = args->buffers_ptr;
1839	exec2.buffer_count = args->buffer_count;
1840	exec2.batch_start_offset = args->batch_start_offset;
1841	exec2.batch_len = args->batch_len;
1842	exec2.DR1 = args->DR1;
1843	exec2.DR4 = args->DR4;
1844	exec2.num_cliprects = args->num_cliprects;
1845	exec2.cliprects_ptr = args->cliprects_ptr;
1846	exec2.flags = I915_EXEC_RENDER;
1847	i915_execbuffer2_set_context_id(exec2, 0);
1848
1849	ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1850	if (!ret) {
1851		struct drm_i915_gem_exec_object __user *user_exec_list =
1852			u64_to_user_ptr(args->buffers_ptr);
1853
1854		/* Copy the new buffer offsets back to the user's exec list. */
1855		for (i = 0; i < args->buffer_count; i++) {
1856			exec2_list[i].offset =
1857				gen8_canonical_addr(exec2_list[i].offset);
1858			ret = __copy_to_user(&user_exec_list[i].offset,
1859					     &exec2_list[i].offset,
1860					     sizeof(user_exec_list[i].offset));
1861			if (ret) {
1862				ret = -EFAULT;
1863				DRM_DEBUG("failed to copy %d exec entries "
1864					  "back to user (%d)\n",
1865					  args->buffer_count, ret);
1866				break;
1867			}
1868		}
1869	}
1870
1871	drm_free_large(exec_list);
1872	drm_free_large(exec2_list);
1873	return ret;
1874}
1875
1876int
1877i915_gem_execbuffer2(struct drm_device *dev, void *data,
1878		     struct drm_file *file)
1879{
1880	struct drm_i915_gem_execbuffer2 *args = data;
1881	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1882	int ret;
1883
1884	if (args->buffer_count < 1 ||
1885	    args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1886		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1887		return -EINVAL;
1888	}
1889
1890	if (args->rsvd2 != 0) {
1891		DRM_DEBUG("dirty rvsd2 field\n");
1892		return -EINVAL;
1893	}
1894
1895	exec2_list = drm_malloc_gfp(args->buffer_count,
1896				    sizeof(*exec2_list),
1897				    GFP_TEMPORARY);
 
 
1898	if (exec2_list == NULL) {
1899		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1900			  args->buffer_count);
1901		return -ENOMEM;
1902	}
1903	ret = copy_from_user(exec2_list,
1904			     u64_to_user_ptr(args->buffers_ptr),
 
1905			     sizeof(*exec2_list) * args->buffer_count);
1906	if (ret != 0) {
1907		DRM_DEBUG("copy %d exec entries failed %d\n",
1908			  args->buffer_count, ret);
1909		drm_free_large(exec2_list);
1910		return -EFAULT;
1911	}
1912
1913	ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1914	if (!ret) {
1915		/* Copy the new buffer offsets back to the user's exec list. */
1916		struct drm_i915_gem_exec_object2 __user *user_exec_list =
1917				   u64_to_user_ptr(args->buffers_ptr);
1918		int i;
1919
1920		for (i = 0; i < args->buffer_count; i++) {
1921			exec2_list[i].offset =
1922				gen8_canonical_addr(exec2_list[i].offset);
1923			ret = __copy_to_user(&user_exec_list[i].offset,
1924					     &exec2_list[i].offset,
1925					     sizeof(user_exec_list[i].offset));
1926			if (ret) {
1927				ret = -EFAULT;
1928				DRM_DEBUG("failed to copy %d exec entries "
1929					  "back to user\n",
1930					  args->buffer_count);
1931				break;
1932			}
1933		}
1934	}
1935
1936	drm_free_large(exec2_list);
1937	return ret;
1938}