Loading...
1/*
2 * Copyright © 2008,2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
26 *
27 */
28
29#include "drmP.h"
30#include "drm.h"
31#include "i915_drm.h"
32#include "i915_drv.h"
33#include "i915_trace.h"
34#include "intel_drv.h"
35
36struct change_domains {
37 uint32_t invalidate_domains;
38 uint32_t flush_domains;
39 uint32_t flush_rings;
40 uint32_t flips;
41};
42
43/*
44 * Set the next domain for the specified object. This
45 * may not actually perform the necessary flushing/invaliding though,
46 * as that may want to be batched with other set_domain operations
47 *
48 * This is (we hope) the only really tricky part of gem. The goal
49 * is fairly simple -- track which caches hold bits of the object
50 * and make sure they remain coherent. A few concrete examples may
51 * help to explain how it works. For shorthand, we use the notation
52 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
53 * a pair of read and write domain masks.
54 *
55 * Case 1: the batch buffer
56 *
57 * 1. Allocated
58 * 2. Written by CPU
59 * 3. Mapped to GTT
60 * 4. Read by GPU
61 * 5. Unmapped from GTT
62 * 6. Freed
63 *
64 * Let's take these a step at a time
65 *
66 * 1. Allocated
67 * Pages allocated from the kernel may still have
68 * cache contents, so we set them to (CPU, CPU) always.
69 * 2. Written by CPU (using pwrite)
70 * The pwrite function calls set_domain (CPU, CPU) and
71 * this function does nothing (as nothing changes)
72 * 3. Mapped by GTT
73 * This function asserts that the object is not
74 * currently in any GPU-based read or write domains
75 * 4. Read by GPU
76 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
77 * As write_domain is zero, this function adds in the
78 * current read domains (CPU+COMMAND, 0).
79 * flush_domains is set to CPU.
80 * invalidate_domains is set to COMMAND
81 * clflush is run to get data out of the CPU caches
82 * then i915_dev_set_domain calls i915_gem_flush to
83 * emit an MI_FLUSH and drm_agp_chipset_flush
84 * 5. Unmapped from GTT
85 * i915_gem_object_unbind calls set_domain (CPU, CPU)
86 * flush_domains and invalidate_domains end up both zero
87 * so no flushing/invalidating happens
88 * 6. Freed
89 * yay, done
90 *
91 * Case 2: The shared render buffer
92 *
93 * 1. Allocated
94 * 2. Mapped to GTT
95 * 3. Read/written by GPU
96 * 4. set_domain to (CPU,CPU)
97 * 5. Read/written by CPU
98 * 6. Read/written by GPU
99 *
100 * 1. Allocated
101 * Same as last example, (CPU, CPU)
102 * 2. Mapped to GTT
103 * Nothing changes (assertions find that it is not in the GPU)
104 * 3. Read/written by GPU
105 * execbuffer calls set_domain (RENDER, RENDER)
106 * flush_domains gets CPU
107 * invalidate_domains gets GPU
108 * clflush (obj)
109 * MI_FLUSH and drm_agp_chipset_flush
110 * 4. set_domain (CPU, CPU)
111 * flush_domains gets GPU
112 * invalidate_domains gets CPU
113 * wait_rendering (obj) to make sure all drawing is complete.
114 * This will include an MI_FLUSH to get the data from GPU
115 * to memory
116 * clflush (obj) to invalidate the CPU cache
117 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
118 * 5. Read/written by CPU
119 * cache lines are loaded and dirtied
120 * 6. Read written by GPU
121 * Same as last GPU access
122 *
123 * Case 3: The constant buffer
124 *
125 * 1. Allocated
126 * 2. Written by CPU
127 * 3. Read by GPU
128 * 4. Updated (written) by CPU again
129 * 5. Read by GPU
130 *
131 * 1. Allocated
132 * (CPU, CPU)
133 * 2. Written by CPU
134 * (CPU, CPU)
135 * 3. Read by GPU
136 * (CPU+RENDER, 0)
137 * flush_domains = CPU
138 * invalidate_domains = RENDER
139 * clflush (obj)
140 * MI_FLUSH
141 * drm_agp_chipset_flush
142 * 4. Updated (written) by CPU again
143 * (CPU, CPU)
144 * flush_domains = 0 (no previous write domain)
145 * invalidate_domains = 0 (no new read domains)
146 * 5. Read by GPU
147 * (CPU+RENDER, 0)
148 * flush_domains = CPU
149 * invalidate_domains = RENDER
150 * clflush (obj)
151 * MI_FLUSH
152 * drm_agp_chipset_flush
153 */
154static void
155i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
156 struct intel_ring_buffer *ring,
157 struct change_domains *cd)
158{
159 uint32_t invalidate_domains = 0, flush_domains = 0;
160
161 /*
162 * If the object isn't moving to a new write domain,
163 * let the object stay in multiple read domains
164 */
165 if (obj->base.pending_write_domain == 0)
166 obj->base.pending_read_domains |= obj->base.read_domains;
167
168 /*
169 * Flush the current write domain if
170 * the new read domains don't match. Invalidate
171 * any read domains which differ from the old
172 * write domain
173 */
174 if (obj->base.write_domain &&
175 (((obj->base.write_domain != obj->base.pending_read_domains ||
176 obj->ring != ring)) ||
177 (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
178 flush_domains |= obj->base.write_domain;
179 invalidate_domains |=
180 obj->base.pending_read_domains & ~obj->base.write_domain;
181 }
182 /*
183 * Invalidate any read caches which may have
184 * stale data. That is, any new read domains.
185 */
186 invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
187 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
188 i915_gem_clflush_object(obj);
189
190 if (obj->base.pending_write_domain)
191 cd->flips |= atomic_read(&obj->pending_flip);
192
193 /* The actual obj->write_domain will be updated with
194 * pending_write_domain after we emit the accumulated flush for all
195 * of our domain changes in execbuffers (which clears objects'
196 * write_domains). So if we have a current write domain that we
197 * aren't changing, set pending_write_domain to that.
198 */
199 if (flush_domains == 0 && obj->base.pending_write_domain == 0)
200 obj->base.pending_write_domain = obj->base.write_domain;
201
202 cd->invalidate_domains |= invalidate_domains;
203 cd->flush_domains |= flush_domains;
204 if (flush_domains & I915_GEM_GPU_DOMAINS)
205 cd->flush_rings |= obj->ring->id;
206 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
207 cd->flush_rings |= ring->id;
208}
209
210struct eb_objects {
211 int and;
212 struct hlist_head buckets[0];
213};
214
215static struct eb_objects *
216eb_create(int size)
217{
218 struct eb_objects *eb;
219 int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
220 while (count > size)
221 count >>= 1;
222 eb = kzalloc(count*sizeof(struct hlist_head) +
223 sizeof(struct eb_objects),
224 GFP_KERNEL);
225 if (eb == NULL)
226 return eb;
227
228 eb->and = count - 1;
229 return eb;
230}
231
232static void
233eb_reset(struct eb_objects *eb)
234{
235 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
236}
237
238static void
239eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
240{
241 hlist_add_head(&obj->exec_node,
242 &eb->buckets[obj->exec_handle & eb->and]);
243}
244
245static struct drm_i915_gem_object *
246eb_get_object(struct eb_objects *eb, unsigned long handle)
247{
248 struct hlist_head *head;
249 struct hlist_node *node;
250 struct drm_i915_gem_object *obj;
251
252 head = &eb->buckets[handle & eb->and];
253 hlist_for_each(node, head) {
254 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
255 if (obj->exec_handle == handle)
256 return obj;
257 }
258
259 return NULL;
260}
261
262static void
263eb_destroy(struct eb_objects *eb)
264{
265 kfree(eb);
266}
267
268static int
269i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
270 struct eb_objects *eb,
271 struct drm_i915_gem_relocation_entry *reloc)
272{
273 struct drm_device *dev = obj->base.dev;
274 struct drm_gem_object *target_obj;
275 uint32_t target_offset;
276 int ret = -EINVAL;
277
278 /* we've already hold a reference to all valid objects */
279 target_obj = &eb_get_object(eb, reloc->target_handle)->base;
280 if (unlikely(target_obj == NULL))
281 return -ENOENT;
282
283 target_offset = to_intel_bo(target_obj)->gtt_offset;
284
285 /* The target buffer should have appeared before us in the
286 * exec_object list, so it should have a GTT space bound by now.
287 */
288 if (unlikely(target_offset == 0)) {
289 DRM_ERROR("No GTT space found for object %d\n",
290 reloc->target_handle);
291 return ret;
292 }
293
294 /* Validate that the target is in a valid r/w GPU domain */
295 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
296 DRM_ERROR("reloc with multiple write domains: "
297 "obj %p target %d offset %d "
298 "read %08x write %08x",
299 obj, reloc->target_handle,
300 (int) reloc->offset,
301 reloc->read_domains,
302 reloc->write_domain);
303 return ret;
304 }
305 if (unlikely((reloc->write_domain | reloc->read_domains) & I915_GEM_DOMAIN_CPU)) {
306 DRM_ERROR("reloc with read/write CPU domains: "
307 "obj %p target %d offset %d "
308 "read %08x write %08x",
309 obj, reloc->target_handle,
310 (int) reloc->offset,
311 reloc->read_domains,
312 reloc->write_domain);
313 return ret;
314 }
315 if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
316 reloc->write_domain != target_obj->pending_write_domain)) {
317 DRM_ERROR("Write domain conflict: "
318 "obj %p target %d offset %d "
319 "new %08x old %08x\n",
320 obj, reloc->target_handle,
321 (int) reloc->offset,
322 reloc->write_domain,
323 target_obj->pending_write_domain);
324 return ret;
325 }
326
327 target_obj->pending_read_domains |= reloc->read_domains;
328 target_obj->pending_write_domain |= reloc->write_domain;
329
330 /* If the relocation already has the right value in it, no
331 * more work needs to be done.
332 */
333 if (target_offset == reloc->presumed_offset)
334 return 0;
335
336 /* Check that the relocation address is valid... */
337 if (unlikely(reloc->offset > obj->base.size - 4)) {
338 DRM_ERROR("Relocation beyond object bounds: "
339 "obj %p target %d offset %d size %d.\n",
340 obj, reloc->target_handle,
341 (int) reloc->offset,
342 (int) obj->base.size);
343 return ret;
344 }
345 if (unlikely(reloc->offset & 3)) {
346 DRM_ERROR("Relocation not 4-byte aligned: "
347 "obj %p target %d offset %d.\n",
348 obj, reloc->target_handle,
349 (int) reloc->offset);
350 return ret;
351 }
352
353 reloc->delta += target_offset;
354 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
355 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
356 char *vaddr;
357
358 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
359 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
360 kunmap_atomic(vaddr);
361 } else {
362 struct drm_i915_private *dev_priv = dev->dev_private;
363 uint32_t __iomem *reloc_entry;
364 void __iomem *reloc_page;
365
366 /* We can't wait for rendering with pagefaults disabled */
367 if (obj->active && in_atomic())
368 return -EFAULT;
369
370 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
371 if (ret)
372 return ret;
373
374 /* Map the page containing the relocation we're going to perform. */
375 reloc->offset += obj->gtt_offset;
376 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
377 reloc->offset & PAGE_MASK);
378 reloc_entry = (uint32_t __iomem *)
379 (reloc_page + (reloc->offset & ~PAGE_MASK));
380 iowrite32(reloc->delta, reloc_entry);
381 io_mapping_unmap_atomic(reloc_page);
382 }
383
384 /* and update the user's relocation entry */
385 reloc->presumed_offset = target_offset;
386
387 return 0;
388}
389
390static int
391i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
392 struct eb_objects *eb)
393{
394 struct drm_i915_gem_relocation_entry __user *user_relocs;
395 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
396 int i, ret;
397
398 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
399 for (i = 0; i < entry->relocation_count; i++) {
400 struct drm_i915_gem_relocation_entry reloc;
401
402 if (__copy_from_user_inatomic(&reloc,
403 user_relocs+i,
404 sizeof(reloc)))
405 return -EFAULT;
406
407 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
408 if (ret)
409 return ret;
410
411 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
412 &reloc.presumed_offset,
413 sizeof(reloc.presumed_offset)))
414 return -EFAULT;
415 }
416
417 return 0;
418}
419
420static int
421i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
422 struct eb_objects *eb,
423 struct drm_i915_gem_relocation_entry *relocs)
424{
425 const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
426 int i, ret;
427
428 for (i = 0; i < entry->relocation_count; i++) {
429 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
430 if (ret)
431 return ret;
432 }
433
434 return 0;
435}
436
437static int
438i915_gem_execbuffer_relocate(struct drm_device *dev,
439 struct eb_objects *eb,
440 struct list_head *objects)
441{
442 struct drm_i915_gem_object *obj;
443 int ret = 0;
444
445 /* This is the fast path and we cannot handle a pagefault whilst
446 * holding the struct mutex lest the user pass in the relocations
447 * contained within a mmaped bo. For in such a case we, the page
448 * fault handler would call i915_gem_fault() and we would try to
449 * acquire the struct mutex again. Obviously this is bad and so
450 * lockdep complains vehemently.
451 */
452 pagefault_disable();
453 list_for_each_entry(obj, objects, exec_list) {
454 ret = i915_gem_execbuffer_relocate_object(obj, eb);
455 if (ret)
456 break;
457 }
458 pagefault_enable();
459
460 return ret;
461}
462
463static int
464i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
465 struct drm_file *file,
466 struct list_head *objects)
467{
468 struct drm_i915_gem_object *obj;
469 int ret, retry;
470 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
471 struct list_head ordered_objects;
472
473 INIT_LIST_HEAD(&ordered_objects);
474 while (!list_empty(objects)) {
475 struct drm_i915_gem_exec_object2 *entry;
476 bool need_fence, need_mappable;
477
478 obj = list_first_entry(objects,
479 struct drm_i915_gem_object,
480 exec_list);
481 entry = obj->exec_entry;
482
483 need_fence =
484 has_fenced_gpu_access &&
485 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
486 obj->tiling_mode != I915_TILING_NONE;
487 need_mappable =
488 entry->relocation_count ? true : need_fence;
489
490 if (need_mappable)
491 list_move(&obj->exec_list, &ordered_objects);
492 else
493 list_move_tail(&obj->exec_list, &ordered_objects);
494
495 obj->base.pending_read_domains = 0;
496 obj->base.pending_write_domain = 0;
497 }
498 list_splice(&ordered_objects, objects);
499
500 /* Attempt to pin all of the buffers into the GTT.
501 * This is done in 3 phases:
502 *
503 * 1a. Unbind all objects that do not match the GTT constraints for
504 * the execbuffer (fenceable, mappable, alignment etc).
505 * 1b. Increment pin count for already bound objects.
506 * 2. Bind new objects.
507 * 3. Decrement pin count.
508 *
509 * This avoid unnecessary unbinding of later objects in order to makr
510 * room for the earlier objects *unless* we need to defragment.
511 */
512 retry = 0;
513 do {
514 ret = 0;
515
516 /* Unbind any ill-fitting objects or pin. */
517 list_for_each_entry(obj, objects, exec_list) {
518 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
519 bool need_fence, need_mappable;
520 if (!obj->gtt_space)
521 continue;
522
523 need_fence =
524 has_fenced_gpu_access &&
525 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
526 obj->tiling_mode != I915_TILING_NONE;
527 need_mappable =
528 entry->relocation_count ? true : need_fence;
529
530 if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
531 (need_mappable && !obj->map_and_fenceable))
532 ret = i915_gem_object_unbind(obj);
533 else
534 ret = i915_gem_object_pin(obj,
535 entry->alignment,
536 need_mappable);
537 if (ret)
538 goto err;
539
540 entry++;
541 }
542
543 /* Bind fresh objects */
544 list_for_each_entry(obj, objects, exec_list) {
545 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
546 bool need_fence;
547
548 need_fence =
549 has_fenced_gpu_access &&
550 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
551 obj->tiling_mode != I915_TILING_NONE;
552
553 if (!obj->gtt_space) {
554 bool need_mappable =
555 entry->relocation_count ? true : need_fence;
556
557 ret = i915_gem_object_pin(obj,
558 entry->alignment,
559 need_mappable);
560 if (ret)
561 break;
562 }
563
564 if (has_fenced_gpu_access) {
565 if (need_fence) {
566 ret = i915_gem_object_get_fence(obj, ring);
567 if (ret)
568 break;
569 } else if (entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
570 obj->tiling_mode == I915_TILING_NONE) {
571 /* XXX pipelined! */
572 ret = i915_gem_object_put_fence(obj);
573 if (ret)
574 break;
575 }
576 obj->pending_fenced_gpu_access = need_fence;
577 }
578
579 entry->offset = obj->gtt_offset;
580 }
581
582 /* Decrement pin count for bound objects */
583 list_for_each_entry(obj, objects, exec_list) {
584 if (obj->gtt_space)
585 i915_gem_object_unpin(obj);
586 }
587
588 if (ret != -ENOSPC || retry > 1)
589 return ret;
590
591 /* First attempt, just clear anything that is purgeable.
592 * Second attempt, clear the entire GTT.
593 */
594 ret = i915_gem_evict_everything(ring->dev, retry == 0);
595 if (ret)
596 return ret;
597
598 retry++;
599 } while (1);
600
601err:
602 obj = list_entry(obj->exec_list.prev,
603 struct drm_i915_gem_object,
604 exec_list);
605 while (objects != &obj->exec_list) {
606 if (obj->gtt_space)
607 i915_gem_object_unpin(obj);
608
609 obj = list_entry(obj->exec_list.prev,
610 struct drm_i915_gem_object,
611 exec_list);
612 }
613
614 return ret;
615}
616
617static int
618i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
619 struct drm_file *file,
620 struct intel_ring_buffer *ring,
621 struct list_head *objects,
622 struct eb_objects *eb,
623 struct drm_i915_gem_exec_object2 *exec,
624 int count)
625{
626 struct drm_i915_gem_relocation_entry *reloc;
627 struct drm_i915_gem_object *obj;
628 int *reloc_offset;
629 int i, total, ret;
630
631 /* We may process another execbuffer during the unlock... */
632 while (!list_empty(objects)) {
633 obj = list_first_entry(objects,
634 struct drm_i915_gem_object,
635 exec_list);
636 list_del_init(&obj->exec_list);
637 drm_gem_object_unreference(&obj->base);
638 }
639
640 mutex_unlock(&dev->struct_mutex);
641
642 total = 0;
643 for (i = 0; i < count; i++)
644 total += exec[i].relocation_count;
645
646 reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
647 reloc = drm_malloc_ab(total, sizeof(*reloc));
648 if (reloc == NULL || reloc_offset == NULL) {
649 drm_free_large(reloc);
650 drm_free_large(reloc_offset);
651 mutex_lock(&dev->struct_mutex);
652 return -ENOMEM;
653 }
654
655 total = 0;
656 for (i = 0; i < count; i++) {
657 struct drm_i915_gem_relocation_entry __user *user_relocs;
658
659 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
660
661 if (copy_from_user(reloc+total, user_relocs,
662 exec[i].relocation_count * sizeof(*reloc))) {
663 ret = -EFAULT;
664 mutex_lock(&dev->struct_mutex);
665 goto err;
666 }
667
668 reloc_offset[i] = total;
669 total += exec[i].relocation_count;
670 }
671
672 ret = i915_mutex_lock_interruptible(dev);
673 if (ret) {
674 mutex_lock(&dev->struct_mutex);
675 goto err;
676 }
677
678 /* reacquire the objects */
679 eb_reset(eb);
680 for (i = 0; i < count; i++) {
681 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
682 exec[i].handle));
683 if (&obj->base == NULL) {
684 DRM_ERROR("Invalid object handle %d at index %d\n",
685 exec[i].handle, i);
686 ret = -ENOENT;
687 goto err;
688 }
689
690 list_add_tail(&obj->exec_list, objects);
691 obj->exec_handle = exec[i].handle;
692 obj->exec_entry = &exec[i];
693 eb_add_object(eb, obj);
694 }
695
696 ret = i915_gem_execbuffer_reserve(ring, file, objects);
697 if (ret)
698 goto err;
699
700 list_for_each_entry(obj, objects, exec_list) {
701 int offset = obj->exec_entry - exec;
702 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
703 reloc + reloc_offset[offset]);
704 if (ret)
705 goto err;
706 }
707
708 /* Leave the user relocations as are, this is the painfully slow path,
709 * and we want to avoid the complication of dropping the lock whilst
710 * having buffers reserved in the aperture and so causing spurious
711 * ENOSPC for random operations.
712 */
713
714err:
715 drm_free_large(reloc);
716 drm_free_large(reloc_offset);
717 return ret;
718}
719
720static int
721i915_gem_execbuffer_flush(struct drm_device *dev,
722 uint32_t invalidate_domains,
723 uint32_t flush_domains,
724 uint32_t flush_rings)
725{
726 drm_i915_private_t *dev_priv = dev->dev_private;
727 int i, ret;
728
729 if (flush_domains & I915_GEM_DOMAIN_CPU)
730 intel_gtt_chipset_flush();
731
732 if (flush_domains & I915_GEM_DOMAIN_GTT)
733 wmb();
734
735 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
736 for (i = 0; i < I915_NUM_RINGS; i++)
737 if (flush_rings & (1 << i)) {
738 ret = i915_gem_flush_ring(&dev_priv->ring[i],
739 invalidate_domains,
740 flush_domains);
741 if (ret)
742 return ret;
743 }
744 }
745
746 return 0;
747}
748
749static int
750i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
751 struct intel_ring_buffer *to)
752{
753 struct intel_ring_buffer *from = obj->ring;
754 u32 seqno;
755 int ret, idx;
756
757 if (from == NULL || to == from)
758 return 0;
759
760 /* XXX gpu semaphores are implicated in various hard hangs on SNB */
761 if (INTEL_INFO(obj->base.dev)->gen < 6 || !i915_semaphores)
762 return i915_gem_object_wait_rendering(obj);
763
764 idx = intel_ring_sync_index(from, to);
765
766 seqno = obj->last_rendering_seqno;
767 if (seqno <= from->sync_seqno[idx])
768 return 0;
769
770 if (seqno == from->outstanding_lazy_request) {
771 struct drm_i915_gem_request *request;
772
773 request = kzalloc(sizeof(*request), GFP_KERNEL);
774 if (request == NULL)
775 return -ENOMEM;
776
777 ret = i915_add_request(from, NULL, request);
778 if (ret) {
779 kfree(request);
780 return ret;
781 }
782
783 seqno = request->seqno;
784 }
785
786 from->sync_seqno[idx] = seqno;
787 return intel_ring_sync(to, from, seqno - 1);
788}
789
790static int
791i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
792{
793 u32 plane, flip_mask;
794 int ret;
795
796 /* Check for any pending flips. As we only maintain a flip queue depth
797 * of 1, we can simply insert a WAIT for the next display flip prior
798 * to executing the batch and avoid stalling the CPU.
799 */
800
801 for (plane = 0; flips >> plane; plane++) {
802 if (((flips >> plane) & 1) == 0)
803 continue;
804
805 if (plane)
806 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
807 else
808 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
809
810 ret = intel_ring_begin(ring, 2);
811 if (ret)
812 return ret;
813
814 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
815 intel_ring_emit(ring, MI_NOOP);
816 intel_ring_advance(ring);
817 }
818
819 return 0;
820}
821
822
823static int
824i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
825 struct list_head *objects)
826{
827 struct drm_i915_gem_object *obj;
828 struct change_domains cd;
829 int ret;
830
831 memset(&cd, 0, sizeof(cd));
832 list_for_each_entry(obj, objects, exec_list)
833 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
834
835 if (cd.invalidate_domains | cd.flush_domains) {
836 ret = i915_gem_execbuffer_flush(ring->dev,
837 cd.invalidate_domains,
838 cd.flush_domains,
839 cd.flush_rings);
840 if (ret)
841 return ret;
842 }
843
844 if (cd.flips) {
845 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
846 if (ret)
847 return ret;
848 }
849
850 list_for_each_entry(obj, objects, exec_list) {
851 ret = i915_gem_execbuffer_sync_rings(obj, ring);
852 if (ret)
853 return ret;
854 }
855
856 return 0;
857}
858
859static bool
860i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
861{
862 return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
863}
864
865static int
866validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
867 int count)
868{
869 int i;
870
871 for (i = 0; i < count; i++) {
872 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
873 int length; /* limited by fault_in_pages_readable() */
874
875 /* First check for malicious input causing overflow */
876 if (exec[i].relocation_count >
877 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
878 return -EINVAL;
879
880 length = exec[i].relocation_count *
881 sizeof(struct drm_i915_gem_relocation_entry);
882 if (!access_ok(VERIFY_READ, ptr, length))
883 return -EFAULT;
884
885 /* we may also need to update the presumed offsets */
886 if (!access_ok(VERIFY_WRITE, ptr, length))
887 return -EFAULT;
888
889 if (fault_in_pages_readable(ptr, length))
890 return -EFAULT;
891 }
892
893 return 0;
894}
895
896static void
897i915_gem_execbuffer_move_to_active(struct list_head *objects,
898 struct intel_ring_buffer *ring,
899 u32 seqno)
900{
901 struct drm_i915_gem_object *obj;
902
903 list_for_each_entry(obj, objects, exec_list) {
904 u32 old_read = obj->base.read_domains;
905 u32 old_write = obj->base.write_domain;
906
907
908 obj->base.read_domains = obj->base.pending_read_domains;
909 obj->base.write_domain = obj->base.pending_write_domain;
910 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
911
912 i915_gem_object_move_to_active(obj, ring, seqno);
913 if (obj->base.write_domain) {
914 obj->dirty = 1;
915 obj->pending_gpu_write = true;
916 list_move_tail(&obj->gpu_write_list,
917 &ring->gpu_write_list);
918 intel_mark_busy(ring->dev, obj);
919 }
920
921 trace_i915_gem_object_change_domain(obj, old_read, old_write);
922 }
923}
924
925static void
926i915_gem_execbuffer_retire_commands(struct drm_device *dev,
927 struct drm_file *file,
928 struct intel_ring_buffer *ring)
929{
930 struct drm_i915_gem_request *request;
931 u32 invalidate;
932
933 /*
934 * Ensure that the commands in the batch buffer are
935 * finished before the interrupt fires.
936 *
937 * The sampler always gets flushed on i965 (sigh).
938 */
939 invalidate = I915_GEM_DOMAIN_COMMAND;
940 if (INTEL_INFO(dev)->gen >= 4)
941 invalidate |= I915_GEM_DOMAIN_SAMPLER;
942 if (ring->flush(ring, invalidate, 0)) {
943 i915_gem_next_request_seqno(ring);
944 return;
945 }
946
947 /* Add a breadcrumb for the completion of the batch buffer */
948 request = kzalloc(sizeof(*request), GFP_KERNEL);
949 if (request == NULL || i915_add_request(ring, file, request)) {
950 i915_gem_next_request_seqno(ring);
951 kfree(request);
952 }
953}
954
955static int
956i915_gem_do_execbuffer(struct drm_device *dev, void *data,
957 struct drm_file *file,
958 struct drm_i915_gem_execbuffer2 *args,
959 struct drm_i915_gem_exec_object2 *exec)
960{
961 drm_i915_private_t *dev_priv = dev->dev_private;
962 struct list_head objects;
963 struct eb_objects *eb;
964 struct drm_i915_gem_object *batch_obj;
965 struct drm_clip_rect *cliprects = NULL;
966 struct intel_ring_buffer *ring;
967 u32 exec_start, exec_len;
968 u32 seqno;
969 int ret, mode, i;
970
971 if (!i915_gem_check_execbuffer(args)) {
972 DRM_ERROR("execbuf with invalid offset/length\n");
973 return -EINVAL;
974 }
975
976 ret = validate_exec_list(exec, args->buffer_count);
977 if (ret)
978 return ret;
979
980 switch (args->flags & I915_EXEC_RING_MASK) {
981 case I915_EXEC_DEFAULT:
982 case I915_EXEC_RENDER:
983 ring = &dev_priv->ring[RCS];
984 break;
985 case I915_EXEC_BSD:
986 if (!HAS_BSD(dev)) {
987 DRM_ERROR("execbuf with invalid ring (BSD)\n");
988 return -EINVAL;
989 }
990 ring = &dev_priv->ring[VCS];
991 break;
992 case I915_EXEC_BLT:
993 if (!HAS_BLT(dev)) {
994 DRM_ERROR("execbuf with invalid ring (BLT)\n");
995 return -EINVAL;
996 }
997 ring = &dev_priv->ring[BCS];
998 break;
999 default:
1000 DRM_ERROR("execbuf with unknown ring: %d\n",
1001 (int)(args->flags & I915_EXEC_RING_MASK));
1002 return -EINVAL;
1003 }
1004
1005 mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1006 switch (mode) {
1007 case I915_EXEC_CONSTANTS_REL_GENERAL:
1008 case I915_EXEC_CONSTANTS_ABSOLUTE:
1009 case I915_EXEC_CONSTANTS_REL_SURFACE:
1010 if (ring == &dev_priv->ring[RCS] &&
1011 mode != dev_priv->relative_constants_mode) {
1012 if (INTEL_INFO(dev)->gen < 4)
1013 return -EINVAL;
1014
1015 if (INTEL_INFO(dev)->gen > 5 &&
1016 mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1017 return -EINVAL;
1018
1019 ret = intel_ring_begin(ring, 4);
1020 if (ret)
1021 return ret;
1022
1023 intel_ring_emit(ring, MI_NOOP);
1024 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1025 intel_ring_emit(ring, INSTPM);
1026 intel_ring_emit(ring,
1027 I915_EXEC_CONSTANTS_MASK << 16 | mode);
1028 intel_ring_advance(ring);
1029
1030 dev_priv->relative_constants_mode = mode;
1031 }
1032 break;
1033 default:
1034 DRM_ERROR("execbuf with unknown constants: %d\n", mode);
1035 return -EINVAL;
1036 }
1037
1038 if (args->buffer_count < 1) {
1039 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1040 return -EINVAL;
1041 }
1042
1043 if (args->num_cliprects != 0) {
1044 if (ring != &dev_priv->ring[RCS]) {
1045 DRM_ERROR("clip rectangles are only valid with the render ring\n");
1046 return -EINVAL;
1047 }
1048
1049 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1050 GFP_KERNEL);
1051 if (cliprects == NULL) {
1052 ret = -ENOMEM;
1053 goto pre_mutex_err;
1054 }
1055
1056 if (copy_from_user(cliprects,
1057 (struct drm_clip_rect __user *)(uintptr_t)
1058 args->cliprects_ptr,
1059 sizeof(*cliprects)*args->num_cliprects)) {
1060 ret = -EFAULT;
1061 goto pre_mutex_err;
1062 }
1063 }
1064
1065 ret = i915_mutex_lock_interruptible(dev);
1066 if (ret)
1067 goto pre_mutex_err;
1068
1069 if (dev_priv->mm.suspended) {
1070 mutex_unlock(&dev->struct_mutex);
1071 ret = -EBUSY;
1072 goto pre_mutex_err;
1073 }
1074
1075 eb = eb_create(args->buffer_count);
1076 if (eb == NULL) {
1077 mutex_unlock(&dev->struct_mutex);
1078 ret = -ENOMEM;
1079 goto pre_mutex_err;
1080 }
1081
1082 /* Look up object handles */
1083 INIT_LIST_HEAD(&objects);
1084 for (i = 0; i < args->buffer_count; i++) {
1085 struct drm_i915_gem_object *obj;
1086
1087 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1088 exec[i].handle));
1089 if (&obj->base == NULL) {
1090 DRM_ERROR("Invalid object handle %d at index %d\n",
1091 exec[i].handle, i);
1092 /* prevent error path from reading uninitialized data */
1093 ret = -ENOENT;
1094 goto err;
1095 }
1096
1097 if (!list_empty(&obj->exec_list)) {
1098 DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
1099 obj, exec[i].handle, i);
1100 ret = -EINVAL;
1101 goto err;
1102 }
1103
1104 list_add_tail(&obj->exec_list, &objects);
1105 obj->exec_handle = exec[i].handle;
1106 obj->exec_entry = &exec[i];
1107 eb_add_object(eb, obj);
1108 }
1109
1110 /* take note of the batch buffer before we might reorder the lists */
1111 batch_obj = list_entry(objects.prev,
1112 struct drm_i915_gem_object,
1113 exec_list);
1114
1115 /* Move the objects en-masse into the GTT, evicting if necessary. */
1116 ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1117 if (ret)
1118 goto err;
1119
1120 /* The objects are in their final locations, apply the relocations. */
1121 ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1122 if (ret) {
1123 if (ret == -EFAULT) {
1124 ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1125 &objects, eb,
1126 exec,
1127 args->buffer_count);
1128 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1129 }
1130 if (ret)
1131 goto err;
1132 }
1133
1134 /* Set the pending read domains for the batch buffer to COMMAND */
1135 if (batch_obj->base.pending_write_domain) {
1136 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
1137 ret = -EINVAL;
1138 goto err;
1139 }
1140 batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1141
1142 ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1143 if (ret)
1144 goto err;
1145
1146 seqno = i915_gem_next_request_seqno(ring);
1147 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1148 if (seqno < ring->sync_seqno[i]) {
1149 /* The GPU can not handle its semaphore value wrapping,
1150 * so every billion or so execbuffers, we need to stall
1151 * the GPU in order to reset the counters.
1152 */
1153 ret = i915_gpu_idle(dev);
1154 if (ret)
1155 goto err;
1156
1157 BUG_ON(ring->sync_seqno[i]);
1158 }
1159 }
1160
1161 trace_i915_gem_ring_dispatch(ring, seqno);
1162
1163 exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1164 exec_len = args->batch_len;
1165 if (cliprects) {
1166 for (i = 0; i < args->num_cliprects; i++) {
1167 ret = i915_emit_box(dev, &cliprects[i],
1168 args->DR1, args->DR4);
1169 if (ret)
1170 goto err;
1171
1172 ret = ring->dispatch_execbuffer(ring,
1173 exec_start, exec_len);
1174 if (ret)
1175 goto err;
1176 }
1177 } else {
1178 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1179 if (ret)
1180 goto err;
1181 }
1182
1183 i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1184 i915_gem_execbuffer_retire_commands(dev, file, ring);
1185
1186err:
1187 eb_destroy(eb);
1188 while (!list_empty(&objects)) {
1189 struct drm_i915_gem_object *obj;
1190
1191 obj = list_first_entry(&objects,
1192 struct drm_i915_gem_object,
1193 exec_list);
1194 list_del_init(&obj->exec_list);
1195 drm_gem_object_unreference(&obj->base);
1196 }
1197
1198 mutex_unlock(&dev->struct_mutex);
1199
1200pre_mutex_err:
1201 kfree(cliprects);
1202 return ret;
1203}
1204
1205/*
1206 * Legacy execbuffer just creates an exec2 list from the original exec object
1207 * list array and passes it to the real function.
1208 */
1209int
1210i915_gem_execbuffer(struct drm_device *dev, void *data,
1211 struct drm_file *file)
1212{
1213 struct drm_i915_gem_execbuffer *args = data;
1214 struct drm_i915_gem_execbuffer2 exec2;
1215 struct drm_i915_gem_exec_object *exec_list = NULL;
1216 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1217 int ret, i;
1218
1219 if (args->buffer_count < 1) {
1220 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1221 return -EINVAL;
1222 }
1223
1224 /* Copy in the exec list from userland */
1225 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1226 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1227 if (exec_list == NULL || exec2_list == NULL) {
1228 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1229 args->buffer_count);
1230 drm_free_large(exec_list);
1231 drm_free_large(exec2_list);
1232 return -ENOMEM;
1233 }
1234 ret = copy_from_user(exec_list,
1235 (struct drm_i915_relocation_entry __user *)
1236 (uintptr_t) args->buffers_ptr,
1237 sizeof(*exec_list) * args->buffer_count);
1238 if (ret != 0) {
1239 DRM_ERROR("copy %d exec entries failed %d\n",
1240 args->buffer_count, ret);
1241 drm_free_large(exec_list);
1242 drm_free_large(exec2_list);
1243 return -EFAULT;
1244 }
1245
1246 for (i = 0; i < args->buffer_count; i++) {
1247 exec2_list[i].handle = exec_list[i].handle;
1248 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1249 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1250 exec2_list[i].alignment = exec_list[i].alignment;
1251 exec2_list[i].offset = exec_list[i].offset;
1252 if (INTEL_INFO(dev)->gen < 4)
1253 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1254 else
1255 exec2_list[i].flags = 0;
1256 }
1257
1258 exec2.buffers_ptr = args->buffers_ptr;
1259 exec2.buffer_count = args->buffer_count;
1260 exec2.batch_start_offset = args->batch_start_offset;
1261 exec2.batch_len = args->batch_len;
1262 exec2.DR1 = args->DR1;
1263 exec2.DR4 = args->DR4;
1264 exec2.num_cliprects = args->num_cliprects;
1265 exec2.cliprects_ptr = args->cliprects_ptr;
1266 exec2.flags = I915_EXEC_RENDER;
1267
1268 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1269 if (!ret) {
1270 /* Copy the new buffer offsets back to the user's exec list. */
1271 for (i = 0; i < args->buffer_count; i++)
1272 exec_list[i].offset = exec2_list[i].offset;
1273 /* ... and back out to userspace */
1274 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1275 (uintptr_t) args->buffers_ptr,
1276 exec_list,
1277 sizeof(*exec_list) * args->buffer_count);
1278 if (ret) {
1279 ret = -EFAULT;
1280 DRM_ERROR("failed to copy %d exec entries "
1281 "back to user (%d)\n",
1282 args->buffer_count, ret);
1283 }
1284 }
1285
1286 drm_free_large(exec_list);
1287 drm_free_large(exec2_list);
1288 return ret;
1289}
1290
1291int
1292i915_gem_execbuffer2(struct drm_device *dev, void *data,
1293 struct drm_file *file)
1294{
1295 struct drm_i915_gem_execbuffer2 *args = data;
1296 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1297 int ret;
1298
1299 if (args->buffer_count < 1) {
1300 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
1301 return -EINVAL;
1302 }
1303
1304 exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
1305 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
1306 if (exec2_list == NULL)
1307 exec2_list = drm_malloc_ab(sizeof(*exec2_list),
1308 args->buffer_count);
1309 if (exec2_list == NULL) {
1310 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1311 args->buffer_count);
1312 return -ENOMEM;
1313 }
1314 ret = copy_from_user(exec2_list,
1315 (struct drm_i915_relocation_entry __user *)
1316 (uintptr_t) args->buffers_ptr,
1317 sizeof(*exec2_list) * args->buffer_count);
1318 if (ret != 0) {
1319 DRM_ERROR("copy %d exec entries failed %d\n",
1320 args->buffer_count, ret);
1321 drm_free_large(exec2_list);
1322 return -EFAULT;
1323 }
1324
1325 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1326 if (!ret) {
1327 /* Copy the new buffer offsets back to the user's exec list. */
1328 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1329 (uintptr_t) args->buffers_ptr,
1330 exec2_list,
1331 sizeof(*exec2_list) * args->buffer_count);
1332 if (ret) {
1333 ret = -EFAULT;
1334 DRM_ERROR("failed to copy %d exec entries "
1335 "back to user (%d)\n",
1336 args->buffer_count, ret);
1337 }
1338 }
1339
1340 drm_free_large(exec2_list);
1341 return ret;
1342}
1/*
2 * Copyright © 2008,2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
26 *
27 */
28
29#include <drm/drmP.h>
30#include <drm/i915_drm.h>
31#include "i915_drv.h"
32#include "i915_trace.h"
33#include "intel_drv.h"
34#include <linux/dma_remapping.h>
35
36#define __EXEC_OBJECT_HAS_PIN (1<<31)
37#define __EXEC_OBJECT_HAS_FENCE (1<<30)
38#define __EXEC_OBJECT_NEEDS_BIAS (1<<28)
39
40#define BATCH_OFFSET_BIAS (256*1024)
41
42struct eb_vmas {
43 struct list_head vmas;
44 int and;
45 union {
46 struct i915_vma *lut[0];
47 struct hlist_head buckets[0];
48 };
49};
50
51static struct eb_vmas *
52eb_create(struct drm_i915_gem_execbuffer2 *args)
53{
54 struct eb_vmas *eb = NULL;
55
56 if (args->flags & I915_EXEC_HANDLE_LUT) {
57 unsigned size = args->buffer_count;
58 size *= sizeof(struct i915_vma *);
59 size += sizeof(struct eb_vmas);
60 eb = kmalloc(size, GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
61 }
62
63 if (eb == NULL) {
64 unsigned size = args->buffer_count;
65 unsigned count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
66 BUILD_BUG_ON_NOT_POWER_OF_2(PAGE_SIZE / sizeof(struct hlist_head));
67 while (count > 2*size)
68 count >>= 1;
69 eb = kzalloc(count*sizeof(struct hlist_head) +
70 sizeof(struct eb_vmas),
71 GFP_TEMPORARY);
72 if (eb == NULL)
73 return eb;
74
75 eb->and = count - 1;
76 } else
77 eb->and = -args->buffer_count;
78
79 INIT_LIST_HEAD(&eb->vmas);
80 return eb;
81}
82
83static void
84eb_reset(struct eb_vmas *eb)
85{
86 if (eb->and >= 0)
87 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
88}
89
90static int
91eb_lookup_vmas(struct eb_vmas *eb,
92 struct drm_i915_gem_exec_object2 *exec,
93 const struct drm_i915_gem_execbuffer2 *args,
94 struct i915_address_space *vm,
95 struct drm_file *file)
96{
97 struct drm_i915_private *dev_priv = vm->dev->dev_private;
98 struct drm_i915_gem_object *obj;
99 struct list_head objects;
100 int i, ret;
101
102 INIT_LIST_HEAD(&objects);
103 spin_lock(&file->table_lock);
104 /* Grab a reference to the object and release the lock so we can lookup
105 * or create the VMA without using GFP_ATOMIC */
106 for (i = 0; i < args->buffer_count; i++) {
107 obj = to_intel_bo(idr_find(&file->object_idr, exec[i].handle));
108 if (obj == NULL) {
109 spin_unlock(&file->table_lock);
110 DRM_DEBUG("Invalid object handle %d at index %d\n",
111 exec[i].handle, i);
112 ret = -ENOENT;
113 goto err;
114 }
115
116 if (!list_empty(&obj->obj_exec_link)) {
117 spin_unlock(&file->table_lock);
118 DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
119 obj, exec[i].handle, i);
120 ret = -EINVAL;
121 goto err;
122 }
123
124 drm_gem_object_reference(&obj->base);
125 list_add_tail(&obj->obj_exec_link, &objects);
126 }
127 spin_unlock(&file->table_lock);
128
129 i = 0;
130 while (!list_empty(&objects)) {
131 struct i915_vma *vma;
132 struct i915_address_space *bind_vm = vm;
133
134 if (exec[i].flags & EXEC_OBJECT_NEEDS_GTT &&
135 USES_FULL_PPGTT(vm->dev)) {
136 ret = -EINVAL;
137 goto err;
138 }
139
140 /* If we have secure dispatch, or the userspace assures us that
141 * they know what they're doing, use the GGTT VM.
142 */
143 if (((args->flags & I915_EXEC_SECURE) &&
144 (i == (args->buffer_count - 1))))
145 bind_vm = &dev_priv->gtt.base;
146
147 obj = list_first_entry(&objects,
148 struct drm_i915_gem_object,
149 obj_exec_link);
150
151 /*
152 * NOTE: We can leak any vmas created here when something fails
153 * later on. But that's no issue since vma_unbind can deal with
154 * vmas which are not actually bound. And since only
155 * lookup_or_create exists as an interface to get at the vma
156 * from the (obj, vm) we don't run the risk of creating
157 * duplicated vmas for the same vm.
158 */
159 vma = i915_gem_obj_lookup_or_create_vma(obj, bind_vm);
160 if (IS_ERR(vma)) {
161 DRM_DEBUG("Failed to lookup VMA\n");
162 ret = PTR_ERR(vma);
163 goto err;
164 }
165
166 /* Transfer ownership from the objects list to the vmas list. */
167 list_add_tail(&vma->exec_list, &eb->vmas);
168 list_del_init(&obj->obj_exec_link);
169
170 vma->exec_entry = &exec[i];
171 if (eb->and < 0) {
172 eb->lut[i] = vma;
173 } else {
174 uint32_t handle = args->flags & I915_EXEC_HANDLE_LUT ? i : exec[i].handle;
175 vma->exec_handle = handle;
176 hlist_add_head(&vma->exec_node,
177 &eb->buckets[handle & eb->and]);
178 }
179 ++i;
180 }
181
182 return 0;
183
184
185err:
186 while (!list_empty(&objects)) {
187 obj = list_first_entry(&objects,
188 struct drm_i915_gem_object,
189 obj_exec_link);
190 list_del_init(&obj->obj_exec_link);
191 drm_gem_object_unreference(&obj->base);
192 }
193 /*
194 * Objects already transfered to the vmas list will be unreferenced by
195 * eb_destroy.
196 */
197
198 return ret;
199}
200
201static struct i915_vma *eb_get_vma(struct eb_vmas *eb, unsigned long handle)
202{
203 if (eb->and < 0) {
204 if (handle >= -eb->and)
205 return NULL;
206 return eb->lut[handle];
207 } else {
208 struct hlist_head *head;
209 struct hlist_node *node;
210
211 head = &eb->buckets[handle & eb->and];
212 hlist_for_each(node, head) {
213 struct i915_vma *vma;
214
215 vma = hlist_entry(node, struct i915_vma, exec_node);
216 if (vma->exec_handle == handle)
217 return vma;
218 }
219 return NULL;
220 }
221}
222
223static void
224i915_gem_execbuffer_unreserve_vma(struct i915_vma *vma)
225{
226 struct drm_i915_gem_exec_object2 *entry;
227 struct drm_i915_gem_object *obj = vma->obj;
228
229 if (!drm_mm_node_allocated(&vma->node))
230 return;
231
232 entry = vma->exec_entry;
233
234 if (entry->flags & __EXEC_OBJECT_HAS_FENCE)
235 i915_gem_object_unpin_fence(obj);
236
237 if (entry->flags & __EXEC_OBJECT_HAS_PIN)
238 vma->pin_count--;
239
240 entry->flags &= ~(__EXEC_OBJECT_HAS_FENCE | __EXEC_OBJECT_HAS_PIN);
241}
242
243static void eb_destroy(struct eb_vmas *eb)
244{
245 while (!list_empty(&eb->vmas)) {
246 struct i915_vma *vma;
247
248 vma = list_first_entry(&eb->vmas,
249 struct i915_vma,
250 exec_list);
251 list_del_init(&vma->exec_list);
252 i915_gem_execbuffer_unreserve_vma(vma);
253 drm_gem_object_unreference(&vma->obj->base);
254 }
255 kfree(eb);
256}
257
258static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
259{
260 return (HAS_LLC(obj->base.dev) ||
261 obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
262 !obj->map_and_fenceable ||
263 obj->cache_level != I915_CACHE_NONE);
264}
265
266static int
267relocate_entry_cpu(struct drm_i915_gem_object *obj,
268 struct drm_i915_gem_relocation_entry *reloc)
269{
270 struct drm_device *dev = obj->base.dev;
271 uint32_t page_offset = offset_in_page(reloc->offset);
272 char *vaddr;
273 int ret;
274
275 ret = i915_gem_object_set_to_cpu_domain(obj, true);
276 if (ret)
277 return ret;
278
279 vaddr = kmap_atomic(i915_gem_object_get_page(obj,
280 reloc->offset >> PAGE_SHIFT));
281 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
282
283 if (INTEL_INFO(dev)->gen >= 8) {
284 page_offset = offset_in_page(page_offset + sizeof(uint32_t));
285
286 if (page_offset == 0) {
287 kunmap_atomic(vaddr);
288 vaddr = kmap_atomic(i915_gem_object_get_page(obj,
289 (reloc->offset + sizeof(uint32_t)) >> PAGE_SHIFT));
290 }
291
292 *(uint32_t *)(vaddr + page_offset) = 0;
293 }
294
295 kunmap_atomic(vaddr);
296
297 return 0;
298}
299
300static int
301relocate_entry_gtt(struct drm_i915_gem_object *obj,
302 struct drm_i915_gem_relocation_entry *reloc)
303{
304 struct drm_device *dev = obj->base.dev;
305 struct drm_i915_private *dev_priv = dev->dev_private;
306 uint32_t __iomem *reloc_entry;
307 void __iomem *reloc_page;
308 int ret;
309
310 ret = i915_gem_object_set_to_gtt_domain(obj, true);
311 if (ret)
312 return ret;
313
314 ret = i915_gem_object_put_fence(obj);
315 if (ret)
316 return ret;
317
318 /* Map the page containing the relocation we're going to perform. */
319 reloc->offset += i915_gem_obj_ggtt_offset(obj);
320 reloc_page = io_mapping_map_atomic_wc(dev_priv->gtt.mappable,
321 reloc->offset & PAGE_MASK);
322 reloc_entry = (uint32_t __iomem *)
323 (reloc_page + offset_in_page(reloc->offset));
324 iowrite32(reloc->delta, reloc_entry);
325
326 if (INTEL_INFO(dev)->gen >= 8) {
327 reloc_entry += 1;
328
329 if (offset_in_page(reloc->offset + sizeof(uint32_t)) == 0) {
330 io_mapping_unmap_atomic(reloc_page);
331 reloc_page = io_mapping_map_atomic_wc(
332 dev_priv->gtt.mappable,
333 reloc->offset + sizeof(uint32_t));
334 reloc_entry = reloc_page;
335 }
336
337 iowrite32(0, reloc_entry);
338 }
339
340 io_mapping_unmap_atomic(reloc_page);
341
342 return 0;
343}
344
345static int
346i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
347 struct eb_vmas *eb,
348 struct drm_i915_gem_relocation_entry *reloc)
349{
350 struct drm_device *dev = obj->base.dev;
351 struct drm_gem_object *target_obj;
352 struct drm_i915_gem_object *target_i915_obj;
353 struct i915_vma *target_vma;
354 uint32_t target_offset;
355 int ret;
356
357 /* we've already hold a reference to all valid objects */
358 target_vma = eb_get_vma(eb, reloc->target_handle);
359 if (unlikely(target_vma == NULL))
360 return -ENOENT;
361 target_i915_obj = target_vma->obj;
362 target_obj = &target_vma->obj->base;
363
364 target_offset = target_vma->node.start;
365
366 /* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
367 * pipe_control writes because the gpu doesn't properly redirect them
368 * through the ppgtt for non_secure batchbuffers. */
369 if (unlikely(IS_GEN6(dev) &&
370 reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
371 !target_i915_obj->has_global_gtt_mapping)) {
372 struct i915_vma *vma =
373 list_first_entry(&target_i915_obj->vma_list,
374 typeof(*vma), vma_link);
375 vma->bind_vma(vma, target_i915_obj->cache_level, GLOBAL_BIND);
376 }
377
378 /* Validate that the target is in a valid r/w GPU domain */
379 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
380 DRM_DEBUG("reloc with multiple write domains: "
381 "obj %p target %d offset %d "
382 "read %08x write %08x",
383 obj, reloc->target_handle,
384 (int) reloc->offset,
385 reloc->read_domains,
386 reloc->write_domain);
387 return -EINVAL;
388 }
389 if (unlikely((reloc->write_domain | reloc->read_domains)
390 & ~I915_GEM_GPU_DOMAINS)) {
391 DRM_DEBUG("reloc with read/write non-GPU domains: "
392 "obj %p target %d offset %d "
393 "read %08x write %08x",
394 obj, reloc->target_handle,
395 (int) reloc->offset,
396 reloc->read_domains,
397 reloc->write_domain);
398 return -EINVAL;
399 }
400
401 target_obj->pending_read_domains |= reloc->read_domains;
402 target_obj->pending_write_domain |= reloc->write_domain;
403
404 /* If the relocation already has the right value in it, no
405 * more work needs to be done.
406 */
407 if (target_offset == reloc->presumed_offset)
408 return 0;
409
410 /* Check that the relocation address is valid... */
411 if (unlikely(reloc->offset >
412 obj->base.size - (INTEL_INFO(dev)->gen >= 8 ? 8 : 4))) {
413 DRM_DEBUG("Relocation beyond object bounds: "
414 "obj %p target %d offset %d size %d.\n",
415 obj, reloc->target_handle,
416 (int) reloc->offset,
417 (int) obj->base.size);
418 return -EINVAL;
419 }
420 if (unlikely(reloc->offset & 3)) {
421 DRM_DEBUG("Relocation not 4-byte aligned: "
422 "obj %p target %d offset %d.\n",
423 obj, reloc->target_handle,
424 (int) reloc->offset);
425 return -EINVAL;
426 }
427
428 /* We can't wait for rendering with pagefaults disabled */
429 if (obj->active && in_atomic())
430 return -EFAULT;
431
432 reloc->delta += target_offset;
433 if (use_cpu_reloc(obj))
434 ret = relocate_entry_cpu(obj, reloc);
435 else
436 ret = relocate_entry_gtt(obj, reloc);
437
438 if (ret)
439 return ret;
440
441 /* and update the user's relocation entry */
442 reloc->presumed_offset = target_offset;
443
444 return 0;
445}
446
447static int
448i915_gem_execbuffer_relocate_vma(struct i915_vma *vma,
449 struct eb_vmas *eb)
450{
451#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
452 struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
453 struct drm_i915_gem_relocation_entry __user *user_relocs;
454 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
455 int remain, ret;
456
457 user_relocs = to_user_ptr(entry->relocs_ptr);
458
459 remain = entry->relocation_count;
460 while (remain) {
461 struct drm_i915_gem_relocation_entry *r = stack_reloc;
462 int count = remain;
463 if (count > ARRAY_SIZE(stack_reloc))
464 count = ARRAY_SIZE(stack_reloc);
465 remain -= count;
466
467 if (__copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0])))
468 return -EFAULT;
469
470 do {
471 u64 offset = r->presumed_offset;
472
473 ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, r);
474 if (ret)
475 return ret;
476
477 if (r->presumed_offset != offset &&
478 __copy_to_user_inatomic(&user_relocs->presumed_offset,
479 &r->presumed_offset,
480 sizeof(r->presumed_offset))) {
481 return -EFAULT;
482 }
483
484 user_relocs++;
485 r++;
486 } while (--count);
487 }
488
489 return 0;
490#undef N_RELOC
491}
492
493static int
494i915_gem_execbuffer_relocate_vma_slow(struct i915_vma *vma,
495 struct eb_vmas *eb,
496 struct drm_i915_gem_relocation_entry *relocs)
497{
498 const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
499 int i, ret;
500
501 for (i = 0; i < entry->relocation_count; i++) {
502 ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, &relocs[i]);
503 if (ret)
504 return ret;
505 }
506
507 return 0;
508}
509
510static int
511i915_gem_execbuffer_relocate(struct eb_vmas *eb)
512{
513 struct i915_vma *vma;
514 int ret = 0;
515
516 /* This is the fast path and we cannot handle a pagefault whilst
517 * holding the struct mutex lest the user pass in the relocations
518 * contained within a mmaped bo. For in such a case we, the page
519 * fault handler would call i915_gem_fault() and we would try to
520 * acquire the struct mutex again. Obviously this is bad and so
521 * lockdep complains vehemently.
522 */
523 pagefault_disable();
524 list_for_each_entry(vma, &eb->vmas, exec_list) {
525 ret = i915_gem_execbuffer_relocate_vma(vma, eb);
526 if (ret)
527 break;
528 }
529 pagefault_enable();
530
531 return ret;
532}
533
534static int
535need_reloc_mappable(struct i915_vma *vma)
536{
537 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
538 return entry->relocation_count && !use_cpu_reloc(vma->obj) &&
539 i915_is_ggtt(vma->vm);
540}
541
542static int
543i915_gem_execbuffer_reserve_vma(struct i915_vma *vma,
544 struct intel_ring_buffer *ring,
545 bool *need_reloc)
546{
547 struct drm_i915_gem_object *obj = vma->obj;
548 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
549 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
550 bool need_fence;
551 uint64_t flags;
552 int ret;
553
554 flags = 0;
555
556 need_fence =
557 has_fenced_gpu_access &&
558 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
559 obj->tiling_mode != I915_TILING_NONE;
560 if (need_fence || need_reloc_mappable(vma))
561 flags |= PIN_MAPPABLE;
562
563 if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
564 flags |= PIN_GLOBAL;
565 if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS)
566 flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
567
568 ret = i915_gem_object_pin(obj, vma->vm, entry->alignment, flags);
569 if (ret)
570 return ret;
571
572 entry->flags |= __EXEC_OBJECT_HAS_PIN;
573
574 if (has_fenced_gpu_access) {
575 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
576 ret = i915_gem_object_get_fence(obj);
577 if (ret)
578 return ret;
579
580 if (i915_gem_object_pin_fence(obj))
581 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
582
583 obj->pending_fenced_gpu_access = true;
584 }
585 }
586
587 if (entry->offset != vma->node.start) {
588 entry->offset = vma->node.start;
589 *need_reloc = true;
590 }
591
592 if (entry->flags & EXEC_OBJECT_WRITE) {
593 obj->base.pending_read_domains = I915_GEM_DOMAIN_RENDER;
594 obj->base.pending_write_domain = I915_GEM_DOMAIN_RENDER;
595 }
596
597 return 0;
598}
599
600static bool
601eb_vma_misplaced(struct i915_vma *vma, bool has_fenced_gpu_access)
602{
603 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
604 struct drm_i915_gem_object *obj = vma->obj;
605 bool need_fence, need_mappable;
606
607 need_fence =
608 has_fenced_gpu_access &&
609 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
610 obj->tiling_mode != I915_TILING_NONE;
611 need_mappable = need_fence || need_reloc_mappable(vma);
612
613 WARN_ON((need_mappable || need_fence) &&
614 !i915_is_ggtt(vma->vm));
615
616 if (entry->alignment &&
617 vma->node.start & (entry->alignment - 1))
618 return true;
619
620 if (need_mappable && !obj->map_and_fenceable)
621 return true;
622
623 if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
624 vma->node.start < BATCH_OFFSET_BIAS)
625 return true;
626
627 return false;
628}
629
630static int
631i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
632 struct list_head *vmas,
633 bool *need_relocs)
634{
635 struct drm_i915_gem_object *obj;
636 struct i915_vma *vma;
637 struct i915_address_space *vm;
638 struct list_head ordered_vmas;
639 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
640 int retry;
641
642 if (list_empty(vmas))
643 return 0;
644
645 vm = list_first_entry(vmas, struct i915_vma, exec_list)->vm;
646
647 INIT_LIST_HEAD(&ordered_vmas);
648 while (!list_empty(vmas)) {
649 struct drm_i915_gem_exec_object2 *entry;
650 bool need_fence, need_mappable;
651
652 vma = list_first_entry(vmas, struct i915_vma, exec_list);
653 obj = vma->obj;
654 entry = vma->exec_entry;
655
656 need_fence =
657 has_fenced_gpu_access &&
658 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
659 obj->tiling_mode != I915_TILING_NONE;
660 need_mappable = need_fence || need_reloc_mappable(vma);
661
662 if (need_mappable)
663 list_move(&vma->exec_list, &ordered_vmas);
664 else
665 list_move_tail(&vma->exec_list, &ordered_vmas);
666
667 obj->base.pending_read_domains = I915_GEM_GPU_DOMAINS & ~I915_GEM_DOMAIN_COMMAND;
668 obj->base.pending_write_domain = 0;
669 obj->pending_fenced_gpu_access = false;
670 }
671 list_splice(&ordered_vmas, vmas);
672
673 /* Attempt to pin all of the buffers into the GTT.
674 * This is done in 3 phases:
675 *
676 * 1a. Unbind all objects that do not match the GTT constraints for
677 * the execbuffer (fenceable, mappable, alignment etc).
678 * 1b. Increment pin count for already bound objects.
679 * 2. Bind new objects.
680 * 3. Decrement pin count.
681 *
682 * This avoid unnecessary unbinding of later objects in order to make
683 * room for the earlier objects *unless* we need to defragment.
684 */
685 retry = 0;
686 do {
687 int ret = 0;
688
689 /* Unbind any ill-fitting objects or pin. */
690 list_for_each_entry(vma, vmas, exec_list) {
691 if (!drm_mm_node_allocated(&vma->node))
692 continue;
693
694 if (eb_vma_misplaced(vma, has_fenced_gpu_access))
695 ret = i915_vma_unbind(vma);
696 else
697 ret = i915_gem_execbuffer_reserve_vma(vma, ring, need_relocs);
698 if (ret)
699 goto err;
700 }
701
702 /* Bind fresh objects */
703 list_for_each_entry(vma, vmas, exec_list) {
704 if (drm_mm_node_allocated(&vma->node))
705 continue;
706
707 ret = i915_gem_execbuffer_reserve_vma(vma, ring, need_relocs);
708 if (ret)
709 goto err;
710 }
711
712err:
713 if (ret != -ENOSPC || retry++)
714 return ret;
715
716 /* Decrement pin count for bound objects */
717 list_for_each_entry(vma, vmas, exec_list)
718 i915_gem_execbuffer_unreserve_vma(vma);
719
720 ret = i915_gem_evict_vm(vm, true);
721 if (ret)
722 return ret;
723 } while (1);
724}
725
726static int
727i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
728 struct drm_i915_gem_execbuffer2 *args,
729 struct drm_file *file,
730 struct intel_ring_buffer *ring,
731 struct eb_vmas *eb,
732 struct drm_i915_gem_exec_object2 *exec)
733{
734 struct drm_i915_gem_relocation_entry *reloc;
735 struct i915_address_space *vm;
736 struct i915_vma *vma;
737 bool need_relocs;
738 int *reloc_offset;
739 int i, total, ret;
740 unsigned count = args->buffer_count;
741
742 if (WARN_ON(list_empty(&eb->vmas)))
743 return 0;
744
745 vm = list_first_entry(&eb->vmas, struct i915_vma, exec_list)->vm;
746
747 /* We may process another execbuffer during the unlock... */
748 while (!list_empty(&eb->vmas)) {
749 vma = list_first_entry(&eb->vmas, struct i915_vma, exec_list);
750 list_del_init(&vma->exec_list);
751 i915_gem_execbuffer_unreserve_vma(vma);
752 drm_gem_object_unreference(&vma->obj->base);
753 }
754
755 mutex_unlock(&dev->struct_mutex);
756
757 total = 0;
758 for (i = 0; i < count; i++)
759 total += exec[i].relocation_count;
760
761 reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
762 reloc = drm_malloc_ab(total, sizeof(*reloc));
763 if (reloc == NULL || reloc_offset == NULL) {
764 drm_free_large(reloc);
765 drm_free_large(reloc_offset);
766 mutex_lock(&dev->struct_mutex);
767 return -ENOMEM;
768 }
769
770 total = 0;
771 for (i = 0; i < count; i++) {
772 struct drm_i915_gem_relocation_entry __user *user_relocs;
773 u64 invalid_offset = (u64)-1;
774 int j;
775
776 user_relocs = to_user_ptr(exec[i].relocs_ptr);
777
778 if (copy_from_user(reloc+total, user_relocs,
779 exec[i].relocation_count * sizeof(*reloc))) {
780 ret = -EFAULT;
781 mutex_lock(&dev->struct_mutex);
782 goto err;
783 }
784
785 /* As we do not update the known relocation offsets after
786 * relocating (due to the complexities in lock handling),
787 * we need to mark them as invalid now so that we force the
788 * relocation processing next time. Just in case the target
789 * object is evicted and then rebound into its old
790 * presumed_offset before the next execbuffer - if that
791 * happened we would make the mistake of assuming that the
792 * relocations were valid.
793 */
794 for (j = 0; j < exec[i].relocation_count; j++) {
795 if (__copy_to_user(&user_relocs[j].presumed_offset,
796 &invalid_offset,
797 sizeof(invalid_offset))) {
798 ret = -EFAULT;
799 mutex_lock(&dev->struct_mutex);
800 goto err;
801 }
802 }
803
804 reloc_offset[i] = total;
805 total += exec[i].relocation_count;
806 }
807
808 ret = i915_mutex_lock_interruptible(dev);
809 if (ret) {
810 mutex_lock(&dev->struct_mutex);
811 goto err;
812 }
813
814 /* reacquire the objects */
815 eb_reset(eb);
816 ret = eb_lookup_vmas(eb, exec, args, vm, file);
817 if (ret)
818 goto err;
819
820 need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
821 ret = i915_gem_execbuffer_reserve(ring, &eb->vmas, &need_relocs);
822 if (ret)
823 goto err;
824
825 list_for_each_entry(vma, &eb->vmas, exec_list) {
826 int offset = vma->exec_entry - exec;
827 ret = i915_gem_execbuffer_relocate_vma_slow(vma, eb,
828 reloc + reloc_offset[offset]);
829 if (ret)
830 goto err;
831 }
832
833 /* Leave the user relocations as are, this is the painfully slow path,
834 * and we want to avoid the complication of dropping the lock whilst
835 * having buffers reserved in the aperture and so causing spurious
836 * ENOSPC for random operations.
837 */
838
839err:
840 drm_free_large(reloc);
841 drm_free_large(reloc_offset);
842 return ret;
843}
844
845static int
846i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
847 struct list_head *vmas)
848{
849 struct i915_vma *vma;
850 uint32_t flush_domains = 0;
851 bool flush_chipset = false;
852 int ret;
853
854 list_for_each_entry(vma, vmas, exec_list) {
855 struct drm_i915_gem_object *obj = vma->obj;
856 ret = i915_gem_object_sync(obj, ring);
857 if (ret)
858 return ret;
859
860 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
861 flush_chipset |= i915_gem_clflush_object(obj, false);
862
863 flush_domains |= obj->base.write_domain;
864 }
865
866 if (flush_chipset)
867 i915_gem_chipset_flush(ring->dev);
868
869 if (flush_domains & I915_GEM_DOMAIN_GTT)
870 wmb();
871
872 /* Unconditionally invalidate gpu caches and ensure that we do flush
873 * any residual writes from the previous batch.
874 */
875 return intel_ring_invalidate_all_caches(ring);
876}
877
878static bool
879i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
880{
881 if (exec->flags & __I915_EXEC_UNKNOWN_FLAGS)
882 return false;
883
884 return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
885}
886
887static int
888validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
889 int count)
890{
891 int i;
892 unsigned relocs_total = 0;
893 unsigned relocs_max = UINT_MAX / sizeof(struct drm_i915_gem_relocation_entry);
894
895 for (i = 0; i < count; i++) {
896 char __user *ptr = to_user_ptr(exec[i].relocs_ptr);
897 int length; /* limited by fault_in_pages_readable() */
898
899 if (exec[i].flags & __EXEC_OBJECT_UNKNOWN_FLAGS)
900 return -EINVAL;
901
902 /* First check for malicious input causing overflow in
903 * the worst case where we need to allocate the entire
904 * relocation tree as a single array.
905 */
906 if (exec[i].relocation_count > relocs_max - relocs_total)
907 return -EINVAL;
908 relocs_total += exec[i].relocation_count;
909
910 length = exec[i].relocation_count *
911 sizeof(struct drm_i915_gem_relocation_entry);
912 /*
913 * We must check that the entire relocation array is safe
914 * to read, but since we may need to update the presumed
915 * offsets during execution, check for full write access.
916 */
917 if (!access_ok(VERIFY_WRITE, ptr, length))
918 return -EFAULT;
919
920 if (likely(!i915.prefault_disable)) {
921 if (fault_in_multipages_readable(ptr, length))
922 return -EFAULT;
923 }
924 }
925
926 return 0;
927}
928
929static struct i915_hw_context *
930i915_gem_validate_context(struct drm_device *dev, struct drm_file *file,
931 struct intel_ring_buffer *ring, const u32 ctx_id)
932{
933 struct i915_hw_context *ctx = NULL;
934 struct i915_ctx_hang_stats *hs;
935
936 if (ring->id != RCS && ctx_id != DEFAULT_CONTEXT_ID)
937 return ERR_PTR(-EINVAL);
938
939 ctx = i915_gem_context_get(file->driver_priv, ctx_id);
940 if (IS_ERR(ctx))
941 return ctx;
942
943 hs = &ctx->hang_stats;
944 if (hs->banned) {
945 DRM_DEBUG("Context %u tried to submit while banned\n", ctx_id);
946 return ERR_PTR(-EIO);
947 }
948
949 return ctx;
950}
951
952static void
953i915_gem_execbuffer_move_to_active(struct list_head *vmas,
954 struct intel_ring_buffer *ring)
955{
956 struct i915_vma *vma;
957
958 list_for_each_entry(vma, vmas, exec_list) {
959 struct drm_i915_gem_object *obj = vma->obj;
960 u32 old_read = obj->base.read_domains;
961 u32 old_write = obj->base.write_domain;
962
963 obj->base.write_domain = obj->base.pending_write_domain;
964 if (obj->base.write_domain == 0)
965 obj->base.pending_read_domains |= obj->base.read_domains;
966 obj->base.read_domains = obj->base.pending_read_domains;
967 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
968
969 i915_vma_move_to_active(vma, ring);
970 if (obj->base.write_domain) {
971 obj->dirty = 1;
972 obj->last_write_seqno = intel_ring_get_seqno(ring);
973 /* check for potential scanout */
974 if (i915_gem_obj_ggtt_bound(obj) &&
975 i915_gem_obj_to_ggtt(obj)->pin_count)
976 intel_mark_fb_busy(obj, ring);
977 }
978
979 trace_i915_gem_object_change_domain(obj, old_read, old_write);
980 }
981}
982
983static void
984i915_gem_execbuffer_retire_commands(struct drm_device *dev,
985 struct drm_file *file,
986 struct intel_ring_buffer *ring,
987 struct drm_i915_gem_object *obj)
988{
989 /* Unconditionally force add_request to emit a full flush. */
990 ring->gpu_caches_dirty = true;
991
992 /* Add a breadcrumb for the completion of the batch buffer */
993 (void)__i915_add_request(ring, file, obj, NULL);
994}
995
996static int
997i915_reset_gen7_sol_offsets(struct drm_device *dev,
998 struct intel_ring_buffer *ring)
999{
1000 struct drm_i915_private *dev_priv = dev->dev_private;
1001 int ret, i;
1002
1003 if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
1004 return 0;
1005
1006 ret = intel_ring_begin(ring, 4 * 3);
1007 if (ret)
1008 return ret;
1009
1010 for (i = 0; i < 4; i++) {
1011 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1012 intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
1013 intel_ring_emit(ring, 0);
1014 }
1015
1016 intel_ring_advance(ring);
1017
1018 return 0;
1019}
1020
1021static struct drm_i915_gem_object *
1022eb_get_batch(struct eb_vmas *eb)
1023{
1024 struct i915_vma *vma = list_entry(eb->vmas.prev, typeof(*vma), exec_list);
1025
1026 /*
1027 * SNA is doing fancy tricks with compressing batch buffers, which leads
1028 * to negative relocation deltas. Usually that works out ok since the
1029 * relocate address is still positive, except when the batch is placed
1030 * very low in the GTT. Ensure this doesn't happen.
1031 *
1032 * Note that actual hangs have only been observed on gen7, but for
1033 * paranoia do it everywhere.
1034 */
1035 vma->exec_entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
1036
1037 return vma->obj;
1038}
1039
1040static int
1041i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1042 struct drm_file *file,
1043 struct drm_i915_gem_execbuffer2 *args,
1044 struct drm_i915_gem_exec_object2 *exec)
1045{
1046 struct drm_i915_private *dev_priv = dev->dev_private;
1047 struct eb_vmas *eb;
1048 struct drm_i915_gem_object *batch_obj;
1049 struct drm_clip_rect *cliprects = NULL;
1050 struct intel_ring_buffer *ring;
1051 struct i915_hw_context *ctx;
1052 struct i915_address_space *vm;
1053 const u32 ctx_id = i915_execbuffer2_get_context_id(*args);
1054 u32 exec_start = args->batch_start_offset, exec_len;
1055 u32 mask, flags;
1056 int ret, mode, i;
1057 bool need_relocs;
1058
1059 if (!i915_gem_check_execbuffer(args))
1060 return -EINVAL;
1061
1062 ret = validate_exec_list(exec, args->buffer_count);
1063 if (ret)
1064 return ret;
1065
1066 flags = 0;
1067 if (args->flags & I915_EXEC_SECURE) {
1068 if (!file->is_master || !capable(CAP_SYS_ADMIN))
1069 return -EPERM;
1070
1071 flags |= I915_DISPATCH_SECURE;
1072 }
1073 if (args->flags & I915_EXEC_IS_PINNED)
1074 flags |= I915_DISPATCH_PINNED;
1075
1076 if ((args->flags & I915_EXEC_RING_MASK) > I915_NUM_RINGS) {
1077 DRM_DEBUG("execbuf with unknown ring: %d\n",
1078 (int)(args->flags & I915_EXEC_RING_MASK));
1079 return -EINVAL;
1080 }
1081
1082 if ((args->flags & I915_EXEC_RING_MASK) == I915_EXEC_DEFAULT)
1083 ring = &dev_priv->ring[RCS];
1084 else
1085 ring = &dev_priv->ring[(args->flags & I915_EXEC_RING_MASK) - 1];
1086
1087 if (!intel_ring_initialized(ring)) {
1088 DRM_DEBUG("execbuf with invalid ring: %d\n",
1089 (int)(args->flags & I915_EXEC_RING_MASK));
1090 return -EINVAL;
1091 }
1092
1093 mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1094 mask = I915_EXEC_CONSTANTS_MASK;
1095 switch (mode) {
1096 case I915_EXEC_CONSTANTS_REL_GENERAL:
1097 case I915_EXEC_CONSTANTS_ABSOLUTE:
1098 case I915_EXEC_CONSTANTS_REL_SURFACE:
1099 if (ring == &dev_priv->ring[RCS] &&
1100 mode != dev_priv->relative_constants_mode) {
1101 if (INTEL_INFO(dev)->gen < 4)
1102 return -EINVAL;
1103
1104 if (INTEL_INFO(dev)->gen > 5 &&
1105 mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1106 return -EINVAL;
1107
1108 /* The HW changed the meaning on this bit on gen6 */
1109 if (INTEL_INFO(dev)->gen >= 6)
1110 mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1111 }
1112 break;
1113 default:
1114 DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
1115 return -EINVAL;
1116 }
1117
1118 if (args->buffer_count < 1) {
1119 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1120 return -EINVAL;
1121 }
1122
1123 if (args->num_cliprects != 0) {
1124 if (ring != &dev_priv->ring[RCS]) {
1125 DRM_DEBUG("clip rectangles are only valid with the render ring\n");
1126 return -EINVAL;
1127 }
1128
1129 if (INTEL_INFO(dev)->gen >= 5) {
1130 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
1131 return -EINVAL;
1132 }
1133
1134 if (args->num_cliprects > UINT_MAX / sizeof(*cliprects)) {
1135 DRM_DEBUG("execbuf with %u cliprects\n",
1136 args->num_cliprects);
1137 return -EINVAL;
1138 }
1139
1140 cliprects = kcalloc(args->num_cliprects,
1141 sizeof(*cliprects),
1142 GFP_KERNEL);
1143 if (cliprects == NULL) {
1144 ret = -ENOMEM;
1145 goto pre_mutex_err;
1146 }
1147
1148 if (copy_from_user(cliprects,
1149 to_user_ptr(args->cliprects_ptr),
1150 sizeof(*cliprects)*args->num_cliprects)) {
1151 ret = -EFAULT;
1152 goto pre_mutex_err;
1153 }
1154 }
1155
1156 intel_runtime_pm_get(dev_priv);
1157
1158 ret = i915_mutex_lock_interruptible(dev);
1159 if (ret)
1160 goto pre_mutex_err;
1161
1162 if (dev_priv->ums.mm_suspended) {
1163 mutex_unlock(&dev->struct_mutex);
1164 ret = -EBUSY;
1165 goto pre_mutex_err;
1166 }
1167
1168 ctx = i915_gem_validate_context(dev, file, ring, ctx_id);
1169 if (IS_ERR(ctx)) {
1170 mutex_unlock(&dev->struct_mutex);
1171 ret = PTR_ERR(ctx);
1172 goto pre_mutex_err;
1173 }
1174
1175 i915_gem_context_reference(ctx);
1176
1177 vm = ctx->vm;
1178 if (!USES_FULL_PPGTT(dev))
1179 vm = &dev_priv->gtt.base;
1180
1181 eb = eb_create(args);
1182 if (eb == NULL) {
1183 mutex_unlock(&dev->struct_mutex);
1184 ret = -ENOMEM;
1185 goto pre_mutex_err;
1186 }
1187
1188 /* Look up object handles */
1189 ret = eb_lookup_vmas(eb, exec, args, vm, file);
1190 if (ret)
1191 goto err;
1192
1193 /* take note of the batch buffer before we might reorder the lists */
1194 batch_obj = eb_get_batch(eb);
1195
1196 /* Move the objects en-masse into the GTT, evicting if necessary. */
1197 need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1198 ret = i915_gem_execbuffer_reserve(ring, &eb->vmas, &need_relocs);
1199 if (ret)
1200 goto err;
1201
1202 /* The objects are in their final locations, apply the relocations. */
1203 if (need_relocs)
1204 ret = i915_gem_execbuffer_relocate(eb);
1205 if (ret) {
1206 if (ret == -EFAULT) {
1207 ret = i915_gem_execbuffer_relocate_slow(dev, args, file, ring,
1208 eb, exec);
1209 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1210 }
1211 if (ret)
1212 goto err;
1213 }
1214
1215 /* Set the pending read domains for the batch buffer to COMMAND */
1216 if (batch_obj->base.pending_write_domain) {
1217 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1218 ret = -EINVAL;
1219 goto err;
1220 }
1221 batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1222
1223 if (i915_needs_cmd_parser(ring)) {
1224 ret = i915_parse_cmds(ring,
1225 batch_obj,
1226 args->batch_start_offset,
1227 file->is_master);
1228 if (ret)
1229 goto err;
1230
1231 /*
1232 * XXX: Actually do this when enabling batch copy...
1233 *
1234 * Set the DISPATCH_SECURE bit to remove the NON_SECURE bit
1235 * from MI_BATCH_BUFFER_START commands issued in the
1236 * dispatch_execbuffer implementations. We specifically don't
1237 * want that set when the command parser is enabled.
1238 */
1239 }
1240
1241 /* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
1242 * batch" bit. Hence we need to pin secure batches into the global gtt.
1243 * hsw should have this fixed, but bdw mucks it up again. */
1244 if (flags & I915_DISPATCH_SECURE &&
1245 !batch_obj->has_global_gtt_mapping) {
1246 /* When we have multiple VMs, we'll need to make sure that we
1247 * allocate space first */
1248 struct i915_vma *vma = i915_gem_obj_to_ggtt(batch_obj);
1249 BUG_ON(!vma);
1250 vma->bind_vma(vma, batch_obj->cache_level, GLOBAL_BIND);
1251 }
1252
1253 if (flags & I915_DISPATCH_SECURE)
1254 exec_start += i915_gem_obj_ggtt_offset(batch_obj);
1255 else
1256 exec_start += i915_gem_obj_offset(batch_obj, vm);
1257
1258 ret = i915_gem_execbuffer_move_to_gpu(ring, &eb->vmas);
1259 if (ret)
1260 goto err;
1261
1262 ret = i915_switch_context(ring, ctx);
1263 if (ret)
1264 goto err;
1265
1266 if (ring == &dev_priv->ring[RCS] &&
1267 mode != dev_priv->relative_constants_mode) {
1268 ret = intel_ring_begin(ring, 4);
1269 if (ret)
1270 goto err;
1271
1272 intel_ring_emit(ring, MI_NOOP);
1273 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1274 intel_ring_emit(ring, INSTPM);
1275 intel_ring_emit(ring, mask << 16 | mode);
1276 intel_ring_advance(ring);
1277
1278 dev_priv->relative_constants_mode = mode;
1279 }
1280
1281 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1282 ret = i915_reset_gen7_sol_offsets(dev, ring);
1283 if (ret)
1284 goto err;
1285 }
1286
1287
1288 exec_len = args->batch_len;
1289 if (cliprects) {
1290 for (i = 0; i < args->num_cliprects; i++) {
1291 ret = i915_emit_box(dev, &cliprects[i],
1292 args->DR1, args->DR4);
1293 if (ret)
1294 goto err;
1295
1296 ret = ring->dispatch_execbuffer(ring,
1297 exec_start, exec_len,
1298 flags);
1299 if (ret)
1300 goto err;
1301 }
1302 } else {
1303 ret = ring->dispatch_execbuffer(ring,
1304 exec_start, exec_len,
1305 flags);
1306 if (ret)
1307 goto err;
1308 }
1309
1310 trace_i915_gem_ring_dispatch(ring, intel_ring_get_seqno(ring), flags);
1311
1312 i915_gem_execbuffer_move_to_active(&eb->vmas, ring);
1313 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
1314
1315err:
1316 /* the request owns the ref now */
1317 i915_gem_context_unreference(ctx);
1318 eb_destroy(eb);
1319
1320 mutex_unlock(&dev->struct_mutex);
1321
1322pre_mutex_err:
1323 kfree(cliprects);
1324
1325 /* intel_gpu_busy should also get a ref, so it will free when the device
1326 * is really idle. */
1327 intel_runtime_pm_put(dev_priv);
1328 return ret;
1329}
1330
1331/*
1332 * Legacy execbuffer just creates an exec2 list from the original exec object
1333 * list array and passes it to the real function.
1334 */
1335int
1336i915_gem_execbuffer(struct drm_device *dev, void *data,
1337 struct drm_file *file)
1338{
1339 struct drm_i915_gem_execbuffer *args = data;
1340 struct drm_i915_gem_execbuffer2 exec2;
1341 struct drm_i915_gem_exec_object *exec_list = NULL;
1342 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1343 int ret, i;
1344
1345 if (args->buffer_count < 1) {
1346 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1347 return -EINVAL;
1348 }
1349
1350 /* Copy in the exec list from userland */
1351 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1352 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1353 if (exec_list == NULL || exec2_list == NULL) {
1354 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1355 args->buffer_count);
1356 drm_free_large(exec_list);
1357 drm_free_large(exec2_list);
1358 return -ENOMEM;
1359 }
1360 ret = copy_from_user(exec_list,
1361 to_user_ptr(args->buffers_ptr),
1362 sizeof(*exec_list) * args->buffer_count);
1363 if (ret != 0) {
1364 DRM_DEBUG("copy %d exec entries failed %d\n",
1365 args->buffer_count, ret);
1366 drm_free_large(exec_list);
1367 drm_free_large(exec2_list);
1368 return -EFAULT;
1369 }
1370
1371 for (i = 0; i < args->buffer_count; i++) {
1372 exec2_list[i].handle = exec_list[i].handle;
1373 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1374 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1375 exec2_list[i].alignment = exec_list[i].alignment;
1376 exec2_list[i].offset = exec_list[i].offset;
1377 if (INTEL_INFO(dev)->gen < 4)
1378 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1379 else
1380 exec2_list[i].flags = 0;
1381 }
1382
1383 exec2.buffers_ptr = args->buffers_ptr;
1384 exec2.buffer_count = args->buffer_count;
1385 exec2.batch_start_offset = args->batch_start_offset;
1386 exec2.batch_len = args->batch_len;
1387 exec2.DR1 = args->DR1;
1388 exec2.DR4 = args->DR4;
1389 exec2.num_cliprects = args->num_cliprects;
1390 exec2.cliprects_ptr = args->cliprects_ptr;
1391 exec2.flags = I915_EXEC_RENDER;
1392 i915_execbuffer2_set_context_id(exec2, 0);
1393
1394 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1395 if (!ret) {
1396 struct drm_i915_gem_exec_object __user *user_exec_list =
1397 to_user_ptr(args->buffers_ptr);
1398
1399 /* Copy the new buffer offsets back to the user's exec list. */
1400 for (i = 0; i < args->buffer_count; i++) {
1401 ret = __copy_to_user(&user_exec_list[i].offset,
1402 &exec2_list[i].offset,
1403 sizeof(user_exec_list[i].offset));
1404 if (ret) {
1405 ret = -EFAULT;
1406 DRM_DEBUG("failed to copy %d exec entries "
1407 "back to user (%d)\n",
1408 args->buffer_count, ret);
1409 break;
1410 }
1411 }
1412 }
1413
1414 drm_free_large(exec_list);
1415 drm_free_large(exec2_list);
1416 return ret;
1417}
1418
1419int
1420i915_gem_execbuffer2(struct drm_device *dev, void *data,
1421 struct drm_file *file)
1422{
1423 struct drm_i915_gem_execbuffer2 *args = data;
1424 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1425 int ret;
1426
1427 if (args->buffer_count < 1 ||
1428 args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1429 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1430 return -EINVAL;
1431 }
1432
1433 exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
1434 GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
1435 if (exec2_list == NULL)
1436 exec2_list = drm_malloc_ab(sizeof(*exec2_list),
1437 args->buffer_count);
1438 if (exec2_list == NULL) {
1439 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1440 args->buffer_count);
1441 return -ENOMEM;
1442 }
1443 ret = copy_from_user(exec2_list,
1444 to_user_ptr(args->buffers_ptr),
1445 sizeof(*exec2_list) * args->buffer_count);
1446 if (ret != 0) {
1447 DRM_DEBUG("copy %d exec entries failed %d\n",
1448 args->buffer_count, ret);
1449 drm_free_large(exec2_list);
1450 return -EFAULT;
1451 }
1452
1453 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1454 if (!ret) {
1455 /* Copy the new buffer offsets back to the user's exec list. */
1456 struct drm_i915_gem_exec_object2 *user_exec_list =
1457 to_user_ptr(args->buffers_ptr);
1458 int i;
1459
1460 for (i = 0; i < args->buffer_count; i++) {
1461 ret = __copy_to_user(&user_exec_list[i].offset,
1462 &exec2_list[i].offset,
1463 sizeof(user_exec_list[i].offset));
1464 if (ret) {
1465 ret = -EFAULT;
1466 DRM_DEBUG("failed to copy %d exec entries "
1467 "back to user\n",
1468 args->buffer_count);
1469 break;
1470 }
1471 }
1472 }
1473
1474 drm_free_large(exec2_list);
1475 return ret;
1476}