Loading...
1#include <linux/types.h>
2#include <linux/string.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/ctype.h>
6#include <linux/dmi.h>
7#include <linux/efi.h>
8#include <linux/bootmem.h>
9#include <asm/dmi.h>
10
11/*
12 * DMI stands for "Desktop Management Interface". It is part
13 * of and an antecedent to, SMBIOS, which stands for System
14 * Management BIOS. See further: http://www.dmtf.org/standards
15 */
16static char dmi_empty_string[] = " ";
17
18/*
19 * Catch too early calls to dmi_check_system():
20 */
21static int dmi_initialized;
22
23static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
24{
25 const u8 *bp = ((u8 *) dm) + dm->length;
26
27 if (s) {
28 s--;
29 while (s > 0 && *bp) {
30 bp += strlen(bp) + 1;
31 s--;
32 }
33
34 if (*bp != 0) {
35 size_t len = strlen(bp)+1;
36 size_t cmp_len = len > 8 ? 8 : len;
37
38 if (!memcmp(bp, dmi_empty_string, cmp_len))
39 return dmi_empty_string;
40 return bp;
41 }
42 }
43
44 return "";
45}
46
47static char * __init dmi_string(const struct dmi_header *dm, u8 s)
48{
49 const char *bp = dmi_string_nosave(dm, s);
50 char *str;
51 size_t len;
52
53 if (bp == dmi_empty_string)
54 return dmi_empty_string;
55
56 len = strlen(bp) + 1;
57 str = dmi_alloc(len);
58 if (str != NULL)
59 strcpy(str, bp);
60 else
61 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
62
63 return str;
64}
65
66/*
67 * We have to be cautious here. We have seen BIOSes with DMI pointers
68 * pointing to completely the wrong place for example
69 */
70static void dmi_table(u8 *buf, int len, int num,
71 void (*decode)(const struct dmi_header *, void *),
72 void *private_data)
73{
74 u8 *data = buf;
75 int i = 0;
76
77 /*
78 * Stop when we see all the items the table claimed to have
79 * OR we run off the end of the table (also happens)
80 */
81 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
82 const struct dmi_header *dm = (const struct dmi_header *)data;
83
84 /*
85 * We want to know the total length (formatted area and
86 * strings) before decoding to make sure we won't run off the
87 * table in dmi_decode or dmi_string
88 */
89 data += dm->length;
90 while ((data - buf < len - 1) && (data[0] || data[1]))
91 data++;
92 if (data - buf < len - 1)
93 decode(dm, private_data);
94 data += 2;
95 i++;
96 }
97}
98
99static u32 dmi_base;
100static u16 dmi_len;
101static u16 dmi_num;
102
103static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
104 void *))
105{
106 u8 *buf;
107
108 buf = dmi_ioremap(dmi_base, dmi_len);
109 if (buf == NULL)
110 return -1;
111
112 dmi_table(buf, dmi_len, dmi_num, decode, NULL);
113
114 dmi_iounmap(buf, dmi_len);
115 return 0;
116}
117
118static int __init dmi_checksum(const u8 *buf)
119{
120 u8 sum = 0;
121 int a;
122
123 for (a = 0; a < 15; a++)
124 sum += buf[a];
125
126 return sum == 0;
127}
128
129static char *dmi_ident[DMI_STRING_MAX];
130static LIST_HEAD(dmi_devices);
131int dmi_available;
132
133/*
134 * Save a DMI string
135 */
136static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
137{
138 const char *d = (const char*) dm;
139 char *p;
140
141 if (dmi_ident[slot])
142 return;
143
144 p = dmi_string(dm, d[string]);
145 if (p == NULL)
146 return;
147
148 dmi_ident[slot] = p;
149}
150
151static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
152{
153 const u8 *d = (u8*) dm + index;
154 char *s;
155 int is_ff = 1, is_00 = 1, i;
156
157 if (dmi_ident[slot])
158 return;
159
160 for (i = 0; i < 16 && (is_ff || is_00); i++) {
161 if(d[i] != 0x00) is_ff = 0;
162 if(d[i] != 0xFF) is_00 = 0;
163 }
164
165 if (is_ff || is_00)
166 return;
167
168 s = dmi_alloc(16*2+4+1);
169 if (!s)
170 return;
171
172 sprintf(s, "%pUB", d);
173
174 dmi_ident[slot] = s;
175}
176
177static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
178{
179 const u8 *d = (u8*) dm + index;
180 char *s;
181
182 if (dmi_ident[slot])
183 return;
184
185 s = dmi_alloc(4);
186 if (!s)
187 return;
188
189 sprintf(s, "%u", *d & 0x7F);
190 dmi_ident[slot] = s;
191}
192
193static void __init dmi_save_one_device(int type, const char *name)
194{
195 struct dmi_device *dev;
196
197 /* No duplicate device */
198 if (dmi_find_device(type, name, NULL))
199 return;
200
201 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
202 if (!dev) {
203 printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
204 return;
205 }
206
207 dev->type = type;
208 strcpy((char *)(dev + 1), name);
209 dev->name = (char *)(dev + 1);
210 dev->device_data = NULL;
211 list_add(&dev->list, &dmi_devices);
212}
213
214static void __init dmi_save_devices(const struct dmi_header *dm)
215{
216 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
217
218 for (i = 0; i < count; i++) {
219 const char *d = (char *)(dm + 1) + (i * 2);
220
221 /* Skip disabled device */
222 if ((*d & 0x80) == 0)
223 continue;
224
225 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
226 }
227}
228
229static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
230{
231 int i, count = *(u8 *)(dm + 1);
232 struct dmi_device *dev;
233
234 for (i = 1; i <= count; i++) {
235 char *devname = dmi_string(dm, i);
236
237 if (devname == dmi_empty_string)
238 continue;
239
240 dev = dmi_alloc(sizeof(*dev));
241 if (!dev) {
242 printk(KERN_ERR
243 "dmi_save_oem_strings_devices: out of memory.\n");
244 break;
245 }
246
247 dev->type = DMI_DEV_TYPE_OEM_STRING;
248 dev->name = devname;
249 dev->device_data = NULL;
250
251 list_add(&dev->list, &dmi_devices);
252 }
253}
254
255static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
256{
257 struct dmi_device *dev;
258 void * data;
259
260 data = dmi_alloc(dm->length);
261 if (data == NULL) {
262 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
263 return;
264 }
265
266 memcpy(data, dm, dm->length);
267
268 dev = dmi_alloc(sizeof(*dev));
269 if (!dev) {
270 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
271 return;
272 }
273
274 dev->type = DMI_DEV_TYPE_IPMI;
275 dev->name = "IPMI controller";
276 dev->device_data = data;
277
278 list_add_tail(&dev->list, &dmi_devices);
279}
280
281static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
282 int devfn, const char *name)
283{
284 struct dmi_dev_onboard *onboard_dev;
285
286 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
287 if (!onboard_dev) {
288 printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n");
289 return;
290 }
291 onboard_dev->instance = instance;
292 onboard_dev->segment = segment;
293 onboard_dev->bus = bus;
294 onboard_dev->devfn = devfn;
295
296 strcpy((char *)&onboard_dev[1], name);
297 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
298 onboard_dev->dev.name = (char *)&onboard_dev[1];
299 onboard_dev->dev.device_data = onboard_dev;
300
301 list_add(&onboard_dev->dev.list, &dmi_devices);
302}
303
304static void __init dmi_save_extended_devices(const struct dmi_header *dm)
305{
306 const u8 *d = (u8*) dm + 5;
307
308 /* Skip disabled device */
309 if ((*d & 0x80) == 0)
310 return;
311
312 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
313 dmi_string_nosave(dm, *(d-1)));
314 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
315}
316
317/*
318 * Process a DMI table entry. Right now all we care about are the BIOS
319 * and machine entries. For 2.5 we should pull the smbus controller info
320 * out of here.
321 */
322static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
323{
324 switch(dm->type) {
325 case 0: /* BIOS Information */
326 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
327 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
328 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
329 break;
330 case 1: /* System Information */
331 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
332 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
333 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
334 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
335 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
336 break;
337 case 2: /* Base Board Information */
338 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
339 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
340 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
341 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
342 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
343 break;
344 case 3: /* Chassis Information */
345 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
346 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
347 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
348 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
349 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
350 break;
351 case 10: /* Onboard Devices Information */
352 dmi_save_devices(dm);
353 break;
354 case 11: /* OEM Strings */
355 dmi_save_oem_strings_devices(dm);
356 break;
357 case 38: /* IPMI Device Information */
358 dmi_save_ipmi_device(dm);
359 break;
360 case 41: /* Onboard Devices Extended Information */
361 dmi_save_extended_devices(dm);
362 }
363}
364
365static void __init print_filtered(const char *info)
366{
367 const char *p;
368
369 if (!info)
370 return;
371
372 for (p = info; *p; p++)
373 if (isprint(*p))
374 printk(KERN_CONT "%c", *p);
375 else
376 printk(KERN_CONT "\\x%02x", *p & 0xff);
377}
378
379static void __init dmi_dump_ids(void)
380{
381 const char *board; /* Board Name is optional */
382
383 printk(KERN_DEBUG "DMI: ");
384 print_filtered(dmi_get_system_info(DMI_SYS_VENDOR));
385 printk(KERN_CONT " ");
386 print_filtered(dmi_get_system_info(DMI_PRODUCT_NAME));
387 board = dmi_get_system_info(DMI_BOARD_NAME);
388 if (board) {
389 printk(KERN_CONT "/");
390 print_filtered(board);
391 }
392 printk(KERN_CONT ", BIOS ");
393 print_filtered(dmi_get_system_info(DMI_BIOS_VERSION));
394 printk(KERN_CONT " ");
395 print_filtered(dmi_get_system_info(DMI_BIOS_DATE));
396 printk(KERN_CONT "\n");
397}
398
399static int __init dmi_present(const char __iomem *p)
400{
401 u8 buf[15];
402
403 memcpy_fromio(buf, p, 15);
404 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
405 dmi_num = (buf[13] << 8) | buf[12];
406 dmi_len = (buf[7] << 8) | buf[6];
407 dmi_base = (buf[11] << 24) | (buf[10] << 16) |
408 (buf[9] << 8) | buf[8];
409
410 /*
411 * DMI version 0.0 means that the real version is taken from
412 * the SMBIOS version, which we don't know at this point.
413 */
414 if (buf[14] != 0)
415 printk(KERN_INFO "DMI %d.%d present.\n",
416 buf[14] >> 4, buf[14] & 0xF);
417 else
418 printk(KERN_INFO "DMI present.\n");
419 if (dmi_walk_early(dmi_decode) == 0) {
420 dmi_dump_ids();
421 return 0;
422 }
423 }
424 return 1;
425}
426
427void __init dmi_scan_machine(void)
428{
429 char __iomem *p, *q;
430 int rc;
431
432 if (efi_enabled) {
433 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
434 goto error;
435
436 /* This is called as a core_initcall() because it isn't
437 * needed during early boot. This also means we can
438 * iounmap the space when we're done with it.
439 */
440 p = dmi_ioremap(efi.smbios, 32);
441 if (p == NULL)
442 goto error;
443
444 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
445 dmi_iounmap(p, 32);
446 if (!rc) {
447 dmi_available = 1;
448 goto out;
449 }
450 }
451 else {
452 /*
453 * no iounmap() for that ioremap(); it would be a no-op, but
454 * it's so early in setup that sucker gets confused into doing
455 * what it shouldn't if we actually call it.
456 */
457 p = dmi_ioremap(0xF0000, 0x10000);
458 if (p == NULL)
459 goto error;
460
461 for (q = p; q < p + 0x10000; q += 16) {
462 rc = dmi_present(q);
463 if (!rc) {
464 dmi_available = 1;
465 dmi_iounmap(p, 0x10000);
466 goto out;
467 }
468 }
469 dmi_iounmap(p, 0x10000);
470 }
471 error:
472 printk(KERN_INFO "DMI not present or invalid.\n");
473 out:
474 dmi_initialized = 1;
475}
476
477/**
478 * dmi_matches - check if dmi_system_id structure matches system DMI data
479 * @dmi: pointer to the dmi_system_id structure to check
480 */
481static bool dmi_matches(const struct dmi_system_id *dmi)
482{
483 int i;
484
485 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
486
487 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
488 int s = dmi->matches[i].slot;
489 if (s == DMI_NONE)
490 break;
491 if (dmi_ident[s]
492 && strstr(dmi_ident[s], dmi->matches[i].substr))
493 continue;
494 /* No match */
495 return false;
496 }
497 return true;
498}
499
500/**
501 * dmi_is_end_of_table - check for end-of-table marker
502 * @dmi: pointer to the dmi_system_id structure to check
503 */
504static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
505{
506 return dmi->matches[0].slot == DMI_NONE;
507}
508
509/**
510 * dmi_check_system - check system DMI data
511 * @list: array of dmi_system_id structures to match against
512 * All non-null elements of the list must match
513 * their slot's (field index's) data (i.e., each
514 * list string must be a substring of the specified
515 * DMI slot's string data) to be considered a
516 * successful match.
517 *
518 * Walk the blacklist table running matching functions until someone
519 * returns non zero or we hit the end. Callback function is called for
520 * each successful match. Returns the number of matches.
521 */
522int dmi_check_system(const struct dmi_system_id *list)
523{
524 int count = 0;
525 const struct dmi_system_id *d;
526
527 for (d = list; !dmi_is_end_of_table(d); d++)
528 if (dmi_matches(d)) {
529 count++;
530 if (d->callback && d->callback(d))
531 break;
532 }
533
534 return count;
535}
536EXPORT_SYMBOL(dmi_check_system);
537
538/**
539 * dmi_first_match - find dmi_system_id structure matching system DMI data
540 * @list: array of dmi_system_id structures to match against
541 * All non-null elements of the list must match
542 * their slot's (field index's) data (i.e., each
543 * list string must be a substring of the specified
544 * DMI slot's string data) to be considered a
545 * successful match.
546 *
547 * Walk the blacklist table until the first match is found. Return the
548 * pointer to the matching entry or NULL if there's no match.
549 */
550const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
551{
552 const struct dmi_system_id *d;
553
554 for (d = list; !dmi_is_end_of_table(d); d++)
555 if (dmi_matches(d))
556 return d;
557
558 return NULL;
559}
560EXPORT_SYMBOL(dmi_first_match);
561
562/**
563 * dmi_get_system_info - return DMI data value
564 * @field: data index (see enum dmi_field)
565 *
566 * Returns one DMI data value, can be used to perform
567 * complex DMI data checks.
568 */
569const char *dmi_get_system_info(int field)
570{
571 return dmi_ident[field];
572}
573EXPORT_SYMBOL(dmi_get_system_info);
574
575/**
576 * dmi_name_in_serial - Check if string is in the DMI product serial information
577 * @str: string to check for
578 */
579int dmi_name_in_serial(const char *str)
580{
581 int f = DMI_PRODUCT_SERIAL;
582 if (dmi_ident[f] && strstr(dmi_ident[f], str))
583 return 1;
584 return 0;
585}
586
587/**
588 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
589 * @str: Case sensitive Name
590 */
591int dmi_name_in_vendors(const char *str)
592{
593 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
594 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
595 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
596 int i;
597 for (i = 0; fields[i] != DMI_NONE; i++) {
598 int f = fields[i];
599 if (dmi_ident[f] && strstr(dmi_ident[f], str))
600 return 1;
601 }
602 return 0;
603}
604EXPORT_SYMBOL(dmi_name_in_vendors);
605
606/**
607 * dmi_find_device - find onboard device by type/name
608 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
609 * @name: device name string or %NULL to match all
610 * @from: previous device found in search, or %NULL for new search.
611 *
612 * Iterates through the list of known onboard devices. If a device is
613 * found with a matching @vendor and @device, a pointer to its device
614 * structure is returned. Otherwise, %NULL is returned.
615 * A new search is initiated by passing %NULL as the @from argument.
616 * If @from is not %NULL, searches continue from next device.
617 */
618const struct dmi_device * dmi_find_device(int type, const char *name,
619 const struct dmi_device *from)
620{
621 const struct list_head *head = from ? &from->list : &dmi_devices;
622 struct list_head *d;
623
624 for(d = head->next; d != &dmi_devices; d = d->next) {
625 const struct dmi_device *dev =
626 list_entry(d, struct dmi_device, list);
627
628 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
629 ((name == NULL) || (strcmp(dev->name, name) == 0)))
630 return dev;
631 }
632
633 return NULL;
634}
635EXPORT_SYMBOL(dmi_find_device);
636
637/**
638 * dmi_get_date - parse a DMI date
639 * @field: data index (see enum dmi_field)
640 * @yearp: optional out parameter for the year
641 * @monthp: optional out parameter for the month
642 * @dayp: optional out parameter for the day
643 *
644 * The date field is assumed to be in the form resembling
645 * [mm[/dd]]/yy[yy] and the result is stored in the out
646 * parameters any or all of which can be omitted.
647 *
648 * If the field doesn't exist, all out parameters are set to zero
649 * and false is returned. Otherwise, true is returned with any
650 * invalid part of date set to zero.
651 *
652 * On return, year, month and day are guaranteed to be in the
653 * range of [0,9999], [0,12] and [0,31] respectively.
654 */
655bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
656{
657 int year = 0, month = 0, day = 0;
658 bool exists;
659 const char *s, *y;
660 char *e;
661
662 s = dmi_get_system_info(field);
663 exists = s;
664 if (!exists)
665 goto out;
666
667 /*
668 * Determine year first. We assume the date string resembles
669 * mm/dd/yy[yy] but the original code extracted only the year
670 * from the end. Keep the behavior in the spirit of no
671 * surprises.
672 */
673 y = strrchr(s, '/');
674 if (!y)
675 goto out;
676
677 y++;
678 year = simple_strtoul(y, &e, 10);
679 if (y != e && year < 100) { /* 2-digit year */
680 year += 1900;
681 if (year < 1996) /* no dates < spec 1.0 */
682 year += 100;
683 }
684 if (year > 9999) /* year should fit in %04d */
685 year = 0;
686
687 /* parse the mm and dd */
688 month = simple_strtoul(s, &e, 10);
689 if (s == e || *e != '/' || !month || month > 12) {
690 month = 0;
691 goto out;
692 }
693
694 s = e + 1;
695 day = simple_strtoul(s, &e, 10);
696 if (s == y || s == e || *e != '/' || day > 31)
697 day = 0;
698out:
699 if (yearp)
700 *yearp = year;
701 if (monthp)
702 *monthp = month;
703 if (dayp)
704 *dayp = day;
705 return exists;
706}
707EXPORT_SYMBOL(dmi_get_date);
708
709/**
710 * dmi_walk - Walk the DMI table and get called back for every record
711 * @decode: Callback function
712 * @private_data: Private data to be passed to the callback function
713 *
714 * Returns -1 when the DMI table can't be reached, 0 on success.
715 */
716int dmi_walk(void (*decode)(const struct dmi_header *, void *),
717 void *private_data)
718{
719 u8 *buf;
720
721 if (!dmi_available)
722 return -1;
723
724 buf = ioremap(dmi_base, dmi_len);
725 if (buf == NULL)
726 return -1;
727
728 dmi_table(buf, dmi_len, dmi_num, decode, private_data);
729
730 iounmap(buf);
731 return 0;
732}
733EXPORT_SYMBOL_GPL(dmi_walk);
734
735/**
736 * dmi_match - compare a string to the dmi field (if exists)
737 * @f: DMI field identifier
738 * @str: string to compare the DMI field to
739 *
740 * Returns true if the requested field equals to the str (including NULL).
741 */
742bool dmi_match(enum dmi_field f, const char *str)
743{
744 const char *info = dmi_get_system_info(f);
745
746 if (info == NULL || str == NULL)
747 return info == str;
748
749 return !strcmp(info, str);
750}
751EXPORT_SYMBOL_GPL(dmi_match);
1#include <linux/types.h>
2#include <linux/string.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/ctype.h>
6#include <linux/dmi.h>
7#include <linux/efi.h>
8#include <linux/bootmem.h>
9#include <linux/random.h>
10#include <asm/dmi.h>
11
12/*
13 * DMI stands for "Desktop Management Interface". It is part
14 * of and an antecedent to, SMBIOS, which stands for System
15 * Management BIOS. See further: http://www.dmtf.org/standards
16 */
17static char dmi_empty_string[] = " ";
18
19/*
20 * Catch too early calls to dmi_check_system():
21 */
22static int dmi_initialized;
23
24static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
25{
26 const u8 *bp = ((u8 *) dm) + dm->length;
27
28 if (s) {
29 s--;
30 while (s > 0 && *bp) {
31 bp += strlen(bp) + 1;
32 s--;
33 }
34
35 if (*bp != 0) {
36 size_t len = strlen(bp)+1;
37 size_t cmp_len = len > 8 ? 8 : len;
38
39 if (!memcmp(bp, dmi_empty_string, cmp_len))
40 return dmi_empty_string;
41 return bp;
42 }
43 }
44
45 return "";
46}
47
48static char * __init dmi_string(const struct dmi_header *dm, u8 s)
49{
50 const char *bp = dmi_string_nosave(dm, s);
51 char *str;
52 size_t len;
53
54 if (bp == dmi_empty_string)
55 return dmi_empty_string;
56
57 len = strlen(bp) + 1;
58 str = dmi_alloc(len);
59 if (str != NULL)
60 strcpy(str, bp);
61 else
62 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
63
64 return str;
65}
66
67/*
68 * We have to be cautious here. We have seen BIOSes with DMI pointers
69 * pointing to completely the wrong place for example
70 */
71static void dmi_table(u8 *buf, int len, int num,
72 void (*decode)(const struct dmi_header *, void *),
73 void *private_data)
74{
75 u8 *data = buf;
76 int i = 0;
77
78 /*
79 * Stop when we see all the items the table claimed to have
80 * OR we run off the end of the table (also happens)
81 */
82 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
83 const struct dmi_header *dm = (const struct dmi_header *)data;
84
85 /*
86 * We want to know the total length (formatted area and
87 * strings) before decoding to make sure we won't run off the
88 * table in dmi_decode or dmi_string
89 */
90 data += dm->length;
91 while ((data - buf < len - 1) && (data[0] || data[1]))
92 data++;
93 if (data - buf < len - 1)
94 decode(dm, private_data);
95 data += 2;
96 i++;
97 }
98}
99
100static u32 dmi_base;
101static u16 dmi_len;
102static u16 dmi_num;
103
104static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
105 void *))
106{
107 u8 *buf;
108
109 buf = dmi_ioremap(dmi_base, dmi_len);
110 if (buf == NULL)
111 return -1;
112
113 dmi_table(buf, dmi_len, dmi_num, decode, NULL);
114
115 add_device_randomness(buf, dmi_len);
116
117 dmi_iounmap(buf, dmi_len);
118 return 0;
119}
120
121static int __init dmi_checksum(const u8 *buf)
122{
123 u8 sum = 0;
124 int a;
125
126 for (a = 0; a < 15; a++)
127 sum += buf[a];
128
129 return sum == 0;
130}
131
132static char *dmi_ident[DMI_STRING_MAX];
133static LIST_HEAD(dmi_devices);
134int dmi_available;
135
136/*
137 * Save a DMI string
138 */
139static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
140{
141 const char *d = (const char*) dm;
142 char *p;
143
144 if (dmi_ident[slot])
145 return;
146
147 p = dmi_string(dm, d[string]);
148 if (p == NULL)
149 return;
150
151 dmi_ident[slot] = p;
152}
153
154static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
155{
156 const u8 *d = (u8*) dm + index;
157 char *s;
158 int is_ff = 1, is_00 = 1, i;
159
160 if (dmi_ident[slot])
161 return;
162
163 for (i = 0; i < 16 && (is_ff || is_00); i++) {
164 if(d[i] != 0x00) is_ff = 0;
165 if(d[i] != 0xFF) is_00 = 0;
166 }
167
168 if (is_ff || is_00)
169 return;
170
171 s = dmi_alloc(16*2+4+1);
172 if (!s)
173 return;
174
175 sprintf(s, "%pUB", d);
176
177 dmi_ident[slot] = s;
178}
179
180static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
181{
182 const u8 *d = (u8*) dm + index;
183 char *s;
184
185 if (dmi_ident[slot])
186 return;
187
188 s = dmi_alloc(4);
189 if (!s)
190 return;
191
192 sprintf(s, "%u", *d & 0x7F);
193 dmi_ident[slot] = s;
194}
195
196static void __init dmi_save_one_device(int type, const char *name)
197{
198 struct dmi_device *dev;
199
200 /* No duplicate device */
201 if (dmi_find_device(type, name, NULL))
202 return;
203
204 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
205 if (!dev) {
206 printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
207 return;
208 }
209
210 dev->type = type;
211 strcpy((char *)(dev + 1), name);
212 dev->name = (char *)(dev + 1);
213 dev->device_data = NULL;
214 list_add(&dev->list, &dmi_devices);
215}
216
217static void __init dmi_save_devices(const struct dmi_header *dm)
218{
219 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
220
221 for (i = 0; i < count; i++) {
222 const char *d = (char *)(dm + 1) + (i * 2);
223
224 /* Skip disabled device */
225 if ((*d & 0x80) == 0)
226 continue;
227
228 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
229 }
230}
231
232static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
233{
234 int i, count = *(u8 *)(dm + 1);
235 struct dmi_device *dev;
236
237 for (i = 1; i <= count; i++) {
238 char *devname = dmi_string(dm, i);
239
240 if (devname == dmi_empty_string)
241 continue;
242
243 dev = dmi_alloc(sizeof(*dev));
244 if (!dev) {
245 printk(KERN_ERR
246 "dmi_save_oem_strings_devices: out of memory.\n");
247 break;
248 }
249
250 dev->type = DMI_DEV_TYPE_OEM_STRING;
251 dev->name = devname;
252 dev->device_data = NULL;
253
254 list_add(&dev->list, &dmi_devices);
255 }
256}
257
258static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
259{
260 struct dmi_device *dev;
261 void * data;
262
263 data = dmi_alloc(dm->length);
264 if (data == NULL) {
265 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
266 return;
267 }
268
269 memcpy(data, dm, dm->length);
270
271 dev = dmi_alloc(sizeof(*dev));
272 if (!dev) {
273 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
274 return;
275 }
276
277 dev->type = DMI_DEV_TYPE_IPMI;
278 dev->name = "IPMI controller";
279 dev->device_data = data;
280
281 list_add_tail(&dev->list, &dmi_devices);
282}
283
284static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
285 int devfn, const char *name)
286{
287 struct dmi_dev_onboard *onboard_dev;
288
289 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
290 if (!onboard_dev) {
291 printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n");
292 return;
293 }
294 onboard_dev->instance = instance;
295 onboard_dev->segment = segment;
296 onboard_dev->bus = bus;
297 onboard_dev->devfn = devfn;
298
299 strcpy((char *)&onboard_dev[1], name);
300 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
301 onboard_dev->dev.name = (char *)&onboard_dev[1];
302 onboard_dev->dev.device_data = onboard_dev;
303
304 list_add(&onboard_dev->dev.list, &dmi_devices);
305}
306
307static void __init dmi_save_extended_devices(const struct dmi_header *dm)
308{
309 const u8 *d = (u8*) dm + 5;
310
311 /* Skip disabled device */
312 if ((*d & 0x80) == 0)
313 return;
314
315 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
316 dmi_string_nosave(dm, *(d-1)));
317 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
318}
319
320/*
321 * Process a DMI table entry. Right now all we care about are the BIOS
322 * and machine entries. For 2.5 we should pull the smbus controller info
323 * out of here.
324 */
325static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
326{
327 switch(dm->type) {
328 case 0: /* BIOS Information */
329 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
330 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
331 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
332 break;
333 case 1: /* System Information */
334 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
335 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
336 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
337 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
338 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
339 break;
340 case 2: /* Base Board Information */
341 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
342 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
343 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
344 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
345 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
346 break;
347 case 3: /* Chassis Information */
348 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
349 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
350 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
351 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
352 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
353 break;
354 case 10: /* Onboard Devices Information */
355 dmi_save_devices(dm);
356 break;
357 case 11: /* OEM Strings */
358 dmi_save_oem_strings_devices(dm);
359 break;
360 case 38: /* IPMI Device Information */
361 dmi_save_ipmi_device(dm);
362 break;
363 case 41: /* Onboard Devices Extended Information */
364 dmi_save_extended_devices(dm);
365 }
366}
367
368static void __init print_filtered(const char *info)
369{
370 const char *p;
371
372 if (!info)
373 return;
374
375 for (p = info; *p; p++)
376 if (isprint(*p))
377 printk(KERN_CONT "%c", *p);
378 else
379 printk(KERN_CONT "\\x%02x", *p & 0xff);
380}
381
382static void __init dmi_dump_ids(void)
383{
384 const char *board; /* Board Name is optional */
385
386 printk(KERN_DEBUG "DMI: ");
387 print_filtered(dmi_get_system_info(DMI_SYS_VENDOR));
388 printk(KERN_CONT " ");
389 print_filtered(dmi_get_system_info(DMI_PRODUCT_NAME));
390 board = dmi_get_system_info(DMI_BOARD_NAME);
391 if (board) {
392 printk(KERN_CONT "/");
393 print_filtered(board);
394 }
395 printk(KERN_CONT ", BIOS ");
396 print_filtered(dmi_get_system_info(DMI_BIOS_VERSION));
397 printk(KERN_CONT " ");
398 print_filtered(dmi_get_system_info(DMI_BIOS_DATE));
399 printk(KERN_CONT "\n");
400}
401
402static int __init dmi_present(const char __iomem *p)
403{
404 u8 buf[15];
405
406 memcpy_fromio(buf, p, 15);
407 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
408 dmi_num = (buf[13] << 8) | buf[12];
409 dmi_len = (buf[7] << 8) | buf[6];
410 dmi_base = (buf[11] << 24) | (buf[10] << 16) |
411 (buf[9] << 8) | buf[8];
412
413 /*
414 * DMI version 0.0 means that the real version is taken from
415 * the SMBIOS version, which we don't know at this point.
416 */
417 if (buf[14] != 0)
418 printk(KERN_INFO "DMI %d.%d present.\n",
419 buf[14] >> 4, buf[14] & 0xF);
420 else
421 printk(KERN_INFO "DMI present.\n");
422 if (dmi_walk_early(dmi_decode) == 0) {
423 dmi_dump_ids();
424 return 0;
425 }
426 }
427 return 1;
428}
429
430void __init dmi_scan_machine(void)
431{
432 char __iomem *p, *q;
433 int rc;
434
435 if (efi_enabled) {
436 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
437 goto error;
438
439 /* This is called as a core_initcall() because it isn't
440 * needed during early boot. This also means we can
441 * iounmap the space when we're done with it.
442 */
443 p = dmi_ioremap(efi.smbios, 32);
444 if (p == NULL)
445 goto error;
446
447 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
448 dmi_iounmap(p, 32);
449 if (!rc) {
450 dmi_available = 1;
451 goto out;
452 }
453 }
454 else {
455 /*
456 * no iounmap() for that ioremap(); it would be a no-op, but
457 * it's so early in setup that sucker gets confused into doing
458 * what it shouldn't if we actually call it.
459 */
460 p = dmi_ioremap(0xF0000, 0x10000);
461 if (p == NULL)
462 goto error;
463
464 for (q = p; q < p + 0x10000; q += 16) {
465 rc = dmi_present(q);
466 if (!rc) {
467 dmi_available = 1;
468 dmi_iounmap(p, 0x10000);
469 goto out;
470 }
471 }
472 dmi_iounmap(p, 0x10000);
473 }
474 error:
475 printk(KERN_INFO "DMI not present or invalid.\n");
476 out:
477 dmi_initialized = 1;
478}
479
480/**
481 * dmi_matches - check if dmi_system_id structure matches system DMI data
482 * @dmi: pointer to the dmi_system_id structure to check
483 */
484static bool dmi_matches(const struct dmi_system_id *dmi)
485{
486 int i;
487
488 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
489
490 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
491 int s = dmi->matches[i].slot;
492 if (s == DMI_NONE)
493 break;
494 if (dmi_ident[s]
495 && strstr(dmi_ident[s], dmi->matches[i].substr))
496 continue;
497 /* No match */
498 return false;
499 }
500 return true;
501}
502
503/**
504 * dmi_is_end_of_table - check for end-of-table marker
505 * @dmi: pointer to the dmi_system_id structure to check
506 */
507static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
508{
509 return dmi->matches[0].slot == DMI_NONE;
510}
511
512/**
513 * dmi_check_system - check system DMI data
514 * @list: array of dmi_system_id structures to match against
515 * All non-null elements of the list must match
516 * their slot's (field index's) data (i.e., each
517 * list string must be a substring of the specified
518 * DMI slot's string data) to be considered a
519 * successful match.
520 *
521 * Walk the blacklist table running matching functions until someone
522 * returns non zero or we hit the end. Callback function is called for
523 * each successful match. Returns the number of matches.
524 */
525int dmi_check_system(const struct dmi_system_id *list)
526{
527 int count = 0;
528 const struct dmi_system_id *d;
529
530 for (d = list; !dmi_is_end_of_table(d); d++)
531 if (dmi_matches(d)) {
532 count++;
533 if (d->callback && d->callback(d))
534 break;
535 }
536
537 return count;
538}
539EXPORT_SYMBOL(dmi_check_system);
540
541/**
542 * dmi_first_match - find dmi_system_id structure matching system DMI data
543 * @list: array of dmi_system_id structures to match against
544 * All non-null elements of the list must match
545 * their slot's (field index's) data (i.e., each
546 * list string must be a substring of the specified
547 * DMI slot's string data) to be considered a
548 * successful match.
549 *
550 * Walk the blacklist table until the first match is found. Return the
551 * pointer to the matching entry or NULL if there's no match.
552 */
553const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
554{
555 const struct dmi_system_id *d;
556
557 for (d = list; !dmi_is_end_of_table(d); d++)
558 if (dmi_matches(d))
559 return d;
560
561 return NULL;
562}
563EXPORT_SYMBOL(dmi_first_match);
564
565/**
566 * dmi_get_system_info - return DMI data value
567 * @field: data index (see enum dmi_field)
568 *
569 * Returns one DMI data value, can be used to perform
570 * complex DMI data checks.
571 */
572const char *dmi_get_system_info(int field)
573{
574 return dmi_ident[field];
575}
576EXPORT_SYMBOL(dmi_get_system_info);
577
578/**
579 * dmi_name_in_serial - Check if string is in the DMI product serial information
580 * @str: string to check for
581 */
582int dmi_name_in_serial(const char *str)
583{
584 int f = DMI_PRODUCT_SERIAL;
585 if (dmi_ident[f] && strstr(dmi_ident[f], str))
586 return 1;
587 return 0;
588}
589
590/**
591 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
592 * @str: Case sensitive Name
593 */
594int dmi_name_in_vendors(const char *str)
595{
596 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
597 int i;
598 for (i = 0; fields[i] != DMI_NONE; i++) {
599 int f = fields[i];
600 if (dmi_ident[f] && strstr(dmi_ident[f], str))
601 return 1;
602 }
603 return 0;
604}
605EXPORT_SYMBOL(dmi_name_in_vendors);
606
607/**
608 * dmi_find_device - find onboard device by type/name
609 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
610 * @name: device name string or %NULL to match all
611 * @from: previous device found in search, or %NULL for new search.
612 *
613 * Iterates through the list of known onboard devices. If a device is
614 * found with a matching @vendor and @device, a pointer to its device
615 * structure is returned. Otherwise, %NULL is returned.
616 * A new search is initiated by passing %NULL as the @from argument.
617 * If @from is not %NULL, searches continue from next device.
618 */
619const struct dmi_device * dmi_find_device(int type, const char *name,
620 const struct dmi_device *from)
621{
622 const struct list_head *head = from ? &from->list : &dmi_devices;
623 struct list_head *d;
624
625 for(d = head->next; d != &dmi_devices; d = d->next) {
626 const struct dmi_device *dev =
627 list_entry(d, struct dmi_device, list);
628
629 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
630 ((name == NULL) || (strcmp(dev->name, name) == 0)))
631 return dev;
632 }
633
634 return NULL;
635}
636EXPORT_SYMBOL(dmi_find_device);
637
638/**
639 * dmi_get_date - parse a DMI date
640 * @field: data index (see enum dmi_field)
641 * @yearp: optional out parameter for the year
642 * @monthp: optional out parameter for the month
643 * @dayp: optional out parameter for the day
644 *
645 * The date field is assumed to be in the form resembling
646 * [mm[/dd]]/yy[yy] and the result is stored in the out
647 * parameters any or all of which can be omitted.
648 *
649 * If the field doesn't exist, all out parameters are set to zero
650 * and false is returned. Otherwise, true is returned with any
651 * invalid part of date set to zero.
652 *
653 * On return, year, month and day are guaranteed to be in the
654 * range of [0,9999], [0,12] and [0,31] respectively.
655 */
656bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
657{
658 int year = 0, month = 0, day = 0;
659 bool exists;
660 const char *s, *y;
661 char *e;
662
663 s = dmi_get_system_info(field);
664 exists = s;
665 if (!exists)
666 goto out;
667
668 /*
669 * Determine year first. We assume the date string resembles
670 * mm/dd/yy[yy] but the original code extracted only the year
671 * from the end. Keep the behavior in the spirit of no
672 * surprises.
673 */
674 y = strrchr(s, '/');
675 if (!y)
676 goto out;
677
678 y++;
679 year = simple_strtoul(y, &e, 10);
680 if (y != e && year < 100) { /* 2-digit year */
681 year += 1900;
682 if (year < 1996) /* no dates < spec 1.0 */
683 year += 100;
684 }
685 if (year > 9999) /* year should fit in %04d */
686 year = 0;
687
688 /* parse the mm and dd */
689 month = simple_strtoul(s, &e, 10);
690 if (s == e || *e != '/' || !month || month > 12) {
691 month = 0;
692 goto out;
693 }
694
695 s = e + 1;
696 day = simple_strtoul(s, &e, 10);
697 if (s == y || s == e || *e != '/' || day > 31)
698 day = 0;
699out:
700 if (yearp)
701 *yearp = year;
702 if (monthp)
703 *monthp = month;
704 if (dayp)
705 *dayp = day;
706 return exists;
707}
708EXPORT_SYMBOL(dmi_get_date);
709
710/**
711 * dmi_walk - Walk the DMI table and get called back for every record
712 * @decode: Callback function
713 * @private_data: Private data to be passed to the callback function
714 *
715 * Returns -1 when the DMI table can't be reached, 0 on success.
716 */
717int dmi_walk(void (*decode)(const struct dmi_header *, void *),
718 void *private_data)
719{
720 u8 *buf;
721
722 if (!dmi_available)
723 return -1;
724
725 buf = ioremap(dmi_base, dmi_len);
726 if (buf == NULL)
727 return -1;
728
729 dmi_table(buf, dmi_len, dmi_num, decode, private_data);
730
731 iounmap(buf);
732 return 0;
733}
734EXPORT_SYMBOL_GPL(dmi_walk);
735
736/**
737 * dmi_match - compare a string to the dmi field (if exists)
738 * @f: DMI field identifier
739 * @str: string to compare the DMI field to
740 *
741 * Returns true if the requested field equals to the str (including NULL).
742 */
743bool dmi_match(enum dmi_field f, const char *str)
744{
745 const char *info = dmi_get_system_info(f);
746
747 if (info == NULL || str == NULL)
748 return info == str;
749
750 return !strcmp(info, str);
751}
752EXPORT_SYMBOL_GPL(dmi_match);