Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Remote Processor Framework
   3 *
   4 * Copyright (C) 2011 Texas Instruments, Inc.
   5 * Copyright (C) 2011 Google, Inc.
   6 *
   7 * Ohad Ben-Cohen <ohad@wizery.com>
   8 * Brian Swetland <swetland@google.com>
   9 * Mark Grosen <mgrosen@ti.com>
  10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
  11 * Suman Anna <s-anna@ti.com>
  12 * Robert Tivy <rtivy@ti.com>
  13 * Armando Uribe De Leon <x0095078@ti.com>
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * version 2 as published by the Free Software Foundation.
  18 *
  19 * This program is distributed in the hope that it will be useful,
  20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  22 * GNU General Public License for more details.
  23 */
  24
  25#define pr_fmt(fmt)    "%s: " fmt, __func__
  26
  27#include <linux/kernel.h>
  28#include <linux/module.h>
  29#include <linux/device.h>
  30#include <linux/slab.h>
  31#include <linux/mutex.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/firmware.h>
  34#include <linux/string.h>
  35#include <linux/debugfs.h>
  36#include <linux/remoteproc.h>
  37#include <linux/iommu.h>
  38#include <linux/idr.h>
  39#include <linux/elf.h>
  40#include <linux/crc32.h>
  41#include <linux/virtio_ids.h>
  42#include <linux/virtio_ring.h>
  43#include <asm/byteorder.h>
  44
  45#include "remoteproc_internal.h"
  46
  47typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
  48				struct resource_table *table, int len);
  49typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
  50				 void *, int offset, int avail);
  51
  52/* Unique indices for remoteproc devices */
  53static DEFINE_IDA(rproc_dev_index);
  54
  55static const char * const rproc_crash_names[] = {
  56	[RPROC_MMUFAULT]	= "mmufault",
  57};
  58
  59/* translate rproc_crash_type to string */
  60static const char *rproc_crash_to_string(enum rproc_crash_type type)
  61{
  62	if (type < ARRAY_SIZE(rproc_crash_names))
  63		return rproc_crash_names[type];
  64	return "unknown";
  65}
  66
  67/*
  68 * This is the IOMMU fault handler we register with the IOMMU API
  69 * (when relevant; not all remote processors access memory through
  70 * an IOMMU).
  71 *
  72 * IOMMU core will invoke this handler whenever the remote processor
  73 * will try to access an unmapped device address.
  74 */
  75static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
  76		unsigned long iova, int flags, void *token)
  77{
  78	struct rproc *rproc = token;
  79
  80	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
  81
  82	rproc_report_crash(rproc, RPROC_MMUFAULT);
  83
  84	/*
  85	 * Let the iommu core know we're not really handling this fault;
  86	 * we just used it as a recovery trigger.
  87	 */
  88	return -ENOSYS;
  89}
  90
  91static int rproc_enable_iommu(struct rproc *rproc)
  92{
  93	struct iommu_domain *domain;
  94	struct device *dev = rproc->dev.parent;
  95	int ret;
  96
  97	/*
  98	 * We currently use iommu_present() to decide if an IOMMU
  99	 * setup is needed.
 100	 *
 101	 * This works for simple cases, but will easily fail with
 102	 * platforms that do have an IOMMU, but not for this specific
 103	 * rproc.
 104	 *
 105	 * This will be easily solved by introducing hw capabilities
 106	 * that will be set by the remoteproc driver.
 107	 */
 108	if (!iommu_present(dev->bus)) {
 109		dev_dbg(dev, "iommu not found\n");
 110		return 0;
 111	}
 112
 113	domain = iommu_domain_alloc(dev->bus);
 114	if (!domain) {
 115		dev_err(dev, "can't alloc iommu domain\n");
 116		return -ENOMEM;
 117	}
 118
 119	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
 120
 121	ret = iommu_attach_device(domain, dev);
 122	if (ret) {
 123		dev_err(dev, "can't attach iommu device: %d\n", ret);
 124		goto free_domain;
 125	}
 126
 127	rproc->domain = domain;
 128
 129	return 0;
 130
 131free_domain:
 132	iommu_domain_free(domain);
 133	return ret;
 134}
 135
 136static void rproc_disable_iommu(struct rproc *rproc)
 137{
 138	struct iommu_domain *domain = rproc->domain;
 139	struct device *dev = rproc->dev.parent;
 140
 141	if (!domain)
 142		return;
 143
 144	iommu_detach_device(domain, dev);
 145	iommu_domain_free(domain);
 146
 147	return;
 148}
 149
 150/*
 151 * Some remote processors will ask us to allocate them physically contiguous
 152 * memory regions (which we call "carveouts"), and map them to specific
 153 * device addresses (which are hardcoded in the firmware).
 154 *
 155 * They may then ask us to copy objects into specific device addresses (e.g.
 156 * code/data sections) or expose us certain symbols in other device address
 157 * (e.g. their trace buffer).
 158 *
 159 * This function is an internal helper with which we can go over the allocated
 160 * carveouts and translate specific device address to kernel virtual addresses
 161 * so we can access the referenced memory.
 162 *
 163 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 164 * but only on kernel direct mapped RAM memory. Instead, we're just using
 165 * here the output of the DMA API, which should be more correct.
 166 */
 167void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
 168{
 169	struct rproc_mem_entry *carveout;
 170	void *ptr = NULL;
 171
 172	list_for_each_entry(carveout, &rproc->carveouts, node) {
 173		int offset = da - carveout->da;
 174
 175		/* try next carveout if da is too small */
 176		if (offset < 0)
 177			continue;
 178
 179		/* try next carveout if da is too large */
 180		if (offset + len > carveout->len)
 181			continue;
 182
 183		ptr = carveout->va + offset;
 184
 185		break;
 186	}
 187
 188	return ptr;
 189}
 190EXPORT_SYMBOL(rproc_da_to_va);
 191
 192int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
 193{
 194	struct rproc *rproc = rvdev->rproc;
 195	struct device *dev = &rproc->dev;
 196	struct rproc_vring *rvring = &rvdev->vring[i];
 197	struct fw_rsc_vdev *rsc;
 198	dma_addr_t dma;
 199	void *va;
 200	int ret, size, notifyid;
 201
 202	/* actual size of vring (in bytes) */
 203	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
 204
 205	/*
 206	 * Allocate non-cacheable memory for the vring. In the future
 207	 * this call will also configure the IOMMU for us
 208	 */
 209	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
 210	if (!va) {
 211		dev_err(dev->parent, "dma_alloc_coherent failed\n");
 212		return -EINVAL;
 213	}
 214
 215	/*
 216	 * Assign an rproc-wide unique index for this vring
 217	 * TODO: assign a notifyid for rvdev updates as well
 218	 * TODO: support predefined notifyids (via resource table)
 219	 */
 220	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
 221	if (ret < 0) {
 222		dev_err(dev, "idr_alloc failed: %d\n", ret);
 223		dma_free_coherent(dev->parent, size, va, dma);
 224		return ret;
 225	}
 226	notifyid = ret;
 227
 228	dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
 229				(unsigned long long)dma, size, notifyid);
 230
 231	rvring->va = va;
 232	rvring->dma = dma;
 233	rvring->notifyid = notifyid;
 234
 235	/*
 236	 * Let the rproc know the notifyid and da of this vring.
 237	 * Not all platforms use dma_alloc_coherent to automatically
 238	 * set up the iommu. In this case the device address (da) will
 239	 * hold the physical address and not the device address.
 240	 */
 241	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
 242	rsc->vring[i].da = dma;
 243	rsc->vring[i].notifyid = notifyid;
 244	return 0;
 245}
 246
 247static int
 248rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
 249{
 250	struct rproc *rproc = rvdev->rproc;
 251	struct device *dev = &rproc->dev;
 252	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
 253	struct rproc_vring *rvring = &rvdev->vring[i];
 254
 255	dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
 256				i, vring->da, vring->num, vring->align);
 257
 258	/* make sure reserved bytes are zeroes */
 259	if (vring->reserved) {
 260		dev_err(dev, "vring rsc has non zero reserved bytes\n");
 261		return -EINVAL;
 262	}
 263
 264	/* verify queue size and vring alignment are sane */
 265	if (!vring->num || !vring->align) {
 266		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
 267						vring->num, vring->align);
 268		return -EINVAL;
 269	}
 270
 271	rvring->len = vring->num;
 272	rvring->align = vring->align;
 273	rvring->rvdev = rvdev;
 274
 275	return 0;
 276}
 277
 278void rproc_free_vring(struct rproc_vring *rvring)
 279{
 280	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
 281	struct rproc *rproc = rvring->rvdev->rproc;
 282	int idx = rvring->rvdev->vring - rvring;
 283	struct fw_rsc_vdev *rsc;
 284
 285	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
 286	idr_remove(&rproc->notifyids, rvring->notifyid);
 287
 288	/* reset resource entry info */
 289	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
 290	rsc->vring[idx].da = 0;
 291	rsc->vring[idx].notifyid = -1;
 292}
 293
 294/**
 295 * rproc_handle_vdev() - handle a vdev fw resource
 296 * @rproc: the remote processor
 297 * @rsc: the vring resource descriptor
 298 * @avail: size of available data (for sanity checking the image)
 299 *
 300 * This resource entry requests the host to statically register a virtio
 301 * device (vdev), and setup everything needed to support it. It contains
 302 * everything needed to make it possible: the virtio device id, virtio
 303 * device features, vrings information, virtio config space, etc...
 304 *
 305 * Before registering the vdev, the vrings are allocated from non-cacheable
 306 * physically contiguous memory. Currently we only support two vrings per
 307 * remote processor (temporary limitation). We might also want to consider
 308 * doing the vring allocation only later when ->find_vqs() is invoked, and
 309 * then release them upon ->del_vqs().
 310 *
 311 * Note: @da is currently not really handled correctly: we dynamically
 312 * allocate it using the DMA API, ignoring requested hard coded addresses,
 313 * and we don't take care of any required IOMMU programming. This is all
 314 * going to be taken care of when the generic iommu-based DMA API will be
 315 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 316 * use RSC_DEVMEM resource entries to map their required @da to the physical
 317 * address of their base CMA region (ouch, hacky!).
 318 *
 319 * Returns 0 on success, or an appropriate error code otherwise
 320 */
 321static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
 322							int offset, int avail)
 323{
 324	struct device *dev = &rproc->dev;
 325	struct rproc_vdev *rvdev;
 326	int i, ret;
 327
 328	/* make sure resource isn't truncated */
 329	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
 330			+ rsc->config_len > avail) {
 331		dev_err(dev, "vdev rsc is truncated\n");
 332		return -EINVAL;
 333	}
 334
 335	/* make sure reserved bytes are zeroes */
 336	if (rsc->reserved[0] || rsc->reserved[1]) {
 337		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
 338		return -EINVAL;
 339	}
 340
 341	dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
 342		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
 343
 344	/* we currently support only two vrings per rvdev */
 345	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
 346		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
 347		return -EINVAL;
 348	}
 349
 350	rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
 351	if (!rvdev)
 352		return -ENOMEM;
 353
 354	rvdev->rproc = rproc;
 355
 356	/* parse the vrings */
 357	for (i = 0; i < rsc->num_of_vrings; i++) {
 358		ret = rproc_parse_vring(rvdev, rsc, i);
 359		if (ret)
 360			goto free_rvdev;
 361	}
 362
 363	/* remember the resource offset*/
 364	rvdev->rsc_offset = offset;
 365
 366	list_add_tail(&rvdev->node, &rproc->rvdevs);
 367
 368	/* it is now safe to add the virtio device */
 369	ret = rproc_add_virtio_dev(rvdev, rsc->id);
 370	if (ret)
 371		goto remove_rvdev;
 372
 373	return 0;
 374
 375remove_rvdev:
 376	list_del(&rvdev->node);
 377free_rvdev:
 378	kfree(rvdev);
 379	return ret;
 380}
 381
 382/**
 383 * rproc_handle_trace() - handle a shared trace buffer resource
 384 * @rproc: the remote processor
 385 * @rsc: the trace resource descriptor
 386 * @avail: size of available data (for sanity checking the image)
 387 *
 388 * In case the remote processor dumps trace logs into memory,
 389 * export it via debugfs.
 390 *
 391 * Currently, the 'da' member of @rsc should contain the device address
 392 * where the remote processor is dumping the traces. Later we could also
 393 * support dynamically allocating this address using the generic
 394 * DMA API (but currently there isn't a use case for that).
 395 *
 396 * Returns 0 on success, or an appropriate error code otherwise
 397 */
 398static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
 399							int offset, int avail)
 400{
 401	struct rproc_mem_entry *trace;
 402	struct device *dev = &rproc->dev;
 403	void *ptr;
 404	char name[15];
 405
 406	if (sizeof(*rsc) > avail) {
 407		dev_err(dev, "trace rsc is truncated\n");
 408		return -EINVAL;
 409	}
 410
 411	/* make sure reserved bytes are zeroes */
 412	if (rsc->reserved) {
 413		dev_err(dev, "trace rsc has non zero reserved bytes\n");
 414		return -EINVAL;
 415	}
 416
 417	/* what's the kernel address of this resource ? */
 418	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
 419	if (!ptr) {
 420		dev_err(dev, "erroneous trace resource entry\n");
 421		return -EINVAL;
 422	}
 423
 424	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
 425	if (!trace) {
 426		dev_err(dev, "kzalloc trace failed\n");
 427		return -ENOMEM;
 428	}
 429
 430	/* set the trace buffer dma properties */
 431	trace->len = rsc->len;
 432	trace->va = ptr;
 433
 434	/* make sure snprintf always null terminates, even if truncating */
 435	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
 436
 437	/* create the debugfs entry */
 438	trace->priv = rproc_create_trace_file(name, rproc, trace);
 439	if (!trace->priv) {
 440		trace->va = NULL;
 441		kfree(trace);
 442		return -EINVAL;
 443	}
 444
 445	list_add_tail(&trace->node, &rproc->traces);
 446
 447	rproc->num_traces++;
 448
 449	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
 450						rsc->da, rsc->len);
 451
 452	return 0;
 453}
 454
 455/**
 456 * rproc_handle_devmem() - handle devmem resource entry
 457 * @rproc: remote processor handle
 458 * @rsc: the devmem resource entry
 459 * @avail: size of available data (for sanity checking the image)
 460 *
 461 * Remote processors commonly need to access certain on-chip peripherals.
 462 *
 463 * Some of these remote processors access memory via an iommu device,
 464 * and might require us to configure their iommu before they can access
 465 * the on-chip peripherals they need.
 466 *
 467 * This resource entry is a request to map such a peripheral device.
 468 *
 469 * These devmem entries will contain the physical address of the device in
 470 * the 'pa' member. If a specific device address is expected, then 'da' will
 471 * contain it (currently this is the only use case supported). 'len' will
 472 * contain the size of the physical region we need to map.
 473 *
 474 * Currently we just "trust" those devmem entries to contain valid physical
 475 * addresses, but this is going to change: we want the implementations to
 476 * tell us ranges of physical addresses the firmware is allowed to request,
 477 * and not allow firmwares to request access to physical addresses that
 478 * are outside those ranges.
 479 */
 480static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
 481							int offset, int avail)
 482{
 483	struct rproc_mem_entry *mapping;
 484	struct device *dev = &rproc->dev;
 485	int ret;
 486
 487	/* no point in handling this resource without a valid iommu domain */
 488	if (!rproc->domain)
 489		return -EINVAL;
 490
 491	if (sizeof(*rsc) > avail) {
 492		dev_err(dev, "devmem rsc is truncated\n");
 493		return -EINVAL;
 494	}
 495
 496	/* make sure reserved bytes are zeroes */
 497	if (rsc->reserved) {
 498		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
 499		return -EINVAL;
 500	}
 501
 502	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 503	if (!mapping) {
 504		dev_err(dev, "kzalloc mapping failed\n");
 505		return -ENOMEM;
 506	}
 507
 508	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
 509	if (ret) {
 510		dev_err(dev, "failed to map devmem: %d\n", ret);
 511		goto out;
 512	}
 513
 514	/*
 515	 * We'll need this info later when we'll want to unmap everything
 516	 * (e.g. on shutdown).
 517	 *
 518	 * We can't trust the remote processor not to change the resource
 519	 * table, so we must maintain this info independently.
 520	 */
 521	mapping->da = rsc->da;
 522	mapping->len = rsc->len;
 523	list_add_tail(&mapping->node, &rproc->mappings);
 524
 525	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
 526					rsc->pa, rsc->da, rsc->len);
 527
 528	return 0;
 529
 530out:
 531	kfree(mapping);
 532	return ret;
 533}
 534
 535/**
 536 * rproc_handle_carveout() - handle phys contig memory allocation requests
 537 * @rproc: rproc handle
 538 * @rsc: the resource entry
 539 * @avail: size of available data (for image validation)
 540 *
 541 * This function will handle firmware requests for allocation of physically
 542 * contiguous memory regions.
 543 *
 544 * These request entries should come first in the firmware's resource table,
 545 * as other firmware entries might request placing other data objects inside
 546 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 547 *
 548 * Allocating memory this way helps utilizing the reserved physical memory
 549 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 550 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 551 * pressure is important; it may have a substantial impact on performance.
 552 */
 553static int rproc_handle_carveout(struct rproc *rproc,
 554						struct fw_rsc_carveout *rsc,
 555						int offset, int avail)
 556
 557{
 558	struct rproc_mem_entry *carveout, *mapping;
 559	struct device *dev = &rproc->dev;
 560	dma_addr_t dma;
 561	void *va;
 562	int ret;
 563
 564	if (sizeof(*rsc) > avail) {
 565		dev_err(dev, "carveout rsc is truncated\n");
 566		return -EINVAL;
 567	}
 568
 569	/* make sure reserved bytes are zeroes */
 570	if (rsc->reserved) {
 571		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
 572		return -EINVAL;
 573	}
 574
 575	dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
 576			rsc->da, rsc->pa, rsc->len, rsc->flags);
 577
 578	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
 579	if (!carveout) {
 580		dev_err(dev, "kzalloc carveout failed\n");
 581		return -ENOMEM;
 582	}
 583
 584	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
 585	if (!va) {
 586		dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
 587		ret = -ENOMEM;
 588		goto free_carv;
 589	}
 590
 591	dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
 592					(unsigned long long)dma, rsc->len);
 593
 594	/*
 595	 * Ok, this is non-standard.
 596	 *
 597	 * Sometimes we can't rely on the generic iommu-based DMA API
 598	 * to dynamically allocate the device address and then set the IOMMU
 599	 * tables accordingly, because some remote processors might
 600	 * _require_ us to use hard coded device addresses that their
 601	 * firmware was compiled with.
 602	 *
 603	 * In this case, we must use the IOMMU API directly and map
 604	 * the memory to the device address as expected by the remote
 605	 * processor.
 606	 *
 607	 * Obviously such remote processor devices should not be configured
 608	 * to use the iommu-based DMA API: we expect 'dma' to contain the
 609	 * physical address in this case.
 610	 */
 611	if (rproc->domain) {
 612		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 613		if (!mapping) {
 614			dev_err(dev, "kzalloc mapping failed\n");
 615			ret = -ENOMEM;
 616			goto dma_free;
 617		}
 618
 619		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
 620								rsc->flags);
 621		if (ret) {
 622			dev_err(dev, "iommu_map failed: %d\n", ret);
 623			goto free_mapping;
 624		}
 625
 626		/*
 627		 * We'll need this info later when we'll want to unmap
 628		 * everything (e.g. on shutdown).
 629		 *
 630		 * We can't trust the remote processor not to change the
 631		 * resource table, so we must maintain this info independently.
 632		 */
 633		mapping->da = rsc->da;
 634		mapping->len = rsc->len;
 635		list_add_tail(&mapping->node, &rproc->mappings);
 636
 637		dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
 638					rsc->da, (unsigned long long)dma);
 639	}
 640
 641	/*
 642	 * Some remote processors might need to know the pa
 643	 * even though they are behind an IOMMU. E.g., OMAP4's
 644	 * remote M3 processor needs this so it can control
 645	 * on-chip hardware accelerators that are not behind
 646	 * the IOMMU, and therefor must know the pa.
 647	 *
 648	 * Generally we don't want to expose physical addresses
 649	 * if we don't have to (remote processors are generally
 650	 * _not_ trusted), so we might want to do this only for
 651	 * remote processor that _must_ have this (e.g. OMAP4's
 652	 * dual M3 subsystem).
 653	 *
 654	 * Non-IOMMU processors might also want to have this info.
 655	 * In this case, the device address and the physical address
 656	 * are the same.
 657	 */
 658	rsc->pa = dma;
 659
 660	carveout->va = va;
 661	carveout->len = rsc->len;
 662	carveout->dma = dma;
 663	carveout->da = rsc->da;
 664
 665	list_add_tail(&carveout->node, &rproc->carveouts);
 666
 667	return 0;
 668
 669free_mapping:
 670	kfree(mapping);
 671dma_free:
 672	dma_free_coherent(dev->parent, rsc->len, va, dma);
 673free_carv:
 674	kfree(carveout);
 675	return ret;
 676}
 677
 678static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
 679			      int offset, int avail)
 680{
 681	/* Summarize the number of notification IDs */
 682	rproc->max_notifyid += rsc->num_of_vrings;
 683
 684	return 0;
 685}
 686
 687/*
 688 * A lookup table for resource handlers. The indices are defined in
 689 * enum fw_resource_type.
 690 */
 691static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
 692	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
 693	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
 694	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
 695	[RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
 696};
 697
 698static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
 699	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
 700};
 701
 702static rproc_handle_resource_t rproc_count_vrings_handler[RSC_LAST] = {
 703	[RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
 704};
 705
 706/* handle firmware resource entries before booting the remote processor */
 707static int rproc_handle_resources(struct rproc *rproc, int len,
 708				  rproc_handle_resource_t handlers[RSC_LAST])
 709{
 710	struct device *dev = &rproc->dev;
 711	rproc_handle_resource_t handler;
 712	int ret = 0, i;
 713
 714	for (i = 0; i < rproc->table_ptr->num; i++) {
 715		int offset = rproc->table_ptr->offset[i];
 716		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
 717		int avail = len - offset - sizeof(*hdr);
 718		void *rsc = (void *)hdr + sizeof(*hdr);
 719
 720		/* make sure table isn't truncated */
 721		if (avail < 0) {
 722			dev_err(dev, "rsc table is truncated\n");
 723			return -EINVAL;
 724		}
 725
 726		dev_dbg(dev, "rsc: type %d\n", hdr->type);
 727
 728		if (hdr->type >= RSC_LAST) {
 729			dev_warn(dev, "unsupported resource %d\n", hdr->type);
 730			continue;
 731		}
 732
 733		handler = handlers[hdr->type];
 734		if (!handler)
 735			continue;
 736
 737		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
 738		if (ret)
 739			break;
 740	}
 741
 742	return ret;
 743}
 744
 745/**
 746 * rproc_resource_cleanup() - clean up and free all acquired resources
 747 * @rproc: rproc handle
 748 *
 749 * This function will free all resources acquired for @rproc, and it
 750 * is called whenever @rproc either shuts down or fails to boot.
 751 */
 752static void rproc_resource_cleanup(struct rproc *rproc)
 753{
 754	struct rproc_mem_entry *entry, *tmp;
 755	struct device *dev = &rproc->dev;
 756
 757	/* clean up debugfs trace entries */
 758	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
 759		rproc_remove_trace_file(entry->priv);
 760		rproc->num_traces--;
 761		list_del(&entry->node);
 762		kfree(entry);
 763	}
 764
 765	/* clean up iommu mapping entries */
 766	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
 767		size_t unmapped;
 768
 769		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
 770		if (unmapped != entry->len) {
 771			/* nothing much to do besides complaining */
 772			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
 773								unmapped);
 774		}
 775
 776		list_del(&entry->node);
 777		kfree(entry);
 778	}
 779
 780	/* clean up carveout allocations */
 781	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
 782		dma_free_coherent(dev->parent, entry->len, entry->va, entry->dma);
 783		list_del(&entry->node);
 784		kfree(entry);
 785	}
 786}
 787
 788/*
 789 * take a firmware and boot a remote processor with it.
 790 */
 791static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
 792{
 793	struct device *dev = &rproc->dev;
 794	const char *name = rproc->firmware;
 795	struct resource_table *table, *loaded_table;
 796	int ret, tablesz;
 797
 798	if (!rproc->table_ptr)
 799		return -ENOMEM;
 800
 801	ret = rproc_fw_sanity_check(rproc, fw);
 802	if (ret)
 803		return ret;
 804
 805	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
 806
 807	/*
 808	 * if enabling an IOMMU isn't relevant for this rproc, this is
 809	 * just a nop
 810	 */
 811	ret = rproc_enable_iommu(rproc);
 812	if (ret) {
 813		dev_err(dev, "can't enable iommu: %d\n", ret);
 814		return ret;
 815	}
 816
 817	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
 818	ret = -EINVAL;
 819
 820	/* look for the resource table */
 821	table = rproc_find_rsc_table(rproc, fw, &tablesz);
 822	if (!table) {
 823		goto clean_up;
 824	}
 825
 826	/* Verify that resource table in loaded fw is unchanged */
 827	if (rproc->table_csum != crc32(0, table, tablesz)) {
 828		dev_err(dev, "resource checksum failed, fw changed?\n");
 829		goto clean_up;
 830	}
 831
 832	/* handle fw resources which are required to boot rproc */
 833	ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
 834	if (ret) {
 835		dev_err(dev, "Failed to process resources: %d\n", ret);
 836		goto clean_up;
 837	}
 838
 839	/* load the ELF segments to memory */
 840	ret = rproc_load_segments(rproc, fw);
 841	if (ret) {
 842		dev_err(dev, "Failed to load program segments: %d\n", ret);
 843		goto clean_up;
 844	}
 845
 846	/*
 847	 * The starting device has been given the rproc->cached_table as the
 848	 * resource table. The address of the vring along with the other
 849	 * allocated resources (carveouts etc) is stored in cached_table.
 850	 * In order to pass this information to the remote device we must
 851	 * copy this information to device memory.
 852	 */
 853	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
 854	if (!loaded_table) {
 855		ret = -EINVAL;
 856		goto clean_up;
 857	}
 858
 859	memcpy(loaded_table, rproc->cached_table, tablesz);
 860
 861	/* power up the remote processor */
 862	ret = rproc->ops->start(rproc);
 863	if (ret) {
 864		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
 865		goto clean_up;
 866	}
 867
 868	/*
 869	 * Update table_ptr so that all subsequent vring allocations and
 870	 * virtio fields manipulation update the actual loaded resource table
 871	 * in device memory.
 872	 */
 873	rproc->table_ptr = loaded_table;
 874
 875	rproc->state = RPROC_RUNNING;
 876
 877	dev_info(dev, "remote processor %s is now up\n", rproc->name);
 878
 879	return 0;
 880
 881clean_up:
 882	rproc_resource_cleanup(rproc);
 883	rproc_disable_iommu(rproc);
 884	return ret;
 885}
 886
 887/*
 888 * take a firmware and look for virtio devices to register.
 889 *
 890 * Note: this function is called asynchronously upon registration of the
 891 * remote processor (so we must wait until it completes before we try
 892 * to unregister the device. one other option is just to use kref here,
 893 * that might be cleaner).
 894 */
 895static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
 896{
 897	struct rproc *rproc = context;
 898	struct resource_table *table;
 899	int ret, tablesz;
 900
 901	if (rproc_fw_sanity_check(rproc, fw) < 0)
 902		goto out;
 903
 904	/* look for the resource table */
 905	table = rproc_find_rsc_table(rproc, fw,  &tablesz);
 906	if (!table)
 907		goto out;
 908
 909	rproc->table_csum = crc32(0, table, tablesz);
 910
 911	/*
 912	 * Create a copy of the resource table. When a virtio device starts
 913	 * and calls vring_new_virtqueue() the address of the allocated vring
 914	 * will be stored in the cached_table. Before the device is started,
 915	 * cached_table will be copied into devic memory.
 916	 */
 917	rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
 918	if (!rproc->cached_table)
 919		goto out;
 920
 921	rproc->table_ptr = rproc->cached_table;
 922
 923	/* count the number of notify-ids */
 924	rproc->max_notifyid = -1;
 925	ret = rproc_handle_resources(rproc, tablesz, rproc_count_vrings_handler);
 926	if (ret)
 927		goto out;
 928
 929	/* look for virtio devices and register them */
 930	ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
 931
 932out:
 933	release_firmware(fw);
 934	/* allow rproc_del() contexts, if any, to proceed */
 935	complete_all(&rproc->firmware_loading_complete);
 936}
 937
 938static int rproc_add_virtio_devices(struct rproc *rproc)
 939{
 940	int ret;
 941
 942	/* rproc_del() calls must wait until async loader completes */
 943	init_completion(&rproc->firmware_loading_complete);
 944
 945	/*
 946	 * We must retrieve early virtio configuration info from
 947	 * the firmware (e.g. whether to register a virtio device,
 948	 * what virtio features does it support, ...).
 949	 *
 950	 * We're initiating an asynchronous firmware loading, so we can
 951	 * be built-in kernel code, without hanging the boot process.
 952	 */
 953	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
 954				      rproc->firmware, &rproc->dev, GFP_KERNEL,
 955				      rproc, rproc_fw_config_virtio);
 956	if (ret < 0) {
 957		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
 958		complete_all(&rproc->firmware_loading_complete);
 959	}
 960
 961	return ret;
 962}
 963
 964/**
 965 * rproc_trigger_recovery() - recover a remoteproc
 966 * @rproc: the remote processor
 967 *
 968 * The recovery is done by reseting all the virtio devices, that way all the
 969 * rpmsg drivers will be reseted along with the remote processor making the
 970 * remoteproc functional again.
 971 *
 972 * This function can sleep, so it cannot be called from atomic context.
 973 */
 974int rproc_trigger_recovery(struct rproc *rproc)
 975{
 976	struct rproc_vdev *rvdev, *rvtmp;
 977
 978	dev_err(&rproc->dev, "recovering %s\n", rproc->name);
 979
 980	init_completion(&rproc->crash_comp);
 981
 982	/* clean up remote vdev entries */
 983	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
 984		rproc_remove_virtio_dev(rvdev);
 985
 986	/* wait until there is no more rproc users */
 987	wait_for_completion(&rproc->crash_comp);
 988
 989	/* Free the copy of the resource table */
 990	kfree(rproc->cached_table);
 991
 992	return rproc_add_virtio_devices(rproc);
 993}
 994
 995/**
 996 * rproc_crash_handler_work() - handle a crash
 997 *
 998 * This function needs to handle everything related to a crash, like cpu
 999 * registers and stack dump, information to help to debug the fatal error, etc.
1000 */
1001static void rproc_crash_handler_work(struct work_struct *work)
1002{
1003	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1004	struct device *dev = &rproc->dev;
1005
1006	dev_dbg(dev, "enter %s\n", __func__);
1007
1008	mutex_lock(&rproc->lock);
1009
1010	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1011		/* handle only the first crash detected */
1012		mutex_unlock(&rproc->lock);
1013		return;
1014	}
1015
1016	rproc->state = RPROC_CRASHED;
1017	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1018		rproc->name);
1019
1020	mutex_unlock(&rproc->lock);
1021
1022	if (!rproc->recovery_disabled)
1023		rproc_trigger_recovery(rproc);
1024}
1025
1026/**
1027 * rproc_boot() - boot a remote processor
1028 * @rproc: handle of a remote processor
1029 *
1030 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1031 *
1032 * If the remote processor is already powered on, this function immediately
1033 * returns (successfully).
1034 *
1035 * Returns 0 on success, and an appropriate error value otherwise.
1036 */
1037int rproc_boot(struct rproc *rproc)
1038{
1039	const struct firmware *firmware_p;
1040	struct device *dev;
1041	int ret;
1042
1043	if (!rproc) {
1044		pr_err("invalid rproc handle\n");
1045		return -EINVAL;
1046	}
1047
1048	dev = &rproc->dev;
1049
1050	ret = mutex_lock_interruptible(&rproc->lock);
1051	if (ret) {
1052		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1053		return ret;
1054	}
1055
1056	/* loading a firmware is required */
1057	if (!rproc->firmware) {
1058		dev_err(dev, "%s: no firmware to load\n", __func__);
1059		ret = -EINVAL;
1060		goto unlock_mutex;
1061	}
1062
1063	/* prevent underlying implementation from being removed */
1064	if (!try_module_get(dev->parent->driver->owner)) {
1065		dev_err(dev, "%s: can't get owner\n", __func__);
1066		ret = -EINVAL;
1067		goto unlock_mutex;
1068	}
1069
1070	/* skip the boot process if rproc is already powered up */
1071	if (atomic_inc_return(&rproc->power) > 1) {
1072		ret = 0;
1073		goto unlock_mutex;
1074	}
1075
1076	dev_info(dev, "powering up %s\n", rproc->name);
1077
1078	/* load firmware */
1079	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1080	if (ret < 0) {
1081		dev_err(dev, "request_firmware failed: %d\n", ret);
1082		goto downref_rproc;
1083	}
1084
1085	ret = rproc_fw_boot(rproc, firmware_p);
1086
1087	release_firmware(firmware_p);
1088
1089downref_rproc:
1090	if (ret) {
1091		module_put(dev->parent->driver->owner);
1092		atomic_dec(&rproc->power);
1093	}
1094unlock_mutex:
1095	mutex_unlock(&rproc->lock);
1096	return ret;
1097}
1098EXPORT_SYMBOL(rproc_boot);
1099
1100/**
1101 * rproc_shutdown() - power off the remote processor
1102 * @rproc: the remote processor
1103 *
1104 * Power off a remote processor (previously booted with rproc_boot()).
1105 *
1106 * In case @rproc is still being used by an additional user(s), then
1107 * this function will just decrement the power refcount and exit,
1108 * without really powering off the device.
1109 *
1110 * Every call to rproc_boot() must (eventually) be accompanied by a call
1111 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1112 *
1113 * Notes:
1114 * - we're not decrementing the rproc's refcount, only the power refcount.
1115 *   which means that the @rproc handle stays valid even after rproc_shutdown()
1116 *   returns, and users can still use it with a subsequent rproc_boot(), if
1117 *   needed.
1118 */
1119void rproc_shutdown(struct rproc *rproc)
1120{
1121	struct device *dev = &rproc->dev;
1122	int ret;
1123
1124	ret = mutex_lock_interruptible(&rproc->lock);
1125	if (ret) {
1126		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1127		return;
1128	}
1129
1130	/* if the remote proc is still needed, bail out */
1131	if (!atomic_dec_and_test(&rproc->power))
1132		goto out;
1133
1134	/* power off the remote processor */
1135	ret = rproc->ops->stop(rproc);
1136	if (ret) {
1137		atomic_inc(&rproc->power);
1138		dev_err(dev, "can't stop rproc: %d\n", ret);
1139		goto out;
1140	}
1141
1142	/* clean up all acquired resources */
1143	rproc_resource_cleanup(rproc);
1144
1145	rproc_disable_iommu(rproc);
1146
1147	/* Give the next start a clean resource table */
1148	rproc->table_ptr = rproc->cached_table;
1149
1150	/* if in crash state, unlock crash handler */
1151	if (rproc->state == RPROC_CRASHED)
1152		complete_all(&rproc->crash_comp);
1153
1154	rproc->state = RPROC_OFFLINE;
1155
1156	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1157
1158out:
1159	mutex_unlock(&rproc->lock);
1160	if (!ret)
1161		module_put(dev->parent->driver->owner);
1162}
1163EXPORT_SYMBOL(rproc_shutdown);
1164
1165/**
1166 * rproc_add() - register a remote processor
1167 * @rproc: the remote processor handle to register
1168 *
1169 * Registers @rproc with the remoteproc framework, after it has been
1170 * allocated with rproc_alloc().
1171 *
1172 * This is called by the platform-specific rproc implementation, whenever
1173 * a new remote processor device is probed.
1174 *
1175 * Returns 0 on success and an appropriate error code otherwise.
1176 *
1177 * Note: this function initiates an asynchronous firmware loading
1178 * context, which will look for virtio devices supported by the rproc's
1179 * firmware.
1180 *
1181 * If found, those virtio devices will be created and added, so as a result
1182 * of registering this remote processor, additional virtio drivers might be
1183 * probed.
1184 */
1185int rproc_add(struct rproc *rproc)
1186{
1187	struct device *dev = &rproc->dev;
1188	int ret;
1189
1190	ret = device_add(dev);
1191	if (ret < 0)
1192		return ret;
1193
1194	dev_info(dev, "%s is available\n", rproc->name);
1195
1196	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1197	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1198
1199	/* create debugfs entries */
1200	rproc_create_debug_dir(rproc);
1201
1202	return rproc_add_virtio_devices(rproc);
1203}
1204EXPORT_SYMBOL(rproc_add);
1205
1206/**
1207 * rproc_type_release() - release a remote processor instance
1208 * @dev: the rproc's device
1209 *
1210 * This function should _never_ be called directly.
1211 *
1212 * It will be called by the driver core when no one holds a valid pointer
1213 * to @dev anymore.
1214 */
1215static void rproc_type_release(struct device *dev)
1216{
1217	struct rproc *rproc = container_of(dev, struct rproc, dev);
1218
1219	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1220
1221	rproc_delete_debug_dir(rproc);
1222
1223	idr_destroy(&rproc->notifyids);
1224
1225	if (rproc->index >= 0)
1226		ida_simple_remove(&rproc_dev_index, rproc->index);
1227
1228	kfree(rproc);
1229}
1230
1231static struct device_type rproc_type = {
1232	.name		= "remoteproc",
1233	.release	= rproc_type_release,
1234};
1235
1236/**
1237 * rproc_alloc() - allocate a remote processor handle
1238 * @dev: the underlying device
1239 * @name: name of this remote processor
1240 * @ops: platform-specific handlers (mainly start/stop)
1241 * @firmware: name of firmware file to load, can be NULL
1242 * @len: length of private data needed by the rproc driver (in bytes)
1243 *
1244 * Allocates a new remote processor handle, but does not register
1245 * it yet. if @firmware is NULL, a default name is used.
1246 *
1247 * This function should be used by rproc implementations during initialization
1248 * of the remote processor.
1249 *
1250 * After creating an rproc handle using this function, and when ready,
1251 * implementations should then call rproc_add() to complete
1252 * the registration of the remote processor.
1253 *
1254 * On success the new rproc is returned, and on failure, NULL.
1255 *
1256 * Note: _never_ directly deallocate @rproc, even if it was not registered
1257 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1258 */
1259struct rproc *rproc_alloc(struct device *dev, const char *name,
1260				const struct rproc_ops *ops,
1261				const char *firmware, int len)
1262{
1263	struct rproc *rproc;
1264	char *p, *template = "rproc-%s-fw";
1265	int name_len = 0;
1266
1267	if (!dev || !name || !ops)
1268		return NULL;
1269
1270	if (!firmware)
1271		/*
1272		 * Make room for default firmware name (minus %s plus '\0').
1273		 * If the caller didn't pass in a firmware name then
1274		 * construct a default name.  We're already glomming 'len'
1275		 * bytes onto the end of the struct rproc allocation, so do
1276		 * a few more for the default firmware name (but only if
1277		 * the caller doesn't pass one).
1278		 */
1279		name_len = strlen(name) + strlen(template) - 2 + 1;
1280
1281	rproc = kzalloc(sizeof(struct rproc) + len + name_len, GFP_KERNEL);
1282	if (!rproc) {
1283		dev_err(dev, "%s: kzalloc failed\n", __func__);
1284		return NULL;
1285	}
1286
1287	if (!firmware) {
1288		p = (char *)rproc + sizeof(struct rproc) + len;
1289		snprintf(p, name_len, template, name);
1290	} else {
1291		p = (char *)firmware;
1292	}
1293
1294	rproc->firmware = p;
1295	rproc->name = name;
1296	rproc->ops = ops;
1297	rproc->priv = &rproc[1];
1298
1299	device_initialize(&rproc->dev);
1300	rproc->dev.parent = dev;
1301	rproc->dev.type = &rproc_type;
1302
1303	/* Assign a unique device index and name */
1304	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1305	if (rproc->index < 0) {
1306		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1307		put_device(&rproc->dev);
1308		return NULL;
1309	}
1310
1311	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1312
1313	atomic_set(&rproc->power, 0);
1314
1315	/* Set ELF as the default fw_ops handler */
1316	rproc->fw_ops = &rproc_elf_fw_ops;
1317
1318	mutex_init(&rproc->lock);
1319
1320	idr_init(&rproc->notifyids);
1321
1322	INIT_LIST_HEAD(&rproc->carveouts);
1323	INIT_LIST_HEAD(&rproc->mappings);
1324	INIT_LIST_HEAD(&rproc->traces);
1325	INIT_LIST_HEAD(&rproc->rvdevs);
1326
1327	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1328	init_completion(&rproc->crash_comp);
1329
1330	rproc->state = RPROC_OFFLINE;
1331
1332	return rproc;
1333}
1334EXPORT_SYMBOL(rproc_alloc);
1335
1336/**
1337 * rproc_put() - unroll rproc_alloc()
1338 * @rproc: the remote processor handle
1339 *
1340 * This function decrements the rproc dev refcount.
1341 *
1342 * If no one holds any reference to rproc anymore, then its refcount would
1343 * now drop to zero, and it would be freed.
1344 */
1345void rproc_put(struct rproc *rproc)
1346{
1347	put_device(&rproc->dev);
1348}
1349EXPORT_SYMBOL(rproc_put);
1350
1351/**
1352 * rproc_del() - unregister a remote processor
1353 * @rproc: rproc handle to unregister
1354 *
1355 * This function should be called when the platform specific rproc
1356 * implementation decides to remove the rproc device. it should
1357 * _only_ be called if a previous invocation of rproc_add()
1358 * has completed successfully.
1359 *
1360 * After rproc_del() returns, @rproc isn't freed yet, because
1361 * of the outstanding reference created by rproc_alloc. To decrement that
1362 * one last refcount, one still needs to call rproc_put().
1363 *
1364 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1365 */
1366int rproc_del(struct rproc *rproc)
1367{
1368	struct rproc_vdev *rvdev, *tmp;
1369
1370	if (!rproc)
1371		return -EINVAL;
1372
1373	/* if rproc is just being registered, wait */
1374	wait_for_completion(&rproc->firmware_loading_complete);
1375
1376	/* clean up remote vdev entries */
1377	list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1378		rproc_remove_virtio_dev(rvdev);
1379
1380	/* Free the copy of the resource table */
1381	kfree(rproc->cached_table);
1382
1383	device_del(&rproc->dev);
1384
1385	return 0;
1386}
1387EXPORT_SYMBOL(rproc_del);
1388
1389/**
1390 * rproc_report_crash() - rproc crash reporter function
1391 * @rproc: remote processor
1392 * @type: crash type
1393 *
1394 * This function must be called every time a crash is detected by the low-level
1395 * drivers implementing a specific remoteproc. This should not be called from a
1396 * non-remoteproc driver.
1397 *
1398 * This function can be called from atomic/interrupt context.
1399 */
1400void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1401{
1402	if (!rproc) {
1403		pr_err("NULL rproc pointer\n");
1404		return;
1405	}
1406
1407	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1408		rproc->name, rproc_crash_to_string(type));
1409
1410	/* create a new task to handle the error */
1411	schedule_work(&rproc->crash_handler);
1412}
1413EXPORT_SYMBOL(rproc_report_crash);
1414
1415static int __init remoteproc_init(void)
1416{
1417	rproc_init_debugfs();
1418
1419	return 0;
1420}
1421module_init(remoteproc_init);
1422
1423static void __exit remoteproc_exit(void)
1424{
1425	rproc_exit_debugfs();
1426}
1427module_exit(remoteproc_exit);
1428
1429MODULE_LICENSE("GPL v2");
1430MODULE_DESCRIPTION("Generic Remote Processor Framework");